WO2006090643A1 - Hybrid carbon fiber spun yarn and hybrid carbon fiber spun yarn fabric using same - Google Patents

Hybrid carbon fiber spun yarn and hybrid carbon fiber spun yarn fabric using same

Info

Publication number
WO2006090643A1
WO2006090643A1 PCT/JP2006/302822 JP2006302822W WO2006090643A1 WO 2006090643 A1 WO2006090643 A1 WO 2006090643A1 JP 2006302822 W JP2006302822 W JP 2006302822W WO 2006090643 A1 WO2006090643 A1 WO 2006090643A1
Authority
WO
Grant status
Application
Patent type
Prior art keywords
carbon
fiber
fibers
length
portion
Prior art date
Application number
PCT/JP2006/302822
Other languages
French (fr)
Japanese (ja)
Inventor
Tatsuo Kobayashi
Naohiro Sonobe
Shigeki Iwamoto
Original Assignee
Kureha Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material or construction of the yarn or other warp or weft elements used
    • D03D15/12Woven fabrics characterised by the material or construction of the yarn or other warp or weft elements used using heat-resistant or fireproof threads
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/16Yarns or threads made from mineral substances
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/36Cored or coated yarns or threads
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material or construction of the yarn or other warp or weft elements used
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2201/00Cellulose-based fibres, e.g. vegetable fibres
    • D10B2201/20Cellulose-derived artificial fibres
    • D10B2201/22Cellulose-derived artificial fibres made from cellulose solutions
    • D10B2201/24Viscose
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/10Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/063Load-responsive characteristics high strength
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/02Reinforcing materials; Prepregs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/56Manufacturing of fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2918Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2922Nonlinear [e.g., crimped, coiled, etc.]
    • Y10T428/2925Helical or coiled
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]

Abstract

Disclosed is a hybrid carbon fiber spun yarn comprising a core portion mainly containing carbon fibers and a sheath portion mainly containing carbon fibers and covering the outer surface of the core portion. Not less than 20% by mass of the fibers constituting the core portion are long-fiber-length carbon fibers having a fiber length of not less than 500 mm, and not less than 80% by mass of the fibers constituting the sheath portion are short-fiber-length carbon fibers having a fiber length of less than 500 mm. The mass ratio between the long-fiber-length carbon fibers and the short-fiber-length carbon fibers (long-fiber-length carbon fibers : short-fiber-length carbon fibers) is from 20:80 to 80:20.

Description

明 細 書 Specification

ノ、イブリツド炭素繊維紡績糸及びそれを用いたハイブリッド炭素繊維紡績 糸織物 Bruno, yarn Iburitsudo carbon fiber spinning and hybrid carbon fiber spun yarn fabric using the same

技術分野 Technical field

[0001] 本発明は、固体高分子電解質型燃料電池用のガス拡散体 (集電体)等に有用なハ イブリツド炭素繊維紡績糸及びそれを用レ、たハイブリッド炭素繊維紡績糸織物に関 する。 [0001] The present invention, concerning the solid polymer electrolyte fuel gas diffuser for a battery (collector) c Iburitsudo carbon fiber spun yarn useful for such and it Yore was the hybrid carbon fiber spun yarn fabric .

背景技術 BACKGROUND

[0002] 現在、炭素繊維としては、ポリアクリロニトリル (PAN)を原料とするいわゆる PAN系 炭素繊維、レーヨンを原料とするいわゆるレーヨン系炭素繊維、並びにピッチ類を原 料とするいわゆるピッチ系炭素繊維が製造されており、さらにピッチ系炭素繊維として は異方性炭素繊維と等方性炭素繊維が製造されている。 [0002] Currently, as the carbon fiber, so-called PAN-based carbon fibers polyacrylonitrile (PAN) as a raw material, so-called rayon-based carbon fibers and rayon as raw materials, as well as so-called pitch-based carbon fibers and pitch such raw materials are manufactured, it is further manufactured anisotropic carbon fibers and isotropic carbon fibers as the pitch-based carbon fibers. これらの中で、ピッチ系等 方性炭素繊維は、原料が安価で比較的廉価であり、また製造方法が大量生産に有 利なため、軽量、耐薬品性、耐熱性、摺動性及び導電性等の特性が要求される用途 に広く使用されている。 Among these, pitch-based isotropic carbon fibers, the raw material is relatively inexpensive and inexpensive, and because the production method is perforated advantage for mass production, light weight, chemical resistance, heat resistance, sliding resistance and a conductive It is widely used in applications where properties such as sex are required.

[0003] また、炭素繊維は、フィラメント、スライバー(繊維束)、紡績糸、織物、チョップ、ミル ド、マット、プリプレダ等多くの形態で使用され、用途により焼成温度や炭素化度も変 えられる。 [0003] In addition, carbon fibers, filaments, slivers (fiber bundle), spun yarn, woven fabric, chopped, mill de, mats are used in many forms such as Puripureda, varying also the firing temperature, carbon degree by application Erareru . 中でも、炭素繊維紡績糸や炭素繊維織物は、断熱材、摺動材、導電材等 の構成材料として利用されており、特に固体高分子電解質型燃料電池用のガス拡散 体等の電子材料用途への利用が図られている。 Among them, carbon fiber spun yarn and the carbon fiber fabric, insulation, sliding material, which is utilized as a construction material such as a conductive material, in particular of the gas diffuser or the like for a solid polymer electrolyte fuel cell to electronic materials utilization is achieved of.

[0004] そのため、このような炭素繊維紡績糸や炭素繊維織物においては、柔軟性や導電 性に加えてガス透過性、更には高分子材料等のマトリックス材料との密着性、繊度や 厚みの均一性、高い引張強度等が要求されるようになってきている。 [0004] Therefore, In such a carbon fiber spun yarn and the carbon fiber fabric, flexibility and conductivity in addition to the gas-permeable, even adhesion between the matrix material such as a polymeric material, a uniform fineness and thickness sex, has come to a high tensile strength, etc. are required.

[0005] ここで、炭素繊維紡績糸や炭素繊維織物の導電性に関しては、それらを 900°C以 上の高温で熱処理し、炭素化度を高めることにより高い導電性を得ることができる。 [0005] Here, with respect to the conductive carbon fiber spun yarn and the carbon fiber fabric, they were heat-treated at a high temperature of over 900 ° C or more, it is possible to obtain a high conductivity by increasing the carbonization degree.

[0006] また、炭素繊維織物を固体高分子電解質型燃料電池用ガス拡散体として用いる場 合、そのガス透過性はその開口率(空隙率)により決まるが、あまり粗い多孔体ではガ ス拡散体として用いた際に触媒層との接触が不良となって集電に問題を生じる。 [0006] Further, if using a carbon fiber woven fabric as a solid polymer electrolyte fuel cell gas diffuser, its gas permeability is determined by the aperture ratio (porosity), gas diffusers in very coarse porous material contact with the catalyst layer becomes defective causing problems to the current collector when used as. また 、単糸が揃ったフィラメント織物では開口率(空隙率)が小さくガス透過性が低いという 問題がある。 Further, the filaments woven single yarn are aligned is the aperture ratio (porosity) problem of low reduced gas permeability. そのため、このような炭素繊維織物としては、単糸が揃って高密度になり やすレ、フィラメント織物よりも紡績糸織物の方が好ましい。 Therefore, as such carbon fiber fabric, Yasure become dense equipped with single yarn, it is preferable of the spun yarn woven fabric than the filament fabric. また、触媒層への反応ガス の拡散を考慮して、ガス拡散体として用いる炭素繊維織物の厚さを適切に制御する 必要がある。 In consideration of diffusion of the reaction gas to the catalyst layer, it is necessary to appropriately control the thickness of the carbon fiber woven fabric to be used as a gas diffuser.

[0007] したがって、ガス拡散体として用いる炭素繊維織物としては、適切な厚さを有し且つ 900°C以上の熱履歴を有する紡績糸織物が好ましぐこのような紡績糸織物を得る 方法としては、耐炎化繊維あるいは炭素質繊維の紡績糸を製織して得た織物を 900 °C以上の温度で熱処理する方法と、 900°C以上で熱処理された紡績糸を製織して 織物とする方法が採用されてレ、る。 [0007] Therefore, the carbon fiber woven fabric used as a gas diffuser, the method of the spun yarn woven fabric to obtain a preferred instrument such spun yarn fabric and having a 900 ° C or more thermal history has a suitable thickness to a method of a method of heat-treating the fabric obtained by weaving the spun yarn oxidized fiber or carbon-fiber at 900 ° C or higher temperatures, by weaving the spun yarn that has been heat treated at 900 ° C or higher and fabric There adopted is, Ru.

[0008] このような炭素繊維紡績糸としては、 PAN系の耐炎化繊維の紡績糸とピッチ系の 紡績糸が知られている力 PAN系の耐炎化繊維の紡績糸は 900°Cで熱処理すると 極端に強度が低下し、製織することが困難である。 [0008] Examples of such carbon fiber spun yarn, spun yarn of oxidized fiber force PAN-based spun yarn of spun yarn and pitch-based PAN-based flame-resistant fiber is known when the heat treatment at 900 ° C extreme strength decreases, it is difficult to weaving. したがって、耐炎化繊維を製織し た後に 900°Cで熱処理する方法を採用しなければ、 目的とする織物を得ることができ なレ、。 Therefore, if adopting a method of heat treatment at 900 ° C after weaving the oxidized fiber, such can be obtained fabric of interest Le. し力しながら、その場合は、熱処理による繊維の歪み及び熱処理により紡績糸 の強度低下をきたすことから、得られる織物の強度が低くなるという欠点があった。 While with force, in that case, since it causes a reduction in the strength of the spun yarn by the strain and heat treatment of the fibers by heat treatment, the strength of the resulting fabric has a drawback that low. ま た、 PAN系連続長繊維の炭素繊維のように長繊維長の炭素繊維を用いると、得られ る紡績糸とマトリックス材料との密着性が劣ってしまうという問題があった。 Also, the use of long fiber length carbon fibers as carbon fiber PAN-based continuous filaments, there is a problem that adhesion between the obtained that the spun yarn and the matrix material will be poor.

[0009] そのため、例えば、特開 2002— 352807号公報において、繊維長が 25〜80mm の炭素繊維が空隙を有した状態で集合してなる多孔質炭素基材に、粒状フッ素樹脂 力^〜 40wt%含まれ、かつ、前記粒状フッ素樹脂がバインダーとして前記炭素繊維 間を結合させていることを特徴とするガス拡散体が開示されている。 [0009] Therefore, for example, JP 2002- in 352807 discloses, the porous carbon substrate fiber length is collectively in a state in which carbon fiber 25~80mm had voids, particulate fluororesin force ^ ~ 40 wt % included, and the gas diffuser, wherein the granular fluororesin is coupled between said carbon fibers as a binder is disclosed. また、特開 2003 一 288906号公報にぉレ、て、電極用炭素繊維織物の少なくとも片面に、カーポンプ ラック及びフッ素樹脂を含むカーボン層を有することを特徴とするガス拡散体が開示 されている。 Furthermore, JP 2003 one 288 906 No. Ore in Japanese Te, on at least one surface of the electrode the carbon fiber fabric, the gas diffuser, characterized by having a carbon layer containing Kaponpu rack and fluororesin is disclosed. し力、しながら、特許文献 1や特許文献 2に記載されている炭素繊維紡績 糸自体の引張強度は低ぐ得られる炭素繊維織物の引張強度を向上させるために粒 状フッ素樹脂がバインダーやカーボン層を用いることから必然的にガス拡散体の集 電機能が低下してしまうという問題があった。 And force, while the binder and carbon particle-like fluororesin for tensile strength of the carbon fiber spun yarn itself has been described to improve the tensile strength of the carbon fiber woven fabric obtained low ingredients in Patent Documents 1 and 2 current collecting function inevitably gas diffuser is disadvantageously lowered from using layers.

[0010] また、特開昭 53— 81735号公報においては、 25mm以上、好ましくは 50〜75mm の繊維長を有するスライバー状の炭素繊維を紡績することにより強度の改善された炭 素繊維紡績糸を得ることが提案されている。 [0010] Further, in JP 53- 81735 discloses, 25 mm or more, preferably carbon-containing fiber yarn having improved strength by spinning a sliver-like carbon fiber having a fiber length of 50~75mm it has been proposed to obtain. し力 ながら、このようにして得られる炭 素繊維紡績糸であってもその引張強度は 0. 08〜0. 09N/tex程度であり、未だ十 分なものではなかった。 While force and in this way its tensile strength even-carbon fiber spun yarn obtained is about 0. 08~0. 09N / tex, were not yet a ten minutes.

[0011] 一方、ピッチ系等方性炭素繊維は、短繊維長のものが大部分であり、それを原料と して炭素化を高めた紡績糸が市販されている。 [0011] On the other hand, pitch-based isotropic carbon fibers, staple fibers length is most are commercially available spun yarn with improved carbonization it as a raw material. し力、しながら、市販されている炭素繊 維紡績糸は、十分な引張強度を有し、且つ繊度のバラツキが少なレ、ものがなかった 。 And power, while, the carbon textiles spun yarn which is commercially available, has sufficient tensile strength and fineness variation is small les, what was not. そのため、それを製織して得られる織物は強度と厚みのバラツキの点で未だ十分な ものではなかった。 Therefore, it was not yet sufficient in terms of it obtained by weaving fabric strength and thickness variations.

発明の開示 Disclosure of the Invention

[0012] 本発明は、上記従来技術の有する課題に鑑みてなされたものであり、高分子材料 等のマトリックス材料との密着性の低下を招くことなく高い引張強度を達成し、しかも 繊度の均一性にも優れた炭素繊維紡績糸、並びにマトリックス材料との密着性及び 機械的強度に優れ、しかも厚みの均一性にも優れた炭素繊維紡績糸織物を提供す ることを目的とする。 [0012] The present invention, the has been made in view of the problems of the prior art, to achieve a high tensile strength without lowering the adhesion with the matrix material, such as polymeric materials, moreover fineness uniform excellent carbon fiber spun yarn to sex, and excellent adhesion and mechanical strength of the matrix material, yet is an object that you provide a carbon fiber spun yarn fabric excellent in uniformity in thickness.

[0013] 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、繊維長 500m m以上の長繊維長炭素繊維を主成分とする芯部を、繊維長 500mm未満の短繊維 長炭素繊維を主成分とする外周部によって覆うことによって、前記目的を達成するこ とができるハイブリッド炭素繊維紡績糸が得られることを見出し、本発明を完成するに 至った。 [0013] The present inventors have found, after intensive studies to solve the above problems, a core section composed mainly of fiber length 500 meters m or more long fiber length carbon fibers, short fibers of less than a fiber length 500mm by covering the outer peripheral portion mainly composed of long carbon fibers, hybrid carbon fiber spun yarn of the object can be and achieve child is heading can be obtained, and have completed the present invention.

[0014] 本発明のハイブリッド炭素繊維紡績糸は、炭素繊維を主成分とする芯部と、炭素繊 維を主成分とし且つ前記芯部の外周面を覆う外周部とを備えるハイブリッド炭素繊維 紡績糸であって、前記芯部を構成する繊維の 20質量%以上が繊維長 500mm以上 の長繊維長炭素繊維であり、前記外周部を構成する繊維の 80質量%以上が繊維長 500mm未満の短繊維長炭素繊維であり、且つ、前記長繊維長炭素繊維と前記短 繊維長炭素繊維との質量比(長繊維長炭素繊維:短繊維長炭素繊維)が 20: 80〜8 0 : 20であるものである。 [0014] Hybrid carbon fiber spun yarn of the present invention, the hybrid carbon fiber spun yarn comprising a core section composed mainly of carbon fibers, and an outer circumferential portion covering an outer circumferential surface of and the core portion composed mainly of carbon textiles a is, more than 20% by weight of the fibers constituting the core portion is longer than the fiber length of carbon fibers having a fiber length of 500mm, short fibers more than 80% by weight of the fibers constituting the outer peripheral portion is less than the fiber length 500mm a long carbon fiber, and the weight ratio of the said long fibers long carbon fiber short fiber length of carbon fibers (long fiber length carbon fibers: short fiber length of carbon fibers) 20: 80-8 0: those 20 it is.

[0015] また、本発明のハイブリッド炭素繊維紡績糸織物は、前記本発明のハイブリッド炭 素繊維紡績糸を 30質量%以上含有するものである。 [0015] The hybrid carbon fiber spun yarn fabric of the present invention, the hybrid-carbon fiber spun yarn of the present invention are those containing more than 30 wt%.

[0016] 前記本発明のハイブリッド炭素繊維紡績糸においては、前記長繊維長炭素繊維が [0016] In the above hybrid carbon fiber spun yarn of the present invention, the long fiber length of carbon fibers

、ピッチ系異方性炭素繊維、ポリアクリロニトリル系炭素繊維及びレーヨン系炭素繊維 力 なる群から選択される少なくとも一種の炭素繊維であることが好ましい。 , Is preferably at least one carbon fiber selected from the pitch-based anisotropic carbon fibers, polyacrylonitrile-based carbon fibers and rayon-based carbon fibers force the group consisting of.

[0017] また、前記本発明のハイブリッド炭素繊維紡績糸においては、前記短繊維長炭素 繊維が、ピッチ系等方性炭素繊維及び Z又はポリアクリロニトリル系炭素繊維である ことが好ましい。 [0017] Further, in the above hybrid carbon fiber spun yarn of the present invention, the short fiber length of carbon fiber is preferably a pitch-based isotropic carbon fibers and Z or polyacrylonitrile-based carbon fibers.

[0018] さらに、前記本発明のハイブリッド炭素繊維紡績糸においては、前記長繊維長炭素 繊維がポリアクリロニトリル系炭素繊維であり、且つ前記短繊維長炭素繊維がピッチ 系等方性炭素繊維であることが好ましい。 [0018] Furthermore, said in the hybrid carbon fiber spun yarn of the present invention, the long fiber length of carbon fibers are polyacrylonitrile-based carbon fibers, and the short fiber length of carbon fibers are pitch-based isotropic carbon fibers It is preferred.

[0019] また、前記本発明のハイブリッド炭素繊維紡績糸においては、前記短繊維長炭素 繊維における繊維長が 150mm以上で且つ 500mm未満の炭素繊維の割合が 3〜3 [0019] Further, in the above hybrid carbon fiber spun yarn of the present invention, the proportion of carbon fiber and less than 500mm in fiber length 150mm or more in the short fiber length of carbon fibers 3-3

0質量%であることが好ましレ、。 Les, Shi preferred that 0% by mass.

[0020] さらに、前記本発明のハイブリッド炭素繊維紡績糸においては、前記外周部が前記 短繊維長炭素繊維を主成分とする撚り糸により構成されており、該撚り糸が前記長繊 維長炭素繊維を主成分とする芯部と共に撚られることによって前記芯部の外周面が 前記撚り糸に覆われてレ、ることが好ましレ、。 [0020] Further, in the above hybrid carbon fiber spun yarn of the present invention, the outer peripheral portion is configured of a twisted yarn composed mainly of said short fiber length of carbon fiber, the yarn is the length fiber 維長 carbon fibers Les outer peripheral surface of the core portion by being twisted together with the core section composed mainly is covered with the twisted yarn, Le Shi preferred is Rukoto.

[0021] また、前記本発明のハイブリッド炭素繊維紡績糸においては、 [0021] In the hybrid carbon fiber spun yarn of the present invention,

(i)前記ハイブリッド炭素繊維紡績糸における撚り数が 50〜400回/ mであること、 (I) that the number of twist in the hybrid carbon fiber spun yarn is 50 to 400 times / m,

(ii)前記長繊維長炭素繊維の密度が 1. 7〜2. 3g/cm 3であり、且つ、前記短繊維長 炭素繊維の密度が 1. 5〜: 1. 8gZcm 3であること、 (ii) the density of the long fiber length of carbon fibers are 1. 7 to 2 3 g / cm 3, and the density of the short fiber length of carbon fiber 1. 5:. 1. It is 8GZcm 3,

(iii) lOOOm当たりの質量(tex)力 ¾0〜150gであること、 (Iii) mass per lOOOm (tex) that is force ¾0~150G,

が好ましい。 It is preferred.

[0022] なお、本発明のハイブリッド炭素繊維紡績糸によれば高分子材料等のマトリックス 材料との密着性の低下を招くことなく高い引張強度が達成され、しかも繊度の均一性 にも優れたものとなる理由は必ずしも定かではなレ、が、本発明者らは以下のように推 察する。 [0022] In addition, a high tensile strength without lowering the adhesion with the matrix material of a polymer material such as In the hybrid carbon fiber spun yarn of the present invention are achieved, moreover also excellent uniformity of fineness become reason necessarily clear at the a record, but the inventors are estimated observation as follows.

[0023] すなわち、先ず、本発明のハイブリッド炭素繊維紡績糸においては、その芯部が高 い引張強度を有する長繊維長炭素繊維を主成分として構成されているため、高い引 張強度が達成される。 [0023] That is, first, in the hybrid carbon fiber spun yarn of the present invention, because it is composed of long fiber length carbon fibers having a tensile strength that the core portion is not higher as a main component, a high tensile strength is achieved that. より詳しく説明すると、紡績糸は、短繊維に撚りを掛けて短い 単繊維同士を絡み合わせることで短繊維同士をつなぎ合わせた長い糸束である。 In more detail, the spun yarn is a long fiber bundle obtained by connecting the short fibers by entangling short single fibers by applying a twist to the short fibers. し たがってその引張強度は、単繊維同士の絡み合い (接触)による摩擦力により維持さ れており、絡み合いが多ければ多いほど繊維同士の接触面積が増加し、摩擦が増え て、強度が増加することとなる。 Its tensile strength Therefore, is maintained by the frictional force generated by the single fibers entangled (contact), the contact area between fibers The more entanglement increases, friction increasing, intensity increases and thus. さらに、撚りが強いほど、繊維同士が強く押し付けら れることになり、摩擦力が増加し、紡績糸としての引張強度が向上することとなる。 Furthermore, the stronger twist, will be fibers are strongly pressed et al, frictional force is increased, the tensile strength is to be enhanced as a spun yarn. ま た、使用される繊維長が長いほど繊維同士の繋ぎ合わせ点が減少するため、得られ る紡績糸の強度が向上することとなる。 Also, since the joining point of the fibers longer fiber length to be used is reduced, so that the strength of the spun yarn that is obtained is improved. 本発明のハイブリッド炭素繊維紡績糸におい ては、その芯部が繊維長 500mm以上の長繊維長炭素繊維を主成分として構成され ており、その外周部が繊維長 500mm未満の短繊維長炭素繊維で被覆される構成と なっているため、上記のように高い引張強度が達成されると本発明者らは推察する。 Te hybrid carbon fiber spun yarn odor of the present invention, the core is configured as a main component fiber length 500mm or more long fiber length carbon fiber, a short fiber length of carbon fiber below its outer periphery fiber length 500mm since that is the coated configurations, the present inventors have high tensile strength as described above can be achieved is presumed.

[0024] また、本発明のハイブリッド炭素繊維紡績糸においては、その芯部がマトリックス材 料との密着性に劣る長繊維長炭素繊維によって構成されているものの、その外周面 が表面毛羽の多い短繊維長炭素繊維によって覆われているため、外周部を構成す る炭素繊維の表面毛羽のアンカー効果によりマトリックス材料との密着性が充分に高 い状態に維持されているものと本発明者らは推察する。 [0024] In the hybrid carbon fiber spun yarn of the present invention, although the core is constituted by a long fiber length carbon fibers having poor adhesion to the matrix materials, often its outer peripheral surface of the surface fluff short because it is covered by the fiber length of carbon fibers, which adhesion to the matrix material is kept sufficiently at a high not state the surface fluff anchor effect of the carbon fibers that make up the outer peripheral portion and the present inventors inferred to.

[0025] さらに、本発明のハイブリッド炭素繊維紡績糸においては、繊度のバラツキが少く且 つ引張強度の強い長繊維長炭素繊維によってその芯部が構成されており、その芯 部が外周部を構成する短繊維長炭素繊維と共に撚られて構成されていることから、 短繊維長炭素繊維のみを用いて形成される紡績糸より引張強度が強い。 [0025] Further, in the hybrid carbon fiber spun yarn of the present invention, variation in fineness is constituted its core by less 且 one strong tensile strength long fiber length carbon fibers, constituting the outer peripheral portion thereof core short fiber length because it is configured with twisted together with the carbon fibers, than the tensile strength is strong spun yarn formed by using only the short fiber length of carbon fibers. また、外周 部を構成する炭素繊維の繊維長を短くすることができ、そのため、ハイブリッド紡績糸 として、いわゆるスラブ、フライと言われる塊状部の発生も十分に防止されるものと本 発明者らは推察する。 Further, it is possible to shorten the fiber length of the carbon fibers constituting the outer peripheral portion, therefore, as a hybrid yarn, so-called slabs, but also generating a massive part which are said to fly is sufficiently prevented and the present inventors inferred to.

[0026] そして、本発明のハイブリッド炭素繊維紡績糸織物は、このようにマトリックス材料と の密着性に優れ且つ引張強度が高ぐしかも繊度の均一性にも優れたハイブリッド炭 素繊維紡績糸を用いて得られるため、マトリックス材料との密着性及び機械的強度に 優れ、し力も厚みの均一性にも優れたものとなる。 [0026] Then, the hybrid carbon fiber spun yarn fabric of the present invention is thus with hybrid-carbon fiber spun yarn adhesion excellent and tensile strength was excellent in uniformity of Kogu Moreover fineness of the matrix material since the resulting Te, excellent adhesion and mechanical strength of the matrix material, the tooth force also becomes excellent in uniformity in thickness. また、本発明のハイブリッド炭素繊 維紡績糸織物にぉレ、ては、それを構成するハイブリッド炭素繊維紡績糸同士が外周 部の表面毛羽のために互いに密接することがなぐ織物の適度な開口率(空隙率)が 保持されるため、ガス透過性にも優れたものとなると本発明者らは推察する。 Further, Ore hybrid carbon Textile spun yarn fabric of the present invention, Te is reasonable aperture ratio of the fabric which is Nag hybrid carbon fiber spun yarn to each other closely to each other for surface fuzz outer peripheral portion constituting it for (porosity) is retained, the present inventors when becomes excellent in gas permeability is inferred.

[0027] 本発明によれば、高分子材料等のマトリックス材料との密着性の低下を招くことなく 高い引張強度を達成し、し力、も繊度の均一性にも優れた炭素繊維紡績糸、並びにマ トリックス材料との密着性及び機械的強度に優れ、し力、も厚みの均一性にも優れた炭 素繊維紡績糸織物を提供することが可能となる。 According to [0027] the present invention, to achieve a high tensile strength without lowering the adhesion with the matrix material, such as polymeric materials, tooth force, the carbon fiber spun yarn excellent in uniformity of fineness also and excellent adhesion and mechanical strength of the Matrix material, tooth force, it becomes possible to provide an excellent-carbon fiber spun yarn fabric in the thickness uniformity.

図面の簡単な説明 BRIEF DESCRIPTION OF THE DRAWINGS

[0028] [図 1]図 1は、本発明に力かる短繊維長炭素繊維束を得る過程の梳綿工程において 用いるのに好適な梳綿機を示す構成図である。 [0028] [FIG. 1] FIG. 1 is a block diagram showing a preferred carding machine for use in the carding step in the process of obtaining the short fiber length of carbon fiber bundles mowing force to the invention.

[図 2]図 2は、本発明にかかる短繊維長炭素繊維束を得る過程の練条工程において 用いるのに好適な練条機を示す構成図である。 FIG. 2 is a block diagram showing a preferred kneading Article machine for use in Nerijo step of the process of obtaining the short fiber length of carbon fiber bundle according to the present invention.

[図 3]図 3は、本発明のハイブリッド炭素繊維紡績糸を製造するのに好適な精紡機を 示す構成図である。 FIG. 3 is a block diagram showing a preferred spinning machine for manufacturing the hybrid carbon fiber spun yarn of the present invention.

[図 4]図 4は、本発明のハイブリッド炭素繊維紡績糸のもろ撚り糸を製造するのに好適 な撚糸機を示す構成図である。 [4] FIG. 4 is a block diagram showing a preferred twisting machine to produce a brittle strands of a hybrid carbon fiber spun yarn of the present invention.

発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION

[0029] 以下、本発明のハイブリッド炭素繊維紡績糸及び本発明のハイブリッド炭素繊維紡 績糸織物をそれらの好適な実施形態に即して詳細に説明する。 [0029] Hereinafter, will be described in detail with reference to the hybrid carbon fiber spinning 績糸 fabrics their preferred embodiment of a hybrid carbon fiber spun yarn and the invention of the present invention.

[0030] 先ず、本発明のハイブリッド炭素繊維紡績糸について説明する。 [0030] First, a description will be given hybrid carbon fiber spun yarn of the present invention.

[0031] 本発明のハイブリッド炭素繊維紡績糸は、炭素繊維を主成分とする芯部と、炭素繊 維を主成分とし且つ前記芯部の外周面を覆う外周部とを備えるハイブリッド炭素繊維 紡績糸であって、前記芯部を構成する繊維の 20質量%以上が繊維長 500mm以上 の長繊維長炭素繊維であり、前記外周部を構成する繊維の 80質量%以上が繊維長 500mm未満の短繊維長炭素繊維であり、且つ、前記長繊維長炭素繊維と前記短 繊維長炭素繊維との質量比 (長繊維長炭素繊維:短繊維長炭素繊維)が 20: 80〜8 0 : 20であるものである。 [0031] Hybrid carbon fiber spun yarn of the present invention, the hybrid carbon fiber spun yarn comprising a core section composed mainly of carbon fibers, and an outer circumferential portion covering an outer circumferential surface of and the core portion composed mainly of carbon textiles a is, more than 20% by weight of the fibers constituting the core portion is longer than the fiber length of carbon fibers having a fiber length of 500mm, short fibers more than 80% by weight of the fibers constituting the outer peripheral portion is less than the fiber length 500mm a long carbon fiber, and the weight ratio of the said long fibers long carbon fiber short fiber length of carbon fibers (long fiber length carbon fibers: short fiber length of carbon fibers) 20: 80-8 0: those 20 it is.

[0032] 本発明のハイブリッド炭素繊維紡績糸の芯部を構成する繊維は、その 20質量%以 上(好ましくは 50質量%以上、特に好ましくは 80質量%以上)が繊維長 500mm以 上 (好ましくは 1000mm以上、特に好ましくは 3m以上)の長繊維長炭素繊維である 。 [0032] fiber constituting the core part of the hybrid carbon fiber spun yarn of the present invention, the 20 wt% or more (preferably 50 wt% or more, particularly preferably 80 mass% or more) of fiber length 500mm than the (preferably the above 1000 mm, particularly preferably long fiber length carbon fibers 3m or more). 芯部を構成する繊維における前記長繊維長炭素繊維の含有割合が 20質量%未 満では、得られるハイブリッド炭素繊維紡績糸の引張強度が低下する。 Content is 20 wt% non Mitsurude of the long fiber length of carbon fibers in the fiber constituting the core part, the tensile strength of the hybrid carbon fiber spun yarn obtained is lowered.

[0033] 本発明にかかる長繊維長炭素繊維としては、ピッチ系異方性炭素繊維、ポリアタリ ロニトリル系炭素繊維 (PAN系炭素繊維)、レーヨン系炭素繊維等が挙げられる。 [0033] As long fiber length carbon fiber according to the present invention, pitch-based anisotropic carbon fibers, Poriatari Ronitoriru based carbon fibers (PAN-based carbon fiber), and a rayon-based carbon fibers. こ れらの中でも、ポリアクリロニトリル系炭素繊維(PAN系炭素繊維)を使用することが、 コストが比較的安価であり、ハイブリッド炭素繊維紡績糸の引張強度と繊度の均一性 とをより向上させ、ハイブリッド炭素繊維紡績糸織物の引張強度と厚みの均一性とを 向上させるという観点から好ましい。 Among these, the use of polyacrylonitrile-based carbon fibers (PAN-based carbon fibers), the cost is relatively cheap, further improve the uniformity of the tensile strength and the fineness of the hybrid carbon fiber spun yarn, from the viewpoint of improving the uniformity of the tensile strength and the thickness of the hybrid carbon fiber spun yarn fabric. また、本発明にかかる長繊維長炭素繊維の平均 直径は、特に制限されなレ、が、 5〜: 15 μ ΐη程度のものを用いることが好ましい。 The average diameter of the long fiber length of carbon fibers according to the present invention is particularly limited, such les, but 5: is preferably used of about 15 μ ΐη. 長繊 維長炭素繊維の平均直径は細レ、方が好ましレ、が上記下限未満では製造上生産性 が低下するので好ましくない。 The average diameter of the long fiber 維長 carbon fiber Hosore, it is preferred Shi Le, but not preferred because manufacturing productivity is degraded less than the above lower limit. 他方、上記上限を超えると引張強度が低下したり、撚り をかけた時に糸切れを生じやすレ、ため好ましくなレ、。 On the other hand, or more than the upper limit the tensile strength decreases, ease cause yarn breakage when twisting les, since Preferably Do Re.

[0034] 本発明のハイブリッド炭素繊維紡績糸の芯部は、前記長繊維長炭素繊維が 20質 量%以上を占めるものであるが、前記長繊維長炭素繊維以外の成分として、繊維長 500mm未満の短繊維長炭素繊維や、ポリアミド繊維、ポリエステル繊維、アクリル繊 維、ポリエチレンテレフタレート繊維等の合成樹脂繊維が含まれていても良い。 [0034] core of the hybrid carbon fiber spun yarn of the present invention is the long fiber length of carbon fibers in which account for more than 20 mass%, as a component other than the long fiber length of carbon fiber, less fiber length 500mm and short fiber length of carbon fibers, polyamide fibers, polyester fibers, acrylic textiles, may contain synthetic resin fibers such as polyethylene terephthalate fibers.

[0035] 本発明のハイブリッド炭素繊維紡績糸の芯部を構成する前記長繊維長炭素繊維は 、撚り糸となっていてもょレ、が、撚られていない繊維束であってもよい。 [0035] The long fiber length carbon fiber constituting the core part of the hybrid carbon fiber spun yarn of the present invention, Yo be made with twine les, but may be a fiber bundle that is not twisted.

[0036] また、本発明に力、かる長繊維長炭素繊維は、密度が 1. 7〜2. 3g/cm 3のもので 好ましくは 1. 7〜2. 0g/cm 3 、特に好ましくは 1. 7〜: 1. 9g/cm 3のものである。 [0036] Further, the force in the present invention, mow long fiber length carbon fiber has a density of from 1.7 to 2. Intended preferably 3g / cm 3 1. 7~2. 0g / cm 3, particularly preferably 1 . 7: are those of 1. 9g / cm 3. 長 繊維長炭素繊維の密度が 1. 7g/cm 3未満では炭化が不十分で炭素繊維の強度が 低下する傾向にあり、他方、上記上限を超えると結晶化が進みすぎて炭素繊維の強 度が低下する傾向にある。 Less than density of 1. 7 g / cm 3 of the long fiber length of carbon fibers tend to intensity of insufficient carbon fiber carbide is reduced, while the strength of the carbon fiber exceeds the upper limit and crystallization proceeds excessively there tend to be reduced.

[0037] さらに、このような本発明にかかる長繊維長炭素繊維の製造方法は特に制限され ず、例えば、アクリル繊維(PAN繊維)やレーヨン繊維を炭素化する方法、メソフヱ一 ズピッチを炭素繊維にする方法等が挙げられ、東邦テナックス (株)製べスフアイト等 の市販されてレ、る長繊維長炭素繊維を用いてもょレ、。 [0037] Further, the manufacturing method of the long fiber length of carbon fibers according to the present invention is not particularly limited, for example, a method of carbonizing the acrylic fibers (PAN fibers), rayon fibers, Mesofuwe one Zupitchi carbon fiber Yo Le, be used, and the like method, a commercially available record, Ru long fiber length carbon fiber such Sufuaito base manufactured by Toho Tenax Co., Ltd. to.

[0038] また、本発明にかかる長繊維長炭素繊維は、その引張強度をより向上させるという 観点から、紡績カ卩ェ前に炭素化されていることが好ましぐその炭素化度を調整する ために追加の熱処理が施されていることがより好ましい。 [0038] In addition, the long fiber length of carbon fibers according to the present invention, from the viewpoint of further improving the tensile strength, it is adjusted to preferably implement its carbon degree that is carbonized before Bosekika卩E it is more preferable that the additional heat treatment is applied for. このような炭素化させるため の熱処理温度としては一般的には 800〜3000°C程度が好ましぐまた、炭素化度を 調整するための熱処理温度としては一般的には 900〜2000°C程度が好ましい。 Such a heat treatment temperature for the carbonization generally had sigma preferred about 800 to 3000 ° C, approximately from 900 to 2000 ° C in general as the heat treatment temperature for adjusting the carbon degree It is preferred.

[0039] 本発明のハイブリッド炭素繊維紡績糸の外周部を構成する繊維は、その繊維長が 500mm未満の炭素繊維の割合が 80質量%以上であり、 300mm以下の炭素繊維 の割合が 80質量%以上であることが好ましぐ 200mm以下の炭素繊維の割合が 80 質量%以上であることが更に好ましい。 [0039] fiber constituting the outer peripheral portion of the hybrid carbon fiber spun yarn of the present invention, the fiber length is the proportion of the carbon fibers of less than 500mm is 80 mass% or more, the following proportions of the carbon fiber 300mm is 80 wt% it is further desirable ratio of the preferred tool 200mm or less of the carbon fiber to be more than 80 mass% or more. 外周部を構成する繊維における前記短繊維 長炭素繊維の含有割合が 80質量%未満では、得られるハイブリッド炭素繊維紡績 糸のマトリックス材料との密着性が低下する。 Wherein the fibers constituting the outer peripheral portion in the short fiber length less than the content of 80 mass% of the carbon fibers, the adhesion between the matrix material of the hybrid carbon fiber spun yarn obtained is lowered.

[0040] また、本発明に力かる短繊維長炭素繊維においては、繊維長が 150mm以上で且 つ 500mm未満の炭素繊維の割合が 3〜30質量%であることが好ましぐ 5〜20質 量%であることがより好ましい。 [0040] In the short fiber length of carbon fiber mowing force to the invention, the fiber length is preferably fixture 5-20 quality that a ratio 3 to 30 wt% of the carbon fibers of less than 且 one 500mm in 150mm or more and more preferably in an amount%. この炭素繊維の割合が上記下限未満では、得られる ハイブリッド炭素繊維紡績糸の引張強度が低下する傾向にある。 The ratio of the carbon fibers is less than the above lower limit, there is a tendency that tensile strength of the hybrid carbon fiber spun yarn obtained is lowered. 他方、この炭素繊 維の割合が上記上限を超えると、繊維束から紡績糸を製造する際に練条機で数本 の繊維束を数倍に延伸(回転数の異なるローラー間を通すことにより繊維束を延伸 する)して 1本の繊維束として繊維の平行度を更に向上させる工程で、ローラーの間 隔よりも繊維長が長くなつて糸切れを起こし易くなり、繊度のバラツキができてスラブ、 フライと言われる塊状部が発生しやすくなる傾向にある。 On the other hand, when the ratio of the carbon textiles exceeds the upper limit, by passing between the stretching (rpm different roller several times the number present in the fiber bundle in kneading Article machine when producing spun yarn from the fiber bundle drawing the fiber bundle) is made in step to further improve the parallelism of the fibers as one fiber bundle is likely to occur connexion yarn breakage of longer fiber length than between rollers septum and be variation in fineness slab tends to lump unit called a fly is likely to occur.

[0041] 一方、繊維長が 150mm未満の炭素繊維は、梳綿機及び練条機による処理工程で 原料中の炭素繊維が適宜切断されて形成されるものである力 一般に主として 50m m以上 150mm未満の繊維長を有するものであり、これが本発明に力かる短繊維長 炭素繊維において適度の分布で 97〜70質量%含まれていることが好ましい。 [0041] On the other hand, the carbon fiber having a fiber length of less than 150mm, the carding machine and a force generally predominantly less than 50 m m 150mm in which the carbon fibers in the raw material is formed is cut appropriately in process step by kneading Article machine of those having a fiber length, it is preferred that this contains from 97 to 70 wt% at moderate distribution in the short fiber length of carbon fiber mowing force to the invention. 繊維 長が 150mm以上の炭素繊維のみを紡績加工する場合には、得られるハイブリッド 炭素繊維紡績糸の太さむらが生じて、結果として織物の厚さむらが生じ易くなる傾向 にある。 If the fiber length is spinning process only more carbon fiber 150mm is cause thickness unevenness of the hybrid carbon fiber spun yarn obtained, the result thickness unevenness of the fabric is in the easily tends to occur as.

[0042] また、本発明に力かる短繊維長炭素繊維としては、ピッチ系等方性炭素繊維、ポリ アクリロニトリル系炭素繊維(PAN系炭素繊維)力 S挙げられる。 [0042] Further, as the short fiber length of carbon fiber mowing force to the invention, pitch-based isotropic carbon fibers, polyacrylonitrile-based carbon fibers (PAN-based carbon fibers) force and the like S. これらの中でもピッチ 系等方性炭素繊維を使用することが、マトリックス材料との密着性をより向上させると レ、う観点から好ましい。 Be used pitch-based isotropic carbon fiber Among these, the more improved the adhesion between the matrix material les, preferably from cormorants viewpoint. さらに、本発明にかかる短繊維長炭素繊維の平均直径は、特 に制限されないが、 5〜20 xm程度のものを用いるのが好ましい。 Furthermore, the average diameter of the short fiber length of carbon fibers according to the present invention is not limited especially, it is preferable to use of about 5 to 20 xm. 短繊維長炭素繊 維の平均直径が上記下限未満では繊維の引張強度が弱くなつて取扱いが困難とな り、粉塵が多くなる傾向にあり、他方、上記上限を超えると炭素繊維の本数が急激に 減少する傾向にある。 The average diameter of the short fiber length carbon textiles is Ri Do difficult connexion handle a weak tensile strength of the fiber is less than the above lower limit, dust is in many tend, on the other hand, sharply the number of carbon fibers exceeds the upper limit there is a tendency to decrease.

[0043] 本発明のハイブリッド炭素繊維紡績糸の外周部は、前記短繊維長炭素繊維が 80 質量%以上を占めるものであるが、前記短繊維長炭素繊維以外の成分として、繊維 長 500mm以上の長繊維長炭素繊維や、ポリアミド繊維、ポリエステル繊維、アタリノレ 繊維、ポリエチレンテレフタレート繊維等の合成樹脂繊維が含まれていても良い。 [0043] outer periphery of the hybrid carbon fiber spun yarn of the present invention, wherein at short fiber length of carbon fibers in which accounts for at least 80 mass%, the as components other than the short fiber length of carbon fibers, fiber length 500mm or more and the long fiber length of carbon fibers, polyamide fibers, polyester fibers, Atarinore fibers may include synthetic resin fibers such as polyethylene terephthalate fibers.

[0044] 本発明のハイブリッド炭素繊維紡績糸の外周部を構成する前記短繊維長炭素繊維 は、撚り糸となっていることが好ましぐ 20質量%以上、好ましくは 40質量%以上、更 に好ましくは 80質量%以上の撚り糸によって外周部が構成されていることがより好ま しい。 [0044] The short fiber length of carbon fiber constituting the outer peripheral portion of the hybrid carbon fiber spun yarn of the present invention, it is preferable instrument 20 mass% or more which is a twisted yarn, preferably 40 wt% or more, in a further preferred more preferred arbitrariness is that the outer peripheral portion is constituted by 80 wt% or more of the twisted yarn.

[0045] さらに、本発明にかかる短繊維長炭素繊維は、密度が 1. 5〜: 1. 8g/cm 3のもので 好ましくは 1 · 5〜: ! · 7g/cm 3 、特に好ましくは 1 · 55〜: 1. 7g/cm 3のものである。 [0045] In addition, the short fiber length of carbon fibers according to the present invention has a density of 1. 5: 1. Preferably intended 8g / cm 3 1 · 5~: ! · 7g / cm 3, particularly preferably 1 - 55: are those of 1. 7g / cm 3. 短 繊維長炭素繊維の密度が上記下限未満では炭素化が不十分で引張強度が低下す る傾向にあり、他方、上記上限を超えると樹脂との濡れ性が悪くなる傾向にある。 Density of the short fiber length of carbon fibers is less than the lower limit tends you decrease insufficient tensile strength carbonization, while there is a tendency that wettability is deteriorated and the resin exceeds the above upper limit.

[0046] また、このような本発明にかかる短繊維長炭素繊維の製造方法は特に制限されず 、例えば前述の長繊維長炭素繊維を短く裁断して使用することができるが、適度の 長さを有する短繊維長炭素繊維の場合はそのまま利用しても、適宜裁断機により繊 維長を制御してから使用しても良い。 [0046] Further, the manufacturing method of the short fiber length of carbon fibers according to the present invention is not particularly limited, for example, the aforementioned can be used to cut short the long fiber length of carbon fiber, moderate length of be used as it is in the case of short fiber length of carbon fibers having, it may be used after controlling the fiber 維長 by an appropriate cutting machine.

[0047] なお、ピッチ系短繊維長炭素繊維の紡糸方法としては、遠心力を利用してノズノレか ら溶融ピッチを出す遠心法、溶融ピッチを高温高速の空気と共に吹き出すメルトプロ 一法、メルトブロー法の高温高速空気を渦卷状とし、その旋回流で延伸する渦流法、 エアーサッカーノズルに繊維を吸引して延伸し、その出口以降で集綿するェアーサ ッカ一法等があり、これらのいずれかの方法によって得られた短繊維長炭素繊維束 や炭素繊維マットを使用することができる。 [0047] As a spinning method for pitch-based short fiber length of carbon fibers, centrifugation issuing Nozunore whether we molten pitch by utilizing the centrifugal force, the molten pitch blown with hot high velocity air Merutopuro one method, melt-blown the hot high velocity air and vortex 卷状, vortex method of stretching in the swirling flow, drawn by suction the fibers air sucker nozzle, there is Easa Tsu mosquito one way such that condenses cotton at its outlet after, any of these it can be used short fiber length of carbon fiber bundle and a carbon fiber mat obtained by the method.

[0048] このような本発明にかかる短繊維長炭素繊維の製造方法としては、例えば以下のよ うな方法が好適に採用される。 [0048] As a method for producing short fiber length of carbon fibers according to the present invention, for example following are just a few methods are preferably employed. すなわち、先ず、短繊維長炭素繊維として使用する炭 素繊維を裁断機により適宜切断した後、図 1に示すような構成の梳面機により繊維を 引き揃えて炭素繊維束を得る。 That is, first, after cutting appropriately by a-carbon fiber used as a short fiber length of carbon fiber cutting machine, to obtain a carbon fiber bundle aligned pull the fibers by construction of Kezumen machine as shown in FIG. このような図 1に示す梳面機では、先ず、炭素繊維マ ット 1がバックローラ 2から投入され、油剤 3を噴霧された後、フオーラ 4で繊維が引き 揃えられると共に、バックローラ 2より大きな周速で回転するフロントローラ 5とバック口 ーラ 2との周速比により繊維が延伸される。 In such Figure 1 shows carding surface machine, first, inserted from the carbon fiber Ma Tsu sheet 1 is back roller 2, after being sprayed with oil 3, the fiber is aligned off at Fuora 4, relative to the back roller 2 the fibers are drawn by the peripheral speed ratio between the front roller 5 and the back port over La 2 rotating at a larger peripheral speed. そして、エプロン 6を経て、スライバー状の 炭素繊維束 7がコイラ 8に卷き取られる。 Then, through the apron 6, sliver-like carbon fiber bundle 7 are taken plated on coiler 8.

[0049] 次いで、図 2に示すような構成の練条機で、数本の炭素繊維束を組み合わせ (ダブ リング)、数倍の長さに延伸(ドラフト)しながら 1本の炭素繊維束として繊維の平行度 を更に向上させると共に、繊維が更に細くされる。 [0049] Next, the configuration of the kneading Article machine as shown in FIG. 2, a combination of carbon fiber bundle of several (doubling), as one carbon fiber bundle while stretching (draft) a length of several times together to further improve the parallelism of the fibers, the fibers are further narrowed. このような図 2に示す練条機では、 先ず、製品ケース 11から引き出された複数本の炭素繊維束がクリルスタンド 12で合 わされ、クリルガイド 13及びスライバーガイド 14を経て、バックローラ 15に導かれる。 The kneading Article machine shown in this FIG 2, first, a carbon fiber bundle of a plurality of drawn from product casing 11 is I if in creel stand 12, through the acrylic guides 13 and sliver guide 14, a back roller 15 It is derived. そして、さらに炭素繊維束がミドルローラ 16に送通され、フオーラ 17で繊維が引き揃 えられると共に、フロントローラ 18、ニップローラ 19及びトップローラ 20の間を送通さ れる。 Then, further the carbon fiber bundle is passed through feed the middle roller 16, the fibers with pulling assortment Erareru in Fuora 17, the front roller 18, passed through feed between the nip roller 19 and the top roller 20. この間で延伸された炭素繊維束は、スライバーガイド 21を経て、ロール 22を介 して製品ケース 23に納められる。 Carbon fiber bundle was stretched in the meantime undergoes a sliver guide 21, it will be stored on any product casing 23 and through the roller 22. なお、このような練条工程を数回経るようにしてもよ レ、。 In addition, it may also be to go through several times such Nerijo process Les,.

[0050] また、本発明にかかる短繊維長炭素繊維は、その引張強度をより向上させるという 観点から、紡績糸とする前の状態で熱処理が施されていることが好ましい。 [0050] In addition, the short fiber length of carbon fibers according to the present invention, from the viewpoint of further improving the tensile strength, it is preferable that the heat treatment in a state before the spun yarn are subjected. このような 熱処理温度としては、 700〜3000°C程度力 S好ましく、 800〜1500°C程度がより好ま しい。 Examples of such a heat treatment temperature, force S preferably about 700-3,000 ° C, more preferred arbitrariness about 800 to 1500 ° C.

[0051] 本発明のハイブリッド炭素繊維紡績糸は、前述の長繊維長炭素繊維を主成分とす る芯部と、前述の短繊維長炭素繊維を主成分とする外周部とを備えており、前記外 周部が前記芯部の外周面を覆っている。 [0051] Hybrid carbon fiber spun yarn of the present invention includes a core portion shall be the main component long fiber length carbon fibers described above, and an outer peripheral portion mainly composed of short fiber length of carbon fiber described above, It said outer peripheral portion covers the outer peripheral surface of the core.

[0052] このような本発明のハイブリッド炭素繊維紡績糸においては、前記長繊維長炭素繊 維と前記短繊維長炭素繊維との質量比 (長繊維長炭素繊維:短繊維長炭素繊維)が 20 : 80〜80 : 20であることカ好ましく、 30 : 70〜70 : 30でぁることカょり好ましレヽ。 [0052] In the hybrid carbon fiber spun yarn of the present invention, the long fiber length carbon textiles and the short fiber length weight ratio of the carbon fiber (the long fiber length of carbon fibers: short fiber length of carbon fibers) 20 : 80 to 80: it mosquito preferably 20, 30: 70-70: 30 Dearu Kotokayori preferred Rere. 前 記長繊維長炭素繊維の含有割合が前記下限未満では、得られるハイブリッド炭素繊 維紡績糸の引張強度が低下し、他方、前記短繊維長炭素繊維の含有割合が前記下 限未満では、得られるハイブリッド炭素繊維紡績糸とマトリックス材料との密着性が低 下する。 The content of the pre-Sulfur butterfly fiber length of carbon fiber is less than the lower limit, tensile strength of the hybrid carbon textiles spun yarn obtained is lowered, while the the short fiber length less than the content ratio is the lower limit of the carbon fibers, resulting adhesion between the hybrid carbon fiber spun yarn and the matrix material is low down to be.

[0053] 本発明のハイブリッド炭素繊維紡績糸においては、前記芯部の外周面が前記外周 部によって覆われていればよぐその具体的な構成は特に制限されないが、前記外 周部が前記短繊維長炭素繊維を主成分とする撚り糸により構成されており、その撚り 糸が前記長繊維長炭素繊維を主成分とする芯部と共に撚られることによって前記芯 部の外周面が前記撚り糸によって覆われてレ、ることが好ましレ、。 [0053] In the hybrid carbon fiber spun yarn of the present invention, the if the outer circumferential surface of the core portion is long covered by the outer peripheral portion Yogu its specific configuration is not particularly limited, the outer peripheral portion is the short the fiber length of carbon fiber is composed of a twisted yarn made mainly, the outer peripheral surface of the core portion by being twisted together with the core portion thereof twisted yarn is mainly composed of long fiber length carbon fibers is covered by said twisted yarn Les, is Rukoto Le, Shi preferred Te.

[0054] また、本発明のハイブリッド炭素繊維紡績糸の太さは特に限定されないが、 1000m 当たりの質量(g)を示す texという単位で、 30〜500tex程度であること力 S好ましく、 3 0〜: 150tex程度であることがより好ましぐ 30〜: !OOtex程度であることが更により好 ましぐ 30〜80tex程度であることが特に好ましい。 [0054] Further, the thickness of the hybrid carbon fiber spun yarn of the present invention is not particularly limited, in units of tex showing a mass (g) per 1000 m, it forces S preferably about 30~500tex, 3 0~ : it is more preferable tool 30 is about 150tex:! it is particularly preferred to be about OOtex is even more good Mashigu 30~80tex about. 本発明のハイブリッド炭素繊維紡 績糸の太さが前記上限を超えると薄い織物が得られない傾向にあり、他方、前記下 限未満では、製織するために好適な強度が得られず、更に得られた織物のガス透過 性が低下する傾向にある。 Located hybrid carbon fiber spinning thickness is not thinner fabric obtained exceeds the upper limit trends 績糸 of the present invention, on the other hand, is less than the lower limit, not suitable strength can not be obtained for weaving, further obtain It is gas permeability of the fabric tends to decrease.

[0055] さらに、本発明のハイブリッド炭素繊維紡績糸においては、その撚り数が強度に影 響を及ぼすため、力、かる撚り数は 50〜400回 Zmであることが好ましぐ 100〜200 回/ mであることがより好ましい。 [0055] Further, in the hybrid carbon fiber spun yarn of the present invention, to exert the effect on the number of twist strength, force, mow twist number, it is preferable instrument 100 to 200 times is 50 to 400 times Zm more preferably / m. この撚り数が前記上限を超えると繊維が破壊される 可能性が出てくる傾向にあり、他方、前記下限未満では得られるハイブリッド炭素繊 維紡績糸の引張強度が低下する傾向にある。 When this number of twists exceeds the upper limit fibers tend to come out could be destroyed, the other tends to tensile strength of the hybrid carbon textiles spun yarn obtained is less than the lower limit is lowered. なお、本発明のハイブリッド炭素繊維 紡績糸を 2本以上組み合わせて撚糸機により合糸して用いてもよい。 Incidentally, the hybrid carbon fiber spun yarn of the present invention may be used in doubling the twister in combination two or more. このような場合 、例えば 2本の場合には、一次撚りに対して二次撚りとして、 60% ± 5%の撚り数の 逆回転の撚りが掛けられることが好ましい。 In such a case, for example, in the case of the two, as a secondary twist to the primary twist is preferably exerted is twist reverse rotation of twist of 60% ± 5%. また、 3本の場合には、一次撚りに対して 二次撚りとして、 55% ± 5%の撚り数の逆回転の撚りが掛けられることが好ましい。 In the case of three, as a secondary twist to the primary twist is preferably exerted it is twist reverse rotation of twist of 55% ± 5%.

[0056] 本発明のハイブリッド炭素繊維紡績糸は、上記のような構成となっている結果として 、 0. 35N/tex以上という高水準の引張強度を有することが可能となり、更に好ましく は 0. 40NZtex以上という非常に高水準の引張強度を有することも可能となる。 [0056] Hybrid carbon fiber spun yarn of the present invention, as a result has a configuration as described above, it is possible to have a high level of tensile strength of 0. 35N / tex or more, more preferably 0. 40NZtex it is possible to have a very high level of tensile strength of more than.

[0057] このような本発明のハイブリッド炭素繊維紡績糸の製造方法は特に制限されず、例 えば以下のような方法が好適に採用される。 [0057] The method of manufacturing a hybrid carbon fiber spun yarn of the present invention as described above is not particularly limited, the following method is preferably adopted if example embodiment. すなわち、図 3に示すような構成の精紡 機で、前記短繊維長炭素繊維の炭素繊維束を更に延伸'加撚する際に、前記長繊 維長炭素繊維として使用する長繊維の炭素繊維束をミドルローラから投入して混紡 する。 That is, in the configuration of the spinning machine as shown in FIG. 3, the when twisted further stretched 'pressurized carbon fiber bundles of short fiber length of carbon fiber, the long fiber 維長 carbon fibers of the long fiber for use as a carbon fiber to blend was put a bunch from the middle roller. このような図 3に示す精紡機では、先ず、製品ケース 31より短繊維長炭素繊維 束 32がクリルスタンドローラ 33を経て、バックローラ 34に導かれ、一方、炭素繊維用 ボビン 35より長繊維長炭素繊維束 36がミドルローラ 37から投入される。 In the spinning machine shown in this FIG. 3, first, the short fiber length of carbon fiber bundle 32 from product casing 31 through the creel stand roller 33, guided to the back roller 34, while the length the fiber length of carbon fiber bobbin 35 carbon fiber bundle 36 is introduced from the middle rollers 37. そして、エブ ロン 38、ボトム 39及びフロントローラ 40の間を送通される間で、短繊維長炭素繊維 束 32はフロントローラ 40とバックローラ 34との周速比により延伸されると共に、長繊維 長炭素繊維束と合わされる。 Then, Ebb Ron 38, between which is passed sent between the bottom 39 and the front roller 40, together with short fiber length of carbon fiber bundle 32 is stretched by the peripheral speed ratio between the front roller 40 and back roller 34, a long fiber It is combined with long carbon fiber bundle. 次いで、合わされた両繊維束力 Sスネルガイド 41を経て、 リング 42及びブレーキペダル 43を備えるスピンドル 44により加撚され、卷き取りボビ ン 45に卷き取られる。 Subsequently, through both fiber bundles force S Snell guide 41 together, is twisted by a spindle 44 comprising a ring 42 and a brake pedal 43, taken plated on wind-up bobbin down 45. このようにして、本発明のハイブリッド炭素繊維紡績糸を得るこ とができる。 In this way, it is possible to obtain a hybrid carbon fiber spun yarn of the present invention.

[0058] なお、本発明のハイブリッド炭素繊維紡績糸は、片撚り糸とすることが、細い糸を得 る上で有利であるが、必要に応じて、図 4に示すような構成の撚糸機を用いてもろ撚 り糸とすることもできる。 [0058] Incidentally, the hybrid carbon fiber spun yarn of the present invention, it is a single twisted yarn, but is advantageous in Ru give thin thread, if necessary, a twisting machine having a configuration as shown in FIG. 4 can also be also be a thread that Ri twisted filtered using. このような図 4に示す撚糸機では、先ず、 2本の片撚り糸がタリ ルスタンド 51で合わされ、スライバーガイド 52、フロントガイド 53及びスネルガイド 54 を経て、リング 55及びブレーキペダル 56を備えるスピンドル 57により加撚され、卷き 取りボビン 58に卷き取られる。 The twisting machine shown in this FIG. 4, first, two single strands are combined in Tari Le stand 51, through a sliver guide 52, the front guide 53 and Snell guide 54, the spindle 57 comprises a ring 55 and a brake pedal 56 by being twisted, taken plated on wind-up bobbin 58. このようにして、前記ハイブリッド炭素繊維紡績糸のも ろ撚り糸を得ることができる。 In this way, it is possible to obtain the hybrid carbon fiber spun yarn of even filter strands.

[0059] 次に、本発明のハイブリッド炭素繊維紡績糸織物について説明する。 [0059] Next, a description will be given hybrid carbon fiber spun yarn fabric of the present invention.

[0060] 本発明のハイブリッド炭素繊維紡績糸織物は、前記本発明のハイブリッド炭素繊維 紡績糸を 30質量%以上(より好ましくは 40質量%以上)含有するものである。 [0060] Hybrid carbon fiber spun yarn fabric of the present invention, the hybrid carbon fiber spun yarn of 30% by mass or more (more preferably 40 mass% or more) of the present invention are those which contain. 本発明 のハイブリッド炭素繊維紡績糸織物における前記ハイブリッド炭素繊維紡績糸の含 有割合が 30質量%未満では、得られる織物とマトリックス材料との密着性が低下し、 さらに得られる織物の機械的強度の向上が達成されない。 The containing organic proportion of the hybrid carbon fiber spun yarn in the hybrid carbon fiber spun yarn fabric is less than 30% by weight of the present invention, reduces the adhesion between the resulting fabric a matrix material, further resulting fabric mechanical strength improvement is not achieved.

[0061] 本発明のハイブリッド炭素繊維紡績糸織物を得る具体的な織り方は特に制限され ず、例えば、平織り、朱子織り、綾織り、バスケット織り等が適宜採用され、中でも平織 りが好ましい。 [0061] Specific weave to obtain a hybrid carbon fiber spun yarn fabric of the present invention is not particularly limited, for example, plain weave, Ri satin, twill, are employed such basket weave is appropriate, among them a plain weave Ri is preferred.

[0062] また、本発明のハイブリッド炭素繊維紡績糸織物を得る場合、本発明のハイブリッド 炭素繊維紡績糸は、その強度を有効に生かせる経糸又は緯糸の少なくともいずれか 一方として用いてもよいが、経糸及び緯糸の両方に本発明のハイブリッド炭素繊維紡 績糸を用いることがより好ましレ、。 [0062] Further, when obtaining the hybrid carbon fiber spun yarn fabric of the present invention, the hybrid carbon fiber spun yarn of the present invention, the intensity may be used as at least one of effectively capitalize warp or weft but warp Les, more preferably be used a hybrid carbon fiber spinning 績糸 of the invention and both weft.

[0063] なお、本発明のハイブリッド炭素繊維紡績糸織物は、前記本発明のハイブリッド炭 素繊維紡績糸が 30質量%以上を占めるものであるが、前記ハイプリッド炭素繊維紡 績糸以外の成分として、他の炭素繊維紡績糸や、ポリアミド繊維、ポリエステル繊維、 アクリル繊維、ポリエチレンテレフタレート繊維等の合成樹脂繊維からなる紡績糸が 含まれていても良い。 [0063] Incidentally, the hybrid carbon fiber spun yarn fabric of the present invention, wherein at hybrid-carbon fiber spun yarn of the present invention is one that accounts for at least 30 mass%, as components other than the Haipuriddo carbon fiber spinning 績糸, other or carbon fiber spun yarn, polyamide fibers, polyester fibers, may be included spun yarn made of acrylic fibers, synthetic resin fibers such as polyethylene terephthalate fibers.

[0064] このようにして得られる本発明のハイブリッド炭素繊維紡績糸織物の用途は特に制 限されないが、固体高分子電解質型燃料電池用のガス拡散体として特に好適である [0064] This way, the hybrid carbon fiber spun yarn fabric of application of the present invention thus obtained is not particularly restricted, it is particularly suitable as a gas diffuser for a solid polymer electrolyte fuel cell

[0065] このような本発明のハイブリッド炭素繊維紡績糸織物の体積抵抗率は、好ましくは 2 0〜: 1500 μ Ω ·πι、更に好ましく ίま 50〜700 μ Ω 'm、特に好ましく ίま 50〜400 μ Ω •mである。 [0065] The volume resistivity of the hybrid carbon fiber spun yarn fabric of the present invention as described above, preferably 2 0~: 1500 μ Ω · πι, more preferably ί or 50 to 700 mu Omega 'm, particularly preferably ί or 50 it is ~400 μ Ω • m. また、本発明のハイブリッド炭素繊維紡績糸織物の FAW (Fiber Area Weight) ί 50〜600g/m 2力 S好ましく、 70〜400g/m 2力 Sより好ましく、 80〜200g /m 2が特に好ましい。 The hybrid carbon fiber spun yarn fabric FAW (Fiber Area Weight) ί 50~600g / m 2 force S Preferably the present invention, preferably from 70~400g / m 2 force S, 80 to 200 g / m 2 is particularly preferred. ガス拡散体として用いた場合に、織物の FAWが前記上限を 超えると、集電能力は向上するが、空隙が少なくなりガス透過性が低下する傾向にあ り、他方、織物の FRWが前記下限未満では、触媒層との接触が低下し、集電能力が 低下する傾向にある。 When used as a gas diffuser, the fabric of FAW exceeds the upper limit, although the current collecting ability is improved, Ri tended voids is less and less gas permeability decreases, while the fabric of FRW is the lower limit by weight, reduces the contact with the catalyst layer, collector capacity tends to decrease.

[0066] さらに、本発明のハイブリッド炭素繊維紡績糸織物の厚みは、特に限定されないが 、 0. 10〜1. OOmm力 S好ましく、 0. 10〜0. 60mm力 Sより好ましく、 0. 10〜0. 40m mが特に好ましい。 [0066] In addition, the thickness of the hybrid carbon fiber spun yarn fabric of the present invention is not particularly limited, 0. 10~1. OOmm force S Preferably, preferably from 0. 10.about.0. 60 mm force S, 0.. 10 to 0. 40m m is particularly preferred. ガス拡散体として用いた場合に、織物の厚みが前記上限を超え ると、通気性が維持されにくくなる傾向にあり、他方、前記下限未満では、反応ガスの 拡散に時間力かかり電池性能が低下する傾向にある。 When used as a gas diffuser, if the thickness of the fabric exceeds the upper limit, there is a tendency that air permeability is less likely to be maintained, while it is less than the lower limit, decrease the time power consuming battery performance on the diffusion of the reaction gas They tend to be.

実施例 Example

[0067] 以下、実施例及び比較例により本発明を更に具体的に説明するが、本発明はこれ らに限定されるものではない。 [0067] Hereinafter, a more detailed explanation of the present invention through examples and comparative examples, the present invention is not limited to these. なお、炭素繊維の密度、紡績糸の引張強度、紡績糸と マトリックス材料との密着性、及び紡績糸織物の厚さはそれぞれ以下の方法により評 価又は測定した。 Incidentally, adhesion of the density of the carbon fiber, the tensile strength of the spun yarn, the spun yarn and the matrix material, and the thickness of the spun yarn woven fabric were respectively evaluated or measured by the following method.

[0068] (i)密度勾配管法による密度測定 [0068] (i) Density measured by density gradient tube method

(比重液の調製) (Preparation of specific gravity liquid)

塩化亜鉛と 1 %塩酸の所定量をビーカーに量り取った後、混合した。 After weighed prescribed amount of zinc chloride and 1% hydrochloric acid in a beaker and mixed. 得られた混合 液を 500mlのメスシリンダーに移しかえ、 20 ± 1. 0°Cの低温恒温水槽に浸して 20土 1. 0°Cの温度とした後に比重計を浮かべて比重を測定した。 The resulting mixture was transferred to a graduated cylinder of 500 ml, was measured 20 ± 1. 0 ° gravity smiling hydrometer after a temperature of 20 soil 1. 0 ° C by immersion in cold thermostat bath of C. 塩化亜鉛と 1%塩酸と の相対量を適宜変えて 10種類の比重液を調製した。 It was prepared 10 kinds of specific gravity solution by changing the relative amounts of zinc chloride and 1% hydrochloric acid as appropriate.

[0069] (試料の密度測定) [0069] (Density Measurement of the sample)

20mlのメスシリンダーに、前記 10種類の比重液を各々 2mlずつ、比重の高いもの 力、ら静かに管壁を伝わらせながら注ぎ入れ、密度勾配管を作った。 In 20ml graduated cylinder, by each 2ml said 10 kinds of specific gravity liquid, high forces of gravity, et gently poured while transmitted the tube wall, made a density gradient tube. 一方、乳鉢で摺り 潰して目開き 150 μ mの標準ふるいを通過させた炭素繊維試料約 0. lgを、少量の エタノールに分散させて試料分散液を得た。 On the other hand, the carbon fiber sample of about 0. lg of standard sieves were passed in sliding crush mesh 0.99 mu m in a mortar to obtain a sample dispersion liquid was dispersed in a small amount of ethanol. 次いで、この密度勾配管を 20± 1. 0°C の低温恒温水槽に浸し、 30分経過後、試料分散液を密度勾配管に静かに入れ、 12 時間以上静置した。 Then immersed the density gradient tube to a low temperature thermostat bath of 20 ± 1. 0 ° C, after 30 minutes, gently placed sample dispersion in a density gradient tube was allowed to stand for 12 hours or more. 12時間以上経過後、密度勾配管の中の試料の位置を読み取り 、密度換算表を用いて試料の密度を求めた。 Or more after 12 hours, it reads the position of the sample in the density gradient tube to determine the density of the sample using a density conversion table.

[0070] (ii)紡績糸の弓 I張強度測定 [0070] (ii) bow I Zhang strength measurements of the spun yarn

引張試験機((株)オリエンテック製、「テンシロン万能試験機 1310型」)を用いて、 紡績糸のつかみ間隔を 300mmとし、引張速度 200mm/minで引っ張った時の破 断強度をその紡績糸の texで割って、紡績糸の引張強度とした。 Tensile tester (KK Orientech, Ltd., "Tensilon universal tester 1310 Model") with the chuck distance of the spun yarn and 300 mm, tensile its spun yarn rupture strength when pulled at a speed 200 mm / min divided by the tex, and the tensile strength of the spun yarn.

[0071] (iii)マトリックス材料との密着性評価 [0071] (iii) Evaluation of Adhesion of the matrix material

以下の方法によって紡績糸とマトリックス材料との密着性を判定した。 It was determined adhesion between the spun yarn and the matrix material by the following method. すなわち、フ ェノール樹脂 (群栄化学工業 (株)製、「PL— 4804」 )を含浸したハイブリッド炭素繊 維紡績糸織物を 24時間 40〜80°Cの温風で乾燥した (ハイブリッド炭素繊維紡績糸 織物 38〜46質量%、フエノール樹脂 54〜62質量%の範囲の質量比率となるまでこ のような含浸及び乾燥を繰り返した)後に、 10枚積層し、温度 170°C、圧力 0· 06MP aで 1時間プレス成型 '硬化した後、真空炉中 2000°Cで 1時間熱処理した。 That is, phenol resin (Gunei Chemical Industry Co., Ltd., "PL-4804") a hybrid carbon textiles spun yarn fabric impregnated with dried by forced air at 24 hours 40 to 80 ° C (hybrid carbon fiber spun yarn fabric 38 to 46 wt%, after repeated) the impregnated and dried as Madeko which the mass ratio in the range of phenolic resin 54 to 62 wt%, laminated ten, temperature 170 ° C, pressure 0 · 06MP after 1 hour press forming 'curing at a, and heat treated for one hour in a vacuum oven 2000 ° C. その後炉 力 取り出し、試料とし、その試料のほぼ中央部を切断面が通るようにカッターで切 断し、常温でその切断された積層面を目視観察した。 Then removed furnace power, as a sample, and disconnect with a cutter so as the cut surface passes through the substantially central portion of the sample was visually observed and the cut layer surfaces at room temperature. そして、ハイブリッド炭素繊維 紡績糸織物の積層間にクラックを生じない場合を合格 (A)、それ以外の場合を不合 格 (C)と判定した。 Then, it passed if no crack between laminated hybrid carbon fiber spun yarn fabric (A), was determined otherwise Fugo rating and (C). (iv)紡績糸織物の厚さ測定 (Iv) the thickness measurement of the spun yarn woven fabric

炭素繊維クロス試験法、 JCFS 003— 1982に記載されている方法 1に準拠して紡 績糸織物の厚さを測定した。 The carbon fiber cloth test method to measure the thickness of the spinning 績糸 fabric in accordance with the method 1 described in JCFS 003- 1982. すなわち、 lOOmm X IOOmmの試験片 5個について、 直進式ペーパーマイクロメーター「PPM_ 25型」((株)ミツトヨ製)を用いて、そのスピ ンドルを静かに回転させて測定面が試料面に平行に接触し、ラチェットが 3回音を立 てたときの目盛りを読み取った。 That is, test pieces five lOOmm X IOOmm, straight type paper micrometer "PPM_ 25 Model" (Mitutoyo Corporation Ltd.) was used, in parallel to the measuring plane sample surface by gently rotating the spindle contact, read the scale when the ratchet were standing three Kaion. 測定値の平均値を小数点以下 2桁まで求めた。 The average value of the measured values ​​was calculated to two decimal places.

[0072] (製造例 1)熱処理温度 1000°C、 660texのピッチ系等方性炭素繊維束の製造 [0072] (Production Example 1) Heat treatment temperature 1000 ° C, the production of pitch-based isotropic carbon fiber bundle of 660tex

ピッチ系等方性炭素繊維束((株)クレハ製、タレ力トウ T— 101S、 23g/m)を用い て、図 2に示すような構成の 4機の練条機を用いる練条工程において、第 1練条機で この炭素繊維束を 2本合わせて 4. 0倍に延伸して 1本の炭素繊維束とし、更に第 2練 条機でこの炭素繊維束を 2本合わせて 5. 3倍に延伸して 1本の炭素繊維束とし、更 に第 3練条機でこの炭素繊維束を 2本合わせて 5. 3倍に延伸して 1本の炭素繊維束 とし、更に第 4練条機でこの炭素繊維束を 2本合わせて 5. 0倍に延伸して 1本の 0. 6 6g/m (660te X )のピッチ系等方性炭素繊維束を得た。 Pitch-based isotropic carbon fiber bundles (Co. Kureha, sagging force toe T-101S, 23 g / m) using, in Nerijo process using a kneading Article machines four aircraft configured as shown in FIG. 2 , it extends in the 0-fold 4. Place this carbon fiber bundle 2 in a first mixing Article machine and one carbon fiber bundle, combined further two of the carbon fiber bundle in the second kneading Article machine 5. It was stretched to 3 times a one carbon fiber bundle, and further stretched in the third 3 times 5. Place this carbon fiber bundle 2 with kneading Article machine and one carbon fiber bundle, further fourth the carbon fiber bundle in kneading Article machine two combined 5. stretched 0 times to obtain a pitch-based isotropic carbon fiber bundle of one 0. 6 6g / m (660te X ).

[0073] (製造例 2)熱処理温度 1000°C、 920texのピッチ系等方性炭素繊維束の製诰 [0073] Ltd. (Production Example 2) heat treatment temperature 1000 ° C, a pitch-based isotropic carbon fiber bundle of 920tex 诰

ピッチ系等方性炭素繊維束((株)クレハ製、タレ力トウ T_ 101S、 23g/m)を用い て、図 2に示すような構成の 4機の練条機を用いる練条工程において、第 1練条機で この炭素繊維束を 2本合わせて 5. 0倍に延伸して 1本の炭素繊維束とし、更に第 2練 条機でこの炭素繊維束を 2本合わせて 5. 0倍に延伸して 1本の炭素繊維束とし、更 に第 3練条機でこの炭素繊維束を 2本合わせて 4. 0倍に延伸して 1本の炭素繊維束 とし、更に第 4練条機でこの炭素繊維束を 2本合わせて 4. 0倍に延伸して 1本の 0. 9 2g/m (920te X )のピッチ系等方性炭素繊維束を得た。 Pitch-based isotropic carbon fiber bundles (Co. Kureha, sagging force toe T_ 101S, 23 g / m) using, in Nerijo process using a kneading Article machines four aircraft configured as shown in FIG. 2, extend in the 0-fold 5. Place this carbon fiber bundle 2 in a first mixing Article machine and one carbon fiber bundle, combined further two of the carbon fiber bundle in the second kneading Article machines 5.0 extend in the multiplying and one carbon fiber bundle, further to extend the one carbon fiber bundle of the 0-fold 4. the carbon fiber bundle 2 together with the third kneading Article machine, further a fourth kneading Article machine 4. the carbon fiber bundle 2 together with stretched 0 times to obtain a pitch-based isotropic carbon fiber bundle of one 0. 9 2g / m (920te X ).

[0074] (製造例 3)熱処理温度 1000°C、 398texのピッチ系等方性炭素繊維束の製造 [0074] (Production Example 3) heat treatment temperature 1000 ° C, the production of pitch-based isotropic carbon fiber bundle of 398tex

ピッチ系等方性炭素繊維束((株)クレハ製、タレ力トウ T— 101 S、 23g/m)を用い て、図 2に示すような構成の 4機の練条機を用いる練条工程において、第 1練条機で この 1本の炭素繊維束を 5. 0倍に延伸して 1本の炭素繊維束とし、更に第 2練条機で この炭素繊維束を 2本合わせて 5. 0倍に延伸して 1本の炭素繊維束とし、更に第 3練 条機でこの炭素繊維束を 2本合わせて 4. 3倍に延伸して 1本の炭素繊維束とし、更 に第 4練条機でこの炭素繊維束を 2本合わせて 4. 3倍に延伸して 1本の 0. 398g/ m (398tex)のピッチ系等方性炭素繊維束を得た。 Pitch-based isotropic carbon fiber bundle used (Co. Kureha, sagging force tow T- 101 S, 23g / m), and Nerijo process using a kneading Article machines four aircraft configured as shown in FIG. 2 in, the one carbon fiber bundle in the first kneading Article machine 5. stretched 0 times and one carbon fiber bundle, combined further two of the carbon fiber bundle in the second kneading Article machine 5. extend in the 0-fold and one carbon fiber bundle, and one carbon fiber bundle and further stretched 3 times 4. the carbon fiber bundle 2 together with the third kneading Article machines, the additional fourth the carbon fiber bundle in kneading Article machine two combined 4. stretched three times to obtain a pitch-based isotropic carbon fiber bundle of one 0. 398g / m (398tex).

[0075] (製造例 4)熱処理温度 1000°C、 1640texのピッチ系等方性炭素繊維束の製诰 [0075] (Production Example 4) Heat treatment Temperature 1000 ° C, manufactured of pitch-based isotropic carbon fiber bundle of 1640tex 诰

ピッチ系等方性炭素繊維束((株)クレハ製、タレ力トウ T_ 101 S、 23g/m)を用い て、図 2に示すような構成の 4機の練条機を用いる練条工程において、第 1練条機で この炭素繊維束を 2本合わせて 4. 0倍に延伸して 1本の炭素繊維束とし、更に第 2練 条機でこの炭素繊維束を 2本合わせて 4. 0倍に延伸して 1本の炭素繊維束とし、更 に第 3練条機でこの炭素繊維束を 2本合わせて 4. 0倍に延伸して 1本の炭素繊維束 とし、更に第 4練条機でこの炭素繊維束を 2本合わせて 3. 5倍に延伸して 1本の単位 1. 64g/m (1640tex)のピッチ系等方性炭素繊維束を得た。 Pitch-based isotropic carbon fiber bundles (Co. Kureha, sagging force tow T_ 101 S, 23g / m) using, in Nerijo process using a kneading Article machines four aircraft configured as shown in FIG. 2 , it extends in the 0-fold 4. Place this carbon fiber bundle 2 in a first mixing Article machine and one carbon fiber bundle, combined further two of the carbon fiber bundle in the second kneading Article machine 4. extend in the 0-fold and one carbon fiber bundle, and further stretched to a 3 0 times 4. the carbon fiber bundle 2 together with kneading Article machine and one carbon fiber bundle, further fourth the carbon fiber bundle in kneading Article machine two together and stretched 5 times 3. give a pitch-based isotropic carbon fiber bundle of one unit 1. 64g / m (1640tex).

[0076] (製造例 5)熱処理温度 1000°C、 4000texのピッチ系等方性炭素繊維束の製造 [0076] (Production Example 5) a heat treatment temperature 1000 ° C, the production of pitch-based isotropic carbon fiber bundle of 4000tex

ピッチ系等方性炭素繊維束((株)クレハ製、タレ力トウ T— 101 S、 23g/m)を用い て、図 2に示すような構成の 4機の練条機を用いる練条工程において、第 1練条機で この炭素繊維束を 2本合わせて 3. 5倍に延伸して 1本の炭素繊維束とし、更に第 2練 条機でこの炭素繊維束を 2本合わせて 3. 0倍に延伸して 1本の炭素繊維束とし、更 に第 3練条機でこの炭素繊維束を 2本合わせて 3. 0倍に延伸して 1本の炭素繊維束 とし、更に第 4練条機でこの炭素繊維束を 2本合わせて 2. 9倍に延伸して 1本の 4. 0 g/m (4000tex)のピッチ系等方性炭素繊維束を得た。 Pitch-based isotropic carbon fiber bundle used (Co. Kureha, sagging force tow T- 101 S, 23g / m), and Nerijo process using a kneading Article machines four aircraft configured as shown in FIG. 2 in, was stretched 5 times 3. Align the carbon fiber bundle 2 in a first mixing Article machine and one carbon fiber bundle, combined further two of the carbon fiber bundle in the second kneading Article machine 3 . extend in the 0-fold and one carbon fiber bundle, and further stretched to a 3 0 fold 3. the carbon fiber bundle 2 together with kneading Article machine and one carbon fiber bundle, yet a 4 the carbon fiber bundle in kneading Article machine was stretched nine times 2.2 present combined to obtain a pitch-based isotropic carbon fiber bundle of one 4. 0 g / m (4000tex).

[0077] (製造例 6) 660texの PAN系炭素繊維束の製造 [0077] (Production Example 6) Preparation of PAN-based carbon fiber bundle of 660tex

200texの PAN系連続長繊維の炭素繊維(東邦テナックス (株)製、ベスフアイト HT A- 3K)を裁断機を用いて繊維長 200mmに切断した後、梳綿機により繊維を引き 揃えて、 10g/mの繊維束を得た。 200tex of PAN-based continuous filaments (manufactured by Toho Tenax Co., Besufuaito HT A- 3K) carbon fibers cut into a fiber length of 200mm using a cutting machine, aligned pull the fibers by carding machine, 10 g / obtain a fiber bundle of m. 次いで、図 2に示すような構成の 3機の練条機を 用いる練条工程において、第 1練条機でこの 1本の繊維束を 5. 0倍に延伸して 1本 の繊維束とし、更に第 2練条機でこの繊維束 2本を合わせて 3. 9倍に延伸して 1本の 繊維束とし、更に第 3練条機でこの繊維束を 2本合わせて 3. 1倍に延伸して 1本の 0 . 66g/m (660tex)の PAN系炭素繊維束を得た。 Then, in Nerijo process using a kneading Article machines three aircraft configured as shown in FIG. 2, the fiber bundles of the one in the first kneading Article machine 5. stretched 0 times as one fiber bundle further the fiber bundle 2 the combined 3. stretched nine times as one fiber bundle, further 1x 3. the fiber bundle 2 together with the third kneading Article machine in the second kneading Article machine by stretching to obtain a PAN-based carbon fiber bundle 0 of one. 66g / m (660tex) to.

[0078] (製造例 7)熱処理温度 1000°C、 1187texのピッチ系等方性炭素繊維束の製诰 [0078] (Production Example 7) heat treatment temperature 1000 ° C, manufactured of pitch-based isotropic carbon fiber bundle of 1187tex 诰

ピッチ系等方性炭素繊維束((株)クレハ製、タレ力トウ T_ 101 S、 23g/m)を用い て、図 2に示すような構成の 4機の練条機を用いる練条工程において、第 1練条機で この炭素繊維束を 2本合わせて 5. 0倍に延伸して 1本の炭素繊維束とし、更に第 2練 条機でこの炭素繊維束を 2本合わせて 5. 0倍に延伸して 1本の炭素繊維束とし、更 に第 3練条機でこの炭素繊維束を 2本合わせて 4. 0倍に延伸して 1本の炭素繊維束 とし、更に第 4練条機でこの炭素繊維束を 2本合わせて 3. 1倍に延伸して 1本の 1. 1 87g/m (1187tex)のピッチ系等方性炭素繊維束を得た。 Pitch-based isotropic carbon fiber bundles (Co. Kureha, sagging force tow T_ 101 S, 23g / m) using, in Nerijo process using a kneading Article machines four aircraft configured as shown in FIG. 2 , extend in the 0-fold 5. Place this carbon fiber bundle 2 in a first mixing Article machine and one carbon fiber bundle, combined further two of the carbon fiber bundle in the second kneading Article machine 5. extend in the 0-fold and one carbon fiber bundle, and further stretched to a 3 0 times 4. the carbon fiber bundle 2 together with kneading Article machine and one carbon fiber bundle, further fourth the carbon fiber bundle in kneading Article machine 2 together 3. stretched to 1x of one 1. obtain a pitch-based isotropic carbon fiber bundle of 1 87g / m (1187tex).

[0079] (製造例 8)熱処理温度 1000°C、 132texのピッチ系等方性炭素繊維束の製造 [0079] (Production Example 8) a heat treatment temperature 1000 ° C, the production of pitch-based isotropic carbon fiber bundle of 132tex

ピッチ系等方性炭素繊維束((株)クレハ製、タレ力トウ T— 101 S、 23g/m)を用い て、図 2に示すような構成の 5機の練条機を用いる練条工程において、第 1練条機で この炭素繊維束を 2本合わせて 4. 0倍に延伸して 1本の炭素繊維束とし、更に第 2練 条機でこの炭素繊維束を 2本合わせて 5. 2倍に延伸して 1本の炭素繊維束とし、更 に第 3練条機でこの炭素繊維束を 2本合わせて 5. 2倍に延伸して 1本の炭素繊維束 とし、更に第 4練条機でこの炭素繊維束を 2本合わせて 5. 2倍に延伸して 1本の炭素 繊維束とし、更に第 5練条機でこの炭素繊維束 1本を 5. 0倍に延伸して 1本の 0. 13 2g/m (132te X )のピッチ系等方性炭素繊維束を得た。 Pitch-based isotropic carbon fiber bundle used (Co. Kureha, sagging force tow T- 101 S, 23g / m), and Nerijo process using a kneading Article machine 5 aircraft configured as shown in FIG. 2 in, extend in the 0-fold 4. Place this carbon fiber bundle 2 in a first mixing Article machine and one carbon fiber bundle, combined further two of the carbon fiber bundle in the second kneading Article machine 5 . was stretched to twice the one carbon fiber bundle, further to extend the one carbon fiber bundle of doubling 5. the carbon fiber bundle 2 together with the third kneading Article machine, further the 4. the carbon fiber bundle in kneading Article machine combined two 5. stretched to twice the one carbon fiber bundle, further fifth kneaded Article machine at stretching the carbon fiber bundle one 5. 0 times to obtain a pitch-based isotropic carbon fiber bundle of one 0. 13 2g / m (132te X ).

[0080] (実施例 1) [0080] (Example 1)

製造例 1で得られた熱処理温度 1000°C、 660texのピッチ系等方性短繊維長炭素 繊維束を外周部を構成する炭素繊維、 33texの PAN系連続長繊維の長繊維長炭 素繊維束 (東邦テナックス (株)製、ベスフアイト、 HTA—W05K)を芯部を構成する 炭素繊維として用いて、以下のようにしてハイブリッド炭素繊維紡績糸を得た。 Obtained in Production Example 1 was heat-treating temperature 1000 ° C, the carbon fiber constituting the outer peripheral portion of the pitch-based isotropic short fiber length of carbon fiber bundles 660Tex, long fiber length charcoal PAN-based continuous filaments of 33tex Moto繊 維束(Toho Tenax Co., Ltd., Besufuaito, HTA-W05K) using as a carbon fiber constituting the core part, to obtain a hybrid carbon fiber spun yarn as follows. すなわ ち、図 3に示すような構成の精紡機を用いて、前記短繊維長炭素繊維束 32を 20倍 に延伸しつつ Z (左)撚り数 185回/ mで紡糸する際に、同時に長繊維長炭素繊維 束 36をミドルローラ 37を介して投入し、短繊維長炭素繊維束と長繊維長炭素繊維束 とを混紡して 66texのハイブリッド炭素繊維紡績糸を得た。 Chi words, by using a spinning machine having the structure as shown in FIG. 3, the short fiber length of carbon fiber bundles 32 during spinning with Z (left) twist 185 turns / m while stretched 20-fold, at the same time the long fiber length carbon fiber bundle 36 was charged through the middle rollers 37, to obtain a hybrid carbon fiber spun yarn of 66tex be blended with the short fiber length of carbon fiber bundles and a long fiber length carbon fiber bundle.

[0081] このようにして得られたハイブリッド炭素繊維紡績糸においては、前記短繊維長炭 素繊維束からなる 1本の撚り糸が前記長繊維長炭素繊維束からなる芯部と共に撚ら れており、芯部の外周面がその周りを卷回する撚り糸(外周部)によって完全に覆わ れていた。 [0081] In the hybrid carbon fiber spun yarn thus obtained, the and one yarn consisting of staple fiber length-carbon fiber bundle is twisted together with the core portion consisting of the long fiber length of carbon fiber bundles , the outer circumferential surface of the core portion is completely covered by the yarns (outer peripheral portion) of convolutions around its. また、得られたハイブリッド炭素繊維紡績糸は繊度のバラツキが小さぐ繊 度の均一性が十分に高いものであった。 The hybrid carbon fiber spun yarn thus obtained was as sufficiently high uniformity of small tools fineness variation in fineness.

[0082] 次に、上記のハイブリッド炭素繊維紡績糸を用いて平織りすることにより、 FAWが 9 5g/m 2 、厚みが 0. 12mmのハイブリッド炭素繊維紡績糸織物を得た。 [0082] Next, by plain weaving using a hybrid carbon fiber spun yarn of the, FAW is 9 5 g / m 2, thickness was obtained hybrid carbon fiber spun yarn fabric 0. 12 mm.

[0083] (実施例 2) [0083] (Example 2)

製造例 1で得られたピッチ系等方性炭素繊維束に代えて製造例 2で得られた 920t exのピッチ系等方性炭素繊維束を用い、さらに長繊維長炭素繊維束として 20texの PAN系連続長繊維の長繊維長炭素繊維束(33texの PAN系連続長繊維の長繊維 長炭素繊維束 (東邦テナックス (株)製、ベスフアイト、 HTA-W1K)を分割すること により得たもの)を用いた以外は実施例 1と同様にして、 66texのハイブリッド炭素繊 維紡績糸を得た。 Using pitch-based isotropic carbon fiber bundle of 920T ex obtained instead of the pitch-based isotropic carbon fiber bundle obtained in Production Example 1 in Production Example 2, further 20tex the PAN as long fiber length carbon fiber bundle system long fiber length carbon fiber bundles of continuous filaments (long fiber length carbon fiber bundle of PAN-based continuous filaments of 33Tex (Toho Tenax Co., Ltd., Besufuaito, obtained by dividing the HTA-W1K)) and except for using in the same manner as in example 1 to obtain a hybrid carbon textiles spun yarn 66Tex. このようにして得られたハイブリッド炭素繊維紡績糸の構成は実施 例 1で得られたものと同様であり、また、その繊度の均一性は十分に高いものであつ た。 Thus structure of the hybrid carbon fiber spun yarn thus obtained are similar to those obtained in Example 1, also the uniformity of the fineness been made sufficiently high.

[0084] 次に、上記のハイブリッド炭素繊維紡績糸を用いて平織りすることにより、 FAWが 9 5g/m 2 、厚みが 0. 12mmのハイブリッド炭素繊維紡績糸織物を得た。 [0084] Next, by plain weaving using a hybrid carbon fiber spun yarn of the, FAW is 9 5 g / m 2, thickness was obtained hybrid carbon fiber spun yarn fabric 0. 12 mm.

[0085] (実施例 3) [0085] (Example 3)

製造例 1で得られたピッチ系等方性炭素繊維束に代えて製造例 3で得られた 398t exのピッチ系等方性炭素繊維束を用い、さらに長繊維長炭素繊維束として 33texの PAN系連続長繊維の長繊維長炭素繊維束 (東邦テナックス (株)製、ベスフアイト、 H TA_W1K) 1本とこれを分割することにより得られた 13texの PAN系連続長繊維の 長繊維長炭素繊維束 1本とを合わせて 46texとしたものを用いた以外は実施例 1と同 様にして、 66texのハイブリッド炭素繊維紡績糸を得た。 Using pitch-based isotropic carbon fiber bundle of 398T ex obtained in Production Example 3 in place of the pitch-based isotropic carbon fiber bundle obtained in Production Example 1, further 33tex the PAN as long fiber length carbon fiber bundle system continuous long fibers of the long fiber length of carbon fiber bundles (Toho Tenax Co., Ltd., Besufuaito, H TA_W1K) 1 present a long fiber length carbon fiber bundle of PAN-based continuous filaments obtained 13tex by dividing this except that used was a 46tex together one and in the same manner as in example 1 to obtain a hybrid carbon fiber spun yarn 66Tex. このようにして得られたハイ ブリツド炭素繊維紡績糸の構成は実施例 1で得られたものと同様であり、また、その繊 度の均一性は十分に高いものであった。 Thus construction of high Buritsudo carbon fiber spun yarn thus obtained are similar to those obtained in Example 1, also, the fineness of uniformity was sufficiently high.

[0086] 次に、上記のハイブリッド炭素繊維紡績糸を用いて平織りすることにより、 FAWが 9 5g/m 2 、厚みが 0. 12mmのハイブリッド炭素繊維紡績糸織物を得た。 [0086] Next, by plain weaving using a hybrid carbon fiber spun yarn of the, FAW is 9 5 g / m 2, thickness was obtained hybrid carbon fiber spun yarn fabric 0. 12 mm.

[0087] (実施例 4) [0087] (Example 4)

長繊維長炭素繊維束として 33texの PAN系連続長繊維の長繊維長炭素繊維束( 東レ (株)製、トレ力、 M40を分割することにより得たもの)を用いた以外は実施例 1と 同様にして、 66texのハイブリッド炭素繊維紡績糸を得た。 Long fiber length carbon fiber bundle of PAN-based continuous long fibers 33tex as long fiber length carbon fiber bundle, except for using (Toray Co., Torre force to those obtained by dividing the M40) Example 1 It was obtained in the same manner hybrid carbon fiber spun yarn 66Tex. このようにして得られたハ イブリツド炭素繊維紡績糸の構成は実施例 1で得られたものと同様であり、また、その 繊度の均一性は十分に高いものであった。 Thus structure Ha Iburitsudo carbon fiber spun yarn thus obtained are similar to those obtained in Example 1, also the uniformity of the fineness was sufficiently high.

[0088] 次に、上記のハイブリッド炭素繊維紡績糸を用いて平織りすることにより、 FAWが 9 5g/m 2 、厚みが 0. 12mmのハイブリッド炭素繊維紡績糸織物を得た。 [0088] Next, by plain weaving using a hybrid carbon fiber spun yarn of the, FAW is 9 5 g / m 2, thickness was obtained hybrid carbon fiber spun yarn fabric 0. 12 mm.

[0089] (実施例 5) [0089] (Example 5)

織り方を平織りから綾織りに代えたこと以外は実施例 1と同様にして、 FAWが 95g 厚みが 0. 12mmのハイブリッド炭素繊維紡績糸織物を得た。 The weave except that instead of twill plain-woven in the same manner as in Example 1, FAW there is 95g thickness to obtain a hybrid carbon fiber spun yarn fabric 0. 12 mm.

[0090] (実施例 6) [0090] (Example 6)

製造例 1で得られたピッチ系等方性炭素繊維束に代えて製造例 4で得られた 1640 texのピッチ系等方性炭素繊維束を用レ、、さらに長繊維長炭素繊維束として 67tex の PAN系連続長繊維の長繊維長炭素繊維束 (東邦テナックス (株)製、ベスフアイト 、 HTA— W1K)を用いた以外は実施例 1と同様にして、 149texのハイブリッド炭素 繊維紡績糸を得た。 67tex 1640 pitch-based isotropic carbon fiber bundle of tex obtained in Production Example 4 instead of the pitch-based isotropic carbon fiber bundle obtained in Production Example 1 as Yore ,, a longer fiber length of carbon fiber bundles PAN-based long fiber length carbon fiber bundles of continuous filaments (manufactured by Toho Tenax Co., Besufuaito, HTA- W1K) except for using in the same manner as in example 1 to obtain a hybrid carbon fiber spun yarn 149tex . このようにして得られたハイブリッド炭素繊維紡績糸の構成は実 施例 1で得られたものと同様であり、また、その繊度の均一性は十分に高レ、ものであ つた。 Thus structure of the hybrid carbon fiber spun yarn thus obtained is similar to that obtained in real Example 1, also, the fineness of the homogeneity is sufficiently Kore, Monodea ivy.

[0091] 次に、上記のハイブリッド炭素繊維紡績糸を用いて平織りすることにより、 FAWが 1 50g/m 2 、厚みが 0. 20mmのハイブリッド炭素繊維紡績糸織物を得た。 [0091] Next, by plain weaving using a hybrid carbon fiber spun yarn of the, FAW is 1 50 g / m 2, thickness was obtained hybrid carbon fiber spun yarn fabric 0. 20 mm.

[0092] (実施例 7) [0092] (Example 7)

製造例 1で得られたピッチ系等方性炭素繊維束に代えて製造例 5で得られた 4000 texのピッチ系等方性炭素繊維束を用レ、、さらに長繊維長炭素繊維束として 200tex の PAN系連続長繊維の長繊維長炭素繊維束 (東邦テナックス (株)製、ベスフアイト 、 HTA— 3K)を用いた以外は実施例 1と同様にして、 400texのハイブリッド炭素繊 維紡績糸を得た。 200tex 4000 pitch-based isotropic carbon fiber bundle of tex obtained in Production Example 5 instead of the pitch-based isotropic carbon fiber bundle obtained in Production Example 1 as Yore ,, a longer fiber length of carbon fiber bundles the resulting long fiber length carbon fiber bundle of PAN-based continuous filaments (Toho Tenax Co., Ltd., Besufuaito, HTA- 3K) except for using in the same manner as in example 1, the hybrid carbon textiles spun yarn 400tex It was. このようにして得られたハイブリッド炭素繊維紡績糸の構成は実施 例 1で得られたものと同様であり、また、その繊度の均一性は十分に高いものであつ た。 Thus structure of the hybrid carbon fiber spun yarn thus obtained are similar to those obtained in Example 1, also the uniformity of the fineness been made sufficiently high.

[0093] 次に、上記のハイブリッド炭素繊維紡績糸を用いて平織りすることにより、 FAWが 5 15g/m 2 、厚みが 0. 83mmのハイブリッド炭素繊維紡績糸織物を得た。 [0093] Next, by plain weaving using a hybrid carbon fiber spun yarn of the, FAW is 5 15 g / m 2, thickness was obtained hybrid carbon fiber spun yarn fabric 0. 83 mm.

[0094] (実施例 8) [0094] (Example 8)

長繊維長炭素繊維束として 33texのピッチ系異方性連続長繊維の長繊維長炭素 繊維束 (三菱化学産資 (株)製、ダイアリード、 K32112を分割することにより得たもの )を用いた以外は実施例 1と同様にして、 66texのハイブリッド炭素繊維紡績糸を得 た。 Long fiber length carbon fiber bundle of pitch-based anisotropic continuous long fibers 33tex as long fiber length carbon fiber bundles (Mitsubishi Chemical Functional Products Capital Corp., DIALEAD, obtained by dividing the K32112) was used otherwise in the same manner as in example 1 to obtain a hybrid carbon fiber spun yarn 66Tex. このようにして得られたハイブリッド炭素繊維紡績糸の構成は実施例 1で得られた ものと同様であり、また、その繊度の均一性は十分に高いものであった。 Thus structure of the hybrid carbon fiber spun yarn thus obtained are similar to those obtained in Example 1, also the uniformity of the fineness was sufficiently high.

[0095] 次に、上記のハイブリッド炭素繊維紡績糸を用いて平織りすることにより、 FAWが 9 5g/m 2 、厚みが 0. 12mmのハイブリッド炭素繊維紡績糸織物を得た。 [0095] Next, by plain weaving using a hybrid carbon fiber spun yarn of the, FAW is 9 5 g / m 2, thickness was obtained hybrid carbon fiber spun yarn fabric 0. 12 mm.

[0096] (実施例 9) [0096] (Example 9)

製造例 1で得られたピッチ系等方性炭素繊維束に代えて製造例 6で得られた 660t exの PAN系炭素繊維束を用いた以外は実施例 1と同様にして、 66texのハイブリツ ド炭素繊維紡績糸を得た。 Except for using PAN-based carbon fiber bundle of 660T ex obtained in Production Example 6 in place of the pitch-based isotropic carbon fiber bundle obtained in Production Example 1 in the same manner as in Example 1, Haiburitsu de of 66tex to obtain a carbon fiber spun yarn. このようにして得られたハイブリッド炭素繊維紡績糸の構 成は実施例 1で得られたものと同様であり、また、その繊度の均一性は十分に高いも のであった。 Thus the configuration of the hybrid carbon fiber spun yarn obtained in a similar to that obtained in Example 1, also the uniformity of the fineness was also of enough high.

[0097] 次に、上記のハイブリッド炭素繊維紡績糸を用いて平織りすることにより、 FAWが 9 5g/m 2 、厚みが 0. 12mmのハイブリッド炭素繊維紡績糸織物を得た。 [0097] Next, by plain weaving using a hybrid carbon fiber spun yarn of the, FAW is 9 5 g / m 2, thickness was obtained hybrid carbon fiber spun yarn fabric 0. 12 mm.

[0098] (比較例 1) [0098] (Comparative Example 1)

長繊維長炭素繊維束を用いることなぐ製造例 1で得られたピッチ系等方性炭素繊 維束のみを用い、前記短繊維長炭素繊維束 32を 20倍に延伸することに代えて 10倍 に延伸するようにした以外は実施例 1と同様にして、 66texのピッチ系等方性炭素繊 維紡績糸を得た。 Using only pitch-based isotropic carbon fiber 維束 obtained in Production Example 1 Nag that using a long fiber length carbon fiber bundles, 10 times instead of stretching the short fiber length of carbon fiber bundles 32 to 20 times except that so as to extend in the in the same manner as in example 1 to obtain a pitch-based isotropic carbon textiles spun yarn 66Tex. このようにして得られたピッチ系等方性炭素繊維紡績糸は、繊度の バラツキが大きレ、ものであった。 Thus pitch-based isotropic carbon fiber spun yarn thus obtained is variation in fineness was large Les those.

[0099] 次に、上記のピッチ系等方性炭素繊維紡績糸を用いて平織りすることにより、 FAW 力 S95g/m 2 、厚みが 0. 12mmのピッチ系等方性炭素繊維紡績糸織物を得た。 [0099] Next, obtained by plain weaving using a pitch-based isotropic carbon fiber spun yarn of the, FAW force S95g / m 2, a pitch-based isotropic carbon fiber spun yarn fabric having a thickness of 0. 12 mm It was.

[0100] (比較例 2) [0100] (Comparative Example 2)

67texの PAN系連続長繊維の長繊維長炭素繊維束 (東邦テナックス (株)製、べス ファイト、 HTA-W1K)を分割することにより得られた 66texの PAN系連続長繊維 の長繊維長炭素繊維束のみを用いて平織りすることにより、 FAWが 95gZm 2 、厚み が 0. 12mmの PAN系炭素繊維織物を得た。 Long fiber length carbon fiber bundle of PAN-based continuous filaments of 67Tex (Toho Tenax Co., Beth Fight, HTA-W1K) long fiber length of carbon atoms of the PAN-based continuous filaments of 66tex obtained by dividing the by plain weave using only fiber bundle, FAW is 95gZm 2, the thickness was obtained PAN-based carbon fiber fabric of 0. 12 mm.

[0101] (比較例 3) [0101] (Comparative Example 3)

製造例 1で得られたピッチ系等方性炭素繊維束に代えて製造例 7で得られた 1187 texのピッチ系等方性炭素繊維束を用レ、、さらに長繊維長炭素繊維束として 6. 6tex の PAN系連続長繊維の長繊維長炭素繊維束(33texの PAN系連続長繊維の長繊 維長炭素繊維束 (東邦テナックス (株)製、ベスフアイト、 HTA-W05K)を分割する ことにより得たもの)を用いた以外は実施例 1と同様にして、 66texのハイブリッド炭素 繊維紡績糸を得た。 6 1187 pitch-based isotropic carbon fiber bundle of tex obtained in Production Example 7 in place of the pitch-based isotropic carbon fiber bundle obtained in Production Example 1 as Yore ,, a longer fiber length of carbon fiber bundles . long fiber length carbon fiber bundle of PAN-based continuous filaments of 6Tex (PAN-based continuous long fibers 33tex long fiber 維長 carbon fiber bundle (Toho Tenax Co., Ltd., Besufuaito, by dividing the HTA-W05K) except that resulting ones) it was prepared in the same manner as in example 1 to obtain a hybrid carbon fiber spun yarn 66Tex.

[0102] 次に、上記のハイブリッド炭素繊維紡績糸を用いて平織りすることにより、 FAWが 9 5g/m 2 、厚みが 0. 12mmのハイブリッド炭素繊維紡績糸織物を得た。 [0102] Next, by plain weaving using a hybrid carbon fiber spun yarn of the, FAW is 9 5 g / m 2, thickness was obtained hybrid carbon fiber spun yarn fabric 0. 12 mm.

[0103] (比較例 4) [0103] (Comparative Example 4)

製造例 1で得られたピッチ系等方性炭素繊維束に代えて製造例 8で得られた 132t exのピッチ系等方性炭素繊維束を用い、さらに長繊維長炭素繊維束として 33texの PAN系連続長繊維の長繊維長炭素繊維束 (東邦テナックス (株)製、ベスフアイト、 H TA-W05K) 1本とこれを分割することにより得られた 26. 4texの PAN系連続長繊 維の長繊維長炭素繊維束 1本とを合わせて 59. 4texとしたものを用いた以外は実施 例 1と同様にして、 66texのハイブリッド炭素繊維紡績糸を得た。 Using pitch-based isotropic carbon fiber bundle of 132t ex obtained in Production Example 8 in place of the pitch-based isotropic carbon fiber bundle obtained in Production Example 1, further 33tex the PAN as long fiber length carbon fiber bundle system continuous long fibers of the long fiber length of carbon fiber bundles (Toho Tenax Co., Ltd., Besufuaito, H TA-W05K) length of the PAN-based continuous length textiles obtained 26. 4Tex by one and dividing this except for using what was 59. 4Tex together with the fiber length of carbon fiber bundles one in the same manner as in example 1 to obtain a hybrid carbon fiber spun yarn 66Tex.

[0104] 次に、上記のハイブリッド炭素繊維紡績糸を用いて平織りすることにより、 FAWが 9 5g/m 2 、厚みが 0. 12mmのハイブリッド炭素繊維紡績糸織物を得た。 [0104] Next, by plain weaving using a hybrid carbon fiber spun yarn of the, FAW is 9 5 g / m 2, thickness was obtained hybrid carbon fiber spun yarn fabric 0. 12 mm.

[0105] ぐ評価結果 > [0105] ingredients evaluation results>

実施例:!〜 9及び比較例:!〜 4で得られたハイブリッド炭素繊維紡績糸における、芯 部及び外周部を構成するそれぞれの炭素繊維の密度、長さ及び引張強度は表 1に 示す通りであった。 Example: to 9 and Comparative Examples: density of each carbon fiber in the hybrid carbon fiber spun yarn obtained in 1-4, constituting the core portion and the outer peripheral portion, the length and tensile strength as shown in Table 1 Met. また、各ハイブリッド炭素繊維紡績糸における長繊維長炭素繊維 と前記短繊維長炭素繊維との含有割合、並びに各ハイブリッド炭素繊維紡績糸の繊 度、引張強度及びマトリックス材料との密着性は表 1に示す通りであった。 Further, the content of the long fiber length of carbon fibers and the short fiber length of carbon fibers in each hybrid carbon fiber spun yarn, and fineness of the hybrid carbon fiber spun yarn, the adhesion between the tensile strength and matrix materials in Table 1 It was as shown. さらに、実 施例:!〜 9及び比較例:!〜 4で得られたハイブリッド炭素繊維紡績糸織物の厚み、 FA W (Fiber Area Weight)及び織り方は表 1に示す通りであった。 Furthermore, the actual 施例:! ~ 9 and Comparative Examples: The thickness of the hybrid carbon fiber spun yarn fabric obtained in ~ 4, FA W (Fiber Area Weight) and weave were as shown in Table 1.

[表 1] [table 1]

* 1 :連続長繊維とは、良さ 5m以上の繊維 (形態 ィラメント)のことをいうc * 1: a continuous length fibers refers to more good 5m fibers (Embodiment Iramento) c

* 2:比較例 1にお t、てはピッチ系等方性炭素繊維紡績糸であり、比較例 2にお t、ては PAN系連続長繊維の長繊維長炭素繊維束である。 * 2: Contact t in Comparative Example 1, Te is the pitch-based isotropic carbon fiber spun yarn, your t in Comparative Example 2, Te is the length the fiber length of carbon fiber bundle of PAN-based continuous filaments.

* 3:比較例 1にお 、てはピッチ系等方性炭素繊維紡績糸力もなる織物であり、比較例 2にお L、ては PAN系速続長繊維の長繊維長炭素繊維束力もなる織物である。 * 3: Contact in Comparative Example 1, Te is also woven pitch-based isotropic carbon fiber spun yarn force becomes also long fibers long carbon fiber bundle strength of PAN-based speed connection long fibers Te Contact L, in Comparative Example 2 a textile.

[0107] 表 1に記載した結果からも明らかなように、本発明のハイブリッド炭素繊維紡績糸( 実施例:!〜 9)は、引張強度が充分に高く且つマトリックス材料との密着性が充分に優 れており、し力も前述の通り繊度の均一性が十分に高いものであることが確認された 。 [0107] Table 1 As is clear from the results described, the hybrid carbon fiber spun yarn of the present invention (Examples:! ~ 9), the adhesion is sufficiently between tensile strength is sufficiently high and the matrix material superior and teeth force was also confirmed that the uniformity of the mentioned above fineness is sufficiently high. したがって、本発明のハイブリッド炭素繊維紡績糸を用いて得た本発明のハイプリ ッド炭素繊維紡績糸織物(実施例:!〜 9)は、マトリックス材料との密着性及び機械的 強度に優れ、し力 厚みの均一性にも優れたものであった。 Accordingly, High Priestess head carbon fiber spun yarn fabric (Example!: ~ 9) of the present invention obtained using the hybrid carbon fiber spun yarn of the present invention is excellent in adhesion and mechanical strength of the matrix material, the teeth It was excellent in uniformity of the force thickness.

産業上の利用可能性 Industrial Applicability

[0108] 以上説明したように、本発明によれば、高分子材料等のマトリックス材料との密着性 の低下を招くことなく高い引張強度を達成し、し力も繊度の均一性にも優れたハイブ リツド炭素繊維紡績糸を提供することが可能となる。 [0108] As described above, according to the present invention, hive achieve high tensile strength without lowering the adhesion with the matrix material such as a polymeric material, the tooth forces is also excellent in the uniformity of fineness Ritsudo it is possible to provide a carbon fiber spun yarn. 従って、本発明のノ、イブリツド炭 素繊維紡績糸は、固体高分子電解質型燃料電池のガス拡散体用の繊維や、宇宙航 空用の複合材料補強用繊維等として非常に有用である。 Thus, Bruno of the present invention, Iburitsudo-carbon fiber spun yarn, the polymer fibers or the gas diffuser of the electrolyte fuel cell is very useful as a composite material reinforcing fibers such as for space aviation.

[0109] また、本発明によれば、マトリックス材料との密着性及び機械的強度に優れ、し力も 厚みの均一性にも優れた炭素繊維紡績糸織物を提供することが可能となる。 [0109] Further, according to the present invention, excellent adhesion and mechanical strength of the matrix material, the tooth forces is also possible to provide a carbon fiber spun yarn fabric also excellent uniformity of thickness. 従って 、本発明のハイブリッド炭素繊維紡績糸織物は、固体高分子電解質型燃料電池のガ ス拡散体、 C/Cコンポジット材、ヒーター、織物、成型断熱材用補強材等に用いる炭 素繊維織物として非常に有用である。 Accordingly, the hybrid carbon fiber spun yarn fabric of the present invention, the solid polymer electrolyte fuel gas diffuser of the battery, C / C composite material, a heater, textiles, as-carbon fiber woven fabric used for molding insulation material reinforcements etc. it is very useful.

Claims

請求の範囲 The scope of the claims
[1] 炭素繊維を主成分とする芯部と、炭素繊維を主成分とし且つ前記芯部の外周面を覆 う外周部とを備えるハイブリッド炭素繊維紡績糸であって、前記芯部を構成する繊維 の 20質量%以上が繊維長 500mm以上の長繊維長炭素繊維であり、前記外周部を 構成する繊維の 80質量%以上が繊維長 500mm未満の短繊維長炭素繊維であり、 且つ、前記長繊維長炭素繊維と前記短繊維長炭素繊維との質量比 (長繊維長炭素 繊維:短繊維長炭素繊維)が 20: 80-80: 20であるハイブリッド炭素繊維紡績糸。 [1] a core section composed mainly of carbon fibers, a hybrid carbon fiber spun yarn and a Cormorant outer peripheral portion covering the outer peripheral surface of and the core portion composed mainly of carbon fibers, forming the core portion more than 20 wt% of the fibers are longer than the fiber length of carbon fibers having a fiber length of 500 mm, more than 80% by weight of the fibers constituting the outer peripheral portion is a short fiber length of carbon fibers is less than the fiber length of 500 mm, and the length wherein the fiber length of carbon fiber mass ratio of the short fiber length of carbon fibers (long fiber length carbon fibers: short fiber length of carbon fibers) 20: 80-80: hybrid carbon fiber spun yarn 20.
[2] 前記長繊維長炭素繊維が、ピッチ系異方性炭素繊維、ポリアクリロニトリル系炭素繊 維及びレーヨン系炭素繊維からなる群から選択される少なくとも一種の炭素繊維であ る、請求項 1に記載のハイブリッド炭素繊維紡績糸。 [2] The long fiber length carbon fibers, pitch-based anisotropic carbon fibers, Ru least one carbon fiber der selected from the group consisting of polyacrylonitrile-based carbon textiles and rayon-based carbon fibers, in claim 1 hybrid carbon fiber spun yarn according.
[3] 前記短繊維長炭素繊維が、ピッチ系等方性炭素繊維及び/又はポリアクリロニトリル 系炭素繊維である、請求項 1に記載のハイブリッド炭素繊維紡績糸。 [3] the short fiber length of carbon fibers are pitch-based isotropic carbon fibers and / or polyacrylonitrile-based carbon fibers, hybrid carbon fiber spun yarn of claim 1.
[4] 前記長繊維長炭素繊維がポリアクリロニトリル系炭素繊維であり、且つ前記短繊維長 炭素繊維がピッチ系等方性炭素繊維である、請求項 1に記載のハイブリッド炭素繊 維紡績糸。 [4] The long fiber length carbon fibers are polyacrylonitrile-based carbon fibers, and the short fiber length of carbon fibers are pitch-based isotropic carbon fibers, hybrid carbon textiles spun yarn of claim 1.
[5] 前記短繊維長炭素繊維における繊維長が 150mm以上で且つ 500mm未満の炭素 繊維の割合が 3〜30質量%である、請求項 1に記載のハイブリッド炭素繊維紡績糸 [5] the proportion of carbon fiber and less than 500mm in fiber length 150mm or more in the short fiber length of carbon fibers are 3 to 30 wt%, the hybrid carbon fiber spun yarn according to claim 1
[6] 前記外周部が前記短繊維長炭素繊維を主成分とする撚り糸により構成されており、 該撚り糸が前記長繊維長炭素繊維を主成分とする芯部と共に撚られることによって 前記芯部の外周面が前記撚り糸に覆われている、請求項 1記載のハイブリッド炭素 繊維紡績糸。 [6] the and the outer peripheral portion is constituted by yarn mainly containing short fiber length of carbon fiber, of the core portion by being twisted together with the core portion in which the yarn is mainly composed of long fiber length carbon fibers the outer peripheral surface is covered with the twisted yarn, the hybrid carbon fiber spun yarn of claim 1 wherein.
[7] 前記ハイブリッド炭素繊維紡績糸における撚り数が 50〜400回 Zmである、請求項 6 に記載のハイブリッド炭素繊維紡績糸。 [7] The hybrid twist number in the carbon fiber spun yarn is 50 to 400 times Zm, hybrid carbon fiber spun yarn according to claim 6.
[8] 前記長繊維長炭素繊維の密度が 1. 7〜2. 3g/cm 3であり、且つ、前記短繊維長炭 素繊維の密度が 1. 5〜: 1. 8g/cm 3である、請求項 1に記載のハイブリッド炭素繊維 . [8] Density of the long fiber length of carbon fibers 1.7 to 2 was 3 g / cm 3, and the density of the short fiber length-carbon fiber 1. 5: is 1. 8 g / cm 3 hybrid carbon fiber according to claim 1
[9] 1000m当たりの質量(tex)力 0〜150gである、請求項 1に記載のハイブリッド炭素 繊維紡績糸。 [9] is a mass (tex) force 0~150g per 1000 m, the hybrid carbon fiber spun yarn of claim 1.
請求項 1〜9のうちのいずれか一項に記載のハイブリッド炭素繊維紡績糸を 30質量 %以上含有するハイブリッド炭素繊維紡績糸織物。 Hybrid carbon fiber spun yarn fabric containing a hybrid carbon fiber spun yarn according least 30 mass% in any one of claims 1 to 9.
PCT/JP2006/302822 2005-02-22 2006-02-17 Hybrid carbon fiber spun yarn and hybrid carbon fiber spun yarn fabric using same WO2006090643A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005-046155 2005-02-22
JP2005046155 2005-02-22

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
CN 200680005527 CN101124355B (en) 2005-02-22 2006-02-17 Hybrid carbon fiber spun yarn, fabric and production method of hybrid carbon fiber spun yarn
JP2007504688A JP4822552B2 (en) 2005-02-22 2006-02-17 Yarn hybrid carbon fiber spun and hybrid carbon fiber spun yarn fabric using the same
KR20077021949A KR101156316B1 (en) 2005-02-22 2006-02-17 Hybrid carbon fiber spun yarn and hybrid carbon fiber spun yarn fabric using same
EP20060713963 EP1854911A1 (en) 2005-02-22 2006-02-17 Hybrid carbon fiber spun yarn and hybrid carbon fiber spun yarn fabric using same
US11884872 US8171711B2 (en) 2005-02-22 2006-02-17 Hybrid carbon fiber spun yarn and hybrid carbon fiber spun yarn fabric using the same

Publications (1)

Publication Number Publication Date
WO2006090643A1 true true WO2006090643A1 (en) 2006-08-31

Family

ID=36927285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302822 WO2006090643A1 (en) 2005-02-22 2006-02-17 Hybrid carbon fiber spun yarn and hybrid carbon fiber spun yarn fabric using same

Country Status (6)

Country Link
US (1) US8171711B2 (en)
EP (1) EP1854911A1 (en)
JP (1) JP4822552B2 (en)
KR (1) KR101156316B1 (en)
CN (1) CN101124355B (en)
WO (1) WO2006090643A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010021045A1 (en) * 2008-08-21 2010-02-25 株式会社クレハ Woven fabric of isotropic pitch carbon fiber and process for producing the same
US20100330858A1 (en) * 2006-08-22 2010-12-30 Kureha Corporation Molded article containing stacked carbon fiber and method for producing same
JP2013100226A (en) * 2013-01-10 2013-05-23 Toyo Tanso Kk Expansible graphite sheet, protection method for carbonaceous crucible using the same, and single crystal pulling apparatus
WO2013077087A1 (en) * 2011-11-21 2013-05-30 津田駒工業株式会社 Carbon fiber base material and carbon fiber reinforced plastic

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4446721B2 (en) * 2003-12-01 2010-04-07 株式会社クレハ Carbon fiber spun yarn and woven fabrics
JP4538502B2 (en) * 2005-04-18 2010-09-08 帝人株式会社 Resin molded body containing pitch-based carbon fibers, mats and their
GB2477531B (en) * 2010-02-05 2015-02-18 Univ Leeds Carbon fibre yarn and method for the production thereof
DE102010030773A1 (en) * 2010-06-30 2012-01-05 Sgl Carbon Se Yarn or yarn and method for manufacturing a yarn or stitching yarn
EP3015576A1 (en) 2014-10-27 2016-05-04 Basf Se Method and device for the preparation of carbon fibre semi-finished products
CN105951239B (en) * 2016-07-20 2017-12-29 江南大学 A carbon fiber production method of core spun yarn fabric

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5381735A (en) * 1976-12-25 1978-07-19 Nippon Carbon Co Ltd Method of producing carbon fiber spinning yarn
JPS59228068A (en) * 1983-06-10 1984-12-21 Yuutarou Inoue Production of carbon fiber cloth
JPH01246434A (en) * 1988-03-22 1989-10-02 Nippon Pillar Packing Co Ltd Composite filament and production thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3520093A1 (en) 1985-06-05 1986-12-11 Freudenberg Carl Fa Cover or insole
US4698956A (en) * 1986-05-29 1987-10-13 Gentex Corporation Composite yarn and method for making the same
US5119512A (en) * 1986-06-12 1992-06-09 Allied-Signal Inc. Cut resistant yarn, fabric and gloves
US4921756A (en) 1989-03-03 1990-05-01 Springs Industries, Inc. Fire resistant balanced fine corespun yarn and fabric formed thereof
US5127783A (en) * 1989-05-25 1992-07-07 The B.F. Goodrich Company Carbon/carbon composite fasteners
US5183603A (en) * 1990-10-24 1993-02-02 Koa Oil Company Limited Process for producing a coil-shaped carbon fiber bundle
US5496625A (en) * 1994-12-30 1996-03-05 Norfab Corporation Melamine thermal protective fabric and core-spun heat resistant yarn for making the same
JPH11200158A (en) * 1997-12-26 1999-07-27 Oji Paper Co Ltd Production of silicon carbide fiber
JP2002352807A (en) 2001-05-30 2002-12-06 Toray Ind Inc Gas diffuser and manufacturing method therefor
KR100873726B1 (en) 2001-08-07 2008-12-12 데이진 가부시키가이샤 Reinforcing composite yarn and production method therefor
CN1141427C (en) 2002-03-07 2004-03-10 元 薛 Method and apparatus for making core-spun yarn of steple-fibre covered filament
JP2003288906A (en) 2002-03-27 2003-10-10 Toray Ind Inc Carbon fiber cloth for electrode, gas diffusion body, membrane-electrode joint body, and fuel cell
EP1652997B1 (en) 2003-07-31 2012-04-04 Mitsubishi Rayon Co., Ltd. Carbon fiber bundle, process for producing the same, and thermoplastic resin composition and molded article thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5381735A (en) * 1976-12-25 1978-07-19 Nippon Carbon Co Ltd Method of producing carbon fiber spinning yarn
JPS59228068A (en) * 1983-06-10 1984-12-21 Yuutarou Inoue Production of carbon fiber cloth
JPH01246434A (en) * 1988-03-22 1989-10-02 Nippon Pillar Packing Co Ltd Composite filament and production thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8962500B2 (en) * 2006-08-22 2015-02-24 Kureha Corporation Molded article containing stacked carbon fiber and method for producing same
US20100330858A1 (en) * 2006-08-22 2010-12-30 Kureha Corporation Molded article containing stacked carbon fiber and method for producing same
JPWO2010021045A1 (en) * 2008-08-21 2012-01-26 株式会社クレハ Isotropic pitch-based carbon fiber fabric and a method of manufacturing the same
WO2010021045A1 (en) * 2008-08-21 2010-02-25 株式会社クレハ Woven fabric of isotropic pitch carbon fiber and process for producing the same
WO2013077087A1 (en) * 2011-11-21 2013-05-30 津田駒工業株式会社 Carbon fiber base material and carbon fiber reinforced plastic
JP2013108194A (en) * 2011-11-21 2013-06-06 Tsudakoma Corp Carbon fiber base material and carbon fiber-reinforced plastic
JP2013100226A (en) * 2013-01-10 2013-05-23 Toyo Tanso Kk Expansible graphite sheet, protection method for carbonaceous crucible using the same, and single crystal pulling apparatus

Also Published As

Publication number Publication date Type
US20080152906A1 (en) 2008-06-26 application
KR101156316B1 (en) 2012-06-13 grant
US8171711B2 (en) 2012-05-08 grant
EP1854911A1 (en) 2007-11-14 application
CN101124355A (en) 2008-02-13 application
JP4822552B2 (en) 2011-11-24 grant
KR20070116012A (en) 2007-12-06 application
JPWO2006090643A1 (en) 2008-07-24 application
CN101124355B (en) 2010-07-28 grant

Similar Documents

Publication Publication Date Title
US4457973A (en) Conductive composite filaments and methods for producing said composite filaments
US4420534A (en) Conductive composite filaments and methods for producing said composite filaments
US4837076A (en) Carbonaceous fibers with spring-like reversible deflection and method of manufacture
US20090282802A1 (en) Carbon nanotube yarn, thread, rope, fabric and composite and methods of making the same
Zhang et al. Commingled natural fibre/polypropylene wrap spun yarns for structured thermoplastic composites
JP2003013326A (en) Polyketone fiber, method of producing the same and polyketone twisted yarn
US5503929A (en) Linear carbonaceous fiber with improved elongability
US7214425B2 (en) High performance fiber blend and products made therefrom
US4869951A (en) Method and materials for manufacture of anti-static cloth
JP2006077343A (en) Carbon fiber mat, method for producing the same, substrate for forming by using the same
Miao Yarn spun from carbon nanotube forests: Production, structure, properties and applications
US20070148455A1 (en) Fire retardant compositions and methods and apparatuses for making the same
CN102102233A (en) Method for preparing polyacrylonitrile-based carbon nanofiber precursor
WO2003014446A1 (en) Reinforcing composite yarn and production method therefor
JP2004003043A (en) Flameproof fiber material, carbon fiber material, graphite fiber material and method for producing the same
JP2002020927A (en) Carbon fiber precursor fiber bundle
JPH06248550A (en) Needled mat-like glass fiber composite sheet
JPH10121325A (en) Precursor fiber bundle for carbon fiber and its production and production of carbon fiber
CN101768803A (en) Aromatic polysulphone/antistatic fibre mixed yarn and production method thereof as well as loosening and mixing device
JP2003306836A (en) Carbon fiber strand and method for producing the same
CN103510239A (en) Moisture-absorbing, sweat-releasing, washable and quick-drying shirt fabric and production method thereof
JP2002309442A (en) Polyketone fiber, cord, and method for producing the same
Majumdar et al. Properties of ring-spun yarns made from cotton and regenerated bamboo fibres
JP2000096354A (en) Carbon fiber bundle, and its production
Abbasipour et al. Nanofiber bundles and yarns production by electrospinning: a review

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007504688

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200680005527.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11884872

Country of ref document: US

NENP Non-entry into the national phase in:

Ref country code: DE

REEP

Ref document number: 2006713963

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006713963

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2006713963

Country of ref document: EP