WO2006087001A1 - Template-fixed beta-hairpin peptidomimetics with protease inhibitory activity - Google Patents
Template-fixed beta-hairpin peptidomimetics with protease inhibitory activity Download PDFInfo
- Publication number
- WO2006087001A1 WO2006087001A1 PCT/EP2005/001622 EP2005001622W WO2006087001A1 WO 2006087001 A1 WO2006087001 A1 WO 2006087001A1 EP 2005001622 W EP2005001622 W EP 2005001622W WO 2006087001 A1 WO2006087001 A1 WO 2006087001A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lower alkyl
- chr
- alkenyl
- alkyl
- pro
- Prior art date
Links
- 0 CC([C@]1(CCC[C@@]2c3c(C[C@]4(*)CN(C)*)cc[s]3)N2C4=**1)=O Chemical compound CC([C@]1(CCC[C@@]2c3c(C[C@]4(*)CN(C)*)cc[s]3)N2C4=**1)=O 0.000 description 13
- RYRSZPHEVAIKBR-OUPQRBNQSA-N C/C=C\C=C/c1ccc(C)[nH]1 Chemical compound C/C=C\C=C/c1ccc(C)[nH]1 RYRSZPHEVAIKBR-OUPQRBNQSA-N 0.000 description 1
- ZFRKQXVRDFCRJG-UHFFFAOYSA-N Cc1c[nH]c2ccccc12 Chemical compound Cc1c[nH]c2ccccc12 ZFRKQXVRDFCRJG-UHFFFAOYSA-N 0.000 description 1
- ZRXHLJNBNWVNIM-UHFFFAOYSA-N Cc1c[o]c2c1cccc2 Chemical compound Cc1c[o]c2c1cccc2 ZRXHLJNBNWVNIM-UHFFFAOYSA-N 0.000 description 1
- VVKFXIVOBWHIPK-UHFFFAOYSA-N Cc1cc(C=CCC2)c2[o]1 Chemical compound Cc1cc(C=CCC2)c2[o]1 VVKFXIVOBWHIPK-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
- C07K1/06—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents
- C07K1/061—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using protecting groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/04—Linear peptides containing only normal peptide links
- C07K7/06—Linear peptides containing only normal peptide links having 5 to 11 amino acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/04—Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/04—Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
- A61K38/08—Peptides having 5 to 11 amino acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/04—Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
- A61K38/10—Peptides having 12 to 20 amino acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/04—Linear peptides containing only normal peptide links
- C07K7/08—Linear peptides containing only normal peptide links having 12 to 20 amino acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/64—Cyclic peptides containing only normal peptide links
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Definitions
- the present invention provides template-fixed ⁇ -hairpin peptidomimetics incorporating a template-fixed chain of 11 ⁇ -amino acid residues which, depending on their position in the chain, are GIy, or Pro, or Pro(4NHCOPhe), or are of certain types, as defined hereinbelow.
- These template-fixed ⁇ -hairpin peptidomimetics are useful as inhibitors of protease enzymes. They are especially valuable as inhibitors of various serine proteases 10 such as human cathepsin G, elastase, or tryptase.
- the present invention provides an efficient process by which these compounds can, if desired, be made in library-format.
- the ⁇ -hairpin peptidomimetics of the invention show improved efficacy, oral 15 bioavailability, improved half-life and most importantly a high selectivity ratio among different serine proteases which depends on the proper choice of certain types of ⁇ -amino acid residues and their position in said chain.
- these ⁇ -hairpin peptidomimetics show a low hemolysis on red blood cells and low cytotoxicity.
- ⁇ -Hairpin mimetics are thus ideally suited to lock peptide sequences in an extended conformation.
- Serine proteases constitute important therapeutic targets. Serine proteases are classified by their substrate specificity, particularly by the type of residue found at Pl, as either trypsin-like (positively charged residues Lys/Arg preferred at Pl), elastase-like (small hydrophobic residues Ala/Val at Pl), or chymotrypsin-like (large hydrophobic residues Phe/Tyr/Leu at Pl).
- Serine proteases for which protease-inhibitor X-ray crystal data is available on the PDB data base include trypsin, ⁇ -chymotrypsin, ⁇ -chymotrypsin, human neutrophil elastase, thrombin, subtilisin, human cytomegalovirus, proteinase A, achromobacter, human cathepsin G, glutamic acid-specific protease, carbopeptidase D, blood coagulation factorVIIa, porcine factor IXA, mesentericopeptidase, HCV protease, and thermitase.
- serine proteases which are of therapeutic interest include tryptase, complement convertase, hepatitis C-NS3 protease.
- Inhibitors of thrombin e.g. J. L. Metha, L. Y. Chen, W. W. Nichols, C.
- cathepsin G particularly at sites of inflammation, high concentration of cathepsin G, elastase and proteinase 3 are released from infiltrating polymorphonuclear cells in close temporal correlation to elevated levels of inflammatory cytokines, strongly indicating that these proteases are involved in the control of cytokine bioactivity and availability (U. Bank, S. Ansorge, J. Leukoc. Biol. 2001, 69, 177-90).
- inhibitors of elastase and cathepsin G constitute valuable targets for novel drug candidates particularly for chronic obstructive pulmonary disease (Ohbayashi H, Epert Opin. Investig. Drugs 2002, 11, 965-980).
- sunflower trypsin inhibitor S. Luckett, R. Santiago Garcia, J. J. Barker, A. V. Konarev, P. R. Shewry, A. R. Clarke, R. L. Brady, J. MoL Biol. 1999, 290, 525-533; Y.-Q. Long, S.-L. Lee, C-Y. Lin, I. J. Enyedy, S. Wang, P. Li, R. B. Dickson, P. P. Roller, Biorg. & Med. Chem. Lett.
- SFTI-I sunflower trypsin inhibitor
- SFTI- 1 inhibited ⁇ -trypsin (K ; ⁇ 0.1nM), cathepsin G (K 1 ⁇ 0.15nM), elastase (Kj ⁇ 105 ⁇ M), chymotrypsin (Kj ⁇ 7.4 ⁇ M) and thrombin (Kj-136mM).
- ⁇ -hairpin peptidomimetics of the present invention are compounds of the general formula
- s* is a group of one of the formulae
- R 1 is H; lower alkyl; or aryl-lower alkyl
- R 2 is H; alkyl; alkenyl; -(CH 2 ) m (CHR 61 ) s OR 55 ; -(CH 2 ) m (CHR 61 ) s SR :>1
- R 5 is alkyl; alkenyl; -(CH 2 ) o (CHR 61 ) s OR 55 ; -(CH 2 ) o (CHR 61 ) s SR 56 ; - (CH 2 ) o (CHR 61 ) s NR 33 R 34 ;
- R 6 is H; alkyl; alkenyl; -(CH 2 ) o (CHR 61 ) s OR 55 ; -(CH 2 ) o (CHR 61 ) s SR 56 ; -
- R 7 is alkyl; alkenyl; -(CH 2 ) q (CHR 61 ) s OR 55 ; -(CH 2 ) q (CHR 61 ) s NR 33 R 34 ; -(CH 2 ) q (CHR 61 ) s OCONR 33 R 75 ; -(CH 2 ) q (CHR 61 ) s NR 20 CONR 33 R 82 ;
- R 8 is H; Cl; F; CF 3 ; NO 2 ; lower alkyl; lower alkenyl; aryl; aryl-lower alkyl; -(CH 2 ) o (CHR 61 ) s OR 55 ; -(CH 2 ) o (CHR 61 ) s SR 56 ; -(CH 2 ) o (CHR 61 )NR 33 R 34 ;
- R u is H; alkyl; alkenyl; -(CH 2 ) m (CHR 61 ) s OR 55 ; -(CH 2 ) m (CHR 61 ) s NR 33 R 34 ; -(CH 2 ) m (CHR 61 ) s OCONR 33 R 75 ; -(CH 2 ) m (CHR 61 ) s NR 20 CONR 33 R 82 ; -(CH 2 ) 0 (CHR 61 ) S COOR 57 ; -(CH 2 ) 0 (CHR 61 ) S CONR 58 R 59 ; - (CH 2 ) o (CHR 61 ) s PO(OR 60 ) 2 ;
- R 12 is H; alkyl; alkenyl; -(CH 2 ) m (CHR 61 ) s OR 55 ; -(CH 2 ) m (CHR 61 ) s SR 56 ; -(CH 2 ) m (CHR 61 ) s NR 33 R 34 ; -(CH 2 ) m (CHR 61 ) s OCONR 33 R 75 ; -(CH 2 ) m (CHR 61 ) NR 20 CONR 33 R 82 ; -(CH 2 ) r (CHR 61 ) s COOR 57 ; - (CH 2 ) r (CHR 61 ) s CONR 58 R 59 ; -(CH 2 ) r (CHR 61 ) s CONR 58 R 59 ; -(CH 2 ) r (CHR 61 ) s CONR 58 R 59 ; -(CH 2 ) r (CHR
- R 13 is alkyl; alkenyl; -(CH 2 ) q (CHR 61 ) s OR 55 ; -(CH 2 ) q (CHR 61 ) s SR 56 ; - (CH 2 ) q (CHR 61 ) s NR 33 R 34 ;
- R 14 is H; alkyl; alkenyl; -(CH 2 ) m (CHR ⁇ l ) s OR 55 ; -(CH 2 ) m (CHR 61 ) s NR 33 R 34 ; -(CH 2 ) m (CHR 61 ) s OCONR 33 R 75 ; -(CH 2 ) m (CHR 61 ) s NR 20 CONR 33 R 82 ; -(CH 2 ) q (CHR 6I ) s COOR 57 ; -(CH 2 ) q (CHR 61 ) s CONR 58 R 59 ; -
- R 15 is alkyl; alkenyl; -(CH 2 ) o (CHR 61 ) s OR 55 ; -(CH 2 ) O (CHR 61 ) S SR 56 ; -
- R 16 is alkyl; alkenyl; -(CH 2 ) O (CHR 61 ) S OR 55 ; -(CH 2 ) O (CHR 61 ) S SR 56 ; - (CH 2 ) O (CHR 61 ) S NR 33 R 34 ; -(CH 2 ) o (CHR 61 ) s OCONR 33 R 75 ; -(CH 2 ) o (CHR 61 ) NR 20 CONR 33 R 82 ;
- R 17 is alkyl; alkenyl; -(CH 2 ) q (CHR 61 ) s OR 55 ; -(CH 2 ) q (CHR 61 ) s SR 56 ; -
- R 18 is alkyl; alkenyl; -(CH 2 ) P (CHR 61 ) s OR 55 ; -(CH 2 ) P (CHR 61 ), SR 56 ; -
- R 19 is lower alkyl; -(CH 2 ) P (CHR 61 ) s OR 55 ; -(CH 2 ) P (CHR 61 ) s SR 56 ; -
- -(CH 2 ) P (CHR 61 ) s SO 2 R 62 ; or -(CH 2 ) o (CHR 61 ⁇ C 6 H 4 R 8 ; or R 18 and R 19 taken together can form: -(CH 2 ) 2 . 6 -; -(CH 2 ) 2 O(CH 2 ) 2 -; -(CH 2 ) 2 S(CH 2 ) 2 -; or
- R 20 is H; alkyl; alkenyl; or aryl-lower alkyl;
- R 21 is H; alkyl; alkenyl; -(CH 2 ) o (CHR 61 ) s OR 55 ; -(CH 2 ) o (CHR 61 ) s SR 56 ; -
- R 22 is H; alkyl; alkenyl; -(CH 2 ) o (CHR 61 ) s OR 55 ; -(CH 2 ) o (CHR 61 ) s SR 56 ; -
- R 23 is alkyl; alkenyl; -(CH 2 ) o (CHR 61 ) s OR 55 ; -(CH 2 ) o (CHR 61 ) s SR 56 ; - (CH 2 ) o (CHR 61 ) s NR 33 R 34 ;
- R 24 is alkyl; alkenyl; -(CH 2 ) o (CHR 61 ) s OR 55 ; -(CH 2 ) o (CHR 61 ) s SR 56 ; -
- R 25 is H; alkyl; alkenyl; -(CH 2 ) m (CHR 61 ) s OR 55 ; -(CH 2 ) m (CHR 61 ) s SR 56 ;
- R 26 is H; alkyl; alkenyl; -(CH 2 ) m (CHR 61 ) s OR 55 ; -(CH 2 ) m (CHR 61 ) s SR 56 ;
- R 25 and R 26 taken together can form: -(CH 2 ) 2 . 6 -; -(CH 2 ),.O(CH 2 ) r ; -(CH 2 ) r S(CH 2 ) r ; or
- R 27 is H; alkyl; alkenyl; -(CH 2 ) o (CHR 61 ) s OR 55 ; -(CH 2 ) o (CHR 61 ) s SR 56 ; -
- R 28 is alkyl; alkenyl; -(CH 2 ) o (CHR 61 ) s -OR 55 ; -(CH 2 ) o (CHR 61 ), SR 56 ; -(CH 2 ) o (CHR 61 ) s NR 33 R 34 ; -(CH 2 ) o (CHR 61 ) s OCONR 33 R 75 ; -(CH 2 ) o (CHR 61 ) NR 20 CONR 33 R 82 ; -(CH 2 ) o (CHR 61 ) s COOR 57 ; -(CH 2 ) o (CHR 61 ) s CONR 58 R 59 ; -(CH 2 ) o (CHR 61 ) s PO(OR 60 ) 2 ;
- R 29 is alkyl; alkenyl; -(CH 2 ) o (CHR 61 ) s OR 55 ; -(CH 2 ) o (CHR 61 ) s SR 56 ; - (CH 2 ) o (CHR 61 ) s NR 33 R 34 ;
- R 30 is H; alkyl; alkenyl; or aryl-lower alkyl;
- R 31 is H; alkyl; alkenyl; -(CH 2 ) P (CHR 61 ) s OR 55 ; -(CH 2 ) P (CHR 61 ) s NR 33 R 34 ; -(CH 2 ) p (CHR 61 ) s OCONR 33 R 75 ; -(CH 2 ) p (CHR 61 ) s NR 20 CONR 33 R 82 ; -(CH 2 ) o (CHR 61 ) s COOR 57 ; -(CH 2 ) o (CHR 61 ) s CONR 58 R 59 ; - (CH 2 ) o (CHR 61 ) s PO(OR 60 ) 2 ;
- R 32 is H; lower alkyl; or aryl-lower alkyl;
- R 33 is H; alkyl, alkenyl; -(CH 2 ) m (CHR 61 ) s OR 55 ; -(CH 2 ) m (CHR 61 ) s NR 34 R 63 ; -(CH 2 ) m (CHR 61 ) s OCONR 75 R 82 ; -(CH 2 ) m (CHR 61 ) s NR 20 CONR 78 R 82 ; -(CH 2 ) o (CHR 61 ) s COR 64 ; -(CH 2 ) o (CHR 61 ) s -CONR 5S R 59 , -
- R 34 is H; lower alkyl; aryl, or aryl-lower alkyl;
- R 33 and R 34 taken together can form: -(CH 2 ) 2 . 6 -; -(CH 2 ) 2 O(CH 2 ) 2 -; -(CH 2 ) 2 S(CH 2 ) 2 -; or -(CH 2 ) 2 NR 57 (CH 2 ) 2 -;
- R 35 is H; alkyl; alkenyl; -(CH 2 ) m (CHR 61 ) s OR 55 ; -(CH 2 ) m (CHR 61 ) s NR 33 R 34 ; -(CH 2 ) m (CHR 61 ) s OCONR 33 R 75 ; -(CH 2 ) m (CHR 61 ) s NR 20 CONR 33 R 82 ; -(CH 2 ) P (CHR 61 ) s COOR 57 ; -(CH 2 ) P (CHR 61 ) s CONR 58 R 59 ; - (CH 2 ) P (CHR 61 ) s PO(OR 60 ) 2 ; -(CH 2 ) p (CHR 61 ) s SO 2 R 62 ; or -(CH 2 ) P (CHR 61 ) s C 6 H 4 R 8 ;
- R 36 is H, alkyl; alkenyl; -(CH 2 ) o (CHR 61 ) s OR 55 ; -(CH 2 ) P (CHR 61 ) s NR 33 R 34 ; -(CH 2 ) p (CHR 61 ) s OCONR 33 R 75 ; -(CH 2 ) p (CHR 61 ) s NR 20 CONR 33 R 82 ; -(CH 2 ) p (CHR 61 ) s COOR 57 ; -(CH 2 ) P (CHR 61 ) s CONR 58 R 59 ; - (CH 2 )p(CHR 61 ) s PO(OR 60 ) 2 ; -(CH 2 ) P (CHR 61 ) s SO 2 R 62 ; or -(CH 2 ) o (CHR 61 ) s C 6 H 4 R 8 ; R 37 is H; F; Br; Cl; NO
- R 38 is H; F; Br; Cl; NO 2 ; CF 3 ; alkyl; alkenyl; -(CH 2 ) P (CHR 61 ) s OR 55 ; - (CH 2 ) P (CHR 61 ) s NR 33 R 34 ;
- R 39 is H; alkyl; alkenyl; or aryl-lower alkyl
- R 40 is H; alkyl; alkenyl; or aryl-lower alkyl
- R 41 is H; F; Br; Cl; NO 2 ; CF 3 ; alkyl; alkenyl; -(CH 2 ) P (CHR 61 ) s OR 55 ; - (CH 2 ) p (CHR 61 ) s NR 33 R 34 ;
- R 42 is H; F; Br; Cl; NO 2 ; CF 3 ; alkyl; alkenyl; -(CH 2 ) P (CHR 61 ) s OR 55 ; - (CH 2 ) p (CHR 61 ) s NR 33 R 34 ;
- R 43 is H; alkyl; alkenyl; -(CH 2 ) m (CHR 61 ) s OR 55 ; -(CH 2 ) m (CHR 61 ) s NR 33 R 34 ; -(CH 2 ) m (CHR 61 ) s OCONR 33 R 75 ; -(CH 2 ) m (CHR 61 ) s NR 20 CONR 33 R 82 ; -(CH 2 ) o (CHR 61 ) s COOR 57 ; -(CH 2 ) o (CHR 61 ) s CONR 58 R 59 ; - (CH 2 ) o (CHR 61 ) s PO(OR 60 ) 2 ;
- R 44 is alkyl; alkenyl; -(CH 2 ) r (CHR 61 ) s OR 55 ; -(CH 2 ) r (CHR 61 ) s SR 56 ; - (CH 2 ) r (CHR 61 ) s NR 33 R 34 ; -(CH 2 ) r (CHR 61 ) s OCONR 33 R 75 ; -(CH 2 ) r (CHR 51 ) NR 20 CONR 33 R 82 ; 5 001622
- R 45 is H; alkyl; alkenyl; -(CH 2 ) o (CHR 61 ) s OR 55 ; -(CH 2 ) o (CHR 61 ) s SR 56 ; - (CH 2 ) o (CHR 61 ) s NR 33 R 34 ;
- R 46 is H; alkyl; alkenyl; or -(CH 2 ) o (CHR 61 ) P C 6 H 4 R 8 ;
- R 47 is H; alkyl; alkenyl; or -(CH 2 ) o (CHR 61 ) s OR 55 ;
- R 48 is H; lower alkyl; lower alkenyl; or aryl-lower alkyl;
- R 49 is H; alkyl; alkenyl; -(CHR 61 ) s COOR 57 ; (CHR 61 ) s CONR 58 R 59 ; (CHR 61 ) s PO(OR 60 ) 2 ;
- R 50 is H; lower alkyl; or aryl-lower alkyl;
- R 51 is H; alkyl; alkenyl; -(CH 2 ) m (CHR 61 ) s OR 55 ; -(CH 2 ) m (CHR 61 ) s SR 56 ; -(CH 2 ) m (CHR 61 ) s NR 33 R 34 ; -(CH 2 ) m (CHR 61 ) s OCONR 33 R 75 ; -(CH 2 ) m (CHR 61 ) NR 20 CONR 33 R 82 ; -(CH 2 ) o (CHR 61 ) s COOR 57 ; -(CH 2 ) o (CHR 61 ) s CONR 58 R 59 ; -(CH 2 ) o (CHR 61 ) p PO(OR 60 ) 2 ; -(CH 2 ) p (CHR 61 ) s SO 2 R 62 ; or -(CH 2 ) P (CHR )
- R 52 is H; alkyl; alkenyl; -(CH 2 ) m (CHR 61 ) s OR 55 ; -(CH 2 ) m (CHR 61 ) s SR 56 ; -(CH 2 ) m (CHR 61 ) s NR 33 R 34 ; -(CH 2 ) m (CHR 61 ) s OCONR 33 R 75 ; -(CH 2 ) m (CHR 61 ) NR 20 CONR 33 R 82 ; -(CH 2 ) o (CHR 61 ) s COOR 57 ; -(CH 2 ) o (CHR 61 ) s CONR 58 R 59 ; -(CH 2 ) o (CHR 61 ) p PO(OR 60 ) 2 ; -(CH 2 ) p (CHR 61 ) s SO 2 R 62 ; or -(CH 2 ) P (CHR 6
- R 53 is H; alkyl; alkenyl; -(CH 2 ) m (CHR 61 ) s OR 55 ; -(CH 2 ) m (CHR 61 ) s SR 56 ; - (CH 2 ) m (CHR 61 ) s NR 33 R 34 ; -(CH 2 ) m (CHR 61 ) s OCONR 33 R 75 ; -(CH 2 ) m (CHR 61 ) NR 20 CONR 33 R 82 ; -(CH 2 ) o (CHR 61 ) s COOR 57 ; -(CH 2 ) o (CHR 61 ) s CONR 58 R 59 ; -(CH 2 ) o (CHR 61 ) p PO(OR 60 ) 2 ; -(CH 2 ) P (CHR 61 ) s SO 2 R 62 ; or -(CH 2 ) P (CHR 61
- R 54 is H; alkyl; alkenyl; -(CH 2 ) m (CHR 61 ) s OR 55 ; -(CH 2 ) m (CHR 61 ) s NR 33 R 34 ; -(CH 2 ) m (CHR 61 ) s OCONR 33 R 75 ; -(CH 2 ) m (CHR 61 ) s NR 20 CONR 33 R 82 ; -(CH 2 ) o (CHR 61 )COOR 57 ; -(CH 2 ) o (CHR 61 ) s CONR 58 R 59 ; or -(CH 2 ) o (CHR 61 ) s C ⁇ H 4 R ; R 55 is H; lower alkyl; lower alkenyl; aryl-lower alkyl; -(CH 2 ) m (CHR 61 ) s OR 57 ; -(CH 2 ) m (CHR 61
- R 57 is H; lower alkyl; lower alkenyl; aryl lower alkyl; or heteroaryl lower alkyl
- R 58 is H; lower alkyl; lower alkenyl; aryl; heteroaryl; aryl-lower alkyl; or heteroaryl- lower alkyl
- R 5 is H; lower alkyl; lower alkenyl; aryl; heteroaryl; aryl-lower alkyl; or heteroaryl- lower alkyl; or
- R 58 and R 59 taken together can form: -(CH 2 ) 2 . 6 -; -(CH 2 ) 2 O(CH 2 ) 2 -; -(CH 2 ) 2 S(CH 2 ) 2 ⁇ ; or -(CH 2 ) 2 NR 57 (CH 2 ) 2 -;
- R 60 is H; lower alkyl; lower alkenyl; aryl; or aryl-lower alkyl;
- R 61 is alkyl; alkenyl; aryl; heteroaryl; aryl-lower alkyl; heteroaryl-lower alkyl; -
- R 62 is lower alkyl; lower alkenyl; aryl, heteroaryl; or aryl-lower alkyl; R 63 is H; lower alkyl; lower alkenyl; aryl, heteroaryl; aryl-lower alkyl; heteroaryl-lower alkyl; -COR 64 ; -COOR 57 ; -CONR 58 R 59 ; -SO 2 R 62 ; or -PO(OR 60 ) 2 ;
- R 34 and R 63 taken together can form: -(CH 2 ) 2-6 -; -(CH 2 ) 2 O(CH 2 ) 2 -; -(CH 2 ) 2 S(CH 2 ) 2 -; or
- R 64 is H; lower alkyl; lower alkenyl; aryl; heteroaryl; aryl-lower alkyl; heteroaryl-lower alkyl; -(CH 2 ) P (CHR 61 ) s OR 65 ; -(CH 2 ) P (CHR 61 ) s SR 66 ; or -(CH 2 ) P (CHR 61 ) s NR 34 R 63 ;
- R 65 is H; lower alkyl; lower alkenyl; aryl, aryl-lower alkyl; heteroaryl-lower alkyl; - COR 57 ; -COOR 57 ; or -CONR 58 R 59 ;
- R 66 is H; lower alkyl; lower alkenyl; aryl; aryl-lower alkyl; heteroaryl-lower alkyl; or
- Z is a chain of 11 ⁇ -amino acid residues, the positions of said amino acid residues in said chain being counted starting from the N-terminal amino acid, whereby these amino acid residues are, depending on their position in the chains, GIy, Pro, Pro(4NHCOPhe) or of formula -A-CO-, or of formula -B-CO-, or of one of the types
- C -NR 20 CH(R 72 )CO-; D: -NR 20 CH(R 73 )CO-; E: -NR 20 CH(R 74 )CO-; F: -NR 20 CH(R 84 )CO-; and H: -NR 20 -CH(CO-)-(CH 2 ) 4 - 7 -CH(CO-)-NR 20 -; -NR 20 -CH(CO-)-(CH 2 ) p SS(CH 2 ) p -CH(CO-)-NR 20 -;
- R 71 is lower alkyl; lower alkenyl; -(CH 2 ) P (CHR 61 ) s OR 75 ; -(CH 2 ) P (CHR 61 ) s SR 75 ;
- R 72 is H, lower alkyl; lower alkenyl; -(CH 2 ) P (CHR 61 ) s OR 85 ; or -(CH 2 ) P (CHR 61 ) s SR 85 ;
- R 73 is -(CR 86 R 87 ) O R 77 ; -(CH 2 ) r O(CH 2 ) o R 77 ; -(CH 2 ) r S(CH 2 ) o R 77 ; or -(CH 2 ) r NR 20 (CH 2 ) o R 77 ;
- N C(NR 78 R 80 )NR 79 R 80 ; -(CH 2 ) r O(CH 2 ) ra NR 78 R 79 ; - (CH 2 ) r O(CH 2 ) m NR 77 R 80 ;
- R 75 is lower alkyl; lower alkenyl; or aryl-lower alkyl;
- R 33 and R 75 taken together can form: -(CHz) 2-6 -; -(CH 2 ) 2 O(CH 2 ) 2 -; -(CH 2 ) 2 S(CH 2 ) 2 -; or
- -(CH 2 ) 2 NR 57 (CH 2 ) 2 -; R 75 and R 82 taken together can form: -(CH 2 ) 2-6 -; -(CH 2 ) 2 O(CH 2 ) 2 -; -(CH 2 ) 2 S(CH 2 ) 2 -; or
- R 76 is H; lower alkyl; lower alkenyl; aryl-lower alkyl; -(CH 2 ) o OR 72 ; -(CH 2 ) o SR 72 ;
- R 77 is -C 6 R 67 R 68 R 69 R 70 R 76 ; or a heteroaryl group of one of the formulae
- R is H; lower alkyl; aryl; or aryl-lower alkyl;
- R 78 and R 82 taken together can form: -(CH 2 ) 2 . 6 -; -(CH 2 ) 2 O(CH 2 ) 2 -; -(CH 2 ) 2 S(CH 2 ) 2 -; or
- R 79 is H; lower alkyl; aryl; or aryl-lower alkyl; or
- R 78 and R 79 taken together, can be -(CH 2 ) 2 . 7 -; -(CH 2 ) 2 O(CH 2 ) 2 -; or -(CH 2 ) 2 NR 57 (CH 2 ) 2 -;
- R 80 is H; or lower alkyl;
- R 81 is H; lower alkyl; or aryl-lower alkyl;
- R 82 is H; lower alkyl; aryl; heteroaryl; or aryl-lower alkyl;
- R 33 and R 82 taken together can form: -(CH 2 ) 2 . 6 -; -(CH 2 ) 2 O(CH 2 ) 2 -; -(CH 2 ) 2 S(CH 2 ) 2 -; or
- R 83 is H; lower alkyl; aryl; or -NR 78 R 79 ; R 84 is -(CH 2 ) m (CHR 61 ) s OH; -(CR 86 R 87 )pOR 80 ; -(CR 86 R 87 )pCOOR 80 ; -(CH 2 ) m (CHR 61 ) s SH; -
- R 85 is lower alkyl; or lower alkenyl
- R 86 is H; lower alkyl, where H is maybe substituted by halogen; or halogen;
- R 87 is H; lower alkyl, where H is maybe substituted by halogen; or halogen; with the proviso that in said chain of 1 1 ⁇ -amino acid residues Z if n is 11, the amino acid residues in positions 1 to 11 are:
- P2 of type C or of Type D or of type E, or of type F;
- P5 of type E, or of type C, or of type F, or the residue is GIy or Pro;
- GIy or Pro GIy or Pro
- - P7 of type C, or of type E, or of type F, or of formula -A-CO-, or the residue is GIy or Pro;
- P8 of type D, or of type C, or of type F, or of formula -A-CO, or the residue is GIy or Pro or Pro(4NHCOPhe);
- P9 of type C, or of type D, or of type E, or of type F
- - PlO of type D, or of type C, or of type F, or of type E
- PI l of type C, or of type D, or of type E, or of type F; or
- P2 and PlO taken together, can form a group of type H; and with the further proviso that if the template is D Pro L Pro, the amino acid residues in positions Pl to Pl 1 are other than - Pl : Arg
- these ⁇ -hairpin peptidomimetics can be prepared by a process which comprises (a) coupling an appropriately functionalized solid support with an appropriately N- protected derivative of that amino acid which in the desired end-product is in position 5, 6 or 7, any functional group which may be present in said N-protected amino acid derivative being likewise appropriately protected;
- X is as defined above and X is an N-protecting group or, alternatively, if
- step (fa 1 ) coupling the product obtained in step (e) with an appropriately N- protected derivative of an amino acid of the above general formula III, any functional group which may be present in said N-protected amino acid derivative being likewise appropriately protected;
- step (g) removing the N-protecting group from the product obtained in step (f) or (fc) or (fc 1 );
- the peptidomimetics of the present invention can be prepared by
- X is as defined above and X is an N-protecting group or, alternatively, if is to be group (al) or (a2), above,
- the peptidomimetics of the present invention can also be enantiomers of the compounds of formula I. These enantiomers can be prepared by a modification of the above processes in which enantiomers of all chiral starting materials are used.
- alkyl designates saturated, straight-chain or branched hydrocarbon radicals having up to 24, preferably up to 12, carbon atoms.
- alkenyl designates straight chain or branched hydrocarbon radicals having up to 24, preferably up to 12, carbon atoms and containing at least one or, depending on the chain length, up to four olefinic double bonds.
- lower designates radicals and compounds having up to 6 carbon atoms.
- lower alkyl designates saturated, straight-chain or branched hydrocarbon radicals having up to 6 carbon atoms, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert. -butyl and the like.
- aryl designates aromatic carbocyclic hydrocarbon radicals containing one or two six-membered rings, such as phenyl or naphthyl, which may be substituted by up to three substituents such as Br, Cl, F, CF 3 , NO 2 , lower alkyl or lower alkenyl.
- heteroaryl designates aromatic heterocyclic radicals containing one or two five- and/or six-membered rings, at least one of them containing up to three heteroatoms selected from the group consisting of O, S and N and said ring(s) being optionally substituted; representative examples of such optionally substituted heteroaryl radicals are indicated hereinabove in connection with the definition of R 77 .
- the structural element -A-CO- designates amino acid building blocks which in combination with the structural element -B-CO- form templates (al) and (a2).
- the structural element -B-CO- forms in combination with another structural element -B-CO- template (a3).
- the template (a3) is less preferred in formula I.
- Templates (a) through (p) constitute building blocks which have an N-terminus and a C-terminus oriented in space in such a way that the distance between those two groups may lie between 4.0-5.5A.
- the peptide chain Z is linked to the C-terminus and the N-terminus of the templates (a) through (p) via the corresponding N- and C-termini so that the template and the chain form a cyclic structure such as that depicted in formula I.
- template and peptide chain form a ⁇ -hairpin mimetic.
- the ⁇ -hairpin conformation is highly relevant for the serine protease inhibitory activity of the ⁇ -hairpin mimetics of the present invention.
- the ⁇ -hairpin stabilizing conformational properties of the templates (a) through (p) play a key role not only for the selective inhibitory activity but also for the synthesis process defined hereinabove, as incorporation of the templates at the beginning or near the middle of the linear protected peptide precursors enhances cyclization yields significantly.
- Building blocks A1-A69 belong to a class of amino acids wherein the N-terminus is a secondary amine forming part of a ring. Among the genetically encoded amino acids only proline falls into this class.
- the configuration of building block Al through A69 is (D), and they are combined with a building block -B-CO- of (L)-configuration.
- Preferred combinations for templates (al) are- D Al-CO- L B-CO- to D A69-CO- L B-CO-.
- D Pro- L Pro constitutes the prototype of templates (al).
- Less preferred, but possible are combinations
- L Pro- D Pro constitutes the prototype of template (a2).
- building blocks -Al-CO- to -A69-CO- in which A has (D)- conf ⁇ guration are carrying a group R 1 at the ⁇ -position to the N-terminus.
- the preferred values for R 1 are H and lower alkyl with the most preferred values for R 1 being H and methyl.
- A1-A69 are shown in (D)- configuration which, for R 1 being H and methyl, corresponds to the (Reconfiguration.
- this configuration may also have to be expressed as (S).
- R 2 building blocks -Al-CO- to -A69-CO- can carry an additional substituent designated as R 2 to R 17 .
- This additional substituent can be H, and if it is other than H, it is preferably a small to medium-sized aliphatic or aromatic group. Examples of preferred values for R 2 to R 17 are:
- R 2 H; lower alkyl; lower alkenyl; (CH 2 ) m OR 55 (where R 55 : lower alkyl; or lower alkenyl); (CH 2 ) m SR 56 (where R 56 : lower alkyl; or lower alkenyl); (CH 2 ) m NR 33 R 34 (where R 33 : lower alkyl; or lower alkenyl; R 34 : H; or lower alkyl; R 33 and R 34 taken together form:
- R 3 H; lower alkyl; lower alkenyl; -(CH 2 ) m OR 55 (where R 55 : lower alkyl; or lower alkenyl); -(CH 2 ) m SR 56 (where R 56 : lower alkyl; or lower alkenyl); -(CH 2 ) m NR 33 R 34 (where R 33 : lower alkyl; or lower alkenyl; R 34 : H; or lower alkyl; or R 33 and R 34 taken together form: -(CH 2 ) 2 .
- R 1 H; lower alkyl; lower alkenyl; -(CH 2 ) m OR 55 (where R 55 : lower alkyl; or lower alkenyl); -(CH 2 ) m SR 56 (where R 56 : lower alkyl; or lower alkenyl); -(CH 2 ) m NR 33 R 34 (where R 33 : lower alkyl; or lower alkenyl; R 34 : H; or lower alkyl; or R 33 and R 34 taken together form: -(CH 2 ) 2-6 -; -(CH 2 ) 2 O(CH 2 ) 2 -; -(CH 2 ) 2 S(CH 2 ) 2 -; or -(CH 2 ) 2 NR 57 (CH 2 ) 2 -; where R 57 : H; or lower alkyl); -(CH 2 ) m OCONR 33 R 75 (where R 33 : H; or lower alkyl; or lower alkenyl; R 75 : lower
- R 5 lower alkyl; lower alkenyl; -(CHz) 0 OR 55 (where R 55 : lower alkyl; or lower alkenyl); -(CH 2 ) o SR 56 (where R 56 : lower alkyl; or lower alkenyl); -(CH 2 ) o NR 33 R 34 (where R 33 : lower alkyl; or lower alkenyl; R 34 : H; or lower alkyl; or R 33 and R 34 taken together form: -(CH 2 ) Z-6 -; -(CHz) 2 O(CHz) 2 -; -(CH 2 ) 2 S(CH 2 ) 2 -; or -(CH 2 ) 2 NR 57 (CH 2 ) 2 -; where R 57 : H; or lower alkyl); -(CH 2 ) o OCONR 33 R 75 (where R 33 : H; or lower alkyl; or lower alkenyl; R 75 : lower alkyl; or
- R 6 H; lower alkyl; lower alkenyl; -(CH 2 ) o OR 55 (where R 55 : lower alkyl; or lower alkenyl); -(CH 2 ) o SR 56 (where R 56 : lower alkyl; or lower alkenyl); -(CH 2 ) o NR 33 R 34 (where R 33 : lower alkyl; or lower alkenyl; R 34 : H; or lower alkyl; or R 33 and R 34 taken together form: -(CH 2 ) 2 .
- R 7 lower alkyl; lower alkenyl; -(CH 2 ) q OR 55 (where R 55 : lower alkyl; or lower alkenyl); -(CH 2 ) q SR 56 (where R 56 : lower alkyl; or lower alkenyl); -(CH 2 ) q NR 33 R 34 (where
- R 33 lower alkyl; or lower alkenyl; R 34 : H; or lower alkyl; or R 33 and R 34 taken together form:
- R 82 (where R 20 : H; or lower lower alkyl; R 33 : H; or lower alkyl; or lower alkenyl; R 82 : H; or lower alkyl; or R 33 and R 82 taken together form: -(CH 2 ) 2 . 6 -; -(CH 2 ) 2 O(CH 2 ) 2 -; -(CH 2 ) 2 S(CH 2 ) 2 -; or -(CH 2 ) 2 NR 57 (CH 2 ) 2 -; where R 57 : H; or lower alkyl);
- R 20 H; or lower alkyl
- R 64 lower alkyl; or lower alkenyl
- R 58 lower alkyl; or lower alkenyl; and R 59 : H; or lower alkyl; or R 58 and R 59 taken together form:
- R 33 lower alkyl; or lower alkenyl; R 34 : H; or lower alkyl; or R 33 and R 34 taken together form:
- R 33 H; or lower lower alkyl;
- R 33 H; or lower alkyl; or lower alkenyl;
- R 82 H; or lower alkyl; or
- R 33 and R 82 taken together form: -(CH 2 W; -(CH 2 ) 2 O(CH 2 ) 2 -; -(CH 2 ) 2 S(CH 2 ) 2 -; or
- R 1 lower alkyl; lower alkenyl; -(CH 2 ) o OR 55 (where R 55 : lower alkyl; or lower alkenyl); -(CH 2 ) o SR 56 (where R 56 : lower alkyl; or lower alkenyl); -(CH 2 ) o NR 33 R 34 (where R 33 : lower alkyl; or lower alkenyl; R 34 : H; or lower alkyl; or R 33 and R 34 taken together form:
- R 11 H; lower alkyl; lower alkenyl; -(CH 2 ) m OR 55 (where R 55 : lower alkyl; or lower alkenyl); -(CH 2 ) m SR 56 (where R 56 : lower alkyl; or lower alkenyl); -(CH 2 ) m NR 33 R 34 (where R 33 : lower alkyl; or lower alkenyl; R 34 : H; or lower alkyl; or R 33 and R 34 taken together form: -(CH 2 W; -(CH 2 ) 2 O(CH 2 ) 2 -; -(CH 2 ) 2 S(CH 2 ) 2 -; or -(CH 2 ) 2 NR 57 (CH 2 ) r ; where R 57 : H; or lower alkyl); -(CH 2 ) m OCONR 33 R 75 (where R 33 : H; or lower alkyl; or lower alkenyl; R 75 : lower alkyl; or
- R 12 H; lower alkyl; lower alkenyl; -(CH 2 ) m OR 55 (where R 55 : lower alkyl; or lower alkenyl); -(CH 2 ) m SR 56 (where R 56 : lower alkyl; or lower alkenyl); -(CH 2 )JNfR 33 R 34 (where
- R 33 lower alkyl; or lower alkenyl; R 34 : H; or lower alkyl; or R 33 and R 34 taken together form: -(CH 2 ) 2 . 6 -; -(CH 2 ) 2 O(CH 2 ) 2 -; -(CH 2 ) 2 S(CH 2 ) 2 -; or -(CH 2 ) 2 NR 57 (CH 2 ) 2 -; where R 57 :
- R 33 H; or lower alkyl
- R 75 lower alkyl; or R 33 and R 75 taken together form: -(CH 2 ) 2 . 6 -; -(CH 2 ) 2 O(CH 2 ) 2 -; -
- R 13 lower alkyl; lower alkenyl; -(CH 2 ) q OR 55 (where R 55 : lower alkyl; or lower alkenyl); -(CH 2 ) q SR 56 (where R 56 : lower alkyl; or lower alkenyl); -(CH 2 ) q NR 33 R 34 (where
- R 33 lower alkyl; or lower alkenyl; R 34 : H; or lower alkyl; or R 33 and R 34 taken together form: -(CH 2 W; -(CH 2 ) 2 O(CH 2 ) 2 -; -(CH 2 ) 2 S(CH 2 ) r ; or -(CH 2 ) 2 NR 57 (CH 2 ) 2 -; where R 57 : H; or lower alkyl); -(CH 2 ) q OCONR 33 R 75 (where R 33 : H; or lower alkyl; or lower alkenyl; R 75 : lower alkyl; or R 33 and R 75 taken together form: -(CH 2 ) 2 . 6 -; -(CH 2 ) 2 O(CH 2 ) 2 -; -
- R 8 (where R 8 : H; F; Cl; CF 3 ; lower alkyl; lower alkenyl; or lower alkoxy).
- - R 14 H; lower alkyl; lower alkenyl; -(CH 2 ) m OR 55 (where R 55 : lower alkyl; or lower alkenyl); -(CH 2 ) m SR 56 (where R 56 : lower alkyl; or lower alkenyl); -(CH 2 ) m NR 33 R 34 (where R 33 : lower alkyl; or lower alkenyl; R 34 : H; or lower alkyl; or R 33 and R 34 taken together form: -(CH 2 ) 2-6 -; -(CH 2 ) 2 O(CH 2 ) 2 -; -(CH 2 ) 2 S(CH 2 ) 2 -; or -(CH 2 ) 2 NR 57 (CH 2 ) 2 -; where R 57
- R 15 lower alkyl; lower alkenyl; -(CH 2 ) o OR 55 (where R 55 : lower alkyl; or lower alkenyl); -(CH 2 ) o SR 56 (where R 56 : lower alkyl; or lower alkenyl); -(CH 2 ) o NR 33 R 34 (where R 33 : lower alkyl; or lower alkenyl; R 34 : H; or lower alkyl; or R 33 and R 34 taken together form:
- R 58 and R 59 taken together form: -(CH 2 ) 2 -6-; -(CH 2 ) 2 O(CH 2 ) 2 -; -(CH 2 ) 2 S(CH 2 ) 2 -; or -(CH 2 ) 2 NR 57 (CH 2 ) 2 -; where R 57 : H; or lower alkyl); -(CH 2 ) o PO(OR 60 ) 2 (where R 60 : lower alkyl; or lower alkenyl); -(CH 2 ) o SO 2 R 62 (where R 62 : lower alkyl; or lower alkenyl); or
- R 8 (where R 8 : H; F; Cl; CF 3 ; lower alkyl; lower alkenyl; or lower alkoxy).
- R 16 lower alkyl; lower alkenyl; -(CH 2 ) o OR 55 (where R 55 : lower alkyl; or lower alkenyl); -(CH 2 ) o SR 56 (where R 56 : lower alkyl; or lower alkenyl); -(CH 2 ) o NR 33 R 34 (where R 33 : lower alkyl; or lower alkenyl; R 34 : H; or lower alkyl; or R 33 and R 34 taken together form:
- R 33 H; or lower lower alkyl;
- R 33 H; or lower alkyl; or lower alkenyl;
- R 82 H; or lower alkyl; or
- R 33 and R 82 taken together form: -(CH 2 W; -(CH 2 ) 2 O(CH 2 ) 2 -; -(CH 2 ) 2 S(CH 2 ) 2 -; or
- R 57 H; or lower alkyl
- R 57 H; or lower alkyl
- -(CH 2 ) o N(R 20 )COR 64 where: R 20 : H; or lower alkyl; R 64 : lower alkyl; or lower alkenyl); -(CH 2 ) o COOR 57 (where R 57 : lower alkyl; or lower alkenyl); -(CH 2 ) o CONR 58 R 59 (where R 58 : lower alkyl; or lower alkenyl; and R 59 : H; or lower alkyl; or R 58 and R 59 taken together form: -(CH 2 ) 2 . 6 -; -
- R 17 lower alkyl; lower alkenyl; -(CH 2 ) q OR 55 (where R 55 : lower alkyl; or lower alkenyl); -(CH 2 ) q SR 56 (where R 56 : lower alkyl; or lower alkenyl); -(CH 2 ) q NR 33 R 34 (where R 33 : lower alkyl; or lower alkenyl; R 34 : H; or lower alkyl; or R 33 and R 34 taken together form:
- building blocks Al to A69 the following are preferred: A5 with R 2 being H, A8, A22, A25, A38 with R 2 being H, A42, A47 and A50. Most preferred are building blocks of type A8':
- R 20 is H or lower alkyl; and R 64 is alkyl; alkenyl; [(CH 2 ) u -X] r CH 3 , wherein X is -
- O-, -NR 20 or -S-, u is 1-3 and t is 1-6; aryl; aryl-lower alkyl; or heteroaryl-lower alkyl; especially those wherein R 64 is n-hexyl (A8'-l); n-heptyl (A8'-2); 4-(phenyl)benzyl (A8'- 3); diphenylmethyl (A8'-4); 3 -amino-propyl (A8'-5); 5-amino-pentyl (A8'-6); methyl
- Building block A70 belongs to the class of open-chain ⁇ -substituted ⁇ -amino acids, building blocks A71 and A72 to the corresponding ⁇ -amino acid analogues and building blocks A73-A104 to the cyclic analogues of A70.
- Such amino acid derivatives have been shown to constrain small peptides in well defined reverse turn or U-shaped conformations (C. M. Venkatachalam, Biopolymers, 1968, 6, 1425-1434; W. Kabsch, C Sander, Biopolymers 1983, 22, 2577).
- Such building blocks or templates are ideally suited for the stabilization of ⁇ -hairpin conformations in peptide loops (D. Obrecht, M. Altorfer, J. A.
- templates (al) can also consist of -A70- CO- to A104-CO- where building block A70 to A104 is of either (D)- or (L)- configuration, in combination with a building block -B-CO- of (L)- configuration.
- R 20 in A70 to A104 are H or lower alkyl with methyl being most preferred.
- Preferred values for R 18 , R 19 and R 21 to R 29 in building blocks A70 to A104 are the following:
- R 18 lower alkyl.
- R 19 lower alkyl; lower alkenyl; -(CH 2 ) P OR 55 (where R 55 : lower alkyl; or lower alkenyl); -(CH 2 ) P SR 56 (where R 56 : lower alkyl; or lower alkenyl); -(CH 2 ) P NR 33 R 34 (where R 33 : lower alkyl; or lower alkenyl; R 34 : H; or lower alkyl; or R 33 and R 34 taken together form: -(CH 2 W; -(CH 2 ) 2 O(CH 2 ) 2 -; -(CH 2 ) 2 S(CH 2 ) 2 -; or -(CH 2 ) 2 NR 57 (CH 2 ) 2 -; where R 57 : H; or lower alkyl); -(CH 2 ) P OCONR 33 R 75 (where R 33 : H; or lower alkyl; or lower alkenyl; R 75 : lower alkyl; or R 33 and R 75 taken
- R 2 ' H; lower alkyl; lower alkenyl; -(CH 2 ) o OR 55 (where R 55 : lower alkyl; or lower alkenyl); -(CH 2 ) o SR 56 (where R 56 : lower alkyl; or lower alkenyl); -(CH 2 ) o NR 33 R 34 (where R 33 : lower alkyl; or lower alkenyl; R 34 : H; or lower alkyl; or R 33 and R 34 taken together form:
- R 22 lower alkyl; lower alkenyl; -(CH 2 ) o OR 55 (where R 55 : lower alkyl; or lower alkenyl); -(CH 2 ) o SR 56 (where R 56 : lower alkyl; or lower alkenyl); -(CH 2 ) o NR 33 R 34 (where R 33 : lower alkyl; or lower alkenyl; R 34 : H; or lower alkyl; or R 33 and R 34 taken together form: -(CH 2 ) 2 .
- R 23 H; lower alkyl; lower alkenyl; -(CH 2 ) o OR 55 (where R 55 : lower alkyl; or lower alkenyl); -(CH 2 ) o SR 56 (where R 56 : lower alkyl; or lower alkenyl); -(CH 2 ) o NR 33 R 34 (where R 33 : lower alkyl; or lower alkenyl; R 34 : H; or lower alkyl; or R 33 and R 34 taken together, form: -(CH 2 W; -(CH 2 ) 2 O(CH 2 ) 2 -; -(CH 2 ) 2 S(CH 2 ) 2 -; or -(CH 2 ) 2 NR 57 (CH 2 ) 2 -; where R 57 : H; or lower alkyl); -(CH 2 ) o OCONR 33 R 75 (where R 33 : H; or lower alkyl; or lower alkenyl; R 75 : lower alky
- R 82 (where R 20 : H; or lower lower alkyl; R 33 : H; or lower alkyl; or lower alkenyl; R 82 : H; or lower alkyl; or R 33 and R 82 taken together form: -(CH 2 ) 2-6 -; -(CH 2 ) 2 O(CH 2 ) 2 -; -(CH 2 ) 2 S(CH 2 ) 2 -; or -(CH 2 ) 2 NR 57 (CH 2 ) r ; where R 57 : H; or lower alkyl);
- R 26 H; lower alkyl; lower alkenyl; -(CH 2 ) m OR 55 (where R 55 : lower alkyl; or lower alkenyl); -(CH 2 ) m NR 33 R 34 (where R 33 : lower alkyl; or lower alkenyl; R 34 : H; or lower alkyl; or R 33 and R 34 taken together form: -(CH 2 ) 2-6 -; -(CH 2 ) 2 O(CH 2 ) 2 -; -(CH 2 ) 2 S(CH 2 ) 2 -; or -(CH 2 ) 2 NR 57 (CH 2 ) 2 -; where R 57 : H; or lower alkyl); -(CH 2 ) ra OCONR 33 R 75 (where R 33 : H; or lower alkyl; or lower alkenyl; R 75 : lower alkyl; or R 33 and R 75 taken together form: -
- R 82 (where R 20 : H; or lower lower alkyl; R 33 : H; or lower alkyl; or lower alkenyl; R 82 : H; or lower alkyl; or R 33 and R 82 taken together form: -(CH 2 ) 2 . 6 -;
- R 20 H; or lower alkyl
- R 64 lower alkyl; or lower alkenyl
- R 25 and R 26 taken together can be -(CH 2 W; -(CH 2 ) 2 O(CH 2 ) 2 -;
- R 27 H; lower alkyl; lower alkenyl; -(CH 2 ) o OR 55 (where R 55 : lower alkyl; or lower alkenyl); -(CH 2 ) o SR 56 (where R 56 : lower alkyl; or lower alkenyl); -(CH 2 ) o NR 33 R 34 (where R 33 : lower alkyl; or lower alkenyl; R 34 : H; or lower alkyl; or R 33 and R 34 taken together form:
- R 2li lower alkyl; lower alkenyl; -(CH 2 ) o OR 55 (where R 55 : lower alkyl; or lower alkenyl); -(CH 2 ) o SR 56 (where R 56 : lower alkyl; or lower alkenyl); -(CH 2 ) o NR 33 R 34 (where R 33 : lower alkyl; or lower alkenyl; R 34 : H; or lower alkyl; or R 33 and R 34 taken together form:
- R 29 lower alkyl; lower alkenyl; -(CH 2 ) o OR 55 (where R 55 : lower alkyl; or lower alkenyl); -(CH 2 ) o SR 56 (where R 56 : lower alkyl; or lower alkenyl); -(CH 2 ) o NR 33 R 34 (where R 33 : lower alkyl; or lower alkenyl; R 34 : H; or lower alkyl; or R 33 and R 34 taken together form: -(CH 2 )M-; -(CH 2 ) 2 O(CH 2 ) r ; -(CH 2 ) 2 S(CH 2 ) r ; or -(CH 2 ) 2 NR 57 (CH 2 ) 2 -; where R 57 : H; or lower alkyl); -(CH 2 ) o OCONR 33 R 75 (where R 33 : H; or lower alkyl; or lower alkenyl; R 75 : lower alkyl;
- R 23 , R 24 and R 29 is -NR 20 -CO-lower alkyl where R 20 is H or lower alkyl.
- R 1 H; or lower Alkyl
- R 8 H; F; Cl; CF 3 ; lower alkyl; lower alkenyl; -(CH 2 ) o OR 55 (where R 55 : lower alkyl; or lower alkenyl); -(CH 2 ) o SR 56 (where R 56 : lower alkyl; or lower alkenyl); - (CH 2 ) o NR 33 R 34 (where R 33 : lower alkyl; or lower alkenyl; R 34 : H; or lower alkyl; or R 33 and R 34 taken together form: -(CH 2 ) 2 .
- R 62 lower alkyl; or lower alkenyl
- R 8 -(CH 2 ) q C 6 H 4
- R 20 H; or lower alkyl.
- R 30 H, methyl.
- R 31 H; lower alkyl; lower alkenyl; -(CH 2 ) P OR 55 (where R 55 : lower alkyl; or lower alkenyl); -(CH 2 ) P NR 33 R 34 (where R 33 : lower alkyl; or lower alkenyl; R 34 : H; or lower alkyl; or R 33 and R 34 taken together form: -(CH 2 ) 2 . 6 -; -(CH 2 ) 2 O(CH 2 ) r ; -(CH 2 ) 2 S(CH 2 ) 2 -; or
- R 82 (where R 20 : H; or lower lower alkyl; R 33 : H; or lower alkyl; or lower alkenyl; R 82 : H; or lower alkyl; or R 33 and R 82 taken together form: -(CH 2 ) 2 . 6 -; -(CH 2 ) 2 O(CH 2 ) 2 -; -(CH 2 ) 2 S(CH 2 ) 2 -; or -(CH 2 ) 2 NR 57 (CH 2 ) 2 -; where R 57 : H; or lower alkyl);
- R 33 lower alkyl; lower alkenyl; -(CH 2 ) m OR 55 (where R 55 : lower alkyl; or lower alkenyl); -(CH 2 ) m NR 34 R 63 (where R 34 : lower alkyl; or lower alkenyl; R 63 : H; or lower alkyl; or R 34 and R 63 taken together form: -(CH 2 )M-; -(CH 2 )2 ⁇ (CH 2 ) 2 -; -(CH 2 ) 2 S(CH 2 ) 2 -; or
- R 58 lower alkyl; or lower alkenyl
- R 59 H; lower alkyl; or R 58 and R 59 taken together form:
- R 3S H; lower alkyl; lower alkenyl; -(CH 2 ) m OR 55 (where R 55 : lower alkyl; or lower alkenyl); -(CH 2 ) m NR 33 R 34 (where R 33 : lower alkyl; or lower alkenyl; R 34 : H; or lower alkyl; or R 33 and R 34 taken together form: -(CH 2 W; -(CH 2 ) 2 O(CH 2 ) 2 -; -(CH 2 ) 2 S(CH 2 ) 2 -; or -(CH 2 ) 2 NR 57 (CH 2 ) 2 -; where R 57 : H; or lower alkyl); -(CH 2 ) m OCONR 33 R 75 (where R 33 : H; or lower alkyl; or lower alkenyl; R 75 : lower alkyl; or R 33 and R 75 taken together form: -
- R 37 H; lower alkyl; lower alkenyl; -(CH 2 ) P OR 55 (where R 55 : lower alkyl; or lower alkenyl); -(CH 2 ) P NR 33 R 34 (where R 33 : lower alkyl; or lower alkenyl; R 34 : H; or lower alkyl; or R 33 and R 34 taken together form: -(CH 2 ) 2 .
- R 82 (where R 20 : H; or lower alkyl; R 33 : H; or lower alkyl; or lower alkenyl; R 82 : H; or lower alkyl; or R 33 and R 82 taken together form: -(CH 2 ) 2-6 -;
- R 20 H; or lower alkyl
- R 64 lower alkyl; or lower alkenyl
- R 38 H; lower alkyl; lower alkenyl; -(CH 2 ) P OR 55 (where R 55 : lower alkyl; or lower alkenyl); -(CH 2 ) P NR 33 R 34 (where R 33 : lower alkyl; or lower alkenyl; R 34 : H; or lower alkyl; or R 33 and R 34 taken together form: -(CH 2 ) M S -(CH 2 ) 2 O(CH 2 ) 2 -; -(CH 2 ) 2 S(CH 2 ) 2 -; or -(CH 2 ) 2 NR 57 (CH 2 ) 2 -; where R 57 : H; or lower alkyl); -(CH 2 ) P OCONR 33 R 75 (where R 33 : H; or lower alkyl; or lower alkenyl; R 75 : lower alkyl; or R 33 and R 78 taken together form: -
- R 82 (where R 20 : H; or lower lower alkyl; R 33 : H; or lower alkyl; or lower alkenyl; R 82 : H; or lower alkyl; or R 33 and R 82 taken together form: -(CH 2 ) 2 . 6 -; -(CH 2 ) 2 O(CH 2 ) 2 -; -(CH 2 ) 2 S(CH 2 ) 2 -; or -(CH 2 ) 2 NR 57 (CH 2 ) 2 -; where R 57 : H; or lower alkyl);
- R 20 H; or lower alkyl
- R 64 lower alkyl; or lower alkenyl
- R 39 H; lower alkyl; lower alkenyl; -(CH 2 ) m OR 55 (where R 55 : lower alkyl; or lower alkenyl); -(CH 2 ) m N(R 20 )COR 64 (where: R 20 : H; or lower alkyl; R 64 : lower alkyl; or lower alkenyl); -(CH 2 ) o COOR 57 (where R 57 : lower alkyl; or lower alkenyl); -(CH 2 ) o CONR 58 R 59
- R 58 lower alkyl; or lower alkenyl
- R 59 H; lower alkyl; or R 58 and R 59 taken together form: -(CH 2 ) 2-6 s -(CH 2 ) 2 O(CH 2 ) 2 -; -(CH 2 ) 2 S(CH 2 ) 2 -; or -(CH 2 ) 2 NR 57 (CH 2 ) 2 -; where R 57 : H; or lower alkyl).
- R 40 lower alkyl; lower alkenyl; or aryl-lower alkyl.
- R 82 (where R 20 : H; or lower lower alkyl; R 33 : H; or lower alkyl; or lower alkenyl; R 82 : H; or lower alkyl; or R 33 and R 82 taken together form: -(CH 2 ) 2 . 6 -;
- R 20 H; or lower alkyl
- R 64 lower alkyl; or lower alkenyl
- R 58 lower alkyl, or lower alkenyl
- R 59 H; lower alky; or R 58 and R 59 taken together form: -(CH 2 ) 2 . 6 s -(CH 2 ) 2 O(CH 2 ) 2 -; -(CH 2 ) 2 S(CH 2 ) 2 -; or -(CH 2 ) 2 NR 57 (CH 2 ) 2 -; where R 57 : H; or lower alkyl); -(CH 2 ) o PO(OR 60 ) 2 (where R 60 : lower alkyl; or lower alkenyl); -
- R 42 H; lower alkyl; lower alkenyl; -(CH 2 ) P OR 55 (where R 55 : lower alkyl; or lower alkenyl); -(CH 2 ) P NR 33 R 34 (where R 33 : lower alkyl; or lower alkenyl; R 34 : H; or lower alkyl; or R 33 and R 34 taken together form: -(CH 2 ) 2 . fi -; -(CH 2 ) 2 O(CH 2 ) 2 -; -(CH 2 ) 2 S(CH 2 ) 2 -; or
- R 82 (where R 20 : H; or lower lower alkyl; R 33 : H; or lower alkyl; or lower alkenyl; R 82 : H; or lower alkyl; or R 33 and R 82 taken together form: -(CH 2 ) 2 . 6 -; -(CH 2 ) 2 O(CH 2 ) 2 -; -(CH 2 ) 2 S(CH 2 ) 2 -; or -(CH 2 ) 2 NR 57 (CH 2 ) 2 -; where R 57 : H; or lower alkyl);
- R 20 H; or lower alkyl
- R 64 lower alkyl; or lower alkenyl
- R 58 lower alkyl, or lower alkenyl
- R 59 H; lower alkyl; or R 58 and R 59 taken together form:
- R 33 H; or lower lower alkyl; R 33 : H; or lower alkyl; or lower alkenyl; R 82 : H; or lower alkyl; or R 33 and R 82 taken together form: -(CH 2 ) 2 . 6 -; -(CH 2 ) 2 O(CH 2 ) r ; -(CH 2 ) 2 S(CH 2 ) 2 -; or -(CH 2 ) 2 NR 57 (CH 2 ) 2 -; where R 57 : H; or lower alkyl); -(CH 2 ) m N(R 20 )COR 64 (where: R 20 : H; or lower alkyl; R 64 : lower alkyl; or lower alkenyl); -(CH 2 ) o COOR 57 (where R 57 : lower alkyl; or lower alkenyl); -(CH 2 ) o CONR 58 R 59 (where R 58 : lower alkyl; or lower alkeny
- R 1'1 lower alkyl; lower alkenyl; -(CH 2 ) P OR 55 (where R 55 : lower alkyl; or lower alkenyl); -(CH 2 ) P SR 56 (where R 56 : lower alkyl; or lower alkenyl); -(CH 2 ) P NR 33 R 34 (where
- R 33 lower alkyl; or lower alkenyl; R 34 : H; or lower alkyl; or R 33 and R 34 taken together form:
- R 33 H; or lower lower alkyl; R 33 : H; or lower alkyl; or lower alkenyl; R 82 : H; or lower alkyl; or R 33 and R 82 taken together form: -(CH 2 W; -(CH 2 ) 2 O(CH 2 ) 2 -; -(CH 2 ) 2 S(CH 2 ) r ; or -(CH 2 ) 2 NR 57 (CH 2 ) 2 -; where R 57 : H; or lower alkyl); -(CH 2 ) P N(R 20 )COR 64 (where: R 20 : H; or lower alkyl; R 64 : lower alkyl; or lower alkenyl); -(CH 2 ) P COOR 57 (where R 57 : lower alkyl; or lower alkenyl); -(CH 2 ) P CONR 58 R 59 (where R 58 : lower alkyl; or lower alkenyl; and R 59 : H;
- K 15 H; lower alkyl; lower alkenyl; -(CH 2 ) o OR 55 (where R 55 : lower alkyl; or lower alkenyl); -(CH 2 ) o SR 56 (where R 56 : lower alkyl; or lower alkenyl); -(CH 2 ) o NR 33 R 34 (where
- R 33 lower alkyl; or lower alkenyl; R 34 : H; or lower alkyl; or R 33 and R 34 taken together form: -(CH 2 W; -(CH 2 ) 2 O(CH 2 ) r ; -(CH 2 ) 2 S(CH 2 ) 2 -; or -(CH 2 ) 2 NR 57 (CH 2 ) 2 -; where R 57 : H; or lower alkyl); -(CH 2 ) s OCONR 33 R 75 (where R 33 : H; or lower alkyl; or lower alkenyl; R 75 : lower alkyl; or R 33 and R 75 taken together form: -(CH 2 W; -(CH 2 ) 2 O(CH 2 ) 2 -; -
- R 16 H; lower alkyl; lower alkenyl; -(CH 2 ) s OR 55 (where R 55 : lower alkyl; or lower alkenyl); -(CH 2 ) s SR 56 (where R 56 : lower alkyl; or lower alkenyl); -(CH 2 ) s NR 33 R 34 (where R 33 : lower alkyl; or lower alkenyl; R 34 : H; or lower alkyl; or R 33 and R 34 taken together form:
- R 48 H; or lower alkyl.
- R 49 H;lower alkyl; -(CH 2 ) o COOR 57 (where R 57 : lower alkyl; or lower alkenyl); -(CH 2 ) o CONR 58 R 59 (where R 58 : lower alkyl; or lower alkenyl; and R 59 : H; lower alkyl; or R 58 and R 59 taken together form: -(CH 2 ) 2 .
- R 51 H; lower alkyl; lower alkenyl; -(CH 2 ) m OR 55 (where R 55 : lower alkyl; or lower alkenyl); -(CH 2 ) m NR 33 R 34 (where R 33 : lower alkyl; or lower alkenyl; R 34 : H; or lower alkyl; or R 33 and R 34 taken together form: -(CH 2 ) 2 . 6 -; -(CH 2 ) 2 O(CH 2 ) 2 -; -(CH 2 ) 2 S(CH 2 ) 2 -; or
- R 82 (where R 20 : H; or lower lower alkyl; R 33 : H; or lower alkyl; or lower alkenyl; R 82 : H; or lower alkyl; or R 33 and R 82 taken together form: -(CH 2 ) 2 . 6 -;
- R 20 H; or lower alkyl
- R 64 lower alkyl; or lower alkenyl
- R 58 lower alkyl; or lower alkenyl
- R 59 H; lower alkyl; or R 58 and R 59 taken together form: -(CH 2 ) M -; -(CH 2 ) 2 O(CH 2 ) 2 -; -(CH 2 ) 2 S(CH 2 ) 2 -; or -(CH 2 ) 2 NR 57 (CH 2 ) 2 -; where R 57 : H; or lower alkyl); or -(CH 2 )AH 4 R 8 (where R 8 : H; F; Cl; CF 3 ; lower alkyl; lower alkenyl; or lower alkoxy).
- R 52 H; lower alkyl; lower alkenyl; -(CH 2 ) m OR 55 (where R 55 : lower alkyl; or lower alkenyl); -(CH 2 ) m NR 33 R 34 (where R 33 : lower alkyl; or lower alkenyl; R 34 : H; or lower alkyl; or R 33 and R 34 taken together form: -(CH 2 ) 2-6 -; -(CH 2 ) 2 O(CH 2 ) 2 -; -(CH 2 ) 2 S(CH 2 ) 2 -; or
- R 82 (where R 20 : H; or lower lower alkyl; R 33 : H; or lower alkyl; or lower alkenyl; R 82 : H; or lower alkyl; or R 33 and R 82 taken together form: -(CH 2 ) 2 . 6 -;
- R 58 lower alkyl; or lower alkenyl
- R 59 H; lower alkyl; or R 58 and R 59 taken together form:
- R 53 H; lower alkyl; lower alkenyl; -(CH 2 ) m OR 55 (where R 55 : lower alkyl; or lower alkenyl); -(CH 2 ) m NR 33 R 34 (where R 33 : lower alkyl; or lower alkenyl; R 34 : H; or lower alkyl; or R 33 and R 34 taken together form: -(CH 2 ) 2 . 6 -; -(CH 2 ) 2 O(CH 2 ) 2 -; -(CH 2 ) 2 S(CH 2 ) 2 -; or
- R 82 (where R 20 : H; or lower lower alkyl; R 33 : H; or lower alkyl; or lower alkenyl; R 82 : H; or lower alkyl; or R 33 and R 82 taken together form: -(CH 2 ) 2 . 6 -;
- R 20 H; or lower alkyl
- R 64 lower alkyl; or lower alkenyl
- R 58 lower alkyl; or lower alkenyl
- R 59 H; lower alkyl; or R 58 and R 59 taken together form: -(CH 2 ) 2 . 6 -; -(CH 2 ) 2 O(CH 2 ) 2 -; -(CH 2 ) 2 S(CH 2 ) 2 -; or -(CH 2 ) 2 NR 57 (CH 2 ) 2 -; where R 57 : H; or lower alkyl); or -(CH 2 )AH 4 R 8 (where R 8 : H; F; Cl; CF 3 ; lower alkyl; lower alkenyl; or lower alkoxy).
- R 54 lower alkyl; lower alkenyl; or aryl-lower alkyl.
- R 1 is H; R 20 is H; R 30 is H; R 31 is carboxymethyl; or lower alkoxycarbonylmethyl; R 32 is H; R 35 is methyl; R 36 is methoxy; R 37 is H and R 38 is H.
- the building block -B-CO- within templates (al), (a2) and (a3) designates an L-amino acid residue.
- Preferred values for B are: -NR 20 CH(R 71 )- and enantiomers of groups A5 with R 2 being H, A8, A22, A25, A38 with R 2 being H, A42, A47, and A50. Most preferred are
- R 20 is H or lower alkyl and R 64 is alkyl; alkenyl; -[(CH 2 ) u -X]rCH 3 (where X is
- R 64 is n-hexyl (A8"-21); n-heptyl (A8"-22); 4- (phenyl)benzyl (A8"-23); diphenylmethyl (A8"-24); 3-amino-propyl (A8"-25); 5- amino-pentyl (A8"-26); methyl (A8"-27); ethyl (A8"-28); isopropyl (A8"-29); isobutyl (A8"-30); n-propyl (A8"-31); cyclohexyl (A8"-32); cyclohexylmethyl (A8"-33); n-butyl (A8"-34); phenyl (A8 M -35);
- the peptidic chain Z of the ⁇ -hairpin mimetics described herein is generally defined in terms of amino acid residues belonging to one of the following groups:
- amino acid residues in chain Z can also be of formula -A-CO- or of formula -B-CO- wherein A and B are as defined above.
- GIy can also be an amino acid residue in chain Z
- Pro and Pro(4-NHCOPhe) can be amino acid residues in chain Z, too, with the exception of positions where an interstrand linkage (H) is possible.
- Group C comprises amino acid residues with small to medium-sized hydrophobic side chain groups according to the general definition for substituent R 72 .
- a hydrophobic residue refers to an amino acid side chain that is uncharged at physiological pH and that is repelled by aqueous solution.
- these side chains generally do not contain hydrogen bond donor groups, such as (but not limited to) primary and secondary amides, primary and secondary amines and the corresponding protonated salts thereof, thiols, alcohols, phosphonates, phosphates, ureas or thioureas.
- ethers such as ethers, thioethers, esters, tertiary amides, alkyl- or aryl phosphonates and phosphates, or tertiary amines.
- Genetically encoded small-to- medium-sized amino acids include alanine, isoleucine, leucine, methionine and valine.
- Group D comprises amino acid residues with aromatic and heteroaromatic side chain groups according to the general definition for substituent R 73 .
- An aromatic amino acid residue refers to a hydrophobic amino acid having a side chain containing at least one ring having a conjugated ⁇ -electron system (aromatic group).
- hydrogen bond donor groups such as (but not limited to) primary and secondary amides, primary and secondary amines and the corresponding protonated salts thereof, thiols, alcohols, phosphonates, phosphates, ureas or thioureas, and hydrogen bond acceptor groups such as (but not limited to) ethers, thioethers, esters, tetriary amides, alkyl- or aryl phosphonates and phosphates, or tertiary amines.
- Genetically encoded aromatic amino acids include phenylalanine and tyrosine.
- a heteroaromatic amino acid residue refers to a hydrophobic amino acid having a side chain containing at least one ring having a conjugated ⁇ -system incorporating at least one heteroatom such as (but not limited to) O, S and N according to the general definition for substituent R 77 .
- residues may contain hydrogen bond donor groups such as (but not limited to) primary and secondary amides, primary and secondary amines and the corresponding protonated salts thereof, thiols, alcohols, phosphonates, phosphates, ureas or thioureas, and hydrogen bond acceptor groups such as (but not limited to) ethers, thioethers, esters, tetriary amides, alkyl- or aryl phosphonates and phosphates, or tertiary amines.
- Hydro bond donor groups such as (but not limited to) primary and secondary amides, primary and secondary amines and the corresponding protonated salts thereof, thiols, alcohols, phosphonates, phosphates, ureas or thioureas, and hydrogen bond acceptor groups such as (but not limited to) ethers, thioethers, esters, tetriary amides, alkyl- or aryl phosphonates and
- Group E comprises amino acids containing side chains with polar-cationic, acylamino- and urea-derived residues according to the general definition for substituent R 74 .
- Polar- cationic refers to a basic side chain which is protonated at physiological pH.
- Genetically encoded polar-cationic amino acids include arginine, lysine and histidine. Citrulline is an example for an urea derived amino acid residue.
- Group F comprises amino acids containing side chains with polar-non-charged or anionic residues according to the general definition for substituent R 84 .
- a polar-non- charged or anionic residue refers to a hydrophilic side chain that is uncharged and, respectively anionic at physiological pH (carboxylic acids being included), but that is not repelled by aqueous solutions.
- Such side chains typically contain hydrogen bond donor groups such as (but not limited to) primary and secondary amides, carboxyclic acids and esters, primary and secondary amines, thiols, alcohols, phosphonates, phosphates, ureas or thioureas. These groups can form hydrogen bond networks with water molecules.
- polar-non- charged amino acids include asparagine, cysteine, glutamine, serine and threonine, but also aspartic acid and glutamic acid.
- Group H comprises side chains of preferably (L)-amino acids at opposite positions of the ⁇ -strand region that can form an interstrand linkage.
- the most widely known linkage is the disulfide bridge formed by cysteines and homo-cysteines positioned at opposite positions of the ⁇ -strand.
- Various methods are known to form disulfide linkages including those described by: J. P. Tarn et al. Synthesis 1979, 955-957; Stewart et al. , Solid Phase Peptide Synthesis, 2d Ed., Pierce Chemical Company, III., 1984; Ahmed et al. J. Biol. Chem.
- disulfide linkages can be prepared using acetamidomethyl (Acm)- protective groups for cysteine.
- a well established interstrand linkage consists in linking ornithines and lysines, respectively, with glutamic and aspartic acid residues located at opposite ⁇ -strand positions by means of an amide bond formation.
- Preferred protective groups for the side chain amino-groups of ornithine and lysine are allyloxycarbonyl (Alloc) and allylesters for aspartic and glutamic acid.
- interstrand linkages can also be established by linking the amino groups of lysine and ornithine located at opposite ⁇ -strand positions with reagents such as N 5 N- carbonylimidazole to form cyclic ureas.
- positions for an interstrand linkage are positions P2 and 10, taken together.
- Such interstrand linkages are known to stabilize the ⁇ -hairpin conformations and thus constitute an important structural element for the design of ⁇ -hairpin mimetics.
- amino acid residues in chain Z are those derived from natural ⁇ -amino acids.
- amino acids which, or the residues of which, are suitable for the purposes of the present invention, the abbreviations corresponding to generally adopted usual practice:
- residues for group C are: Ala L-Alanine
- residues for group D are:
- residues for group F are Asn L-Asparagine
- the peptidic chain Z within the ⁇ -hairpin mimetics of the invention comprises 11 amino acid residues.
- the positions Pl to Pl 1 of each amino acid residue in the chain Z are unequivocally defined as follows: Pl represents the first amino acid in the chain Z that is coupled with its N-terminus to the C-terminus of the templates (b)-(p), or of group -B-CO- in template (al), or of group -A-CO- in template (a2), or of the group -B-CO- forming the C-terminus of template (a3); and Pl 1 represents the last amino acid in the chain Z that is coupled with its C-terminus to the N-terminus of the templates (b)-(p), or of group -A-CO- in template (al), or of group -B-CO- in template (a2), or of the group - B-CO- forming the N-terminus of template (a3).
- Each of the positions Pl to Pl 1 will preferably contain an amino acid residue belonging to one of the above types C, D, E, F, H, or of formula -A-CO- or of formula -B-CO-, or being GIy, Pro or Pro(4NHCOPhe) as follows:
- ⁇ -amino acid residues in positions 1 to 11 of the chain Z are preferably: - Pl : of type C, or of type D, or of type E, or of type F;
- P2 of type E, or of type F, or of type C;
- P4 of type C, or of type E, or of type F, or the residue is GIy or Pro;
- P5 of type E, or of type F, or the residue is GIy or Pro
- - P6 of type C, or of type D, or of type F, or the residue is GIy or Pro;
- P7 of type F or of formula -A-CO-or the residue is GIy or Pro;
- P8 of type D, or of type C, or of formula -A-CO or the residue is GIy or Pro or Pro(4NHCOPhe);
- P9 of type C, or of type D, or of type E, or of type F
- - PlO of type F, or of type C, or type E
- PI l of type E, or of type F, or of type C or of type D; or
- ⁇ -amino acid residues in positions 1 to 11 are most preferably:
- Pl NIe, He, Aoc, hLeu, Chg, OctG, hPhe, 4AmPhe 3 Cha, Phe, Tyr, 2C1-Phe, Trp, 1 -NaI, Leu, Cha, or Arg;
- P2 Cys, GIu, NIe, Thr, or GIn ;
- P3 Thr, Ala or Abu;
- P4 Lys, NIe, Ala, Abu, or Thr;
- P5 Ser, AlloThr, or Dpr;
- - P6 He, c5al, Leu, NIe, Aoc, OctG, Cha, hLeu, hPhe, Chg, t-BuA, GIu 5 or Asp;
- P7 Pro;
- P8 Pro, Ala, or Pro(4NHCOPhe);
- P9 Tyr, Phe, He, NIe, Cha, GIn, Arg, Lys, His, Thr, or Ala; - PlO: Cys, Arg, NIe, GIn, Lys, Met, Thr, or Ser;
- PI l Tyr, GIn, Arg, Ser, NIe, 2-Nal, 2C1-Phe, Cha, Phg, Tyr, Phe, Asp,
- Cys if present at P2 and PlO, may form a disulfide bridge.
- ⁇ -amino acid residues in positions 1 to 1 1 of the chain Z are preferably:
- Pl of type C, or of type D, or of type E;
- P2 of type F, or of type C
- - P3 of type F
- P4 of type C, or of type E;
- P5 of type E, or of type F;
- P7 of type F, or of formula -A-CO-, or the residue is GIy or Pro
- - P8 of type C, or of formula -A-CO-, or the residue is GIy or Pro or
- P9 of type C, or of type D, or of type F;
- PlO of type F, or of type C, or type E;
- PI l of type E, or of type D, or of type F; or - P2 and PlO, taken together, form a group of type H.
- the ⁇ -amino acid residues in positions 1 to 11 are most preferably
- Pl Phe, hPhe, 4AmPhe, NIe, Chg, He, Tyr, Arg, Trp, 2C1-Phe, Arg, 1 - NaI, or Cha;
- P2 Cys, GIu, or NIe;
- P4 Lys, or NIe
- P5 Ser, AlloThr, or Dpr
- - P6 Asp, or GIu
- P9 lie, NIe, Cha, GIn, Tyr, or Ala;
- PlO Cys, Arg, or NIe
- - PI l Thr, Asp, Ser, Tyr, Phe, Asn, or Arg
- Cys if present at P2 and PlO, may form a disulfide bridge.
- the ⁇ -amino acid residues in positions 1 to 11 of the chain Z are preferably - Pl : of type C, or of type D;
- P3 of type F or of type C;
- P4 of type C or of type F;
- P7 of formula -A-CO-or the residue is GIy or Pro;
- P8 of formula -A-CO or the residue is GIy or Pro or
- P9 of type D, or of type F or of type C
- - PlO of type F, or of type C, or type E
- Pl 1 of type E, or of type F, or of type D; or
- ⁇ -amino acid residues in positions 1 to 1 1 are most preferably:
- P2 Cys, GIu, Thr, or GIn;
- P3 Thr, Ala, or Abu
- P4 Ala, Thr, or Abu
- - P5 Ser
- P6 OctG, He, Cha, Leu, c5al, NIe, Aoc, Chg, tBuA, or hLeu;
- P8 Pro, or Pro(4NHCOPhe);
- P9 GIn, Tyr, ILe, or Phe;
- PlO Cys, Lys, GIn, Thr, Met, or Arg
- PI l Tyr, Ser, Arg, GIn, NIe, 2-Nal, 2C1-Phe, Phe, Cha, or Phg;
- Cys if present at P2 and PlO, may form a disulfide bridge.
- ⁇ -amino acid residues in positions 1 to 11 of the chain Z are preferably:
- Pl of type C, or of type D, or of type E;
- P6 of type C, or of type D;
- P7 of type F, or of formula -A-CO-, or the residue is GIy or Pro;
- P8 of type C, or of formula -A-CO-, or the residue is GIy or Pro;
- - P9 of type C, or of type E, or of type F;
- ⁇ -amino acid residues in positions 1 to 11 of the chain Z are most preferably:
- Particularly preferred ⁇ -peptidomimetics of the invention include those described in Examples 5, 19, 20, 22, 23, 38, 39, 40, and 75 as inhibitors of cathepsin G; Examples 91, 121, 153, 154, 155, 156, 157, 158, 159, 160, 161 177, and 178 as inhibitors of elastase; and Examples 193, 194, and 195 as inhibitors of Tryptase.
- the processes of the invention can advantageously be carried out as parallel array syntheses to yield libraries of template-fixed ⁇ -hairpin peptidomimetics of the above general formula I.
- Such parallel syntheses allow one to obtain arrays of numerous
- the functionalized solid support is conveniently derived from polystyrene crosslinked with, preferably 1-5%, divinylbenzene; polystyrene coated with polyethyleneglycol spacers (Tentagel R ); and polyacrylamide resins (see also Obrecht, D.; Villalgordo, J. -M, "Solid- Supported Combinatorial and Parallel Synthesis of Small-Molecular-Weight Compound Libraries", Tetrahedron Organic Chemistry Series, Vol. 17, Pergamon, Elsevier Science, 1998).
- the solid support is functionalized by means of a linker, i.e. a bifunctional spacer molecule which contains on one end an anchoring group for attachment to the solid support and on the other end a selectively cleavable functional group used for the subsequent chemical transformations and cleavage procedures.
- a linker i.e. a bifunctional spacer molecule which contains on one end an anchoring group for attachment to the solid support and on the other end a selectively cleavable functional group used for the subsequent chemical transformations and cleavage procedures.
- linker i.e. a bifunctional spacer molecule which contains on one end an anchoring group for attachment to the solid support and on the other end a selectively cleavable functional group used for the subsequent chemical transformations and cleavage procedures.
- Type 1 linkers are designed to release the amide group under acidic conditions (Rink H, Tetrahedron Lett. 1987, 28, 3783-3790).
- Linkers of this kind form amides of the carboxyl group of the amino acids; examples of resins functionalized by such linker structures include 4-[(((2,4-dimethoxyphenyl)Fmoc-aminomethyl)phenoxyacetamido) aminomethyl] PS resin, 4-[(((2,4-dimethoxyphenyl)Fmoc- aminomethyl)phenoxyacetamido) aminomethyl] -4-methylbenzydrylamine PS resin (Rink amide MBHA PS Resin), and 4-[(((2,4-dimethoxyphenyl)Fmoc- aminomethyl)phenoxyacetamido) aminomethyl] benzhydrylamine PS-resin (Rink amide BHA PS resin).
- the support is derived from polystyrene crosslinked with, most preferably 1-5%, divinylbenzene and functionalized by means of the 4- (((2,4- dimethoxyphenyl)Fmoc-aminomethyl)phenoxyacetamido) linker.
- Type 2 linkers are designed to eventually release the carboxyl group under acidic conditions.
- Linkers of this kind form acid-labile esters with the carboxyl group of the amino acids, usually acid-labile benzyl, benzhydryl and trityl esters; examples of such linker structures include 2-methoxy-4-hydroxymethylphenoxy (Sasrin R linker), 4-(2,4- dimethoxyphenyl-hydroxymethyl)-phenoxy (Rink linker), 4-(4-hydroxymethyl-3- methoxyphenoxy)butyric acid (HMPB linker), trityl and 2-chlorotrityl.
- the support is derived from polystyrene crosslinked with, most preferably 1-5%, divinylbenzene and functionalized by means of the 2-chlorotrityl linker.
- reaction vessels normally 24 to 192, typically 96
- the appropriate functionalized solid support which is preferably derived from polystyrene cross-linked with 1 to 3% of divinylbenzene, or from Tentagel resin.
- the solvent to be used must be capable of swelling the resin and includes, but is not limited to, dichloromethane (DCM), dimethylformamide (DMF), N-methylpyrrolidone (NMP), dioxane, toluene, tetrahydrofuran (THF) 3 ethanol (EtOH), trifluoroethanol (TFE), isopropylalcohol and the like.
- Solvent mixtures containing as at least one component a polar solvent e. g. 20% TFE/DCM, 35% THF/NMP
- Suitable protecting groups for amino acids and, respectively, for their residues are, for example, for the amino group (as is present e. g. also in the side-chain of lysine) Cbz benzyloxycarbonyl
- guanidino group (as is present e. g. in the side-chain of arginine)
- Ts tosyl i. e. p-toluenesulfonyl
- Trt trityl and for the mercapto group (as is present e. g. in the side-chain of cysteine) Acm acetamidomethyl tBu tert.-butyl
- the 9-fluorenylmethoxycarbonyl- (Fmoc)-protected amino acid derivatives are preferably used as the building blocks for the construction of the template-fixed ⁇ -hairpin loop mimetics of formula I.
- For the deprotection, i. e. cleaving off of the Fmoc group 20% piperidine in DMF or 2% DBU/2% piperidine in DMF can be used.
- the quantity of the reactant i. e. of the amino acid derivative, is usually 1 to 20 equivalents based on the milliequivalents per gram (meq/g) loading of the functional ized solid support (typically 0.1 to 2.85 meq/g for polystyrene resins) originally weighed into the reaction tube. Additional equivalents of reactants can be used, if required, to drive the reaction to completion in a reasonable time.
- the reaction tubes, in combination with the holder block and the manifold, are reinserted into the reservoir block and the apparatus is fastened together. Gas flow through the manifold is initiated to provide a controlled environment, for example, nitrogen, argon, air and the like. The gas flow may also be heated or chilled prior to flow through the manifold.
- Heating or cooling of the reaction wells is achieved by heating the reaction block or cooling externally with isopropanol/dry ice and the like to bring about the desired synthetic reactions. Agitation is achieved by shaking or magnetic stirring (within the reaction tube).
- the preferred workstations are Labsource's Combi-chem station and MultiSyn Tech's-Syro synthesizer.
- Amide bond formation requires the activation of the ⁇ -carboxyl group for the acylation step.
- this activation is being carried out by means of the commonly used carbodiimides such as dicyclohexylcarbodiimide (DCC, Sheehan & Hess, J. Am. Chem. Soc. 1955, 77, 1067-1068) or diisopropylcarbodiimide (DIC, Sarantakis et al Biochem. Biophys. Res. Commun.1916, 73, 336-342), the resulting dicyclohexylurea and diisopropylurea is insoluble and, respectively, soluble in the solvents generally used.
- DCC dicyclohexylcarbodiimide
- DIC Diisopropylcarbodiimide
- 1-hydroxybenzotriazole (HOBt, K ⁇ nig & Geiger, Chem. Ber 1970, 103, 788-798) is included as an additive to the coupling mixture.
- HOBt prevents dehydration, suppresses racemization of the activated amino acids and acts as a catalyst to improve the sluggish coupling reactions.
- Certain phosphonium reagents have been used as direct coupling reagents, such as benzotriazol-1-yl-oxy-tris- (dimethylamino)-phosphonium hexafluorophosphate (BOP, Castro et al., Tetrahedron Lett.
- these phosphonium reagents are also suitable for in situ formation of HOBt esters with the protected amino acid derivatives. More recently diphenoxyphosphoryl azide (DPPA) or O-(7-aza-benzotriazol-l-yl)-N,N,N',N ! - tetramethyluronium tetrafluoroborate (TATU) or O-(7-aza-benzotriazol-l-yl)-N,N,N',N'- tetramethyluronium hexafiuorophosphate (HATU)/7-aza-l -hydroxy benzotriazole (HOAt, Carpino et al., Tetrahedron Lett. 1994, 35, 2279-2281) have also been used as coupling reagents.
- DPPA diphenoxyphosphoryl azide
- TATU O-(7-aza-benzotriazol-l-yl)-N,N,N',N ! - te
- reaction wells are filled with solvent (preferably 5 ml), the reaction tubes, in combination with the holder block and manifold, are immersed and agitated for 5 to 300 minutes, preferably 15 minutes, and drained by gravity followed by gas pressure applied through the manifold inlet (while closing the outlet) to expel the solvent; 2) The manifold is removed from the holder block, aliquots of solvent (preferably 5 ml) are dispensed through the top of the reaction tubes and drained by gravity through a filter into a receiving vessel such as a test tube or vial.
- solvent preferably 5 ml
- Both of the above washing procedures are repeated up to about 50 times (preferably about 10 times), monitoring the efficiency of reagent, solvent, and by-product removal by methods such as TLC, GC, or inspection of the washings.
- an amino group can be acylated by means of an acylating agent corresponding to the acyl substituent to be introduced.
- pegylated amino acids such as IPegK, or SPegK
- HATU N-[(dimethylamino)-lH-l ,2,3-triazolo[4,5- ⁇ >]pyridin-l- ylmethylene]-N-methylmethanaminium hexafluorophosphate N-oxide
- DIPEA Diisopropyl ethylamine
- 2-[2-(2-methoxyethoxy)ethoxy] acetic acid (IPeg) and, respectively, 2-(2- methoxyethoxy)acetic acid (sPeg) is applied to the liberated amino group of the appropiate amino acid side chain for 3 h.
- Interstrand linkages and their formation have been discussed above, in connection with the explanations made regarding groups of the type H which can, for example, be disulfide bridges formed by cysteine and homocysteine residues at opposite positions of the ⁇ -strand; or lactam bridges formed by glutamic and aspartic acid residues linking ornithine and, respectively, lysine residues, or by glutamic acid residues linking 2,4- diaminobutyric acid residues located at opposite ⁇ -strand positions by amide bond formation.
- groups of the type H which can, for example, be disulfide bridges formed by cysteine and homocysteine residues at opposite positions of the ⁇ -strand; or lactam bridges formed by glutamic and aspartic acid residues linking ornithine and, respectively, lysine residues, or by glutamic acid residues linking 2,4- diaminobutyric acid residues located at opposite ⁇ -strand positions by amide bond formation.
- a solution of 10 equivalents of iodine solution is applied in DMF or in a mixture Of CH 2 Cb /MeOH for 1.5 h which is repeated for another 3h with a fresh iodine solution after filtering of the iodine solution, or in a mixture of DMSO and acetic acid solution, buffered with 5% with NaHCO 3 to pH 5-6 for 4h, or in water adjusted to pH 8 with ammonium hydroxide solution by stirring for 24h, or in ammonium acetate buffer adjusted to pH 8 in the presence of air, or in a solution of NMP and tri-n- butylphosphine (preferably 50 eq.).
- Detachment of the fully protected linear peptide from the solid support is achieved by immersion of the reaction tubes, in combination with the holder block and manifold, in reaction wells containing a solution of the cleavage reagent (preferably 3 to 5 ml). Gas flow, temperature control, agitation, and reaction monitoring are implemented as described above and as desired to effect the detachment reaction.
- the reaction tubes, in combination with the holder block and manifold are disassembled from the reservoir block and raised above the solution level but below the upper lip of the reaction wells, and gas pressure is applied through the manifold inlet (while closing the outlet) to efficiently expel the final product solution into the reservoir wells.
- the resin remaining in the reaction tubes is then washed 2 to 5 times as above with 3 to 5 ml of an appropriate solvent to extract (wash out) as much of the detached product as possible.
- the product solutions thus obtained are combined, taking care to avoid cross-mixing.
- the individual solutions/extracts are then manipulated as needed to isolate the final compounds. Typical manipulations include, but are not limited to, evaporation, concentration, liquid/liquid extraction, acidification, basification, neutralization or additional reactions in solution.
- Cyclization is then effected in solution using solvents such as DCM, DMF, dioxane, THF and the like.
- solvents such as DCM, DMF, dioxane, THF and the like.
- Various coupling reagents which were mentioned earlier can be used for the cyclization.
- the duration of the cyclization is about 6-48 hours, preferably about 16 hours.
- the progress of the reaction is followed, e. g. by RP-HPLC (Reverse Phase High Performance Liquid Chromatography).
- the solvent is removed by evaporation, the fully protected cyclic peptide derivative is dissolved in a solvent which is not miscible with water, such as DCM, and the solution is extracted with water or a mixture of water- miscible solvents, in order to remove any excess of the coupling reagent.
- the fully protected peptide derivative is treated with 95% TFA, 2.5% H 2 O, 2.5% TIS or another combination of scavengers for effecting the cleavage of protecting groups.
- the cleavage reaction time is commonly 30 minutes to 12 hours, preferably about 2.5 hours.
- the volatiles are evaporated to dryness and the crude peptide is dissolved in 20% AcOH in water and extracted with isopropyl ether or other solvents which are suitable therefor.
- the aqueous layer is collected and evaporated to dryness, and the fully deprotected cyclic peptide derivative of formula I is obtained as end-product.
- the detachment, cyclization and complete deprotection of the fully protected peptide from the solid support can be achieved manually in glass vessels.
- this peptide derivative can be used directly for biological assays, or it has to be further purified, for example by preparative HPLC.
- the ⁇ -hairpin peptidomimetics of the invention can be used in a wide range of applications where inflammatory diseases or pulmanory diseases or infections or immunological diseases or cardiovascular diseases or neurodegenerative diseases are mediated or resulting from serine protease activity, or where cancer is mediated or resulting from serine protease activity.
- the ⁇ -hairpin peptidomimetics may be administered per se or may be applied as an appropriate formulation together with carriers, diluents or excipients well known in the art.
- the ⁇ - hairpin peptidomimetics can be administered singly, as mixtures of several ⁇ -hairpin peptidomimetics, in combination with other anti-inflammatory agents, or antimicrobial agents or anti-cancer agents and/or in combination with other pharmaceutically active agents.
- the ⁇ -hairpin peptidomimetics can be administered per se or as pharmaceutical compositions.
- compositions comprising ⁇ -hairpin peptidomimetics of the invention may be manufactured by means of conventional mixing, dissolving, granulating, coated tablet- making, levigating, emulsifying, encapsulating, entrapping or lyophilizing processes.
- Pharmaceutical compositions may be formulated in conventional manner using one or more physiologically acceptable carriers, diluents, excipients or auxilliaries which facilitate processing of the active ⁇ -hairpin peptidomimetics into preparations which can be used pharmaceutically. Proper formulation depends upon the method of administration chosen.
- the ⁇ -hairpin peptidomimetics of the invention may be formulated as solutions, gels, ointments, creams, suspensions, etc. as are well-known in the art.
- Systemic formulations include those designed for administration by injection, e.g. subcutaneous, intravenous, intramuscular, intrathecal or intraperitoneal injection, as well as those designed for transdermal, transmucosal, oral or pulmonary administration.
- the ⁇ -hairpin peptidomimetics of the invention may be formulated in adequate solutions, preferably in physiologically compatible buffers such as Hink's solution, Ringer's solution, or physiological saline buffer.
- the solutions may contain formulatory agents such as suspending, stabilizing and/or dispersing agents.
- the ⁇ -hairpin peptidomimetics of the invention may be in powder form for combination with a suitable vehicle, e.g., sterile pyrogen-free water, before use.
- a suitable vehicle e.g., sterile pyrogen-free water
- penetrants appropriate to the barrier to be permeated are used in the formulation as known in the art.
- the ⁇ -hairpin peptidomimetics of the invention can be readily formulated by combining them with pharmaceutically acceptable carriers well known in the art.
- Such carriers enable the ⁇ -hairpin peptidomimetics of the invention to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions etc., for oral ingestion by a patient to be treated.
- suitable excipients include fillers such as sugars, e. g.
- lactose sucrose, mannitol and sorbitol
- cellulose preparations such as maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl cellulose, sodium carboxymethylcellulose, and/or polyvinylpyrrolidone (PVP); granulating agents; and binding agents.
- des integrating agents may be added, such as cross-linked polyvinylpyrrolidones, agar, or alginic acid or a salt thereof, such as sodium alginate.
- solid dosage forms may be sugar-coated or enteric-coated using standard techniques.
- suitable carriers, excipients or diluents include water, glycols, oils, alcohols, etc.
- flavoring agents, preservatives, coloring agents and the like may be added.
- the composition may take the form of tablets, lozenges, etc., formulated as usual.
- the ⁇ -hairpin peptidomimetics of the invention are conveniently delivered in form of an aeorosol spray from pressurized packs or a nebulizer, with the use of a suitable propellant, e.g. dichlorodifluoromethane, trichlorofluromethane, carbon dioxide or another suitable gas.
- a suitable propellant e.g. dichlorodifluoromethane, trichlorofluromethane, carbon dioxide or another suitable gas.
- the dose unit may be determined by providing a valve to deliver a metered amount.
- Capsules and cartridges of e.g. gelatin for use in an inhaler or insufflator may be formulated containing a powder mix of the ⁇ -hairpin peptidomimetics of the invention and a suitable powder base such as lactose or starch.
- the compounds may also be formulated in rectal or vaginal compositions such as suppositories together with appropriate suppository bases such as cocoa butter or other glycerides.
- the ⁇ -hairpin peptidomimetics of the invention may also be formulated as depot preparations. Such long acting formulations may be administered by implantation (e.g. subcutaneously or intramuscularly) or by intramuscular injection.
- the ⁇ -hairpin peptidomimetics of the invention may be formulated with suitable polymeric or hydrophobic materials (e.g. as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble salts.
- ⁇ -hairpin peptidomimetics of the invention may be delivered using a sustained-release system, such as semipermeable matrices of solid polymers containing the therapeutic agent.
- sustained-release materials have been established and are well known by those skilled in the art. Sustained-release capsules may, depending on their chemical nature, release the compounds for a few weeks up to over 100 days. Depending on the chemical nature and the biological stability of the therapeutic agent, additional strategies for protein stabilization may be employed.
- ⁇ -hairpin pepdidomimetics of the invention may contain charged residues, they may be included in any of the above-described formulations as such or as pharmaceutically acceptable salts.
- Pharmaceutically acceptable salts tend to be more soluble in aqueous and other protic solvents than are the corresponding free forms.
- ⁇ -hairpin peptidomimetics of the invention will generally be used in an amount effective to achieve the intended purpose. It is to be understood that the amount used will depend on a particular application.
- a therapeutically effective dose can be determined using, for example, the in vitro assays provided in the examples.
- the treatment may be applied while the disease is visible, or even when it is not visible.
- An ordinary skilled expert will be able to determine therapeutically effective amounts to treat topical diseases without undue experimentation.
- a therapeutically effective dose can be estimated initially from in vitro assays.
- a dose can be formulated in animal models to achieve a circulating ⁇ -hairpin peptidomimetic concentration range that includes the IC 50 as determined in the cell culture. Such information can be used to more accurately determine useful doses in humans.
- Initial dosages can also be determined from in vivo data, e.g. animal models, using techniques that are well known in the art. One having ordinary skill in the art could readily optimize administration to humans based on animal data.
- Dosage amounts for applications as serine protease inhibitory agents may be adjusted individually to provide plasma levels of the ⁇ -hairpin peptidomimetics of the invention which are sufficient to maintain the therapeutic effect.
- Therapeutically effective serum levels may be achieved by administering multiple doses each day.
- the effective local concentration of the ⁇ -hairpin peptidomimetics of the invention may not be related to plasma concentration.
- One having the ordinary skill in the art will be able to optimize therapeutically effective local dosages without undue experimentation.
- the amount of ⁇ -hairpin peptidomimetics administered will, of course, be dependent on the subject being treated, on the subject's weight, the severity of the affliction, the manner of administration and the judgement of the prescribing physician.
- a therapeutically effective dose of the ⁇ -hairpin peptidomimetics described herein will provide therapeutic benefit without causing substantial toxicity.
- Toxicity of the ⁇ -hairpin peptidomimetics of the invention can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., by determining the LD 50 (the dose lethal to 50% of the population) or the LD 100 (the dose lethal to 100% of the population).
- the dose ratio between toxic and therapeutic effect is the therapeutic index. Compounds which exhibit high therapeutic indices are preferred.
- the data obtained from these cell culture assays and animal studies can be used in formulating a dosage range that is not toxic for use in humans.
- the dosage of the ⁇ -hairpin peptidomimetics of the invention lies preferably within a range of circulating concentrations that include the effective dose with little or no toxicity.
- the dosage may vary within the range depending upon the dosage form employed and the route of administration utilized.
- the exact formulation, route of administration and dose can be chosen by the individual physician in view of the patient's condition (see, e.g. Fingl et al. 1975, In : The Pharmacological Basis of Therapeutics, Ch.1, p.l).
- HBTU 1-benzotriazol-l-yl-tetramethylurounium hexafluorophosphate
- HOBt 1-hydroxybenzotriazole
- DIEA diisopropylethylamine
- HOAT 7-aza-l-hydroxybenzotriazole
- HATU O-(7-aza-benzotriazo Ie- 1 -y 1)-N,N,N ' ,N ' -tetramethy lurono i um hexafluorophosphate (Carpino et al. Tetrahedron Lett. 1994, 35, 2279-2281).
- the resin was shaken (CH 2 Cl 2 /MeOH/DIEA : 17/2/1), 30 ml for 30 min; then washed in the following order with CH 2 Cl 2 (Ix), DMF (Ix), CH 2 Cl 2 (Ix), MeOH (Ix), CH 2 Cl 2 (Ix), MeOH (Ix), CH 2 Cl 2 (2x), Et 2 O (2x) and dried under vacuum for 6 hours. Loading was typically 0.6-0.7 mMol/g.
- the following preloaded resins were prepared: Fmoc-Pro-2-chlorotritylresin, Fmoc-Asp (OtBu)-2-chlorotritylresin, Fmoc-Pro(5RPhe)-2-chlorotritylresin, Fmoc-Leu-2-chlorotritylresin, Fmoc-Glu(OtBu)-2-chlorotritylresin, Fmoc- Asp(OtBu) -2-chlorotritylresin,.
- Fmoc-Phe-2-chlorotritylresin Fmoc-Gln(Trt)-2- chlorotritylresin, Fmoc-Ser (OtBu) -2-chlorotritylresin, Fmoc-Val-2- chlorotritylresin, Fmoc-Thr(OtBu) -2-chlorotritylresin and Fmoc-Ile-2- chlorotritylresin.
- Steps 3 to 6 are repeated to add each amino-acid.
- Procedure A i. e. disulfide ⁇ -strand linkages
- the fully protected linear peptide was dissolved in DMF (8 ml, cone. 10 mg/ml). Two eq. of HATU (0.72 mMol) in ImI of DMF and 4 eq. of DIEA (1.44 mMol) in I mI of DMF were added, and the mixture was stirred at room temperature for 16 h. The volatile was evaporated to dryness.
- the crude cyclised peptide was dissolved in 7 ml Of CH 2 Cl 2 and extracted with 10% acetonitrile in water (4.5 ml) three times. The CHbCl 2 layer was evaporated to dryness.
- cyclic peptide obtained was dissolved in 3 ml of the cleavage mixture containing 95% trifluoroacetic acid (TFA), 2.5% water and 2.5% triisopropylsilane (TIS). The mixture was left to stand at 2O 0 C for 2.5 hours and then concentrated under vacuum. The crude peptide was dissolved in 20% AcOH in water (7 ml) and extracted with diisopropylether (4 ml) three times. The aqueous layer was collected and evaporated to dryness, and the residue was purified by preparative reverse phase LC-MS.
- TFA trifluoroacetic acid
- TIS triisopropylsilane
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Immunology (AREA)
- Gastroenterology & Hepatology (AREA)
- Epidemiology (AREA)
- Analytical Chemistry (AREA)
- Communicable Diseases (AREA)
- Neurology (AREA)
- Biomedical Technology (AREA)
- Oncology (AREA)
- Neurosurgery (AREA)
- Heart & Thoracic Surgery (AREA)
- Rheumatology (AREA)
- Cardiology (AREA)
- Pain & Pain Management (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Description
Claims
Priority Applications (28)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2005800491411A CN101142228A (en) | 2005-02-17 | 2005-02-17 | Template-fixed beta-hairpin peptidomimetics with protease inhibitory activity |
KR1020137000610A KR101420198B1 (en) | 2005-02-17 | 2005-02-17 | Template-fixed beta-hairpin peptidomimetics with protease inhibitory activity |
KR1020077021071A KR101272633B1 (en) | 2005-02-17 | 2005-02-17 | Template-fixed beta-hairpin peptidomimetics with protease inhibitory activity |
JP2007555456A JP4896892B2 (en) | 2005-02-17 | 2005-02-17 | Template-immobilized β-hairpin peptide mimetic having protease inhibitory activity |
US11/816,589 US8658604B2 (en) | 2005-02-17 | 2005-02-17 | Template-fixed beta-hairpin peptidomimetics with protease inhibitory activity |
MX2007009873A MX2007009873A (en) | 2005-02-17 | 2005-02-17 | Template-fixed beta-hairpin peptidomimetics with protease inhibitory activity. |
ES05707463.5T ES2453540T3 (en) | 2005-02-17 | 2005-02-17 | Pattern fork peptidomimetics fixed with protease inhibitory activity |
PT57074635T PT1856140E (en) | 2005-02-17 | 2005-02-17 | Template-fixed beta-hairpin peptidomimetics with protease inhibitory activity |
NZ556747A NZ556747A (en) | 2005-02-17 | 2005-02-17 | Template-fixed beta-hairpin peptidomimetics with protease inhibitory acitivity |
EP05707463.5A EP1856140B1 (en) | 2005-02-17 | 2005-02-17 | Template-fixed beta-hairpin peptidomimetics with protease inhibitory activity |
CA3035941A CA3035941C (en) | 2005-02-17 | 2005-02-17 | Template-fixed beta-hairpin peptidomimetics with protease inhibitory activity |
PL05707463T PL1856140T3 (en) | 2005-02-17 | 2005-02-17 | Template-fixed beta-hairpin peptidomimetics with protease inhibitory activity |
CA2598360A CA2598360C (en) | 2005-02-17 | 2005-02-17 | Template-fixed beta-hairpin peptidomimetics with protease inhibitory activity |
AU2005327825A AU2005327825B2 (en) | 2005-02-17 | 2005-02-17 | Template-fixed beta-hairpin peptidomimetics with protease inhibitory activity |
DK05707463.5T DK1856140T3 (en) | 2005-02-17 | 2005-02-17 | Matrix-fixed beta-hairpin shaped peptidomimetics with protease inhibitory activity |
BRPI0520016-4A BRPI0520016B1 (en) | 2005-02-17 | 2005-02-17 | COMPOUND, PHARMACEUTICAL COMPOSITION, USE OF COMPOUND AND PROCESS FOR THE MANUFACTURING OF COMPOUND |
KR1020127025871A KR101443171B1 (en) | 2005-02-17 | 2005-02-17 | Template-fixed beta-hairpin peptidomimetics with protease inhibitory activity |
CA2915175A CA2915175C (en) | 2005-02-17 | 2005-02-17 | Template-fixed beta-hairpin peptidomimetics with protease inhibitory activity |
EA200701727A EA013814B1 (en) | 2005-02-17 | 2005-02-17 | Template-fixed beta-hairpin peptidomimetics with protease inhibitory activity |
SI200531837T SI1856140T1 (en) | 2005-02-17 | 2005-02-17 | Template-fixed beta-hairpin peptidomimetics with protease inhibitory activity |
PCT/EP2005/001622 WO2006087001A1 (en) | 2005-02-17 | 2005-02-17 | Template-fixed beta-hairpin peptidomimetics with protease inhibitory activity |
IL184804A IL184804A (en) | 2005-02-17 | 2007-07-24 | Template-fixed beta-hairpin peptidomimetics with protease inhibitory activity |
NO20074674A NO342041B1 (en) | 2005-02-17 | 2007-09-13 | Template-fixed β-hairpin peptidomimetics, their composition, their use, and methods for their preparation. |
US14/100,878 US20140213531A1 (en) | 2005-02-17 | 2013-12-09 | Template-fixed beta-hairpin peptidomimetics with protease inhibitory activitiy |
CY20141100192T CY1115084T1 (en) | 2005-02-17 | 2014-03-07 | EXCLUSIVELY ON EXPERIMENTAL BETA-HAIR EXTRACTORS WITH SUSPENDED PROTECTION ACTION |
HK16101770.6A HK1213914A1 (en) | 2005-02-17 | 2016-02-18 | Template fixed beta hairpin peptidomimetics with protease inhibitory activity |
US15/170,233 US10100084B2 (en) | 2005-02-17 | 2016-06-01 | Template-fixed beta-hairpin peptidomimetics with protease inhibitory activity |
US16/130,520 US10562933B2 (en) | 2005-02-17 | 2018-09-13 | Template-fixed beta-hairpin peptidomimetics with protease inhibitory activity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2005/001622 WO2006087001A1 (en) | 2005-02-17 | 2005-02-17 | Template-fixed beta-hairpin peptidomimetics with protease inhibitory activity |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/816,589 A-371-Of-International US8658604B2 (en) | 2005-02-17 | 2005-02-17 | Template-fixed beta-hairpin peptidomimetics with protease inhibitory activity |
US14/100,878 Division US20140213531A1 (en) | 2005-02-17 | 2013-12-09 | Template-fixed beta-hairpin peptidomimetics with protease inhibitory activitiy |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006087001A1 true WO2006087001A1 (en) | 2006-08-24 |
Family
ID=34960696
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2005/001622 WO2006087001A1 (en) | 2005-02-17 | 2005-02-17 | Template-fixed beta-hairpin peptidomimetics with protease inhibitory activity |
Country Status (21)
Country | Link |
---|---|
US (4) | US8658604B2 (en) |
EP (1) | EP1856140B1 (en) |
JP (1) | JP4896892B2 (en) |
KR (3) | KR101272633B1 (en) |
CN (1) | CN101142228A (en) |
AU (1) | AU2005327825B2 (en) |
BR (1) | BRPI0520016B1 (en) |
CA (3) | CA2915175C (en) |
CY (1) | CY1115084T1 (en) |
DK (1) | DK1856140T3 (en) |
EA (1) | EA013814B1 (en) |
ES (1) | ES2453540T3 (en) |
HK (1) | HK1213914A1 (en) |
IL (1) | IL184804A (en) |
MX (1) | MX2007009873A (en) |
NO (1) | NO342041B1 (en) |
NZ (1) | NZ556747A (en) |
PL (1) | PL1856140T3 (en) |
PT (1) | PT1856140E (en) |
SI (1) | SI1856140T1 (en) |
WO (1) | WO2006087001A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007079597A1 (en) * | 2006-01-16 | 2007-07-19 | Polyphor Ltd. | Template - fixed peptidomimetics with antimicrobial activity |
WO2010015287A3 (en) * | 2008-08-08 | 2010-04-15 | Polyphor Ag | Template-fixed peptidomimetics |
WO2015096872A1 (en) * | 2013-12-27 | 2015-07-02 | Polyphor Ag | Beta-hairpin peptidomimetics as selective elastase inhibitors |
WO2015096873A1 (en) * | 2013-12-27 | 2015-07-02 | Polyphor Ag | Beta-hairpin peptidomimetics as selective elastase inhibitors |
WO2017207117A1 (en) | 2016-05-31 | 2017-12-07 | Polyphor Ag | Beta-hairpin peptidomimetic with elastase inhibitory activity and aerosol dosage forms thereof |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101272633B1 (en) * | 2005-02-17 | 2013-06-10 | 유니베르시태트 취리히 | Template-fixed beta-hairpin peptidomimetics with protease inhibitory activity |
WO2008092281A1 (en) | 2007-01-29 | 2008-08-07 | Polyphor Ltd. | Template-fixed peptidomimetics |
CN101641372B (en) | 2007-02-28 | 2012-11-28 | 波利弗尔有限公司 | Template-fixed peptidomimetics |
US20170319643A1 (en) | 2016-05-05 | 2017-11-09 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Serv | Lipoprotein targeting protease inhibitors and uses |
EP4317174A1 (en) * | 2021-03-22 | 2024-02-07 | Peptiaid Inc | Peptide and peptide-containing composition |
WO2024110426A1 (en) | 2022-11-23 | 2024-05-30 | F. Hoffmann-La Roche Ag | Method for increasing recombinant protein expression |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002070547A1 (en) | 2001-02-23 | 2002-09-12 | Polyphor Ltd. | Template-fixed peptidomimetics with antimicrobial activity |
WO2003054000A1 (en) | 2001-12-11 | 2003-07-03 | Polyphor Ltd. | Template-fixed peptidomimeticsas inhibitors of serine proteases |
WO2004018503A1 (en) | 2002-08-20 | 2004-03-04 | Polyphor Ltd. | Template-fixed peptidomimetics with antibacterial activity |
WO2004033489A1 (en) | 2002-10-02 | 2004-04-22 | Polyphor Ltd. | Template-fixed peptidomimetics with antimicrobial activity |
WO2004096838A1 (en) | 2003-05-02 | 2004-11-11 | Polyphor Ag | Template-fixed peptidomimetics as medicaments against hiv and cancer |
WO2004096839A1 (en) | 2003-05-02 | 2004-11-11 | Polyphor Ag | Template-fixed beta-hairpin peptidomimetics with cxcr4 antagonizing activity |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101272633B1 (en) * | 2005-02-17 | 2013-06-10 | 유니베르시태트 취리히 | Template-fixed beta-hairpin peptidomimetics with protease inhibitory activity |
ATE520705T1 (en) * | 2005-05-02 | 2011-09-15 | Polyphor Ltd | DYE CONJUGATES OF TEMPLATE-FIXED PEPTIDOMIMETICS |
WO2007079597A1 (en) * | 2006-01-16 | 2007-07-19 | Polyphor Ltd. | Template - fixed peptidomimetics with antimicrobial activity |
-
2005
- 2005-02-17 KR KR1020077021071A patent/KR101272633B1/en active IP Right Grant
- 2005-02-17 MX MX2007009873A patent/MX2007009873A/en active IP Right Grant
- 2005-02-17 CA CA2915175A patent/CA2915175C/en active Active
- 2005-02-17 CA CA2598360A patent/CA2598360C/en active Active
- 2005-02-17 EP EP05707463.5A patent/EP1856140B1/en active Active
- 2005-02-17 ES ES05707463.5T patent/ES2453540T3/en active Active
- 2005-02-17 EA EA200701727A patent/EA013814B1/en not_active IP Right Cessation
- 2005-02-17 PL PL05707463T patent/PL1856140T3/en unknown
- 2005-02-17 KR KR1020137000610A patent/KR101420198B1/en active IP Right Grant
- 2005-02-17 US US11/816,589 patent/US8658604B2/en active Active
- 2005-02-17 JP JP2007555456A patent/JP4896892B2/en not_active Expired - Fee Related
- 2005-02-17 DK DK05707463.5T patent/DK1856140T3/en active
- 2005-02-17 WO PCT/EP2005/001622 patent/WO2006087001A1/en active Application Filing
- 2005-02-17 BR BRPI0520016-4A patent/BRPI0520016B1/en active IP Right Grant
- 2005-02-17 SI SI200531837T patent/SI1856140T1/en unknown
- 2005-02-17 CN CNA2005800491411A patent/CN101142228A/en active Pending
- 2005-02-17 CA CA3035941A patent/CA3035941C/en active Active
- 2005-02-17 AU AU2005327825A patent/AU2005327825B2/en not_active Ceased
- 2005-02-17 KR KR1020127025871A patent/KR101443171B1/en active IP Right Grant
- 2005-02-17 PT PT57074635T patent/PT1856140E/en unknown
- 2005-02-17 NZ NZ556747A patent/NZ556747A/en unknown
-
2007
- 2007-07-24 IL IL184804A patent/IL184804A/en active IP Right Grant
- 2007-09-13 NO NO20074674A patent/NO342041B1/en unknown
-
2013
- 2013-12-09 US US14/100,878 patent/US20140213531A1/en not_active Abandoned
-
2014
- 2014-03-07 CY CY20141100192T patent/CY1115084T1/en unknown
-
2016
- 2016-02-18 HK HK16101770.6A patent/HK1213914A1/en not_active IP Right Cessation
- 2016-06-01 US US15/170,233 patent/US10100084B2/en active Active
-
2018
- 2018-09-13 US US16/130,520 patent/US10562933B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002070547A1 (en) | 2001-02-23 | 2002-09-12 | Polyphor Ltd. | Template-fixed peptidomimetics with antimicrobial activity |
WO2003054000A1 (en) | 2001-12-11 | 2003-07-03 | Polyphor Ltd. | Template-fixed peptidomimeticsas inhibitors of serine proteases |
WO2004018503A1 (en) | 2002-08-20 | 2004-03-04 | Polyphor Ltd. | Template-fixed peptidomimetics with antibacterial activity |
WO2004033489A1 (en) | 2002-10-02 | 2004-04-22 | Polyphor Ltd. | Template-fixed peptidomimetics with antimicrobial activity |
WO2004096838A1 (en) | 2003-05-02 | 2004-11-11 | Polyphor Ag | Template-fixed peptidomimetics as medicaments against hiv and cancer |
WO2004096839A1 (en) | 2003-05-02 | 2004-11-11 | Polyphor Ag | Template-fixed beta-hairpin peptidomimetics with cxcr4 antagonizing activity |
Non-Patent Citations (53)
Title |
---|
BARLOS ET AL., TETRAHEDRON LETT., vol. 30, 1989, pages 3943 - 3946 |
BARRTT, A.J., METHODS IN ENZYMOLOGY, vol. 80, 1981, pages 561 - 565 |
BARRTT, A.J.: "Methods in Enzymology", vol. 80, 1981, pages: 561 - 565 |
BERRIDGE MV; TAN AS, ARCH.BIOCHEM.BIOPHYS., vol. 303, 1993, pages 474 - 482 |
C. LILA ET AL., SYNTH. COMM., vol. 28, 1998, pages 4419 - 29 |
C. SEIFE, SCIENCE, vol. 277, 1997, pages 1602 - 3 |
CARPINO ET AL., TETRAHEDRON LETT., vol. 35, 1994, pages 2279 - 2281 |
CARPINO ET AL., TETRAHEDRON LETT., vol. 994, no. 35, pages 2279 - 2281 |
CASTRO ET AL., TETRAHEDRON LETT., vol. 14, 1975, pages 1219 - 1222 |
CASTRO ET AL., TETRAHEDRON LETT., vol. 975, no. 14, pages 1219 - 1222 |
COSTE ET AL., TETRAHEDRON LETT., vol. 990, no. 31, pages 205 - 208 |
D, OBRECHT; M. ALTORFER; J. A. ROBINSON, ADV. MED. CHEM., vol. 4, 1999, pages 1 - 68 |
DCC, SHEEHAN; HESS, J. AM. CHEM. SOC., vol. 77, 1955, pages 1067 - 1068 |
DESCOURS A ET AL., CHEMBIOCHEM, vol. 3, 2002, pages 318 - 323 |
DIC, SARANTAKIS ET AL., BIOCHEM. BIOPHYS. RES. COMMUN., vol. 73, 1976, pages 336 - 34 |
FIELDS, G. B.; FIELDS, C. G., J. AM. CHEM. SOC., vol. 113, 1991, pages 4202 - 4207 |
FINGL ET AL.: "The Pharmacological Basis of Therapeutics", 1975, pages: 1 |
H. FUKAMI ET AL., CURRENT PHARMACEUTICAL DESIGN, vol. 4, 1998, pages 439 - 453 |
HMPB- LINKER; FLÖRSHEIMER; RINIKER, PEPTIDES, vol. 1990, 1991, pages 131 |
HOBT; KONIG; GEIGER, CHEM. BER, vol. 103, 1970, pages 78S - 798 |
IBRAHIMMZ ET AL., J. NEUROIMMUNOL, vol. 70, 1996, pages 131 - 138 |
J. A. ROBINSON, SYN. LETT., vol. 4, 2000, pages 429 - 441 |
J. L. METHA ET AL., J. CARDIOVASC. PHARMACAL., vol. 31, 1998, pages 345 - 51 |
J. P. VACCA, ANNU. REP. MED. CHEM., vol. 33, 1998, pages 81 - 90 |
J. R. WILLIAMS ET AL., AM. REV. RESPIR. DIS., vol. 144, 1991, pages 875 - 83 |
KAATINEN M ET AL., ATHEROSKLEROSIS, vol. 123, no. 1-2, 1996, pages 123 - 131 |
KAISER ET AL., ANAL. BIOCHEMISTRY, vol. 34, 1970, pages 595 |
KNORR ET AL., TETRAHEDRON LETT., vol. 30, 1989, pages 1927 - 1930 |
KNORR ET AL., TETRAHEDRON LETT., vol. 989, no. 30, pages 1927 - 1930 |
KNORR, TETRAHEDRON LETT., vol. 30, 1989, pages 1927 - 1930 |
KONIG; GEIGER, CHEM. BER, vol. 970, no. 103, pages 788 - 798 |
L. JIANG ET AL., HELV. CHIM. ACTA., vol. 83, 2000, pages 3097 - 3112 |
LEATHERBARROW, R. J.: "GraFit", 1992, ERITHACUS SOFTWARE LTD. |
M. T. STUBBS; W. A. BODE, THROMB. RES., vol. 69, 1993, pages 1 - 58 |
MEIENHOFER ET AL., INT. J. PEPTIDE PROTEIN RES., vol. 13, 1979, pages 35 - 42 |
MEIENHOFER ET AL., INT. J. PEPTIDE PROTEIN RES., vol. 13, no. 3, 1979, pages 5 - 42 |
MOSSMAN T., J.IMMUNOL.METH., vol. 65, 1983, pages 55 - 63 |
OBRECHT, D.; VILLALGORDO, J.-M: "Tetrahedron Organic Chemistry Series", vol. 17, 1998, PERGAMON, ELSEVIER SCIENCE, article "Solid- Supported Combinatorial and Parallel Synthesis of Small-Molecular-Weight Compound Libraries" |
OHBAYASHI H, EPERT OPIN. INVESTIG. DRUGS, vol. 11, 2002, pages 965 - 980 |
P. R. BERNSTEIN; P. D. EDWARDS; J. C. WILLIAMS, PROG. MED. CHEM., vol. 31, 1994, pages 59 - 120 |
PENNINGTON ET AL.: "Peptides", 1990, pages: 164 - 166 |
R. VASSAR ET AL., SCIENCE, vol. 286, 1999, pages 735 - 41 |
RINK H, TETRAHEDRON LETT., vol. 28, 1987, pages 3783 - 3790 |
RINK LINKER; RINK, H., TETRAHEDRON LETT., vol. 28, 1987, pages 3787 - 3790 |
S. LUCKETT ET AL., J. MOL. BIOL., vol. 290, 1999, pages 525 - 533 |
SARANTAKIS ET AL., BIOCHEM. BIOPHYS. RES. COMMUN., vol. 976, no. 73, pages 336 - 342 |
SASRINA LINKER; MERGLER ET AL., TETRAHEDRON LETT., vol. 29, 1988, pages 4005 - 4008 |
STEWART ET AL.: "Solid Phase Peptide Synthesis", 1984, PIERCE CHEMICAL COMPANY |
SYNTHESIS, 1976, pages 751 - 752 |
SYNTHESIS, vol. 976, pages 751 - 752 |
T. E. HUGLI, TRENDS BIOTECHNOL., vol. 14, 1996, pages 409 - 12 |
U. BANK; S. ANSORGE, J. LEUKOC. BIOL., vol. 69, 2001, pages 177 - 90 |
Y.-Q. LONG ET AL., BIORG. & MED. CHEM. LETT., 2001, pages 2515 - 2519 |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9521846B2 (en) | 2006-01-16 | 2016-12-20 | Polyphor Ltd. | Template-fixed peptidomimetics with antimicrobial activity |
WO2007079605A3 (en) * | 2006-01-16 | 2007-08-30 | Polyphor Ltd | Template-fixed peptidomimetics with antimicrobial activity |
EA015991B1 (en) * | 2006-01-16 | 2012-01-30 | Полифор Лтд. | Template-fixed peptidomimetics |
US8685922B2 (en) | 2006-01-16 | 2014-04-01 | Polyphor Ltd. | Template-fixed peptidomimetics with antimicrobial activity |
WO2007079597A1 (en) * | 2006-01-16 | 2007-07-19 | Polyphor Ltd. | Template - fixed peptidomimetics with antimicrobial activity |
WO2010015287A3 (en) * | 2008-08-08 | 2010-04-15 | Polyphor Ag | Template-fixed peptidomimetics |
AU2008360223B2 (en) * | 2008-08-08 | 2014-06-19 | Polyphor Ag | Template-fixed peptidomimetics |
US10273267B2 (en) | 2013-12-27 | 2019-04-30 | Polyphor Ag | Beta-hairpin peptidomimetics as selective elastase inhibitors |
KR102214694B1 (en) | 2013-12-27 | 2021-02-10 | 폴리포 리미티드 | Beta-hairpin peptidomimetics as selective elastase inhibitors |
KR20160102068A (en) * | 2013-12-27 | 2016-08-26 | 폴리포 리미티드 | Beta-hairpin peptidomimetics as selective elastase inhibitors |
KR20160102313A (en) * | 2013-12-27 | 2016-08-29 | 폴리포 리미티드 | Beta-hairpin peptidomimetics as selective elastase inhibitors |
WO2015096873A1 (en) * | 2013-12-27 | 2015-07-02 | Polyphor Ag | Beta-hairpin peptidomimetics as selective elastase inhibitors |
CN105873939B (en) * | 2013-12-27 | 2021-08-27 | 波利弗尔股份公司 | Beta-hairpin peptidomimetics as selective elastase inhibitors |
CN105873939A (en) * | 2013-12-27 | 2016-08-17 | 波利弗尔股份公司 | Beta-hairpin peptidomimetics as selective elastase inhibitors |
WO2015096872A1 (en) * | 2013-12-27 | 2015-07-02 | Polyphor Ag | Beta-hairpin peptidomimetics as selective elastase inhibitors |
AU2013409231B2 (en) * | 2013-12-27 | 2019-08-01 | Polyphor Ag | Beta-Hairpin peptidomimetics as selective elastase inhibitors |
AU2013409200B2 (en) * | 2013-12-27 | 2019-08-15 | Polyphor Ag | Beta-Hairpin peptidomimetics as selective elastase inhibitors |
EA034910B1 (en) * | 2013-12-27 | 2020-04-06 | Полифор Аг | Beta-hairpin peptidomimetics as selective elastase inhibitors |
US10723765B2 (en) | 2013-12-27 | 2020-07-28 | Polyphor Ag | Beta-hairpin peptidomimetics as selective elastase inhibitors |
KR102214693B1 (en) | 2013-12-27 | 2021-02-10 | 폴리포 리미티드 | Beta-hairpin peptidomimetics as selective elastase inhibitors |
WO2017207118A1 (en) | 2016-05-31 | 2017-12-07 | Polyphor Ag | Beta-hairpin peptidomimetic with elastase inhibitory activity and aerosol dosage forms thereof |
WO2017207117A1 (en) | 2016-05-31 | 2017-12-07 | Polyphor Ag | Beta-hairpin peptidomimetic with elastase inhibitory activity and aerosol dosage forms thereof |
US11235023B2 (en) | 2016-05-31 | 2022-02-01 | Polyphor Ag | Beta-hairpin peptidomimetic with elastase inhibitory activity and aerosol dosage forms thereof |
US11235024B2 (en) | 2016-05-31 | 2022-02-01 | Polyphor Ag | Beta-hairpin peptidomimetic with elastase inhibitory activity and aerosol dosage forms thereof |
EA039603B1 (en) * | 2016-05-31 | 2022-02-16 | Полифор Аг | Beta-hairpin peptidomimetics with elastase inhibitory activity and aerosol dosage forms thereof |
AU2017273507B2 (en) * | 2016-05-31 | 2022-03-17 | Polyphor Ag | Beta-hairpin peptidomimetic with elastase inhibitory activity and aerosol dosage forms thereof |
AU2017273508B2 (en) * | 2016-05-31 | 2022-07-28 | Polyphor Ag | Beta-hairpin peptidomimetic with elastase inhibitory activity and aerosol dosage forms thereof |
US11844823B2 (en) | 2016-05-31 | 2023-12-19 | Polyphor Ag | Beta-hairpin peptidomimetic with elastase inhibitory activity and aerosol dosage forms thereof |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10562933B2 (en) | Template-fixed beta-hairpin peptidomimetics with protease inhibitory activity | |
IL171530A (en) | Template- fixed beta-hairpin peptidomimetics with cxcr4 antagonizing activity | |
US8895499B2 (en) | β-hairpin peptidomimetics | |
WO2004096838A1 (en) | Template-fixed peptidomimetics as medicaments against hiv and cancer | |
WO2010127704A1 (en) | Beta-hairpin peptidomimetics having cxcr4 antagonizing activity | |
WO2010060479A1 (en) | Template-fixed beta-hairpin peptidomimetics with cxcr4 antagonizing activity | |
WO2011066869A1 (en) | Beta-hairpin peptidomimetics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 184804 Country of ref document: IL |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005707463 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 556747 Country of ref document: NZ |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007/06347 Country of ref document: ZA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005327825 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/a/2007/009873 Country of ref document: MX Ref document number: 2007555456 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2598360 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2005327825 Country of ref document: AU Date of ref document: 20050217 Kind code of ref document: A |
|
WWP | Wipo information: published in national office |
Ref document number: 2005327825 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 3365/KOLNP/2007 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020077021071 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200580049141.1 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200701727 Country of ref document: EA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11816589 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 2005707463 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: PI0520016 Country of ref document: BR Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020127025871 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020137000610 Country of ref document: KR |