WO2006090794A1 - エポキシ樹脂用潜在性硬化剤およびエポキシ樹脂組成物 - Google Patents

エポキシ樹脂用潜在性硬化剤およびエポキシ樹脂組成物 Download PDF

Info

Publication number
WO2006090794A1
WO2006090794A1 PCT/JP2006/303311 JP2006303311W WO2006090794A1 WO 2006090794 A1 WO2006090794 A1 WO 2006090794A1 JP 2006303311 W JP2006303311 W JP 2006303311W WO 2006090794 A1 WO2006090794 A1 WO 2006090794A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
curing agent
parts
resin composition
mass
Prior art date
Application number
PCT/JP2006/303311
Other languages
English (en)
French (fr)
Inventor
Hisanao Yamamoto
Kazuhiro Daikai
Original Assignee
Asahi Kasei Chemicals Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corporation filed Critical Asahi Kasei Chemicals Corporation
Priority to JP2007504780A priority Critical patent/JP4753934B2/ja
Priority to US11/884,873 priority patent/US20080251757A1/en
Priority to CA2601950A priority patent/CA2601950C/en
Priority to EP06714451A priority patent/EP1852452A1/en
Priority to CN2006800057361A priority patent/CN101128502B/zh
Publication of WO2006090794A1 publication Critical patent/WO2006090794A1/ja
Priority to HK08109321.3A priority patent/HK1118303A1/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/56Amines together with other curing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • C08G59/4021Ureas; Thioureas; Guanidines; Dicyandiamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/58Epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/64Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63
    • C08G18/6415Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63 having nitrogen
    • C08G18/643Reaction products of epoxy resins with at least equivalent amounts of amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/771Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/7806Nitrogen containing -N-C=0 groups
    • C08G18/7818Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups
    • C08G18/7831Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups containing biuret groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2190/00Compositions for sealing or packing joints

Definitions

  • the present invention relates to a novel latent curing agent for epoxy resin and a one-part epoxy resin composition using the same. More specifically, a latent curing agent for epoxy resin composition that provides a composition having high curability and potential, storage stability, solvent resistance, and moisture resistance, and the use thereof.
  • the present invention relates to a one-part epoxy resin composition.
  • Epoxy resin has a cured product that has excellent performance in terms of mechanical properties, electrical properties, thermal properties, chemical resistance, adhesiveness, and the like. Wide range of adhesives! / Used for firewood! Speak.
  • the epoxy resin composition described above is a so-called two-component composition in which two components of an epoxy resin and a curing agent are mixed at the time of use.
  • Some epoxy resins are blended with latent curing agents such as amines, amine salts, and modified imidazole compounds.
  • those latent curing agents that are excellent in storage stability have low curability and require high temperature or long time for curing, while those having high curability have low storage stability, for example — Must be stored at a low temperature such as 20 ° C.
  • the storage stability of the compound requires a curing temperature of 170 ° C or higher, which is 6 months or more when stored at room temperature, and a curing accelerator is used to reduce this curing temperature.
  • Power that can be cured at 130 ° C
  • a composition that is not stable at room temperature is forced to be stored at low temperatures, and has both high curability and excellent storage stability. Was strongly demanded.
  • Patent Document 1 Patent Document 2, and Patent Document 3 describe a curing agent for epoxy resin whose surface is coated with a reaction product of isocyanate compound. Has been.
  • Patent Document 1 Japanese Patent Laid-Open No. 61-190521
  • Patent Document 2 JP-A-1-70523
  • Patent Document 3 Japanese Patent Laid-Open No. 11-193344
  • the present invention relates to a one-component epoxy resin composition capable of achieving both high curability and storage stability, a latent curing agent for obtaining the composition, and storage stability 'solvent resistance'.
  • High moisture resistance Adhesive materials, conductive materials, insulating materials, sealing materials, coating materials, paint assemblies that provide high connection reliability, adhesive strength, and high sealing performance even under low temperature or short-time curing conditions
  • An object is to provide a composition, a pre-preda, a structural adhesive, a heat conductive material, and the like.
  • the present invention is as follows.
  • a latent curing agent for epoxy resin having a structure in which at least one nitrogen atom of the structure (1) forms a urea bond.
  • the latent curing agent for epoxy resin according to 1) which has a structure (structure (1)) and has a structure in which at least one nitrogen atom of the structure (1) forms a urea bond.
  • a curing agent for epoxy resin (A) is produced by reacting an isocyanate component (bl) containing a low molecular weight bifunctional aliphatic isocyanate compound (bl) with an active hydrogen compound (b2) of 1% to 95% by weight.
  • the epoxy resin curing agent (A) is composed of an amine-based curing agent mainly composed of an amine adduct (a) and a low molecular amine compound (e). 1) to 5) A latent curing agent for fats. 7) The latent curing agent for epoxy resin according to 6), wherein the amine adduct (a) is obtained by reacting the epoxy resin (al) with the amine compound (a2).
  • a curing agent for epoxy resin according to any one of 1) to 8) and a latent curing agent for Z or epoxy resin, and a curing agent for epoxy resin (A) and epoxy resin (C) At least a bonding group (X) that absorbs infrared light with a wave number of leso iesocm 1 and a bonding group (y) that absorbs infrared light with a wave number of 1680 to 1725 cm 1 covered with the shell (c2) obtained from the reaction generation of A curing agent for microcapsule type epoxy resin characterized by having on the surface.
  • a masterbatch type epoxy resin curing agent composition comprising 10 to 50000 parts by weight of epoxy resin (E) based on 00 parts by weight.
  • a masterbatch type epoxy resin curing agent composition wherein the total chlorine content of the masterbatch type epoxy resin curing agent composition (F) according to 10) is 2500 ppm or less.
  • a diol-terminated impurity component of the epoxy ⁇ (E) is 10, characterized in that a 0.001 to 30 mass 0/0 of the basic structural components of the epoxy ⁇ (E)) to 12) either A curing agent composition for a master batch type epoxy resin as described in 1 above.
  • the amount of the cyclic borate compound (L) described in 14) and Z or 15) is The latent curing agent for epoxy resin and the curing agent for epoxy resin-based epoxy resin (D) described in any one of 1) to 13), and the curing agent for epoxy resin resin of Z- or masterbatch type The epoxy resin composition according to 14) or 15), which is 0.001 to 10 parts by mass with respect to 100 parts by mass of the total amount of the composition (F).
  • Epoxy resin (J) With respect to 100 parts by mass, the epoxy resin resin latent curing agent according to any one of 1) to 13) and the Z or microcapsule epoxy resin resin curing agent (D), And an epoxy resin composition characterized by containing 0.0001 to 100 parts by mass of the hardener composition (F) for Z or masterbatch type epoxy resin and containing them as a main component.
  • At least one curing agent (K) selected from the group consisting of acid anhydrides, phenols, hydrazides, and guanidines is 1 to 200 parts by mass, and any one of 1) to 13)
  • the latent curing agent for epoxy resin and the curing agent for Z or microcapsule type epoxy resin (D) and the curing agent composition for Z or masterbatch type epoxy resin (F) of 0.1 to 200 mass An epoxy resin composition containing parts and containing them as a main component.
  • a paste-like composition comprising the masterbatch type epoxy resin hardener composition according to any one of 10) to 22) above and Z or an epoxy resin composition.
  • a film-like composition comprising the masterbatch type epoxy resin hardener composition according to any one of 10) to 22) and Z or epoxy resin composition.
  • a bonding paste comprising the epoxy resin composition according to the above 14) to 22) V and a slippage.
  • An anisotropic conductive material comprising the epoxy resin composition according to any one of 14) to 22) above.
  • a sealing material comprising the epoxy resin composition according to any one of 14) to 22) above.
  • a coating material comprising the epoxy resin composition according to any one of 14) to 22) above.
  • a coating composition comprising the epoxy resin composition according to any one of 14) to 22) above.
  • a pre-preda characterized by containing the epoxy resin composition according to any one of 14) to 22) above.
  • a heat conductive material characterized by containing the epoxy resin composition according to any one of 14) to 22).
  • the latent curing agent of the present invention is effective in storage stability, solvent resistance, moisture resistance, and dispersibility while having high storage stability and curability.
  • the latent curing agent for epoxy resin of the present invention is a linear or cyclic low molecular weight molecule in which at least one nitrogen atom forms a urea bond and two nitrogen atoms do not have an ester bond in the main chain structure. It is characterized by being covered with a resin having a structure (1) bonded through an aliphatic hydrocarbon group.
  • a linear or cyclic low molecular fat having no ester bond in the main chain structure from a nitrogen atom contained in a urea bond to another nitrogen atom existing in the same molecular chain In the group hydrocarbon group, the number of carbon atoms contained in the molecular chain up to the nitrogen atom depending on the urea binding force is preferably 1-18. When the carbon number is greater than 18, the storage stability, the dispersibility of the curing agent, and the moisture resistance may not be sufficiently expressed, and such viewpoint power is preferably 1 to 12, more preferably 1 to 9.
  • the main chain structure here means a structure other than a side chain that is not a branching point in a structural chain connecting two nitrogen atoms including a nitrogen atom containing a urea bond.
  • the structure generated at a branch point refers to a structural chain containing a bond structure containing a nitrogen atom before the branch point.
  • the main chain A compound having a structure bonded through a linear or cyclic low-molecular aliphatic hydrocarbon group, which does not have an ester bond in the structure has two nitrogen atoms.
  • the reactivity of the functional group with each nitrogen atom is different, making it difficult to control the formation reaction of the resin covering the surface of the curing agent, resulting in storage stability and moisture resistance. And the dispersibility of the curing agent may be impaired.
  • the present invention has a structure (1) in which two nitrogen atoms are bonded via a linear or cyclic low-molecular aliphatic hydrocarbon group, but another nitrogen atom existing in the same molecular chain. It is characterized in that it does not contain oxygen atoms other than oxygen atoms that form urethane bonds in the main chain structure. Examples of such a structure include an ester structure and an ether structure. When these structures are used, storage stability, solvent resistance, and moisture resistance are not sufficiently exhibited.
  • nitrogen atoms other than those forming a urea bond form one of the bonds selected from the urethane bond and the Piuret bond strength.
  • it may be bonded to a structure forming a bond with an aromatic compound bonded to two or more nitrogen atoms, or a structure derived from an active hydrogen compound (b2) described later.
  • a urea bond is linked to another nitrogen atom via 6 methylene chains, and then linked to another molecular chain via a urea bond, urethane bond or biuret bond. Structure to do;
  • Urea binding force A structure having one secondary or tertiary carbon, and two methyl groups before being bonded to another nitrogen atom via the six methylene chains.
  • the urea bond and another nitrogen atom other than the nitrogen atom, through the cyclohexyl ring, directly to the cyclohexyl ring or via the methylene chain, the urea bond, and another Examples include a structure in which a nitrogen atom is bonded.
  • a nitrogen atom is bonded to two or more of the ortho, meta, and para positions of the benzene ring.
  • Examples include a structure in which two or more benzene rings are bonded via a carbon chain and a nitrogen atom is bonded to any of the ortho, meta, and para positions of each benzene ring with respect to the methylene chain.
  • the latent type curing agent of the present invention is obtained by coating an epoxy resin curing agent (A) with a film (cl) obtained by reacting an isocyanate compound (bl) and an active hydrogen compound (b2). It is characterized by that.
  • linking group film covering the curing agent for the epoxy ⁇ (cl) is to absorb binding group that absorbs infrared wave number 1630 ⁇ 1680Cm 1 (X) and the infrared wave number ⁇ ⁇ 1 (y ) Is preferred from the viewpoint of the balance between storage stability and reactivity.
  • the bonding group (X) and the bonding group (y) can be measured using a Fourier transform infrared spectrophotometer (referred to as FT-IR).
  • FT-IR Fourier transform infrared spectrophotometer
  • a urea bond can be mentioned as a particularly useful one.
  • the linking groups (y) a buret bond is particularly useful.
  • the obtained film has a bonding group (z) that absorbs infrared rays having a wave number of 1730 to 1755 cm 1 .
  • a urethane bond is particularly preferred.
  • the curing agent for epoxy resin used in the present invention (A) includes an amine curing agent, an anhydride such as phthalic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, and methyl nadic acid.
  • Hardeners such as phenolic hardeners, phenolic novolaks, cresolol novolaks, bisphenol A novolaks, etc., propylene glycol modified polymercaptan, trimethylolpropane thiodarconate, polysulfide resin, etc.
  • Boron halide salts such as ethylamine salts, 1,8 Diazabicyclo (5, 4, 0) undenecene 7 quaternary ammonium salt hardeners such as phenol salt, 3 phenol-1, 1 dimethyl urea
  • Urea curing agents such as triphenylphosphine, tetraphenylphosphorus, tetraphenylporate ⁇ compounds, such as phosphine-based curing agent is exemplified, amine curing agent is preferably excellent in storage stability and low-temperature curability.
  • the epoxy resin curing agent (A) used in the present invention is characterized by comprising an amine curing agent mainly composed of an amine adduct (a) and a low molecular weight amine compound (e).
  • the amine adduct (a) is composed of at least one compound selected from the group consisting of carboxylic acid compounds, sulfonic acid compounds, isocyanate compounds, urea compounds and epoxy resins (al) and amine compounds. It is a compound having an amino group obtained by reacting with the product (a2). Carboxylic acid compounds, sulfonic acid compounds, isocyanate compounds, urea compounds and epoxy resins (al) used as raw materials for the amine amine duct (a) are shown below.
  • Examples of the carboxylic acid compound include succinic acid, adipic acid, sebacic acid, phthalic acid, and dimer acid.
  • sulfonic acid compound examples include ethanesulfonic acid and p-toluenesulfonic acid.
  • isocyanate compound examples include aliphatic diisocyanate, alicyclic diisocyanate, aromatic diisocyanate, aliphatic triisocyanate, and polyisocyanate.
  • aliphatic diisocyanate examples include ethylene diisocyanate, propylene diisocyanate, butylene diisocyanate, hexamethylene diisocyanate, and trimethylhexamethylene diisocyanate.
  • alicyclic diisocyanates examples include isophorone diisocyanate, 4-4'-dicyclohexylenomethane Sorbate, norbornane diisocyanate, 1,4 isocyanatocyclohexane, 1,3 bis (isocyanatomethyl) monocyclohexane, 1,3 bis (2-isocyanatopropyl 2-yl) -cyclohexane, etc. Can be mentioned.
  • aromatic diisocyanates examples include tolylene diisocyanate, 4,4'-diphenol-methanemethane isocyanate, xylene diisocyanate, 1,5 naphthalene diisocyanate, and the like.
  • Examples of the aliphatic triisocyanate include 1,3,6 triisocyanate methylhexane, 2,6-diisocyanatohexanoic acid 2-isocyanatoethyl and the like.
  • Examples of the polyisocyanate include polymethylene polyphenyl polyisocyanate and polyisocyanates derived from the above diisocyanate compounds.
  • Examples of the polyisocyanate derived from the above diisocyanate include isocyanurate type polyisocyanate, burette type polyisocyanate, urethane type polyisocyanate, allophanate type polyisocyanate, strong rubodiimide type polyisocyanate and the like.
  • urea compound examples include urea, methylurea, dimethylurea, ethylurea, t-butylurea and the like.
  • a monoepoxy compound As the epoxy resin (al), a monoepoxy compound, a polyepoxy compound! /, Or a mixture thereof can be used.
  • monoepoxy compounds include butyl daricidyl ether, hexyl glycidyl ether, phenol glycidyl ether, allyl glycidyl ether, para tert butyl phenol glycidyl ether, ethylene oxide, propylene aged xoxide, paraxylino reglycidinoate ethere, Examples thereof include glycidinole acetate, glycidyl butyrate, glycidyl hexoate, and glycidyl benzoate.
  • polyvalent epoxy compound examples include bisphenol A, bisphenol F, bisphenol AD, bisphenol S, tetramethyl bisphenol A, tetramethyl bisphenol F, tetramethyl bisphenol AD, tetramethyl bisphenol S, Bisphenol-type epoxy resin prepared by glycidylation of bisphenols such as tetrabromobisphenol A, tetrachlorobisphenol A, and tetrafluorobisphenol A; biphenol, dihydroxynaphthalene, 9, 9bis (4 hydroxyphenol- 1) Epoxy resin prepared by glycidylation of other divalent phenols such as fluorene; 1, 1, 1 Tris (4-hydroxyphenol) methane, 4, 4 (1— (4— (1-hydroxyphenol) -Le) 1-Methylethyl) Hue -Luethylidene) Epoxy resin glycidylated trisphenols such as bisphenol; 1, 1, 2, 2, —Epoxy glycidylated tetrakisphenols such as
  • the epoxy resin (a 1) is high and curable. And excellent storage stability.
  • the epoxy resin (al) a polyvalent epoxy compound is preferable because the storage stability of the epoxy resin composition can be enhanced.
  • a polyvalent epoxy compound the productivity of the amine adduct (a) is overwhelmingly high. Therefore, the glycidyl type epoxy resin is more preferable than the glycidyl type epoxy resin.
  • An epoxy resin obtained by glycidylation of a valent phenol is preferable, and a bisphenol type epoxy resin is more preferable. More preferred are epoxy resins with glycidylation of bisphenol A and epoxies with glycidylation of bisphenol F. An epoxy resin with glycidyl bisphenol A is preferred. These epoxy resins can be used alone or in combination.
  • the total chlorine content of the epoxy resin (al) is preferably 2500 ppm or less in order to obtain an epoxy resin composition having a balance between curability and storage stability.
  • it is 2000 ppm or less, more preferably 1500 ppm or less, and more preferably 800 ppm or less, more preferably 400 ppm or less, more preferably 180 ppm or less, more preferably lOOppm or less, more preferably 80 ppm or less, and even more preferably 50 ppm or less.
  • the total chlorine amount is the total amount of organic chlorine and inorganic chlorine contained in the compound, and is a mass-based value for the compound.
  • the total chlorine content can be obtained by the following method.
  • the epoxy resin composition is repeatedly washed and filtered with xylene until there is no epoxy resin. Next, the filtrate is distilled off under reduced pressure at 100 ° C or lower to obtain an epoxy resin. Accurately weigh 1-10 g of the obtained epoxy resin sample so that the titration amount is 3-7 ml, dissolve in 25 ml of ethylene glycol monobutyl ether, and add 25 ml of 1N KOH propylene glycol solution to this. After boiling for 20 minutes, calculated by titration with a silver nitrate aqueous solution.
  • the total chlorine content is preferably 0. Olpm or more. More preferably, it is 0.02 ppm or more, more preferably 0.05 ppm or more, more preferably 0.1 ppm or more, more preferably 0.2 ppm or more, and further preferably 0.5 ppm or more. It is.
  • the total chlorine amount is 0.1 ppm or more, a shell forming reaction is efficiently performed on the surface of the curing agent, and a shell having excellent storage stability can be obtained.
  • a preferable range of the total amount of chlorine in the curing agent is 0.1 ppm or more and 200 ppm or less, a more preferable range is 0.2 ppm or more and 80 ppm or less, and a more preferable range is 0.5 ppm or more and 50 ppm or less.
  • chlorine contained in the 1,2-chlorohydrin group is generally called hydrolyzable chlorine
  • the amount of hydrolyzable chlorine in the epoxy resin used as a raw material for amine adduct is: Preferably it is 50 ppm or less, more preferably 0.01 force is also 20 ppm, and still more preferably 0.05 force is 1 Oppm.
  • Hydrolyzable chlorine can be obtained by the following method. Dissolve 3g of sample in 50ml of toluene, add 0.1N KOH methanol solution 20m 1 and boil for 15 minutes, then calculate by titration with silver nitrate aqueous solution.
  • the hydrolyzable chlorine content is 50 ppm or less, which is advantageous for achieving both high curability and storage stability, and exhibits excellent electrical properties.
  • the amine compound (a2) includes at least one primary amino group and a compound having a Z or secondary amino group but no tertiary amino group, and at least one tertiary amino group, Examples include compounds having at least one active hydrogen group.
  • Examples of the compound having at least one primary amino group and Z or secondary amino group but not having a tertiary amino group include, for example, methylamine, ethylamine, propylamine, ptynoleamine, ethylenediamine, propylenediamine, Tertiary amino groups such as hexamethylenediamine, diethylenetriamine, triethylenetetramine, ethanolamine, propanolamine, cyclohexylamine, isophoronediamine, aniline, tonoridine, diaminodiphenylmethane, diaminodiphenylsulfone, etc.
  • amines that do not contain dimethylamine such as dimethylamine, jetylamine, dipropylamine, dibutylamine, dipentylamine, dihexylamine, dimethanolamine, diethanolamine, dipropanolamine, dicyclohexane Sill Amin, piperidine, piperidines pyrrolidone, Jifue - Ruamin, Hue - Rumechiruamin, Hue - can be exemplified Ruechi secondary amines having no tertiary amino group such as Ruamin.
  • the active hydrogen group includes a primary amino group, a secondary amino group, a hydroxyl group, a thiol group, a carboxylic acid, and a hydrazide group. Illustrated.
  • Examples of the compound having at least one tertiary amino group and at least one active hydrogen group include 2-dimethylaminoethanol, 1-methyl-2-dimethylaminoethanol, 1 phenoxymethyl-2- Amino alcohols such as dimethylaminoethanol, 2-jetylaminoethanol, 1-butoxymethyl-2-dimethylaminoethanol, methyljetanolamine, triethanolamine, N- ⁇ -hydroxyethylmorpholine; 2 —Aminophenols such as (dimethylaminomethyl) phenol and 2,4,6 tris (dimethylaminomethyl) phenol; 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenolimidazole, 1-aminoethyl-2-methyl Tylimidazole, 1— (2 Hydroxy-3-phenoxypropyl) 2-Methylimidazole, 1— (2-Hydr
  • amine compound (a2) a compound having at least one tertiary amino group and at least one active hydrogen group can be obtained because of excellent balance between storage stability and curability.
  • 2-Imidazole, 2-ethylimidazole and 2-methylimidazole are more preferred, with imidazoles being more preferred! / ⁇ .
  • the amine adduct (a) used in the present invention comprises, for example, an epoxy resin (al) and an amine compound (a 2) with an amine compound (1) with respect to 1 equivalent of the epoxy group of the epoxy resin (al).
  • activity in bl) The hydrogen group is preferably in the range of 0.5 to 10 equivalents (more preferably 0.8 to 5 equivalents, more preferably 0.95 to 4 equivalents), optionally in the presence of a solvent. For example, it is obtained by reacting at a temperature of 50 to 250 ° C. for 0.1 to 10 hours.
  • the solvent used as necessary includes, for example, benzene, toluene, xylene, cyclohexane, Hydrocarbons such as mineral spirits and naphtha, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, esters such as ethyl acetate, n-butyl acetate and propylene glycol monomethyl ether acetate, methanol, isopropanol
  • Examples of the low molecular amine compound (e) contained in the epoxy resin curing agent (A) used in the present invention include compounds having primary, secondary, and Z or tertiary amino groups. These can be used together.
  • Examples of the compound having a primary amino group include, for example, methylamine, ethylamine, propyleneamine, butynoleamine, ethylenediamine, propylenediamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, ethanolamine, propanol
  • Examples thereof include amine, cyclohexylamine, isophorone diamine, aniline, tonoridine, diaminodiphenylenomethane, diaminodiphenylsulfone and the like.
  • Examples of the compound having a secondary amino group include dimethylamine, jetylamine, dipropylamine, dibutylamine, dipentylamine, dihexylamine, dimethanolamine, diethanolamine, dipropanolamine, dicyclohexylamine, pipetamine. Examples thereof include lysine, piperidone, diphenylamine, phenylmethylamine, and phenylethylamine.
  • Examples of the compound having a tertiary amino group include trimethylamine, triethylamine, Benzyldimethylamine, N, N'-dimethylpiperazine, triethylenediamine, 1,8-diazabicyclo (5, 4, 0) undecen-7, 1, 5 diazabicyclo (4, 3, 0) nonene-5, etc.
  • an imidazole compound in which a compound having a tertiary amino group is preferable is more preferable because an epoxy resin composition having excellent storage stability can be obtained.
  • Methylimidazole and 2-ethyl 4-methylimidazole are preferred! /.
  • a dense shell By containing 0.001 part by mass or more of the low molecular amine compound (e), a dense shell can be formed in the shell formation reaction, and the high storage stability of the microphone.
  • An oral capsule type epoxy resin curing agent (D) can be obtained.
  • the content of the low molecular amine compound (e) is more than 10 parts by mass, the latent and solvent resistance will be impaired. Further, the reaction between the eluted low molecular weight amine compound (e) and the epoxy resin (E) makes it easy to form aggregates and impairs dispersibility.
  • the low molecular weight amine compound (e) may be mixed with the amine adduct (a) after the production of the amine adduct (a), or may be mixed before and during the production of the amine adduct (a) and during Z production. I do not care. Further, an unreacted product of the amine compound (a2), which is a raw material of the amine adduct (a), may be used as the low molecular amine compound (e).
  • the epoxy resin composition curing agent (A) has a liquid, lump, granule, powder, etc. force, preferably a granule or a powder, and more preferably a powder.
  • the powdery form is not particularly limited, but an average particle diameter of 0.1 to 50 / ⁇ ⁇ is preferred, and more preferably 0.5 to an average particle diameter of LO m. By setting it to 50 / z m or less, a homogeneous cured product can be obtained.
  • the particle diameter refers to the Stokes diameter measured by the light scattering method.
  • the average particle diameter refers to the median diameter.
  • the shape is not particularly limited, and a spherical shape is preferred for reducing the viscosity of a masterbatch or a one-component epoxy resin composition that can be either spherical or indefinite.
  • spherical includes not only a true sphere but also a shape in which an irregular corner is rounded.
  • the total amount of chlorine in the epoxy resin hardener (A) of the present invention is preferably 2500 ppm or less. Yo More preferably, it is 2000 ppm or less, More preferably, it is 1500 ppm or less, More preferably, it is 800 ppm or less, More preferably, it is 400 ppm or less, More preferably, it is 180 ppm or less, More preferably, it is lOOppm or less, More preferably Is 80 ppm or less, more preferably 50 ppm or less.
  • An epoxy resin composition having a total balance of curability and storage stability with a total chlorine content of 2500 ppm or less can be obtained.
  • the total amount of chlorine in the epoxy resin curing agent (A) is preferably at least 0. Olppm. More preferably, it is 0.02 ppm or more, more preferably 0.05 ppm or more, more preferably 0.1 ppm or more, more preferably 0.2 ppm or more, and even more preferably 0.5 ppm or more. is there.
  • the total chlorine amount is 0.1 lppm or more, a shell forming reaction is efficiently performed on the surface of the curing agent, and a shell having excellent storage stability can be obtained.
  • the isocyanate compound (bl) used in the present invention is a compound having an isocyanate group, and 1% by mass to 95% by mass of the isocyanate is a low-molecular bifunctional aliphatic isocyanate compound (bl-1). .
  • a low molecular bifunctional aliphatic isocyanate compound is a linear or cycloaliphatic aliphatic compound having two isocyanate groups, and is a number average in GPC measurement measured by the method described in Examples. Those with a molecular weight of 1000 or less are those with 90% or more.
  • Examples of such isocyanate compounds include, for example, linear low molecular bifunctional aliphatic isocyanate compounds such as ethylene diisocyanate, propylene diisocyanate, butylene diisocyanate, Hexamethylene diisocyanate, 1,8 diisocyanate octane, 2,2,4 trimethylhexamethylene diisocyanate, 1,12 diisocyanate dodecane and the like.
  • linear low molecular bifunctional aliphatic isocyanate compounds such as ethylene diisocyanate, propylene diisocyanate, butylene diisocyanate, Hexamethylene diisocyanate, 1,8 diisocyanate octane, 2,2,4 trimethylhexamethylene diisocyanate, 1,12 diisocyanate dodecane and the like.
  • Examples of alicyclic low-molecular bifunctional aliphatic isocyanate compounds include isophorone diisocyanate, 4-4'-dicyclohe
  • Examples include natocyclohexane, 1,3 bis (isocyanatomethyl) monocyclohexane, 1,3 bis (2-isocyanatopropyl 2-yl) -cyclohexane, and the like. Further, urethane type low molecular bifunctional aliphatic isocyanate may be used. Urethane type low content with a number average molecular weight of 1000 or less A difunctional aliphatic isocyanate is obtained by reacting a low molecular weight aliphatic diisocyanate monomer with a polyol.
  • polyol used here examples include ethylene glycol, propylene glycol, 1,3 butanediol, 1,4 butanediol, diethylene glycol, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and trimethylolpropane. These polyols may be used in combination. Among these examples, hexamethylene diisocyanate and 1,8-diisocyanate octane are preferred in terms of the balance between curability, storage stability and storage stability. Further preferred.
  • the amount of 1) is not less than 1% by mass and not more than 95% by mass because both storage stability and curability are excellent.
  • the amount of the low molecular bifunctional aliphatic isocyanate compound (bl-1) in the isocyanate compound (bl) is preferably 7% by mass or more and less than 90% by mass, preferably 7%. It is more than 10% by mass and less than 70% by mass, more preferably more than 10% by mass and less than 50% by mass.
  • the isocyanate compounds other than the low molecular bifunctional aliphatic isocyanate compound (b1-1) include (i) aromatic isocyanate and (mouth) fat. Aliphatic triisocyanates, (ha) adduct type aliphatic polyisocyanates, and the like. Aromatic isocyanate compounds (b1-2) are balanced in curability, storage stability and solvent resistance. This is preferable.
  • aromatic isocyanate compound (bl-2) examples include aromatic diisocyanates, aromatic triisocyanates, aromatic polyisocyanates, and the like.
  • Aromatic diisocyanates include, for example, aromatic diisocyanates such as tolylene diisocyanate, 4,4, -diphenylenomethane diisocyanate, xylene diisocyanate, 1,5-naphthalenediisocyanate, and the like.
  • aromatic polyisocyanate include triphenylmethane triisocyanate and tris (isocyanate phenol) thiophosphate.
  • aromatic polyisocyanate examples include polymeric isocyanates such as polymethylene poly (polyisocyanate) and Z Or aromatic diisocyanate and And isocyanurate type polyisocyanate, burette type polyisocyanate, carpositimide type polyisocyanate and the like derived from Z and aromatic triisocyanate compounds.
  • tolylene diisocyanate, polymethylene polyol polyisocyanate, or carposimide type polyisocyanate derived from polymethylene polyisocyanate has high dispersibility in epoxy resin. Furthermore, it is preferable in that an epoxy resin composition having an excellent balance of storage stability, solvent resistance, moisture resistance, and dispersibility can be obtained.
  • (oral) aliphatic triisocyanates include 1,3,6 triisocyanate methyl hexane, 2,6 diisocyanatohexanoic acid-2 isocyanatoethyl and the like. .
  • the adduct type aliphatic polyisocyanate is an aliphatic diisocyanate, an alicyclic diisocyanate, an araliphatic diisocyanate, an aliphatic triisocyanate, or an alicyclic triisocyanate.
  • Examples of the aliphatic diisocyanate used as a starting material for the adduct type aliphatic polyisocyanate include ethylene diisocyanate, propylene diisocyanate, butylene diisocyanate, hexamethylene diisocyanate, and 1,8 diisocyanate.
  • cycloaliphatic diisocyanates such as nate octane, 2, 2, 4-trimethylhexamethylene diisocyanate, 1,12-diisocyanate dodecane, isophorone diisocyanate, 4-4, -dicyclohexyl Methane diisocyanate, norbornane diisocyanate, 1,4 isocyanatocyclohexane, 1,3 bis (isocyanatomethyl) monocyclohexane, 1,3 bis (2-isocyanatopropyl-2-yl) —
  • aliphatic triisocyanates such as cyclohexane include 1, 6, 11-undecane triisocyanate.
  • alicyclic triisocyanate compounds such as isocyanate, etc. include tricyclohexyl meta And triisocyanate, bicycloheptane triisocyanate and the like.
  • examples of the araliphatic diisocyanate include tetramethylxylylene diisocyanate and xylylene diisocyanate.
  • an aliphatic diisocyanate or an aliphatic triisocyanate has high reactivity, and is more preferable, preferably an aliphatic diisocyanate, and more preferably hexamethacrylate. Range isocyanate.
  • a biuret type polyisocyanate is obtained by cyclization and trimation of an aliphatic isocyanate monomer using a quaternary ammonium salt or the like. It can be obtained by reacting an aliphatic isocyanate monomer with a piureting agent such as water.
  • adduct-type aliphatic polyisocyanate biuret-type polyisocyanate and isocyanurate-type polyisocyanate are preferable because a stable and highly latent curing agent can be obtained. Is more preferable.
  • Isocyanate compound (bl) may be reacted in a batch or divided and reacted. Also, low molecular bifunctional aliphatic isocyanate compound (bl-1) and other isocyanate compounds When these are reacted at the same time, the object effect of the present invention may be further exhibited.
  • the active hydrogen compound (b2) used in the present invention includes water, a compound having one or more primary and Z or secondary amino groups in one molecule, and one or more hydroxyl groups in one molecule.
  • Examples of the compound are: Preference is given to water and compounds having one or more hydroxyl groups in one molecule. These can be used in combination.
  • an aliphatic amine, alicyclic amine, or aromatic amine may be used as the active hydrogen compound (b2).
  • the aliphatic amines include alkylamines such as methylamine, ethylamine, oral pyramine, butylamine and dibutylamine, ethylenediamine, propylenediamine, butylenediamine and hexamethylenediamine, diethylenetriamine, and triethylenetetramine.
  • polyalkylene polyamines such as tetraethylenepentamine, polyoxyalkylene polyamines such as polyoxypropylene diamine, polyoxyethylene diamine and the like.
  • Alicyclic amines include, for example, cyclopropylamine, cyclobutylamine, cyclopentylamine, cyclohexylamine, isophoronediamine, and aromatic amines include aline, toluidine, benzylamine, naphthylamine, diaminodiphenol. -Lumethane, diaminodiphenyl sulfone and the like.
  • Examples of the compound having one or more hydroxyl groups in one molecule used as the active hydrogen compound (b2) include alcohol compounds and phenol compounds.
  • Alcohol compounds include, for example, methyl alcohol, propyl alcohol, butyl alcohol, amino alcoholo gnole, hexino eno eno eno oleo, heptino eno eno eno ole, Noreano Reconole, Undecino Reanoreconole, Laurino Renoreconole, De Tesino Reanoreconole, Stealino Reanoreconole, Eicosino Reanoreconole, Arino Renoreconole, Crotinoreano Reconore, propanoreginorenoreconole, cyclopentanomonore, cyclohexano Alcohol, benzyl alcohol, cinnamyl alcohol, ethylene glycol monomethyl ethereol,
  • a secondary compound obtained by a reaction between a compound having one or more epoxy groups in one molecule and a compound having one or more hydroxyl groups, carboxyl groups, primary or secondary amino groups, or mercapto groups in one molecule is also exemplified as polyhydric alcohols. These alcoholic compounds may be any of primary, secondary, or tertiary alcohols.
  • phenolic compounds include monophenols such as carboxylic acid, taresole, xylenol, strength rubachlor, mocinore, and naphthol, polyphenols such as catechol, resorcin, hydroquinone, bisphenolanol A, bisphenolore F, pyrogallol, and phloroglucin. Can be mentioned.
  • polyhydric alcohols and polyhydric phenols are preferred. Polyhydric alcohols are even more preferred!
  • the method of reacting the isocyanate compound (bl) and the active hydrogen compound (b2) is usually carried out in a temperature range of 10 ° C to 150 ° C. Above 150 ° C, the film obtained by reacting the isocyanate component (bl) and the active hydrogen compound (b2) becomes non-uniform, so that the storage stability may not be sufficiently exhibited, and the temperature is lower than 10 ° C. Even in such cases, the storage stability may not be exhibited due to incomplete reaction.
  • the reaction temperature with such viewpoint power is also preferably 0 ° C to 120 ° C, more preferably 10 ° C to 100 ° C.
  • the reaction time is usually between 10 minutes and 12 hours. If the reaction time is less than 10 minutes, the reaction may be incomplete and storage stability may not be exhibited. Not good.
  • the above reaction can be carried out in a dispersion medium if necessary.
  • the dispersion medium include solvents, plasticizers, and rosins.
  • the solvent include benzene, toluene, and xylene.
  • Hydrocarbons such as len, cyclohexane, mineral spirit, and naphtha; ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; esters such as ethyl acetate, n-butyl acetate, and propylene glycol monomethyl ether acetate; Examples include methanol, alcohols such as isopropanol, n -butanol, butylcetosolve, butyl carbitol, water, and the like.
  • plasticizers include phthalic acid diesters such as dibutyl phthalate and di (2-ethylhexyl) phthalate, aliphatic dibasic acid esters such as di (2-ethylhexyl) adipate, and phosphoric acid.
  • plasticizers include a triester phosphate such as tricresyl, and a darlicol ester such as polyethylene glycol ester.
  • the resins include silicone resins, epoxy resins, phenol resins and the like.
  • the amount ratio between the isocyanate compound (bl) and the active hydrogen compound (b2) is usually such that the equivalent ratio of the isocyanate group in the isocyanate compound (bl) to the active hydrogen in the active hydrogen compound (b2) is 1: 0. 1-1: Used in the range of 1000.
  • the obtained film (cl) is characterized by having a bonding group (X) that absorbs infrared rays having a wave number of 1630 cm ⁇ ieSOcm 1 and a bonding group (y) that absorbs infrared rays of 1680 to 1725 cm 1 .
  • a urea bond is particularly preferable.
  • the linking group (y) is preferably a burette bond.
  • a urethane bond is particularly preferred.
  • This urea bond or burette bond is formed by the reaction of an isocyanate compound with water and Z or an amine compound having one or more primary and Z or secondary amino groups in one molecule. Generated.
  • a urethane bond is formed by a reaction between an isocyanate compound and a compound having one or more hydroxyl groups in one molecule.
  • the latent curing agent for epoxy resin according to the present invention is preferably a microcapsule type epoxy resin curing agent (D) described below, because higher stability is obtained.
  • the microcapsule type epoxy resin curing agent (D) of the present invention has the latent curing agent for epoxy resin of the present invention as a core, and a reaction between the epoxy resin curing agent (A) and the epoxy resin (C). It is a hard glaze with a core-shell structure in which the product is coated as a shell (c2).
  • epoxy resin (C) used in the present invention bisphenol A, bisphenol F, bisphenol AD, bisphenol S, tetramethylbisphenol A, tetramethylbisphenol?
  • Bisphenol type epoxy resin and biphenol obtained by glycidylating bisphenols such as tetramethylbisphenol AD, tetramethylbisphenol S, tetrabromobisphenol A, tetrachlorobisphenol A, tetrafluorobisphenol A, etc.
  • epoxy resin (C) an epoxy resin obtained by glycidylating polyhydric phenols is preferred because the cured product obtained has excellent adhesion and heat resistance, and more preferably a bisphenol type epoxy resin. It is fat. Bisphenol A glycidylate and bisphenol F glycidylate are more preferred! Bisphenol A glycidylate is even more preferred! / ⁇
  • Epoxy compounds usually have an impure end with chlorine bonded in the molecule.
  • the total amount of chlorine in the epoxy resin (C) is excellent because of the excellent electrical properties of the cured product. More preferably 2000 ppm or less, more preferably 1500 ppm or less, more preferably 800 ppm or less, more preferably 400 ppm or less, more preferably 180 ppm or less, more preferably lOOppm or less, more preferably Is 80 ppm or less, more preferably 50 ppm or less.
  • An epoxy resin composition having a balance between curability and storage stability can be obtained when the total chlorine content is 2500 ppm or less.
  • the total chlorine content of the epoxy resin (C) is preferably at least 0.
  • Olppm More preferably, it is 0.02 ppm or more, more preferably ⁇ or 0.05 ppm or more, more preferably ⁇ or 0.1 ppm or more, more preferably ⁇ or 0.2 ⁇ pm or more, and still more preferably 0. 5ppm or more.
  • the total chlorine amount is 0.1 ppm or more, the shell forming reaction is efficiently performed on the surface of the curing agent, and a shell having excellent storage stability can be obtained.
  • the reaction between the epoxy resin hardener (A) and the epoxy resin (C) is usually in the temperature range of 10 ° C to 150 ° C, preferably 0 ° C to 100 ° C.
  • the reaction is carried out for a reaction time of 168 hours, preferably 2 hours to 72 hours, and can also be carried out in a dispersion medium.
  • the dispersion medium include a solvent and a plasticizer.
  • Examples of the solvent include hydrocarbons such as benzene, toluene, xylene, cyclohexane, mineral spirit, and naphtha, ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, ethyl acetate, and n-acetate.
  • examples include esters such as butyl and propylene glycol monomethyl ether acetate, alcohols such as methanol, isopropanol, n-butanol, butylceosolve and butyl carbitol, water, and the like.
  • OK Plasticizers include phthalic acid diesters such as dibutyl phthalate and di (2-ethylhexyl) phthalate, aliphatic dibasic acid esters such as di (2-ethylhexyl) adipate, tricresyl phosphate, etc. Examples thereof include a phosphoric acid triester type and a glycol ester type such as polyethylene glycol ester.
  • the amount ratio when the epoxy resin hardener (A) and the epoxy resin (C) are reacted is not particularly limited, but is usually from 1: 0.001 to 1000 by mass ratio. It is used in the range, preferably in the range of 1: 0.0.01 to 1: 100.
  • the latent curing for epoxy resin according to the present invention is a shell (c2) (hereinafter referred to as this shell) made of a reaction product of epoxy resin resin curing agent (A) and epoxy resin (C).
  • the shell As a method of coating the core made of the agent cover (hereinafter referred to as the present core), the shell is dissolved, the solubility of the shell is lowered in the dispersion medium in which the core is dispersed, and the surface of the core is coated. After the core is dispersed in a dispersion medium in which the epoxy resin (C) and Z or the epoxy resin (C) are dissolved, the epoxy resin curing agent (A) and the epoxy resin (C) are added.
  • the shell is deposited on the surface of the core by reacting, or the surface of the core is used as a reaction field to generate the shell there. The latter method is preferable because the reaction and the coating can be performed simultaneously.
  • the epoxy resin hardener (A) in the core may be the epoxy resin hardener (A) in this core! It's okay!
  • the surface of the epoxy resin curing agent (A) is used as a reaction field, and the isocyanate compound (bl) and the active hydrogen compound (b2) are reacted.
  • the reaction product is deposited on the surface of the epoxy resin hardener (A)
  • the average thickness of the shell covering the surface of the core is preferably 5 to LOOOnm. Storage stability is obtained at 5 nm or more, and practical curability is obtained at lOOOnm or less.
  • the thickness of the layer here is observed with a transmission electron microscope. A particularly preferred shell thickness is
  • the average layer thickness is 10 to: LOOnm.
  • the microcapsule type epoxy resin hardener (D) in which the core is coated with the shell is composed of a bonding group (X) that absorbs infrared rays having a wave number of 1630 to 1680 cm- 1 and a wave number of 1680 to 1725 cm. - having a first coupling group that absorbs infrared (y) at least on the surface thereof, in view forces reactivity balance between the storage stability preferred.
  • X bonding group that absorbs infrared rays having a wave number of 1630 to 1680 cm- 1 and a wave number of 1680 to 1725 cm.
  • the linking group) and the linking group (y) can be measured using a Fourier transform infrared spectrophotometer (referred to as FT-IR). Further, the presence of the bonding group (X) and / or the bonding group (y) on at least the surface of the epoxy resin curing agent (C) can be measured using microscopic FT-IR.
  • FT-IR Fourier transform infrared spectrophotometer
  • linking group (X) a urea bond is particularly useful.
  • a particularly useful one is a burette bond.
  • the latent curing agent for epoxy resin and the Z or microcapsule epoxy resin curing agent (D) of the present invention are used as the masterbatch type epoxy resin curing agent (F) described below. Therefore, when obtaining a one-pack type epoxy resin composition, mixing with the epoxy resin is easy and preferable.
  • the curing agent composition (F) for masterbatch type epoxy resin of the present invention comprises 10 to 50,000 parts by mass of epoxy resin (E), and the latent curing agent for epoxy resin of the present invention. And Z or microcapsule type epoxy resin curing agent (D) 100 parts by mass.
  • a masterbatch type epoxy resin hardener composition with an epoxy resin (E) content of 10 parts by mass or more that is easy to handle is obtained, and when it is 50,000 parts by mass or less, it substantially exhibits the performance as a curing agent.
  • the amount of the epoxy resin (E) is preferably 100 parts by weight of the latent curing agent for epoxy resin and the hardener for Z or microcapsule epoxy resin (D) of the present invention. On the other hand, it is 100 to 5000 parts by mass, more preferably 120 to: LOOO parts by mass, and particularly preferably 150 to 400 parts by mass.
  • the total chlorine content of the masterbatch type epoxy resin curing agent composition (F) of the present invention is preferably 2500 ppm or less in order to achieve both high curability and storage stability. More preferably 1500 ppm or less, more preferably 800 ppm or less, more preferably 400 ppm or less, more preferably 200 ppm or less, more preferably lOOppm or less, more preferably 80 ppm or less, More preferably, it is 50 ppm or less.
  • the epoxy resin (E) of the present invention is not particularly limited within the range without impairing the intended effect of the present invention.
  • An example of such an epoxy resin (E) is Bisphenol A, Bisphenol F, Bisphenol AD, Bisphenol S, Tetramethylbisphenol A, Tetramethylbisphenol F, Tetramethylbisphenol AD, Tetramethylbisphenol S, Tetrabromobisphenol A, Tetrachrome Bisphenol type epoxy resin prepared by glycidylation of bisphenols such as bisphenol 8 and tetrafluorobisphenol A; other divalents such as biphenol and 9, 9-bis (4-hydroxyphenol) fluorene Epoxy resin with glycidylated phenols; 1, 1, 1-tris (4 —hydroxyphenol) methane, 4, 4— (1— (4— (1— (4 hydroxyphenol) 1 1— Methylethyl) phenol) ethylidene) epoxibic resin glycidylated trisphenols such as bisphenol; 1, 1, 2, 2 , —Ep
  • Novolak type epoxy resin with glycidyl alcohol as a novolak Epoxy resin with glycidyl acid as a polyhydric phenol; Aliphatic ether type epoxy resin with glycidyl alcohol as glycerin or polyethylene glycol; Ether ester type epoxy resin prepared by glycidylation of hydroxycarboxylic acid such as p-oxybenzoic acid and ⁇ -oxynaphthoic acid; Ester type epoxy resin prepared by glycidylation of polycarboxylic acid such as phthalic acid and terephthalic acid; 4, 4-diaminodiph -Glycidinole type epoxy compounds such as amine type epoxy compounds such as triglycidyl isocyanurate, and glycidylated compounds of amine compounds such as methane and m-aminophenol, and 3, 4 epoxycyclohexenole methyl-3, 4, Examples thereof include alicyclic epoxides such as monoepoxycycl
  • epoxy resins can be used alone or in combination.
  • the total chlorine content of the epoxy resin (E) is high, and in order to achieve both curability and storage stability, it is desirable that it be 25 OOppm or less! /.
  • the control port for the shell formation reaction is used.
  • the total chlorine content of the epoxy resin (E) is preferably 0. Olppm or more. More preferably 0.02 ppm or more, more preferably 0.05 ppm or more, more preferably 0.1 ppm or more, more preferably 0.2 ppm or more, and further preferably 0.5 ppm or more.
  • a preferable range of the total chlorine amount is 0.1 ppm to 200 ppm, a more preferable range is 0.2 ppm to 80 ppm, and a more preferable range is 0.5 ppm to 50 ppm.
  • the diol-terminated impurity component of the epoxy ⁇ (E) of the present invention is desirably from 0.001 to 30 mass 0/0 of the basic structural components of the epoxy ⁇ (E).
  • the basic structural component of the epoxy resin (E) refers to a structure in which epoxy groups are present at all terminals.
  • the diol terminal impurity component of the epoxy resin (E) is one in which at least one of the terminal epoxy groups has an a- glycol terminal structure.
  • the ratio of the epoxy resin (E) to the diol terminal impure component of the epoxy resin (E) with respect to the epoxy resin (E) basic structure component is larger than 30% by mass, the water resistance of the cured product may decrease. If it is less than 0.001% by mass, the curability of the epoxy resin composition may be lowered. Such a viewpoint power is also the diol terminal impure component of the epoxy resin (E)!
  • the ratio of the epoxy resin (E) to the basic structural component is preferably 0.01 to 25% by mass, More preferred is 0.1 to 20% by mass, particularly preferred is 0.5 to 18% by mass, and particularly preferred is 1.2 to 15% by mass.
  • the ratio of the epoxy resin (E) to the basic structural component of the epoxy resin (E) of the present invention is determined by the method described in the Examples section.
  • the latent curing agent for epoxy resin of the present invention and the Z or microcapsule type epoxy resin prepared previously.
  • Curing agent (D) for example, using three rolls and epoxy Resin
  • Examples include a method for obtaining a masterbatch type curing agent at the same time as obtaining a latent curing agent for epoxy resin and a curing agent (D) for Z or microcapsule type epoxy resin. The latter is preferable because of high productivity.
  • the masterbatch type epoxy resin curing agent composition (F) of the present invention is preferably liquid or paste at room temperature. More preferably, the viscosity at 25 ° C. is 500,000 mPa's or less, more preferably 1000 to 300,000 mPa's, and still more preferably 3,000 to 200,000 mPa's.
  • the viscosity can be reduced to 500,000 mPa's or less and the amount of adhesion to a container with high workability can be reduced to reduce waste.
  • a latent curing agent for epoxy resin a curing agent for Z or microcapsule type epoxy resin (D), and a curing agent for Z or masterbatch type epoxy resin. It is desirable to prepare an epoxy resin composition in which the composition (F) and the cyclic borate compound (L) are blended simultaneously.
  • the cyclic borate ester compound (L) is a compound in which boric acid and aliphatic! / Are aromatic diols, and the obtained boron is contained in a cyclic structure.
  • One such cyclic borate ester compound is Tris.
  • 2, 2, mono-oxybis (5, 5, mono-dimethyl, 1, 3, 2-dioxaborinane) is preferred.
  • the content of the cyclic borate ester compound (L) includes a latent hardener for epoxy resin and a hardener for Z or microcapsule epoxy resin (D), and Z or masterno.
  • Hardening composition for nail-type epoxy resin (F) 0.001 to 10 parts by mass, preferably 0.01 to 2 parts by mass, more preferably 0.05 to 0.9 parts by mass with respect to 100 parts by mass is there. By using within this range, the composition is cured with excellent storage stability at high temperatures, and an excellent cured product is obtained that does not impair the original short-time curability, heat resistance, and connection reliability. be able to.
  • the masterbatch type epoxy resin curing agent composition (F) of the present invention comprises an epoxy resin latent curing agent and Z or microcapsule type epoxy resin curing agent (D) and epoxy resin. It is composed of fat (E), but may contain other components as long as its function is not deteriorated. The content of other components is preferably less than 30% by mass.
  • Epoxy resin A latent curing agent for epoxy resin and / or a microphone capsule type epoxy resin curing agent (D) and / or a master notch type epoxy resin resin curing agent composition of the present invention. (F) is mixed to obtain a one-component epoxy resin composition.
  • the epoxy resin C used in the epoxy resin composition of the present invention is the same as the epoxy resin ( ⁇ ) as long as it has an average of two or more epoxy groups per molecule. You may do it.
  • the latent curing agent for epoxy resin of the present invention, the curing agent for epoxy resin of Z or microcapsule type (D), and the curing agent composition for epoxy resin of Z or masterbatch type (F) and epoxy resin The mixing ratio with the fat ⁇ is determined by the surface property of the curability and the properties of the cured product, but preferably the epoxy resin ⁇ loo part by mass, the latent curing agent for epoxy resin according to the present invention.
  • ⁇ or microcapsule type epoxy resin hardener (D) and ⁇ ⁇ ⁇ or masterbatch type epoxy resin hardener composition (F) may be used in an amount of 0.1 to L000 mass parts. .
  • it is 0.2 to 200 parts by mass, and still more preferably 0.5 to 30 parts by mass. 0. 1 part by mass or more can provide practically satisfactory curing performance, and 100 parts by mass or less has good balance without the uneven distribution of the epoxy resin composition of the present invention. Give a curing agent.
  • the masterbatch type epoxy resin curing agent composition (F) used in the present invention is a high molecular weight epoxy resin and a resin generally referred to as phenoxy resin having self-film-forming properties. It is possible to mix the moon.
  • epoxy resin Q epoxy resin Q
  • a latent curing agent for epoxy resin a latent curing agent for microcapsule type epoxy resin
  • D microcapsule type epoxy resin
  • a master or batch type epoxy It is desirable to prepare an epoxy resin composition in which a cyclic borate ester compound (L) is blended simultaneously with a compound with a resin curing agent composition (F).
  • the compounding amount of the cyclic borate ester compound (L) is as follows: epoxy resin CO, epoxy resin latent curing agent and / or microcapsule type epoxy resin curing agent (D), and Z Or it is 0.001-10 mass parts with respect to 100 mass parts of a compound with a hardening
  • the composition can be cured with excellent storage stability at high temperatures, and an excellent cured product can be obtained without impairing the original short-time curability, heat resistance, and connection reliability. be able to.
  • the adhesive composition (F) can be used in combination with at least one curing agent (K) selected from the group consisting of acid anhydrides, phenols, hydrazides, and guanidines.
  • acid anhydrides include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, 3-chlorophthalic anhydride, anhydrous 4-chlorophthalic acid, Benzophenone anhydride tetracarboxylic acid, succinic anhydride, methyl succinic anhydride, dimethyl succinic anhydride, dichlor succinic anhydride, methyl nadic acid, decyl succinic acid, chlorendectaic anhydride, maleic anhydride, etc .;
  • hydrazines include, for example, succinic acid dihydrazide, adipic acid dihydrazide, phthalic acid dihydrazide, isophthalic acid dihydrazide terephthalic acid dihydra
  • guanidines and acid anhydrides are preferred. More preferred are dicyandiamide, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, and methylnadic anhydride.
  • the curing agent (K) is used for 1 to 200 parts by mass of the latent curing agent for epoxy resin and the Z or microcapsule type epoxy resin for the present invention. It is preferable to use the curing agent (D) and Z or the masterbatch type epoxy resin composition curing agent (F) in an amount of 0.1 to 200 parts by mass! /.
  • the curing agent (K), the latent curing agent for epoxy resin and the curing agent for Z or microcapsule type epoxy resin (D), and the Z or masterbatch type epoxy An epoxy resin composition in which the cyclic borate ester compound (L) is simultaneously added to the compound with the resin composition for curing resin (F) can be prepared.
  • the ring at that time The boric acid ester compound (L) is blended in the curing agent (K), epoxy resin hardener (C) and Z or microcapsule epoxy resin hardener (D), and Z or master batch. It is 0.001 to 10 parts by mass with respect to 100 parts by mass of the compound of the type epoxy hardener curing agent composition (F).
  • the composition can be cured with excellent storage stability at high temperatures, and an excellent cured product that does not impair the original short-time curability, heat resistance, and connection reliability can be obtained. Can do.
  • the masterbatch type epoxy resin curing agent composition (F) used in the present invention has a filler, a reinforcing material, a filler, conductive fine particles, a pigment, an organic solvent, a reactive diluent, a non-reactive material, as desired. Diluent, greaves, crystalline alcohol, coupling agent and the like can be added.
  • fillers include, for example, coal tar, glass fiber, asbestos fiber, boron fiber, carbon fiber, cellulose, polyethylene powder, polypropylene powder, quartz powder, mineral silicate, mica, asbestos powder, slate powder, Kaolin, acid aluminum trihydrate, aluminum hydroxide, chalk powder, gypsum, calcium carbonate, antimony trioxide, penton, silica, aerosol, ritbon, barite, titanium dioxide, carbon black, graphite, carbon nanotube, Fullerenes, iron oxides, gold, silver, aluminum powder, iron powders, nano-sized metal crystals, intermetallic compounds, and the like can be mentioned, and all of these are effectively used depending on the application.
  • organic solvent examples include toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, and butyl acetate.
  • reactive diluents include butyl daricidyl ether, N, N, -glycidyl-o-toluidine, phenyl daricidyl ether, styrene oxide, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, 1, 6- Hexanediol diglycidyl ether and the like.
  • non-reactive diluent examples include dioctyl phthalate, dibutyl phthalate, dioctyl adipate, petroleum solvents, and the like.
  • resins include polyester resins, polyurethane resins, acrylic resins, polyether resins, melamine resins, urethane modified epoxy resins, rubber modified epoxy resins, alkyd modified epoxy resins, and the like.
  • rosin Crystalline alcohols include 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4-cyclohexanediol, pentaerythritol, sorbitol, sucrose, trimethyl. Examples include roll propane.
  • the epoxy resin composition used in the present invention comprises a latent curing agent for epoxy resin, a hardener for Z or microcapsule type epoxy resin (D), and epoxy resin (E), as required.
  • Epoxy resin CF) and curing agent ( ⁇ ⁇ ⁇ ) are the main components.
  • the epoxy resin composition of the present invention exhibits desired performance when cured by heating, but the main component referred to here means that it is a component that forms the main component of the curing reaction by heating, It is preferably 60% or more of the thermosetting component. More preferably, it is 70% or more.
  • components not involved in curing include a filler, a reinforcing material, a filler, a conductive material, a pigment, an organic solvent, and greaves.
  • these components are preferably used in the range of 0 to 90% by mass with respect to the entire one-component epoxy resin composition.
  • the epoxy resin composition of the present invention includes a conductive material, an anisotropic conductive material, an insulating material, an encapsulant, a coating material, and a coating composition, in addition to the adhesive and the bag or bonding paste, and bonding film. It is useful as a product, a pre-preda, a heat conductive material, etc.
  • Adhesives and adhesives or bonding pastes, and bonding films are useful as liquid adhesives, film adhesives, die bonding materials, and the like.
  • a method for producing a film adhesive for example, a solution in which solid epoxy resin, liquid epoxy resin, and solid urethane resin are dissolved and mixed in toluene so as to be 50% by weight is prepared. .
  • This solution for example, is applied to a polyethylene terephthalate substrate for peeling having a thickness of 50 / z m so that the toluene has a thickness of 30 m after drying.
  • a bonding film that is inactive at room temperature and exhibits adhesiveness by the action of the latent curing agent when heated.
  • Examples of the conductive material include a conductive film and a conductive paste.
  • Examples of anisotropic conductive materials include anisotropic conductive films and anisotropic conductive pastes.
  • the manufacturing method for example, in the production of the above-mentioned bonding film, the conductive material is mixed and dispersed at the time of preparing the varnish, applied to the substrate for peeling, and then dried. Can be manufactured.
  • Conductive particles include solder particles, nickel particles, nano-sized metal crystals, metal surfaces Particles coated with other metals, metal particles such as copper and silver slant particles, for example, styrene resin, urethane resin, melamine resin, epoxy resin, acrylic resin, phenol resin, styrene butadiene Particles coated with a conductive thin film such as gold, nickel, silver, copper, solder, etc. are used on the resin particles such as resin.
  • conductive particles are spherical fine particles of about 1 to 20 m.
  • Examples of the base material in the case of forming a film include a method of drying a solvent after coating on a base material such as polyester, polyethylene, polyimide, and polytetrafluoroethylene.
  • Examples of the insulating material include an insulating adhesive film and an insulating adhesive paste.
  • an insulating adhesive film that is an insulating material can be obtained.
  • an insulating adhesive paste can be obtained by blending an insulating filler among the aforementioned fillers.
  • a solid sealing material is useful as a liquid sealing material, a film-like sealing material, etc., and as a liquid sealing material, it is useful as an underfill material, a potting material, a dam material, or the like. is there .
  • a method for producing the sealing material for example, a bisphenol A type epoxy resin, a curing agent such as methylhexahydrophthalic anhydride as an acid anhydride hardener, and spherical molten silica powder are added uniformly. It is mixed, and the masterbatch type epoxy resin curing agent composition (F) obtained in the present invention is added thereto and mixed uniformly to obtain a sealing material.
  • Examples of the coating material include an electronic material coating material, an overcoat material for a printed wiring board cover, and a resin composition for interlayer insulation of a printed board.
  • a method for producing a coating material for example, silica or the like is selected from the filler, and bisphenol A type epoxy resin, phenoxy resin, rubber-modified epoxy resin, etc. are blended in addition to the present invention.
  • the masterbatch type epoxy resin hardener composition (F) is blended and a 50% solution is prepared with MEK.
  • a coating composition for example, bisphenol A type epoxy resin is blended with titanium dioxide, talc and the like, and a 1: 1 mixed solvent of MIBKZ xylene is used as a mixed solvent. Add, stir and mix to make the main ingredient.
  • An epoxy coating composition can be obtained by adding and uniformly dispersing the masterbatch type epoxy resin curing agent composition (F) of the present invention.
  • an epoxy resin composition can be impregnated into a reinforcing substrate and heated.
  • the varnish solvent to be impregnated include methyl ethyl ketone, acetone, ethyl cellulose, methanol, ethanol, isopropyl alcohol, and the like. It is preferable that these solvents do not remain in the pre-preda.
  • the type of the reinforcing substrate is not particularly limited, and examples thereof include paper, glass cloth, glass nonwoven fabric, aramid cloth, and liquid crystal polymer.
  • the ratio of the composition of the resin composition and the reinforcing base material is not particularly limited, but it is usually preferable that the composition is prepared so that the composition of the resin in the prepreg is 20 to 80% by weight.
  • thermosetting resin for example, an epoxy resin as a thermosetting resin, a phenol novolac curing agent as a hardener, and a graphite powder as a heat conductive filler are uniformly mixed. Knead.
  • the masterbatch type epoxy resin curing agent composition (F) of the present invention can be blended with this to obtain a heat conductive resin paste.
  • Sample lg was dissolved in 25 ml of ethylene glycol monobutyl ether, and 25 ml of a 1N KOH propylene glycol solution was added thereto, boiled for 20 minutes, and titrated with an aqueous silver nitrate solution.
  • the measurement was performed using a BM type viscometer at 25 ° C.
  • Measurement was performed under the following measurement conditions, and a calibration curve was prepared and quantified using polystyrenes having molecular weights of 580, 1060, 1940, 5000, 10050, 21000, and 50400 as standard substances.
  • the epoxy resin composition is repeatedly washed and filtered with xylene until the epoxy resin is gone. Next, the filtrate is distilled off under reduced pressure at 100 ° C or lower to obtain an epoxy resin.
  • the obtained epoxy resin is analyzed and quantified by the following method.
  • the structure of the diol terminal impurity component refers to a structure in which 1,2-glycol is formed by the ring opening of one or both terminal epoxy groups.
  • the viscosity of the masterbatch type epoxy resin curing agent ( F ) before and after storage at 40 ° C. for 1 week was measured and evaluated by the viscosity increase ratio.
  • the viscosity increase rate after storage was 10 times or more or gelled, X, 5 times or more and less than 10 times, ⁇ , 2 times or more and less than 5 times ⁇ , and 2 times or less, ⁇ .
  • a mixed solvent of ethyl acetate Ztoluene lZi was mixed with the one-component epoxy resin composition so that the nonvolatile content was 70%, and the mixture was allowed to stand at 25 ° C. for 1 hour. This was coated on an aluminum plate to a dry film thickness of 30 ⁇ m, dried by heating at 70 ° C for 5 minutes, the solvent in the composition was removed, and stored at 50 ° C for 3 days. FT-IR measurement was performed before and after storage at 50 ° C for 3 days to calculate the residual ratio of epoxy groups.
  • a residual ratio of 80 mol% or more was rated as ⁇ , 60 mol% or more and less than 80 mol% as ⁇ , 40 mol% or more and less than 60% as ⁇ , and less than 40 mol% as X.
  • a one-part epoxy resin composition is produced.
  • Gelation test based on JIS C 2104 for solvent resistance evaluation The time until gelation by the machine is measured and evaluated as follows. That is, the gel plate
  • Master batch type epoxy resin curing agent (F) 30 parts is mixed with epoxy resin (M) 100 parts to produce a one-part epoxy resin composition.
  • epoxy resin (M) 100 parts To this epoxy resin composition, a mixed solvent of ethyl acetate Ztoluene 1Z1 was mixed so that the nonvolatile content was 70%, and allowed to stand at 25 ° C. for 1 hour. This was applied to a dry film thickness of 30 and dried by heating at 70 ° C. for 5 minutes to remove the solvent in the composition to obtain a film adhesive composition. Thermocompression bonding was performed on a hot plate at 190 ° C for 30 kg for 30 seconds.
  • Master batch type epoxy resin curing agent (F) 30 parts is mixed with epoxy resin (M) 100 parts to produce a one-part epoxy resin composition.
  • epoxy resin (M) 100 parts To this epoxy resin composition, a mixed solvent of ethyl acetate Ztoluene 1Z1 was mixed so that the nonvolatile content was 70%, and allowed to stand at 25 ° C. for 1 hour. This was applied to a dry film thickness of 30 and dried by heating at 70 ° C. for 5 minutes to remove the solvent in the composition to obtain a film adhesive composition. The film is allowed to stand for 2 hours in a constant temperature and humidity chamber at 40 ° C and 85% humidity. The total calorific value in the DSC analysis of the film sample before and after processing is obtained.
  • the rate of disappearance of epoxy groups contained in the film adhesive composition is calculated from the rate of change in total heat generation.
  • the rate of change is 10% or less, ⁇ , 20% or less is ⁇ , 30% or less is X, and more than 30% is XX.
  • Bisphenol A type epoxy resin (epoxy equivalent 185 gZ equivalent, total chlorine content 1200 ppm: hereinafter referred to as epoxy resin c-l) 2 equivalents, o-dimethylaminomethyl phenol 0.666 mol and dimethylamine 0.33 mol
  • epoxy resin c-l Bisphenol A type epoxy resin
  • epoxy resin c-2 2 equivalents of bisphenol A type epoxy resin (epoxy equivalent 185 gZ equivalent, total chlorine content 20 ppm: hereinafter referred to as epoxy resin c-2), 1.5 mol of 2-methylimidazole, 1Z1 of methanol and toluene After reacting in a mixed solvent (50% fat content) at 80 ° C for 6 hours, the solvent was distilled off at 180 ° C under reduced pressure to obtain a solid compound. This was pulverized to obtain an epoxy resin curing agent a-2 having an average particle size of 3 ⁇ m.
  • Epoxy resin c-1 as 200 parts as epoxy resin (C), 100 parts as epoxy resin hardener as epoxy resin hardener (A), water as active hydrogen compound (b2) 1 5 parts, hexamethylene diisocyanate (HMDI) as isocyanate compound (bl-1) (manufactured by Asahi Kasei Chemicals, deyuranate (registered trademark) 50M); 3 parts, MR as (bl-2) 200 (manufactured by Nippon Polyurethane Co., Ltd., registered trademark); 4 parts were added, and the reaction was continued for 3 hours while stirring at 40 ° C. As a result, 99 mol% or more of the isocyanate group reacted. Thereafter, a shell forming reaction was carried out at 40 ° C. for 20 hours to obtain a master batch type curing agent F-1.
  • HMDI hexamethylene diisocyanate
  • Master batch type curing agent F—1 to separate the core seal type curing agent using xylene, After drying into powder, it was placed on a glass plate and subjected to FT-IR measurement, and it was confirmed that it had bonding groups (x), (y), and (z). In addition, the dispersibility and storage stability of the master batch type curing agent H-1 were evaluated. Table 1 shows the evaluation results.
  • Masternotch type curing agents F-3, F-4 and F-5 were obtained in the same manner as in Example 2 with the formulation shown in Table 1, and the dispersibility and storage stability were evaluated.
  • Epoxy resin c 1 1 Bisphenol A type liquid epoxy resin (epoxy equivalent 185 gZ equivalent, total chlorine content: 1200 p pm)
  • Epoxy resin c-3 Bisphenol F-type liquid epoxy resin (epoxy equivalent 165 g / equivalent, total chlorine content: 300 ppm)
  • MR—200 Polymethylene Polyethylene Polysocyanate manufactured by Nippon Polyurethane
  • Deyuranate 24A (Asahi Kasei Chemicals Corporation, burette-type polyisocyanate derived from hexamethylene diisocyanate, average functional group number 3.4, hexamethylene diisocyanate content less than 1%)
  • Bisphenol F type epoxy resin epoxy equivalent 165 g / equivalent, total chlorine amount 300 ppm
  • epoxy resin J
  • a sealing material was obtained.
  • the liquid stopper of this composition was also useful as an insulating adhesive paste.
  • the obtained anisotropic conductive film was sandwiched between electrodes and thermocompression bonded on a 200 ° C hot plate at 30 kgZ cm2 for 20 seconds. It was useful.
  • epoxy resin al-1 Bisphenol A type epoxy resin (epoxy equivalent 185gZ equivalent, total chlorine content 1400ppm: hereinafter referred to as epoxy resin al-1) 1. 5 equivalents and 1 equivalent of 2-methylimidazole (active water was converted in an lZl mixed solvent of n-butanol and toluene (50% fat content) at 80 ° C. Thereafter, when the content of 2-methylimidazole was 0.5% (relative to the fat content) under reduced pressure, the distillation was terminated to obtain a solid epoxy resin curing agent. This was pulverized to obtain an epoxy resin hardener a-3 having an average particle size of 2.7 m.
  • 2-methylimidazole active water was converted in an lZl mixed solvent of n-butanol and toluene (50% fat content) at 80 ° C. Thereafter, when the content of 2-methylimidazole was 0.5% (relative to the fat content) under reduced pressure, the distillation was terminated to obtain a solid epoxy resin
  • Epoxy resin c-1 as 200 parts by weight of epoxy resin (C), 100 parts by weight of epoxy resin hardener a-3, 2 parts by weight of water, 3 parts of 1,8-diisocyanate octane And 4 parts by mass of MR-200 were added and the reaction was continued for 3 hours while stirring at 40 ° C. Furthermore, a shell forming reaction was performed at 50 ° C. for 8 hours to obtain a masterbatch type epoxy resin curing agent F-6. In the same manner as in Example 1, it was confirmed that the bonding groups (x), (y), and (z) were contained, and the dispersibility and storage stability of the masterbatch type epoxy resin curing agent F-6 were evaluated.
  • epoxy resin (C) epoxy resin c-3 is added to 200 parts by mass, epoxy resin curing agent a-3 is added to 100 parts, water 1.5 parts, HMDI 2 parts, MR-200 The reaction was continued for 3 hours with stirring at 40 ° C. Thereafter, 0.5 part by mass of cyclic borate ester compound (L) was added, and a shell forming reaction was further performed at 50 ° C. for 8 hours to obtain a masterbatch type epoxy resin curing agent F-7. . In the same manner as in Example 1, it was confirmed that they had bonding groups (x), (y), and (z), and the dispersibility and storage stability of the masterbatch type epoxy resin curing agent F-7 were evaluated. .
  • Epoxy resin c-3 as 200 parts by mass of epoxy resin (C), 100 parts by mass of epoxy resin curing agent a-3, 2 parts by mass of water, 1 part by mass of HMDI, 4 parts of MR-200
  • the reaction was continued for 3 hours with stirring at 40 ° C. Thereafter, 1.2 parts by mass of cyclic borate ester compound (L) was added, and a shell forming reaction was further performed at 50 ° C. for 8 hours to obtain a masterbatch type epoxy resin curing agent F-8.
  • epoxy resin (M) 100 parts was mixed with 30 parts of the resulting masterbatch type epoxy resin curing agent F-8 to obtain a one-part epoxy resin composition.
  • the epoxy resin composition was evaluated for storage stability, curability, solvent resistance and moisture resistance. Table 2 shows the results obtained.
  • epoxy resin (C) epoxy resin c-3 is 200 parts by mass, epoxy resin curing agent a-3 is 100 parts by mass, water 2 parts by mass, urethane type low molecular bifunctional aliphatic isocyanate, Asahi Kasei. 2 parts by mass of Deuranate D-101 and 5 parts by mass of MR-200 manufactured by Chemicals Co., Ltd. were added, and the reaction was continued for 3 hours while stirring at 40 ° C. Thereafter, 1.2 parts by mass of cyclic borate ester compound (L) was added, and a shell forming reaction was further performed at 50 ° C. for 8 hours to obtain a masterbatch type epoxy resin curing agent F-8.
  • Epoxy resin c-3 as 200 parts by mass of epoxy resin (C), 100 parts by mass of epoxy resin curing agent a-3, 1.5 parts by mass of water, 5 parts by mass of LTI, MR-200 2 parts by mass was added, and the reaction was continued for 3 hours while stirring at 40 ° C. Thereafter, a shell forming reaction was further performed at 50 ° C. for 8 hours to obtain a masterbatch type epoxy resin curing agent F-9.
  • Epoxy resin c-3 as 200 parts by mass of epoxy resin (C), 100 parts by mass of epoxy resin curing agent a-3, 1.5 parts by mass of water, 2 parts by mass of LTI, MR-200
  • the reaction was continued for 3 hours with stirring at 40 ° C. by adding 5 parts by mass. Thereafter, 0.5 part by mass of cyclic borate ester compound (L) was added, and a shell forming reaction was further performed at 50 ° C. for 8 hours to obtain a masterbatch type epoxy resin curing agent F-10.
  • Epoxy resin c 1 Bisphenol A type liquid epoxy resin (epoxy equivalent 85 g / equivalent, total chlorine amount: 1 200 p pm)
  • Epoxy resin c 1 3 Bisphenol F type liquid epoxy resin (epoxy equivalent 65 g / equivalent , Total chlorine: 300 p pm) 2 -MZ: 2-Methylimidazole
  • D- 1 0 1 Deyuranate manufactured by Asahi Kasei Chemicals D— 1 0 1
  • MR-200 Polymethylene Phenylene Polyisocyanate manufactured by Nippon Polyuretan
  • Cyclic borate compound (L) 2, 2 'monooxybis (5, 5'-dimethyl 3, 2-dioxaborinane)
  • Bisphenol A type epoxy resin (AER-2603 manufactured by Asahi Kasei Chemicals) 15 parts, phenol novolac resin (trade name “BRG-558” manufactured by Showa Polymer Co., Ltd.), synthetic rubber (trade name manufactured by Nippon Zeon Co., Ltd.) 4 parts of “Nipol 1072” (weight average molecular weight 300,000) were dissolved in 20 parts of a 1: 1 (by weight) mixed solvent of methyl ethyl ketone and butylcetosolve acetate. In this solution, 74 parts of silver powder was mixed and further kneaded by a three-roll.
  • Example 2 30 parts of the masterbatch type epoxy resin curing agent F-2 obtained in Example 2 was added and mixed uniformly to obtain a conductive adhesive.
  • a conductive adhesive cast on a polypropylene film having a thickness of 35 m by casting on a polypropylene film having a thickness of 35 m after being cast on a polypropylene film having a thickness of 35 m by drying at 80 ° C. for 60 minutes.
  • the conductive film was transferred to the back side of the silicon wafer on the 80 ° C. heat block.
  • the silicon wafer was fully diced and a semiconductor chip with a conductive adhesive was bonded and cured to the lead frame on a heat block at 200 ° C for 2 minutes, there was no problem with the chip's conductivity.
  • Bisphenol F-type epoxy resin (manufactured by Yuka Shell Epoxy Co., Ltd., trade name “YL98 3U”) 100 parts by weight, 4 parts by weight of dicyandiamide, 100 parts by weight of silica powder, 10 parts by weight of glycidyl ether as diluent 1 part by weight and organic phosphate ester (manufactured by Nippon Gyaku Co., Ltd., trade name “PM-2”) are sufficiently mixed, and further kneaded with three rolls. Furthermore, 30 parts of the masterbatch type epoxy resin curing agent F-2 obtained in Example 2 was added to it and mixed evenly, and vacuum defoaming and centrifugal defoaming were performed to obtain insulating properties. A paste was manufactured. The obtained insulating paste was used as an insulating paste when a semiconductor chip was bonded to a resin substrate by heating and curing at 200 ° C. for 1 hour.
  • Phenoxy resin (trade name “YP-50” manufactured by Tohto Kasei Co., Ltd.) 180 parts by weight, Talesol novolac epoxy resin (epoxy equivalent 200 gZeq, product name “EOCN-1020—80” manufactured by Nippon Kayaku Co., Ltd.) 40 Parts by weight, spherical silica (average particle size: 2 m, Admatech Corporation) Company product, trade name SE-5101) 300 parts by weight and 200 parts by weight of methyl ethyl ketone were mixed and dispersed uniformly, and then the masterbatch type epoxy resin hardener obtained in Example 1 F — Add 250 parts by weight of 1 and stir and mix to obtain a solution containing the epoxy resin composition.
  • Talesol novolac epoxy resin epoxy equivalent 200 gZeq, product name “EOCN-1020—80” manufactured by Nippon Kayaku Co., Ltd.
  • spherical silica average particle size: 2 m, Admatech Corporation Company product, trade name SE-510
  • the resulting solution is applied onto polyethylene terephthalate that has been subjected to mold release treatment so that the thickness after drying is 50 m, and is heated and dried in a hot-air circulating dryer to provide insulation for semiconductor bonding.
  • a characteristic film was obtained. Obtained insulating film for semiconductor bonding
  • the obtained epoxy resin composition was applied to an lcm square on a printed wiring board so as to have a thickness of 60 m, and was semi-cured by heating at 110 ° C. for 10 minutes. After that, place the silicon chip with a thickness of 370 m and 1 cm square on the semi-cured epoxy resin composition, cover the load and keep the bump and chip electrodes in contact with each other at 220 ° C for 1 hour. Complete curing treatment was performed.
  • the obtained sealing material comprising the epoxy resin composition was useful without any problem in appearance and chip conduction.
  • Example 1 30 parts of epoxy resin (M), 30 parts of YP-50 as phenoxy resin (manufactured by Tohto Kasei), 50 parts of a methyl ethyl ketone solution (trade name “COMPOCERAN E103”, manufactured by Ara 11 Chemical Industry Co., Ltd.) of a silane-modified epoxy resin containing oxy group, and a masterbatch type epoxy resin obtained in Example 1
  • a solution was prepared by adding 30 parts of fat curing agent F-1 and diluting to 50% by weight with methyl ethyl ketone.
  • the prepared solution is applied on a release PET (polyethylene terephthalate) film (SG-1 manufactured by Panac Co., Ltd.) using a roll coater, dried and cured at 150 ° C for 15 minutes, and then released.
  • a semi-cured resin (dry film) film thickness of 100 m was prepared. These dry films were heat-pressed on the above copper-clad laminate at 120 ° C for 10 minutes at 6 MPa, then returned to room temperature, the release film was removed, and cured at 200 ° C for 2 hours.
  • a useful material was obtained as a coating material for interlayer insulation.
  • Bisphenol A-type epoxy resin (AER6091, manufactured by Asahi Kasei Chemicals Co., Ltd., 80 gZeq) 30 parts by weight of titanium dioxide and 70 parts by weight of talc are blended into a mixture of MIBKZ xylene as a mixed solvent. Add weight part, stir and mix to make main ingredient. By adding 30 parts by weight of the masterbatch type epoxy resin curing agent F-1 obtained in Example 1 and dispersing it uniformly, a useful epoxy coating composition was obtained.
  • AER6091 manufactured by Asahi Kasei Chemicals Co., Ltd., 80 gZeq
  • a CF cloth made by Mitsubishi Rayon (model number: TR3110, basis weight 200 g / m 2 ) made of plain weave with 12.5 Z inches of carbon fiber with a modulus of 24 ton Zmm 2 is layered on this resin film.
  • the polypropylene film is overlaid and passed between roll pairs with a surface temperature of 90 ° C.
  • a pre-preda was produced.
  • the content of rosin was 45% by weight.
  • the obtained prepredder is further laminated with the fiber direction aligned, and molded under a curing condition of 150 ° CX for 1 hour to obtain an FRP molded product with carbon fibers as reinforcing fibers.
  • the prepared prepredder is useful.
  • a semiconductor chip (1.5 mm square, 0.8 mm thickness) was mounted on a Cu lead frame, and heat cured at 150 ° C for 30 minutes to obtain a sample for evaluation. It was.
  • an epoxy resin composition that provides a cured product having both curability and storage stability, and also having well-balanced properties such as electrical properties, mechanical strength, heat resistance, and moisture resistance. It is done.
  • the masterbatch type epoxy resin curing agent composition using the microcapsule type epoxy resin curing agent of the present invention includes an adhesive, a sealing material, a filler, an insulating material, a conductive material, a pre-preda, and a film. Adhesive, anisotropic conductive film, anisotropic conductive paste, insulation Excellent performance as adhesive films, insulating adhesive pastes, underfill materials, potting materials, die bonding materials, conductive pastes, solder resists, and heat conductive materials.

Abstract

 本発明は、高い硬化性と貯蔵安定性を両立し得る一液性エポキシ樹脂組成物およびそれを得るための潜在性硬化剤、そして、貯蔵安定性・耐溶剤性・耐湿性が高く、低温あるいは短時間の硬化条件であっても、高い接続信頼性、接着強度、高い封止性が得られる異方導電材料、導電性接着材料、絶縁接着材料、封止材料等を提供することを課題とする。本発明は、エポキシ樹脂用硬化剤(A)が、1質量%以上95質量%未満が低分子2官能脂肪族イソシアネート化合物であるイソシアネート成分(b1)と活性水素化合物(b2)の反応により得られた皮膜(c1)で被覆されたエポキシ樹脂用潜在性硬化剤、およびそれを用いた一液性エポキシ樹脂組成物に関する。

Description

明 細 書
エポキシ樹脂用潜在性硬化剤およびエポキシ樹脂組成物
技術分野
[0001] 本発明は新規なエポキシ榭脂用潜在性硬化剤およびそれを用いた一液性ェポキ シ榭脂組成物に関する。さら〖こ詳しくは、硬化性と潜在性が高い上に、貯蔵安定性 · 耐溶剤性 ·耐湿性にも優れた組成物を与えるエポキシ榭脂組成物用潜在性硬化剤 およびそれを用 、た一液性エポキシ榭脂組成物に関する。
背景技術
[0002] エポキシ榭脂は、その硬化物が、機械的特性、電気的特性、熱的特性、耐薬品性 、接着性等の点で優れた性能を有することから、塗料、電気電子用絶縁材料、接着 剤等の幅広!/ヽ用途に利用されて!ヽる。現在一般に使用されて!ヽるエポキシ榭脂組成 物は、使用時にエポキシ榭脂と硬化剤の二液を混合する、いわゆる二液性のもので ある。
[0003] 二液性エポキシ榭脂組成物は室温で硬化しうる反面、エポキシ榭脂と硬化剤を別 々に保管し、必要に応じて両者を計量、混合した後、使用する必要があるため、保管 や取り扱いが煩雑である。
その上、可使用時間が限られているため、予め大量に混合しておくことができず、 配合頻度が多くなり、能率の低下を免れない。
[0004] こうした二液性エポキシ榭脂配合品の問題を解決する目的で、これまで 、くつかの 一液性エポキシ榭脂組成物が提案されてきている。例えば、ジシアンジアミド、 BF -
3 アミン措体、アミン塩、変性イミダゾールイ匕合物等の潜在性硬化剤をエポキシ榭脂に 配合したものがある。
しかし、これらの潜在性硬化剤は、貯蔵安定性に優れているものは、硬化性が低く 、硬化に高温または長時間必要であり、一方、硬化性が高い物は貯蔵安定性が低く 、例えば— 20°C等の低温で貯蔵する必要がある。例えば、ジシアンジアミドは、配合 品の貯蔵安定性は、常温保存の場合に 6力月以上である力 170°C以上の硬化温度 が必要であり、この硬化温度を低下させるために、硬化促進剤を併用すると、例えば 130°Cでの硬化が可能である力 一方、室温での貯蔵安定性が不十分であり、低温 での貯蔵を余儀なくされ、高!ヽ硬化性と優れた貯蔵安定性を両立し得る組成物が強 く求められていた。また、フィルム状成形品や、基材にエポキシ榭脂を含浸した製品 を得る場合、溶剤や反応性希釈剤等を含む配合品となる場合が多ぐ従来の潜在性 硬化剤をかかる配合品の硬化剤として用いた場合、貯蔵安定性が極端に下がり、実 質的に二液性とする必要がありその改善が求められていた。
[0005] その要求に対し、数多くの研究がなされ、例えば、特許文献 1、特許文献 2、特許文 献 3にイソシァネートイ匕合物の反応物により表面が被覆されたエポキシ榭脂用硬化 剤が記載されている。
しかし近年、特に電子機器分野において、回路の高密度化や接続信頼性の向上 に対応するため、またモパイル機器の軽量化として耐熱性の低い材料を使用するた めに、あるいは生産性を大幅に改善する目的で、接続材料の一つとして用いられる 一液性エポキシ榭脂組成物に対して、貯蔵安定性を損なわずに、速硬化性ゃ耐溶 剤性、硬化剤分散性などの一層の向上が強く求められ、従来技術ではその達成は 困難であった。
[0006] 特許文献 1:特開昭 61— 190521号公報
特許文献 2:特開平 1― 70523号公報
特許文献 3:特開平 11— 193344号公報
発明の開示
発明が解決しょうとする課題
[0007] 本発明は、高 、硬化性と貯蔵安定性を両立し得る一液性エポキシ榭脂組成物およ びそれを得るための潜在性硬化剤、そして、貯蔵安定性 '耐溶剤性'耐湿性が高ぐ 低温あるいは短時間の硬化条件であっても、高い接続信頼性、接着強度、高い封止 性が得られる接着材料、導電材料、絶縁材料、封止材料、コーティング材料、塗料組 成物、プリプレダ、構造用接着剤、熱伝導性材料等を提供することを目的とする。 課題を解決するための手段
[0008] 本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、特定構造の皮膜で 被覆されたエポキシ榭脂用潜在性硬化剤が上記目的に適合しうることを見出し、本 発明をなすに至った。
即ち、本発明は、下記の通りである。
1)エポキシ榭脂用硬化剤 (A)および該エポキシ榭脂用硬化剤 (A)を被覆する榭 脂を含むエポキシ榭脂用潜在性硬化剤であって、該エポキシ榭脂用硬化剤 (A)を 被覆する榭脂が、その主鎖構造において、エステル結合を含まない直鎖状または環 状の低分子脂肪族炭化水素基を介して 2つの窒素原子を持つ構造 (構造 ( 1) )から なり、該構造(1)の少なくとも 1つの窒素原子がゥレア結合を形成した構造を有するェ ポキシ榭脂用潜在性硬化剤。
2)エポキシ榭脂用硬化剤 (A)および該エポキシ榭脂用硬化剤 (A)を被覆する榭 脂を含むエポキシ榭脂用潜在性硬化剤であって、該エポキシ榭脂用硬化剤 (A)を 被覆する榭脂が、その主鎖構造において、ウレタン結合を形成する酸素原子以外の 酸素原子を含まない直鎖状または環状の低分子脂肪族炭化水素基を介して 2つの 窒素原子を持つ構造 (構造(1) )からなり、該構造(1)の少なくとも 1つの窒素原子が ゥレア結合を形成した構造を有する 1)に記載のエポキシ榭脂用潜在性硬化剤。
3)エポキシ榭脂用硬化剤 (A)が、 1質量%以上 95質量%以下の低分子 2官能脂 肪族イソシァネートイ匕合物を含むイソシァネート成分 (bl)と活性水素化合物 (b2)の 反応により得られた皮膜 (cl)で被覆されたことを特徴とする 1)又は 2)に記載のェポ キシ榭脂用潜在性硬化剤。
4)イソシァネート成分 (bl)が 1質量%以上 95質量%以下の低分子 2官能脂肪族 イソシァネート化合物 (bl— 1)と 5質量%以上 99質量%以下の芳香族イソシァネー ト化合物 (bl— 2)とからなることを特徴とする 3)に記載のエポキシ榭脂用潜在性硬 化剤 Q
5)皮膜 (cl)力 波数 1630cm―1〜 1680cm 1の赤外線を吸収する結合基 (x)と波
は 4)に記載のエポキシ榭脂用潜在性硬化剤。
6)エポキシ榭脂用硬化剤 (A)が、アミンァダクト (a)と低分子アミン化合物(e)を主 成分とするアミン系硬化剤からなる 1)〜5)のいずれか〖こ記載のエポキシ榭脂用潜在 性硬化剤。 7)アミンァダクト(a)がエポキシ榭脂 (al)とアミンィ匕合物(a2)との反応により得られ ることを特徴とする 6)に記載のエポキシ榭脂用潜在性硬化剤。
8)低分子アミン化合物(e)力イミダゾール類であることを特徴とする 6)又は 7)に記 載のエポキシ榭脂用硬化剤。
9) 1)〜8)のいずれかに記載のエポキシ榭脂用硬化剤および Zまたはエポキシ榭 脂用潜在性硬化剤をコアとし、エポキシ榭脂用硬化剤 (A)とエポキシ榭脂 (C)の反 応生成より得られたシェル (c2)で被覆した、波数 leso iesocm 1の赤外線を吸 収する結合基 (X)と波数 1680〜 1725cm 1の赤外線を吸収する結合基 (y)を少なく とも表面に有することを特徴とするマイクロカプセル型エポキシ榭脂用硬化剤。
10) 1)〜8)のいずれか〖こ記載のエポキシ榭脂用潜在性硬化剤および Zまたは 9) に記載のマイクロカプセル型エポキシ榭脂用硬化剤 (D)のエポキシ榭脂用硬化剤 1 00重量部に対して 10〜50000重量部のエポキシ榭脂 (E)を配合したことを特徴と するマスターバッチ型エポキシ榭脂用硬化剤組成物。
11) 10)記載のマスターバッチ型エポキシ榭脂用硬化剤組成物 (F)の全塩素量が 2500ppm以下であることを特徴とするマスターバッチ型エポキシ榭脂用硬化剤組成 物。
12)エポキシ榭脂 (Ε)の全塩素量が 2500ppm以下であることを特徴とする 10)ま たは 11)に記載のマスターバッチ型エポキシ榭脂用硬化剤組成物。
13)エポキシ榭脂 (E)のジオール末端不純成分が、エポキシ榭脂 (E)の基本構造 成分の 0. 001〜30質量0 /0であることを特徴とする 10)〜12)のいずれかに記載のマ スターバッチ型エポキシ樹脂用硬化剤組成物。
14) 1)〜13)のいずれか〖こ記載のエポキシ榭脂用潜在性硬化剤および Zまたは マイクロカプセル型エポキシ榭脂用硬化剤 (D)、および Zまたはマスターバッチ型ェ ポキシ榭脂用硬化剤組成物 (F)と、環状ホウ酸エステルイ匕合物 (L)を同時に配合し たエポキシ榭脂組成物。
15)前記の環状ホウ酸エステルイ匕合物(L)が、 2, 2'—ォキシビス(5, 5'—ジメチ ルー 1, 3, 2—ジォキサボリナン)である 14)に記載のエポキシ榭脂組成物。
16) 14)および Zまたは 15)に記載の環状ホウ酸エステル化合物 (L)の配合量が、 1)〜13)のいずれか〖こ記載のエポキシ榭脂用潜在性硬化剤および Zまたはマイク 口カプセル型エポキシ榭脂用硬化剤 (D)、および Zまたはマスターバッチ型ェポキ シ榭脂用硬化剤組成物 (F)の総量 100質量部に対して 0. 001〜10質量部である 1 4)又は 15)に記載のエポキシ榭脂組成物。
17)エポキシ榭脂 (J) 100質量部に対して、 1)〜 13)のいずれかに記載のエポキシ 榭脂用潜在性硬化剤および Zまたはマイクロカプセル型エポキシ榭脂用硬化剤 (D) 、および Zまたはマスターバッチ型エポキシ榭脂用硬ィ匕剤組成物(F)を 0. 001-10 00質量部含有し、それらを主成分とすることを特徴とするエポキシ榭脂組成物。
18) 17)記載のエポキシ榭脂組成物 100質量部に対して、環状ホウ酸エステルイ匕 合物 (L)を 0. 001〜10質量部配合したことを特徴とするエポキシ榭脂組成物。
19)前記の環状ホウ酸エステルイ匕合物(L)が、 2, 2'—ォキシビス(5, 5'—ジメチ ルー 1, 3, 2—ジォキサボリナン)である 18)に記載のエポキシ榭脂組成物。
20)酸無水物類、フエノール類、ヒドラジド類、およびグァ-ジン類よりなる群より選 ばれる少なくとも 1種の硬化剤 (K)を 1〜200質量部と、 1)〜13)のいずれかに記載 のエポキシ榭脂用潜在性硬化剤および Zまたはマイクロカプセル型エポキシ榭脂用 硬化剤 (D)および Zまたはマスターバッチ型エポキシ榭脂用硬化剤組成物 (F)を、 0. 1〜200質量部を含有し、それらを主成分とするエポキシ榭脂組成物。
21) 20)記載のエポキシ榭脂組成物 100質量部に対して、環状ホウ酸エステルイ匕 合物 (L)を 0. 001〜10質量部配合したことを特徴とするエポキシ榭脂組成物。
22)前記の環状ホウ酸エステルイ匕合物(L)が、 2, 2'—ォキシビス(5, 5'—ジメチ ルー 1, 3, 2—ジォキサボリナン)である 21)に記載のエポキシ榭脂組成物。
23)前記 10)〜22)のいずれかに記載のマスターバッチ型エポキシ榭脂用硬ィ匕剤 組成物および Zまたはエポキシ榭脂組成物を含有することを特徴とするペースト状 組成物。
24)前記 10)〜22)のいずれかに記載のマスターバッチ型エポキシ榭脂用硬ィ匕剤 組成物および Zまたはエポキシ榭脂組成物を含有することを特徴とするフィルム状組 成物。
25)前記 14)〜22) V、ずれか〖こ記載のエポキシ榭脂組成物を含有することを特徴 とする接着剤。
26)前記 14)〜22) V、ずれか〖こ記載のエポキシ榭脂組成物を含有することを特徴 とする接合用ペースト。
27)前記 14)〜22) V、ずれか〖こ記載のエポキシ榭脂組成物を含有することを特徴 とする接合用フィルム。
28)前記 14)〜22) V、ずれか〖こ記載のエポキシ榭脂組成物を含有することを特徴 とする導電性材料。
29)前記 14)〜22)の ヽずれかに記載のエポキシ榭脂組成物を含有することを特 徴とする異方導電性材料。
30)前記 14)〜22)の 、ずれかに記載のエポキシ榭脂組成物を含有することを特 徴とする異方導電性フィルム。
31)前記 14)〜22)のいずれかに記載のエポキシ榭脂組成物を含有することを特 徴とする絶縁性材料。
32)前記 14)〜22)の ヽずれかに記載のエポキシ榭脂組成物を含有することを特 徴とする封止材料。
33)前記 14)〜22)の ヽずれかに記載のエポキシ榭脂組成物を含有することを特 徴とするコーティング用材料。
34)前記 14)〜22)の ヽずれかに記載のエポキシ榭脂組成物を含有することを特 徴とする塗料組成物。
35)前記 14)〜22)の 、ずれかに記載のエポキシ榭脂組成物を含有することを特 徴とするプリプレダ。
36)前記 14)〜22)の ヽずれかに記載のエポキシ榭脂組成物を含有することを特 徴とする熱伝導性材料。
発明の効果
[0010] 本発明の潜在性硬化剤は、高 ヽ貯蔵安定性と硬化性を有しながら、保存安定性、 耐溶剤性、耐湿性、分散性に効果を有する。
発明を実施するための最良の形態
[0011] 本発明について、以下具体的に説明する。 本発明のエポキシ榭脂用潜在性硬化剤は、少なくとも 1つの窒素原子がゥレア結合 を形成した 2つの窒素原子が、その主鎖構造において、エステル結合を有しない、直 鎖状または環状の低分子脂肪族炭化水素基を介して結合した構造 (1)を有する榭 脂で被覆されて ヽることを特徴とする。
[0012] 本発明おいて、ゥレア結合に含まれる窒素原子から、同一分子鎖に存在する別の 窒素原子まで間の主鎖構造における、エステル結合を有しない、直鎖状または環状 の低分子脂肪族炭化水素基において、当該ウレァ結合力 別の窒素原子までの分 子鎖に含まれる炭素数は、 1〜18であることが好ましい。炭素数が 18より大きいと保 存安定性、硬化剤の分散性、耐湿性が十分発現されないことがあり、そのような観点 力も好ましい炭素数は 1〜12、より好ましくは 1〜9である。ここでいう主鎖構造とは、 ゥレア結合を含む窒素原子を含めた 2つの窒素原子の間を結ぶ構造鎖において、分 岐点ではない側鎖以外の構造を指す。また、分岐点により発生する構造とは、分岐 点より先に窒素原子を含む結合構造を含有する構造鎖のことを指す。
[0013] また、エポキシ榭脂用硬化剤 (A)を被覆する榭脂が、硬化剤の表面を効率よく被 覆するためには、少なくとも 1つの窒素原子がゥレア結合を形成した、その主鎖構造 にエステル結合を有しな 、、直鎖状または環状の低分子脂肪族炭化水素基を介して 結合する構造を有する化合物が有する窒素原子は、 2つであることを特徴とする。窒 素原子が 3つ以上有する化合物では、それぞれの窒素原子を有する官能基の反応 性が異なることから、硬化剤表面を被覆する榭脂の形成反応の制御が困難となり、貯 蔵安定性や耐湿性、硬化剤の分散性を損なうことがある。
[0014] また、本発明は、 2つの窒素原子が直鎖状または環状の低分子脂肪族炭化水素基 を介して結合する構造(1)を有するが、同一分子鎖に存在する別の窒素原子までの 間の主鎖構造にウレタン結合を形成する酸素原子以外の酸素原子を含まないことを 特徴とする。このような構造として存在するものの例としては、エステル構造、エーテ ル構造などがあげられる。これらの構造を有する場合、保存安定性、耐溶剤性、耐湿 性が十分に発現されない。
ここで、構造(1)に属する 2つの窒素原子のうち、ゥレア結合を形成するもの以外の 窒素原子がウレタン結合およびピウレット結合力 選ばれるいずれかの結合を形成し ている場合、 2つ以上の窒素原子に結合された芳香族化合物との間に結合を形成す る構造や、後述する活性水素化合物 (b2)に由来する構造と結合していてもよい。
[0015] 構造(1)の例としては、ゥレア結合から 6個のメチレン鎖を経て当該窒素原子とは別 の窒素原子に結合し、ゥレア結合またはウレタン結合またはビウレット結合により他の 分子鎖と結合する構造;
ウレァ結合力 6個のメチレン鎖を介して当該窒素原子とは別の窒素原子に結合す るまでの間に、 1個の 2級または 3級炭素、 2個のメチル基を有する構造;
ゥレア結合から当該窒素原子とは別の窒素原子に結合する間での間にシクロへキ シル環を介し、該シクロへキシル環に直接、またはメチレン鎖を介して当該ウレァ結 合、および別の窒素原子が結合して 、る構造等が例示される。
[0016] 2つ以上の窒素原子に結合された芳香族化合物の構造の例としては、ベンゼン環 のオルト位、メタ位、パラ位のいずれかのうちの 2つ以上に窒素原子が結合している 構造;
2つ以上のベンゼン環カ^チレン鎖を介して結合し、メチレン鎖に対してそれぞれの ベンゼン環のオルト位、メタ位、パラ位のいずれかに窒素原子が結合した構造などが 例示できる。
[0017] 本発明の潜在性型硬化剤は、エポキシ榭脂用硬化剤 (A)をイソシァネートイ匕合物( bl)と活性水素化合物 (b2)の反応により得られた皮膜 (cl)で被覆されたことを特徴 とする。
[0018] 該エポキシ榭脂用硬化剤を被覆している皮膜 (cl)は、波数 1630〜1680cm 1の 赤外線を吸収する結合基 (X)と波数 ΙδδΟ ΙΥΖδοπ 1の赤外線を吸収する結合基 (y)を有するものが、貯蔵安定性と反応性のバランスの観点から好まし 、。
結合基 (X)と結合基 (y)は、フーリエ変換式赤外分光光度計 (FT— IRと称す)を用 いて測定することができる。結合基 (X)のうち、特に有用なものとして、ゥレア結合を挙 げることができる。結合基 (y)のうち、特に有用なものとして、ビュレット結合を挙げるこ とができる。更に、得られた皮膜は、波数が 1730〜1755cm 1の赤外線を吸収する 結合基 (z)を有することが好ま 、。結合基 (z)としてはウレタン結合が特に好ま 、 [0019] 本発明で用いられるエポキシ榭脂用硬化剤 (A)としては、アミン系硬化剤、無水フ タル酸、無水へキサヒドロフタル酸、無水テトラヒドロフタル酸、メチルナジック酸等の 酸無水物系硬化剤、フエノールノボラック、クレゾ一ルノボラック、ビスフエノール Aノボ ラック等のフエノール系硬化剤、プロピレングリコール変性ポリメルカプタン、トリメチロ ールプロパンのチォダルコン酸エステル、ポリスルフイド榭脂等のメルカプタン系硬化 剤、トリフルォロボランのェチルァミン塩等のハロゲン化ホウ素塩系、 1、 8 ジァザビ シクロ(5, 4, 0) ゥンデセン 7のフエノール塩等の四級アンモ-ゥム塩系硬化剤、 3 フエ-ル— 1 , 1ジメチルゥレア等の尿素系硬化剤、トリフエ-ルホスフィン、テトラ フエ-ルホスホ-ゥム、テトラフエ-ルポレート等のホスフィン系硬化剤等の化合物が 例示され、アミン系硬化剤が低温硬化性と貯蔵安定性に優れており好まし ヽ。
[0020] 本発明で用いられるエポキシ榭脂用硬化剤 (A)は、アミンァダクト (a)と低分子アミ ン化合物(e)を主成分とするアミン系硬化剤からなることを特徴とする。
[0021] アミンァダクト(a)の説明を行う。
アミンァダクト(a)は、カルボン酸ィ匕合物、スルホン酸ィ匕合物、イソシァネートイ匕合物 、尿素化合物およびエポキシ榭脂 (al)からなる群より選ばれる少なくとも 1種の化合 物とアミンィ匕合物(a2)とを反応して得られるアミノ基を有する化合物である。アミンァ ダクト(a)の原料として用いられる、カルボン酸ィ匕合物、スルホン酸ィ匕合物、イソシァ ネート化合物、尿素化合物およびエポキシ榭脂 (al)を下記に示す。
[0022] カルボン酸化合物としては、例えば、コハク酸、アジピン酸、セバシン酸、フタル酸、 ダイマー酸等が挙げられる。
スルホン酸化合物としては、例えば、エタンスルホン酸、 p トルエンスルホン酸等 が挙げられる。
イソシァネートイ匕合物としては、例えば、脂肪族ジイソシァネート、脂環式ジイソシァ ネート、芳香族ジイソシァネート、脂肪族トリイソシァネート、ポリイソシァネートを挙げ ることができる。脂肪族ジイソシァネートの例としては、エチレンジイソシァネート、プロ ピレンジイソシァネート、ブチレンジイソシァネート、へキサメチレンジイソシァネート、 トリメチルへキサメチレンジイソシァネート等を挙げることができる。脂環式ジイソシァ ネートの例としては、イソホロンジイソシァネート、 4—4'ージシクロへキシノレメタンジィ ソシァネート、ノルボルナンジイソシァネート、 1, 4 イソシアナトシクロへキサン、 1, 3 ビス(イソシアナトメチル)一シクロへキサン、 1, 3 ビス(2—イソシアナトプロピル 2ィル)ーシクロへキサン等を挙げることができる。芳香族ジイソシァネートの例とし ては、トリレンジイソシァネート、 4, 4'ージフエ-ノレメタンジイソシァネート、キシレンジ イソシァネート、 1, 5 ナフタレンジイソシァネート等を挙げることができる。脂肪族トリ イソシァネートの例としては、 1, 3, 6 トリイソシァネートメチルへキサン、 2, 6 ジィ ソシアナトへキサン酸 2—イソシアナトェチル等を挙げることができる。ポリイソシァ ネートとしては、ポリメチレンポリフエ二ルポリイソシァネートや上記ジイソシァネートイ匕 合物より誘導されるポリイソシァネートが例示される。上記ジイソシァネートより誘導さ れるポリイソシァネートとしては、イソシァヌレート型ポリイソシァネート、ビュレット型ポ リイソシァネート、ウレタン型ポリイソシァネート、アロハネート型ポリイソシァネート、力 ルボジイミド型ポリイソシァネート等がある。
尿素化合物としては、例えば、尿素、メチル尿素、ジメチル尿素、ェチル尿素、 t ブチル尿素等が挙げられる。
エポキシ榭脂 (al)としては、モノエポキシ化合物、多価エポキシ化合物の!/、ずれか 又はそれらの混合物が用いられる。モノエポキシィ匕合物としては、ブチルダリシジル エーテル、へキシルグリシジルエーテル、フエ-ルグリシジルエーテル、ァリルグリシ ジルエーテル、パラー tert ブチルフエ-ルグリシジルエーテル、エチレンォキシド、 プロピレン才キシド、パラキシリノレグリシジノレエーテノレ、グリシジノレアセテート、グリシジ ルブチレート、グリシジルへキソエート、グリシジルベンゾエート等を挙げることができ る。 多価エポキシ化合物としては、例えば、ビスフエノール A、ビスフエノール F、ビス フエノール AD、ビスフエノール S、テトラメチルビスフエノール A、テトラメチルビスフエ ノール F、テトラメチルビスフエノール AD、テトラメチルビスフエノール S、テトラブロモ ビスフエノール A、テトラクロ口ビスフエノール A、テトラフルォロビスフエノール A等のビ スフエノール類をグリシジル化したビスフエノール型エポキシ榭脂;ビフエノール、ジヒ ドロキシナフタレン、 9, 9 ビス(4 ヒドロキシフエ-ル)フルオレン等のその他の 2価 フエノール類をグリシジル化したエポキシ榭脂; 1 , 1 , 1 トリス(4 -ヒドロキシフエ- ル)メタン、 4, 4 (1— (4一(1— (4ーヒドロキシフエ-ル) 1ーメチルェチル)フエ -ル)ェチリデン)ビスフエノール等のトリスフエノール類をグリシジル化したエポキシ 榭脂; 1, 1, 2, 2, —テトラキス(4 ヒドロキシフエ-ル)ェタン等のテトラキスフエノー ル類をグリシジル化したエポキシ榭脂;フエノールノボラック、クレゾ一ルノボラック、ビ スフエノール Aノボラック、臭素化フエノールノボラック、臭素化ビスフエノール Aノボラ ック等のノボラック類をグリシジルイ匕したノボラック型エポキシ榭脂等;多価フエノール 類をグリシジルイ匕したエポキシ榭脂、グリセリンやポリエチレングリコール等の多価ァ ルコールをダリシジルイ匕した脂肪族エーテル型エポキシ榭脂; p ォキシ安息香酸、 β ォキシナフトェ酸等のヒドロキシカルボン酸をグリシジル化したエーテルエステル 型エポキシ榭脂;フタル酸、テレフタル酸のようなポリカルボン酸をグリシジル化したェ ステル型エポキシ榭脂; 4, 4—ジアミノジフエ-ルメタンや m—ァミノフエノール等のァ ミンィ匕合物のグリシジルイ匕物ゃトリグリシジルイソシァヌレート等のアミン型エポキシ榭 脂等のグリシジル型エポキシ榭脂と、 3, 4 エポキシシクロへキシルメチルー 3 ' , 4, エポキシシクロへキサンカルボキシレート等の脂環族ェポキサイド等が例示される
[0024] アミンァダクト(a)の原料として用いられる、カルボン酸化合物、スルホン酸化合物、 イソシァネートイ匕合物、尿素化合物およびエポキシ榭脂(al)のうち、エポキシ榭脂(a 1)が高 、硬化性と貯蔵安定性に優れており好ま ヽ。
エポキシ榭脂 (al)としては、エポキシ榭脂組成物の貯蔵安定性を高めることができ るので、多価エポキシィ匕合物が好ましい。多価エポキシィ匕合物としては、アミンァダク ト(a)の生産性が圧倒的に高いので、グリシジル型エポキシ榭脂が好ましぐより好ま しくは、硬化物の接着性や耐熱性が優れるため多価フエノール類をグリシジルイ匕した エポキシ榭脂であり、更に好ましくはビスフエノール型エポキシ榭脂である。ビスフエノ ール Aをグリシジル化したエポキシ榭脂とビスフエノール Fをグリシジル化したェポキ シ榭脂が一層好ま 、。ビスフエノール Aをグリシジルイ匕したエポキシ榭脂が更に一 層好まし 、。これらエポキシ榭脂は単独で使用しても併用しても良 、。
[0025] エポキシ榭脂 (al)の全塩素量は、硬化性と貯蔵安定性のバランスの取れたェポキ シ榭脂組成物を得るためには、 2500ppm以下が好ま 、。
より好ましくは 2000ppm以下であり、より好ましくは 1500ppm以下であり、より好ま しくは 800ppm以下であり、より好ましくは 400ppm以下であり、より好ましくは 180pp m以下であり、より好ましくは lOOppm以下であり、より好ましくは 80ppm以下であり、 さらに好ましくは 50ppm以下である。
[0026] 本発明にお ヽて全塩素量とは、化合物中に含まれる有機塩素及び無機塩素の総量 のことであり、化合物に対する質量基準の値である。全塩素量は、つぎの方法により 測定されて得られる。エポキシ榭脂組成物を、キシレンを用いて、エポキシ榭脂が無 くなるまで洗浄と濾過を繰り返す。次にろ液を 100°C以下で減圧留去し、エポキシ榭 脂を得る。得られたエポキシ榭脂試料 l〜10gを滴定量が 3〜7mlになるよう精秤し、 25mlのエチレングリコールモノブチルエーテルに溶解し、これに 1規定 KOHのプロ ピレンダリコール溶液 25mlをカ卩えて 20分間煮沸したのち、硝酸銀水溶液で滴定した 滴定量より計算して得られる。
[0027] 全塩素量が 2500ppm以下のエポキシ榭脂(al)を用いることにより、硬化反応性の 高 、硬化剤を得ることができる。
[0028] また、シェル形成反応のコントロールを容易にするためには全塩素量は、 0. Olpp m以上が好ましい。より好ましくは 0. 02ppm以上であり、より好ましくは 0. 05ppm以 上であり、より好ましくは 0. lppm以上であり、より好ましくは 0. 2ppm以上であり、さ らに好ましくは 0. 5ppm以上である。全塩素量が 0. lppm以上であることにより、シェ ル形成反応が硬化剤表面で効率よく行われ、貯蔵安定性に優れたシェルを得ること ができる。硬化剤のたとえば、全塩素量の好ましい範囲は 0. lppm以上 200ppm以 下であり、より好ましい範囲は 0. 2ppm以上 80ppm以下であり、より好ましい範囲は 0. 5ppm以上 50ppm以下である。
[0029] 全塩素の内、 1、 2—クロロヒドリン基に含まれる塩素は一般に加水分解性塩素と呼ば れるが、また、アミンァダクトの原料として用いられるエポキシ榭脂中の加水分解性塩 素量は、好ましくは 50ppm以下、より好ましくは 0. 01力も 20ppm、更に好ましくは、 0. 05力 1 Oppmである。加水分解性塩素は、つぎの方法により測定されて得られ る。試料 3gを 50mlのトルエンに溶解し、これに 0. 1規定 KOHのメタノール溶液 20m 1を加えて 15分間煮沸した後、硝酸銀水溶液で滴定した滴定量より計算して得られる 加水分解性塩素量が 50ppm以下で、高 、硬化性と貯蔵安定性の両立に対し有利 であり、優れた電気特性を示し好ましい。
[0030] アミンィ匕合物(a2)としては、少なくとも 1個の一級アミノ基および Zまたは二級アミノ 基を有するが三級アミノ基を有さない化合物と、少なくとも 1個の三級アミノ基と少なく とも 1個の活性水素基を有する化合物が挙げられる。
[0031] 少なくとも 1個の一級アミノ基および Zまたは二級アミノ基を有するが三級アミノ基を 有さない化合物としては、例えば、メチルァミン、ェチルァミン、プロピルァミン、プチ ノレアミン、エチレンジァミン、プロピレンジァミン、へキサメチレンジァミン、ジエチレント リアミン、トリエチレンテトラミン、エタノールァミン、プロパノールァミン、シクロへキシル ァミン、イソホロンジァミン、ァニリン、トノレイジン、ジアミノジフエ二ノレメタン、ジアミノジ フエニルスルホン等の三級アミノ基を有さない第一アミン類、例えば、ジメチルァミン、 ジェチルァミン、ジプロピルァミン、ジブチルァミン、ジペンチルァミン、ジへキシルァ ミン、ジメタノールァミン、ジエタノールァミン、ジプロパノールァミン、ジシクロへキシル ァミン、ピぺリジン、ピぺリドン、ジフエ-ルァミン、フエ-ルメチルァミン、フエ-ルェチ ルァミン等の三級アミノ基を有さない第二アミン類を挙げることができる。
[0032] 少なくとも 1個の三級アミノ基と少なくとも 1個の活性水素基を有する化合物におい て、活性水素基としては一級アミノ基、二級アミノ基、水酸基、チオール基、カルボン 酸、ヒドラジド基が例示される。
[0033] 少なくとも 1個の三級アミノ基と少なくとも 1個の活性水素基を有する化合物としては 、例えば、 2—ジメチルァミノエタノール、 1ーメチルー 2—ジメチルァミノエタノール、 1 フエノキシメチルー 2—ジメチルァミノエタノール、 2—ジェチルァミノエタノール、 1 ーブトキシメチルー 2—ジメチルァミノエタノール、メチルジェタノールァミン、トリェタノ ールァミン、 N— βーヒドロキシェチルモルホリン等のァミノアルコール類; 2—(ジメチ ルアミノメチル)フエノール、 2, 4, 6 トリス(ジメチルアミノメチル)フエノール等のアミ ノフエノール類; 2—メチルイミダゾール、 2 ェチルー 4ーメチルイミダゾール、 2 ゥ ンデシルイミダゾール、 2—へプタデシルイミダゾール、 2—フエ-ルイミダゾール、 1 —アミノエチル一 2—メチルイミダゾール、 1— (2 ヒドロキシ一 3 フエノキシプロピ ル) 2—メチルイミダゾール、 1— (2 ヒドロキシ一 3 フエノキシプロピル) 2 ェ チル— 4—メチルイミダゾール、 1— (2 ヒドロキシ— 3 ブトキシプロピル)—2—メチ ルイミダゾール、 1— (2 ヒドロキシ一 3 ブトキシプロピル) 2 ェチル 4—メチ ルイミダゾール等のイミダゾール類; 1— (2 ヒドロキシ— 3 フエノキシプロピル) - 2 —フエ-ノレイミダゾリン、 1— (2 ヒドロキシ一 3 ブトキシプロピル) 2—メチノレイミ ダゾリン、 2—メチルイミダゾリン、 2, 4 ジメチルイミダゾリン、 2 ェチルイミダゾリン、 2 ェチル 4—メチルイミダゾリン、 2 ベンジルイミダゾリン、 2 フエ-ルイミダゾリ ン、 2— (o トリル)—イミダゾリン、テトラメチレン—ビス—イミダゾリン、 1, 1, 3 トリメ チル一 1, 4—テトラメチレン一ビス一イミダゾリン、 1, 3, 3 トリメチル 1, 4—テトラ メチレン一ビス一イミダゾリン、 1, 1, 3 トリメチル 1, 4—テトラメチレン一ビス一 4 —メチルイミダゾリン、 1, 3, 3 トリメチル 1, 4—テトラメチレン一ビス一 4—メチル イミダゾリン、 1, 2 フエ-レン ビス イミダゾリン、 1, 3 フエ-レン ビス イミダ ゾリン、 1, 4 フエ-レン ビス イミダゾリン、 1, 4 フエ-レン ビスー4ーメチノレイ ミダゾリン等のイミダゾリン類、ジメチルァミノプロピルァミン、ジェチルァミノプロピルァ ミン、ジプロピルアミノプロピルァミン、ジブチルァミノプロピルァミン、ジメチルアミノエ チルァミン、ジェチルアミノエチルァミン、ジプロピルアミノエチルァミン、ジブチルアミ ノエチルァミン、 N—メチルビペラジン、 N—アミノエチルピペラジン、ジェチルァミノ ェチルビペラジン等の三級アミノアミン類; 2—ジメチルアミノエタンチオール、 2—メ ルカプトべンゾイミダゾール、 2—メルカプトべンゾチアゾール、 2—メルカプトピリジン 、 4—メルカプトピリジン等のアミノメルカプタン類; N, N ジメチルァミノ安息香酸、 N , N ジメチルグリシン、ニコチン酸、イソニコチン酸、ピコリン酸等のアミノカルボン酸 類; N, N ジメチルグリシンヒドラジド、ニコチン酸ヒドラジド、イソニコチン酸ヒドラジド 等のアミノヒドラジド類を挙げることができる。
[0034] アミンィ匕合物(a2)としては、貯蔵安定性と硬化性のバランスが優れて ヽるので、少 なくとも 1個の三級アミノ基と少なくとも 1個の活性水素基を有する化合物が好ましく、 イミダゾール類が更に好ましぐ 2—メチルイミダゾール、 2 ェチルー 4 メチルイミ ダゾーノレが一層好まし!/ヽ。
[0035] 本発明に用いられるアミンァダクト(a)は、例えばエポキシ榭脂 (al)とアミンィ匕合物(a 2)を、エポキシ榭脂(al)のエポキシ基 1当量に対して、ァミン化合物 (bl)中の活性 水素基が好ましくは 0. 5当量〜 10当量(更に好ましくは 0. 8当量〜 5当量、一層好 ましくは 0. 95当量〜 4当量)の範囲で、必要に応じて溶剤の存在下において、例え ば 50〜250°Cの温度で 0. 1〜10時間反応させることで得られる。
[0036] エポキシ基に対する活性水素基の当量比が 0. 5以上にすることで分子量分布が 7 以下のアミンァダクト(a)を得るのに有利であり、当量比が 10以下で、本発明のェポ キシ榭脂用硬化剤に含まれる低分子アミン化合物 (e)の含量を所望の値にするため に行う、未反応のァミン化合物(a2)の回収が経済的にでき、有利である。
[0037] エポキシ榭脂 (al)とアミンィ匕合物(a2)によりアミンァダクト(a)を得る反応において 、必要に応じて用いられる溶剤としては、例えば、ベンゼン、トルエン、キシレン、シク 口へキサン、ミネラルスピリット、ナフサ等の炭化水素類、アセトン、メチルェチルケトン 、メチルイソブチルケトン等のケトン類、酢酸ェチル、酢酸 n—ブチル、プロピレング リコールモノメチルエーテルアセテート等のエステル類、メタノール、イソプロパノール
、 n—ブタノール、ブチルセ口ソルブ、ブチルカルビトール等のアルコール類、水等で あり、これらの溶剤は併用しても構わない。
[0038] 本発明に用いられるエポキシ榭脂用硬化剤 (A)に含有される低分子アミン化合物( e)は、一級、二級および Zまたは三級アミノ基を有する化合物が挙げられる。これら は併用することができる。
[0039] 一級アミノ基を有する化合物としては、例えば、メチルァミン、ェチルァミン、プロピ ノレアミン、ブチノレアミン、エチレンジァミン、プロピレンジァミン、へキサメチレンジアミ ン、ジエチレントリァミン、トリエチレンテトラミン、エタノールァミン、プロパノールァミン 、シクロへキシルァミン、イソホロンジァミン、ァニリン、トノレイジン、ジアミノジフエニノレメ タン、ジアミノジフエ-ルスルホン等を挙げることができる。
[0040] 二級アミノ基を有する化合物としては、例えば、ジメチルァミン、ジェチルァミン、ジ プロピルァミン、ジブチルァミン、ジペンチルァミン、ジへキシルァミン、ジメタノールァ ミン、ジエタノールァミン、ジプロパノールァミン、ジシクロへキシルァミン、ピぺリジン、 ピぺリドン、ジフエ-ルァミン、フエ-ルメチルァミン、フエ-ルェチルァミン等を挙げる ことができる。
[0041] 三級アミノ基を有する化合物としては、例えば、トリメチルァミン、トリェチルァミン、 ベンジルジメチルァミン、 N, N'—ジメチルピペラジン、トリエチレンジァミン、 1、 8— ジァザビシクロ(5, 4, 0) ゥンデセンー7、 1、 5 ジァザビシクロ(4, 3, 0) ノネン - 5等の三級アミン類; 2 -ジメチルァミノエタノール、 1 メチル - 2-ジメチルァミノ エタノール、 1 フエノキシメチルー 2—ジメチルァミノエタノール、 2—ジェチルァミノ エタノール、 1 ブトキシメチル 2—ジメチルァミノエタノール、メチルジェタノールァ ミン、トリエタノールァミン、 N- β—ヒドロキシェチルモルホリン等のァミノアルコール 類; 2— (ジメチルアミノメチル)フエノール、 2, 4, 6 トリス(ジメチルアミノメチル)フエ ノール等のアミノフエノール類; 2—メチルイミダゾール、 2 ェチルー 4ーメチルイミダ ゾール、 2—ゥンデシルイミダゾール、 2—ヘプタデシルイミダゾール、 2—フエ-ルイ ミダゾール、 1—アミノエチル一 2—メチルイミダゾール、 1— (2 ヒドロキシ一 3 フエ ノキシプロピル) 2—メチルイミダゾール、 1— (2 ヒドロキシ一 3 フエノキシプロピ ル)—2 ェチル—4—メチルイミダゾール、 1— (2 ヒドロキシ— 3 ブトキシプロピ ル)—2—メチルイミダゾール、 1— (2 ヒドロキシ— 3 ブトキシプロピル)—2 ェチ ルー 4 メチルイミダゾール等のイミダゾール類; 1—( 2 ヒドロキシ— 3 フエノキシ プロピル) 2 フエ-ルイミダゾリン、 1— (2 ヒドロキシ一 3 ブトキシプロピル) 2 ーメチルイミダゾリン、 2—メチノレイミダゾリン、 2, 4 ジメチルイミダゾリン、 2 ェチノレ イミダゾリン、 2 ェチル 4—メチルイミダゾリン、 2 ベンジルイミダゾリン、 2—フエ 二ルイミダゾリン、 2—(ο トリノレ) イミダゾリン、テトラメチレン ビス イミダゾリン、 1, 1, 3 トリメチル 1, 4ーテトラメチレン一ビス一イミダゾリン、 1, 3, 3 トリメチル — 1, 4ーテトラメチレン一ビス一イミダゾリン、 1, 1, 3 トリメチル 1, 4ーテトラメチ レン一ビス一 4—メチルイミダゾリン、 1, 3, 3 トリメチル 1, 4ーテトラメチレン一ビ ス一 4—メチノレイミダゾリン、 1, 2 フエ-レン一ビス一イミダゾリン、 1, 3 フエ-レン ビス イミダゾリン、 1, 4 フエ-レン ビス イミダゾリン、 1, 4 フエ-レン ビス —4—メチルイミダゾリン等のイミダゾリン類、ジメチルァミノプロピルァミン、ジェチル ァミノプロピルァミン、ジプロピルアミノプロピルァミン、ジブチルァミノプロピルァミン、 ジメチルアミノエチルァミン、ジェチルアミノエチルァミン、ジプロピルアミノエチルアミ ン、ジブチルアミノエチルァミン、 Ν—メチルビペラジン、 Ν アミノエチルピペラジン、 ジェチルアミノエチルピペラジン等の三級アミノアミン類; 2—ジメチルアミノエタンチ オール、 2—メルカプトべンゾイミダゾール、 2—メルカプトべンゾチアゾール、 2—メル カプトピリジン、 4—メルカプトピリジン等のアミノメルカプタン類; N, N—ジメチルアミ ノ安息香酸、 N, N—ジメチルグリシン、ニコチン酸、イソニコチン酸、ピコリン酸等の アミノカルボン酸類; N, N—ジメチルグリシンヒドラジド、ニコチン酸ヒドラジド、イソ- コチン酸ヒドラジド等のアミノヒドラジド類を挙げることができる。
[0042] 低分子アミン化合物 (e)としては、貯蔵安定性の優れたエポキシ榭脂組成物が得ら れるため、三級アミノ基を有する化合物が好ましぐイミダゾール類が更に好ましぐ 2 ーメチルイミダゾール、 2—ェチルー 4ーメチルイミダゾールがー層好まし!/、。
[0043] 低分子アミン化合物(e)の含有量を 0. 001質量部以上、含有させることにより、シェ ルの形成反応において、緻密なシェルを形成することができ、貯蔵安定性の高いマ イク口カプセル型エポキシ榭脂用硬化剤 (D)を得ることができる。
低分子アミン化合物 (e)の含有量が 10質量部より多く含有すると、潜在性および耐 溶剤性を損なうこととなる。また、溶出した低分子アミンィ匕合物 (e)とエポキシ榭脂 (E) との反応により、凝集物を生成しやすくなり、分散性を損なうこととなる。
[0044] 低分子アミン化合物(e)は、アミンァダクト(a)の製造後にアミンァダクト (a)に混合し ても構わな 、し、アミンァダクト(a)の製造前および Zまたは製造中に混合しても構わ ない。また、アミンァダクト (a)の原料であるアミンィ匕合物(a2)の未反応物を低分子ァ ミンィ匕合物(e) として用いても構わない。
[0045] エポキシ榭脂用硬化剤 (A)の形態としては液状、塊状、顆粒状、粉末状、などが挙 げられる力 好ましくは顆粒状または粉末状であり、さらに好ましくは粉末状である。 本願において粉末状とは、特別に制限するものではないが、 0. 1〜50 /ζ πιの平均粒 径が好ましぐさらに好ましくは 0. 5〜: LO mの平均粒径である。 50 /z m以下にする ことで、均質な硬化物を得ることができる。本発明でいう粒径とは、 光散乱法で測定 されるストークス径を指すものである。また平均粒径は、メディアン径を指すものであ る。また、その形状は特に制限は無ぐ球状、不定形いずれでも良ぐマスターバッチ あるいは一液性エポキシ榭脂組成物の低粘度化のためには、球状が好ましい。ここ で球状とは、真球は勿論の事、不定形の角が丸みを帯びた形状をも包含する。
[0046] 本発明のエポキシ榭脂用硬化剤 (A)の全塩素量は 2500ppm以下が好ま 、。よ り好ましくは 2000ppm以下であり、より好ましくは 1500ppm以下であり、より好ましく は 800ppm以下であり、より好ましくは 400ppm以下であり、より好ましくは 180ppm 以下であり、より好ましくは lOOppm以下であり、より好ましくは 80ppm以下であり、さ らに好ましくは 50ppm以下である。全塩素量が 2500ppm以下で硬化性と貯蔵安定 性のバランスの高いエポキシ榭脂組成物を得ることができる。
また、シェル形成反応のコントロールを容易にするためにはエポキシ榭脂用硬化剤 (A)の全塩素量は、 0. Olppm以上が好ましい。より好ましくは 0. 02ppm以上であり 、より好ましくは 0. 05ppm以上であり、より好ましくは 0. Ippm以上であり、より好まし くは 0. 2ppm以上であり、さらに好ましくは 0. 5ppm以上である。全塩素量が 0. lpp m以上であることにより、シェル形成反応が硬化剤表面で効率よく行われ、貯蔵安定 性に優れたシェルを得ることができる。
[0047] 次に、イソシァネートイ匕合物 (bl)について説明する。
本発明に用いられるイソシァネートイ匕合物 (bl)は、イソシァネート基を有する化合 物であり、その 1質量%以上 95質量%以下は低分子 2官能脂肪族イソシァネートイ匕 合物 (bl— 1)である。低分子 2官能脂肪族イソシァネートイ匕合物とは、イソシァネート 基を 2つ有し、直鎖または脂環式の脂肪族化合物で、実施例に記載の方法により測 定された GPC測定において、数平均分子量が 1000以下のものが 90%以上のもの を言う。
[0048] そのようなイソシァネート化合物を例示すると、例えば、直鎖状の低分子 2官能脂肪 族イソシァネートイ匕合物の例としては、エチレンジイソシァネート、プロピレンジィソシ ァネート、ブチレンジイソシァネート、へキサメチレンジイソシァネート、 1, 8 ジイソシ ァネートオクタン、 2, 2, 4 トリメチルへキサメチレンジイソシァネート、 1, 12 ジイソ シァネートドデカン等を挙げることができる。脂環式の低分子 2官能脂肪族イソシァネ ート化合物の例としては、イソホロンジイソシァネート、 4—4'—ジシクロへキシルメタ ンジイソシァネート、ノルボルナンジイソシァネート、 1, 4ージイソシアナトシクロへキ サン、 1, 3 ビス(イソシアナトメチル)一シクロへキサン、 1, 3 ビス(2—イソシアナト プロピル 2ィル)ーシクロへキサン等が挙げられる。また、ウレタン型低分子 2官能 脂肪族イソシァネートを用いてもよい。数平均分子量が 1000以下のウレタン型低分 子 2官能脂肪族イソシァネートを得るには、低分子脂肪族ジイソシァネートモノマーを ポリオールと反応させることにより得られる。ここで用いられるポリオールとしては、ェ チレングリコール、プロピレングリコール、 1, 3ブタンジオール、 1, 4ブタンジオール、 ジエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメ チレングリコール、トリメチロールプロパン等が挙げられる。これらポリオールは併用し ても構わない。これらの例のなかでも、へキサメチレンジイソシァネート、 1, 8—ジイソ シァネートオクタンが硬化性と貯蔵安定性、保存安定性のバランスの点で好ましぐ へキサメチレンジイソシァネートが更に好ましい。
[0049] イソシァネートイ匕合物 (bl)に占める低分子 2官能脂肪族イソシァネートイ匕合物 (bl
- 1)の量は、貯蔵安定性と硬化性が共に優れるために 1質量%以上 95質量%以下 である。
1質量%未満でも 95質量%より多くても、貯蔵安定性ゃ耐溶剤性が低下する。 そのような観点から、イソシァネートイ匕合物 (bl)に占める低分子 2官能脂肪族イソ シァネートイ匕合物 (bl— 1)の量は、 7質量%以上 90質量%未満が望ましぐ好ましく は 7質量%以上質量 70%未満であり、更に好ましくは 10質量%以上 50質量%未満 である。
[0050] また、イソシァネートイ匕合物 (bl)に占める低分子 2官能脂肪族イソシァネートイ匕合 物 (b 1— 1)以外のイソシァネートイ匕合物としては、(ィ)芳香族イソシァネート、(口)脂 肪族トリイソシァネート、(ハ)ァダクト型脂肪族ポリイソシァネートなどが挙げられるが 、芳香族イソシァネートイ匕合物 (b 1— 2)が硬化性と保存安定性および耐溶剤性のバ ランスの点で好ましい。
[0051] 芳香族イソシァネートイ匕合物 (bl— 2)としては芳香族ジイソシァネート、芳香族トリ イソシァネート、芳香族ポリイソシァネート等が挙げられる。芳香族ジイソシァネートと しては、例えば、トリレンジイソシァネート、 4, 4,ージフエ二ノレメタンジイソシァネート、 キシレンジイソシァネート、 1, 5—ナフタレンジイソシァネート等、芳香族トリイソシァネ ートとしては、トリフエ-ルメタントリイソシァネート、トリス (イソシァネートフエ-ル)チォ ホスフェート等、芳香族ポリイソシァネートとしては、ポリメチレンポリフエ-ルポリイソ シァネート等のポリメリックイソシァネートおよび Zまたは芳香族ジイソシァネートおよ び Zまたは芳香族トリイソシァネートイ匕合物より誘導される、イソシァヌレート型ポリイソ シァネート、ビュレット型ポリイソシァネート、カルポジイミド型ポリイソシァネート等が例 示される。
これらの中で、トリレンジイソシァネート、ポリメチレンポリフエ-ルポリイソシァネート 、またはポリメチレンポリフエ-ルポリイソシァネートから誘導されるカルポジイミド型ポ リイソシァネートがエポキシ榭脂に対する分散性が高ぐさらに保存安定性および耐 溶剤性、耐湿性、分散性のバランスに優れたエポキシ榭脂組成物が得られる点で好 ましい。
[0052] その他のイソシァネートとして、(口)脂肪族トリイソシァネートとしては、 1, 3, 6 トリ イソシァネートメチルへキサン、 2, 6 ジイソシアナトへキサン酸ー2 イソシアナトェ チル等を挙げることができる。
[0053] (ハ)ァダクト型脂肪族ポリイソシァネートは、脂肪族ジイソシァネート、脂環式ジイソ シァネート、芳香脂肪族ジイソシァネート、脂肪族トリイソシァネート、脂環式トリイソシ ァネートである脂肪族イソシァネートモノマーより誘導されるァダクト型ポリイソシァネ ートであり、例えばイソシァヌレート型ポリイソシァネート、ビウレット型ポリイソシァネー ト等がある。
ァダクト型脂肪族ポリイソシァネートを誘導する原料の脂肪族ジイソシァネートとして は、例えば、エチレンジイソシァネート、プロピレンジイソシァネート、ブチレンジイソシ ァネート、へキサメチレンジイソシァネート、 1, 8 ジイソシァネートオクタン、 2, 2, 4 —トリメチルへキサメチレンジイソシァネート、 1, 12—ジイソシァネートドデカン等、脂 環式ジイソシァネートとしては、イソホロンジイソシァネート、 4—4,ージシクロへキシ ルメタンジイソシァネート、ノルボルナンジイソシァネート、 1, 4 イソシアナトシクロへ キサン、 1, 3 ビス(イソシアナトメチル)一シクロへキサン、 1, 3 ビス(2—イソシァ ナトプロピル— 2ィル)—シクロへキサン等、脂肪族トリイソシァネートとしては、 1, 6, 11—ゥンデカントリイソシァネート、 1, 8 ジイソシァネート 4—イソシァネートメチル オクタン、 1, 3, 6 へキサメチレントリイソシァネート、 2, 6 ジイソシアナトへキサン 酸 2 イソシアナトェチル、 2, 6 ジイソシアナトへキサン酸ー1ーメチルー 2 イソ シァネートェチル等、脂環式トリイソシァネートイ匕合物としては、トリシクロへキシルメタ ントリイソシァネート、ビシクロヘプタントリイソシァネート等が例示される。芳香脂肪族 ジイソシァネートとしては、テトラメチルキシリレンジイソシァネート、キシリレンジイソシ ァネート等が例示される。
ァダ外型脂肪族ポリイソシァネートを誘導する際は、脂肪族ジイソシァネート、脂肪 族トリイソシァネートが高い反応性が得られ好ましぐより好ましくは脂肪族ジイソシァ ネート、更に好ましくはへキサメチレンジイソシァネートである。
[0054] イソシァヌレート型ポリイソシァネートを得るには、脂肪族イソシァネートモノマーを 4 級アンモ-ゥム塩等を用いて環化 3量ィ匕することにより、ビウレット型ポリイソシァネー トを得るには脂肪族イソシァネートモノマーを水などのピウレット化剤と反応させること により得られる。
[0055] ァダクト型脂肪族ポリイソシァネートとしては、ビウレット型ポリイソシァネート、イソシ ァヌレート型ポリイソシァネートが安定性の高 ヽ潜在性硬化剤が得られ好ましく、ピウ レット型ポリイソシァネートが更に好ましい。
[0056] 種類の異なるイソシァネートイ匕合物を使用するとそれぞれのイソシァネートイ匕合物 の反応性が異なるために反応で得られる被膜が不均一となり、安定した品質の潜在 性硬化剤が得られ難カゝつたり、保存安定性あるいは耐溶剤性が低下することがあると いう点で、通常は二種類以上のイソシァネートを併用して使用することは避けるのが 通例である。また、低分子脂肪族イソシァネートイ匕合物は、芳香族イソシァネートイ匕 合物よりも、一般的に反応性に劣るとされることから、併用して使用することは不向き であるとされてきた。
[0057] これに対して、本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、特 定範囲内において低分子 2官能脂肪族イソシァネート化合物 (bl— 1)と芳香族イソ シァネートイ匕合物 (bl— 2)を併用して用いた場合は上記の予想に反して硬化性、保 存安定性、耐溶剤性のバランスに優れる特性の潜在性硬化剤が得られることができ た。また また、通常、脂肪族イソシァネートイ匕合物は芳香族イソシァネートイ匕合物よ りも反応性が低いために、両者を併用して反応する場合には脂肪族イソシァネート化 合物は、予め反応して多官能化したァダクト型脂肪族ポリイソシァネートを用いること 力 S当該業者の通例であるが、予期に反して低分子 2官能脂肪族イソシァネート化合 物 (bl— 1)を単量体のままで用いて併用した方が保存安定性、耐溶剤性に優れた 潜在性硬化剤を与えることができることを見出した。
[0058] イソシァネートイ匕合物 (bl)は一括して反応させても良いし分割して反応させても良 ぐまた低分子 2官能脂肪族イソシァネートイ匕合物 (bl— 1)とその他のイソシァネート 化合物を同時に反応させると本発明の目的の効果が一層発揮されることがある。
[0059] 本発明に用いられる活性水素化合物 (b2)としては、水、 1分子中に 1個以上の一 級および Zまたは二級アミノ基を有する化合物、 1分子中に 1個以上の水酸基を有 する化合物が例示される。水および 1分子中に 1個以上の水酸基を有する化合物が 好ましい。これらは併用する事もできる。
[0060] 活性水素化合物 (b2)として用いられる 1分子中に 1個以上の一級および Zまたは 二級アミノ基を有する化合物としては、脂肪族ァミン、脂環式ァミン、芳香族ァミンを 使用することができる。脂肪族ァミンとしては、例えば、メチルァミン、ェチルァミン、プ 口ピルァミン、ブチルァミン、ジブチルァミン等のアルキルァミン、エチレンジァミン、プ ロピレンジァミン、ブチレンジァミン、へキサメチレンジァミン等のアルキレンジァミン、 ジエチレントリァミン、トリエチレンテトラミン、テトラエチレンペンタミン等のポリアルキレ ンポリアミン、ポリオキシプロピレンジァミン、ポリオキシエチレンジァミン等のポリオキ シアルキレンポリアミン類等を挙げることができる。脂環式ァミンとしては、例えば、シ クロプロピルァミン、シクロブチルァミン、シクロペンチルァミン、シクロへキシルァミン、 イソホロンジアミン等、芳香族ァミンとしては、ァ-リン、トルイジン、ベンジルァミン、ナ フチルァミン、ジアミノジフエ-ルメタン、ジアミノジフエ-ルスルホン等を挙げることが できる。
[0061] 活性水素化合物 (b2)として用いられる 1分子中に 1個以上の水酸基を有する化合 物としては、アルコール化合物とフエノール化合物が例示される。アルコール化合物 としては、例えば、メチルアルコール、プロピルアルコール、ブチルアルコール、アミ ノレァノレコーノレ、へキシノレアノレコーノレ、ヘプチノレアノレコーノレ、オタチノレアノレコーノレ、ノ ニノレアノレコーノレ、デシノレアノレコーノレ、ゥンデシノレアノレコーノレ、ラウリノレアノレコーノレ、ド テシノレアノレコーノレ、ステアリノレアノレコーノレ、エイコシノレアノレコーノレ、ァリノレアノレコーノレ 、クロチノレアノレコーノレ、プロパノレギノレアノレコーノレ、シクロペンタノ一ノレ、シクロへキサノ ール、ベンジルアルコール、シンナミルアルコール、エチレングリコールモノメチルェ ーテノレ、エチレングリコーノレモノエチノレエーテノレ、エチレングリコーノレモノェチノレエー テル、ジエチレングリコールモノブチル等のモノアルコール類、エチレングリコール、 ポリエチレングリコール、プロピレングリコール、ポリプロピレングリコール、 1, 3 ブタ ンジオール、 1, 4 ブタンジオール、水添ビスフエノール A、ネオペンチルグリコール 、グリセリン、トリメチロールプロパン、ペンタエリスリトール等の多価アルコール類を挙 げることができる。
また、 1分子中に 1個以上のエポキシ基を有する化合物と、 1分子中に 1個以上の 水酸基、カルボキシル基、一級または二級アミノ基、メルカプト基を有する化合物との 反応により得られる二級水酸基を 1分子中に 2個以上有する化合物も多価アルコー ル類として例示される。これらのアルコールィ匕合物においては、第一、第二、または 第三アルコールのいずれでもよい。フエノールイ匕合物としては、例えば、石炭酸、タレ ゾーノレ、キシレノール、力ルバクロール、モチーノレ、ナフトール等のモノフエノール類 、カテコール、レゾールシン、ヒドロキノン、ビスフエノーノレ A、ビスフエノーノレ F、ピロガ ロール、フロログルシン等の多価フエノール類を挙げることができる。これら 1分子中 に 1個以上の水酸基を有する化合物としては、多価アルコール類や多価フ ノール 類等が好ま 、。多価アルコール類が更に好まし!/、。
[0062] イソシァネートイ匕合物 (bl)と活性水素化合物 (b2)を反応させる方法は、通常 10 °C〜150°Cの温度範囲で行なわれる。 150°C以上ではイソシァネート成分 (bl)と活 性水素化合物 (b2)が反応して得られる被膜が不均一となるため貯蔵安定性が充分 発現できないことがあり、 10°Cよりも低い温度の場合でも反応が未完結となることに より貯蔵安定性が発現されないことがある。このような観点力も好ましい反応温度は 0 °C〜 120°C、より好ましくは 10°C〜 100°Cである。
[0063] 反応時間は通常 10分〜 12時間の間で行われ、 10分未満では反応が未完結で貯 蔵安定性が発現できないことがあり、 12時間以上では生産性が低く工業的に好まし くない。
[0064] また、上記反応は必要により分散媒中で行なうことができる。分散媒としては、溶媒 、可塑剤、榭脂類等が例示される。溶媒としては、例えば、ベンゼン、トルエン、キシ レン、シクロへキサン、ミネラルスピリット、ナフサ等の炭化水素類、アセトン、メチルェ チルケトン、メチルイソブチルケトン等のケトン類、酢酸ェチル、酢酸 n—ブチル、プ ロピレングリコールモノメチルェチルエーテルアセテート等のエステル類、メタノーノレ、 イソプロパノール、 n—ブタノール、ブチルセ口ソルブ、ブチルカルビトール等のアル コール類、水、等が例示される。可塑剤としては、例えば、フタル酸ジブチル、フタル 酸ジ(2—ェチルへキシシル)等のフタル酸ジエステル系、アジピン酸ジ(2—ェチル へキシシル)等の脂肪族二塩基酸エステル系、リン酸トリクレジル等のリン酸トリエステ ル系、ポリエチレングリコールエステル等のダリコールエステル系等が例示される。榭 脂類としては、シリコーン榭脂類、エポキシ榭脂類、フエノール榭脂類等が例示され る。
イソシァネートイ匕合物 (bl)と活性水素化合物 (b2)との量比は、通常、イソシァネー ト化合物 (bl)中のイソシァネート基と活性水素化合物 (b2)中の活性水素との当量 比が 1 :0. 1〜1: 1000の範囲で用いられる。
[0065] イソシァネートイ匕合物 (bl)と活性水素化合物 (b2)との反応物で、エポキシ榭脂用 硬化剤 (A)を被覆する方法としては、得られた反応物を溶解し、エポキシ榭脂用硬 ィ匕剤 (A)を分散させた液体中で反応物の溶解度を下げて、エポキシ榭脂用硬化剤 ( A)の表面に析出させる方法、エポキシ榭脂用硬化剤 (A)が分散媒中に分散した状 態での存在下に、イソシァネートイ匕合物 (bl)と活性水素化合物 (b2)とを反応させて 、反応物をエポキシ榭脂用硬化剤 (A)の表面に析出させる、あるいはエポキシ榭脂 用硬化剤 (A)の表面を反応の場とし、そこで反応物を生成させる方法等が挙げられ る。後者の方法が反応と被覆を同時に行なうことができ好ましい。
[0066] 得られた皮膜 (cl)は、波数 1630cm ^ieSOcm 1の赤外線を吸収する結合基 (X )および 1680〜1725cm 1の赤外線を吸収する結合基 (y)を有する事を特徴とする 。結合基 (X)としては、ゥレア結合が特に好ましい。結合基 (y)としてはビュレット結合 が好ましい。更に、波数が 1730〜 1755cm 1の赤外線を吸収する結合基 (z)を有す ることが好ま U、。結合基 (z)としてはウレタン結合が特に好ま 、。
[0067] このウレァ結合、ビュレット結合はイソシァネートイ匕合物と水および Zまたは 1分子中 に 1個以上の一級および Zまたは二級アミノ基を有するアミンィ匕合物との反応により 生成される。また、ウレタン結合は、イソシァネートイ匕合物と 1分子中に 1個以上の水 酸基を有する化合物との反応により生成される。
本発明のエポキシ榭脂用潜在性硬化剤は、次に説明するマイクロカプセル型ェポ キシ榭脂用硬化剤 (D)にすることで、更に高い安定性が得られ、好ましい。本発明の マイクロカプセル型エポキシ榭脂用硬化剤 (D)は、本発明のエポキシ榭脂用潜在性 硬化剤をコアとし、エポキシ榭脂用硬化剤 (A)とエポキシ榭脂 (C)の反応生成物をシ エル (c2)として被覆した、コアシェル構造をもつ硬ィ匕剤である。
本発明に用いられるエポキシ榭脂(C)としては、ビスフエノール A、ビスフエノール F 、ビスフエノール AD、ビスフエノール S、テトラメチルビスフエノール A、テトラメチルビ スフエノール?、テトラメチルビスフエノール AD、テトラメチルビスフエノール S、テトラ ブロモビスフエノール A、テトラクロ口ビスフエノール A、テトラフルォロビスフエノール A 等のビスフエノール類をグリシジル化したビスフエノール型エポキシ榭脂、ビフエノー ル、ジヒドロキシナフタレン、 9, 9 ビス(4ーヒドロキシフエ-ル)フルオレン等のその 他の 2価フエノール類をグリシジル化したエポキシ榭脂、 1, 1, 1—トリス(4 ヒドロキ シフエ-ル)メタン、 4, 4 (1— (4一(1— (4ーヒドロキシフエ-ル) 1ーメチルェチ ル)フエ-ル)ェチリデン)ビスフエノール等のトリスフェノール類をグリシジル化したェ ポキシ榭脂、 1, 1, 2, 2, —テトラキス(4 ヒドロキシフエ-ル)ェタン等のテトラキスフ ェノール類をグリシジル化したエポキシ榭脂、フエノールノボラック、クレゾールノボラ ック、ビスフエノール Aノボラック、臭素化フエノールノボラック、臭素化ビスフエノール Aノボラック等のノボラック類をグリシジルイ匕したノボラック型エポキシ榭脂、グリセリン やポリエチレングリコール等の多価アルコールをグリシジルイ匕した脂肪族エーテル型 エポキシ榭脂、 p ォキシ安息香酸、 β ォキシナフトェ酸等のヒドロキシカルボン酸 をグリシジル化したエーテルエステル型エポキシ榭脂、フタル酸、テレフタル酸のよう なポリカルボン酸をグリシジル化したエステル型エポキシ榭脂、 4, 4ージアミノジフエ -ルメタンや m—ァミノフエノール等のアミン化合物のグリシジル化物ゃトリグリシジル イソシァヌレート等のアミン型エポキシ榭脂、 3, 4—エポキシシクロへキシルメチルー 3' , 4' エポキシシクロへキサンカルボキシレート等の脂環族ェポキサイド等が例示 される。 これらエポキシ榭脂は単独で使用しても併用しても良 、。
[0069] エポキシ榭脂 (C)としては、得られる硬化物の接着性や耐熱性が優れるため、多価 フエノール類をグリシジルイ匕したエポキシ榭脂が好ましぐ更に好ましくはビスフエノー ル型エポキシ榭脂である。ビスフエノール Aのグリシジル化物とビスフエノール Fのグリ シジル化物が一層好まし!/、。ビスフエノール Aのグリシジル化物が更に一層好まし!/ヽ
[0070] エポキシ化合物は、通常、分子内に塩素が結合した不純末端を有する。エポキシ 榭脂(C)中の全塩素量は、硬化物の電気的な特性が優れるため、全塩素量は 2500 ppm以下力 子ましい。より好ましくは 2000ppm以下であり、より好ましくは 1500ppm 以下であり、より好ましくは 800ppm以下であり、より好ましくは 400ppm以下であり、 より好ましくは 180ppm以下であり、より好ましくは lOOppm以下であり、より好ましくは 80ppm以下であり、さらに好ましくは 50ppm以下である。全塩素量が 2500ppm以 下で硬化性と貯蔵安定性のバランスの高いエポキシ榭脂組成物を得ることができる。 また、シェル形成反応のコントロールを容易にするためにはエポキシ榭脂 (C)の全 塩素量は、 0. Olppm以上が好ましい。より好ましくは 0. 02ppm以上であり、より好ま しく ίま 0. 05ppm以上であり、より好ましく ίま 0. lppm以上であり、より好ましく ίま 0. 2ρ pm以上であり、さらに好ましくは 0. 5ppm以上である。全塩素量が 0. lppm以上で あることにより、シェル形成反応が硬化剤表面で効率よく行われ、貯蔵安定性に優れ たシェルを得ることができる。
[0071] エポキシ榭脂用硬化剤 (A)とエポキシ榭脂 (C)との反応は、通常— 10°C〜150°C 、好ましくは 0°C〜100°Cの温度範囲で、 1〜168時間、好ましくは 2時間〜 72時間 の反応時間で行われ、分散媒中で行うこともできる。分散媒としては、溶媒、可塑剤 等が例示される。
[0072] 溶媒としては、例えば、ベンゼン、トルエン、キシレン、シクロへキサン、ミネラルスピ リット、ナフサ等の炭化水素類、アセトン、メチルェチルケトン、メチルイソブチルケトン 等のケトン類、酢酸ェチル、酢酸 n—ブチル、プロピレングリコールモノメチルェチ ルエーテルアセテート等のエステル類、メタノール、イソプロパノール、 n—ブタノール 、ブチルセ口ソルブ、ブチルカルビトール等のアルコール類、水、等が例示される。可 塑剤としては、フタル酸ジブチル、フタル酸ジ(2—ェチルへキシシル)等のフタル酸 ジエステル系、アジピン酸ジ(2—ェチルへキシシル)等の脂肪族二塩基酸エステル 系、リン酸トリクレジル等のリン酸トリエステル系、ポリエチレングリコールエステル等の グリコールエステル系等が例示される。
[0073] エポキシ榭脂用硬化剤 (A)とエポキシ榭脂 (C)とを反応させる時の量比は、特に制 限は無いが通常、質量比で 1 : 0. 001〜1: 1000の範囲、好ましくは 1 : 0. 01〜1 : 1 00の範囲で用いられる。
[0074] エポキシ榭脂用硬化剤 (A)とエポキシ榭脂 (C)との反応生成物からなるシェル (c2 ) (以下、本シェルと称す)で、本発明のエポキシ榭脂用潜在性硬化剤カゝらなるコア( 以下、本コアと称す)を被覆する方法としては、本シェルを溶解し、本コアを分散させ た分散媒中で本シェルの溶解度を下げて、本コアの表面に析出させる方法、本コア をエポキシ榭脂 (C)および Zまたはエポキシ榭脂 (C)が溶解した分散媒に分散した 後、エポキシ榭脂用硬化剤 (A)とエポキシ榭脂 (C)とを反応させて、本シェルを本コ ァの表面に析出させる、あるいは本コアの表面を反応の場として、そこで本シェルを 生成させる方法等が挙げられる。後者の方法が反応と被覆を同時に行なうことができ 好ましい。
[0075] また、後者の場合、エポキシ榭脂用硬化剤 (A)は、本コア中のエポキシ榭脂用硬 ィ匕剤 (A)を使用しても構わな!/、し、別途添加しても構わな!/、。
[0076] 皮膜 (cl)を生成する方法について、エポキシ榭脂用硬化剤 (A)の表面を反応の 場とし、イソシァネートイ匕合物 (bl)と活性水素化合物 (b2)とを反応させて、反応物を エポキシ榭脂用硬化剤 (A)の表面に析出させる方法とした場合、本シェルで被覆す るシェル形成反応を効率よく行うことができ好ましい。
[0077] 本コアの表面を覆う本シェルの厚みは、平均層厚で 5〜: LOOOnmが好ましい。 5nm 以上で貯蔵安定性が得られ、 lOOOnm以下で、実用的な硬化性が得られる。ここで いう層の厚みは、透過型電子顕微鏡により観察される。特に好ましいシェルの厚みは
、平均層厚で 10〜: LOOnmである。
[0078] また、本コアを本シェルで被覆したマイクロカプセル型エポキシ榭脂用硬ィ匕剤(D) は、波数 1630〜1680cm— 1の赤外線を吸収する結合基 (X)と波数 1680〜1725cm —1の赤外線を吸収する結合基 (y)を少なくともその表面に有するものが、貯蔵安定性 と反応性のバランスの観点力も好まし 、。
[0079] 結合基 )と結合基 (y)は、フーリエ変換式赤外分光光度計 (FT— IRと称す)を用 いて測定することができる。また、結合基 (X)およびまたは結合基 (y)がエポキシ榭脂 用硬化剤 (C)の少なくとも表面に有することは、顕微 FT— IRを用いて測定することが できる。
[0080] 結合基 (X)のうち、特に有用なものとして、ゥレア結合を挙げることができる。結合基
(y)のうち、特に有用なものとして、ビュレット結合を挙げることができる。
[0081] 本発明のエポキシ榭脂用潜在性硬化剤および Zまたはマイクロカプセル型ェポキ シ榭脂用硬化剤 (D)を、次に説明するマスターバッチ型エポキシ榭脂用硬化剤 (F) にすることで、一液性エポキシ榭脂組成物を得る時に、エポキシ榭脂との混合が容 易になり好ましい。
[0082] 本発明のマスターバッチ型エポキシ榭脂用硬化剤組成物(F)は、 10〜50, 000質 量部のエポキシ榭脂 (E)に、本発明のエポキシ榭脂用潜在性硬化剤および Zまた はマイクロカプセル型エポキシ榭脂用硬化剤 (D) 100質量部を配合することにより構 成される。エポキシ榭脂 (E)が 10質量部以上で取り扱いが容易なマスターバッチ型 エポキシ榭脂用硬化剤組成物が得られ、 50, 000質量部以下で実質的に硬化剤と しての性能を発揮する。このような観点から、エポキシ榭脂 (E)の配合量は好ましくは 、本発明のエポキシ榭脂用潜在性硬化剤および Zまたはマイクロカプセル型ェポキ シ榭脂用硬化剤(D) 100重量部に対して 100〜5000質量部であり、より好ましくは 1 20〜: LOOO質量部であり、特に好ましくは 150〜400質量部であることが望ましい。
[0083] 本発明のマスターバッチ型エポキシ榭脂用硬化剤組成物 (F)の全塩素量は、高 ヽ 硬化性と貯蔵安定性の両立のためには、 2500ppm以下であることが望ましい。 より好ましくは 1500ppm以下であり、より好ましくは 800ppm以下であり、より好まし くは 400ppm以下であり、より好ましくは 200ppm以下であり、より好ましくは lOOppm 以下であり、より好ましくは 80ppm以下であり、さらに好ましくは 50ppm以下である。
[0084] 本発明のエポキシ榭脂 (E)につ 、ては本発明の目的とする効果を損なわな 、範囲 内において特に制限されない。そのようなエポキシ榭脂 (E)の一例を挙げると、例え ば、ビスフエノール A、ビスフエノール F、ビスフエノール AD、ビスフエノール S、テトラ メチルビスフエノール A、テトラメチルビスフエノール F、テトラメチルビスフエノール AD 、テトラメチルビスフエノール S、テトラブロモビスフエノール A、テトラクロ口ビスフエノー ル八、テトラフルォロビスフエノール A等のビスフエノール類をグリシジル化したビスフ ェノール型エポキシ榭脂;ビフエノール、 9, 9—ビス(4 -ヒドロキシフエ-ル)フルォレ ン等のその他の 2価フエノール類をグリシジル化したエポキシ榭脂; 1, 1, 1—トリス(4 —ヒドロキシフエ-ル)メタン、 4, 4— (1— (4— (1— (4 ヒドロキシフエ-ル)一 1—メ チルェチル)フエ-ル)ェチリデン)ビスフエノール等のトリスフエノール類をグリシジル 化したエポキシ榭脂; 1, 1, 2, 2, —テトラキス(4 ヒドロキシフエニル)ェタン等のテ トラキスフエノール類をグリシジル化したエポキシ榭脂;フエノールノボラック、クレゾ一 ルノボラック、ビスフエノール Aノボラック、臭素化フエノールノボラック、臭素化ビスフ ェノール Aノボラック等のノボラック類をグリシジルイ匕したノボラック型エポキシ榭脂等; 多価フエノール類をグリシジルイ匕したエポキシ榭脂、グリセリンやポリエチレングリコー ル等の多価アルコールをグリシジルイ匕した脂肪族エーテル型エポキシ榭脂; p—ォキ シ安息香酸、 β ォキシナフトェ酸等のヒドロキシカルボン酸をグリシジル化したエー テルエステル型エポキシ榭脂;フタル酸、テレフタル酸のようなポリカルボン酸をグリ シジル化したエステル型エポキシ榭脂; 4, 4ージアミノジフエ-ルメタンや m—アミノフ ェノール等のアミン化合物のグリシジル化物ゃトリグリシジルイソシァヌレート等のアミ ン型エポキシ榭旨等のグリシジノレ型エポキシ榭旨と、 3, 4 エポキシシクロへキシノレ メチルー 3,, 4,一エポキシシクロへキサンカルボキシレート等の脂環族ェポキサイド 等が例示される。
これらエポキシ榭脂は単独で使用しても併用しても良 、。
[0085] エポキシ榭脂 (E)の全塩素量は、高 、硬化性と貯蔵安定性の両立のためには、 25 OOppm以下であることが望まし!/、。
より好ましくは 1500ppm以下であり、より好ましくは 800ppm以下であり、より好まし くは 400ppm以下であり、より好ましくは 200ppm以下であり、より好ましくは lOOppm 以下であり、より好ましくは 80ppm以下であり、さらに好ましくは 50ppm以下である。
[0086] また、エポキシ榭脂 (E)とエポキシ榭脂 (C)が同じ場合、シェル形成反応のコント口 ールを容易にするためには、エポキシ榭脂(E)の全塩素量は、 0. Olppm以上が好 ましい。より好ましくは 0. 02ppm以上であり、より好ましくは 0. 05ppm以上であり、よ り好ましくは 0. lppm以上であり、より好ましくは 0. 2ppm以上であり、さらに好ましく は 0. 5ppm以上である。たとえば、全塩素量の好ましい範囲は 0. lppm以上 200pp m以下であり、より好ましい範囲は 0. 2ppm以上 80ppm以下であり、より好ましい範 囲は 0. 5ppm以上 50ppm以下である。
[0087] また、本発明のエポキシ榭脂 (E)のジオール末端不純成分が、エポキシ榭脂 (E) の基本構造成分の 0. 001〜30質量0 /0であることが望ましい。
[0088] 本発明にお 、て、エポキシ榭脂 (E)の基本構造成分とは、末端のすべてにェポキ シ基が存在する構造を言う。エポキシ榭脂 (E)のジオール末端不純成分とは、末端 のエポキシ基のうち、すくなくとも 1つのエポキシ基が、 aーグリコール末端の構造を とるものである。参考とする文献として、エポキシ榭脂技術協会刊行の「総説 ェポキ シ榭脂 第 1卷基礎編 I」を挙げる。
[0089] エポキシ榭脂 (E)の基本構造成分およびジオール末端不純成分の分析方法につ いては、同じくエポキシ榭脂技術協会刊行の「総説 エポキシ榭脂 第 1卷基礎編 I」 にお 、て引用されて 、る文献に記載の方法を参考に分析を行う。
[0090] エポキシ榭脂 (E)のジオール末端不純成分にっ ヽてのエポキシ榭脂 (E)基本構造 成分に対する比率が 30質量%よりも大き ヽと、硬化物の耐水性が低下することがあり 、 0. 001質量%よりも小さいと、エポキシ榭脂組成物の硬化性が低下してしまうことが ある。このような観点力もエポキシ榭脂(E)のジオール末端不純成分につ!、てのェポ キシ榭脂 (E)の基本構造成分に対する比率は好ましくは、 0. 01〜25質量%であり、 より好ましくは 0. 1〜20質量%であり、特に好ましくは、 0. 5〜18質量%であり、殊 に好ましくは 1. 2〜15質量%でぁる。
[0091] 本発明のエポキシ榭脂 (E)のジオール末端不純成分につ!、てのエポキシ榭脂 (E) の基本構造成分に対する比率は実施例の項に記載の方法により求められる。
本発明のマスターバッチ型エポキシ榭脂用硬化剤組成物 (F)を製造する方法とし て、先に製造された本発明のエポキシ榭脂用潜在性硬化剤および Zまたはマイクロ カプセル型エポキシ榭脂用硬化剤(D)を、例えば、三本ロール等を用いてエポキシ 樹脂 )中に分散させる方法や、エポキシ榭脂 (E)の中でエポキシ榭脂用潜在性硬 ィ匕剤および Zまたはマイクロカプセル型エポキシ榭脂用硬化剤 (D)の生成反応を行 V、、エポキシ榭脂用潜在性硬化剤および Zまたはマイクロカプセル型エポキシ榭脂 用硬化剤 (D)を得ると同時に、マスターバッチ型硬化剤を得る方法等が例示される。 後者が、生産性が高く好ましい。
[0092] 本発明のマスターバッチ型エポキシ榭脂用硬化剤組成物 (F)は室温で液状又は ペースト状が好ましい。より好ましくは、 25°Cでの粘度が 50万 mPa' s以下、更に好ま しく ίま、 1000〜30万 mPa' s、一層好ましく ίま 3000〜20万 mPa' sである。
粘度が 50万 mPa' s以下で作業性が高ぐ容器への付着量を下げて廃棄物の低減 が可能であり好ましい。
[0093] 本発明のエポキシ榭脂組成物において、エポキシ榭脂用潜在性硬化剤および Z またはマイクロカプセル型エポキシ榭脂用硬化剤 (D)、および Zまたはマスターバッ チ型エポキシ榭脂用硬化剤組成物 (F)と、環状ホウ酸エステル化合物 (L)を同時に 配合させたエポキシ榭脂組成物を調製することが望ましい。
これにより、エポキシ榭脂組成物の貯蔵安定性、特に高温時における貯蔵安定性 を向上させることができる。
[0094] 上記環状ホウ酸エステル化合物 (L)とは、ホウ酸と脂肪族ある!/、は芳香族ジオール 力 得られたホウ素が環式構造に含まれる化合物のことである。そのような環状ホウ 酸エステル化合物としては、トリス一。一フエ-レンビスボレート、ビス一ジメチルトリメ チレンビロボレート、ビスージメチノレエチレンビロボレート、ビスージェチノレエチレンビ ロボレートなどがある。特に 2, 2, 一ォキシビス(5, 5, 一ジメチル一 1, 3, 2—ジォキ サボリナン)が好ましい。
[0095] 上記環状ホウ酸エステル化合物 (L)の含有量としては、エポキシ榭脂用潜在性硬 ィ匕剤および Zまたはマイクロカプセル型エポキシ榭脂用硬化剤 (D)、および Zまた はマスターノ ツチ型エポキシ榭脂用硬化剤組成物 (F) 100質量部に対して 0. 001 〜10質量部、好ましくは 0. 01〜2質量部、さらに好ましくは 0. 05〜0. 9質量部であ る。この範囲で用いることで組成物の高温時の貯蔵安定性に優れた硬化を与え、か つ、本来の短時間硬化性、耐熱性、接続信頼性を損なわない、優れた硬化物を得る ことができる。
[0096] 本発明のマスターバッチ型エポキシ榭脂用硬化剤組成物 (F)は、エポキシ榭脂用 潜在性硬化剤および Zまたはマイクロカプセル型エポキシ榭脂用硬化剤 (D)とェポ キシ榭脂 (E)より構成されるが、その機能を低下させない範囲で、その他の成分を含 有することができる。その他の成分の含有量は、好ましくは 30質量%未満である。
[0097] エポキシ榭脂 COに、本発明のエポキシ榭脂用潜在性硬化剤および/またはマイク 口カプセル型エポキシ榭脂用硬化剤 (D)および/またはマスターノツチ型エポキシ 榭脂用硬化剤組成物 (F)を混合して一液性エポキシ榭脂組成物が得られる。
[0098] 本発明のエポキシ榭脂組成物に用いられるエポキシ榭脂 C は、平均して 1分子当 たり 2個以上のエポキシ基を有するものであればよぐエポキシ榭脂 (Ε)と同じであつ てもよい。例えば、ビスフエノーノレ Α、ビスフエノーノレ F、ビスフエノール AD、ビスフエノ 一ル3、テトラメチルビスフエノール A、テトラメチルビスフエノール F、テトラメチルビス フエノール AD、テトラメチルビスフエノール S、テトラブロモビスフエノール A、テトラタ ロロビスフエノール A、テトラフルォロビスフエノール A等のビスフエノール類をグリシジ ル化したビスフエノール型エポキシ榭脂;ビフエノール、ジヒドロキシナフタレン、 9, 9 ビス(4ーヒドロキシフエ-ル)フルオレン等のその他の 2価フエノール類をグリシジ ル化したエポキシ榭脂; 1, 1, 1—トリス(4 ヒドロキシフエ-ル)メタン、 4, 4— (1—( 4— (1— (4 ヒドロキシフエ-ル) 1—メチルェチル)フエ-ル)ェチリデン)ビスフエ ノール等のトリスフエノール類をグリシジルイ匕したエポキシ榭脂; 1, 1, 2, 2, —テトラ キス(4—ヒドロキシフエ-ル)ェタン等のテトラキスフエノール類をグリシジル化したェ ポキシ榭脂;フエノールノボラック、クレゾ一ルノボラック、ビスフエノール Aノボラック、 臭素化フエノールノボラック、臭素化ビスフエノール Aノボラック等のノボラック類をダリ シジルイ匕したノボラック型エポキシ榭脂等;多価フエノール類をグリシジルイ匕したェポ キシ榭脂;グリセリンやポリエチレングリコールのような多価アルコールをグリシジル化 した脂肪族エーテル型エポキシ榭脂; p ォキシ安息香酸、 β ォキシナフトェ酸の ようなヒドロキシカルボン酸をグリシジル化したエーテルエステル型エポキシ榭脂;フタ ル酸、テレフタル酸のようなポリカルボン酸をグリシジル化したエステル型エポキシ榭 脂; 4, 4—ジアミノジフエ-ルメタンや m -ァミノフエノール等のアミン化合物のグリシ ジルイ匕物ゃトリグリシジルイソシァヌレート等のアミン型エポキシ榭脂と、 3, 4—ェポキ シシクロへキシルメチルー 3' , 4'—エポキシシクロへキサンカルボキシレート等の脂 環族ェポキサイド等が例示される。
[0099] 本発明のエポキシ榭脂用潜在性硬化剤および Zまたはマイクロカプセル型ェポキ シ榭脂用硬化剤 (D)および Zまたはマスターバッチ型エポキシ榭脂用硬化剤組成 物 (F)とエポキシ榭脂 ωとの混合比は、硬化性、硬化物の特性の面力 決定される ものであるが、好ましくはエポキシ榭脂 ω loo質量部に対して、本発明のエポキシ榭 脂用潜在性硬化剤および Ζまたはマイクロカプセル型エポキシ榭脂用硬化剤 (D)お よび Ζまたはマスターバッチ型エポキシ榭脂用硬化剤組成物 (F)が 0. 1〜: L000質 量部となる量で用いればよい。より好ましくは、 0. 2〜200質量部、更に好ましくは、 0 . 5〜30質量部である。 0. 1質量部以上で実用的に満足し得る硬化性能を得ること ができ、 100質量部以下で、本発明のエポキシ榭脂組成物が偏在することなぐバラ ンスの良 1ヽ硬化性能を有する硬化剤を与える。
[0100] また、本発明に用いられるマスターバッチ型エポキシ榭脂用硬化剤組成物 (F)に は、エポキシ榭脂の高分子量体で、自己成膜性を有する一般にフヱノキシ榭脂と呼 ばれる樹月旨をち混合することがでさる。
[0101] また、本発明にお 、て、エポキシ榭脂 Q)とエポキシ榭脂用潜在性硬化剤および Ζ またはマイクロカプセル型エポキシ榭脂用硬化剤 (D)、および Ζまたはマスターバッ チ型エポキシ榭脂用硬化剤組成物 (F)との配合物に対して、環状ホウ酸エステルイ匕 合物 (L)を同時に配合させたエポキシ榭脂組成物を調製することが望ま 、。その際 の環状ホウ酸エステルイ匕合物 (L)の配合量は、エポキシ榭脂 COとエポキシ榭脂用潜 在性硬化剤および/またはマイクロカプセル型エポキシ榭脂用硬化剤 (D)、および Zまたはマスターバッチ型エポキシ榭脂用硬化剤組成物 (F)との配合物の配合物 1 00質量部に対して、 0. 001〜10質量部である。この範囲で用いることで組成物の高 温時の貯蔵安定性に優れた硬化を与え、かつ、本来の短時間硬化性、耐熱性、接 続信頼性を損なわな ヽ、優れた硬化物を得ることができる。
[0102] 本発明に用いられるエポキシ榭脂用潜在性硬化剤および Zまたはマイクロカプセ ル型エポキシ榭脂用硬化剤 (D)および Zまたはマスターバッチ型エポキシ榭脂用硬 ィ匕剤組成物 (F)は、酸無水物類、フエノール類、ヒドラジド類、およびグァ-ジン類よ りなる群より選ばれる少なくとも 1種の硬化剤 (K)を併用する事ができる。
[0103] 酸無水物類としては、例えば、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、 無水へキサヒドロフタル酸、無水テトラヒドロフタル酸、無水 3—クロロフタル酸、無 水 4ークロロフタル酸、無水べンゾフエノンテトラカルボン酸、無水コハク酸、無水メ チルコハク酸、無水ジメチルコハク酸、無水ジクロールコハク酸、メチルナジック酸、ド テシルコハク酸、無水クロレンデックタ酸、無水マレイン酸等;フエノール類としては、 例えば、フエノールノボラック、クレゾ一ルノボラック、ビスフエノール Aノボラック等;ヒド ラジン類としては、例えば、コハク酸ジヒドラジド、アジピン酸ジヒドラジド、フタル酸ジヒ ドラジド、イソフタル酸ジヒドラジドテレフタル酸ジヒドラジド、 p ォキシ安息香酸ヒドラ ジド、サリチル酸ヒドラジド、フエニルァミノプロピオン酸ヒドラジド、マレイン酸ジヒドラ ジド等;グァ-ジン類としては、例えば、ジシアンジアミド、メチルダァ-ジン、ェチルダ ァニジン、プロピルグァニジン、ブチルダァニジン、ジメチルダァニジン、トリメチルダ ァ-ジン、フエ-ルグァ-ジン、ジフエ-ルグァ-ジン、トルィルグァ-ジン等が例示さ れる。
[0104] 硬ィ匕剤 (K)の中で好ましいのは、グァ-ジン類および酸無水物類である。さらに好 ましくは、ジシアンジアミド、無水へキサヒドロフタル酸、無水メチルテトラヒドロフタル 酸、無水メチルナジック酸である。
[0105] 硬化剤 (K)を使用する場合、硬化剤 (K)を 1〜200質量部に対して、本発明のェ ポキシ榭脂用潜在性硬化剤および Zまたはマイクロカプセル型エポキシ榭脂用硬化 剤(D)および Zまたはマスターバッチ型エポキシ榭脂用硬化剤組成物 (F)が 0. 1〜 200質量部となる量で用いるのが好まし!/、。
この範囲で用いることで硬化性と貯蔵安定性に優れた組成物を与え、耐熱性、耐 水性に優れた硬化物を得ることができる。
[0106] また、本発明にお ヽて、硬化剤 (K)とエポキシ榭脂用潜在性硬化剤および Zまた はマイクロカプセル型エポキシ榭脂用硬化剤 (D)、および Zまたはマスターバッチ型 エポキシ榭脂用硬化剤組成物 (F)との配合物に対して、環状ホウ酸エステルイ匕合物 (L)を同時に配合させたエポキシ榭脂組成物を調製することができる。その際の環状 ホウ酸エステル化合物 (L)の配合量は、硬化剤 (K)とエポキシ榭脂用硬化剤 (C)お よび Zまたはマイクロカプセル型エポキシ榭脂用硬化剤 (D)、および Zまたはマスタ 一バッチ型エポキシ榭脂用硬化剤組成物 (F)との配合物の配合物 100質量部に対 して、 0. 001〜10質量部である。この範囲で用いることで組成物の高温時の貯蔵安 定性に優れた硬化を与え、かつ、本来の短時間硬化性、耐熱性、接続信頼性を損な わない、優れた硬化物を得ることができる。
本発明に用いられるマスターバッチ型エポキシ榭脂用硬化剤組成物 (F)には、所 望によって、増量剤、補強材、充填材、導電微粒子、顔料、有機溶剤、反応性希釈 剤、非反応性希釈剤、榭脂類、結晶性アルコール、カップリング剤等を添加すること ができる。充填剤の例としては、例えば、コールタール、ガラス繊維、アスベスト繊維、 ほう素繊維、炭素繊維、セルロース、ポリエチレン粉、ポリプロピレン粉、石英紛、鉱 物性ケィ酸塩、雲母、アスベスト粉、スレート粉、カオリン、酸ィ匕アルミニウム三水和物 、水酸化アルミニウム、チョーク粉、石こう、炭酸カルシウム、三酸化アンチモン、ペン トン、シリカ、エアロゾル、リトボン、バライト、二酸化チタン、カーボンブラック、グラファ イト、カーボンナノチューブ、フラーレン、酸化鉄、金、銀、アルミニウム粉、鉄粉、ナノ サイズの金属結晶、金属間化合物等を挙げることができ、これらはいずれもその用途 に応じて有効に用いられる。有機溶剤としては、例えば、トルエン、キシレン、メチル ェチルケトン、メチルイソブチルケトン、酢酸ェチル、酢酸ブチル等が挙げられる。反 応性希釈剤としては、例えば、ブチルダリシジルエーテル、 N, N,—グリシジル— o— トルイジン、フエニルダリシジルエーテル、スチレンオキサイド、エチレングリコールジ グリシジルエーテル、プロピレングリコールジグリシジルエーテル、 1, 6—へキサンジ オールジグリシジルエーテル等が挙げられる。非反応性希釈剤としては、例えば、ジ ォクチルフタレート、ジブチルフタレート、ジォクチルアジべート、石油系溶剤等が挙 げられる。榭脂類としては、例えば、ポリエステル榭脂、ポリウレタン榭脂、アクリル榭 脂、ポリエーテル榭脂、メラミン榭脂ゃウレタン変性エポキシ榭脂、ゴム変性エポキシ 榭脂、アルキッド変性エポキシ榭脂等の変性エポキシ榭脂が挙げられる。結晶性ァ ルコールとしては、 1, 2—シクロへキサンジオール、 1, 3—シクロへキサンジオール、 1, 4—シクロへキサンジオール、ペンタエリスリトール、ソルビトール、ショ糖、トリメチ ロールプロパンが挙げられる。
[0108] 本発明に用いられるエポキシ榭脂組成物は、エポキシ榭脂用潜在性硬化剤および Zまたはマイクロカプセル型エポキシ榭脂用硬化剤 (D)とエポキシ榭脂 (E)と、必要 に応じてエポキシ榭脂 CF)および硬化剤 (Κ)が主成分である。本発明のエポキシ榭 脂組成物は、加熱により硬化することで所望の性能が発現されるが、ここで言う主成 分とは、加熱による硬化反応の主体をなす成分であることを意味し、加熱硬化性成分 の 60%以上である事が好ましい。更に好ましくは 70%以上である。
[0109] 一液性エポキシ榭脂糸且成物の内、硬化に関与しない成分としては、例えば、増量 剤、補強材、充填材、導電材料、顔料、有機溶剤、榭脂類等が挙げられるが、これら の成分は一液性エポキシ榭脂組成物全体に対して 0〜90質量%の範囲で使用され るのが好ましい。
[0110] 本発明のエポキシ榭脂組成物は、接着剤および Ζまたは接合用ペースト、接合用 フィルムの他に、導電材料、異方導電材料、絶縁材料、封止材、コーティング材、塗 料組成物、プリプレダ、熱伝導性材料等として有用である。
[oiii] 接着剤および Ζまたは接合用ペースト、接合用フィルムとしては、液状接着剤ゃフ イルム状接着剤、ダイボンディング材等として有用である。フィルム状接着剤の製造 方法としては、例えば、固形エポキシ榭脂、液状エポキシ榭脂、さらに固形のウレタン 榭脂を、 50重量%になるようにトルエンに溶解 '混合'分散させた溶液を作成する。こ れに本発明のマスターバッチ型エポキシ榭脂用硬化剤組成物 (F)を溶液に対して 3 0重量%添加 '分散させたワニスを調製する。この溶液、例えば厚さ 50 /z mの剥離用 ポリエチレンテレフタレート基材にトルエンが乾燥後に厚さ 30 mとなるように塗布す る。トルエンを乾燥させることにより、常温では不活性であり、加熱することにより潜在 性硬化剤の作用により接着性を発揮する、接合用フィルムを得ることができる。
[0112] 導電材料としては導電フィルム、導電ペースト等がある。異方導電材料としては、異 方導電性フィルム、異方導電性ペースト等がある。その製造方法としては、例えば、 前述の接合用フィルムの製造にぉ 、て、ワニスの調製時に導電材料ゃ異方導電材 料を混合'分散して、剥離用の基材に塗布後、乾燥することにより製造することができ る。導電粒子としては半田粒子、ニッケル粒子、ナノサイズの金属結晶、金属の表面 を他の金属で被覆した粒子、銅と銀の傾斜粒子等の金属粒子や、例えば、スチレン 榭脂、ウレタン榭脂、メラミン榭脂、エポキシ榭脂、アクリル榭脂、フエノール榭脂、ス チレン ブタジエン榭脂等の榭脂粒子に金、ニッケル、銀、銅、半田などの導電性薄 膜で被覆を施した粒子等が使用される。一般に導電粒子は 1〜20 m程度の球形 の微粒子である。フィルムにする場合の基材としては、例えば、ポリエステル、ポリエ チレン、ポリイミド、ポリテトラフルォロエチレン等の基材に塗布後、溶剤を乾燥させる 方法等がある。
[0113] 絶縁材料としては、絶縁接着フィルム、絶縁接着ペーストがある。前述の接合用フィ ルムを用いることで、絶縁材料である絶縁接着フィルムを得ることができる。また、封 止材料を用いる他、前述の充填剤のうち、絶縁性の充填剤を配合することで、絶縁 接着ペーストを得ることができる。
[0114] 封止材としては、固形封止材ゃ液状封止材、フィルム状封止材等として有用であり 、液状封止材としては、アンダーフィル材、ポッティング材、ダム材等として有用である 。封止材の製造方法としては、例えば、ビスフエノール A型エポキシ榭脂、硬化剤とし て例えば酸無水物硬ィ匕剤として無水メチルへキサヒドロフタル酸、さらに球状溶融シ リカ粉末を加えて均一に混合し、それに本発明で得られたマスターバッチ型エポキシ 榭脂用硬化剤組成物 (F)を加え均一に混合し、封止材料を得ることができる。
[0115] コーティング用材料としては、例えば電子材料のコーティング材、プリント配線版の カバー用のオーバーコート材、プリント基板の層間絶縁用榭脂組成物などがあげら れる。コーティング用材料の製造方法としては、例えば、充填剤からシリカ等を選定し てフイラ一として、ビスフエノール A型エポキシ榭脂のほかフエノキシ榭脂、ゴム変性 エポキシ榭脂などを配合し、さらに本発明のマスターバッチ型エポキシ榭脂用硬化 剤組成物 (F)を配合し、 MEKで 50%の溶液を調製する。これをポリイミドフィルム上 に 50 /z mの厚さでコーティングし、銅箔を重ねて、 60〜150°Cでラミネートし、当該ラ ミネートを 180〜200°Cで加熱硬化させることにより、層間をエポキシ榭脂組成物によ りコーティングされた積層板を得ることができる。
[0116] 塗料組成物の製造方法としては、例えば、ビスフエノール A型エポキシ榭脂に、二 酸化チタン、タルク等を配合し、混合溶剤として MIBKZキシレンの 1: 1混合溶剤を 添加、攪拌、混合して主剤とする。これに本発明のマスターバッチ型エポキシ榭脂用 硬化剤組成物 (F)を添加、均一に分散させることにより、エポキシ塗料組成物を得る ことができる。
[0117] プリプレダの製造方法としては、例えば、エポキシ榭脂組成物を補強基材に含浸し 、加熱して得ることができる。なお、含浸させるワニスの溶剤としては、メチルェチルケ トン、アセトン、ェチルセルソルブ、メタノール、エタノール、イソプロピルアルコールな どがあげられ、これらの溶剤はプリプレダ中に残存しないことが好ましい。なお、補強 基材の種類は特に限定しないが、例えば、紙、ガラス布、ガラス不織布、ァラミド布、 液晶ポリマーなどが例としてあげられる。榭脂組成物分と補強基材の割合も特に限定 されないが、通常、プリプレダ中の榭脂分が 20〜80重量%となるように調製するのが 好ましい。
[0118] 熱伝導性材料の製造方法としては、例えば、熱硬化性榭脂としてエポキシ榭脂、硬 ィ匕剤としてフエノールノボラック硬化剤、さらに熱伝導フイラ一としてグラフアイト粉末を 配合して均一に混練する。これに本発明のマスターバッチ型エポキシ榭脂用硬化剤 組成物 (F)を配合して熱伝導性榭脂ペーストを得ることができる。
実施例
[0119] 本発明を実施例に基づき説明する。実施例及び比較例中の「部」または「%」は特 記しない限り質量基準である。
以下に述べる手法により、本実施例および比較例に係る榭脂およびその硬化物の 物性評価試験を行った。
[0120] (1)エポキシ当量
1当量のエポキシ基を含むエポキシ榭脂の質量(g)であり、 JIS K- 7236に従つ て測定した。
[0121] (2)全塩素量
試料 lgを 25mlのエチレングリコールモノブチルエーテルに溶解し、これに 1規定 K OHのプロピレングリコール溶液 25mlをカ卩えて 20分間煮沸したのち、硝酸銀水溶液 で滴定した。
[0122] (3)エポキシ榭脂 (al) · (C) · (E)およびマスターバッチ型エポキシ榭脂用硬化剤組 成物(F)の全塩素量
エポキシ榭脂またはエポキシ榭脂組成物を、キシレンを用いて、エポキシ榭脂が無く なるまで洗浄と濾過を繰り返す。次に、ろ液を 100°C以下で減圧留去し、エポキシ榭 脂を得る。得られたエポキシ榭脂試料 l〜10gを滴定量が 3〜7mlになるよう精秤し、 25mlのエチレングリコールモノブチルエーテルに溶解し、これに 1規定 KOHのプロ ピレンダリコール溶液 25mlをカ卩えて 20分間煮沸したのち、硝酸銀水溶液で滴定した
[0123] (4)加水分解性塩素量
試料 3gを 50mlのトルエンに溶解し、これに 0. 1規定 KOHのメタノール溶液 20ml を加えて 15分間煮沸した後、硝酸銀水溶液で滴定した。
[0124] (5)粘度
25°Cで BM型粘度計を使用して測定した。
[0125] (6) FT— IR測定
日本分光 (株)社製 FTZIR— 660P1USを使用し吸光度を測定した。
[0126] (7) GPC測定
下記の測定条件で測定し、分子量 580、 1060、 1940, 5000、 10050、 21000、 50400のポリスチレンを標準物質として検量線を作成して定量した。
カラム:東ソー株式会社製 HCL— 8120GEL SUPER 1000、 2000、 3000直 列
溶出液:テトラヒドロフラン
流量: 0. omレ mm
検出器:東ソー製 UV8020を使用し 254nmで測定
[0127] (8)エポキシ榭脂 (E)の基本構造成分の定量
エポキシ榭脂組成物を、キシレンを用いてエポキシ榭脂が無くなるまで洗浄と濾過 を繰り返す。次に、ろ液を 100°C以下で減圧留去し、エポキシ榭脂を得る。
得られたエポキシ榭脂を、以下の方法で分析して定量する。東ソー製高速液体クロ マトグラフィ(AS— 8021、検出器 UV— 8020、以下 HPLC)で、カラムはミリポア社 製のノバパック C— 18を使用する。移動相は水 Zァセトニトリル =70Z30〜0Z100 にグラジェントをかける。尚、検出波長を 254nmとした。 HPLC分析して両方の末端 構造の違いによる分離条件を選定して、分離液について切り替え弁を使用して分取 する。分取した分離液をフラクションごとに減圧、留去し残渣を MSで分析する。 MS スペクトルにより、基準ピークの質量数に 18の差があるもの同士について、 18小さい ものを基本構造成分と認める。この基本構造成分について、 HPLC分析チャート上 のピーク強度より、その面積比率でエポキシ榭脂 (E)の基本構造成分含有量を求め る。
[0128] (9)エポキシ榭脂 (E)のジオール末端不純成分の定量
エポキシ榭脂 (E)の基本構造成分の定量と同様にして、分離液を MSで分析する。 MSスペクトルにより、基準ピークの質量数に 18の差があるもの同士について、 18大 き 、ものをジオール末端不純成分と認める。 HPLC分析チャート上のジオール末端 不純成分ピークの強度を示す面積と、基本構造成分を示すピーク強度の面積比で エポキシ榭脂 (E)中の基本構造成分に対する、ジオール末端不純成分の含有量を 求める。尚、検出波長を 254nmとした。
ここでいぅジオール末端不純成分の構造とは、どちらか一方、または両方の末端のェ ポキシ基が開環して、 1, 2—グリコールを形成した構造をいう。
[0129] (10)マスターバッチ型エポキシ榭脂用硬化剤(F)力 のマイクロカプセル型ェポキ シ榭脂用硬化剤 (D)の分離
マスターバッチ型エポキシ榭脂用硬化剤 (F)を、キシレンを用いて、エポキシ榭脂 が無くなるまで洗浄と濾過を繰り返す。次に、キシレンが無くなるまでシクロへキサン で洗浄と濾過を繰り返す。シクロへキサンを濾別し、 50°C以下の温度でシクロへキサ ンを完全に除去乾燥する。
[0130] (11)ゲルタイム
(株)ティ.エスエンジニアリング社製のキュラストメーター Vを使用し熱板上のスト口 ークキュア法により求めた。
[0131] (12)マスターバッチ型エポキシ榭脂用硬ィ匕剤 (F)のマイクロカプセル型エポキシ榭 脂用硬化剤 (D)の分散性
マスターバッチ型エポキシ榭脂用硬化剤 (F)にトルエンを不揮発分が 90%となる 様に混合し、 25°Cで 1時間静置した。これをガラス板上に膜厚 20 で塗布し、凝集 物による塗膜のハジキ数を数え、凝集物による塗膜のハジキ数により、分散性を評価 した。
塗膜のハジキ数が 10個以内の場合を◎、 10〜30個を〇、 30〜50個を△、 50個 を越える場合を Xとした。
[0132] (13)マスターバッチ型エポキシ榭脂用硬化剤 (F)の保存安定性
マスターバッチ型エポキシ樹脂用硬化剤 (F)を 40°C、 1週間保存した前後の粘度 を測定し、粘度上昇倍率で評価した。保存後の粘度上昇率が 10倍以上又はゲルィ匕 した場合を X、 5倍以上 10倍未満を△、 2倍以上 5倍未満を〇、 2倍未満を◎とした。
[0133] (14)一液性エポキシ榭脂組成物の貯蔵安定性
一液性エポキシ榭脂組成物に酢酸ェチル Zトルエン lZiの混合溶媒を不揮発分 が 70%となる様に混合し、 25°Cで 1時間静置した。これをアルミ板上に乾燥膜厚 30 μとなるように塗布、 70°Cで 5分加熱乾燥し、組成物中の溶剤を除去し、 50°Cで 3日 貯蔵した。 50°C3日間貯蔵前後で FT— IR測定を行い、エポキシ基の残存率を算出 した。
残存率が 80モル%以上を◎、 60モル%以上 80モル%未満を〇、 40モル%以上 6 0%未満を△、 40モル%未満を Xとした。
[0134] ( 15)一液性エポキシ榭脂組成物の硬化性
一液性エポキシ榭脂組成物のゲルタイムを測定し、ゲルタイムが 30分未満となる温 度が 100°C以下の場合を〇、 100°Cを超えて 110°C以下の場合を△、 110°Cを超え る場合を Xとした。
[0135] (16)一液性エポキシ榭脂組成物の耐溶剤性
マスターバッチ型エポキシ榭脂用硬化剤 (F) 30部を、ビスフエノール A型エポキシ 榭脂(エポキシ当量 189gZ当量、全塩素量 1200ppm:以下エポキシ榭脂(M)と称 す) 100部と混合、一液性エポキシ榭脂組成物を製造する。この一液性エポキシ榭 脂組成物に酢酸ェチル Zトルエン = 1Z1重量比の混合溶媒を不揮発分が 70%と なるように混合し、 25°C1時間静置したものと、 40°Cで 1時間静置したものの 2つのサ ンプルを準備する。耐溶剤性の評価として、 JISの C 2104に依拠したゲル化試験 機によるゲル化までの時間について、次のように測定して評価する。即ち、ゲル板を
120°Cに保ち、その板状に 0. 4mlの試料を載置し、載置後力きまぜ棒で力き混ぜ、 糸が引かなくなるまでの時間、すなわちゲルイ匕までの時間 (秒)を測定する。このとき 、前述の混合溶媒との混合サンプルで、 25°Cと 40°Cでゲルイ匕までの時間の差を求 める。混合溶媒に対する耐溶剤性が高いものほど、 25°Cと 40°Cでゲルイ匕までの時 間の差が生じない。耐溶剤性に劣るものは、 25°Cに対して 40°Cのゲルイ匕までの時 間が短くなる。ゲルイ匕までの時間の差が 15%以下なら◎、 15〜25%なら〇、 25〜5 0%なら△、 50〜90%以上なら X、 40°C1時間静置後、一液性エポキシ榭脂組成物 がゲルイ匕した場合には X Xとした。
[0136] ( 17)一液性エポキシ榭脂組成物の短時間硬化性
マスターバッチ型エポキシ榭脂用硬化剤 (F) 30部を、エポキシ榭脂(M) 100部と 混合、一液性エポキシ榭脂組成物を製造する。このエポキシ榭脂組成物に酢酸ェチ ル Zトルエン 1Z1の混合溶媒を不揮発分が 70%となる様に混合し、 25°Cで 1時間 静置した。これを乾燥膜厚 30 となる様に塗布、 70°Cで 5分加熱乾燥し、組成物中 の溶剤を除去しフィルム状接着剤組成物を得た。 190°Cのホットプレート上で 30kg 30秒間熱圧着を行った。圧着前後でフィルム状接着剤組成物の FT— IR測 定を行い、エポキシ基の特性ピーク(925cm 1付近)に対するベンゼン環の特性ピー ク(1608cm 1付近)の高さの比よりエポキシ基消失率を算出し、エポキシ基反応率よ り速硬化性を評価した。変化率が 65%以上を◎、 65〜50%を〇、 50〜40%を△、 40%以下を Xとした。
[0137] (18)一液性エポキシ榭脂組成物の耐湿性
マスターバッチ型エポキシ榭脂用硬化剤 (F) 30部を、エポキシ榭脂(M) 100部と 混合、一液性エポキシ榭脂組成物を製造する。このエポキシ榭脂組成物に酢酸ェチ ル Zトルエン 1Z1の混合溶媒を不揮発分が 70%となる様に混合し、 25°Cで 1時間 静置した。これを乾燥膜厚 30 となる様に塗布、 70°Cで 5分加熱乾燥し、組成物中 の溶剤を除去しフィルム状接着剤組成物を得た。該フィルムを 40°C、湿度 85%の恒 温恒湿槽に 2時間静置 ·処理する。処理する前後における該フィルムサンプルの DS C分析における総発熱量を求める。高温高湿度条件において、潜在性が損なわれる ことにより、フィルム状接着剤組成物に含有されるエポキシ基消失率について、総発 熱量の変化率より算出する。エポキシ基反応率が低いほど、耐湿性に優れると評価 した。変化率が 10%以下のものを〇、 20%以下のものを△、 30%以下のものを X、 30%を越えるものを X Xとした。
[0138] [製造例 1]
(エポキシ榭脂用硬化剤 (A)の製造)
ビスフエノール A型エポキシ榭脂(エポキシ当量 185gZ当量、全塩素量 1200ppm :以下エポキシ榭脂 c—lと称す) 2当量と、 o—ジメチルァミノメチルフエノール 0. 66 モルおよびジメチルァミン 0. 33モルを、メタノールとトルエンの lZl混合溶媒中(榭 脂分 50%) 80°Cで 8時間反応させた後、溶媒を減圧下 180°Cで留去することによつ て、固体状化合物を得た。これを粉砕して、平均粒径 2. 5 mのエポキシ榭脂用硬 化剤 a— 1を得た。
[0139] [製造例 2]
(エポキシ榭脂用硬化剤 (A)の製造)
ビスフエノール A型エポキシ榭脂(エポキシ当量 185gZ当量、全塩素量 20ppm: 以下エポキシ榭脂 c— 2と称す)を 2当量と、 2—メチルイミダゾール 1. 5モルを、メタノ ールとトルエンの 1Z1混合溶媒中 (榭脂分 50%) 80°Cで 6時間反応させた後、溶媒 を減圧下 180°Cで留去することによって、固体状化合物を得た。これを粉砕して、平 均粒径 3 μ mのエポキシ榭脂用硬化剤 a— 2を得た。
[0140] [実施例 1]
エポキシ榭脂 (C)としてエポキシ榭脂 c— 1を 200部に、エポキシ榭脂用硬化剤 (A )としてエポキシ榭脂用硬化剤 a— 1を 100部、活性水素化合物 (b2)として水 1. 5部 、イソシァネートイ匕合物(bl— 1)としてへキサメチレンジイソシァネート(HMDI) (旭 化成ケミカルズ社製、デユラネート (登録商標) 50M) ; 3部、同じく(bl— 2)として MR 200 (日本ポリウレタン社製、(登録商標));4部を加えて、 40°Cで攪拌しながら 3時 間反応を続けたところ、イソシァネート基の 99モル%以上が反応した。その後シェル 形成反応を 40°Cで 20時間行ない、マスターバッチ型硬化剤 F— 1を得た。
マスターバッチ型硬化剤 F— 1からキシレンを用いてコアシヱル型硬化剤を分離、 乾燥し粉末とした後、ガラス板上に乗せ、 FT— IR測定を行い、結合基 (x)、(y)、 (z) を有することが確認された。また、マスターバッチ型硬化剤 H— 1の分散性と保存安 定性を評価した。評価結果を表 1に示す。
得られたマスターバッチ型硬化剤 F— 1の 30部にエポキシ榭脂 (J)として c— 1を 10 0部加えて、十分に混合し、一液性エポキシ榭脂組成物を得た。
得られた一液性エポキシ榭脂組成物の貯蔵安定性と硬化性を評価した。評価結果 を表 1に示す。
[0141] [実施例 2]
エポキシ榭脂 (C)としてビスフエノール F型エポキシ榭脂(エポキシ当量 165gZ当 量、全塩素量 300ppm:以下エポキシ榭脂 c— 3と称す);200部に、硬化剤 (A)とし て a— 2を 100部、活性水素化合物 (b2)として水 2部、イソシァネートイ匕合物 (bl— 1) としてへキサメチレンジイソシァネート( (旭化成ケミカルズ社製、デユラネート(登録商 標) 50M) ; 1部、同じく(bl— 2)として MR200 (日本ポリウレタン社製、(登録商標)) ; 6部をカ卩えて、実施例 1と同様にしてマスターバッチ型硬化剤 F— 2を得た。何れも 実施例 1と同様にして結合基 (x)、(y)、(z)を有することを確認し、分散性と保存安 定性を評価した。また、マスターバッチ型硬化剤 F— 2をポリカップに入れ、蓋を開放 した状態で 40°C、相対湿度 95%の環境で 12時間保存した後も外観上異常がなく耐 湿性も良好であった。
更に得られたマスターノツチ型硬化剤 F— 2の 30部にエポキシ榭脂 (J)として c— 1 を 100部加えて、十分に混合し、一液性エポキシ榭脂組成物を得て、貯蔵安定性と 硬化性を評価した。評価結果を表 1に示す。
[0142] [比較例 1〜3]
表 1で示した配合で、実施例 2と同様にしてマスターノツチ型硬化剤 F— 3、 F— 4、 F— 5を得、分散性と保存安定性を評価した。
更に得られたマスターバッチ型硬ィ匕剤 F— 3、 F-4, F— 5の 30部にエポキシ榭脂 COとして c— 1を 100部加えて、十分に混合し、一液性エポキシ榭脂組成物を得て、 貯蔵安定性と硬化性を評価した。評価結果を表 1に示す。
[0143] [表 1]
エポキシ樹脂 c一 1 : ビスフエノール A型液状エポキシ榭脂 (エポキシ当量 185 gZ当量、 全塩素量: 1200 p pm)
エポキシ樹脂 c - 3 : ビスフエノール F型液状エポキシ樹脂 (エポキシ当量 165 g/当量、 全塩素量: 300 p p m)
MR— 200: 日本ポリウレタン社製ポリメチレンフエ二レンポリィソシァネート
24A :デユラネート 24A (旭化成ケミカルズ社製、 へキサメチレンジイソシァネートより誘導されるビュレツ ト型ポリイソシァネート、 平均官能基数 3. 4、 へキサメチレンジイソシァネート含有量 1 %未满)
[0144] [実施例 3]
硬化剤 (K)として予め平均粒径 3 μ mに粉砕したジシアンジアミド 8部に、実施例 2 で得られたマスターバッチ型硬化剤 F— 2の 3質量部とエポキシ榭脂 (J)として c— 2の 95部、同じくエポキシ榭脂 (J)として EP— 4023 (アデ力(株)製 CTBN変性エポキシ 榭脂);5部、炭酸カルシュゥム 20部を加えて均一に混合し、一液性エポキシ榭脂組 成物を得た。得られた組成物の貯蔵安定性は〇、 140°Cで硬化した。
[0145] [実施例 4]
エポキシ榭脂 (J)としてビスフエノール F型エポキシ榭脂(エポキシ当量 165g/当量 、全塩素量 300ppm) ; 100部に硬化剤(K)として無水メチルへキサヒドロフタル酸 8 0部、球状溶融シリカ粉末 (平均粒径 10 m) ; 300部を加えて均一に混合し、それ に実施例 2で得られたマスターノツチ型硬化剤 F— 2の 6部をカ卩ぇ均一に混合し、液 状封止材を得た。得られた液状封止材を基板と LSIとの間に挟み、 100°Cで 3時間 後更に 150°Cで 3時間加熱した結果、液状封止材は硬化し、封止材として有用であ つた。本組成物の液状止材は、絶縁接着ペーストとしても有用であった。
[0146] [実施例 5]
エポキシ榭脂 (J)としてビスフエノール A型エポキシ榭脂(エポキシ当量 2500g/当 量);40部を酢酸ェチル 30部に溶解し、それに、実施例 2で得られたマスターバッチ 型硬化剤 F— 2の 40部と粒径 5 μ mの導電粒子 (金メッキを施した架橋ポリスチレン) ; 20部とを加え均一に混合し、一液性エポキシ榭脂組成物を得た。これをポリエステ ルフィルム上に塗布し、 70°Cで酢酸ェチルを乾燥除去し、異方導電性フィルムを得 た。
得られた異方導電性フィルムを電極間に挟み、 200°Cのホットプレート上で 30kgZ cm2、 20秒間熱圧着を行った結果、電極間が接合し、導通がとれ、異方導電性材料 として有用であった。
[0147] [製造例 3]
(エポキシ榭脂用硬化剤 (A)の製造)
ビスフエノール A型エポキシ榭脂(エポキシ当量 185gZ当量、全塩素量 1400ppm :以下エポキシ榭脂 al— 1と称す) 1. 5当量と、 2—メチルイミダゾール 1当量 (活性水 素換算)を、 n—ブタノールとトルエンの lZl混合溶媒中 (榭脂分 50%)、 80°Cで反 応させた。その後減圧下で 2—メチルイミダゾールの含有量が 0. 5% (榭脂分に対し て)になった時点で蒸留を終了し、固体状のエポキシ榭脂用硬化剤を得た。これを粉 砕して、平均粒径 2. 7 mのエポキシ榭脂用硬化剤 a— 3を得た。
[0148] [実施例 6]
エポキシ榭脂 (C)としてエポキシ榭脂 c— 1を 200質量部に、エポキシ榭脂用硬化 剤 a— 3を 100質量部、水 2質量部、 1, 8—ジイソシァネートオクタンを 3質量部、 MR — 200を 4質量部加えて、 40°Cで攪拌しながら 3時間反応を続けた。さらにシェル形 成反応を 50°Cで 8時間行い、マスターバッチ型エポキシ榭脂用硬化剤 F— 6を得た。 実施例 1と同様にして結合基 (x)、(y)、(z)を有することを確認し、マスターバッチ型 エポキシ榭脂用硬化剤 F— 6の分散性と貯蔵安定性を評価した。次いで、 100部の エポキシ榭脂(M)に、得られたマスターバッチ型エポキシ榭脂用硬化剤 F— 6を 30 部配合したときの一液性エポキシ榭脂組成物を得て、一液性エポキシ榭脂組成物の 貯蔵安定性、硬化性、耐溶剤性、耐湿性を評価した。得られた結果を表 2に示す。
[0149] [実施例 7]
エポキシ榭脂 (C)としてエポキシ榭脂 c— 3を 200質量部に、エポキシ榭脂用硬化 剤 a— 3を 100質量部、水 1. 5質量部、 HMDIを 2質量部、 MR— 200を 5質量部カロ えて、 40°Cで攪拌しながら 3時間反応を続けた。その後、環状ホウ酸エステルイ匕合物 (L)を 0. 5質量部加えて、さらにシェル形成反応を 50°Cで 8時間行い、マスターバッ チ型エポキシ榭脂用硬化剤 F— 7を得た。実施例 1と同様にして結合基 (x)、(y)、 (z )を有することを確認し、マスターバッチ型エポキシ榭脂用硬化剤 F— 7の分散性と貯 蔵安定性を評価した。次いで、 100部のエポキシ榭脂(M)に、得られたマスターバッ チ型エポキシ榭脂用硬化剤 F - 7を 30部配合したときの一液性エポキシ榭脂組成物 を得て、一液性エポキシ榭脂組成物の貯蔵安定性、硬化性、耐溶剤性、耐湿性を評 価した。得られた結果を表 2に示す。
[0150] [実施例 8]
エポキシ榭脂 (C)としてエポキシ榭脂 c— 3を 200質量部に、エポキシ榭脂用硬化 剤 a— 3を 100質量部、水 2質量部、 HMDIを 1質量部、 MR— 200を 4質量部加えて 、 40°Cで攪拌しながら 3時間反応を続けた。その後、環状ホウ酸エステルイ匕合物 (L) を 1. 2質量部加えて、さらにシェル形成反応を 50°Cで 8時間行い、マスターバッチ型 エポキシ榭脂用硬化剤 F— 8を得た。実施例 1と同様にして結合基 (x)、(y)、(z)を 有することを確認し、マスターバッチ型エポキシ榭脂用硬化剤 F— 8の分散性と貯蔵 安定性を評価した。次いで、 100部のエポキシ榭脂(M)に、得られたマスターバッチ 型エポキシ榭脂用硬化剤 F— 8を 30部配合したときの一液性エポキシ榭脂組成物を 得て、一液性エポキシ榭脂組成物の貯蔵安定性、硬化性、耐溶剤性、耐湿性を評 価した。得られた結果を表 2に示す。
[0151] [実施例 9]
エポキシ榭脂 (C)としてエポキシ榭脂 c— 3を 200質量部に、エポキシ榭脂用硬化剤 a— 3を 100質量部、水 2質量部、ウレタン型低分子 2官能脂肪族イソシァネートとして 、旭化成ケミカルズ (株)製のデユラネート D— 101を 2質量部、 MR— 200を 5質量部 カロえて、 40°Cで攪拌しながら 3時間反応を続けた。その後、環状ホウ酸エステルイ匕合 物(L)を 1. 2質量部加えて、さらにシェル形成反応を 50°Cで 8時間行い、マスターバ ツチ型エポキシ榭脂用硬化剤 F— 8を得た。実施例 1と同様にして結合基 (x)、 (y)、 (z)を有することを確認し、マスターバッチ型エポキシ榭脂用硬化剤 F— 8の分散性と 貯蔵安定性を評価した。次いで、 100部のエポキシ榭脂(M)に、得られたマスター ノ ツチ型エポキシ榭脂用硬化剤 F— 8を 30部配合したときの一液性エポキシ榭脂組 成物を得て、一液性エポキシ榭脂組成物の貯蔵安定性、硬化性、耐溶剤性、耐湿 性を評価した。得られた結果を表 2に示す。
[0152] [比較例 4]
エポキシ榭脂 (C)としてエポキシ榭脂 c— 3を 200質量部に、エポキシ榭脂用硬化 剤 a— 3を 100質量部、水 1. 5質量部、 LTIを 5質量部、 MR— 200を 2質量部加えて 、 40°Cで攪拌しながら 3時間反応を続けた。その後、さらにシェル形成反応を 50°Cで 8時間行い、マスターバッチ型エポキシ榭脂用硬化剤 F— 9を得た。実施例 1と同様 にして結合基 (x)、(y)、(z)を有することを確認し、マスターバッチ型エポキシ榭脂用 硬化剤 F— 9の分散性と貯蔵安定性を評価した。次いで、 100部のエポキシ榭脂(M )に、得られたマスターバッチ型エポキシ榭脂用硬化剤 F— 9を 30部配合したときの 一液性エポキシ榭脂組成物を得て、一液性エポキシ榭脂組成物の貯蔵安定性、硬 化性、耐溶剤性、耐湿性を評価した。得られた結果を表 2に示す。
[0153] [比較例 5]
エポキシ榭脂 (C)としてエポキシ榭脂 c— 3を 200質量部に、エポキシ榭脂用硬化 剤 a— 3を 100質量部、水 1. 5質量部、 LTIを 2質量部、 MR— 200を 5質量部加えて 、 40°Cで攪拌しながら 3時間反応を続けた。その後、環状ホウ酸エステルイ匕合物 (L) を 0. 5質量部加えて、さらにシェル形成反応を 50°Cで 8時間行い、マスターバッチ型 エポキシ榭脂用硬化剤 F— 10を得た。実施例 1と同様にして結合基 (x)、(y)、(z)を 有することを確認し、マスターバッチ型エポキシ榭脂用硬化剤 F— 10の分散性と貯 蔵安定性を評価した。次いで、 100部のエポキシ榭脂(M)に、得られたマスターバッ チ型エポキシ榭脂用硬化剤 F - 10を 30部配合したときの一液性エポキシ榭脂組成 物を得て、一液性エポキシ榭脂組成物の貯蔵安定性、硬化性、耐溶剤性、耐湿性を 評価した。得られた結果を表 2に示す。
[0154] [表 2]
エポキシ樹脂 c一 1 : ビスフエノール A型液状エポキシ樹脂 (エポキシ当量 85 g/当量、 全塩素量: 1 200 p pm) エポキシ樹脂 c一 3 : ビスフエノール F型液状エポキシ樹脂 (エポキシ当量 65 g/当量、 全塩素量: 300 p pm) 2 -MZ : 2—メチルイミダゾール
1 , 8— D I O : 1 , 8—ジイソシァネートオクタン
D- 1 0 1 :旭化成ケミカルズ製デユラ一ネート D— 1 0 1
MR -200: 日本ポリゥレタン社製ポリメチレンフエ二レンポリイソシァネート
LT I : 2, 6—ジイソシアナトへキサン酸一 2—イソシアナトェチル
環状ホウ酸エステル化合物 (L) : 2 , 2 ' 一ォキシビス (5, 5 ' ージメチル 3, 2—ジォキサボリナン)
[0155] [導電性フィルムの作製の実施例]
ビスフエノール A型エポキシ榭脂(旭化成ケミカルズ製 AER— 2603) 15部、フエノー ルノボラック榭脂(昭和高分子社製、商品名「BRG— 558」)6部、合成ゴム(日本ゼ オン社製商品名「二ポール 1072」、重量平均分子量 30万) 4部を、メチルェチルケト ンとブチルセ口ソルブアセテートの 1: 1 (重量比)混合溶剤 20部に溶解した。この溶 液に銀粉末 74部を混合し、さらに三本ロールにより混練した。これにさらに実施例 2 で得られたマスターバッチ型エポキシ榭脂用硬化剤 F— 2を 30部加えて、さらに均一 に混合させて、導電性接着剤を得た。得られた導電性接着剤を用いて、厚さ 40 m のポリプロピレンフィルム上にキャストして、 80°Cで 60分間、乾燥半硬化させ厚さ 35 mの導電性接着剤層を有する導電性フィルムを得た。この導電性フィルムを用い、 80°Cのヒートブロック上でシリコンウェハー裏面に導電性接着剤層を導電性フィルム を転写させた。さらにシリコンウェハーをフルダイシングし、ヒートブロック上でリードフ レームに導電性接着剤付半導体チップを、 200 °C、 2分間の条件で接着硬化させた ところ、チップの導電'性の問題がなかった。
[0156] [導電性ペーストの作製の実施例]
100部のエポキシ榭脂(M)に、実施例 1で得られたマスターバッチ型エポキシ榭脂 用硬化剤 F—1を 30部に、平均粒子径が 14 m、アスペクト比が 11の鱗片状銀粉( 徳カ化学研究所 (株)製) 150g及び平均粒子径が m、アスペクト比が 9の鱗片 状ニッケル粉 (高純度化学 (株)製、商品名「NI110104」)60gを添加し、均一になる まで撹拌後、三本ロールで均一に分散して導電ペーストとした。得られた導電ペース トを、厚さ 1. 4mmのポリイミドフィルム基板上にスクリーン印刷した後、 200°Cで 1時 間、加熱硬化させた。得られた配線板の導電性を測定した結果、導電性ペーストとし て有用なものであった。
[0157] [異方導電性フィルムの作製の実施例]
ビスフエノール A型エポキシ榭脂(旭化成ケミカルズ製 AER6097、エポキシ当量 4 2500gZeq) 40重量部、フエノキシ榭脂(東都化成製、 YP— 50) 30重量部を酢酸 ェチル 30部に溶解し、それに、実施例 2で得られたマスターバッチ型エポキシ榭脂 用硬化剤 F— 2を 30部に、粒径 8 μ mの導電粒子 (金メッキを施した架橋ポリスチレン ) 5部とを加え均一に混合し、一液性エポキシ榭脂組成物を得た。これをポリエステル フィルム上に塗布し、 70°Cで酢酸ェチルを乾燥除去し、異方導電性フィルムを得た。 得られた異方導電性フィルムを ICチップと電極間に挟み、 200°Cのホットプレート 上で 30kgZcm2、 20秒間熱圧着を行った結果、電極間が接合し、導通がとれ、異方 導電性材料として有用であった。
[0158] [異方導電性ペーストの作製の実施例]
ビスフエノール A型エポキシ榭脂(旭化成ケミカルズ製 AER6091、エポキシ当量 4 80g/eq) 50重量部、ビスフエノール A型エポキシ榭脂(旭化成ケミカルズ製 AER2 603) 50重量部と導電粒子としてミクロパール Au— 205 (積水化学製、比重 2. 67) 5 重量部を混合後、実施例 2で得られたマスターバッチ型エポキシ榭脂用硬化剤 F— 2 を 30部加えて、さらに均一に混合させて、異方導電性ペーストを得た。得られた異方 導電性ペーストを、 ITO電極を有する低アルカリガラス上に塗布した。 230°Cのセラミ ックツールで、 30秒間、 2MPaの圧力にて試験用 TAB (Tape Automated Bond ing)フィルムと圧着し貼り合わせを行った。隣接する ITO電極間の抵抗値を測定した ところ、異方導電性ペーストとして有用であった。
[0159] [絶縁性ペーストの作製の実施例]
ビスフエノール F型エポキシ榭脂(油化シェルエポキシ株式会社製、商品名「YL98 3U」) 100重量部、ジシアンジアミドを 4重量部、シリカ粉末 100重量部、希釈剤とし てフエ-ルグリシジルエーテル 10重量部、および有機リン酸エステル(日本ィ匕薬社製 、商品名「PM— 2」) 1重量部を十分混合した後、さらに三本ロールで混練する。さら に、そこに実施例 2で得られたマスターバッチ型エポキシ榭脂用硬化剤 F— 2を 30部 カロえて、さらに均一に混合させて、減圧脱泡および遠心脱泡処理を行い、絶縁性ぺ 一ストを製造した。得られた絶縁性ペーストを用いて、半導体チップを榭脂基板に 20 0°Cで 1時間加熱硬化させて接着したところ、絶縁性ペーストとして有用であった。
[0160] [絶縁性フィルムの作製の実施例]
フエノキシ榭脂 (東都化成株式会社製、商品名「YP— 50」) 180重量部、タレゾール ノボラック型エポキシ榭脂 (エポキシ当量 200gZeq、 日本化薬株式会社製商品名「 EOCN— 1020— 80」)40重量部、球状シリカ(平均粒径: 2 m、アドマテック株式 会社製、商品名 SE— 5101) 300重量部、メチルェチルケトン 200重量部を調合し 均一分散させた後、これに実施例 1で得られたマスターバッチ型エポキシ榭脂用硬 ィ匕剤 F— 1を 250重量部加えてさらに攪拌 ·混合してエポキシ榭脂組成物を含む溶 液を得る。得られた溶液を、離型処理を施したポリエチレンテレフタレート上に、乾燥 後の厚さが 50 mになるように塗布し、熱風循環式乾燥機の中で加熱乾燥を行い、 半導体接着用の絶縁性フィルムを得た。得られた半導体接着用の絶縁性フィルムを
5インチのウェハサイズよりも大きく支持基材ごと切断し、バンプ電極付きウェハの電 極部側に榭脂フィルムを合わせる。次に離型処理付き支持基材を上に挟み、 70°C、 lMPa、加圧時間 10秒で真空中加熱圧着し接着榭脂付きウェハを得る。続いて、ダ イシングソー(DISCO製 DAD- 2H6M)を用いてスピンドル回転数 30, 000rpm、 カッティングスピード 20mmZsecで切断分離した個片の接着フィルム付き半導体素 子の榭脂剥がれがな ヽことを観察した。得られたフィルムは絶縁性フィルムとして有 用なものであった。
[0161] [封止材の作製の実施例]
ビスフエノール A型エポキシ榭脂(旭化成ケミカルズ製 AER6091、エポキシ当量 4 80g/eq) 50重量部、ビスフエノール A型エポキシ榭脂(旭化成ケミカルズ製 AER2 603) 50重量部、硬ィ匕剤として無水フタル酸を主成分とする HN— 2200 (日立化成 工業 (株)製)を 40重量部、平均粒径 16 μ mの球状溶融シリカを 80重量部を均一に 分散、配合させる。これに実施例 1で得られたマスターバッチ型エポキシ榭脂用硬化 剤 F— 1を 5重量部加えてエポキシ榭脂組成物を得る。得られたエポキシ榭脂組成物 をプリント配線基板上に厚さ 60 mになるように lcm角に塗布し、 110°C10分、ォー ブンで加熱して半硬化させた。その後、厚さ 370 m、 1cm角のシリコンチップを半 硬化させたエポキシ榭脂組成物の上に乗せ、荷重をカ卩えてバンプとチップの電極を 接触'保持しつつ 220°Cで 1時間、完全硬化処理を行った。得られたエポキシ榭脂組 成物からなる封止材は、外観およびチップの導通に問題のな 、有用なものであった
[0162] [コーティング材の作製の実施例]
30部のエポキシ榭脂(M)、フヱノキシ榭脂として YP— 50を 30部 (東都化成製)、メ トキシ基含有シラン変性エポキシ榭脂のメチルェチルケトン溶液 (荒〗 11化学工業 (株) 製、商品名「コンポセラン E103」)を 50部、これに実施例 1で得られたマスターバッチ 型エポキシ榭脂用硬化剤 F— 1を 30部加えて、メチルェチルケトンで 50重量%に希 釈 '混合させた溶液を調製した。調製した溶液を、剥離 PET (ポリエチレンテレフタレ ート)フィルム (パナック (株)製 SG— 1)上に、ロールコーターを用いて塗布し、 150°C で 15分、乾燥、硬化させ、剥離フィルム付き半硬化榭脂(ドライフィルム)膜厚 100 mを作製した。これらのドライフィルムを先の銅張り積層板上に 120°Cで、 10分間、 6 MPaで加熱圧着した後、室温に戻して剥離フィルムを除去し、 200°Cで 2時間硬化さ せたところ、層間絶縁用のコーティング材として有用なものが得られた。
[0163] [塗料組成物の作製の実施例]
ビスフエノール A型エポキシ榭脂(旭化成ケミカルズ製 AER6091、エポキシ当量 4 80gZeq) 50重量部に、二酸化チタン 30重量部、タルク 70重量部を配合し、混合溶 剤として MIBKZキシレンの 1: 1混合溶剤 140重量部を添加、攪拌、混合して主剤と する。これに実施例 1で得られたマスターバッチ型エポキシ榭脂用硬化剤 F— 1を 30 重量部添加、均一に分散させることにより、エポキシ塗料組成物として有用なものが 得られた。
[0164] [プリプレダの作製の実施例]
プリプレダの実施例
130°Cのオイルバス中のフラスコ内にノボラック型エポキシ榭脂(大日本インキ化学 工業製の EPICLON N- 740)を 15部、ビスフエノール F型エポキシ榭脂 (JER製 のェピコート 4005)を 40部、ビスフエノール A型液状エポキシ榭脂(旭化成ケミカル ズ製 AER2603) 30部を溶解'混合し 80°Cまで冷やす。さらに実施例 1で得られたマ スターバッチ型エポキシ榭脂用硬化剤組成物 F—1を 15部加えて、十分、攪拌して 混合する。室温に冷ました前記榭脂組成物を離型紙上にドクターナイフを用いて榭 脂目付 162g/m2で塗布し、榭脂フィルムとした。次にこの榭脂フィルム上に弾性率 2 4トン Zmm2の炭素繊維を 12. 5本 Zインチで平織りした三菱レイヨン製 CFクロス (型 番: TR3110、 目付 200g/m2)を重ねて榭脂組成物を炭素繊維クロスに含浸させた 後、ポリプロピレンフィルムを重ねて表面温度 90°Cのロール対の間を通して、クロス プリプレダを作製した。榭脂の含有率は 45重量%だつた。得られたプリプレダを、繊 維方向を揃えてさらに積層し、硬化条件 150°C X 1時間で成形を行い、炭素繊維を 補強繊維とする FRP成形体を得ることができ、作製したプリプレダは有用なものであ つた o
[0165] [熱伝導性エポキシ榭脂組成物の作製の実施例]
ビスフエノール A型エポキシ榭脂(旭化成ケミカルズ製 AER2603) 100部、ェポキ シ榭脂用硬化剤としてフ ノールノボラック榭脂 (荒川化学工業 (株)製、商品名「タマ ノル 759」 )のメチルェチルケトン 50%溶液を 40重量部、鱗片状グラフアイト粉末 (ュ 二オンカーバイト社製の商品名 HOPG) 15重量部を均一になるまで攪拌後、 3本口 ールで均一に分散させた。これにさらに、実施例 1で得られたマスターバッチ型ェポ キシ榭脂用硬化剤組成物 F— 1を 15部加えて、十分、攪拌して混合する。得られた 導電ペーストを、用いて Cuリードフレーム上に半導体チップ(1. 5mm角、厚み 0. 8 mm)をマウントし、かつ、 150°C、 30分で加熱硬化させて評価用サンプルを得た。得 られたサンプルの熱伝導性につ!、てレーザフラッシュ法により測定する。すなわち、 測定した熱拡散率 a、比熱 Cp、密度 σから、以下の式、 Κ= α X Cp X σより熱伝導 率 Κを求めたところ、 Κが 5 Χ 10— 3CalZcm' sec '°C以上あり、熱伝導性ペーストとし て、有用なものであった。
[0166] 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲 を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明ら かである。
本出願は、 2005年 2月 23日出願の日本特許出願 (特願 2005— 046615)に基づくも のであり、その内容はここに参照として取り込まれる。
産業上の利用可能性
[0167] 本発明によれば、硬化性と貯蔵安定性を両立し、更に電気特性、機械的強度、耐 熱性、耐湿性等の性能もバランス良く有する硬化物を与えるエポキシ榭脂組成物が 得られる。本発明のマイクロカプセル型エポキシ榭脂用硬化剤を用いたマスターバッ チ型エポキシ榭脂用硬化剤組成物は、接着剤、封止材、充填材、絶縁材料、導電材 料、プリプレダ、フィルム状接着剤、異方導電性フィルム、異方導電性ペースト、絶縁 接着フィルム、絶縁接着ペースト、アンダーフィル材、ポッティング材、ダイボンディン グ材、導電ペースト、ソルダーレジスト、熱伝導材料等として優れた性能を発揮する。

Claims

請求の範囲
[1] エポキシ榭脂用硬化剤 (A)および該エポキシ榭脂用硬化剤 (A)を被覆する榭脂を 含むエポキシ榭脂用潜在性硬化剤であって、該エポキシ榭脂用硬化剤 (A)を被覆 する樹脂が、その主鎖構造において、エステル結合を含まない直鎖状または環状の 低分子脂肪族炭化水素基を介して 2つの窒素原子を持つ構造 (構造 (1) )からなり、 該構造(1)の少なくとも 1つの窒素原子がゥレア結合を形成した構造を有するェポキ シ榭脂用潜在性硬化剤。
[2] エポキシ榭脂用硬化剤 (A)および該エポキシ榭脂用硬化剤 (A)を被覆する榭脂を 含むエポキシ榭脂用潜在性硬化剤であって、該エポキシ榭脂用硬化剤 (A)を被覆 する樹脂が、その主鎖構造において、ウレタン結合を形成する酸素原子以外の酸素 原子を含まない直鎖状または環状の低分子脂肪族炭化水素基を介して 2つの窒素 原子を持つ構造 (構造(1) )からなり、該構造(1)の少なくとも 1つの窒素原子がウレ ァ結合を形成した構造を有する請求項 1に記載のエポキシ榭脂用潜在性硬化剤。
[3] エポキシ榭脂用硬化剤 (A)が、 1質量%以上 95質量%以下の低分子 2官能脂肪 族イソシァネートイ匕合物を含むイソシァネート成分 (bl)と活性水素化合物 (b2)の反 応により得られた皮膜 (cl)で被覆されたことを特徴とする請求項 1又は 2に記載のェ ポキシ榭脂用潜在性硬化剤。
[4] イソシァネート成分 (bl)が 1質量%以上 95質量%以下の低分子 2官能脂肪族イソ シァネート化合物 (bl— 1)と 5質量%以上 99質量%以下の芳香族イソシァネートイ匕 合物 (bl— 2)とからなることを特徴とする請求項 3に記載のエポキシ榭脂用潜在性硬 化剤 Q
[5] 皮膜 (cl)が、波数 1630cm ^ieSOcm 1の赤外線を吸収する結合基 (X)と波数 1
680〜 1725cm 1の赤外線を吸収する結合基 (y)を有することを特徴とする請求項 3 又は 4に記載のエポキシ榭脂用潜在性硬化剤。
[6] エポキシ榭脂用硬化剤 (A)が、アミンァダクト (a)と低分子アミン化合物 (e)を主成 分とするアミン系硬化剤からなる請求項 1〜5のいずれか 1項に記載のエポキシ榭脂 用潜在性硬化剤。
[7] アミンァダクト(a)がエポキシ榭脂 (al)とアミンィ匕合物(a2)との反応により得られる ことを特徴とする請求項 6に記載のエポキシ榭脂用潜在性硬化剤。
[8] 低分子アミン化合物(e)力イミダゾール類であることを特徴とする請求項 6又は 7に 記載のエポキシ榭脂用硬化剤。
[9] 請求項 1〜8のいずれか 1項に記載のエポキシ榭脂用潜在性硬化剤をコアとし、ェ ポキシ榭脂用硬化剤 (A)とエポキシ榭脂 (C)の反応生成より得られたシェル (c2)で 被覆した、波数 ΙδΒΟ ΙδδΟοπ 1の赤外線を吸収する結合基 (X)と波数 1680〜17 25cm 1の赤外線を吸収する結合基 (y)を少なくとも表面に有することを特徴とするマ イク口カプセル型エポキシ榭脂用硬化剤。
[10] 請求項 1〜8の 、ずれか 1項に記載のエポキシ榭脂用潜在性硬化剤および Zまた は請求項 9に記載のマイクロカプセル型エポキシ榭脂用硬化剤 (D)のエポキシ榭脂 用硬化剤 100重量部に対して、 10〜50000重量部のエポキシ榭脂 (E)を配合した ことを特徴とするマスターバッチ型エポキシ榭脂用硬化剤組成物 (F)。
[11] 請求項 10記載のマスターバッチ型エポキシ榭脂用硬化剤組成物 (F)の全塩素量 が 2500ppm以下であることを特徴とするマスターバッチ型エポキシ榭脂用硬化剤組 成物。
[12] エポキシ榭脂 (Ε)の全塩素量が 2500ppm以下であることを特徴とする請求項 10 又は 11に記載のマスターバッチ型エポキシ榭脂用硬化剤組成物。
[13] エポキシ榭脂 (E)のジオール末端不純成分が、エポキシ榭脂 (E)の基本構造成分 の 0. 001〜30質量0 /0であることを特徴とする請求項 10〜12のいずれか 1項に記載 のマスターバッチ型エポキシ榭脂用硬化剤組成物。
[14] 請求項 1〜13のいずれか 1項に記載のエポキシ榭脂用潜在性硬化剤および Zま たはマイクロカプセル型エポキシ榭脂用硬化剤 (D)、および Zまたはマスターバッチ 型エポキシ榭脂用硬化剤組成物 (F)と、環状ホウ酸エステル化合物 (L)を同時に配 合したエポキシ榭脂組成物。
[15] 前記の環状ホウ酸エステル化合物(L) 1S 2, 2' ォキシビス (5, 5' ジメチルー 1, 3, 2 ジォキサボリナン)である請求項 14に記載のエポキシ榭脂組成物。
[16] 請求項 14および Zまたは 15に記載の環状ホウ酸エステルイ匕合物 (L)の配合量が 、請求項 1〜13の 、ずれか 1項に記載のエポキシ榭脂用潜在性硬化剤および Zま たはマイクロカプセル型エポキシ榭脂用硬化剤 (D)、および Zまたはマスターバッチ 型エポキシ榭脂用硬化剤組成物 (F)の総量 100質量部に対して 0. 001〜: L0質量 部である請求項 14又は 15に記載のエポキシ榭脂組成物。
[17] エポキシ榭脂 Q) 100質量部に対して、請求項 1〜13のいずれ力 1項に記載のェポ キシ榭脂用潜在性硬化剤および Ζまたはマイクロカプセル型エポキシ榭脂用硬化剤 (D)、および Ζまたはマスターバッチ型エポキシ榭脂用硬化剤組成物 (F)を 0. 001 〜 1000質量部含有し、それらを主成分とすることを特徴とするエポキシ榭脂組成物
[18] 請求項 17記載のエポキシ榭脂組成物 100質量部に対して、環状ホウ酸エステル 化合物 (L)を 0. 001〜10質量部配合したことを特徴とするエポキシ榭脂組成物。
[19] 前記の環状ホウ酸エステル化合物(L) 1S 2, 2' ォキシビス (5, 5' ジメチルー 1, 3, 2 ジォキサボリナン)である請求項 18に記載のエポキシ榭脂組成物。
[20] 酸無水物類、フエノール類、ヒドラジド類、およびグァ-ジン類よりなる群より選ばれ る少なくとも 1種の硬ィ匕剤 (Κ)を 1〜200質量部と、請求項 1〜13のいずれか 1項に 記載のエポキシ榭脂用潜在性硬化剤および Ζまたはマイクロカプセル型エポキシ榭 脂用硬化剤 (D)および Ζまたはマスターバッチ型エポキシ榭脂用硬化剤組成物 (F) を、 0. 1〜200質量部を含有し、それらを主成分とするエポキシ榭脂組成物。
[21] 請求項 20記載のエポキシ榭脂組成物 100質量部に対して、環状ホウ酸エステル 化合物 (L)を 0. 001〜10質量部を配合したことを特徴とするエポキシ榭脂組成物。
[22] 前記の環状ホウ酸エステル化合物(L) 1S 2, 2' ォキシビス (5, 5' ジメチルー 1, 3, 2 ジォキサボリナン)である請求項 21に記載のエポキシ榭脂組成物。
[23] 請求項 10〜22のいずれか 1項に記載のマスターバッチ型エポキシ榭脂用硬ィ匕剤 組成物および Ζまたはエポキシ榭脂組成物を含有することを特徴とするペースト状 組成物。
[24] 請求項 10〜22の 、ずれか 1項に記載のマスターバッチ型エポキシ榭脂用硬ィ匕剤 組成物および Ζまたはエポキシ榭脂組成物を含有することを特徴とするフィルム状組 成物。
[25] 請求項 14〜22の ヽずれか 1項に記載のエポキシ榭脂組成物を含有することを特 徴とする接着剤。
[26] 請求項 14〜22の ヽずれか 1項に記載のエポキシ榭脂組成物を含有することを特 徴とする接合用ペースト。
[27] 請求項 14〜22の ヽずれか 1項に記載のエポキシ榭脂組成物を含有することを特 徴とする接合用フィルム。
[28] 請求項 14〜22の ヽずれか 1項に記載のエポキシ榭脂組成物を含有することを特 徴とする導電性材料。
[29] 請求項 14〜22の ヽずれか 1項に記載のエポキシ榭脂組成物を含有することを特 徴とする異方導電性材料。
[30] 請求項 14〜22の 、ずれか 1項に記載のエポキシ榭脂組成物を含有することを特 徴とする異方導電性フィルム。
[31] 請求項 14〜22のいずれか 1項に記載のエポキシ榭脂組成物を含有することを特 徴とする絶縁性材料。
[32] 請求項 14〜22の ヽずれか 1項に記載のエポキシ榭脂組成物を含有することを特 徴とする封止材料。
[33] 請求項 14〜22の ヽずれか 1項に記載のエポキシ榭脂組成物を含有することを特 徴とするコーティング用材料。
[34] 請求項 14〜22の 、ずれか 1項に記載のエポキシ榭脂組成物を含有することを特 徴とする塗料組成物。
[35] 請求項 14〜22の ヽずれか 1項に記載のエポキシ榭脂組成物を含有することを特 徴とするプリプレダ。
[36] 請求項 14〜22の 、ずれか 1項に記載のエポキシ榭脂組成物を含有することを特 徴とする熱伝導性材料。
PCT/JP2006/303311 2005-02-23 2006-02-23 エポキシ樹脂用潜在性硬化剤およびエポキシ樹脂組成物 WO2006090794A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2007504780A JP4753934B2 (ja) 2005-02-23 2006-02-23 エポキシ樹脂用潜在性硬化剤およびエポキシ樹脂組成物
US11/884,873 US20080251757A1 (en) 2005-02-23 2006-02-23 Latent Hardener For Epoxy Resin and Epoxy Resin Composition
CA2601950A CA2601950C (en) 2005-02-23 2006-02-23 Latent hardener for epoxy resin and epoxy resin composition
EP06714451A EP1852452A1 (en) 2005-02-23 2006-02-23 Latent hardener for epoxy resin and epoxy resin composition
CN2006800057361A CN101128502B (zh) 2005-02-23 2006-02-23 环氧树脂用潜在性固化剂和环氧树脂组合物
HK08109321.3A HK1118303A1 (en) 2005-02-23 2008-08-20 Latent hardener for epoxy resin and epoxy resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005046615 2005-02-23
JP2005-046615 2005-02-23

Publications (1)

Publication Number Publication Date
WO2006090794A1 true WO2006090794A1 (ja) 2006-08-31

Family

ID=36927432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303311 WO2006090794A1 (ja) 2005-02-23 2006-02-23 エポキシ樹脂用潜在性硬化剤およびエポキシ樹脂組成物

Country Status (9)

Country Link
US (1) US20080251757A1 (ja)
EP (1) EP1852452A1 (ja)
JP (1) JP4753934B2 (ja)
KR (1) KR100938523B1 (ja)
CN (1) CN101128502B (ja)
CA (1) CA2601950C (ja)
HK (1) HK1118303A1 (ja)
TW (1) TW200640978A (ja)
WO (1) WO2006090794A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007088889A1 (ja) * 2006-02-03 2007-08-09 Asahi Kasei Chemicals Corporation マイクロカプセル型エポキシ樹脂用硬化剤、マスタ-バッチ型エポキシ樹脂用硬化剤組成物、一液性エポキシ樹脂組成物、および加工品
WO2009117345A2 (en) * 2008-03-17 2009-09-24 Henkel Corporation Adhesive compositions for use in die attach applications
JP2009269976A (ja) * 2008-05-02 2009-11-19 Taiyo Ink Mfg Ltd 導電性樹脂組成物
WO2010098431A1 (ja) * 2009-02-27 2010-09-02 旭化成イーマテリアルズ株式会社 マイクロカプセル型エポキシ樹脂用硬化剤、マスターバッチ型エポキシ樹脂用硬化剤組成物、一液性エポキシ樹脂組成物、および加工品
JP2011032387A (ja) * 2009-08-03 2011-02-17 Toppan Forms Co Ltd 硬化性組成物
WO2011039948A1 (ja) * 2009-10-01 2011-04-07 株式会社Adeka シリコンウエハ用接着性樹脂組成物
KR101039546B1 (ko) 2007-01-24 2011-06-09 소니 케미카루 앤드 인포메이션 디바이스 가부시키가이샤 잠재성 경화제
JP2012529555A (ja) * 2009-06-12 2012-11-22 トリリオン サイエンス インク エポキシ組成物用潜在性硬化剤
US8698320B2 (en) 2009-12-07 2014-04-15 Henkel IP & Holding GmbH Curable resin compositions useful as underfill sealants for use with low-k dielectric-containing semiconductor devices

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101283017B (zh) * 2005-09-29 2011-06-15 旭化成电子材料株式会社 高稳定性微胶囊型环氧树脂用固化剂和环氧树脂组合物
KR100920612B1 (ko) * 2007-11-08 2009-10-08 제일모직주식회사 이방 전도성 필름용 조성물 및 이를 이용한 이방 전도성필름
KR20100120685A (ko) * 2008-02-11 2010-11-16 엠이엠씨 일렉트로닉 머티리얼즈, 인크. 잉곳을 웨이퍼로 와이어소우 슬라이싱하는데 사용되는 탄소 나노튜브 강화 와이어소우 빔
JP4473341B2 (ja) * 2008-02-28 2010-06-02 積水化学工業株式会社 硬化性エポキシ組成物、異方性導電材料及び接続構造体
US8044154B2 (en) 2009-06-12 2011-10-25 Trillion Science, Inc. Latent hardener for epoxy compositions
US8067484B2 (en) 2010-03-12 2011-11-29 Trillion Science, Inc. Latent hardener with improved barrier properties and compatibility
WO2010144236A1 (en) * 2009-06-12 2010-12-16 Trillion Science, Inc. Latent hardener for epoxy compositions
JP5509709B2 (ja) * 2009-07-24 2014-06-04 日清紡ケミカル株式会社 燃料電池セパレータ
BR112012026240B1 (pt) 2010-04-16 2021-08-03 Swimc Llc Artigo, método, e, composição de revestimento
KR101161360B1 (ko) * 2010-07-13 2012-06-29 엘에스전선 주식회사 공간전하 저감 효과를 갖는 직류용 전력 케이블
EP4219634A1 (en) 2011-02-07 2023-08-02 Swimc Llc Coating compositions for containers and other articles and methods of coating
US8974899B1 (en) * 2011-05-24 2015-03-10 The United States Of America As Represented By The Secretary Of The Air Force Pseudomorphic glass for space solar cells
JP2013001875A (ja) * 2011-06-20 2013-01-07 Asahi Kasei E-Materials Corp マスターバッチ型硬化剤組成物、それを用いる一液性エポキシ樹脂組成物及び成形品、並びにマスターバッチ型硬化剤組成物の製造方法
JP5869911B2 (ja) * 2012-02-23 2016-02-24 株式会社タムラ製作所 熱硬化性樹脂組成物
US8753924B2 (en) 2012-03-08 2014-06-17 Texas Instruments Incorporated Grown carbon nanotube die attach structures, articles, devices, and processes for making them
KR102093405B1 (ko) 2012-08-09 2020-03-25 에스더블유아이엠씨 엘엘씨 용기 코팅 시스템
EP3483227B1 (en) 2012-08-09 2020-12-16 Swimc, LLC Compositions for containers and other articles and methods of using same
US9957412B2 (en) * 2013-05-16 2018-05-01 Lord Corporation Aqueous conductive coating
CN110790914A (zh) 2014-04-14 2020-02-14 宣伟投资管理有限公司 制备用于容器和其它制品的组合物的方法以及使用所述组合物的方法
KR101706818B1 (ko) * 2014-04-30 2017-02-15 제일모직주식회사 이방 도전성 필름용 조성물, 이방 도전성 필름 및 반도체 장치
CN104403501B (zh) * 2014-11-26 2017-11-07 王忠强 一种电网运行管理中红外监测用涂覆材料及其制备方法
KR101741652B1 (ko) 2015-05-08 2017-06-01 주식회사 케이씨씨 분체 도료용 잠재성 경화제 및 이를 포함하는 에폭시 분체 도료 조성물
JP6996743B2 (ja) * 2015-09-30 2022-02-03 ナミックス株式会社 エポキシ樹脂組成物
TWI614275B (zh) 2015-11-03 2018-02-11 Valspar Sourcing Inc 用於製備聚合物的液體環氧樹脂組合物
EP3170847A1 (en) 2015-11-20 2017-05-24 OMG Borchers GmbH Encapsulated accelerators for coatings
DE102016203867A1 (de) * 2016-03-09 2017-09-14 Siemens Aktiengesellschaft Fester Isolationswerkstoff, Verwendung dazu und damit hergestelltes Isolationssystem
CN105646843B (zh) * 2016-04-05 2018-08-10 广州市固研电子材料有限公司 改性脂环胺型环氧树脂潜伏性固化剂和促进剂及其制备方法
KR101991797B1 (ko) 2016-10-17 2019-06-25 한국생산기술연구원 폴리티올 공중합체 경화제 및 코어쉘 잠재성 경화 촉매를 포함하는 일액형 에폭시 접착제 조성물
US11104760B2 (en) 2017-03-17 2021-08-31 Asahi Kasei Kabushiki Kaisha Thermosetting resin composition
CN109321183A (zh) * 2018-09-19 2019-02-12 长春永固科技有限公司 一种高导热环氧树脂电子粘接剂及其制备方法
KR102155323B1 (ko) 2018-11-23 2020-09-11 한국과학기술연구원 잠재성 경화제 복합체, 이를 포함하는 일액형 에폭시 수지 및 이의 제조방법
EP3998299A4 (en) 2019-07-12 2023-07-26 Samyang Corporation ANHYDROUS ALCOHOL-ALKYLENE GLYCOL COMPOSITION, ANHYDROUS ALCOHOL-BASED URETHANE-MODIFIED POLYOL COMPOSITION AND USES THEREOF FOR EPOXY RESIN COMPOSITION
KR102306945B1 (ko) 2019-08-14 2021-10-01 한국과학기술연구원 건식표면중합 공정을 이용한 잠재성 경화제 복합체, 이를 포함하는 일액형 에폭시 접착제 및 이의 제조방법
KR102236549B1 (ko) 2019-11-26 2021-04-07 한국과학기술연구원 건식 표면 처리 공정을 통해 보존 안정성이 향상된 잠재성 경화제, 이를 포함하는 일액형 에폭시 접착제 및 이의 제조방법
JP2022073653A (ja) * 2020-11-02 2022-05-17 日本ペイント・オートモーティブコーティングス株式会社 カチオン電着塗料組成物
KR102434730B1 (ko) * 2020-11-20 2022-08-23 한국생산기술연구원 저흡습성 에폭시 조성물
CN115232585B (zh) * 2022-06-24 2023-11-24 同济大学 一种耐湿热水解的单组分环氧树脂组合物及其制备方法和应用
CN115637021A (zh) * 2022-10-17 2023-01-24 华中科技大学 一种改性二氧化硅协同分散的环氧树脂复合材料及其制备与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6470523A (en) * 1987-08-26 1989-03-16 Asahi Chemical Ind Masterbatch type curing agent for one-pack type epoxy polymer
JPH02191624A (ja) * 1989-01-20 1990-07-27 Asahi Chem Ind Co Ltd コンデンサー封止用一液性エポキシ樹脂組成物
JPH03103423A (ja) * 1989-09-18 1991-04-30 Asahi Chem Ind Co Ltd 構造用接着剤用一液性エポキシ樹脂組成物
JPH06157876A (ja) * 1992-11-30 1994-06-07 Ajinomoto Co Inc 導電性一液型エポキシ樹脂組成物
JP2004115729A (ja) * 2002-09-27 2004-04-15 Sumitomo Bakelite Co Ltd 一液型エポキシ樹脂組成物
JP2004269721A (ja) * 2003-03-10 2004-09-30 Asahi Kasei Chemicals Corp マスターバッチ型硬化剤および一液性エポキシ樹脂組成物

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3417683A1 (de) * 1984-05-12 1985-11-14 Bayer Ag, 5090 Leverkusen Neue cycloaliphatische triisocyanate, ein verfahren zu ihrer herstellung und ihre verwendung bei der herstellung von polyurethankunststoffen
MY139328A (en) * 2002-05-20 2009-09-30 Nitto Denko Corp Thermosetting resin composition and semiconductor device obtained with the same
WO2005035617A1 (ja) * 2003-10-10 2005-04-21 Asahi Kasei Chemicals Corporation 潜在性硬化剤および組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6470523A (en) * 1987-08-26 1989-03-16 Asahi Chemical Ind Masterbatch type curing agent for one-pack type epoxy polymer
JPH02191624A (ja) * 1989-01-20 1990-07-27 Asahi Chem Ind Co Ltd コンデンサー封止用一液性エポキシ樹脂組成物
JPH03103423A (ja) * 1989-09-18 1991-04-30 Asahi Chem Ind Co Ltd 構造用接着剤用一液性エポキシ樹脂組成物
JPH06157876A (ja) * 1992-11-30 1994-06-07 Ajinomoto Co Inc 導電性一液型エポキシ樹脂組成物
JP2004115729A (ja) * 2002-09-27 2004-04-15 Sumitomo Bakelite Co Ltd 一液型エポキシ樹脂組成物
JP2004269721A (ja) * 2003-03-10 2004-09-30 Asahi Kasei Chemicals Corp マスターバッチ型硬化剤および一液性エポキシ樹脂組成物

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007088889A1 (ja) * 2006-02-03 2007-08-09 Asahi Kasei Chemicals Corporation マイクロカプセル型エポキシ樹脂用硬化剤、マスタ-バッチ型エポキシ樹脂用硬化剤組成物、一液性エポキシ樹脂組成物、および加工品
US7927514B2 (en) 2006-02-03 2011-04-19 Asahi Kasei Chemicals Corporation Microcapsule-based hardener for epoxy resin, masterbatch-based hardener composition for epoxy resin, one-part epoxy resin composition, and processed good
KR101039546B1 (ko) 2007-01-24 2011-06-09 소니 케미카루 앤드 인포메이션 디바이스 가부시키가이샤 잠재성 경화제
US8147720B2 (en) 2007-01-24 2012-04-03 Sony Corporation Latent curing agent
WO2009117345A2 (en) * 2008-03-17 2009-09-24 Henkel Corporation Adhesive compositions for use in die attach applications
WO2009117345A3 (en) * 2008-03-17 2010-04-15 Henkel Corporation Adhesive compositions for use in die attach applications
US8835574B2 (en) 2008-03-17 2014-09-16 Henkel IP Holding GmbH Adhesive compositions for use in die attach applications
US8338536B2 (en) 2008-03-17 2012-12-25 Henkel Corporation Adhesive compositions for use in die attach applications
JP2009269976A (ja) * 2008-05-02 2009-11-19 Taiyo Ink Mfg Ltd 導電性樹脂組成物
WO2010098431A1 (ja) * 2009-02-27 2010-09-02 旭化成イーマテリアルズ株式会社 マイクロカプセル型エポキシ樹脂用硬化剤、マスターバッチ型エポキシ樹脂用硬化剤組成物、一液性エポキシ樹脂組成物、および加工品
JPWO2010098431A1 (ja) * 2009-02-27 2012-09-06 旭化成イーマテリアルズ株式会社 マイクロカプセル型エポキシ樹脂用硬化剤、マスターバッチ型エポキシ樹脂用硬化剤組成物、一液性エポキシ樹脂組成物、および加工品
JP5534615B2 (ja) * 2009-02-27 2014-07-02 旭化成イーマテリアルズ株式会社 マイクロカプセル型エポキシ樹脂用硬化剤、マスターバッチ型エポキシ樹脂用硬化剤組成物、一液性エポキシ樹脂組成物、および加工品
JP2012529555A (ja) * 2009-06-12 2012-11-22 トリリオン サイエンス インク エポキシ組成物用潜在性硬化剤
JP2011032387A (ja) * 2009-08-03 2011-02-17 Toppan Forms Co Ltd 硬化性組成物
JP2011074298A (ja) * 2009-10-01 2011-04-14 Adeka Corp シリコンウエハ用接着性樹脂組成物
WO2011039948A1 (ja) * 2009-10-01 2011-04-07 株式会社Adeka シリコンウエハ用接着性樹脂組成物
US8698320B2 (en) 2009-12-07 2014-04-15 Henkel IP & Holding GmbH Curable resin compositions useful as underfill sealants for use with low-k dielectric-containing semiconductor devices

Also Published As

Publication number Publication date
EP1852452A1 (en) 2007-11-07
CA2601950A1 (en) 2006-08-31
CN101128502B (zh) 2010-12-01
TW200640978A (en) 2006-12-01
TWI318632B (ja) 2009-12-21
JPWO2006090794A1 (ja) 2008-07-24
CN101128502A (zh) 2008-02-20
CA2601950C (en) 2010-07-13
US20080251757A1 (en) 2008-10-16
KR100938523B1 (ko) 2010-01-25
HK1118303A1 (en) 2009-02-06
JP4753934B2 (ja) 2011-08-24
KR20070104621A (ko) 2007-10-26

Similar Documents

Publication Publication Date Title
WO2006090794A1 (ja) エポキシ樹脂用潜在性硬化剤およびエポキシ樹脂組成物
JP4911981B2 (ja) 高含水含溶剤エポキシ樹脂用硬化剤およびエポキシ樹脂組成物
JP4326524B2 (ja) カプセル型硬化剤及び組成物
JP4583373B2 (ja) エポキシ樹脂用硬化剤及びエポキシ樹脂組成物
JP5558118B2 (ja) マイクロカプセル型エポキシ樹脂用硬化剤、及びそれを含むマスターバッチ型エポキシ樹脂用硬化剤組成物
JP4877717B2 (ja) 緩反応性エポキシ樹脂用硬化剤およびエポキシ樹脂組成物
JP2007091899A (ja) 高安定性エポキシ樹脂用硬化剤およびエポキシ樹脂組成物
WO2007088889A1 (ja) マイクロカプセル型エポキシ樹脂用硬化剤、マスタ-バッチ型エポキシ樹脂用硬化剤組成物、一液性エポキシ樹脂組成物、および加工品
JP4877716B2 (ja) 速硬化性エポキシ樹脂用硬化剤およびエポキシ樹脂組成物
WO2007037378A1 (ja) 高安定性マイクロカプセル型エポキシ樹脂用硬化剤及びエポキシ樹脂組成物
JP2007204669A (ja) 特定小粒径粒度分布エポキシ樹脂用硬化剤およびエポキシ樹脂組成物
JP5158088B2 (ja) エポキシ樹脂用マイクロカプセル型潜在性硬化剤及びその製造方法、並びに一液性エポキシ樹脂組成物及びその硬化物
JP2010053353A (ja) エポキシ樹脂用マイクロカプセル型潜在性硬化剤及びその製造方法、一液性エポキシ樹脂組成物、エポキシ樹脂硬化物、接着剤、接合用フィルム、導電性材料並びに異方導電性材料
WO2005035617A1 (ja) 潜在性硬化剤および組成物
JP5228644B2 (ja) エポキシ樹脂用マイクロカプセル型潜在性硬化剤及びその製造方法、一液性エポキシ樹脂組成物並びにエポキシ樹脂硬化物
JP2015117333A (ja) マスターバッチ型潜在性エポキシ樹脂硬化剤組成物及びこれを用いたエポキシ樹脂組成物
JP4567377B2 (ja) 潜在性硬化剤および組成物
JP6114037B2 (ja) エポキシ樹脂用硬化剤及びエポキシ樹脂組成物
JP5245790B2 (ja) 一液性エポキシ樹脂組成物
JP2013053228A (ja) エポキシ樹脂用硬化剤及びマイクロカプセル型エポキシ樹脂用硬化剤
JP2019189834A (ja) エポキシ樹脂用硬化剤、マスターバッチ型エポキシ樹脂用硬化剤組成物、一液性エポキシ樹脂組成物、及び加工品
JP2013053230A (ja) エポキシ樹脂組成物、及びこれを用いたペースト状組成物、フィルム状組成物
KR20230157487A (ko) 에폭시 수지 조성물, 필름, 필름의 제조 방법, 및 경화물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007504780

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006714451

Country of ref document: EP

Ref document number: 2601950

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 200680005736.1

Country of ref document: CN

Ref document number: 11884873

Country of ref document: US

Ref document number: 1020077019201

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006714451

Country of ref document: EP