WO2006090821A1 - 生化学分析用分離媒体 - Google Patents

生化学分析用分離媒体 Download PDF

Info

Publication number
WO2006090821A1
WO2006090821A1 PCT/JP2006/303385 JP2006303385W WO2006090821A1 WO 2006090821 A1 WO2006090821 A1 WO 2006090821A1 JP 2006303385 W JP2006303385 W JP 2006303385W WO 2006090821 A1 WO2006090821 A1 WO 2006090821A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrophoresis
separation
filler composition
capillary
analysis
Prior art date
Application number
PCT/JP2006/303385
Other languages
English (en)
French (fr)
Inventor
Mitsutoshi Masuda
Kazuko Matsumoto
Rika Iwaura
Yoshinori Yamaguchi
Toshimi Shimizu
Original Assignee
Japan Science And Technology Agency
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency, National Institute Of Advanced Industrial Science And Technology filed Critical Japan Science And Technology Agency
Priority to CA2599335A priority Critical patent/CA2599335C/en
Priority to EP06714524A priority patent/EP1870704A4/en
Priority to JP2007504801A priority patent/JP4706026B2/ja
Publication of WO2006090821A1 publication Critical patent/WO2006090821A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • B01J20/285Porous sorbents based on polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/291Gel sorbents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44747Composition of gel or of carrier mixture

Definitions

  • the present invention relates to a separation medium used in an electrophoresis apparatus for biochemical analysis and the like, a chiral ram that fills the separation medium, and a separation system using the same. More specifically, the present invention comprises an elongate self-assembly that can be produced by heating and cooling an amphiphilic compound having a hydrophobic part and a hydrophilic part in water. The present invention relates to a separation 'analysis filler composition for electrophoresis, a production method thereof, and a separation' analysis method using the same. Background art
  • the absolute amount of sample required for analysis is very small compared to high-performance liquid chromatography (several milliliters for high-performance liquid chromatography and pi level for single-electrophoresis).
  • Electrophoresis is used.
  • capillary electrophoresis is well known for its high resolution, as used in the Human Genome Project, and recently it is also used for analysis of proteins and amino acids.
  • Such simple, high-resolution, high-sensitivity capillary electrophoresis is an important technique for the separation and analysis of DNA, RNA, proteins, and so on.
  • separation is performed using the pores of the polymer (in exact, the size of the network created by the polymer network) filled in the interior of a 20-in.
  • Non-Patent Document 1 The process is the effect of a physical “separation medium”, which is often analyzed by packing a water-soluble polymer into the interior of the pillar.
  • This separation medium has a fixed type that is fixed inside and difficult to exchange, and simply has a solution in the capillary. It can be categorized into a replaceable type that can be easily replaced simply by filling. In either case, a water-soluble polymer is used as a typical sieve.
  • a typical example of the fixed separation medium is polyacrylamide.
  • MPTS methacrylic monomer
  • acrylamide monomer a kind of silane coupling agent that binds to the glass surface
  • acrylamide monomer a kind of silane coupling agent that binds to the glass surface
  • bisacrylamide monomer for cross-linking are mixed in a single beam.
  • radical copolymerization is performed.
  • a solid-phase separation medium polymer network having a net-like gel force is obtained.
  • the disadvantage of this system is that it has a short lifetime due to the decrease in the separation ability of the separation medium due to adsorption of samples and impurities. For this reason, usually 20 to: L0 After the use of 0 times, it is necessary to replace the entire chain.
  • Examples of the exchangeable separation medium include hydroxyethyl cellulose (HEC), hydroxypropyl cellulose (HPC), and non-crosslinked chain polyacrylamide (see Non-Patent Document 2).
  • HEC hydroxyethyl cellulose
  • HPC hydroxypropyl cellulose
  • Non-Patent Document 2 non-crosslinked chain polyacrylamide
  • Non-Patent Document 3 For example, by reducing the cross-linking points of the polymer gel, which is a separation medium, the separation medium can be easily exchanged because it can be dispersed in a solvent while having a micro gel network structure (see Non-Patent Document 3), spherical gold nano-particles An example of successfully controlling the solution viscosity of the separation medium by modifying the surface of the fine particles with a polymer (see Non-Patent Document 4), and a replaceable organic gel that can be exchanged by heating while being a gel. (See Non-Patent Document 5).
  • the gel microstructure is limited to a flexible, random structure or spherical shape.
  • an organic solvent is used for gel formation. Insoluble molecules cannot be analyzed or measured, and if the sample has a higher order structure such as DNA, RNA, or protein, it may be denatured by these organic solvents.
  • amphiphilic compounds having hydrophilicity and hydrophobicity are assembled in water by being dissolved by heating and then cooled, or simply dispersed (self-assembled) and stable nanometer-sized. It is already known to form a molecular assembly (see Non-Patent Document 6).
  • Such molecular aggregates by molecular self-assembly are conventionally spherical micelles formed from alkyl benzene sulfonic acid (SDS), or spherical molecular aggregates formed from naturally occurring phospholipids. (Ribosome, a basic structure of a cell membrane consisting of a bilayer called a vesicle) is known.
  • the feature of the aggregate composed of these amphiphilic compounds is that they have fluidity at room temperature because the molecules are in a liquid crystal state. For this reason, it has the most stable spherical aggregate form and is easily deformed by an external stimulus. Such a structure in the liquid crystal state can be changed to a solid state having no fluidity by cooling, but normally, the solid state remains in a state reflecting the spherical structure in the liquid crystal state.
  • a gel liquid crystal phase transition temperature is referred to as a gel liquid crystal phase transition temperature.
  • amphiphilic compounds intermolecular bonding forces and their spatial orientation (called anisotropy)
  • anisotropy The structural form in the solid state changes from spherical to a specific form as described below.
  • functional groups that increase intermolecular interactions and anisotropy as described above include amide groups, hydroxyl groups, urea groups, imide groups, urethane groups, carboxyl groups, phosphate groups that can form hydrogen bonds, and Examples include rigid units such as aromatic rings and carbon fluoride groups.
  • introduction of sugars and amino acids having these is effective.
  • an amphiphilic compound having a relatively long and large hydrophobic portion is often used.
  • the self-assembled form of amphiphilic compounds with increased intermolecular bonding force in water increases the fluidity in the heated state (that is, above the gel liquid crystal phase transition temperature), and is a normal amphiphile. It becomes spherical like the natural compound. However, when this is cooled to below the gel liquid crystal phase transition temperature and transformed to the solid state, the aggregate structure changes, and the ultrafine fiber with a high axial ratio of 3 nm to 500 ⁇ m in width and lOOnm to several mm in length.
  • these long self-assembled structures and hydrogels composed of these are (1) the ability to reversibly return to the starting amphiphilic compound, and (2) self-assembly. Therefore, when making a long structure, the fine form and size can be precisely controlled according to the conditions. Specifically, these structures are generally stable in dispersed solvents, but physical vibrations and impacts are applied, and a solvent that dissolves amphiphilic compounds well (good solvent) is added. As a result, such a specific structure collapses and returns to a spherical molecular aggregate or molecular dispersion state.
  • these collapsed structures are self-assembled reversibly by re-cooling, addition of a poor solvent such as water, and standing after removing vibrations, resulting in a semi-permanent original structure and its physical properties. It can be returned to a hydrogel which is a crosslinked product.
  • the fine form (fibrous, tape-like, etc.) can be determined by adding the organic solvent other than inorganic salt and water, as well as the molecular type, cooling rate and amphiphilic compound concentration.
  • Macroscopic forms such as spiral tape and tube), sol-gel, etc. (long structure is dispersed) Sol-like dispersions, hydrogels due to their physical cross-linking), and the size of each microstructure can also be created separately.
  • Examples of the use of such amphiphilic compounds in electrophoretic analysis include SDS-PAGE (Sodium Dodecyl sulfate-polyacrylamide gel electrophoresis, SDS (Sodium Dodecyl Sulfate) Conventional methods such as electrophoresis and micellar electrokinetic chromatography are used, but SDS-PAGE and SDS capillary electrophoresis use SDS (Sodium Dodecyl Sulfate) as an amphiphilic compound.
  • SDS-PAGE and SDS capillary electrophoresis use SDS (Sodium Dodecyl Sulfate) as an amphiphilic compound.
  • SDS-PAGE and SDS capillary electrophoresis use SDS (Sodium Dodecyl Sulfate) as an amphiphilic compound.
  • SDS-PAGE and SDS capillary electrophoresis use SDS (Sodium Dodecyl Sulfate) as an amphiphilic compound.
  • Non-Patent Literature 1 Susumu Honda, Shigeru Terabe, “Capillary Electrophoresis, Basics and Practice”, Kodansha Scientific, 1995.
  • Non-Patent Document 2 A. Lagu et al, Anal. Chem., 1991, 63, 1233.
  • Non-Patent Document 3 A.E.Barron et al. Anal.Chem., 2004, 76, 5249.
  • Non-Patent Document 4 H.- T. Chang et al., Anal. Chem., 2004, 76, 192.
  • Non-Patent Document 5 0. Lev et al. Anal. Chem., 2004, 76, 5399.
  • Non-patent document 6 Shonobu Nojima, Junzo Sunamoto, Junzo Inoue, “Ribosome”, Nanedo (1988).
  • Non-patent document 7 L.A.Estroff and A.D. Hamilton, Chem. Rev. 2004, 104, 1201.
  • Non-Patent Document 8 Kazuyuki Hirao, “Nanotechnology that also learns basic skills,” Tokyo Chemical Doujin, Chapter 5 (2003).
  • Non-Patent Document 5 An example of using such a self-assembled nanostructure is the self-assembling organic gel shown in Non-Patent Document 5.
  • this is an organogel that self-assembles and gives a gel only in an organic solvent such as acetonitrile or a mixed solvent with methanol added thereto.
  • electrophoretic analysis is limited to organic solvent systems. Many biopolymer samples are insoluble in such organic solvents.
  • exchange of separation media There is no description of the possibility of conversion.
  • the present invention is a novel separation medium as a novel separation medium for electrophoresis, and an electrophoretic method using the composition, and more particularly, a novel easy-to-change exchange in capillary electrophoresis.
  • Separation 'analysis filler material as a suitable separation medium, a method for producing the same, a method for filling the same and a method for filling the same, and an electrophoresis method such as a method for carrying out a capillary electrophoresis using the same.
  • the present inventors (4) in the case where this long structure is clogged and needs to be replaced due to deterioration, etc., it is separated by re-dissolving with heating, discharging, and then performing the process of (1) again. It has been found that a new separation 'analysis medium that can be refilled with a medium can be provided. Such refilling is a matter of selecting an appropriate separation medium according to the analysis sample, as well as the deterioration of the separation medium! It ’s important. In particular, it facilitates the exchange of the separation medium in the first column in the first electrophoresis.
  • the present invention includes a long self-assembly that can be produced by heating and cooling a low-molecular amphiphilic compound having a hydrophobic part and a hydrophilic part in water.
  • the present invention relates to a packing composition for separation / analysis for electrophoresis.
  • the present invention provides a long self-assembly comprising mixing a low molecular weight amphiphilic compound having a hydrophobic part and a hydrophilic part with water, heating and dissolving this in water, and then cooling.
  • the present invention relates to a method for producing a separation composition for analysis comprising electrophoresis.
  • the present invention provides a separation medium container for electrophoresis filled with the above-described separation / analysis packing material composition for electrophoresis according to the present invention, preferably a capillary, and a container for the separation medium,
  • the present invention relates to an electrophoresis apparatus characterized by having a capillary.
  • the present invention also provides a separation / analysis packing material composition for electrophoresis of the present invention described above.
  • the present invention relates to a method of separating and analyzing a sample by electrophoresis using a separation medium container for electrophoresis filled with, preferably a capillary.
  • the first ram that is filled with the deteriorated separation-analysis filler composition in the capillary is heated to separate the analysis filler composition from the fluidity. Resolubilize to the sol or molecular dispersion state of the solution, and suck it or apply pressure to remove it after it has been dissolved into a single-force ram.
  • the present invention relates to a method of exchanging a filler composition for analysis of separation of a single-force ram, which comprises filling the filler-power ram with the filler composition.
  • the present invention is further characterized by the following items 1 to 5.
  • a long self-assembly for use as a separation medium for electrophoretic analysis such as, for example, a capillary single electrophoresis or a slab gel electrophoresis, and a method for producing the same.
  • a long, self-assembled body obtained by heating and dissolving a low molecular weight amphiphilic compound having a hydrophobic part and a hydrophilic part in water, followed by cooling.
  • the capillary is first heated again to redissolve the hydrogen to a molecular dispersion state.
  • the solution in the capillary is immediately replaced with a solution of a new separation medium by sucking or pressurizing it with a pump or the like.
  • the solution is cooled and filled with a new separation medium. How to replace such a separation medium
  • An analytical method characterized in that electrophoresis is carried out after introducing a protein, nucleic acid, lipid, or the like into a pill that incorporates the above-mentioned separation media 1 to 4.
  • the present invention is a long self-assembly obtained by heating and cooling in water a low molecular weight amphiphilic compound having a hydrophobic part and a hydrophilic part for use as a separation medium for electrophoresis. And the manufacturing method thereof. That is, the amphiphilic compound used in the present invention forms a network-like medium by a fine structure such as ultrafine fibers, tapes, spiral tapes and tube structures having a high axial ratio obtained by self-assembly, It serves as a sieve, and this is an essential difference from conventional SDS.
  • the separation 'analytical filler composition for electrophoresis of the present invention comprises a long self-assembly obtained by a low molecular amphiphilic compound having a hydrophobic portion and a hydrophilic portion, and a separation' analytical filler. It contains a carrier for use.
  • electrophoresis in the present invention, electrophoresis can be performed according to properties such as the size, weight, shape, charge type and density of the sample, and separation or analysis can be performed based on the properties of the sample. There is no particular limitation as long as it can be performed, but electrophoresis using a capillary is preferable.
  • the electrophoresis method of the present invention includes, for example, capillary one-electrophoresis, one-zone single-electrophoresis, first isoelectric focusing, first isokinetic electrophoresis, micellar electrokinetic chromatography, micellar gel electrophoresis, Examples include SDS capillary gel electrophoresis, slab electrophoresis, desk gel electrophoresis, SDS-PAGE, Native-PAGE, isoelectric focusing (focal electrophoresis), and immunoelectrophoresis.
  • the electrophoresis method of the present invention includes a method in which a method such as blotting operation is further used as necessary in addition to a normal electrophoresis method.
  • the separation'analytical filler composition for electrophoresis of the present invention can be produced by heating and cooling a low molecular weight amphiphilic compound having a hydrophobic part and a hydrophilic part in water. It is characterized by containing a scale-like self-assembly.
  • the present invention relates to electrophoresis of a long self-assembly that can be produced by heating and cooling a low-molecular amphiphilic compound having a hydrophobic part and a hydrophilic part in water. It provides for use as a filler or medium for analysis.
  • the long self-assembly refers to the intermolecular bonding force and its spatial orientation
  • An amphiphilic compound with a functional group that increases anisotropy is 3nn wide! Up to 500 m, length lOOnm to several mm, ultrafine fibers and tapes with a high axial ratio, and spiral tapes that change into a twisted form, outer diameter 20 nm to several tens of ⁇ m, length lOOnm to A long structure (see Non-Patent Documents 7 and 8) with a fine structure such as a tube of several mm.
  • Such a structure is fundamentally different from spherical micelles formed by SDS or the like and spherical molecular aggregates formed from naturally-derived phospholipids.
  • the low molecular amphiphilic compound having a hydrophobic part and a hydrophilic part according to the present invention includes a hydrophobic part and a hydrophilic part that can form a long self-assembly by heating, dissolving and cooling in water.
  • a relatively long-chain amphiphilic lipid is preferable, for example, thymidyl acid, sugar, peptide, phosphate, pyridinium group.
  • examples thereof include lipids linked at one or both ends to chain, branched, cyclic hydrocarbons, fluorocarbon chains, etc., which are strong hydrophobic parts such as carboxyl group, ammonium group, and ammonium phosphate group.
  • the amphipathic lipid in which both ends of the latter hydrophobic part are linked is called a double-headed lipid.
  • the “low molecule” in the amphiphilic compound of the present invention is defined as a compound other than a high molecular weight polymer having a large number of repeating units obtained by polymerizing a monomer.
  • the force is 0000 or less, preferably ⁇ is 30000 or less, 20000 or less, 10000 or less, or 5 000 or less, and there are 50 or more monomer repeating units in the molecule, preferably no more than 40 repeating units.
  • Non-Patent Document 7 examples include those described in Non-Patent Document 7 or 8. The descriptions in Non-Patent Documents 7 and 8 are incorporated herein for reference.
  • Examples of compounds that are preferable as the low molecular weight amphiphilic compound of the present invention include the following compounds.
  • the compounds are not limited to these exemplified compounds.
  • G represents a sugar residue excluding the hemiacetal hydroxyl group bonded to the anomeric carbon atom of a sugar such as dalcobilanose, galactopyranose, maltose, ratatoose, and cerbiose.
  • R represents an unsaturated hydrocarbon group having 10 to 39 carbon atoms.
  • N-glycoside type lipid represented by JP-A-2004-224717.
  • X 1 represents a glycosyl group or an oligosaccharide residue to which 2 to 29, preferably 2 to 5 monosaccharides are bonded, and R has the same carbon number as in the general formula (1).
  • Ph represents a benzene ring
  • the substitution position of the group X 1 —O— and the group R— in the benzene ring is arbitrary, preferably O-glycoside type glycolipid having a structure represented by
  • A represents a sugar residue such as glucose, galactose, N-acetylcylcosamine, xylose
  • R 1 is a straight chain or branched chain having 6 to 20 carbon atoms, preferably 10 to 20 carbon atoms, Preferably, it represents a straight-chain alkyl group
  • Ph represents a benzene ring
  • the substitution position of the group A— and the group 1 NHCO-R 1 in the benzene ring is arbitrary, but preferably the para position. Represents.
  • glycolipids represented by the general formula (8) include the following general formulas (9) and (10).
  • R 2 represents a straight or branched, preferably straight chain, saturated or unsaturated aliphatic hydrocarbon group having 6 to 20 carbon atoms, preferably 10 to 20 carbon atoms.
  • derivatives of N-acylated mono-O-glycosylated mono-aminophenol similar to these compounds include the following general formula (11) or general formula (12),
  • R 3 represents a linear or branched, preferably straight chain alkylene group having 4 to 15 carbon atoms, preferably 6 to 12 carbon atoms.
  • examples of the azobenzene derivative include the following general formula (13),
  • G 1 represents an aldose residue excluding the reducing terminal hydroxyl group, and n represents an integer of 6 to 20.
  • Asymmetric double-headed glycolipids having a carboxyl group represented by the formula see JP 2002-322190, JP 2001-261690, T. Shimizu et al. Lamgmuir 2004, 20, 5969- 5977).
  • the hydroxyl groups in these aldose residues may be free, but some or all of the hydroxyl groups are protected with conventional protecting groups in saccharide synthesis methods such as acetyl, benzyl, isopropyl, methylene and benzylidene groups. Have you been?
  • G 2 and G 3 each independently represent a residue excluding the reducing terminal hydroxyl group of aldoviranose, such as a dalcoviranosyl group or D-galactopyranosyl group, and m is an integer of 6 to 18 Represents
  • m represents an integer of 6 to 18, preferably 6 to 12.
  • G 4 and G 5 each independently represent a residue other than the reducing terminal hydroxyl group of aldoviranose or a group in which at least a part of the hydroxyl group is protected, X and y Each independently represents an integer from 3 to 16.
  • a polymerizable double-headed glycolipid represented by the formula (see JP-A-11-255791).
  • R 4 is a linear or branched alkyl group having 6 to 15 carbon atoms, preferably 8 to 12 carbon atoms, preferably a straight chain alkyl group, or a linear chain having 8 to 15 carbon atoms. Or a branched, preferably straight-chain alkynyl group, preferably
  • N-hydrocarbonated amino sugar type compounds represented by the formula (For the saturated hydrocarbon type hydrophobic part, see J.-H. et al. J. Am. Chem. Soc. 1988, 110, 2861-2867, The acetylene-type lyophobic parts are J.-H. Fuhrhop et al. J. Am. Chem. Soc. 1991, 113, 7437-7439, DF .O 'Brien et al. J. Am. Chem. Soc. 1991, 113, 7436-7437, and DFO 'Brien et al. J. Am. Chem. Soc. 1994, 116, 10057-10069).
  • R 5 represents a linear or branched alkyl group having 1 to 15 carbon atoms, preferably 1 to 9 carbon atoms, preferably a linear alkyl group
  • R 6 represents a hydrogen atom, a hydroxyl group, — CH COOH, -CH CH COO
  • R 7 represents a linear or branched alkyl group having 3 to 15 carbon atoms, preferably 3 to 6 carbon atoms, preferably a linear alkyl group
  • R 8 represents 1 to 10 carbon atoms.
  • a fluorinated darcophospholipid represented by (see M.-P. Kraffl et al., Chem. Eur. J. 1996, 2 1335-1339).
  • R 9 represents a linear or branched alkyl group having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms, preferably a linear alkyl group, and k is 6 to: L 0, preferably Represents an integer of 8 to 10, and 1 represents an integer of 8 to 15, preferably 10 to 12.
  • R 1, R 2, and R ′′ each independently represents a hydrogen atom or an amino acid side chain residue, preferably a methyl group (ie, alanine), isopropyl group (ie, parin), butyl group ( In other words, glycine, serine, threonine, aspartic acid, glutamic acid, the power to indicate isobutyl group (or isoleucine) Asparagine, glutamine, lysine, hydroxylysine, anoleginine, cysteine, methionine, phenylalanine, tyrosine, tryptophan, histidine, proline, hydroxyproline, ⁇ -alanine, and alanine isobutyric acid power It may be a residue that forms two or more amino acids. r represents an integer of 4 to 24, preferably 7 to 18. )
  • a double-headed peptide lipid represented by:
  • R 1C> 1, R 12 , R 1 3, if these groups are isopropyl group (i.e., Val- Val), or When it is an isobutyl group (ie, He-He), when R 10 , R 13 is an isopropyl group and R 11 R 12 is an isobutyl group (ie, Val-lie or vice versa), R 1C> , R 13 Is isobutyl and R ", R 12 is isopropyl (ie, lie-Val or vice versa), R 1C) , R 13 is isobutyl and R 12 is —CH 2 CH SCH ( Ie, lie—Met or vice versa), or R 1C> , R
  • R 11 R 12 is an isobutyl group (ie, Met—lie or
  • amino acids may be racemic, D-form or L-form optically active forms. All amino acids are preferably D-form or L-form optically active forms.
  • the double-headed peptide lipid represented by the general formula (29) has the following general formula (30) or general formula (31):
  • R 10 , R 11 R 12 , R 13 , and r are the same as those in the general formula (29), and R 14 and R 15 each independently represents the same as R 1C> , R n , R 12 or R 13 .
  • It may be a tripeptide type double-headed peptide lipid represented by:
  • the amino acid sequence of the tripeptido moiety in the tripeptide moiety of the double-headed peptide lipid represented by the general formula (30) or the general formula (31) includes Val-Val-Val, lie-lie-Ile, lie- Val-Val, Val-Ile-VaU Val-Val-Ile, or the reverse sequence thereof is preferred.
  • amino acids may be either racemic or optically active, but preferred are all amino acid or L optically active forms.
  • double-headed peptide lipids see Shimizu et al. (T. Shimizu et al., Chem. Commun, 1998, 1791.) and Japanese Patent No. 3012932.
  • s represents an integer of 12 to 24, preferably 18 to 20.
  • a diacetylene compound represented by the formula (see RC Stevens, J. Am. Chem. Soc, 2001, 123, 3205-3213).
  • a phosphoammonium compound represented by the formula (see F.M. Menger et al., J. Am. Chem. Soc. 2002 124, 12408-12409).
  • a tartrate salt represented by the following formula, its enantiomer, meso isomer, or two bromine ions.
  • R 16 represents a hydrogen atom or a nitro group.
  • R 17 and R 18 are each independently a linear or branched alkyl group having 6 to 10 carbon atoms, preferably 6 to 8 carbon atoms, preferably a linear alkyl group, or cyclopentyl.
  • a methyl group or a cyclohexylmethyl group, and t represents an integer of 0 to 3, preferably 0 to 1.
  • a glycosylated amino acid derivative (I. Hamachi et al., J. Am. Chem. Soc) , 2002, 124, 10954-10955).
  • a independently represents an integer of 3 to 15, preferably 7 to 14, and b represents an integer of 4 to 15, preferably 4 to 12.
  • R 19 is a linear or branched alkyl group having 8 to 15 carbon atoms, preferably 10 to 12 carbon atoms, preferably a linear alkyl group, or 8 to 15 carbon atoms, preferably 10 carbon atoms. ⁇ 12 linear or branched, preferably a linear fluorinated alkyl group.
  • R 2G is a linear or branched alkyl group having 8 to 15 carbon atoms, preferably 10 to 15 carbon atoms, preferably a linear alkyl group, or 8 to 15 carbon atoms, preferably 10 carbon atoms. Represents a linear or branched, preferably linear, fluorinated alkyl group of 15 to 15.
  • Preferred R 2G is —CH 2
  • R 1 represents an n butyl group, a 4 bromobenzyl group, or a methacryloxetyl group
  • R 22 represents a linear or branched group having 1 to 4 carbon atoms, preferably a straight chain. Indicates a chain alkyl group.
  • a glyceride derivative containing a diacetylene group represented by [0100] (P. Yager, et al., Mol. Cryst. Liq. Cryst., 1984, 106, 371-381. JM Schnur, Science, 1993, 262, See 1669-1676.
  • each X is independently O— (CH 2) — OH group or — NH— (CH 2) ⁇
  • 0- represents a (CH) OH group.
  • R 24 represents a linear or branched alkyl group having 4 to 24 carbon atoms, preferably 7 to 18 carbon atoms, preferably a linear alkyl group, and g represents an integer of 1 to 3.
  • the polyglycine derivative represented by these, or its hydrochloride represented by these, or its hydrochloride.
  • G 6 represents a residue excluding the reducing terminal hydroxyl group of aldoviranose, preferably D-darcopyranosyl group or L darcobilanosyl group
  • Z represents a hydrogen atom, a hydroxyl group, a carboxy group, an amino group.
  • R 25 and R 26 each independently represents a divalent hydrocarbon group having 0 to 20 carbon atoms, preferably a polyethylene group having a carbon number of 20 to 20).
  • a polymerizable double-headed glycolipid represented.
  • ionic surfactants such as sodium oleate dodecyltrimethylammonium chloride
  • nonionic surfactants such as octaethylene glycol tetradecyl ether, dodecyldimethylamine oxide, palmitoyl lysophosphatidylcholine
  • phospholipids zwitterionic
  • the separation / analytical filler composition for electrophoresis of the present invention is not particularly limited as long as it contains a long self-assembly of the above-described amphiphilic compound of the present invention. Absent. Further, the separation analysis filler composition containing the long self-assembly or the hydrogel product may contain the following polymer compounds as a mixture. Examples of such a polymer compound include hydroxyethyl cellulose having a number average molecular weight of 10,000 to 1,000,000, preferably 10,000 to 500,000, and a number average molecular weight of 10,000 to 1.
  • separation media and the polymer mixture are used as a water solution at a concentration of about 0.01% to 30%, preferably about 0.1 to 20%, more preferably about 0.1 to 10%.
  • the present invention is a separation medium comprising a long self-assembly composed of the above-mentioned amphiphilic compound of the present invention, or a physical cross-linked structure thereof.
  • the present invention provides a separation / analytical filler composition comprising a hydrogel-like separation medium for a medium. Further, the present invention provides the long self-assembly as a hydrogen.
  • the present invention provides a filler composition containing sieves such as Luka hydroxyethyl cellulose, hydroxypropyl cellulose, and polyacrylamide.
  • the amphiphilic compound that forms the structure of the long self-assembly of the present invention is usually dissolved in a solvent such as water. Then, if necessary, after stirring and degassing, it can be produced by heating and sooting and cooling. Depending on the amphiphilic compound used, it may be dissolved by a treatment such as pH adjustment or irradiation with light such as ultraviolet rays instead of the above-described heat treatment.
  • the concentration of the amphiphilic compound of the present invention includes 0.1 to 30 wt%, preferably 0.1 to 20 wt%, and 0.1 to 15 wt%.
  • buffers examples include pH 8 TE buffer (10 mM Tris—HCK pH 8.0), ImM EDTA) pH 2.5-7.5 phosphate buffer, borate nofer, 2- [4- (2-hydroxyethyl) -l- piperazinyl ] ethanesulfonic acid (HEPES), N-tris (hydoroxymethyl) methyl-e-aminoethanesulfonic acid (TES), Tris-HC ⁇ glycine noffer, tris monophosphate buffer, or a mixture thereof.
  • a more preferable buffer solution is a TE buffer (10 mM Tris—HCl (pH 8.0), ImM EDTA) of ⁇ 8.
  • the pH of the aqueous solution for preparing the gel is not particularly limited, and depends on the amphiphilic compound to be used, but any pH can be used as long as it is 1 to 10, preferably about 2 to 10.
  • it may contain 0-50% of methanol, ethanol, acetonitrile, THF, dioxane, etc. as additives!
  • a capillary When a capillary is used as a container for the separation medium, this is introduced into a syringe that has been pretreated as described later, if necessary, by suction or pressure, into a sample introduction device of a syringe or capillary electrophoresis device, and then this The entire capillary is air-cooled or cooled using the temperature control device attached to the electrophoresis device to produce a hydrogel structure for separation media consisting of long self-assemblies. Can be built.
  • the separation medium container of the present application is not particularly limited as long as it is a container that can store a gel as a separation medium in electrophoresis. Specifically, for example, a container in which a slab gel is placed, a capillary in capillary electrophoresis, etc. It is done.
  • the inner diameter of the capillary is about 500 nm to 3 mm. The best is about 50 ⁇ m to 100 / z m from the viewpoint of separation ability and sample amount. It is desirable that the length is 2 cm to 3 m depending on the sample.
  • the material of the cantilever may be any of Pyrex (registered trademark) glass, fused silica (fused silica), and Teflon (registered trademark), but fused silica is preferred.
  • the outer wall may or may not be covered with polyimide in order to give strength and flexibility.
  • the inner wall is previously washed with a solvent such as black mouth form or methanol to remove the adhering organic matter. It is then washed with strong acid and strong alcohol to remove the inorganic material on the inner wall and change the surface to silanol groups. After that, surface treatment was performed with a silane coupling agent (3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane), followed by graft polymerization by introducing acrylamide (inner wall treatment with non-crosslinked polyacrylamide) Used).
  • a silane coupling agent 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane
  • the cooling of the pills filled with a hot aqueous solution of an amphiphilic compound may be rapid cooling by air cooling, but it can be varied from about 20 ° CZ seconds to 0.1 ° CZ minutes.
  • Capillary electrophoresis using the separation medium thus obtained can be performed, for example, as follows. First, a 30 cm long capillary packed with a separation medium is attached to the capillary electrophoresis apparatus, and the temperature is preferably 5 ° C. to 50 ° C., preferably about 20 ° C.
  • the sample is preferably force DNA or protein that can measure DNA, RNA, protein, and the like. Particularly in the case of proteins, it is preferable to denature them with SDS or the like.
  • the solvent used for electrophoresis should be the same as the solvent used to form the long self-assembled structure or its hydrogel. In particular, the above-mentioned TE-uffer is most suitable for DNA separation.
  • the sample Before the separation, the sample may be electrophoretized, sucked or pressurized when it is introduced into the capillary.
  • the receiving phase and the supply layer On both sides by applying voltage while applying pressure of 5 ps. Electrophoresis is carried out after the sample is introduced into the capillary, and it is desirable that the applied voltage is 50 V / cm to 500 V / cm, which varies depending on the length of the capillary.
  • detection is performed by monitoring absorption at 254 nm or 234 nm. If the amount of the sample is very small, it is possible to detect the sample by fluorescence by labeling the sample.
  • Separation media can be easily replaced as follows when the gel deteriorates and the resolution decreases, changes with time are significant, or when the sample is clogged with dust and the pressure increases. It is. First, the entire capillary is heated to 50 ° C to 100 ° C and returned to the sol state. Next, with this temperature maintained, the sol is taken out of the first column by pressurization on the supply side or suction on the receiving side. At the same time, a new separation medium solution heated to 50 ° C. to 100 ° C. is similarly filled into the capillary by pressurization on the supply side or suction on the receiving side. After this, the capillary is cooled rapidly by air cooling or gradually in the range of about 20 ° CZ second to 0.1 ° CZ minutes to obtain a capillary with a new separation medium.
  • the separation composition for analysis according to the present invention can be exchanged only for the separation medium without removing the capillary by making it into a fluid sol by heating, adjusting the pH, or the like. It is characterized by. Therefore, the use of the separation / analyzing filler composition of the present invention makes it possible to use the capillary semipermanently without removing the capillary.
  • the capillary temperature chamber of the capillary electrophoresis device is equipped with a program that can change the temperature from 0 ° C to 100 ° C, and the sample tray equipped with a temperature-controllable heating device is equipped with the sol solution. In addition, it can be performed completely unattended in conjunction with a computer control device.
  • the present invention is based on self-assembly of reversible and easily packable amphiphilic compounds. Can be used as a separation medium in electrophoresis, especially in a single-electrophoresis, and is inexpensive, highly reproducible, and easy to exchange separation media.
  • An electrophoresis method for example, a capillary single electrophoresis method is provided.
  • a columnar column filled with a hydrogel structure composed of a long structure formed by self-assembly of molecules having a hydrophilic part and a hydrophobic part has a high theoretical plate number. Compared with conventional fillers, it has a very sharp separation ability and has a stable force over a long period of time.
  • amphiphilic compounds suitable for prayer can be selected from a wide variety of amphiphilic compounds.
  • the separation composition for analysis according to the present invention is re-dissolved by heat treatment or the like, even when the separation medium is deteriorated due to clogging or the like, only the filler as a sieve is refilled without removing the capillary. It is also possible. For this reason, the refill can be used semipermanently.
  • the concentration and the type of amphiphilic compound used as the raw material of the hydrogel at the time of refilling the size and shape of the mesh of the sieve can be adjusted with respect to the type and molecular weight of the sample.
  • the exchange is very easy, as in the case of the separation medium composed of a chain polymer solution so far.
  • the shape, size (ie, physical mesh size) and firmness of the material can be controlled by the cooling rate, the solvent, and the concentration of the amphiphilic compound. Based on these characteristics, electrophoresis with a high theoretical plate number of low molecules such as sugar chains, peptides, lipids, natural physiologically active substances, and amino acids as well as macromolecules such as DNA, RNA, and proteins with a wide range of molecular weights. Useful for methods such as capillary electrophoresis analysis.
  • FIG. 1 shows an outline of a capillary electrophoresis apparatus.
  • FIG. 2 shows a chromatogram (electral pherogram) of the analysis of ladder DNAs 50 to 10 and OOOb P with the inside of the capillary filled with TE buffer.
  • FIG. 3 shows a chromatogram (elect mouth pherogram) obtained by filling the inside of the capillary with a gel buffer and analyzing ladder DNA of 50 to 10,000 bp.
  • FIG. 4 is a chromatogram (elect mouth pherogram) in which the inside of a pillar is filled with 0.5 wt% of the self-assembling hydrogel of the separation composition according to the present invention, and ladder DNAs 50 to 10 and OOObp are analyzed. ).
  • FIG. 5 is a chromatogram (electral pherogram) of the analysis of ladder DNAs 50 to 10 and OOObp filled with 2 wt% of the self-assembling hydrogel of the separation composition according to the present invention. It is shown.
  • FIG. 6 shows a chromatogram (electral pherogram) obtained by filling the inside of the capillary with TE buffer and analyzing ladder DNA 50 to 800 bp.
  • FIG. 7 shows a chromatogram (electral pherogram) obtained by filling the inside of the capillary with a gel buffer and analyzing ladder DNA of 50 to 800 bp.
  • FIG. 8 shows a chromatogram (electropherogram) obtained by filling the interior of a single column with 2 wt% of the self-assembling hydrogel of the separation composition according to the present invention and analyzing ladder DNA 50 to 800 bp. Is.
  • Fig. 9 shows a chromatogram (elect mouth pherogram) (a) obtained by filling the inside of the capillary shown in Fig. 3 with a gel buffer and analyzing ladder DNA 50 ⁇ : L0, OOObp (a), and the capillary shown in Fig. 5.
  • This is a summary of chromatogram (electropherogram) (b) of the analysis of ladder DNA 50-100, OOObp with the inside filled with 2wt% of the self-assembling hydrogel of the separation and analysis filler composition of the present invention. .
  • FIG. 10 shows an outline of the slab electrophoresis apparatus used in Example 2.
  • a conventional 4% polyacrylamide gel was used as a slab gel, and a ladder DN A (corresponding to numbers 1, 2, 3 force 20bp, 100bp, 200bp ladder in the figure) was electrophoresed.
  • the chromatogram (elect mouth pherogram) is shown.
  • FIG. 12 shows a slab gel prepared by mixing a long self-assembly consisting of 4% polyacrylamide gel and 0.004% L-tartrate of Compound 35 of the present invention as a slab gel. It shows the chromatogram (elect mouth pherogram) of electrophoretic movement of DNA (corresponding to ladders of numbers 1, 2, 3 force 20bp, 100bp, 200bp in the figure). Explanation of symbols
  • a solution containing the above-mentioned amphiphilic compound and having a temperature force of 0 to 60 ° C. is set in a single electrophoresis apparatus (P / ACE system MDQ, manufactured by Beckman Coulter, Inc.), and 10 p si
  • the solution was filled into a polyacrylamide-coated silica gel chiralizer (Beckman, product number 477477) having an inner diameter of 75 microns and a length of 30 cm.
  • the both ends were immersed in a solution containing the above-mentioned amphiphilic compound so as not to dry the inside of the pillar, and allowed to stand at room temperature for 3 days.
  • a hydrogel capable of self-assembling the amphiphilic compound was obtained in a silica gel capillary having an inner diameter of 75 microns.
  • 1 is a forceful ram
  • 2 is a buffer container
  • 3 is a sample container
  • 4 is a buffer container
  • 5 is a UV-visible absorption detector
  • 6 is a DC power source
  • An electrode is inserted.
  • the column 1 and the electrode were moved to the sample container 3, and a voltage of 6 kV for 10 seconds was applied.
  • the DNA separation the first ram 1 and the electrode were moved to buffer containers 2 and 4, and a voltage of 10 kV was applied.
  • a pressure of 5 psi was applied from both ends of the pill to prevent the self-assembling hydrogel from leaching out of the pill.
  • DNA was detected by monitoring a wavelength of 254 nm with an ultraviolet-visible absorption detector 5.
  • Fig. 2 shows the case where the inside of the capillary is filled with TE buffer
  • Fig. 3 shows the case where the inside of the capillary is filled with a gel buffer (product number 477628)
  • Fig. 4 shows that the inside of the capillary is 0.5 wt% amphiphilic.
  • Hydrogels obtained by self-assembly at compound concentrations When filled with 0.5 wt% hydrogel), the inside of the capillary is filled with a hydrogel obtained by self-assembly at a concentration of 2 wt% amphiphile (hereinafter referred to as 2 wt% hydrogel).
  • Fig. 6 shows the case where the inside of the capillary is filled with TE buffer
  • Fig. 7 shows the case where the inside of the capillary is filled with gel buffer (product number 477628, manufactured by Beckman)
  • Fig. 8 shows that the inside of the capillary is filled with a 2 wt% hydrogel.
  • ladder DNA 50 bp to 800 bp, manufactured by Invitrogen, product number 10416-014 when filled are shown. From these analysis results, it was shown that DNA can be separated in the range of 50 bp to 800 bp by using 2 wt% of the hydrogel separation medium obtained by self-assembly in the first chain shown in FIG.
  • Fig. 3 (
  • Fig. 5 Separatation of the present invention 'analysis filler composition, comprising compound 32.
  • Ladder DNA 50 ⁇ Elect Mouth Ferogram Analyzed for LOOOObp, filled with 2 wt% of self-assembled hydrogel, these are shown as Fig. 9 (a) and (b), respectively.
  • Each peak was numbered 1 to 6 as shown in Fig. 9 from the left side. Calculate the number of theoretical plates for each peak shown in Fig. 9. I calculated. The number of theoretical plates was obtained using the following formula.
  • Theoretical plate number 16 [t ZW] 2
  • the separation medium of the present invention shows a larger number of theoretical plates than the conventional gel buffer (product number 477628, manufactured by Beckman) (Fig. 9 (a)). It has been shown that the hydrogel separation medium of the present invention enables sharper separation analysis.
  • N, N, ⁇ ', N' Tetramethylethylenediamine (manufactured by Wako Pure Chemical Industries, Ltd., Product No. 205—06313) 7. Hold 5 mL, quickly fill the gel plate with the gel solution, and leave it at room temperature for 1 hour to remove the gel. Formed.
  • the gel plate 11 filled with the gel by the above-described method is attached to an electrophoresis apparatus equipped with a buffer solution container 12 and a DC power supply 13, and 0.5 X TBE buffer solution is added to the electrophoresis buffer.
  • the DNA was separated by applying a constant voltage of 80 V at room temperature. After swimming, the gel was immersed in ethidium bromide solution (10-4 mg / mL, 0.5 XTBE buffer) for 30 minutes, and then irradiated with ultraviolet rays using an ultraviolet irradiation device to observe DNA bands. .
  • the present invention provides an industrially useful electrophoresis apparatus and a novel separation / analysis filler composition in a separation or analysis method using the same, and has industrial applicability. is doing.
  • Protein nucleic acid separation and analysis methods are not only for research and development, but also for treatment and diagnosis. It is extremely useful as the foundation data, and the apparatus and method of the present invention contribute to the collection of industrially useful data and have industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

 本発明は、キャピラリー交換が容易な新規な分離・分析用充填材組成物、その製造方法とそのキャピラリーへの充填方法、およびそれを用いたキャピラリー電気泳動法などの電気泳動法を提供する。  本発明は、疎水部と親水部をもつ低分子の両親媒性化合物の水中での加熱溶解と冷却によって製造することができる長尺状の自己集合体を含有してなる電気泳動のための分離・分析用充填材組成物、その製造方法、それを用いた分離・分析方法などに関する。

Description

生化学分析用分離媒体
技術分野
[0001] 本発明は、生化学分析用の電気泳動装置などに利用される分離媒体、それを充填 したキヤビラリ一力ラムとそれを用いた分離システムに関する。より詳細には、本発明 は、疎水部と親水部をもつ両親媒性ィヒ合物の水中での加熱溶解と冷却によって製 造することができる長尺状の自己集合体を含有してなる電気泳動のための分離'分 析用充填材組成物、その製造方法、それを用いた分離'分析方法などに関する。 背景技術
[0002] 生物の機能を細胞レベルで明らかにするために、生体内のタンパク質、ペプチド、 核酸、アミノ酸、糖質、神経伝達関連物質などの解析、分析が行われている。その手 段として、質量分析計を組み合わせた高速液体クロマトグラフィー等が行われてきた 力 その理論段数はキヤピラリー電気泳動に及ばない。具体的には、例えば「J.Chor matography」誌第 558号 1991年 pp280のオリゴヌクレオチドの分離分析に見られるよう に、キヤビラリ一電気泳動では 1,000,000、高速液体クロマトグラフィーでは 30,000程 度である。加えて、分析に必要なサンプルの絶対量が高速液体クロマトグラフィーと 比較して微量である(高速液体クロマトグラフィーでは数 ml、キヤビラリ一電気泳動法 では piレベルである)ので分離分析にはキヤピラリー電気泳動法が利用される。また、 キヤピラリー電気泳動はヒューマンゲノムプロジェクトで使用されているように、その高 分解能には定評があり、最近ではタンパク質、アミノ酸などの分析にも多く利用される 。このように簡便で、高分解能、高感度のキヤピラリー電気泳動は DNA、 RNA、タンパ ク質などの分離分析の重要な技術である。これまでのキヤピラリー電気泳動では、内 径 20〜: LOO mのキヤビラリ一の内部に充填するポリマーの細孔(正確にはポリマー のネットワークによって作られる網目の大きさ)を利用して分離を行っている(非特許 文献 1参照)。その過程は物理的な「分離媒体」の効果であり、多くの場合水溶性の ポリマーをキヤビラリ一の内部に充填することにより分析が行われている。この分離媒 体には、内部に固定化されて、交換が困難な固定型と、単にキヤピラリー内に溶液と して充填しただけで、交換が容易な可換型に分類できる。いずれの場合にも、代表 的な篩 、として水溶性のポリマーが用いられて 、る。
[0003] 固定型の分離媒体としては、ポリアクリルアミドがその代表例である。具体的には、 ガラス表面に結合するシランカップリング剤の一種であるメタアクリル型モノマー(3-m ethacryloxypropyltrimethoxysilane: MPTS)とアクリルアミドモノマー、および架橋化用 の少量のビスアクリルアミドモノマーをキヤビラリ一中で混合した後、ラジカル共重合 を行う。このようにして網目状のゲル力 なる固相型の分離媒体 (高分子ネットワーク) を得る。この系の短所は、試料や不純物などの吸着によって分離媒体の分離能が低 下することを原因とするキヤビラリ一の寿命が短い点である。このため通常は 20〜: L0 0回の使用後はキヤビラリ一全体の交換が必要である。また、これらの分離媒体の高 分子固定ィ匕作業はキヤピラリー内で重合を行うために、キヤビラリ一の調製に時間と 多くの手順を要すること、得られたゲルが分離能の低下を招く不均一な網目構造を 部分的に含む点、キヤビラリ一の交換にともなう定量性の低下があげられる。これらの 固定型の分離媒体 (ゲル充填キヤビラリ一)も市販されて 、るが、それぞれの分子量 に合わせて最適化されているものを選ぶことが困難であり、本来は試料の大きさや種 類に合わせてゲル濃度などを調整する必要がある。
[0004] 可換型の分離媒体ではヒドロキシェチルセルロース(HEC)、ヒドロキシプロピルセル ロース (HPC)、非架橋型の鎖状ポリアクリルアミドが挙げられる (非特許文献 2参照)。 これらの長所は、これらの分離媒体はポリマー溶液であり詰め替えが容易である点、 キヤビラリ一の寿命が飛躍的に向上する点、さらにはこの長寿命故の分析における再 現性の高さである。またこの詰め替えの容易さから分離媒体の自動充填が可能となり 、分析の完全自動化、省力化、高速ィ匕に大きく貢献できる可能性が高い。短所は、 分離する試料 (DNA、 RNA、タンパク)の長さ (分子量)に応じて、分離媒体の濃度や 分子量等を最適化する必要性がある点である。つまり高分子量のサンプルに対して は、粘性の高い高濃度の高分子 (篩い)溶液が必要になるため、ポリマーやサンプル の充填が困難になる点である。さらに試料の移動度も低下することから、分析にも長 時間を要する。つまり二本鎖 DNAを試料とした場合、可換型の分離媒体である高分 子溶液を用いるとキヤピラリー電気泳動による分離分析の限界は 10,000塩基対程度 である。
このような可換型の分離媒体の長所を生かし、なおかつ高濃度での分離媒体溶液 の粘度上昇を抑えるため、新しいナノ構造をもつ分離媒体の試みがなされている。こ れらは、これまで分離媒体として用いられてきた柔軟でランダムな 1次元の鎖状高分 子とは異なる構造、サイズを持つことが特徴である。例えば、分離媒体である高分子 ゲルの架橋点を減らすことでミクロなゲル状網目構造を持ちながら、溶媒に分散可能 なため交換が容易な分離媒体 (非特許文献 3参照)、球状の金ナノ微粒子の表面に 高分子を修飾することで分離媒体の溶液粘度を抑えることに成功した例 (非特許文 献 4参照)、またゲルでありながら加熱することで交換可能な可換型の有機ゲルを用 いた例 (非特許文献 5参照)などが挙げられる。しかし、非特許文献 3及び 4もそれぞ れ、ゲルの微細構造は柔軟でランダムな構造あるいは球状に限られること、非特許文 献 5では、ゲル形成に有機溶媒を用いることから、有機溶媒に不溶な分子は分析、 測定することが出来ないし、 DNA,RNA,タンパクなどの様に試料が高次構造を持つ場 合、これらの有機溶媒によって変性する可能性がある。
一方、親水性と疎水性をもつ両親媒性化合物が水中で、加熱による溶解後、冷却 すること、あるいは単に分散させることで自ら集合して(自己集合と 、う)、安定なナノ メートルサイズの分子集合体を形成することはすでに知られて 、る(非特許文献 6参 照)。分子の自己集合によるこのような分子集合体は、従来、アルキルベンゼンスル ホン酸(SDS : Sodium Dodecyl Sulfate)などが形成する球状のミセルゃ、天然由来のリ ン脂質から形成される球状の分子集合体 (リボソーム、ある 、はべシクルと呼ばれる 二分子膜からなる細胞膜の基本構造)が知られている。これらの両親媒性ィ匕合物か らなる集合体の特徴は、室温では分子が液晶状態であるために流動性を持つことで ある。このため、最安定な球状の集合形態を通常もち、外部からの刺激により容易に 変形する。このような液晶状態での構造は、冷却により流動性の無い固体状態に変 えることができるが、通常は液晶状態での球状構造を反映した状態のままで固体状 になる。このように両親媒性ィ匕合物が流動状態力 固体状態への変化を起こす温度 をゲル 液晶相転移温度と ヽぅ。
このような両親媒性ィ匕合物に、分子間結合力とその空間的な方向性 (異方性という )を増すような官能基を導入することで、固体状態での構造形態が球状から、以下に 記載するような特異な形態に変化する。ここで、上述の様な分子間相互作用とその異 方性を増す官能基としては、水素結合を形成可能なアミド基、水酸基、尿素基、イミド 基、ウレタン基、カルボキシル基、リン酸基さらには剛直なユニットである芳香環、炭 化フッ素基などがあげられる。特に、これらを有する糖、アミノ酸類の導入が有効であ る。さらには、このような特異な形態を安定ィ匕するために、疎水部が比較的長く大きい 両親媒性ィ匕合物がよく用いられる。この様な分子間結合力を増加させた両親媒性ィ匕 合物の水中での自己集合形態は、加熱状態 (つまりゲル 液晶相転移温度以上)で は流動性が増加し、通常の両親媒性ィ匕合物と同様に球状になる。しかし、これをゲル 液晶相転移温度以下に冷却して固体状態に相転移させると、集合構造が変化し て、幅 3nm〜500 μ m、長さ lOOnm〜数 mmの軸比の高い極微細繊維、テープ、お よびこれらがねじれた形態に変化したらせん状テープや、外径 20nm〜数十/ z m、 長さ lOOnm〜数 mmのチューブなどの微細構造を持つ長尺状構造体を与える(非 特許文献 7、 8参照)。これらはさらに化合物の濃度を上げたり、金属塩を添加するこ とでこれらの構造体同士が物理的に接触 (架橋)し、絡み合うため、溶媒である水を 多く含んだヒドロゲルになる。
これらの自己集合による長尺状構造体やそれらからなるヒドロゲルの特徴は、 (1) 可逆的に出発材料である両親媒性ィ匕合物に戻すことができる点と、(2)自己集合に よって長尺状構造体にするときに、その条件によって微細な形態やサイズが精密に 制御出来る点である。具体的には、これらの構造体は一般的に分散させた溶媒中で 安定であるが、物理的振動や衝撃を加えたり、両親媒性ィ匕合物がよく溶ける溶媒 (良 溶媒)の添加によりこの様な特異的な構造は崩壊し、球状の分子集合体や分子分散 状態にまで戻ってしまう。しかし、これらの崩壊した構造体は再冷却、水などの貧溶 媒の添加、振動を取り除いた静置によって、可逆的に自己集合させて、半永久的に 元の長尺状構造体やその物理架橋物であるヒドロゲルにもどすことができる。またこ のとき、分子の種類、冷却速度や両親媒性化合物の濃度ばかりでなぐ溶液の pH, 無機塩や水以外の有機溶媒の添加などで、その微細な形態 (繊維状、テープ状、ら せんテープ状、チューブ状など)、ゾルーゲルなどのマクロな形態 (長尺構造が分散 したゾル状分散物、それらが物理架橋しあうことによるヒドロゲル)、各微細構造のサ ィズなどを作り分けることもできる。
[0007] このような両親媒性ィ匕合物を電気泳動分析に使用する例としては、 SDS— PAGE (S odium Dodecyl sulfate- polyacrylamide gel electrophoresisノ法や、 SDS (Sodium Dode cyl Sulfate)キヤビラリ一電気泳動法、ミセル動電クロマトグラフィー法などが従来から 用いられている。しかし、 SDS-PAGE法や SDSキヤピラリー電気泳動法では、両親媒 性化合物として SDS (Sodium Dodecyl Sulfate)が用いられている。これらの方法での S DSの役割は、 SDSのミセルがタンパク質に吸着することで、その高次構造を破壊し、 一本の高分子鎖に変性させることであり、本発明のように両親媒性ィ匕合物を分離や 分析用の媒体として使用するものではない。また、ミセル動電クロマトグラフィー法で はミセルは疎水場をもつ移動相として作用するだけである(非特許文献 1)。
[0008] 非特許文献 1 :本田進、寺部茂 編、「キヤピラリー電気泳動、基礎と実際」、講談社サ イエンティフィック、 1995年.
非特許文献 2 : A. Lagu et al, Anal. Chem., 1991, 63, 1233.
非特許文献 3 :A.E. Barron et al. Anal. Chem., 2004, 76, 5249.
非特許文献 4 : H.- T. Chang et al., Anal. Chem., 2004, 76, 192.
非特許文献 5 : 0. Lev et al. Anal. Chem., 2004, 76, 5399.
非特許文献 6 :野島庄七,砂本順三、井上圭三 編、 "リボソーム",南江堂(1988) . 非特許文献 7 : L.A.Estroff and A.D. Hamilton, Chem. Rev. 2004, 104, 1201.
非特許文献 8 :平尾一之 編, "基礎力も学ぶナノテクノロジー"東京化学同人,第 5 章(2003) .
発明の開示
発明が解決しょうとする課題
[0009] このような自己集合によるナノ構造体を利用した例としては、前記非特許文献 5に 示した自己集合性有機ゲルの例が挙げられる。しかし、これはァセトニトリル、あるい はこれにメタノールを加えた混合溶媒などの有機溶媒中でしか自己集合してゲルを 与えないオルガノゲルである。つまり、電気泳動分析が有機溶媒系に限られる点であ る。このような有機溶媒に多くの生体高分子の試料は不溶である。また分離媒体の交 換が可能力どうかの記述はない。従って本発明は、電気泳動のための新規な分離媒 体としての分離'分析用充填材組成物、及びそれを用いた電気泳動法、より詳細に はキヤピラリー電気泳動におけるキヤビラリ一交換が容易な新規な分離媒体としての 分離'分析用充填材組成物、並びにその製造方法とそのキヤビラリ一への充填方法 、及びそれを用いたキヤビラリ一電気泳動法などの電気泳動法を提供する。
課題を解決するための手段
[0010] 本発明者らは鋭意検討した結果、(1)水中で自己集合可能な親水部と疎水部を持 つ低分子の両親媒性化合物を加熱により水溶液として電気泳動分析機器の分離用 カラムに充填し、 (2)これを冷却することで電気泳動の分離媒体として働く長尺状構 造をもつ自己集合体、あるいはこれら力 なるヒドロゲルを形成させ、(3)これを分離 媒体として用いた電気泳動分析法を行うことにより、極めてシャープな分離 '分析が できることを見出した。さらに本発明者らは、(4)この長尺状構造が目詰まり、劣化な どで交換を要する場合は、加熱しながら再溶解させ、排出した後に再び(1)の処理を することで分離媒体を詰め替えることが可能な新しい分離'分析用の媒体を提供する ことができることを見出した。このような詰め替えは、分離媒体の劣化だけでなぐ分 析試料に応じた適切な分離媒体の選択にお!ヽて重要である。特にキヤビラリ一電気 泳動におけるキヤビラリ一中の分離媒体の交換を極めて容易にするものである。
[0011] 即ち、本発明は、疎水部と親水部をもつ低分子の両親媒性ィ匕合物の水中での加 熱溶解と冷却によって製造することができる長尺状の自己集合体を含有してなる電 気泳動のための分離 ·分析用充填材組成物に関する。
また、本発明は、疎水部と親水部をもつ低分子の両親媒性ィ匕合物と水を混合し、こ れを水中で加熱溶解し、次いで冷却することからなる長尺状の自己集合体を含有し てなる電気泳動のための分離'分析用充填材組成物を製造する方法に関する。 さらに、本発明は、前記した本発明の電気泳動のための分離 ·分析用充填材組成 物が充填された電気泳動用の分離媒体の容器、好ましくはキヤビラリ一、及び当該分 離媒体の容器、好ましくはキヤピラリーを有することを特徴とする電気泳動装置に関 する。
また、本発明は、前記した本発明の電気泳動のための分離 ·分析用充填材組成物 が充填された電気泳動用の分離媒体の容器、好ましくはキヤピラリーを用いて試料を 電気泳動により分離'分析する方法に関する。
さらに、本発明は、キヤピラリー電気泳動において、キヤビラリ一中の劣化した分離- 分析用充填材組成物が充填されているキヤビラリ一力ラムを加熱して、分離'分析用 充填材組成物を流動性のゾル又は分子分散状態まで再溶解し、これを吸引又はカロ 圧することによりキヤビラリ一力ラム内の溶液化された劣化後の分離 ·分析用充填材 組成物を除去し、次いで新しい分離 ·分析用充填材組成物を当該キヤビラリ一力ラム に充填することからなる、キヤビラリ一力ラムの分離'分析用充填材組成物を交換する 方法に関する。
[0012] 本発明は、さらに次に示す 1〜5の事項を特徴とするものである。
1.電気泳動分析、たとえばキヤビラリ一電気泳動やスラブゲル電気泳動の分離媒体 として用いるための、長尺状の自己集合体、及びその製造方法。特に疎水部と親水 部をもつ低分子の両親媒性化合物の水中での加熱溶解、その後の冷却によって得 られる、長尺状の自己集合体。
2.上記 1の長尺状自己集合体の架橋構造に基づぐ電気泳動分析の分離媒体用ヒ ドロゲル状組織、及びその製造方法
3.上記 2の長尺状の自己集合体あるいはそれからなるヒドロゲル状分離媒体の充填 材、及びその交換方法。
4.さらには、分離媒体の劣化時には、まずキヤピラリーを再度加熱して、上記ヒドロゲ ルを分子分散状態まで再溶解する。つぎにこれをポンプなどで吸引または加圧する ことでキヤピラリー内の溶液を新しい分離媒体の溶液とすみやかに入れ替える、最後 にこれを冷却することで新 ヽ分離媒体を充填する。このような分離媒体の交換方法
5.上記の 1〜4の分離媒体を組み込んだキヤビラリ一に対してタンパク、核酸、また は脂質などを導入した後、電気泳動を行うことを特徴とする分析方法。
[0013] 本発明は、電気泳動の分離媒体として用いるための、疎水部と親水部をもつ低分 子の両親媒性化合物の水中での加熱溶解と冷却によって得られる長尺状の自己集 合体の使用、及びその製造方法を提供するものである。 即ち、本発明で用いる両親媒性ィ匕合物は、その自己集合によって得られた軸比の 高い極微細繊維、テープ、らせん状テープやチューブ構造などの微細構造によって ネットワーク状の媒体をつくり、篩いとしての役割を果たさせるものであり、この点が従 来の SDSなどとの本質的な相違点である。
本発明の電気泳動のための分離'分析用充填材組成物は、疎水部と親水部をもつ 低分子の両親媒性化合物によって得られる長尺状の自己集合体、及び分離'分析 用充填材用の担体を含有してなるものである。
本発明における電気泳動としては、電気により試料の大きさ、重さ、形状、電荷の種 類とその密度などの性質により泳動させることができ、そして、試料の有する性質に基 づいて分離又は分析することができる方法であれば特に制限はないが、好ましくはキ ャピラリーを用いる電気泳動法が好まし 、。本発明の好ま 、電気泳動法としては、 例えば、キヤビラリ一電気泳動、キヤビラリ一ゾーン電気泳動、キヤビラリ一等電点電 気泳動、キヤビラリ一等速電気泳動、ミセル動電クロマトグラフィー、キヤビラリーゲル 電気泳動、 SDSキヤビラリーゲル電気泳動、スラブ電気泳動法、デスクゲル電気泳 動法、 SDS-PAGE法、 Native-PAGE法、等電点電気泳動(焦点電気泳動)、免疫電 気泳動法などが挙げられる。
また、本発明の電気泳動法としては、通常の電気泳動法にさらにブロッテイング操 作などの方法を必要に応じて併用されるものも包含している。
次に、本発明に従い両親媒性ィ匕合物の水中での自己集合によって得られた分離 媒体を用いたキヤピラリー電気泳動分析をするための好ましい態様について説明す る。
本発明の電気泳動のための分離'分析用充填材組成物は、疎水部と親水部をもつ 低分子の両親媒性ィ匕合物の水中での加熱溶解と冷却によって製造することができる 長尺状の自己集合体を含有してなることを特徴とするものである。また、本発明は、 疎水部と親水部をもつ低分子の両親媒性ィヒ合物の水中での加熱溶解と冷却によつ て製造することができる長尺状の自己集合体の電気泳動の分離'分析用の充填材又 は媒体としての使用を提供するものである。
本発明における長尺状の自己集合体とは、分子間結合力とその空間的な方向性( 異方性という)を増すような官能基が導入された両親媒性ィ匕合物により、幅 3nn!〜 50 0 m、長さ lOOnm〜数 mmの軸比の高い極微細繊維、テープ、およびこれらがね じれた形態に変化したらせん状テープや、外径 20nm〜数十 μ m、長さ lOOnm〜数 mmのチューブなどの微細構造を持つ長尺状構造体 (非特許文献 7、 8参照)のこと をいう。このような構造は、 SDSなどが形成する球状のミセルゃ、天然由来のリン脂質 から形成される球状の分子集合体とは基本的に相違するものである。
本発明の疎水部と親水部をもつ低分子の両親媒性ィ匕合物としては、水中での加熱 溶解と冷却により長尺状の自己集合体を形成することができる疎水部と親水部をもつ 両親媒性ィ匕合物であれば特に制限はないが、好ましくは比較的長鎖の両親媒性の 脂質が挙げられ、例えば、チミジル酸、糖、ペプチド、リン酸、ピリジ-ゥム基、カルボ キシル基、アンモニゥム基、リン酸アンモニゥム基など力 疎水部である鎖状、分岐状 、環状の炭化水素、フッ化炭素鎖などに片端あるいは両端で連結された脂質が例示 できる。このうち、後者の疎水部の両端が連結された両親媒性脂質を双頭型脂質と 呼ぶ。
本発明の両親媒性ィ匕合物における「低分子」とは、モノマーを重合させて多数の繰 り返し単位を有する高分子量の重合体以外の化合物と定義されるものであり、例えば 、分子量力 0000以下、好まし <は 30000以下、 20000以下、 10000以下、又は 5 000以下のものであり、分子中にモノマーの繰り返し単位が 50以上、好ましくは 40以 上の繰り返しが無 、分子を 、う。
このような低分子の両親媒性ィ匕合物としては、例えば、非特許文献 7又は 8に記載 されて 、るような物質をあげることができる。非特許文献 7及び 8の記載を参考のため に本明細書に取り入れる。
本発明の低分子の両親媒性化合物として好ましい化合物を例示すれば以下に示 すィ匕合物が挙げられる力 これらの例示される化合物に限定されるものではない。 次の一般式(1)
G-NHCO-R (1)
(式中、 Gはダルコビラノース、ガラクトピラノース、マルトース、ラタトース、セルビオー スなどの糖のァノマー炭素原子に結合するへミアセタール水酸基を除いた糖残基を 表し、 Rは炭素数が 10〜39の不飽和炭化水素基を表す。 )
で表される N—グリコシド型脂質 (特開 2004— 224717号参照)。
このような化合物の具体例としては、例えば、次の一般式(2)、一般式(3)、一般式 (4)、又は一般式 (5)
[0016] [化 1]
Figure imgf000011_0001
[0017] [化 2]
Figure imgf000011_0002
[0018] [化 3]
Figure imgf000011_0003
[0019] [化 4]
Figure imgf000011_0004
[0020] などの化合物、及びこれらの混合物が挙げられる。
これらの N—グリコシド型脂質の類似したィ匕合物としては、飽和の側鎖を持った次 の一般式 (6)
[0021] [化 5]
Figure imgf000011_0005
[0022] で表されるグリコリピッド類(T. Shimizu et al., Langmuir., 2005, 21, 743- 750参照)な どが挙げられる。
[0023] 次の一般式(7)
X'-O-Ph-R
(式中、 X1はグリコシル基、又は 2〜29個、好ましくは 2〜5個の単糖が結合したオリ ゴ糖残基を表し、 Rは前記一般式(1)と同様の炭素数が 10〜39、好ましくは 14〜16 の不飽和炭化水素基を表し、 Phはベンゼン環を表し、当該ベンゼン環における基 X1 —O—と基 R—との置換位置は任意である力 好ましくはメタ位であることを表す。 ) で表される構造を有する O—グリコシド型糖脂質 (脂質の製造方法は特開 2001— 2 61693号、集合体は特開 2003— 252893号、その製造方法は特開 2003— 2598 93号参照)。
[0024] 次の一般式(8)
A-Ph-NHCO-R1 (8)
(式中、 Aはグルコース、ガラクトース、 N—ァセチルダルコサミン、キシロースなどの 糖の残基を表し、 R1は炭素数 6〜20、好ましくは 10〜20の直鎖状又は分枝状、好ま しくは直鎖状のアルキル基を表し、 Phはベンゼン環を表し、当該ベンゼン環における 基 A—と基一 NHCO - R1との置換位置は任意であるが、好ましくはパラ位であること を表す。)
で表される糖脂質 (特開 2003— 49154号参照)。
このような一般式 (8)で表される糖脂質をさらに具体的に例示すれば、次の一般式 (9)及び一般式(10)
[0025] [化 6]
Figure imgf000012_0001
[0026] [ィ匕 7]
Figure imgf000012_0002
[0027] (式中、 R2は、炭素数 6〜20,好ましくは 10〜20の直鎖状又は分枝状、好ましくは直 鎖状の飽和又は不飽和の脂肪族炭化水素基を示す。 )
で表される化合物などが挙げられる。一般式(9)における—NHCO— R2基の具体例 としては、例えば次に示すような基が挙げられる(T.Shimizu, et al., J. Am. Chem. So c, 2002, 124, 10675参照)。
[0028] [化 8]
— NHOC
[0029] [化 9]
[0030] [化 10]
—NHOC
[0031] [化 11]
—NHOC
[0032] また、これらの化合物に類似した、 N—ァシル化一 O—グリコシル化一アミノフエノ ルの誘導体としては、次の一般式(11)又は一般式(12)、
[0033] [化 12]
Figure imgf000013_0001
[0034] [化 13]
Figure imgf000013_0002
[0035] (式中、 R3は、炭素数 4〜15,好ましくは 6〜 12の直鎖状又は分枝状、好ましくは直 鎖状のアルキレン基を示す。 )
で表される糖ーァミノフエノール誘導体(T. Shimizu et al., Chem. Eur. J., 2002, 8, 1
60参照)などが挙げられる。さらに、ァゾベンゼン誘導体の例としては次の一般式(13 )、
[0036] [化 14]
Figure imgf000014_0001
[0037] で表されるァゾベンゼン誘導体(S. Shinkai et al., Org. Lett. 2002, 4, 1423- 1426参 照)が挙げられる。
[0038] 次の一般式(14)
G1—NHCO—(CH ) —COOH (14)
2 n
(式中、 G1は還元性末端水酸基を除いたアルドース残基を表し、 nは 6〜20の整数を 表す。)
で表されるカルボキシル基を有する非対称双頭型糖脂質 (特開 2002— 322190号 、特開 2001— 261690号、 T. Shimizu et al. Lamgmuir 2004, 20, 5969- 5977.参照) 。これらのアルドース残基における水酸基は遊離であってもよいが、一部又は全部の 水酸基がァセチル基、ベンジル基、イソプロピル基、メチレン基、ベンジリデン基など の糖類合成法における慣用的な保護基で保護されて 、てもよ 、。
[0039] 次の一般式(15)
G2— NHCO—(CH ) -CONH-G3 (15)
2 m
(式中、 G2及び G3はそれぞれ独立して、例えばダルコビラノシル基や D—ガラクトピラ ノシル基などの、アルドビラノースの還元末端水酸基を除いた残基を表し、 mは 6〜1 8の整数を表す。 )
で表される両端に糖残基を有する双頭型脂質 (特開平 9— 143192号参照)。より具 体的には、次の一般式(16)
[0040] [化 15]
Figure imgf000015_0001
[0041] (式中、 mは、 6〜18,好ましくは 6〜 12の整数を示す。)
で表される双頭型糖脂質(特開平 9 143192号、 T. Shimizu et al.J.Am.Chem.Soc.
1997, 119, 2812-2818. ,参照)が挙げられる。
次の一般式(17)
[0042] [化 16]
G4 NHCO— (CH2) X— C≡C— C≡C— (CH2) y— CONH—G5 (17)
[0043] (式中、 G4及び G5はそれぞれ独立して、アルドビラノースの還元末端水酸基を除い た残基またはその中の水酸基の少なくとも一部が保護されたものを表し、 X及び yは それぞれ独立して 3〜16の整数を表す。 )
で表される重合性双頭型糖脂質 (特開平 11 - 255791号参照)。
[0044] 次の一般式(18)の D ガラクトース誘導体、一般式(19)の L ガラクトース誘導体 、一般式(20)の D マンノース誘導体、一般式(21)の L マンノース誘導体、一般 式(22)の D グルコース誘導体、一般式(23)の L グルコース誘導体、及び一般 式(24)の D タロース誘導体、
[0045] [化 17]
Figure imgf000015_0002
[0046] [化 18]
Figure imgf000015_0003
[0047] [化 19]
Figure imgf000016_0001
[0048] [化 20]
Figure imgf000016_0002
[0049] [化 21]
Figure imgf000016_0003
[0050] [化 22]
H OH OH
(23)
O OH OH
[0051] [化 23]
Figure imgf000016_0004
[0052] (式中、 R4は、炭素数 6〜15,好ましくは 8〜 12の直鎖状又は分枝状、好ましくは直 鎖状のアルキル基、又は炭素数 8〜15の直鎖状又は分枝状、好ましくは直鎖状のァ ルキニル基、好ましくは次式
[0053] [化 24]
(CH2)p-C≡C-C≡C-(CH2)q-
[0054] (式中、 pは 1〜5の整数を示し、 qは 2〜5の整数を示す。)で表されるアルキ-ル基を 示す。)
で表される N—炭化水素化アミノ糖型化合物 (飽和炭化水素型疎水部のものは、 J.- H. et al. J. Am. Chem. Soc. 1988, 110, 2861- 2867参照、ジアセチレン型疎 水部のものは、 J.-H. Fuhrhop et al. J. Am. Chem. Soc. 1991, 113, 7437-7439、 D.F .O' Brien et al. J. Am. Chem. Soc. 1991, 113, 7436—7437、及び D.F.O' Brien et al. J. Am. Chem. Soc. 1994, 116, 10057- 10069,参照)。
次の一般式(25)
[0055] [化 25]
Figure imgf000017_0001
[0056] (式中、 R5は、炭素数 1〜15,好ましくは 1〜9の直鎖状又は分枝状、好ましくは直鎖 状のアルキル基を示し、 R6は水素原子、水酸基、— CH COOH、 -CH CH COO
2 2 2
H、 -CH CH CH NH、又は— CH CH CH CH NHを示す。 )
2 2 2 2 2 2 2 2 2
で表されるアミドカルボン酸型化合物(J.- H. Fuhrhop et al. Langmuir 2001, 17, 873- 877参照)。
次の一般式(26)
[0057] [化 26]
Figure imgf000017_0002
[0058] (式中、 R7は、炭素数 3〜15,好ましくは 3〜6の直鎖状又は分枝状、好ましくは直鎖 状のアルキル基を示し、 R8は炭素数 1〜10,好ましくは 1〜4の直鎖状又は分枝状の アルキル基、又はベンジル基を示す。 )
で表される尿素カルボン酸型化合物(A.D. Hamilton, Chem.Comm. 2003, 310-311 参照)。
次の一般式(27) [0059] [化 27]
Figure imgf000018_0001
[0060] で表されるフッ素化ダルコホスホリピッド(M.- P. Kraffl et al., Chem. Eur. J. 1996, 2 1335-1339参照)。
次の一般式(28)
[0061] [化 28]
Figure imgf000018_0002
[0062] (式中、 R9は、炭素数 1〜5,好ましくは 1〜3の直鎖状又は分枝状、好ましくは直鎖 状のアルキル基を示し、 kは 6〜: L0,好ましくは 8〜 10の整数を示し、 1は 8〜15、好 ましくは 10〜12の整数を示す。 )
で表されるピリジ-ゥム化合物(K. Hanabusa, Chem. Eur. J. 2003, 9, 348-354参照) 次の一般式(29)
[0063] [化 29]
Figure imgf000018_0003
(式中、 R , R , 及び R"は、それぞれ独立して水素原子、又はアミノ酸の側鎖 の残基を示し、好ましくはメチル基 (つまりァラニン)、イソプロピル基 (つまりパリン)、 ブチル基(つまりロイシン)、又はイソブチル基(つまりイソロイシン)を示す力 これら の 4種のアミノ酸以外にグリシン、セリン、トレオニン、ァスパラギン酸、グルタミン酸、 ァスパラギン、グルタミン、リジン、ヒドロキシリジン、ァノレギニン、システィン、メチォ二 ン、フエ二ルァラニン、チロシン、トリプトファン、ヒスチジン、プロリン、ヒドロキシプロリ ン、 βァラニン、及びァラニンイソブチル酸力 なる群力 選ばれる 1種又は 2種以上 のアミノ酸を形成する残基であってもよい。 rは 4〜24,好ましくは 7〜18の整数を示 す。)
で表される双頭型ペプチド脂質。
一般式 (29)で表される双頭型ペプチド脂質において、好ましくは R1C>1、 R12、 R 13としては、これらの基がイソプロピル基である場合 (即ち、 Val— Val)、若しくはイソ ブチル基である場合 (即ち、 He -He)、 R10、 R13がイソプロピル基で R11 R12がイソブ チル基ある場合 (即ち、 Val— lie又はこの逆)、 R1C>、 R13がイソブチル基で R"、 R12が イソプロピル基である場合 (即ち、 lie— Val又はこの逆)、 R1C)、 R13、がイソブチル基で 1、 R12が— CH CH SCHである場合(即ち、 lie— Met又はこの逆)、又は R1C>、 R
2 2 3
13が— CH CH SCHで R11 R12がイソブチル基である場合(即ち、 Met— lie又はこ
2 2 3
の逆)などが挙げられる。これらのアミノ酸は、ラセミ体でも、 D体又は L体の光学活性 体であってもよ 、。全てのアミノ酸が D体又は L体の光学活性体であるものが好まし い。
さらに、一般式 (29)で表される双頭型ペプチド脂質は、次の一般式 (30)又は一般 式(31)
[0065] [化 30]
Figure imgf000019_0001
[0066] [化 31]
Figure imgf000019_0002
[0067] (式中、 R10, R11 R12、 R13、及び rは前記の一般式(29)と同じものを示し、 R14及び R 15はそれぞれ独立して前記 R1C>、 Rn、 R12、又は R13と同じものを示す。 ) で表されるトリペプチド型の双頭型ペプチド脂質であってもよい。一般式(30)又は一 般式 (31)で表される双頭型ペプチド脂質におけるトリペプチド部分におけるトリぺプ チド部分のアミノ酸配列としては、 Val— Val— Val、 lie— lie— Ile、 lie— Val— Val、 Val-Ile-VaU Val—Val—Ile、又はこれらの逆の配列などが好ましい。これらのァ ミノ酸もラセミ体、光学活性体のいずれであってもよいが、好ましくはすべてのアミノ酸 力 体又は L体の光学活性体であるものが挙げられる。これらの双頭型ペプチド脂質 については、清水らの文献(T. Shimizu et al., Chem. Commun, 1998, 1791.)、及び 特許第 3012932号を参照されたい。
次の一般式(32)
[0068] [化 32]
Figure imgf000020_0001
[0069] (式中、 sは 12〜24,好ましくは 18〜20の整数を示す。)
で表されるデォキシリボース型化合物(R.Iwaura et al. Chem. Mater. 2002, 14, 3047. 及び特開 2003— 55642号参照)。
次の一般式(33)
[0070] [化 33]
Figure imgf000020_0002
[0071] で表されるジアセチレン化合物(R.C. Stevens, J. Am. Chem. Soc, 2001, 123, 3205- 3213参照)。
次の一般式(34)
[0072] [化 34]
Figure imgf000021_0001
[0073] で表されるホスホアンモ -ゥム化合物(F.M. Menger et al., J. Am. Chem. Soc. 2002 124, 12408- 12409参照)。
次の一般式(35)
[0074] [化 35]
Figure imgf000021_0002
[0075] (式中、 2Χ は、式
[0076] [化 36]
O2C θ2
HO OH
[0077] で表される酒石酸塩、その鏡像体、メソ体、又は 2個の臭素イオンを示す。 )
で表されるエチレンジアンモ -ゥム化合物(I. Hue et al., Angew. Chem., Int. Ed. 199 8, 37, 2689-2691.参照)。
次の一般式(36)
[0078] [化 37]
Figure imgf000021_0003
[0079] (式中、 R16は、水素原子又はニトロ基を示す。 ) で表される糖へミアセタール化誘導体(S. Shinkai et al., Chem. Eur. J. 1999, 5, 272 2-2728参照)。
次の一般式(37)
[0080] [化 38]
Figure imgf000022_0001
[0081] (式中、 R17及び R18は、それぞれ独立して、炭素数 6〜10,好ましくは 6〜8の直鎖状 又は分枝状、好ましくは直鎖状のアルキル基、又はシクロペンチルメチル基若しくは シクロへキシルメチル基を示し、 tは 0〜3、好ましくは 0〜1の整数を示す。 ) で表されるグリコシル化アミノ酸誘導体(I. Hamachi et al., J. Am. Chem. Soc, 2002, 124, 10954-10955参照)。
次の一般式(38)
[0082] [化 39]
Figure imgf000022_0002
[0083] (式中、 aはそれぞれ独立して 3〜15、好ましくは 7〜 14の整数を示し、 bは 4〜15、 好ましくは 4〜 12の整数を示す。 )
で表される尿素型長鎖アルキルエステル系化合物(A.D. Hamilton, et al., Angew. C hem. Int. Ed" 2000, 39, 3448.参照)。
次の一般式(39)、一般式 (40)、一般式 (41)、又は一般式 (42)
[0084] [化 40]
Figure imgf000023_0001
Figure imgf000023_0002
[0086] [化 42]
Figure imgf000023_0003
[0088] で表される長鎖フエ-ルー β一 D—ダルコビラノシド(T. Shimizu, et al., Adv. Mater.,
2001, 13, 715 - 718.参照)、又はこれらの化合物の混合物。
次の一般式 (43)
[0089] [化 44]
Figure imgf000023_0004
[0090] (式中、 dは 22〜40の整数を示す。)
で表される両端に極性のあるホスホコリンを有する化合物(A. Blume, et al., Angew.
Chem. Int. Ed" 2004, 43, 245- 247.参照)。
次の一般式 (44)
[0091] [化 45]
Figure imgf000024_0001
[0092] で表される尿素ジカルボン酸半エステル誘導体(A.D. Hamilton et al., Chem. Comm un. 2003- 2958- 2959参照)。
次の一般式 (45)
[0093] [化 46]
Figure imgf000024_0002
[0094] (式中、 R19は、炭素数 8〜15,好ましくは 10〜 12の直鎖状又は分枝状、好ましくは 直鎖状のアルキル基、又は炭素数 8〜 15,好ましくは 10〜 12の直鎖状又は分枝状 、好ましくは直鎖状のフッ素化アルキル基を示す。好ましい R19としては、 一 C H 、
10 21 又は C F -C H一基が挙げられる。)
8 17 2 4
で表されるジモルホリノホスホルアミデート誘導体 (Angew. Chem. Int. Ed., 1994, 33, 1514参照)。
次の一般式 (46)
[0095] [化 47]
Figure imgf000024_0003
(46) [0096] (式中、 R2Gは、炭素数 8〜15,好ましくは 10〜 15の直鎖状又は分枝状、好ましくは 直鎖状のアルキル基、又は炭素数 8〜 15,好ましくは 10〜 15の直鎖状又は分枝状 、好ましくは直鎖状のフッ素化アルキル基を示す。好ましい R2Gとしては、— C H 、
10 21
— C H 、又は C F — C H—基が挙げられる。 )
15 31 8 17 2 4
で表されるホスホコリン誘導体(M.- P.Kraffi, et al., Angew. Chem. Int. Ed., 1994, 33, 1514.参照)。
次の一般式 (47)
[0097] [化 48]
Figure imgf000025_0001
[0098] (式中、 R は、 n ブチル基、 4 ブロモベンジル基、又はメタクリルォキシェチル基 を示し、 R22は、炭素数 1〜4の直鎖状又は分枝状、好ましくは直鎖状のアルキル基を 示す。)
で表される尿素ヒドロキシカルボン酸エステル誘導体(A.D. Hamilton, Chem. Commu n. 2003, 310-311.参照)。
次の一般式 (48)
[0099] [化 49]
O
CH2— OC(CH2)8— cョ C一 C≡C— (CH2)9CH3
O
II
HC— OC(CH2)8一 cョ C— C≡C一 (CH2)9CH3
O
H2C-0-P-0-(CH2)2_N + (CH3)3
O"
[0100] で表されるジアセチレン基を含有するグリセライド誘導体 (P. Yager, et al., Mol.Cryst .Liq.Cryst., 1984, 106, 371-381. J.M. Schnur, Science, 1993, 262, 1669- 1676.参照
) o
次の一般式 (49)
[0101] [化 50]
Figure imgf000026_0001
[0102] で表されるリジンの長鎖アミド誘導体。
次の一般式(50)
[0103] [化 51]
Figure imgf000026_0002
[0104] で表されるトリスメチォニンシクロへキサン誘導体(B丄. Feringa et al., J. Am. Chem.
Soc, 2003, 125, 14252- 14253.参照)。
次の一般式(51)
[0105] [化 52]
Figure imgf000026_0003
(式中、 Xは、それぞれ独立して、 O— (CH ) — OH基、又は— NH— (CH ) -
2 2 2 2
0- (CH ) OH基を示す。 )
2 2
で表されるトリスフエ-ルァラニンシクロへキサン誘導体(B丄. Feringa, et al., J. Am. Chem. So , 2003, 125, 14252- 14253.参照)
次の一般式(52)
[0107] [化 53]
Figure imgf000027_0001
[0108] で表されるリトコール酸 (Y. Talmon et al., Langmuir, 2002, 18, 7240- 7244.参照) 次の一般式(53)
[0109] [化 54]
Figure imgf000027_0002
[0110] (式中、 は、炭素数 4〜24、好ましくは 7〜18の直鎖状又は分枝状、好ましくは直 鎖状のアルキル基を示し、 fは 1〜3の整数を示す。 )
で表されるポリグリシン誘導体、又はそのナトリウム塩 (特願 2003— 039276号参照) 次の一般式(54)
[0111] [化 55]
Figure imgf000027_0003
(式中、 R24は、炭素数 4〜24、好ましくは 7〜18の直鎖状又は分枝状、好ましくは直 鎖状のアルキル基を示し、 gは 1〜3の整数を示す。 )
で表されるポリグリシン誘導体、又はその塩酸塩。
次の一般式(55) [0113] [化 56]
G6— NHCO— R 25— C≡C_ C≡C一 R 2 6— Z (55)
[0114] (式中、 G6はアルドビラノースの還元末端水酸基を除いた残基、好ましくは D—ダル コピラノシル基又は L ダルコビラノシル基を表し、 Zは水素原子、水酸基、カルボキ シル基、アミノ基、又はアミノエチルカルバモイル基を表し、 R25及び R26はそれぞれ 独立して炭素数が 0〜20の 2価の炭化水素基、好ましくは炭素数力^〜 20のポリメチ レン基を表す。)で表わされる重合性双頭型糖脂質。
[0115] また、ォレイン酸ナトリウム塩ゃドデシルトリメチルアンモニゥムクロライドのようなィォ ン性界面活性剤、ォクタエチレングリコールテトラデシルエーテル、ドデシルジメチル アミンォキシドなどの非イオン性界面活性剤、パルミトイルリソホスファチジルコリン、 ォレオイルリソホスファチジルコリン、リノレオイルリソホスファチジルコリンなどのリン脂 質 (双性イオン性)なども挙げられる。
[0116] 本発明の電気泳動のための分離 ·分析用充填材組成物は、前記した本発明の両 親媒性化合物からなる長尺状の自己集合体を含有するものであれば特に制限はな い。また、この長尺状の自己集合体を含む分離分析用充填剤組成物、あるいはその ヒドロゲル状ィ匕物は以下の様な高分子化合物を混合物として含有していてもよい。こ のような高分子化合物としては、例えば、数平均分子量が 10, 000〜1, 000, 000、 好ましくは 10, 000〜500, 000のヒドロキシェチルセルロース、数平均分子量が 10 , 000〜1, 000, 000、好ましくは 10, 000〜500, 000のヒドロキシプロピルセル口 ース、数平均分子量力 s10, 000〜1, 000, 000、好まし <は 10, 000〜500, 000の ポリアクリルアミドなどが挙げられる。これらの分離媒体及び上記高分子混合物は、水 溶液として 0. 01%〜30%、好ましくは 0. 1〜20%、より好ましくは 0. 1〜10%程度 の濃度で用いられる。
したがって、本発明は、前記した本発明の両親媒性化合物からなる長尺状の自己 集合体を含有してなる分離媒体、又はそれらの物理的な架橋構造によって形成され ることを特徴とする分離媒体用ヒドロゲル状分離媒体からなる分離 ·分析用充填材組 成物を提供するものである。さらに、本発明は、当該長尺状の自己集合体ゃヒドロゲ ルカ ヒドロキシェチルセルロース、ヒドロキシプロピルセルロース、及びポリアクリルァ ミドなどの篩いを含有する充填材組成物を提供するものである。
[0117] 本発明の長尺状の自己集合体を製造する方法としては、通常は、本発明の長尺状 の自己集合体の構造を形成する両親媒性化合物を、水などの溶媒に溶解し、必要 に応じて撹拌、脱気した後、加熱してゾルイ匕し、これを冷却することにより製造するこ とができる。使用される両親媒性ィ匕合物によっては、前記した加熱処理に代えて、 p Hの調節や、紫外線などの光の照射などの処理によりゾルイ匕する場合もある。本発明 の両親媒性ィ匕合物の濃度としては、 0. l〜30wt%、好ましくは 0. l〜20wt%、0. l〜15wt%程度が挙げられる。使用される溶媒としては、 pHの調整された水が挙げ られ、より好ましくは各種の緩衝液が挙げられる。好ましい緩衝液としては、 pH8の T Eバッファー(10mM Tris— HCKpH 8.0)、 ImM EDTA)ゝ pH2.5〜7.5リン酸バッファー、 ホウ酸ノ ッファー、 2-[4-(2-hydroxyethyl)-l— piperazinyl] ethanesulfonic acid(HEPES) , N-tris(hydoroxymethyl)methyl-e-aminoethanesulfonic acid(TES), Tris- HC卜グリシン ノ ッファー、トリス一リン酸緩衝液、あるいはこれらの混合物などが挙げられる。より好 ましい緩衝液としては ρΗ8の TEバッファー(10mM Tris— HCl(pH 8.0)、 ImM EDTA) が挙げられる。
ゲルを調整する水溶液の pHとしては特に制限はなぐ使用する両親媒性ィ匕合物に よるが、 ρΗ1〜10、好ましくは pH2〜 10程度であればいずれでもよい。
また、添加剤として、必要によりメタノール、エタノール、ァセトニトリル、 THF、ジォ キサンなどを 0〜50%ほど含んで!/、てもよ!/、。
[0118] 本発明の分離'分析用組成物の自己集合体の調製方法をより詳細に説明すれば、 両親媒性ィ匕合物の溶液を室温で超音波処理してよく脱気した後、ゾル状になるまで 加熱し、具体的には 50°C〜100°Cに加熱して完全にゾル状態にする。これを、分離 媒体の容器に入れゲル化させる。分離媒体の容器としてキヤピラリーを用いる場合に は、これをシリンジまたはキヤピラリー電気泳動装置の試料導入装置に、吸引又は加 圧などにより、必要により後述する前処理を行ったキヤビラリ一に導入した後、このキ ャピラリー全体を空冷、あるいは電気泳動装置に付属しているキヤビラリ一の温度制 御装置を用いて冷却し、長尺状自己集合体からなる分離媒体用ヒドロゲル組織を製 造することができる。
本願の分離媒体の容器としては、電気泳動における分離媒体としてのゲルを収納 できる容器であれば特に制限はなぐ具体的には、例えば、スラブゲルを入れる容器 、キヤピラリー電気泳動などにおけるキヤビラリ一などが挙げられる。
本願の分離媒体の容器としてキヤピラリーを用いる場合のキヤビラリ一の内径として は約 500nm〜3mmのものが使える力 分離能とサンプル量などの点から約 50 μ m〜 100 /z mのものがもっとも良い。長さは、試料によって異なる力 2cm〜3mであることが 望ましい。キヤビラリ一の材質はパイレックス (登録商標)ガラス、フューズドシリカ(溶 融石英)、テフロン (登録商標)のいずれでもよいが、フューズドシリカが好適である。 上記ガラスまたはシリカの場合には強度と柔軟性をもたせるために外壁をポリイミドで 覆っていてもよいし、いなくても良い。
キヤピラリーの前処理として、分離'分析用充填材糸且成物の充填の前に、以下のよう な操作を行うことが好ましい。例えば、あらかじめ内壁をクロ口ホルムやメタノールなど の溶媒で洗浄し、付着している有機物を除去する。そしてさらに強酸ついで強アル力 リで洗浄し、内壁の無機物を除くと共に、表面をシラノール基に変える。その後、シラ ンカップリング剤である (3-メタクリオキシプロピルトリメトキシシラン、 3-methacryloxypr opyltrimethoxysilane)で表面処理し、続!、てアクリルアミドを導入してグラフト重合した もの(非架橋ポリアクリルアミドで内壁処理した物)を用いる。
両親媒性ィ匕合物の熱水溶液を充填したキヤビラリ一の冷却は、空冷による急冷でも よ!、が約 20°CZ秒〜 0. 1°CZ分まで変化させてもょ 、。
このようにして得られた分離媒体を用いたキヤピラリー電気泳動は、例えば、以下の ようにして行える。まず分離媒体を充填した長さ 30cmのキヤピラリーをキヤピラリー電 気泳動装置に装着し、温度を 5°C〜50°C、好ましくは約 20°C前後にすることが望ま しい。試料としては、 DNA、 RNA、タンパクなどが測定可能である力 DNA、タンパク が望ましい。特にタンパクの場合、 SDSなどであら力じめ変性させておくことが好適で ある。また電気泳動に用いる溶媒は、長尺状自己集合構造やそのヒドロゲルを形成し たときの溶媒と同一であることが望ま U、。とくに DNAの分離にぉ 、ては前述の TE ッファーが最適である。 分離の前に、試料をキヤビラリ一に導入する時は、電気泳動、吸引、加圧のいずれ でも良いが、分離媒体であるヒドロゲルや高分子溶液がキヤビラリ一から侵出するの を防ぐため、キヤビラリ一の両側の受容相と供給層は 5ps港度加圧しながら電圧の印 可によって導入することが最適である。試料をキヤビラリ一に導入した後に、電気泳動 を行うが、印可電圧はキヤビラリ一の長さによって変化する力 50V/cm〜500V/cm であることが望ましい。
検出は DNAの場合は 254nmあるいは 234nmの吸収をモニターして行う。またサン プルが微量の場合には、試料を蛍光ラベルイ匕して蛍光により検出することも可能であ る。
ゲルが劣化して分離能が低下したり、経時変化が著しいとき、また篩に試料ゃゴミ などが詰まって圧力が高まったときは以下のようにして簡単に分離媒体を交換するこ とが可能である。まずキヤピラリー全体を 50°C〜100°Cまで加熱してゾル状態にもど す。次にこの温度を保持したまま、このゾルを供給漕側の加圧、あるいは受容漕側の 吸引によりキヤビラリ一外部に取り出す。同時に、 50°C〜100°Cまで加熱してある新 しい分離媒体溶液を同様に供給漕側の加圧、あるいは受容漕側の吸引によりキヤピ ラリー内部に充填する。この後に、キヤピラリーを、空冷による急冷あるいは約 20°CZ 秒〜 0. 1°CZ分の範囲で徐例して新たな分離媒体を装着したキヤピラリーを得る。
[0120] 本発明の分離'分析用充填材組成物は、加熱や pHの調整などにより流動性のある ゾル状にすることで、キヤピラリーを取り外すことなく分離媒体のみの交換を可能にす ることを特徴とするものである。したがって、本発明の分離'分析用充填材組成物を使 用することにより、キヤピラリーを取り外すことなくキヤビラリ一は半永久的に使用する ことがでさるよう〖こなる。
この交換は、キヤピラリー電気泳動装置のキヤビラリ一恒温装置に 0°C〜100°Cまで 温度を変えられるプログラムを装着し、さらに温度制御可能な加熱装置を装着したサ ンプルトレイにゾル溶液を装備することで、コンピューターによる制御装置と連動させ て完全無人化しておこなうこともできる。
発明の効果
[0121] 本発明は、可逆的、かつ容易に充填可能な両親媒性化合物の自己集合によって できる長尺状構造、およびその物理的な架橋構造によるヒドロゲル分離媒体を電気 泳動、特にはキヤビラリ一電気泳動での分離媒体として用い、安価で、再現性が高く 、分離媒体の交換が容易な電気泳動法、例えば、キヤビラリ一電気泳動法を提供す るものである。
本発明の分離媒体のための親水部と疎水部を持つ分子の自己集合によって形成 される長尺状構造を、ある ヽはそれからなるヒドロゲル状組織を充填したキヤビラリ一 カラムは、高理論段数を持ち、従来の充填剤に比べて極めてシャープな分離能を有 しており、し力も長期間にわたって安定である。また、前述してきたように長尺状構造 の自己集合を行うことができる両親媒性ィ匕合物としては、多種多様のものが知られて おり、分析する試料や分析の目的に応じて、多種多様な両親媒性化合物の中から分 祈に適した両親媒性ィ匕合物を選択することもできる。さらに、本発明の分離'分析用 充填材組成物は、加熱処理などによって再溶解するので、分離媒体が目詰まりなど で劣化した場合も、キヤピラリーを取り外すことなく篩としての充填剤のみを詰め替え ることも可能である。このため、この詰め替えによってキヤビラリ一は半永久的に使用 することができる。また詰め替え時に濃度やそのヒドロゲルの原料となる両親媒性ィ匕 合物の種類を変えることで、篩の網目の大きさや形を試料の種類や分子量に対して 調節可能である。
また、これらの長尺状構造が架橋していない場合 (ヒドロゲルを形成しない場合)に もこれまでの鎖状高分子溶液からなる分離媒体と同様に、交換が非常に簡単である こと、また篩の形態やサイズ (つまり物理的な網目の大きさ)、堅さが冷却速度や溶媒 、両親媒性ィ匕合物の濃度などによって制御できる。これらの特徴から、広い範囲の分 子量をもつ DNA、 RNA、タンパク質などの高分子はもとより糖鎖、ペプチド、脂質、 および天然生理活性物質、アミノ酸などの低分子の高理論段数をもつ電気泳動法、 例えばキヤピラリー電気泳動分析に有用である。
図面の簡単な説明
[図 1]図 1は、キヤピラリー電気泳動装置の概略を示すものである。
[図 2]図 2は、キヤピラリー内部を TEバッファーで満たし、ラダー DNA50〜10, OOOb Pを分析したクロマトグラム(エレクト口フエログラム)を示すものである。 [図 3]図 3は、キヤピラリー内部をゲルバッファーで満たし、ラダー DNA50〜10, 000 bpを分析したクロマトグラム(エレクト口フエログラム)を示すものである。
[図 4]図 4は、キヤビラリ一内部を本発明の分離'分析用充填材組成物の自己集合性 ヒドロゲル 0. 5wt%で満たし、ラダー DNA50〜10, OOObpを分析したクロマトグラム (エレクト口フエログラム)を示すものである。
[図 5]図 5は、キヤビラリ一内部を本発明の分離'分析用充填材組成物の自己集合性 ヒドロゲル 2wt%で満たし、ラダー DNA50〜10, OOObpを分析したクロマトグラム( エレクト口フエログラム)を示すものである。
[図 6]図 6は、キヤピラリー内部を TEバッファーで満たし、ラダー DNA50〜800bpを 分析したクロマトグラム(エレクト口フエログラム)を示すものである。
[図 7]図 7は、キヤピラリー内部をゲルバッファーで満たし、ラダー DNA50〜800bpを 分析したクロマトグラム(エレクト口フエログラム)を示すものである。
[図 8]図 8は、キヤビラリ一内部を本発明の分離'分析用充填材組成物の自己集合性 ヒドロゲル 2wt%で満たし、ラダー DNA50〜800bpを分析したクロマトグラム(エレク トロフエログラム)を示すものである。
[図 9]図 9は、図 3で示したキヤピラリー内部をゲルバッファーで満たし、ラダー DNA5 0〜: L0, OOObpを分析したクロマトグラム(エレクト口フエログラム)(a)、及び図 5で示 したキヤピラリー内部を本発明の分離 ·分析用充填材組成物の自己集合性ヒドロゲル 2wt%で満たし、ラダー DNA50〜10, OOObpを分析したクロマトグラム(エレクトロフ エログラム)(b)をまとめて示したものである。
[図 10]図 10は、実施例 2で使用したスラブ電気泳動装置の概略を示すものである。
[図 11]図 11は、従来の 4%ポリアクリルアミドゲルをスラブゲルとして用い、ラダー DN A (図中の番号 1, 2, 3力 20bp、 100bp、 200bpのラダーに対応する)を電気泳動し たクロマトグラム(エレクト口フエログラム)を示すものである。
[図 12]図 12は、 4%ポリアクリルアミドゲルと 0. 004%の本発明の化合物 35の L—酒 石酸塩から成る長尺状の自己集合体を混合したものをスラブゲルとして用い、ラダー DNA (図中の番号 1, 2, 3力 20bp、 100bp、 200bpのラダーに対応する)を電気泳 動したクロマトグラム(エレクト口フエログラム)を示すものである。 符号の説明
[0123] 1 キヤピラリーカラム
2 緩衝液容器
3 試料容器
4 緩衝液容器
5 紫外可視吸光検出器
6 直流電源
11 図 10のゲノレ板
12 図 10の緩衝液容器
13 図 10の直流電源
発明を実施するための最良の形態
[0124] 以下、実施例により本発明をより具体的に説明するが、本発明はこれら実施例によ り何ら限定されるものではない。
実施例 1
[0125] (1) 自己集合性ヒドロゲルのキヤビラリ一への充填
まず、ガラス容器に自己集合性の両親媒性ィ匕合物である次式
[0126]
Figure imgf000034_0001
[0127] 1, 20- 3'—チミジル酸双頭型脂質(R.Iwaura et al. Chem. Mater. 2002, 14, 3047. 、及び特開 2003— 55642号公報参照)(10mg、 0. 01ミリモル、または 5mg、 0. 00 5ミリモル)を量り、これに pH値 8の TEバッファー(和光純薬工業株式会社製、商品 番号 316— 90025) 0. 5mLをカ卩え、ヒートガンで熱しながら溶解し、 2wt%および 0 . 5wt%の両親媒性ィ匕合物を含む溶液を調製した。この溶液を、 0. 45ミクロンのメン ブランフィルター(ゲルマンサイエンスジャパン社製、商品番号 4457)で濾過した。 次に、上述の両親媒性ィ匕合物を含む溶液で温度力 0〜60°Cのものをキヤビラリ一 電気泳動装置(ベックマンコールター社製、 P/ACEシステム MDQ)にセットし、 10p siで 3分間加圧することによって、内径 75ミクロン、長さ 30cmのポリアクリルアミド被覆 シリカゲルキヤビラリ一(ベックマン社製、商品番号 477477)内へ充填した。この後、 キヤビラリ一内部が乾燥しないように、両端を上述の両親媒性ィ匕合物を含む溶液に 浸したまま、室温で 3日間静置した。これによつて、内径 75ミクロンのシリカゲルキヤピ ラリー中に、両親媒性化合物の自己集合力もなるヒドロゲルを得た。
上述のキヤビラリ一中には、幅 lOOnm程度の繊維状自己集合体が、三次元網目 状に絡み合った構造で存在していることが、キヤビラリ一断面の電子顕微鏡観察によ つて確かめられた。
[0128] (2) 装置
上述の方法によって得られたヒドロゲル充填キヤピラリーを、図 1に示す電気泳動装 置に取り付け、 TEバッファー、 pH = 8の緩衝液を用いて、 20°Cにおいて 10kVの印 可電圧をかけて DN Aの検出を行った。なお、図 1中、 1はキヤビラリ一力ラム、 2は緩 衝液容器、 3は試料容器、 4は緩衝液容器、 5は紫外可視吸光検出器、 6は直流電 源であり、 2〜4には電極が挿入される。試料を負荷する時は、試料容器 3にキヤビラ リーカラム 1と電極を移動し、 6kV、 10秒間の電圧を印加した。また、 DNAの分離に おいては、キヤビラリ一力ラム 1と電極を、緩衝液容器 2および 4に移動し、 10kVの電 圧を印カロした。さらに、キヤビラリ一内部から自己集合性ヒドロゲルが浸出することを 防ぐため、キヤビラリ一の両端から 5psiの圧力をかけた。 DNAの検出は、紫外可視 吸光検出器 5によって 254nmの波長をモニターすることにより行った。
[0129] (3) 分析結果 1
図 2にキヤピラリー内部を TEバッファーで満たした場合、図 3にキヤピラリー内部を ゲルバッファー(ベックマン社製、商品番号 477628)で満たした場合、図 4にキヤビラ リー内部を 0. 5wt%の両親媒性ィ匕合物の濃度で自己集合によって得たヒドロゲル( 以下 0. 5wt%のヒドロゲルと称する)を充填した場合、図 5にキヤピラリー内部を 2wt %の両親媒性化合物の濃度で自己集合によって得たヒドロゲル (以下 2wt%のヒドロ ゲルと称する)を充填した場合の、ラダー DNA(50〜10, OOObp、タカラバィォ社製 、商品番号 3415A)分析結果を示す。図 2〜5中、横軸は時間、縦軸は信号強度で ある。これらの分析結果より、図 2と図 4に示す、 TEバッファーのみで満たしたキヤビラ リーおよび 0. 5wt%のヒドロゲルを充填したキヤピラリーではラダー DNAはほとんど 分離されていない。一方、図 5に示す 2wt%のヒドロゲルでは、 rt= 5〜7分の付近に 図 3のゲルバッファーを満たしたキヤビラリ一と比較して非常に鋭いピークが得られた このように、本発明の分離'分析用充填材組成物では、加熱や pHの調整などにより 交換可能であるだけでなぐ長尺状の自己集合体という独特の構造をした篩いの作 用を利用することにより、従来の分離 ·分析用充填材組成物に比べて非常にシヤー プな分離 ·分析が可能となる。
[0130] (4) 分析結果 2
図 6にキヤピラリー内部を TEバッファーで満たした場合、図 7にキヤピラリー内部を ゲルバッファー(ベックマン社製、商品番号 477628)で満たした場合、図 8にキヤビラ リー内部を自己集合性 2wt%のヒドロゲルで満たした場合の、ラダー DNA(50bp〜 800bp、インビトロジェン社製、商品番号 10416— 014)分析結果を示す。これらの 分析結果より、 50bpから 800bpの範囲で、図 8に示すキヤビラリ一中での自己集合 によって得たヒドロゲル分離媒体 2wt%を用いて DNAの分離が可能であることが示 された。
[0131] (5) 理論段数の解析
前記した図 3 (ゲルバッファーで満たし、ラダー DNA50〜10000bpを分析したエレ タトロフエログラム)に示した結果と、図 5 (本発明の分離'分析用充填剤組成物で、化 合物 32からなる自己集合体ヒドロゲル 2wt%で満たし、ラダー DNA50〜: LOOOObp を分析したエレクト口フエログラム)に示した結果とを比較するために、これらをそれぞ れ図 9 (a)及び (b)として示す。そして、それぞれのピークを左側から図 9に示されるよ うに 1〜6番の番号を付した。図 9に示したそれぞれのピークに対する理論段数を計 算した。理論段数は以下の式を用いて求めた。
理論段数 = 16 [t Z W]2
ここに、 tは泳動時間を示し、 Wはピーク幅(半値幅の 2倍)の値を示す。 この計算式により計算された各ピークにおける理論段数を次の表 1に示す。 [表 1]
Figure imgf000037_0001
[0133] 表 1に示されるようにピーク 2〜5において、本発明の分離媒体は、従来のゲルバッ ファー (ベックマン社製、商品番号 477628) (図 9 (a) )よりも大きな理論段数を示し、 本発明のヒドロゲル分離媒体によってよりシャープな分離分析が可能となることが示 された。
実施例 2
[0134] 自己集合性の化合物であるエタンジィルー 1, 2 ビス(へキサデシルジメチルァ ンモ-ゥムブ口ミド)(ィ匕合物 35、(合成は I.Huc et al., Angew. Chem., Int. Ed. 1998, 37, 2689- 2691.参照)) (19. 94mg、 0. O352mmol)と一当量の L 酒石酸(6. 82 mg、 0. O351mmol)に、滅菌水 4. 958mLをカロ免カロ熱溶解して、 0. 4wt%のィ匕合 物 35の L 酒石酸塩熱水溶液を調整した。
次に、 40%アクリルアミド Zビス溶液(BIORAD社製、商品番号 161— 0146) 1. 5 mLゝ 0. 5 XTBE緩衝液(BIORAD社製、商品番号 161— 0733の 10 XTBEを 50 倍希釈したもの) 3. 9mL、滅菌水 9. 375mL、過硫酸アンモ-ゥム(和光純薬工業 株式会社製、商品番号 018— 03282) 0. lgを lmLの滅菌水に溶解して得られた溶 液 0. 075mLを混合したゲル溶液に、上述した化合物 35の L—酒石酸塩から成る熱 水溶液を 90— 100°Cに保った状態で 0. 15mL加えた。さらに、 N, N, Ν' , N' —テトラメチルエチレンジァミン (和光純薬工業株式会社製、商品番号 205— 06313 ) 7. 5mLをカ卩え、すばやくゲル板にゲル溶液を充填し、室温で一時間静置してゲル を形成した。
図 10に示すように、前記した方法によってゲルを充填したゲル板 11を、緩衝液容 器 12、及び直流電源 13を備えた電気泳動装置に取り付け、泳動バッファーに 0. 5 X TBE緩衝液を用いて室温で 80Vの定電圧を印加して DNAの分離を行った。泳 動後、ゲルをェチジゥムブロミド溶液(10—4 mg/mL, 0. 5 XTBE緩衝液)に 30 分間浸した後、紫外線照射装置を用いて紫外線を照射し DNAのバンドを観測した。
[0135] 分析結果
図 11に 4%ポリアクリノレアミドゲノレと図 12に 0. 004%のィ匕合物 35の L 酒石酸塩 力 成る長尺状の自己集合体を含む 4%ポリアクリルアミドゲルを用いて、 740〜20b pの DNA分子の 20bp刻みの 20bpDNAラダー標準サンプル、 1500bp〜: LOObpの DNA分子の lOObp刻みの lOObpDNAラダー標準サンプル、又は 5000〜200bp の DNA分子の 200bp刻みの 200bpDNAラダー標準サンプルの 3種類のラダー D NAサンプル(タカラ社製、 20bp DNA Ladder商品番号 3409A、 100bp DNA
Ladder商品番号 3407A、 200bp DNA Ladder商品番号 341 OA)を、それぞ れ分離した結果を示す。図 11, 12中の番号 1, 2, 3がこの順で三種のラダー DN Aに対応する。長尺型自己集合体を含む 4%ポリアクリルアミドゲルを用いて泳動した 場合、ポリアクリルアミドゲルを用いた場合よりバンドの幅が狭くなつており、特に 200 0 - 3000bpの DNAの分離能が向上したことがわかる。
これらの結果より、スラブ電気泳動法においても長尺状の自己集合体を少量添カロ することで従来のアクリルアミドゲルを用いた分離法より優れた分離が可能となること が示された。
産業上の利用可能性
[0136] 本発明は、産業上有用な電気泳動装置及びそれを用いた分離又は分析方法にお ける新規な分離 ·分析用充填材組成物を提供するものであり、産業上の利用性を有 している。
蛋白質た核酸の分離や分析方法は研究開発のみならず、治療や診断のための基 礎データとして極めて有用なものであり、本発明の装置及び方法は産業上有用なデ ータの収集に寄与するものであり、産業上の利用性を有している。

Claims

請求の範囲
[I] 疎水部と親水部をもつ低分子の両親媒性ィヒ合物の水中での加熱溶解と冷却によ つて製造することができる長尺状の自己集合体を含有してなる電気泳動のための分 離 ·分析用充填材組成物。
[2] 電気泳動法が、キヤビラリ一電気泳動、キヤビラリ一ゾーン電気泳動、キヤビラリ一 等電点電気泳動、キヤビラリ一等速電気泳動、ミセル動電クロマトグラフィー、キヤビラ リーゲル電気泳動、又は SDSキヤビラリーゲル電気泳動である請求項 1に記載の充 填材組成物。
[3] 電気泳動法が、スラブ電気泳動法、デスクゲル電気泳動法、 SDS - PAGE法、 Na tive— PAGE法、等電点電気泳動(焦点電気泳動)または免疫電気泳動法である請 求項 1に記載の充填材組成物。
[4] 電気泳動において、さらにブロッテイング操作が併用されるものである請求項 1に記 載の充填材組成物。
[5] 電気泳動における分析対象物が、タンパク質、核酸、糖質、または脂質であることを 特徴とする請求項 1〜4のいずれかに記載の充填材組成物。
[6] 長尺状の自己集合体が、物理的な架橋構造によって形成されるヒドロゲル状である 請求項 1〜5のいずれかに記載の充填材組成物。
[7] ヒドロゲル力 ヒドロキシェチルセルロース、ヒドロキシプロピルセルロース、及びポリ アクリルアミドからなる群力も選ばれるヒドロゲル剤を含有するものである請求項 6に記 載の充填材組成物。
[8] 疎水部と親水部をもつ低分子の両親媒性ィ匕合物が、両親媒性脂質である請求項 1
〜7の 、ずれかに記載の充填材組成物。
[9] 疎水部と親水部をもつ低分子の両親媒性ィ匕合物が、チミジル酸双頭型脂質である 請求項 8に記載の充填材組成物。
[10] 疎水部と親水部をもつ低分子の両親媒性ィ匕合物と水を混合し、これを水中で加熱 溶解し、次いで冷却することからなる長尺状の自己集合体を含有してなる電気泳動 のための分離 ·分析用充填材組成物を製造する方法。
[II] 長尺状の自己集合体の物理的な架橋構造によって形成されるヒドロゲル状である 請求項 10に記載の充填材組成物の製造方法。
[12] ヒドロゲル力 ヒドロキシェチルセルロース、ヒドロキシプロピルセルロース、及びポリ アクリルアミドからなる群力も選ばれるヒドロゲル剤を含有するものである請求項 11に 記載の充填材組成物の製造方法。
[13] 請求項 1〜9の 、ずれかに記載の充填材組成物が充填された電気泳動用の分離 媒体の容器。
[14] 電気泳動用の分離媒体の容器が、キヤビラリ一である請求項 13に記載の分離媒体 の容器。
[15] 充填材組成物が交換可能に充填されているものである請求項 13又は 14に記載の 分離媒体の容器。
[16] 請求項 13又は 14に記載の分離媒体の容器を有することを特徴とする電気泳動装 置。
[17] 電気泳動用の分離媒体の容器が、キヤビラリ一である請求項 16に記載の電気泳動 装置。
[18] 請求項 1〜9の 、ずれかに記載の充填材組成物が充填された電気泳動用のキヤピ ラリーを用いて試料を電気泳動により分離'分析する方法。
[19] 電気泳動法が、キヤビラリ一電気泳動、キヤビラリ一ゾーン電気泳動、キヤビラリ一 等電点電気泳動、キヤビラリ一等速電気泳動、ミセル動電クロマトグラフィー、キヤビラ リーゲル電気泳動、又は SDSキヤビラリーゲル電気泳動である請求項 18に記載の分 離,分析方法。
[20] 電気泳動法が、スラブ電気泳動法、デスクゲル電気泳動法、 SDS-PAGE法、 Native
-PAGE法、等電点電気泳動(焦点電気泳動)、又は免疫電気泳動法である請求項 1
8に記載の分離'分析方法。
[21] 電気泳動において、さらにブロッテイング操作が併用されることを特徴とする請求項
20に記載の分離 ·分析方法。
[22] 分析対象物となる試料が、タンパク質、核酸、糖質、又は脂質である請求項 18〜2
1のいずれかに記載の分離'分析方法。
[23] キヤビラリ一電気泳動において、キヤビラリ一中の劣化した分離 ·分析用充填材組 成物が充填されているキヤビラリ一力ラムを加熱して、分離'分析用充填材組成物を 流動性のゾル又は分子分散状態まで再溶解し、これを吸引又は加圧することにより キヤビラリ一力ラム内の溶液化された劣化された分離'分析用充填材組成物を除去し 、次いで新しい分離 ·分析用充填材組成物を当該キヤビラリ一力ラムに充填すること 力もなる、キヤビラリ一力ラムの分離 ·分析用充填材組成物を交換する方法。
[24] 分離'分析用充填材組成物が、請求項 1〜9のいずれかに記載の分離'分析用充 填材組成物である請求項 22に記載の交換方法。
[25] キヤビラリ一力ラムの加熱温度力 50°C〜100°Cである請求項 23又は 24に記載の 交換方法。
PCT/JP2006/303385 2005-02-25 2006-02-24 生化学分析用分離媒体 WO2006090821A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA2599335A CA2599335C (en) 2005-02-25 2006-02-24 Separation medium for biochemical analysis
EP06714524A EP1870704A4 (en) 2005-02-25 2006-02-24 DISTRIBUTION MEDIUM FOR BIOCHEMICAL ANALYSIS
JP2007504801A JP4706026B2 (ja) 2005-02-25 2006-02-24 生化学分析用分離媒体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005052058 2005-02-25
JP2005-052058 2005-02-25

Publications (1)

Publication Number Publication Date
WO2006090821A1 true WO2006090821A1 (ja) 2006-08-31

Family

ID=36927455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303385 WO2006090821A1 (ja) 2005-02-25 2006-02-24 生化学分析用分離媒体

Country Status (4)

Country Link
EP (1) EP1870704A4 (ja)
JP (1) JP4706026B2 (ja)
CA (1) CA2599335C (ja)
WO (1) WO2006090821A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012153576A1 (ja) * 2011-05-09 2012-11-15 独立行政法人産業技術総合研究所 内表面疎水化有機ナノチューブ、および同ナノチューブを用いた薬剤カプセル化物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101527797B1 (ko) 2014-06-03 2015-06-15 한국과학기술원 신호전달경로의 활성화 상태 분석방법 및 이를 이용한 개인 맞춤형 치료제의 선정방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH093295A (ja) * 1995-06-15 1997-01-07 Tonen Chem Corp ポリプロピレン系組成物
WO2002073157A2 (en) * 2001-03-08 2002-09-19 Pierce Biotechnology, Inc. Direct detection of biomolecules in polyacrylamide gel
JP2002323476A (ja) * 2001-04-25 2002-11-08 Wako Pure Chem Ind Ltd ネガティブ染色法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5759369A (en) * 1992-09-24 1998-06-02 The Perkin-Elmer Corporation Viscous electrophoresis polymer medium and method
US5631337A (en) * 1996-01-19 1997-05-20 Soane Bioscience Thermoreversible hydrogels comprising linear copolymers and their use in electrophoresis
US5989399A (en) * 1996-09-04 1999-11-23 The Research Foundation Of State University Of New York Effective surface treatment for a new separation medium in electrophoresis
US6878254B2 (en) * 2001-03-02 2005-04-12 Iowa State University Research Foundation, Inc. Size separation of analytes using monomeric surfactants

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH093295A (ja) * 1995-06-15 1997-01-07 Tonen Chem Corp ポリプロピレン系組成物
WO2002073157A2 (en) * 2001-03-08 2002-09-19 Pierce Biotechnology, Inc. Direct detection of biomolecules in polyacrylamide gel
JP2002323476A (ja) * 2001-04-25 2002-11-08 Wako Pure Chem Ind Ltd ネガティブ染色法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1870704A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012153576A1 (ja) * 2011-05-09 2012-11-15 独立行政法人産業技術総合研究所 内表面疎水化有機ナノチューブ、および同ナノチューブを用いた薬剤カプセル化物
US9018156B2 (en) 2011-05-09 2015-04-28 National Institute Of Advanced Industrial Science And Technology Organic nanotube having hydrophobized inner surface, and encapsulated medicinal agent prepared using the nanotube

Also Published As

Publication number Publication date
JP4706026B2 (ja) 2011-06-22
CA2599335C (en) 2010-09-28
CA2599335A1 (en) 2006-08-31
JPWO2006090821A1 (ja) 2008-07-24
EP1870704A4 (en) 2010-10-20
EP1870704A1 (en) 2007-12-26

Similar Documents

Publication Publication Date Title
US5759369A (en) Viscous electrophoresis polymer medium and method
JP2701091B2 (ja) 高粘度ポリマーマトリックスおよび調製方法および分離方法
US8597508B2 (en) Sol-gel monolithic column with optical window and method of making
DE69231794T2 (de) Verbesserungen an oder für kontrastmitteln
WO2000040958A1 (fr) Milieu thermosensible pour la separation d&#39;especes au sein d&#39;un canal de separation
US10107781B2 (en) Method for separating biological molecules and cells in solution
Peterlin et al. Electroformation in a flow chamber with solution exchange as a means of preparation of flaccid giant vesicles
WO2006090821A1 (ja) 生化学分析用分離媒体
Belder et al. Poly (vinyl alcohol)‐coated microfluidic devices for high‐performance microchip electrophoresis
US7465381B2 (en) Electrokinetic molecular separation in nanoscale fluidic channels
JP2654681B2 (ja) ポリマー、および電気泳動のためのゲルとしてのその使用方法
JPH03186757A (ja) 電気泳動キャピラリ
Mohanty et al. Spontaneous formation of vesicles and chiral self-assemblies of sodium N-(4-dodecyloxybenzoyl)-L-valinate in water
US20090211907A1 (en) Separation Medium for Biochemical Analysis
Mohanty et al. Vesicles as pseudostationary phase for enantiomer separation by capillary electrophoresis
Kitagawa et al. One-step immobilization of cationic polymer onto a poly (methyl methacrylate) microchip for high-performance electrophoretic analysis of proteins
Ward et al. A review of electrophoretic separations in temperature-responsive Pluronic thermal gels
Seo et al. DNA separation at a liquid‐solid interface
JPWO2006093343A1 (ja) 電気泳動用バリアー物質及びバリアー構造体ならびに電気泳動装置
WO2005088292A1 (en) Separation and identification of analytes by gel electrophoresis
JP6141272B2 (ja) 電気泳動ゲルの電気泳動耐用期間を延長するための電気泳動バッファー
US20080264793A1 (en) Hydrolytically Stable Isoelectric Hydrogel Compositions
Wandersman et al. How to make and trap a pseudo-vesicle with a micropipette
CA2386437A1 (en) Method and apparatus for the separation of particles especially of macromolecles by electrophoresis
JPH09236580A (ja) キャピラリー電気泳動用媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007504801

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2599335

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006714524

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2006714524

Country of ref document: EP