WO2006084862A1 - Wärmealterungsbeständige polyamide - Google Patents

Wärmealterungsbeständige polyamide Download PDF

Info

Publication number
WO2006084862A1
WO2006084862A1 PCT/EP2006/050763 EP2006050763W WO2006084862A1 WO 2006084862 A1 WO2006084862 A1 WO 2006084862A1 EP 2006050763 W EP2006050763 W EP 2006050763W WO 2006084862 A1 WO2006084862 A1 WO 2006084862A1
Authority
WO
WIPO (PCT)
Prior art keywords
molding compositions
weight
thermoplastic molding
compositions according
polyethyleneimines
Prior art date
Application number
PCT/EP2006/050763
Other languages
English (en)
French (fr)
Inventor
Peter Eibeck
Jochen Engelmann
Ralf Neuhaus
Michael Fischer
Bernd Bruchmann
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to KR1020077020471A priority Critical patent/KR101278734B1/ko
Priority to CN2006800044094A priority patent/CN101115786B/zh
Priority to JP2007554552A priority patent/JP5118976B2/ja
Priority to KR1020137008597A priority patent/KR20130041392A/ko
Priority to BRPI0606914A priority patent/BRPI0606914B1/pt
Priority to PL06708109T priority patent/PL1851265T3/pl
Priority to DE502006000958T priority patent/DE502006000958D1/de
Priority to EP06708109A priority patent/EP1851265B1/de
Priority to US11/815,723 priority patent/US20080262133A1/en
Publication of WO2006084862A1 publication Critical patent/WO2006084862A1/de
Priority to US13/398,574 priority patent/US20120149817A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines

Definitions

  • thermoplastic molding compositions comprising
  • thermoplastic polyamide A) 10 to 99% by weight of at least one thermoplastic polyamide
  • the invention relates to the use of the molding compositions according to the invention for the production of fibers, films and moldings of any kind, as well as the moldings obtainable in this case.
  • Thermoplastic polyamides such as PA6 and PA66 are often used in the form of glass-fiber-reinforced molding compositions as construction materials for components which are exposed to elevated temperatures during their service life, resulting in thermo-oxidative damage.
  • thermo-oxidative damage By adding known heat stabilizers, although the occurrence of the thermo-oxidative damage can be delayed, it can not be prevented permanently. in a fall of the mechanical characteristics expresses.
  • the improvement of the heat aging resistance (WAB) of polyamides is highly desirable, as it allows longer lifetimes for thermally stressed components can be achieved, or their failure risk can be reduced. Alternatively, an improved WAB may also allow the components to be used at higher temperatures.
  • thermoplastic polymers From the Plastics Handbook 3. Technical Thermoplastics, 4. Polyamides, 1998 Carl Hanser Verlag Kunststoff Vienna, publisher L. Bottenbruch, R. Binsack, the use of various heat stabilizers in polyamides is known.
  • the use of hyperbranched polyethyleneimines in thermoplastic polymers is e.g. known from DE 10030553. Examples are given there only for unreinforced polyoxymethylene molding compositions, the diesel fuel resistance is improved.
  • thermoplastic polyamide molding compositions which have improved WAB and good flowability and mechanics.
  • the molding compositions of the invention contain 10 to 99, preferably 20 to 95 and in particular 30 to 80 wt .-% of at least one polyamide.
  • the polyamides of the molding compositions according to the invention generally have a viscosity number of 90 to 350, preferably 110 to 240 ml / g, determined in a 0.5% strength solution in 96 wt .-% sulfuric acid at 25 0 C according to ISO 307th ,
  • Semicrystalline or amorphous resins having a weight average molecular weight of at least 5,000 e.g. U.S. Patents 2,071,250, 2,071,251, 2,130,523, 2,130,948, 2,241,322, 2,312,966, 2,512,606 and 3,393,210 are preferred.
  • polyamides which are derived from lactams having 7 to 13 ring members, such as polycaprolactam, polycapryllactam and polylaurolactam, and also polyamides which are obtained by reacting dicarboxylic acids with diamines.
  • alkanedicarboxylic acids having 6 to 12, in particular 6 to 10 carbon atoms and aromatic dicarboxylic acids can be used.
  • adipic acid, azelaic acid, sebacic acid, dodecanedioic acid and terephthalic and / or isophthalic acid are mentioned as acids.
  • Suitable diamines are in particular alkanediamines having 6 to 12, in particular 6 to 8 carbon atoms and m-xylylenediamine, di (4-aminophenyl) methane, di (4-amino-cyclohexyl) methane, 2,2-di (4 -aminophenyl) -propane, 2,2-di (4-aminocyclohexyl) propane or 1, 5-diamino-2-methyl-pentane.
  • Preferred polyamides are polyhexamethylene adipamide, polyhexamethylene sebacamide and polycaprolactam and also copolyamides 6/66, in particular with a content of 5 to 95% by weight of caprolactam units.
  • Further suitable polyamides are obtainable from ⁇ -aminoalkylnitriles such as, for example, aminocapronitrile (PA 6) and adiponitrile with hexamethylenediamine (PA 66) by so-called direct polymerization in the presence of water, as described, for example, in DE-A 10313681, EP-A 1198491 and EP 922065 ,
  • polyamides which are e.g. are obtainable by condensation of 1,4-diaminobutane with adipic acid at elevated temperature (polyamide 4.6). Manufacturing processes for polyamides of this structure are known e.g. in EP-A 38 094, EP-A 38 582 and EP-A 39 524 described.
  • polyamides which are obtainable by copolymerization of two or more of the abovementioned monomers or mixtures of a plurality of polyamides are suitable, the mixing ratio being arbitrary.
  • the triamine content is less than 0.5, preferably less than 0.3 wt .-% (see EP-A 299 444).
  • the preparation of the preferred partially aromatic copolyamides having a low triamine content can be carried out by the processes described in EP-A 129,195 and 129,196.
  • PA 46 tetramethylenediamine, adipic acid
  • PA 66 hexamethylenediamine, adipic acid
  • PA 610 hexamethylenediamine, sebacic acid
  • PA 612 hexamethylenediamine, decanedicarboxylic acid
  • PA 613 hexamethylenediamine, undecanedicarboxylic acid
  • PA 1212 1, 12-dodecanediamine, decanedicarboxylic acid
  • PA 1313 1, 13-diaminotridecane, undecanedicarboxylic acid
  • PA 6T hexamethylenediamine, terephthalic acid
  • PA MXD6 m-xylylenediamine, adipic acid
  • PA 6I hexamethylenediamine, isophthalic acid
  • PA 6-3-T trimethylhexamethylenediamine, terephthalic acid
  • PA 6 / 6T (see PA 6 and PA 6T)
  • PA 6/66 (see PA 6 and PA 66)
  • PA 6/12 see PA 6 and PA 12
  • PA 66/6/610 see PA 66, PA 6 and PA 610)
  • PA 6I / 6T see PA 6I and PA 6T
  • PA PA PACM 12 diaminodicyclohexylmethane, laurolactam
  • PA 6I / 6T / PACM such as PA 6I / 6T + diaminodicyclohexylmethane
  • PA PDA-T phenylenediamine, terephthalic acid
  • thermoplastic molding compositions contain as component B) according to the invention 0.1 to 5 wt .-% of at least one polyethyleneimine homopolymer or - copolymer.
  • the proportion of B) is preferably from 0.3 to 4% by weight and in particular from 0.5 to 3% by weight, based on A) to E).
  • polyethyleneimines are to be understood as meaning both homopolymers and copolymers which are obtainable, for example, by the processes in Ullmann Electronic Release under the heading "aziridines” or according to WO-A 94/12560.
  • the homopolymers are generally obtainable by polymerization of ethyleneimine (aziridine) in aqueous or organic solution in the presence of acid-releasing compounds, acids or Lewis acids.
  • Such homopolymers are branched polymers, which usually contain primary, secondary and tertiary amino groups in the ratio of about 30% to 40% to 30%.
  • the distribution of the amino groups can be determined in general by means of 13 C-NMR spectroscopy.
  • Comonomers used are preferably compounds which have at least two amino functions.
  • suitable comonomers are alkylenediamines having 2 to 10 C atoms in the alkylene radical, with ethylenediamine and propylenediamine being preferred.
  • Further suitable comonomers are diethylene triamine, triethylene tetramine, tetraethylene pentamine, dipropylene triamine, tripropylene tetramine, dihexamethylenetriamine, aminopropylethylenediamine and Bisaminopropylethy- lendiamin.
  • Polyethyleneimines usually have a weight average molecular weight of from 100 to 3,000,000, preferably from 800 to 2,000,000 (as determined by light scattering).
  • crosslinked polyethyleneimines which are obtainable by reaction of polyethyleneimines with bifunctional or polyfunctional crosslinkers which have as a functional group at least one halohydrin, glycidyl, aziridine, isocyanate unit or a halogen atom are suitable.
  • Examples which may be mentioned are epichlorohydrin or bischlorohydrin ethers of polyalkylene glycols having 2 to 100 ethylene oxide and / or propylene oxide units and the compounds listed in DE-A 19 93 17 20 and US Pat. No. 4,144,123.
  • Methods of making crosslinked polyethyleneimines include, but are not limited to, from the o.g. Fonts and EP-A 895 521 and EP-A 25 515 known.
  • grafted polyethyleneimines are suitable, it being possible for all compounds which can react with the amino or imino groups of the polyethyleneimines to be used as the grafting agent.
  • Suitable grafting agents and processes for the preparation of grafted polyethyleneimines can be found, for example, in EP-A 675 914.
  • suitable polyethyleneimines in the context of the invention are amidated polymers which are usually obtainable by reacting polyethyleneimines with carboxylic acids, their esters or anhydrides, carboxamides or carboxylic acid halides.
  • carboxylic acids their esters or anhydrides, carboxamides or carboxylic acid halides.
  • the amidated polymers can be subsequently crosslinked with said crosslinkers.
  • up to 30% of the amino functions are amidated, so that sufficient primary and / or secondary nitrogen atoms are available for a subsequent crosslinking reaction.
  • alkoxylated polyethyleneimines which are obtainable, for example, by reacting polyethyleneimine with ethylene oxide and / or propylene oxide. Such alkoxylated polymers are also crosslinkable.
  • polyethyleneimines according to the invention are hydroxyl-containing polyethyleneimines and amphoteric polyethyleneimines (incorporation of anionic groups) and lipophilic polyethyleneimines which are generally obtained by incorporation of long-chain hydrocarbon radicals into the polymer chain. Processes for the preparation of such polyethyleneimines are known to the person skilled in the art, so that further details are unnecessary.
  • the molding compositions according to the invention contain 0.05 to 3, preferably 0.1 to 1, 5 and in particular 0.1 to 1 wt .-% of a lubricant.
  • the metal ions are preferably alkaline earth and Al, with Ca or Mg being particularly preferred.
  • Preferred metal salts are Ca-stearate and Ca-montanate as well as Al-stearate.
  • the carboxylic acids can be 1- or 2-valent. Examples which may be mentioned are pelargonic acid, palmitic acid, lauric acid, margaric acid, dodecanedioic acid, behenic acid and particularly preferably stearic acid, capric acid and montanic acid (mixture of fatty acids having 30 to 40 carbon atoms).
  • the aliphatic alcohols can be 1 to 4 valent.
  • examples of alcohols are n-butanol, n-octanol, stearyl alcohol, ethylene glycol, propylene glycol, neopentyl glycol, pentaerythritol, with glycerol and pentaerythritol being preferred.
  • the aliphatic amines can be monohydric to trihydric. Examples of these are stearylamine, ethylenediamine, propylenediamine, hexamethylenediamine, di (6-aminohexyl) amine, with ethylenediamine and hexamethylenediamine being particularly preferred.
  • preferred esters or amides are glycerol distearate, glycerol tristearate, ethylenediamine distearate, glycerol monopalmitate, glycerol trilaurate, glycerol monobehenate and pentaerythritol tetrastearate.
  • the molding compositions according to the invention contain 0.05 to 3, preferably 0.1 to 1, 5 and in particular 0.1 to 1 wt .-% of a Cu stabilizer, preferably a Cu (l) halide, in particular in a mixture with an alkali halide, preferably KJ, in particular in the ratio 1: 4, or of a sterically hindered phenol or mixtures thereof.
  • a Cu stabilizer preferably a Cu (l) halide, in particular in a mixture with an alkali halide, preferably KJ, in particular in the ratio 1: 4, or of a sterically hindered phenol or mixtures thereof.
  • Suitable salts of monovalent copper are preferably copper (I) acetate, copper (I) chloride, bromide and iodide. They are contained in amounts of 5 to 500 ppm copper, preferably 10 to 250 ppm, based on polyamide. The advantageous properties are obtained in particular when the copper is present in molecular distribution in the polyamide. This is achieved by adding to the molding compound a concentrate containing polyamide, a salt of monovalent copper and an alkali halide in the form of a solid, homogeneous solution.
  • a typical concentrate consists for example of 79 to 95 wt .-% polyamide and 21 to 5 wt .-% of a mixture of copper iodide or bromide and potassium iodide.
  • the concentration of the solid homogeneous solution of copper is preferably between 0.3 and 3, in particular between 0.5 and 2 wt .-%, based on the total weight of the solution and the molar ratio of copper (I) iodide to potassium iodide is between 1 and 1 1, 5, preferably between 1 and 5.
  • Suitable polyamides for the concentrate are homopolyamides and copolyamides, in particular polyamide 6 and polyamide 6.6.
  • R 1 and R 2 are an alkyl group, a substituted alkyl group or a substituted tn-azole group, wherein the radicals R 1 and R 2 may be the same or different and R 3 is an alkyl group, a substituted alkyl group, an alkoxy group or a substituted amino group.
  • Antioxidants of the type mentioned are described, for example, in DE-A 27 02 661 (US Pat. No. 4,360,617).
  • Another group of preferred sterically hindered phenols are derived from substituted benzenecarboxylic acids, especially substituted benzenepropionic acids.
  • Particularly preferred compounds of this class are compounds of the formula
  • R 4 , R 5 , R 7 and R 8 independently of one another are C 1 -C 6 -alkyl groups which in turn may be substituted (at least one of which is a sterically demanding group) and R 6 is a bivalent aliphatic radical having 1 to 10 C atoms means that may also have CO bonds in the main chain.
  • the antioxidants (D) 1 which can be used individually or as mixtures are in an amount of from 0.05 to 3% by weight, preferably from 0.1 to 1.5% by weight, in particular 0, 1 to 1 wt .-%, based on the total weight of the molding compositions A) to E).
  • sterically hindered phenols having no more than one sterically hindered group ortho to the phenolic hydroxy group have been found to be particularly advantageous; especially when assessing color stability when stored in diffused light for extended periods of time.
  • the molding compositions according to the invention may contain from 0 to 60, in particular up to 50% by weight of further additives and processing aids.
  • additives E are, for example, in amounts of up to 40, preferably up to 30 wt .-% rubber-elastic polymers (often also referred to as impact modifiers, elastomers or rubbers).
  • these are copolymers which are preferably composed of at least two of the following monomers: ethylene, propylene, butadiene, isobutene, isoprene, chloroprene, vinyl acetate, styrene, acrylonitrile and acrylic or methacrylic esters with 1 to 18 C Atoms in the alcohol component.
  • EPM ethylene-propylene
  • EPDM ethylene-propylene-diene
  • EPM rubbers generally have virtually no double bonds, while EPDM rubbers can have 1 to 20 double bonds / 100 carbon atoms.
  • diene monomers for EPDM rubbers for example, conjugated dienes such as isoprene and butadiene, non-conjugated dienes having 5 to 25 carbon atoms such as penta-1, 4-diene, hexa-1, 4-diene, hexa-1, 5 -diene, 2,5-dimethylhexa-1,5-diene and octa-1,4-diene, cyclic dienes such as cyclopentadiene, cyclohexadienes, cyclooctadienes and dicyclopentadienes and also alkenylnorbornenes such as 5-ethylidene-2-norbornene, 5- Butylidene-2-norbornene, 2-methallyl-5-norbornene, 2-isopropenyl-5-norbornene and tricyclodie
  • the diene content of the EPDM rubbers is preferably 0.5 to 50, in particular 1 to 8 wt .-%, based on the total weight of the rubber.
  • EPM or EPDM rubbers may preferably also be grafted with reactive carboxylic acids or their derivatives.
  • reactive carboxylic acids or their derivatives e.g. Acrylic acid, methacrylic acid and its derivatives, e.g. Glycidyl (meth) acrylate, as well as maleic anhydride.
  • Another group of preferred rubbers are copolymers of ethylene with acrylic acid and / or methacrylic acid and / or the esters of these acids.
  • the rubbers may still contain dicarboxylic acids such as maleic acid and fumaric acid or derivatives of these acids, e.g. Esters and anhydrides, and / or monomers containing epoxy groups.
  • dicarboxylic acid derivatives or monomers containing epoxy groups are preferably incorporated into the rubber by addition of monomers containing dicarboxylic acid or epoxy groups of the general formulas I or II or III or IV to the monomer mixture
  • R 1 to R 9 are hydrogen or alkyl groups having 1 to 6 carbon atoms and m is an integer from 0 to 20, g is an integer from 0 to 10 and p is an integer from 0 to 5
  • the radicals R 1 to R 9 preferably denote hydrogen, where m is 0 or 1 and g is 1.
  • the corresponding compounds are maleic acid, fumaric acid, maleic anhydride, allyl glycidyl ether and vinyl glycidyl ether.
  • Preferred compounds of the formulas I, II and IV are maleic acid, maleic anhydride and epoxy group-containing esters of acrylic acid and / or methacrylic acid, such as glycidyl acrylate, glycidyl methacrylate and the esters with tertiary alcohols, such as t-butyl acrylate. Although the latter have no free carboxyl groups, their behavior is close to the free acids and are therefore termed monomers with latent carboxyl groups.
  • the copolymers consist of 50 to 98 wt .-% of ethylene, 0.1 to 20 wt .-% of monomers containing epoxy groups and / or methacrylic acid and / or acid-anhydride-containing monomers and the remaining amount of (meth) acrylic acid esters.
  • 0.1 to 40 in particular 0.3 to 20 wt .-% glycidyl acrylate and / or glycidyl methacrylate, (meth) acrylic acid and / or maleic anhydride, and
  • esters of acrylic and / or methacrylic acid are the methyl, ethyl, propyl and i- or t-butyl esters.
  • vinyl esters and vinyl ethers can also be used as comonomers.
  • the ethylene copolymers described above can be prepared by methods known per se, preferably by random copolymerization under high pressure and elevated temperature. Corresponding methods are generally known.
  • Preferred elastomers are also emulsion polymers whose preparation is described, for example, in Blackley in the monograph "Emulsion Polymerization".
  • the usable emulsifiers and catalysts are known per se. Basically, homogeneously constructed elastomers or those with a shell structure can be used. The shell-like structure is determined by the order of addition of the individual monomers; the morphology of the polymers is also influenced by this order of addition.
  • acrylates such as e.g. N-butyl acrylate and 2-ethylhexyl acrylate, corresponding methacrylates, butadiene and isoprene and their mixtures called.
  • monomers for the preparation of the rubber portion of the elastomers acrylates such as e.g. N-butyl acrylate and 2-ethylhexyl acrylate, corresponding methacrylates, butadiene and isoprene and their mixtures called.
  • monomers may be reacted with other monomers such as e.g. Styrene, acrylonitrile, vinyl ethers and other acrylates or methacrylates such as methyl methacrylate, methyl acrylate, ethyl acrylate and propyl acrylate are copolymerized.
  • the soft or rubbery phase (having a glass transition temperature lower than 0 ° C.) of the elastomers may be the core, the outer shell, or a middle shell (for elastomers having more than two shell construction); in the case of multi-shell elastomers, it is also possible for a plurality of shells to consist of a rubber phase.
  • one or more hard components on the structure of the elastomer involved, these are generally prepared by polymerization of styrene, acrylonitrile, methacrylonitrile, ⁇ -methylstyrene, p-methylstyrene, Acrylklareestern and methacrylic acid esters such as methyl acrylate, ethyl acrylate and methyl methacrylate as main monomers.
  • these hard components with glass transition temperatures of more than 2O 0 C
  • these are generally prepared by polymerization of styrene, acrylonitrile, methacrylonitrile, ⁇ -methylstyrene, p-methylstyrene, Acrylklareestern and methacrylic acid esters such as methyl acrylate, ethyl acrylate and methyl methacrylate as main monomers.
  • methacrylic acid esters such as methyl acrylate, ethyl acrylate and methyl methacrylate as main monomers
  • emulsion polymers which have reactive groups on the surface.
  • groups are e.g. Epoxy, carboxyl, latent carboxyl, amino or amide groups, and functional groups obtained by concomitant use of monomers of the general formula
  • R 10 is hydrogen or a C 1 - to C 4 -alkyl group
  • R 11 is hydrogen, a C 1 - to C 8 -alkyl group or an aryl group, in particular phenyl
  • R 12 is hydrogen, a C r to C 10 alkyl, a C 6 to C 12 aryl group or -OR 13
  • R 13 is a C 1 - to C 8 -alkyl or C 6 - to C 12 -aryl group which may optionally be substituted by O- or N-containing groups,
  • X is a chemical bond, a C 1 - to C 10 -alkylene or C 6 -C 12 -arylene or the like
  • Z is a C 1 - to C-
  • the graft monomers described in EP-A 208 187 are also suitable for introducing reactive groups on the surface.
  • acrylamide methacrylamide and substituted esters of acrylic acid or methacrylic acid, such as (Nt-butylamino) -ethyl methacrylate, (N, N-dimethylamino) ethyl acrylate, (N, N-dimethylamino) -methyl acrylate and (N, N-) Diethylamino) ethyl acrylate.
  • the particles of the rubber phase can also be crosslinked.
  • monomers acting as crosslinkers are buta-1,3-diene, divinylbenzene, diallyl phthalate and dihydrodicyclopentadienyl acrylate, and also the compounds described in EP-A 50 265.
  • graft-linking monomers ie monomers having two or more polymerizable double bonds which react at different rates during the polymerization. Preference is given to using those compounds in which at least one reactive group polymerizes at about the same rate as the other monomers, while the other reactive group (or reactive groups) polymerizes, for example, significantly slower (polymerizes).
  • the different polymerization rates bring a certain proportion of unsaturated double bonds in the rubber with it.
  • a further phase is subsequently grafted onto such a rubber, the double bonds present in the rubber react at least partially with the graft monomers to form chemical binders. fertilize, ie the grafted phase is at least partially linked by chemical bonds with the graft.
  • graft-crosslinking monomers examples include allyl-containing monomers, in particular allyl esters of ethylenically unsaturated carboxylic acids, such as allyl acrylate, allyl methacrylate, diallyl maleate, diallyl fumarate, diallyl itaconate or the corresponding monoallyl compounds of these dicarboxylic acids.
  • allyl-containing monomers such as allyl acrylate, allyl methacrylate, diallyl maleate, diallyl fumarate, diallyl itaconate or the corresponding monoallyl compounds of these dicarboxylic acids.
  • allyl-containing monomers in particular allyl esters of ethylenically unsaturated carboxylic acids, such as allyl acrylate, allyl methacrylate, diallyl maleate, diallyl fumarate, diallyl itaconate or the corresponding monoallyl compounds of these dicarboxylic acids.
  • the proportion of these crosslinking monomers in the impact-modifying polymer is up to 5% by weight, preferably not more than 3% by weight, based on the impact-modifying polymer.
  • graft polymers having a core and at least one outer shell, which have the following structure:
  • graft polymers having a multi-shell structure instead of graft polymers having a multi-shell structure, homogeneous, i. single-shell elastomers of buta-1, 3-diene, isoprene and n-butyl acrylate or copolymers thereof are used. These products can also be prepared by concomitant use of crosslinking monomers or monomers having reactive groups.
  • emulsion polymers examples include n-butyl acrylate / (meth) acrylic acid copolymers, n-butyl acrylate / glycidyl acrylate or n-butyl acrylate / glycidyl methacrylate Copolymers, graft polymers having an inner core of n-butyl acrylate or butadiene-based and an outer shell of the aforementioned copolymers and copolymers of ethylene with comonomers which provide reactive groups.
  • the described elastomers may also be prepared by other conventional methods, e.g. by suspension polymerization.
  • Silicone rubbers as described in DE-A 37 25 576, EP-A 235 690, DE-A 38 00 603 and EP-A 319 290, are likewise preferred.
  • Fibrous or particulate fillers E which may be mentioned are carbon fibers, glass fibers, glass beads, amorphous silica, calcium silicate, calcium metasilicate, magnesium carbonate, kaolin, chalk, powdered quartz, mica, barium sulfate and feldspar, which may be used in amounts of up to 50% by weight. , in particular 1 to 40, preferably 10 to 30 wt .-% are used.
  • Preferred fibrous fillers are carbon fibers, aramid fibers and potassium titanate fibers, glass fibers being particularly preferred as E glass. These can be used as rovings or cut glass in the commercial forms.
  • the fibrous fillers can be surface-pretreated for better compatibility with the thermoplastic with a silane compound.
  • Suitable silane compounds are those of the general formula
  • X is NH 2 -, CH 2 -CH-, HO-,
  • O n is an integer from 2 to 10, preferably 3 to 4 m, an integer from 1 to 5, preferably 1 to 2 k, an integer from 1 to 3, preferably 1
  • Preferred silane compounds are aminopropyltrimethoxysilane, aminobutyltrimethoxysilane, aminopropyltriethoxysilane, aminobutyltriethoxysilane and the corresponding silanes which contain a glycidyl group as substituent X.
  • the silane compounds are generally used in amounts of from 0.01 to 2, preferably from 0.025 to 1, 0 and in particular from 0.05 to 0.5% by weight (based on C) of the surface coating.
  • acicular mineral fillers are also suitable.
  • the term "needle-shaped mineral fillers” is understood to mean a mineral filler with a pronounced, needle-like character.
  • An example is acicular wollastonite.
  • the mineral has a UD (length diameter) ratio of 8: 1 to 35: 1, preferably 8: 1 to 11: 1.
  • the mineral filler may optionally be pretreated with the silane compounds mentioned above; however, pretreatment is not essential.
  • fillers are kaolin, calcined kaolin, wollastonite, talc and chalk called as well as platelet or needle-shaped nanofillers preferably in amounts between 0.1 and 10%.
  • Boehmite, bentonite, montmorillonite, vermicullite, hectorite and laponite are preferably used for this purpose.
  • the platelet-shaped nanofillers according to the prior art are organically modified.
  • the addition of the platelet- or needle-shaped nanofillers to the nanocomposites according to the invention leads to a further increase in the mechanical strength.
  • thermoplastic molding compositions of the invention may contain conventional processing aids such as stabilizers, antioxidants, agents against heat decomposition and decomposition by ultraviolet light, lubricants and mold release agents, colorants such as dyes and pigments, nucleating agents, plasticizers, flame retardants, etc.
  • processing aids such as stabilizers, antioxidants, agents against heat decomposition and decomposition by ultraviolet light, lubricants and mold release agents, colorants such as dyes and pigments, nucleating agents, plasticizers, flame retardants, etc.
  • oxidation inhibitors and heat stabilizers are sterically hindered phenols and / or phosphites and amines (eg TAD), hydroquinones, aromatic secondary amines such as diphenylamines, various substituted representatives of these groups and mixtures thereof in concentrations of up to 1% by weight called on the weight of the thermoplastic molding compositions.
  • TAD sterically hindered phenols and / or phosphites and amines
  • hydroquinones such as diphenylamines
  • aromatic secondary amines such as diphenylamines
  • various substituted representatives of these groups and mixtures thereof in concentrations of up to 1% by weight called on the weight of the thermoplastic molding compositions.
  • UV stabilizers which are generally used in amounts of up to 2% by weight, based on the molding composition, of various substituted resorcinols, salicylates, benzotriazoles and benzophenones may be mentioned. It is possible to add inorganic pigments such as titanium dioxide, ultramarine blue, iron oxide and carbon black, furthermore organic pigments such as phthalocyanines, quinacridones, perylenes and also dyes such as nigrosine and anthraquinones as colorants.
  • inorganic pigments such as titanium dioxide, ultramarine blue, iron oxide and carbon black
  • organic pigments such as phthalocyanines, quinacridones, perylenes and also dyes such as nigrosine and anthraquinones as colorants.
  • sodium phenylphosphinate, alumina, silica and preferably talc may be used as nucleating agents.
  • thermoplastic molding compositions according to the invention can be prepared by processes known per se, in which mixing the starting components in conventional mixing devices such as screw extruders, Brabender mills or Banbury mills and then extruded. After extrusion, the extrudate can be cooled and comminuted. It is also possible to premix individual components and then to add the remaining starting materials individually and / or likewise mixed.
  • the mixing temperatures are usually 230 to 32O 0 C.
  • the components B) to D) and optionally E) can be mixed with a prepolymer, formulated and granulated.
  • the granules obtained are then condensed in solid phase under inert gas continuously or discontinuously at a temperature below the melting point of component A) to the desired viscosity.
  • thermoplastic molding compositions of the invention are characterized by a good flowability with good mechanical properties, as well as a significantly improved heat aging resistance.
  • Cylinder head covers are suitable for the production of fibers, films and moldings of any kind.
  • flow-improved polyamides can be used to produce plugs, connector parts, connectors, wiring harness components, circuit boards, circuit board components, three-dimensional injection-molded circuit boards, electrical connectors, mechatronic components.
  • dashboards Inside the car, there is use for dashboards, steering column switches, seat parts, headrests, center consoles, gear components and door modules, in the car exterior for door handles, exterior mirror components, windscreen wiper components, windscreen wiper housings, grilles, roof rails, sunroof frames, engine covers, cylinder head covers, intake manifolds , Windscreen wipers and body exterior parts possible.
  • door handles exterior mirror components, windscreen wiper components, windscreen wiper housings, grilles, roof rails, sunroof frames, engine covers, cylinder head covers, intake manifolds , Windscreen wipers and body exterior parts possible.
  • flow-improved polyamides for the production of components for kitchen appliances, such as fryers, irons, knobs, as well as applications in the garden leisure sector, eg components for irrigation systems or garden tools and door handles possible.
  • Component A is a compound having Component A:
  • Polyamide 6 (polycaprolactam) with a viscosity number VZ of 150 ml / g, measured as 0.5 wt .-% solution in 96 wt .-% sulfuric acid at 25 ° C according to ISO 307 (It was Ultramid®B3 BASF AG used).
  • the molding compositions were prepared on a ZSK 30 at a throughput of 10 kg / h and about 260 0 C flat temperature profile.
  • compositions of the molding compositions and the results of the measurements are shown in the table.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Artificial Filaments (AREA)

Abstract

Thermoplastische Formmassen, enthaltend: A) 10 bis 99 Gew.-% mindestens eines thermoplastischen Polyamids, B) 0,1 bis 5 Gew.-% mindestens eines Polyethyleniminhomo- oder -copolymerisates, C) 0,05 bis 3 Gew.-% eines Schmiermittels, D) 0,05 bis 3 Gew.-% eines kupferhaltigen Stabilisators oder eines sterisch gehinderten Phenols oder deren Mischungen, E) 0 bis 60 Gew.-% weiterer Zusatzstoffe, wobei die Summe der Gewichtsprozente der Komponenten (A) bis (E) 100 % ergibt.

Description

Wärmealterungsbeständige Polyamide
Beschreibung
Die Erfindung betrifft thermoplastische Formmassen, enthaltend
A) 10 bis 99 Gew.-% mindestens eines thermoplastischen Polyamids,
B) 0,1 bis 5 Gew.-% mindestens eines Polyethyleniminhomo- oder -copoly- merisates, C) 0,05 bis 3 Gew.-% eines Schmiermittels,
D) 0,05 bis 3 Gew.-% eines kupferhaltigen Stabilisators oder eines sterisch gehinderten Phenols oder deren Mischungen,
E) 0 bis 60 Gew.-% weiterer Zusatzstoffe,
wobei die Summe der Gewichtsprozente der Komponenten A) bis E) 100 % ergibt.
Weiterhin betrifft die Erfindung die Verwendung der erfindungsgemäßen Formmassen zur Herstellung von Fasern, Folien und Formkörpern jeglicher Art, sowie die hierbei erhältlichen Formkörper.
Thermoplastische Polyamide wie PA6 und PA66 werden häufig in Form von glasfaserverstärkten Formmassen als Konstruktionswerkstoffe für Bauteile, die während ihrer Lebensdauer erhöhten Temperaturen ausgesetzt sind, eingesetzt, wobei es zu ther- mooxidativen Schädigungen kommt. Durch Zusatz von bekannten Wärmestabilisatoren kann das Auftreten der thermooxidativen Schädigung zwar hinausgezögert nicht aber dauerhaft verhindert werden, was sich z.B. in einem Abfallen der mechanischen Kennwerte äußert. Die Verbesserung der Wärmealterungsbeständigkeit (WAB) von Polyamiden ist überaus wünschenswert, da dadurch längere Lebenszeiten für thermisch belastete Bauteile erreicht werden können, bzw. deren Ausfallrisiko gesenkt werden kann. Alternativ kann eine verbesserte WAB auch den Einsatz der Bauteile bei höheren Temperaturen ermöglichen.
Aus dem Kunststoff Handbuch 3. Technische Thermoplaste, 4. Polyamide, 1998 Carl Hanser Verlag München Wien, Herausgeber L. Bottenbruch, R. Binsack ist die Ver- wendung von verschiedenen Wärmestabilisatoren bei Polyamiden bekannt. Der Einsatz von hyperverzweigten Polyethyleniminen in thermoplastischen Polymeren ist z.B. aus DE 10030553 bekannt. Beispiele sind dort nur für unverstärkte Polyoxymethylen Formmassen angegeben, wobei die Dieselkraftstoffbeständigkeit verbessert wird.
Aus EP 1065236 sind unverstärkte Polyamide bekannt, bei denen Polyethylenimine und Oligocarbonsäuren während der Polymerisation eingesetzt werden. Die beschrie- benen Formmassen weisen eine verbesserte Lösemittelbeständigkeit auf, die WAB ist jedoch verbesserungswürdig.
Der vorliegenden Erfindung lag daher die Aufgabe zugrunde, thermoplastische Polya- midformmassen zur Verfügung zu stellen, welche eine verbesserte WAB und eine gute Fließfähigkeit sowie Mechanik aufweisen.
Demgemäß wurden die eingangs definierten Formmassen gefunden. Bevorzugte Ausführungsformen sind den Unteransprüchen zu entnehmen.
Als Komponente A) enthalten die erfindungsgemäßen Formmassen 10 bis 99, vorzugsweise 20 bis 95 und insbesondere 30 bis 80 Gew.-% mindestens eines Polyamides.
Die Polyamide der erfindungsgemäßen Formmassen weisen im allgemeinen eine Viskositätszahl von 90 bis 350, vorzugsweise 110 bis 240 ml/g auf, bestimmt in einer 0,5 gew.-igen Lösung in 96 gew.-%iger Schwefelsäure bei 250C gemäß ISO 307.
Halbkristalline oder amorphe Harze mit einem Molekulargewicht (Gewichtsmittelwert) von mindestens 5.000, wie sie z.B. in den amerikanischen Patentschriften 2 071 250, 2 071 251 , 2 130 523, 2 130 948, 2 241 322, 2 312 966, 2 512 606 und 3 393 210 beschrieben werden, sind bevorzugt.
Beispiele hierfür sind Polyamide, die sich von Lactamen mit 7 bis 13 Ringgliedern ab- leiten, wie Polycaprolactam, Polycapryllactam und Polylaurinlactam sowie Polyamide, die durch Umsetzung von Dicarbonsäuren mit Diaminen erhalten werden.
Als Dicarbonsäuren sind Alkandicarbonsäuren mit 6 bis 12, insbesondere 6 bis 10 Kohlenstoffatomen und aromatische Dicarbonsäuren einsetzbar. Hier seien nur Adipinsäu- re, Azelainsäure, Sebacinsäure, Dodecandisäure und Terephthal- und/oder Isophthal- säure als Säuren genannt.
Als Diamine eignen sich besonders Alkandiamine mit 6 bis 12, insbesondere 6 bis 8 Kohlenstoffatomen sowie m-Xylylendiamin, Di-(4-aminophenyl)methan, Di-(4-amino- cyclohexyl)-methan, 2,2-Di- (4-aminophenyl)-propan, 2,2-Di-(4-aminocyclohexyl)- propan oder 1 ,5-Diamino-2-methyl-pentan.
Bevorzugte Polyamide sind Polyhexamethylenadipinsäureamid, Polyhexamethylen- sebacinsäureamid und Polycaprolactam sowie Copolyamide 6/66, insbesondere mit einem Anteil von 5 bis 95 Gew.-% an Caprolactam-Einheiten. Weiterhin geeignete Polyamide sind erhältlich aus ω-Aminoalkylnitrilen wie beispielsweise Aminocapronitril (PA 6) und Adipodinitril mit Hexamethylendiamin (PA 66) durch sog. Direktpolymerisation in Anwesenheit von Wasser, wie beispielsweise in der DE-A 10313681 , EP-A 1198491 und EP 922065 beschrieben.
Außerdem seien auch noch Polyamide erwähnt, die z.B. durch Kondensation von 1,4- Diaminobutan mit Adipinsäure unter erhöhter Temperatur erhältlich sind (Polyamid 4,6). Herstellungsverfahren für Polyamide dieser Struktur sind z.B. in den EP-A 38 094, EP-A 38 582 und EP-A 39 524 beschrieben.
Weiterhin sind Polyamide, die durch Copolymerisation zweier oder mehrerer der vorgenannten Monomeren erhältlich sind, oder Mischungen mehrerer Polyamide geeignet, wobei das Mischungsverhältnis beliebig ist.
Weiterhin haben sich solche teilaromatischen Copolyamide wie PA 6/6T und PA 66/6T als besonders vorteilhaft erwiesen, deren Triamingehalt weniger als 0,5, vorzugsweise weniger als 0,3 Gew.-% beträgt (siehe EP-A 299 444).
Die Herstellung der bevorzugten teilaromatischen Copolyamide mit niedrigem Triamin- gehalt kann nach den in den EP-A 129 195 und 129 196 beschriebenen Verfahren erfolgen.
Die nachfolgende nicht abschließende Aufstellung enthält die genannten, sowie weitere Polyamide A) im Sinne der Erfindung und die enthaltenen Monomeren.
AB-Polymere:
PA 4 Pyrrolidon
PA 6 e-Caprolactam
PA 7 Ethanolactam
PA 8 Capryllactam
PA 9 9-Aminopelargonsäure
PA 11 11 -Aminoundecansäure
PA 12 Laurinlactam
AA/BB-Polymere
PA 46 Tetramethylendiamin, Adipinsäure
PA 66 Hexamethylendiamin, Adipinsäure
PA 69 Hexamethylendiamin, Azelainsäure
PA 610 Hexamethylendiamin, Sebacinsäure
PA 612 Hexamethylendiamin, Decandicarbonsäure
PA 613 Hexamethylendiamin, Undecandicarbonsäure PA 1212 1 ,12-Dodecandiamin, Decandicarbonsäure
PA 1313 1 ,13-Diaminotridecan, Undecandicarbonsäure
PA 6T Hexamethylendiamin, Terephthalsäure
PA MXD6 m-Xylylendiamin, Adipinsäure
AA/B B-Polymere
PA 6I Hexamethylendiamin, Isophthalsäure
PA 6-3-T Trimethylhexamethylendiamin, Terephthalsäure
PA 6/6T (siehe PA 6 und PA 6T)
PA 6/66 (siehe PA 6 und PA 66)
PA 6/12 (siehe PA 6 und PA 12)
PA 66/6/610 (siehe PA 66, PA 6 und PA 610)
PA 6I/6T (siehe PA 6I und PA 6T)
PA PACM 12 Diaminodicyclohexylmethan, Laurinlactam
PA 6I/6T/PACM wie PA 6I/6T + Diaminodicyclohexylmethan
PA 12/MACMI Laurinlactam, Dimethyl-diaminodicyclohexylmethan, Isophthalsäure
PA 12/MACMT Laurinlactam, Dimethyl-diaminodicyclohexylmethan, Terephthalsäure
PA PDA-T Phenylendiamin, Terephthalsäure
Die thermoplastischen Formmassen enthalten als Komponente B) erfindungsgemäß 0,1 bis 5 Gew.-% mindestes eines Polyethylenimin-Homopolymerisats oder - Copolymerisates. Bevorzugt beträgt der Anteil von B) 0,3 bis 4 Gew.-% und insbeson- dere 0,5 bis 3 Gew.-% bezogen auf A) bis E).
Unter Polyethyleniminen im Sinne der vorliegenden Erfindung sollen sowohl Homo- als auch Copolymerisate verstanden werden, welche beispielsweise nach den Verfahren in Ullmann Electronic Release unter dem Stichwort "Aziridine" oder gemäß WO-A 94/12560 erhältlich sind.
Die Homopolymerisate sind im allgemeinen durch Polymerisation von Ethylenimin (Azi- ridin) in wäßriger oder organischer Lösung in Gegenwart von säureabspaltenden Verbindungen, Säuren oder Lewis-Säuren erhältlich. Derartige Homopolymerisate sind verzweigte Polymere, die in der Regel primäre, sekundäre und tertiäre Aminogruppen im Verhältnis von ca. 30 % zu 40 % zu 30 % enthalten. Die Verteilung der Aminogruppen kann im allgemeinen mittels 13C-NMR Spektroskopie bestimmt werden.
Als Comonomere werden vorzugsweise Verbindungen eingesetzt, welche mindestens zwei Aminofunktionen aufweisen. Als geeignete Comonomere seien beispielsweise Alkylendiamine mit 2 bis 10 C-Atomen im Alkylenrest genannt, wobei Ethylendiamin und Propylendiamin bevorzugt sind. Weiterhin geeignete Comonomere sind Diethy- lentriamin, Triethylentetramin, Tetraethylenpentamin, Dipropylentriamin, Tripropylen- tetramin, Dihexamethylentriamin, Aminopropylethylendiamin und Bisaminopropylethy- lendiamin.
Polyethylenimine weisen üblichen/veise ein mittleres Molekulargewicht (Gewichtsmittel) von 100 bis 3.000.000, vorzugsweise von 800 bis 2.000.000 auf (bestimmt mittels Lichtstreuung).
Darüber hinaus eignen sich vernetzte Polyethylenimine, die durch Reaktion von Polye- thyleniminen mit bi- oder polyfunktionellen Vernetzern erhältlich sind, welche als funk- tionelle Gruppe mindestens eine Halogenhydrin-, Glycidyl-, Aziridin-, Isocyanateinheit oder ein Halogenatom aufweisen. Als Beispiele seien Epichlorhydrin oder Bischlor- hydrinether von Polyalkylenglykolen mit 2 bis 100 Ethylenoxid- und/oder Propylen- oxid-Einheiten sowie die in der DE-A 19 93 17 20 und US 4 144 123 aufgeführten Verbindungen genannt. Verfahren zur Herstellung von vernetzten Polyethyleniminen sind u.a. aus den o.g. Schriften sowie EP-A 895 521 und EP-A 25 515 bekannt.
Weiterhin sind gepfropfte Polyethylenimine geeignet, wobei als Pfropfmittel sämtliche Verbindungen eingesetzt werden können, die mit den Amino- bzw. Iminogruppen der Polyethylenimine reagieren können. Geeignete Pfropfmittel und Verfahren zur Herstel- lung von gepfropften Polyethyleniminen sind beispielsweise der EP-A 675 914 zu entnehmen.
Ebenso geeignete Polyethylenimine im Sinne der Erfindung sind amidierte Polymerisate, die üblicherweise durch Umsetzung von Polyethyleniminen mit Carbonsäuren, de- ren Ester oder Anhydride, Carbonsäureamide oder Carbonsäurehalogenide erhältlich sind. Je nach Anteil der amidierten Stickstoffatome in der Polyethyleniminkette können die amidierten Polymerisate nachträglich mit den genannten Vernetzern vernetzt werden. Vorzugsweise werden hierbei bis zu 30 % der Aminofunktionen amidiert, damit für eine anschließende Vernetzungsreaktion noch genügend primäre und/oder sekundäre Stickstoffatome zur Verfügung stehen.
Außerdem eignen sich alkoxylierte Polyethylenimine, die beispielsweise durch Umsetzung von Polyethylenimin mit Ethylenoxid und/oder Propylenoxid erhältlich sind. Auch derartige alkoxylierte Polymerisate sind anschließend vernetzbar.
Als weitere geeignete erfindungsgemäße Polyethylenimine seien hydroxylgruppenhal- tige Polyethylenimine und amphotere Polyethylenimine (Einbau von anionischen Gruppen) genannt sowie lipophile Polyethylenimine, die in der Regel durch Einbau langket- tiger Kohlenwasserstoffreste in die Polymerkette erhalten werden. Verfahren zur Her- Stellung derartiger Polyethylenimine sind dem Fachmann bekannt, so dass sich weitere Einzelheiten hierzu erübrigen. Als Komponente C) enthalten die erfindungsgemäßen Formmassen 0,05 bis 3, vorzugsweise 0,1 bis 1 ,5 und insbesondere 0,1 bis 1 Gew.-% eines Schmiermittels.
Bevorzugt sind Al-, Alkali-, Erdalkalisalze oder Ester- oder Amide von Fettsäuren mit 10 bis 44 C-Atomen, vorzugsweise mit 12 bis 40 C-Atomen.
Die Metallionen sind vorzugsweise Erdalkali und AI, wobei Ca oder Mg besonders bevorzugt sind.
Bevorzugte Metallsalze sind Ca-Stearat und Ca-Montanat sowie Al-Stearat.
Es können auch Mischungen verschiedener Salze eingesetzt werden, wobei das Mischungsverhältnis beliebig ist.
Die Carbonsäuren können 1- oder 2-wertig sein. Als Beispiele seien Pelargonsäure, Palmitinsäure, Laurinsäure, Margarinsäure, Dodecandisäure, Behensäure und besonders bevorzugt Stearinsäure, Caprinsäure sowie Montansäure (Mischung von Fettsäuren mit 30 bis 40 C-Atomen) genannt.
Die aliphatischen Alkohole können 1- bis 4-wertig sein. Beispiele für Alkohole sind n- Butanol, n-Octanol, Stearylalkohol, Ethylenglykol, Propylenglykol, Neopentylglykol, Pentaerythrit, wobei Glycerin und Pentaerythrit bevorzugt sind.
Die aliphatischen Amine können 1- bis 3-wertig sein. Beispiele hierfür sind Stearylamin, Ethylendiamin, Propylendiamin, Hexamethylendiamin, Di(6-Aminohexyl)amin, wobei Ethylendiamin und Hexamethylendiamin besonders bevorzugt sind. Bevorzugte Ester oder Amide sind entsprechend Glycerindistearat, Glycerintristearat, Ethylendiamin- distearat, Glycerinmonopalmitat, Glycerintrilaurat, Glycerinmonobehenat und Penta- erythrittetrastearat.
Es können auch Mischungen verschiedener Ester oder Amide oder Ester mit Amiden in Kombination eingesetzt werden, wobei das Mischungsverhältnis beliebig ist.
Als Komponente D) enthalten die erfindungsgemäßen Formmassen 0,05 bis 3, vor- zugsweise 0,1 bis 1 ,5 und insbesondere 0,1 bis 1 Gew.-% eines Cu-Stabilisators, vorzugsweise eines Cu-(l)-Halogenids, insbesondere in Mischung mit einem Alkalihaloge- nid, vorzugsweise KJ, insbesondere im Verhältnis 1 : 4., oder eines sterisch gehinderten Phenols oder deren Mischungen.
Als Salze des einwertigen Kupfers kommen vorzugsweise Kupfer(l)-Acetat, Kupfer(l)- Chlorid, -Bromid und -Jodid in Frage. Sie sind in Mengen von 5 bis 500 ppm Kupfer, vorzugsweise 10 bis 250 ppm, bezogen auf Polyamid, enthalten. Die vorteilhaften Eigenschaften werden insbesondere erhalten, wenn das Kupfer in molekularer Verteilung im Polyamid vorliegt. Dies wird erreicht, wenn man der Formmasse ein Konzentrat zusetzt, das Polyamid, ein Salz des einwertigen Kupfers und ein Alkalihalogenid in Form einer festen, homogenen Lösung enthält. Ein typisches Konzentrat besteht z.B. aus 79 bis 95 Gew.-% Polyamid und 21 bis 5 Gew.-% eines Gemisches aus Kupferjodid oder -bromid und Kaliumjodid. Die Konzentration der festen homogenen Lösung an Kupfer liegt bevorzugt zwischen 0,3 und 3, insbesondere zwischen 0,5 und 2 Gew.-%, bezogen auf das Gesamtgewicht der Lösung und das molare Verhältnis von Kupfer(l)-Jodid zu Kaliumjodid liegt zwischen 1 und 1 1 ,5, vorzugsweise zwischen 1 und 5.
Geeignete Polyamide für das Konzentrat sind Homopolyamide und Copolyamide, insbesondere Polyamid 6 und Polyamid 6.6.
Als sterisch gehinderte Phenole D) eignen sich prinzipiell alle Verbindungen mit phenolischer Struktur, die am phenolischen Ring mindestens eine sterisch anspruchsvolle Gruppe aufweisen.
Vorzugsweise kommen z.B. Verbindungen der Formel
Figure imgf000008_0001
in Betracht, in der bedeuten:
R1 und R2 eine Alkylgruppe, eine substituierte Alkylgruppe oder eine substituierte Tn- azolgruppe, wobei die Reste R1 und R2 gleich oder verschieden sein können und R3 eine Alkylgruppe, eine substituierte Alkylgruppe, eine Alkoxigruppe oder eine substituierte Aminogruppe.
Antioxidantien der genannten Art werden beispielsweise in der DE-A 27 02 661 (US- A 4 360 617) beschrieben.
Eine weitere Gruppe bevorzugter sterisch gehinderter Phenole leiten sich von substituierten Benzolcarbonsäuren ab, insbesondere von substituierten Benzolpropionsäuren.
Besonders bevorzugte Verbindungen aus dieser Klasse sind Verbindungen der Formel
Figure imgf000009_0001
wobei R4, R5, R7 und R8 unabhängig voneinander CrCs-Alkylgruppen darstellen, die ihrerseits substituiert sein können (mindestens eine davon ist eine sterisch anspruchs- volle Gruppe) und R6 einen zweiwertigen aliphatischen Rest mit 1 bis 10 C-Atomen bedeutet, der in der Hauptkette auch C-O-Bindungen aufweisen kann.
Bevorzugte Verbindungen, die dieser Formel entsprechen, sind
Figure imgf000009_0002
(Irganox® 245 der Firma Ciba-Geigy
Figure imgf000009_0003
(Irganox® 259 der Firma Ciba-Geigy)
Beispielhaft genannt seien insgesamt als sterisch gehinderte Phenole:
2,2'-Methylen-bis-(4-methyl-6-tert.-butylphenol), 1 ,6-Hexandiol-bis[3-(3,5-di-tert.-butyl- 4-hydroxyphenyl)-propionat], Pentaerythrityl-tetrakis-[3-(3,5-di-tert.-butyl-4- hydroxyphenyl)-propionat], Distearyl-3,5-di-tert.-butyl-4-hydroxybenzylphosphonat, 2,6,7-Trioxa-1-phosphabicyclo-[2.2.2]oct-4-yl-methyl-3,5-di-tert.-butyl-4- hydroxyhydrocinnamat, 3,5-Di-tert.-butyl-4-hydroxyphenyl-3,5-distearyl-thiotriazylamin, 2-(2'-Hydroxy-3'-hydroxy-3',5'-di-tert.-butylphenyl)-5-chlorbenzotriazol, 2,6-Di-tert.- butyl-4-hydroxymethylphenol, 1 ,3,5-Trimethyl-2,4,6-tris-(3,5-di-tert.-butyl-4- hydroxybenzyl)-benzol, 4,4'-Methylen-bis-(2,6-di-tert.-butylphenol), 3,5-Di-tert.-butyl-4- hydroxybenzyl-dimethylamin. Als besonders wirksam erwiesen haben sich und daher vorzugsweise verwendet werden 2,2'-Methylen-bis-(4-methyl-6-tert.-butylphenol), 1 ,6-Hexandiol-bis-(3,5-di-tert- butyl-4-hydroxyphenyl]-propionat (Irganox® 259), Pentaerythrityl-tetrakis-[3-(3,5-di- tert.-butyl-4-hydroxyphenyl)-propionat] sowie N,N'-Hexamethylen-bis-3,5-di-tert.-butyl- 4-hydroxyhydrocinnamid (Irganox® 1098) und das vorstehend beschriebene Irganox® 245 der Firma Ciba Geigy, das besonders gut geeignet ist.
Die Antioxidantien (D)1 die einzeln oder als Gemische eingesetzt werden können, sind in einer Menge von 0,05 bis zu 3 Gew.-%, vorzugsweise von 0,1 bis 1 ,5 Gew.-%, ins- besondere 0,1 bis 1 Gew.-%, bezogen auf das Gesamtgewicht der Formmassen A) bis E) enthalten.
In manchen Fällen haben sich sterisch gehinderte Phenole mit nicht mehr als einer sterisch gehinderten Gruppe in ortho-Stellung zur phenolischen Hydroxygruppe als besonders vorteilhaft erwiesen; insbesondere bei der Beurteilung der Farbstabilität bei Lagerung in diffusem Licht über längere Zeiträume.
Als Komponente E) können die erfindungsgemäßen Formmassen 0 bis 60, insbesondere bis zu 50 Gew.-% weiterer Zusatzstoffe und Verarbeitungshilfsmittel enthalten.
Weitere übliche Zusatzstoffe E) sind beispielsweise in Mengen bis zu 40, vorzugsweise bis zu 30 Gew.-% kautschukelastische Polymerisate (oft auch als Schlagzähmodifier, Elastomere oder Kautschuke bezeichnet).
Ganz allgemein handelt es sich dabei um Copolymerisate die bevorzugt aus mindestens zwei der folgenden Monomeren aufgebaut sind: Ethylen, Propylen, Butadien, Isobuten, Isopren, Chloropren, Vinylacetat, Styrol, Acrylnitril und Acryl- bzw. Methacryl- säureester mit 1 bis 18 C-Atomen in der Alkoholkomponente.
Derartige Polymere werden z.B. in Houben-Weyl, Methoden der organischen Chemie, Bd. 14/1 (Georg-Thieme-Verlag, Stuttgart, 1961). Seiten 392 bis 406 und in der Monographie von CB. Bucknall, "Toughened Plastics" (Applied Science Publishers, London, 1977) beschrieben.
Im folgenden werden einige bevorzugte Arten solcher Elastomerer vorgestellt.
Bevorzugte Arten von solchen Elastomeren sind die sog. Ethylen-Propylen (EPM) bzw. Ethylen-Propylen-Dien-(EPDM)-Kautschuke.
EPM-Kautschuke haben im allgemeinen praktisch keine Doppelbindungen mehr, während EPDM-Kautschuke 1 bis 20 Doppelbindungen/100 C-Atome aufweisen können. Als Dien-Monomere für EPDM-Kautschuke seien beispielsweise konjugierte Diene wie Isopren und Butadien, nicht-konjugierte Diene mit 5 bis 25 C-Atomen wie Penta-1 ,4- dien, Hexa-1 ,4-dien, Hexa-1 ,5-dien, 2,5-Dimethylhexa-1 ,5-dien und Octa-1 ,4-dien, cyc- lische Diene wie Cyclopentadien, Cyclohexadiene, Cyclooctadiene und Dicyclopen- tadien sowie Alkenylnorbornene wie 5-Ethyliden-2-norbornen, 5-Butyliden-2-norbornen, 2-Methallyl-5-norbornen, 2-lsopropenyl-5-norbornen und Tricyclodiene wie 3-Methyl- tricyclo(5.2.1.026)-3,8-decadien oder deren Mischungen genannt. Bevorzugt werden Hexa-1 ,5-dien, 5-Ethylidennorbornen und Dicyclopentadien. Der Diengehalt der EPDM-Kautschuke beträgt vorzugsweise 0,5 bis 50, insbesondere 1 bis 8 Gew.-%, bezogen auf das Gesamtgewicht des Kautschuks.
EPM- bzw. EPDM-Kautschuke können vorzugsweise auch mit reaktiven Carbonsäuren oder deren Derivaten gepfropft sein. Hier seien z.B. Acrylsäure, Methacrylsäure und deren Derivate, z.B. Glycidyl(meth)acry!at, sowie Maleinsäureanhydrid genannt.
Eine weitere Gruppe bevorzugter Kautschuke sind Copolymere des Ethylens mit Acrylsäure und/oder Methacrylsäure und/oder den Estern dieser Säuren. Zusätzlich können die Kautschuke noch Dicarbonsäuren wie Maleinsäure und Fumarsäure oder Derivate dieser Säuren, z.B. Ester und Anhydride, und/oder Epoxy-Gruppen enthaltende Mo- nomere enthalten. Diese Dicarbonsäurederivate bzw. Epoxygruppen enthaltende Monomere werden vorzugsweise durch Zugabe von Dicarbonsäure- bzw. Epoxygruppen enthaltenden Monomeren der allgemeinen Formeln I oder Il oder III oder IV zum Mo- nomerengemisch in den Kautschuk eingebaut
R1C(COOR2)=C(COOR3)R4 (I)
Figure imgf000011_0001
CHR7^CH (CH2)m O (CHR6) CH A CHR5 (III)
CH =CR9 COO ( CH2)p CH-CHR8 (IV)
\ / O wobei R1 bis R9 Wasserstoff oder Alkylgruppen mit 1 bis 6 C-Atomen darstellen und m eine ganze Zahl von 0 bis 20, g eine ganze Zahl von 0 bis 10 und p eine ganze Zahl von 0 bis 5 ist Vorzugsweise bedeuten die Reste R1 bis R9 Wasserstoff, wobei m für 0 oder 1 und g für 1 steht. Die entsprechenden Verbindungen sind Maleinsäure, Fumarsäure, Maleinsäureanhydrid, Allylglycidylether und Vinylglycidylether.
Bevorzugte Verbindungen der Formeln I, Il und IV sind Maleinsäure, Maleinsäureanhydrid und Epoxygruppen-enthaltende Ester der Acryisäure und/oder Methacrylsäure, wie Glycidylacrylat, Glycidylmethacrylat und die Ester mit tertiären Alkoholen, wie t- Butylacrylat. Letztere weisen zwar keine freien Carboxylgruppen auf, kommen in ihrem Verhalten aber den freien Säuren nahe und werden deshalb als Monomere mit latenten Carboxylgruppen bezeichnet.
Vorteilhaft bestehen die Copolymeren aus 50 bis 98 Gew.-% Ethylen, 0,1 bis 20 Gew.-% Epoxygruppen enthaltenden Monomeren und/oder Methacrylsäure und/oder Säure-anhydridgruppen enthaltenden Monomeren sowie der restlichen Menge an (Meth)acrylsäureestern.
Besonders bevorzugt sind Copolymerisate aus
50 bis 98, insbesondere 55 bis 95 Gew.-% Ethylen,
0,1 bis 40, insbesondere 0,3 bis 20 Gew.-% Glycidylacrylat und/oder Glycidylmethacrylat, (Meth)acrylsäure und/oder Maleinsäureanhydrid, und
1 bis 45, insbesondere 5 bis 40 Gew.-% n-Butylacrylat und/oder 2-Ethylhexyl- acrylat.
Weitere bevorzugte Ester der Acryl- und/oder Methacrylsäure sind die Methyl-, Ethyl-, Propyl- und i- bzw. t-Butylester.
Daneben können auch Vinylester und Vinylether als Comonomere eingesetzt werden.
Die vorstehend beschriebenen Ethylencopolymeren können nach an sich bekannten Verfahren hergestellt werden, vorzugsweise durch statistische Copolymerisation unter hohem Druck und erhöhter Temperatur. Entsprechende Verfahren sind allgemein bekannt.
Bevorzugte Elastomere sind auch Emulsionspolymerisate, deren Herstellung z.B. bei Blackley in der Monographie "Emulsion Polymerization" beschrieben wird. Die ver- wendbaren Emulgatoren und Katalysatoren sind an sich bekannt. Grundsätzlich können homogen aufgebaute Elastomere oder aber solche mit einem Schalenaufbau eingesetzt werden. Der schalenartige Aufbau wird durch die Zugabereihenfolge der einzelnen Monomeren bestimmt; auch die Morphologie der Polymeren wird von dieser Zugabereihenfolge beeinflusst.
Nur stellvertretend seien hier als Monomere für die Herstellung des Kautschukteils der Elastomeren Acrylate wie z.B. n-Butylacrylat und 2-Ethylhexylacrylat, entsprechende Methacrylate, Butadien und Isopren sowie deren Mischungen genannt. Diese Monomeren können mit weiteren Monomeren wie z.B. Styrol, Acrylnitril, Vinylethern und weite- ren Acrylaten oder Methacrylaten wie Methylmethacrylat, Methylacrylat, Ethylacrylat und Propylacrylat copolymerisiert werden.
Die Weich- oder Kautschukphase (mit einer Glasübergangstemperatur von unter O0C) der Elastomeren kann den Kern, die äußere Hülle oder eine mittlere Schale (bei Elastomeren mit mehr als zweischaligem Aufbau) darstellen; bei mehrschaligen Elastomeren können auch mehrere Schalen aus einer Kautschukphase bestehen.
Sind neben der Kautschukphase noch eine oder mehrere Hartkomponenten (mit Glasübergangstemperaturen von mehr als 2O0C) am Aufbau des Elastomeren beteiligt, so werden diese im allgemeinen durch Polymerisation von Styrol, Acrylnitril, Methacryl- nitril, σ-Methylstyrol, p-Methylstyrol, Acrylsäureestern und Methacrylsäureestem wie Methylacrylat, Ethylacrylat und Methylmethacrylat als Hauptmonomeren hergestellt. Daneben können auch hier geringere Anteile an weiteren Comonomeren eingesetzt werden.
In einigen Fällen hat es sich als vorteilhaft herausgestellt, Emulsionspolymerisate einzusetzen, die an der Oberfläche reaktive Gruppen aufweisen. Derartige Gruppen sind z.B. Epoxy-, Carboxyl-, latente Carboxyl-, Amino- oder Amidgruppen sowie funktionelle Gruppen, die durch Mitverwendung von Monomeren der allgemeinen Formel
R10 R11
CH2 = C X N C R12
O eingeführt werden können,
wobei die Substituenten folgende Bedeutung haben können:
R10 Wasserstoff oder eine C1- bis C4-Alkylgruppe, R11 Wasserstoff, eine d- bis C8-Alkylgruppe oder eine Arylgruppe, insbesondere Phenyl,
R12 Wasserstoff, eine Cr bis C10-Alkyl-, eine C6- bis C12-Arylgruppe oder -OR13
R13 eine C1- bis C8-Alkyl- oder C6- bis C12-Arylgruppe, die gegebenenfalls mit O- oder N-haltigen Gruppen substituiert sein können,
X eine chemische Bindung, eine C1- bis C10-Aikylen- oder C6-C12-Arylengruppe o- der
O
— C — Y Y O-Z oder NH-Z und
Z eine C1- bis C-|0-Alkylen- oder C6- bis C^-Arylengruppe.
Auch die in der EP-A 208 187 beschriebenen Pfropfmonomeren sind zur Einführung reaktiver Gruppen an der Oberfläche geeignet.
Als weitere Beispiele seien noch Acrylamid, Methacrylamid und substituierte Ester der Acrylsäure oder Methacrylsäure wie (N-t-Butylamino)-ethylmethacrylat, (N,N-Dimethyl- amino)ethylacrylat, (N,N-Dimethylamino)-methylacrylat und (N,N-Diethylamino)ethyl- acrylat genannt.
Weiterhin können die Teilchen der Kautschukphase auch vernetzt sein. Als Vernetzer wirkende Monomere sind beispielsweise Buta-1 ,3-dien, Divinylbenzol, Diallylphthalat und Dihydrodicyclopentadienylacrylat sowie die in der EP-A 50 265 beschriebenen Verbindungen.
Ferner können auch sogenannten pfropfvernetzende Monomere (graft-linking mono- mers) verwendet werden, d.h. Monomere mit zwei oder mehr polymerisierbaren Doppelbindungen, die bei der Polymerisation mit unterschiedlichen Geschwindigkeiten reagieren. Vorzugsweise werden solche Verbindungen verwendet, in denen mindestens eine reaktive Gruppe mit etwa gleicher Geschwindigkeit wie die übrigen Monomeren polymerisiert, während die andere reaktive Gruppe (oder reaktive Gruppen) z.B. deut- lieh langsamer polymerisiert (polymerisieren). Die unterschiedlichen Polymerisationsgeschwindigkeiten bringen einen bestimmten Anteil an ungesättigten Doppelbindungen im Kautschuk mit sich. Wird anschließend auf einen solchen Kautschuk eine weitere Phase aufgepfropft, so reagieren die im Kautschuk vorhandenen Doppelbindungen zumindest teilweise mit den Pfropfmonomeren unter Ausbildung von chemischen Bin- düngen, d.h. die aufgepfropfte Phase ist zumindest teilweise über chemische Bindungen mit der Pfropfgrundlage verknüpft.
Beispiele für solche pfropfvernetzende Monomere sind Allylgruppen enthaltende Monomere, insbesondere Allylester von ethylenisch ungesättigten Carbonsäuren wie AIIyI- acrylat, Allylmethacrylat, Diallylmaleat, Diallylfumarat, Diallylitaconat oder die entsprechenden Monoallylverbindungen dieser Dicarbonsäuren. Daneben gibt es eine Vielzahl weiterer geeigneter pfropfvernetzender Monomerer; für nähere Einzelheiten sei hier beispielsweise auf die US-PS 4 148 846 verwiesen.
Im allgemeinen beträgt der Anteil dieser vernetzenden Monomeren an dem schlagzäh modifizierenden Polymer bis zu 5 Gew.-%, vorzugsweise nicht mehr als 3 Gew.-%, bezogen auf das schlagzäh modifizierende Polymere.
Nachfolgend seien einige bevorzugte Emulsionspolymerisate aufgeführt. Zunächst sind hier Pfropfpolymerisate mit einem Kern und mindestens einer äußeren Schale zu nennen, die folgenden Aufbau haben:
Figure imgf000015_0001
Anstelle von Pfropfpolymerisaten mit einem mehrschaligen Aufbau können auch homogene, d.h. einschalige Elastomere aus Buta-1 ,3-dien, Isopren und n-Butylacrylat oder deren Copolymeren eingesetzt werden. Auch diese Produkte können durch Mitverwendung von vernetzenden Monomeren oder Monomeren mit reaktiven Gruppen hergestellt werden.
Beispiele für bevorzugte Emulsionspolymerisate sind n-Butylacrylat/(Meth)acrylsäure- Copolymere, n-Butylacrylat/Glycidylacrylat- oder n-Butylacrylat/Glycidylmethacrylat- Copolymere, Pfropfpolymerisate mit einem inneren Kern aus n-Butylacrylat oder auf Butadienbasis und einer äußeren Hülle aus den vorstehend genannten Copolymeren und Copolymere von Ethylen mit Comonomeren, die reaktive Gruppen liefern.
Die beschriebenen Elastomere können auch nach anderen üblichen Verfahren, z.B. durch Suspensionspolymerisation, hergestellt werden.
Siliconkautschuke, wie in der DE-A 37 25 576, der EP-A 235 690, der DE-A 38 00 603 und der EP-A 319 290 beschrieben, sind ebenfalls bevorzugt.
Selbstverständlich können auch Mischungen der vorstehend aufgeführten Kautschuktypen eingesetzt werden.
Als faser- oder teilchenförmige Füllstoffe E) seien Kohlenstofffasern, Glasfasern, Glas- kugeln, amorphe Kieselsäure, Calciumsilicat, Calciummetasilicat, Magnesiumcarbonat, Kaolin, Kreide, gepulverter Quarz, Glimmer, Bariumsulfat und Feldspat genannt, die in Mengen bis zu 50 Gew.-%, insbesondere 1 bis 40, vorzugsweise 10 bis 30 Gew.-% eingesetzt werden.
Als bevorzugte faserförmige Füllstoffe seien Kohlenstofffasern, Aramid-Fasern und Kaliumtitanat-Fasern genannt, wobei Glasfasern als E-Glas besonders bevorzugt sind. Diese können als Rovings oder Schnittglas in den handelsüblichen Formen eingesetzt werden.
Die faserförmigen Füllstoffe können zur besseren Verträglichkeit mit dem Thermoplasten mit einer Silanverbindung oberflächlich vorbehandelt sein.
Geeignete Silanverbindungen sind solche der allgemeinen Formel
(X-(CH2)n)k-Si-(O-CmH2m+1)4_k
in der die Substituenten folgende Bedeutung haben:
X NH2-, CH2-CH-, HO-,
\ /
O n eine ganze Zahl von 2 bis 10, bevorzugt 3 bis 4 m eine ganze Zahl von 1 bis 5, bevorzugt 1 bis 2 k eine ganze Zahl von 1 bis 3, bevorzugt 1
Bevorzugte Silanverbindungen sind Aminopropyltrimethoxysilan, Aminobutyltrimeth- oxysilan, Aminopropyltriethoxysilan, Aminobutyltriethoxysilan sowie die entsprechenden Silane, welche als Substituent X eine Glycidylgruppe enthalten. Die Silanverbindungen werden im allgemeinen in Mengen von 0,01 bis 2, vorzugsweise 0,025 bis 1 ,0 und insbesondere 0,05 bis 0,5 Gew.-% (bezogen auf C) zur Oberflä- chenbeschichtung eingesetzt.
Geeignet sind auch nadeiförmige mineralische Füllstoffe.
Unter nadeiförmigen mineralischen Füllstoffen wird im Sinne der Erfindung ein mineralischer Füllstoff mit stark ausgeprägtem nadeiförmigen Charakter verstanden. Als Bei- spiel sei nadeiförmiger Wollastonit genannt. Vorzugsweise weist das Mineral ein UD- (Länge Durchmesser)-Verhältnis von 8 : 1 bis 35 : 1 , bevorzugt von 8 : 1 bis 11 : 1 auf. Der mineralische Füllstoff kann gegebenenfalls mit den vorstehend genannten Silanverbindungen vorbehandelt sein; die Vorbehandlung ist jedoch nicht unbedingt erforderlich.
Als weitere Füllstoffe seien Kaolin, calciniertes Kaolin, Wollastonit, Talkum und Kreide genannt sowie zusätzlich plättchen- oder nadeiförmige Nanofüllstoffe bevorzugt in Mengen zwischen 0,1 und 10 % . Bevorzugt werden hierfür Böhmit, Bentonit, Montmo- rillonit, Vermicullit, Hektorit und Laponit eingesetzt. Um eine gute Verträglichkeit der plättchenförmigen Nanofüllstoffe mit dem organischen Bindemittel zu erhalten, werden die plättchenförmigen Nanofüllstoffe nach dem Stand der Technik organisch modifiziert. Der Zusatz der plättchen- oder nadeiförmigen Nanofüllstoffe zu den erfindungsgemäßen Nanokompositen führt zu einer weiteren Steigerung der mechanischen Festigkeit.
Als Komponente E) können die erfindungsgemäßen thermoplastischen Formmassen übliche Verarbeitungshilfsmittel wie Stabilisatoren, Oxidationsverzögerer, Mittel gegen Wärmezersetzung und Zersetzung durch ultraviolettes Licht, Gleit- und Entformungs- mittel, Färbemittel wie Farbstoffe und Pigmente, Keimbildungsmittel, Weichmacher, Flammschutzmittel usw. enthalten.
Als Beispiele für Oxidationsverzögerer und Wärmestabilisatoren sind sterisch gehinderte Phenole und/oder Phosphite und Amine (z.B. TAD), Hydrochinone, aromatische sekundäre Amine wie Diphenylamine, verschiedene substituierte Vertreter dieser Grup- pen und deren Mischungen in Konzentrationen bis zu 1 Gew.-%, bezogen auf das Gewicht der thermoplastischen Formmassen genannt.
Als UV-Stabilisatoren, die im allgemeinen in Mengen bis zu 2 Gew.-%, bezogen auf die Formmasse, verwendet werden, seien verschiedene substituierte Resorcine, Salicyla- te, Benzotriazole und Benzophenone genannt. Es können anorganische Pigmente, wie Titandioxid, Ultramarinblau, Eisenoxid und Ruß, weiterhin organische Pigmente, wie Phthalocyanine, Chinacridone, Perylene sowie Farbstoffe, wie Nigrosin und Anthrachinone als Farbmittel zugesetzt werden.
Als Keimbildungsmittel können Natriumphenylphosphinat, Aluminiumoxid, Siliziumdioxid sowie bevorzugt Talkum eingesetzt werden.
Die erfindungsgemäßen thermoplastischen Formmassen können nach an sich bekannten Verfahren hergestellt werden, in dem man die Ausgangskomponenten in üblichen Mischvorrichtungen wie Schneckenextrudern, Brabender-Mühlen oder Banbury-Mühlen mischt und anschließend extrudiert. Nach der Extrusion kann das Extrudat abgekühlt und zerkleinert werden. Es können auch einzelne Komponenten vorgemischt werden und dann die restlichen Ausgangsstoffe einzeln und/oder ebenfalls gemischt hinzugegeben werden. Die Mischtemperaturen liegen in der Regel bei 230 bis 32O0C.
Nach einer weiteren bevorzugten Arbeitsweise können die Komponenten B) bis D) sowie gegebenenfalls E) mit einem Präpolymeren gemischt, konfektioniert und granuliert werden. Das erhaltene Granulat wird in fester Phase anschließend unter Inertgas kontinuierlich oder diskontinuierlich bei einer Temperatur unterhalb des Schmelzpunk- tes der Komponente A) bis zur gewünschten Viskosität kondensiert.
Die erfindungsgemäßen thermoplastischen Formmassen zeichnen sich durch eine gute Fließfähigkeit bei gleichzeitig guter Mechanik, sowie eine deutlich verbesserte Wärmealterungsbeständigkeit aus.
Diese eignen sich zur Herstellung von Fasern, Folien und Formkörpern jeglicher Art. Nachfolgend sind einige Beispiele genannt: Zylinderkopfhauben, Motorradabdeckungen, Ansaugrohre, Ladeluftkühlerkappen, Steckverbinder, Zahnräder, Lüfterräder, Kühlwasserkästen.
Im E/E-Bereich können mit fließverbesserten Polyamiden Stecker, Steckerteile, Steckverbinder, Kabelbaumkomponenten, Schaltungsträger, Schaltungsträgerkomponenten, dreidimensional spritzgegossene Schaltungsträger, elektrische Verbindungselemente, mechatronische Komponenten hergestellt werden.
Im Auto-Innenraum ist eine Verwendung für Armaturentafeln, Lenkstockschalter, Sitzteile, Kopfstützen, Mittelkonsolen, Getriebe-Komponenten und Türmodule, im Auto- Außenraum für Türgriffe, Außenspiegelkomponenten, Scheibenwischerkomponenten, Scheibenwischerschutzgehäuse, Ziergitter, Dachreling, Schiebedachrahmen, Motorab- deckungen, Zylinderkopfhauben, Ansaugrohre, Scheibenwischer sowie Karosserieaußenteile möglich. Für den Küchen- und Haushaltsbereich ist der Einsatz fließverbesserter Polyamide zur Herstellung von Komponenten für Küchengeräte, wie z.B. Friteusen, Bügeleisen, Knöpfe, sowie Anwendungen im Garten-Freizeitbereich, z.B. Komponenten für Bewässerungssysteme oder Gartengeräte und Türgriffe möglich.
Beispiele
Es wurden folgende Komponenten verwendet:
Komponente A:
Polyamid 6 (Polycaprolactam) mit einer Viskositätszahl VZ von 150 ml/g, gemessen als 0,5 gew.-%ige Lösung in 96 gew.-%iger Schwefelsäure bei 25°C nach ISO 307 (Es wurde Ultramid®B3 der BASF AG verwendet).
B) Polyethylenimine
M = 25000 g/mol PEI-Homopolymer, Verhältnis von primären zu sekundären zu tertiären Aminogruppen 1:1 ,1:0,7 (best, durch 13 C-NMR) (= BASF AG Handelsprodukt LUPASOL(B)WF).
C) Calciummontanat
D1) CuJ/KJ im Verhältnis 1 : 4
D2) Irganox® 1098 der Firma Ciba Spezialitätenchemie GmbH
Figure imgf000019_0001
E) Glasfasern
Die Formmassen wurden auf einer ZSK 30 bei einem Durchsatz von 10 kg/h und ca. 2600C flachem Temperaturprofil hergestellt.
Es wurden folgende Messungen durchgeführt:
Zugversuch nach ISO 527, Mechanikkennwerte vor und nach Wärmelagerung 2000C im Umluftofen
VZ: c = 5 g/L in 96 %iger Schwefelsäure, nach ISO 307 MVR: 275°C, 5 kg, 4 min, nach ISO 1 133 Fließspirale: 280°C/70°C. 1000 bar, 2 mm-
Die Zusammensetzungen der Formmassen und die Ergebnisse der Messungen sind der Tabelle zu entnehmen.
Figure imgf000020_0001
Mechanikkennwerte vor und nach Wärmelagerung bei 2000C im Umlufttrockenschrank
Figure imgf000020_0002

Claims

Patentansprüche
1. Thermoplastische Formmassen, enthaltend
A) 10 bis 99 Gew.-% mindestens eines thermoplastischen Polyamids,
B) 0,1 bis 5 Gew.-% mindestens eines Polyethyleniminhomo- oder -copoly- merisates,
C) 0,05 bis 3 Gew.-% eines Schmiermittels,
D) 0,05 bis 3 Gew.-% eines kupferhaltigen Stabilisators oder eines sterisch gehinderten Phenols oder deren Mischungen,
E) 0 bis 60 Gew.-% weiterer Zusatzstoffe,
wobei die Summe der Gewichtsprozente der Komponenten A) bis E) 100 % ergibt.
2. Thermoplastische Formmassen nach Anspruch 1 , wobei die Polyethylenimin- Polymerisate ausgewählt sind aus
Homopolymeren des Ethylenimins,
Copolymeren aus Ethylenimin und Aminen mit mindestens zwei Amino- gruppen,
vernetzten Polyethyleniminen,
gepfropften Polyethyleniminen,
amidierten Polymerisaten erhältlich durch Umsetzung von Polyethyleniminen mit Carbonsäuren oder Carbonsäureestern, -anhydriden, -amiden oder -halogeniden,
alkoxylierten Polyethyleniminen,
hydroxylgruppenhaltigen Polyethyleniminen,
amphoteren Polyethyleniminen, und
lipophilen Polyethyleniminen.
3. Thermoplastische Formmassen nach den Ansprüchen 1 oder 2, in denen die
Komponente C) aus AI- oder Alkali- oder Erdalkalisalzen oder Ester- oder Amide von Fettsäuren mit 10 bis 44 C-Atomen aufgebaut ist.
4. Thermoplastische Formmassen nach den Ansprüchen 1 bis 3, in denen die Komponente C) aus Calciumsalzen von Fettsäuren mit 10 bis 44 C-Atomen aufgebaut ist.
5. Thermoplastische Formmassen nach den Ansprüchen 1 bis 4, in denen der kup- ferhaltige Stabilisator D) ein Cu-Halogenid ist.
6. Thermoplastische Formmassen nach den Ansprüchen 1 bis 5, in denen D) aus CuI : KJ im Verhältnis 1 : 4 aufgebaut ist.
7. Thermoplastische Formmassen nach den Ansprüchen 1 bis 6, in denen das ste- risch gehinderte Phenol aus N,N'Hexamethylen-bis-3,5-di-tert.-butyl-4-hydroxy- hydrocinnamid aufgebaut ist.
8. Verwendung der thermoplastischen Formmassen gemäß den Ansprüchen 1 bis 7 zur Herstellung von Fasern, Folien und Formkörpern jeglicher Art.
9. Fasern Folien und Formkörper jeglicher Art erhältlich aus den thermoplastischen Formmassen gemäß den Ansprüchen 1 bis 7.
PCT/EP2006/050763 2005-02-08 2006-02-08 Wärmealterungsbeständige polyamide WO2006084862A1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
KR1020077020471A KR101278734B1 (ko) 2005-02-08 2006-02-08 열 노화 내성 폴리아미드
CN2006800044094A CN101115786B (zh) 2005-02-08 2006-02-08 耐热老化聚酰胺
JP2007554552A JP5118976B2 (ja) 2005-02-08 2006-02-08 耐熱老化性ポリアミド
KR1020137008597A KR20130041392A (ko) 2005-02-08 2006-02-08 열 노화 내성 폴리아미드
BRPI0606914A BRPI0606914B1 (pt) 2005-02-08 2006-02-08 materiais de moldagem termoplásticos, uso dos mesmos, e, fibras, filmes e peça moldada de qualquer tipo
PL06708109T PL1851265T3 (pl) 2005-02-08 2006-02-08 Poliamidy odporne na starzenie termiczne
DE502006000958T DE502006000958D1 (de) 2005-02-08 2006-02-08 Wärmealterungsbeständige polyamide
EP06708109A EP1851265B1 (de) 2005-02-08 2006-02-08 Wärmealterungsbeständige polyamide
US11/815,723 US20080262133A1 (en) 2005-02-08 2006-02-09 Thermal Aging-Resistant Polyamides
US13/398,574 US20120149817A1 (en) 2005-02-08 2012-02-16 Thermal aging-resistant polyamides

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005005847A DE102005005847A1 (de) 2005-02-08 2005-02-08 Wärmealterungsbeständige Polyamide
DE102005005847.7 2005-02-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/398,574 Continuation US20120149817A1 (en) 2005-02-08 2012-02-16 Thermal aging-resistant polyamides

Publications (1)

Publication Number Publication Date
WO2006084862A1 true WO2006084862A1 (de) 2006-08-17

Family

ID=36636651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/050763 WO2006084862A1 (de) 2005-02-08 2006-02-08 Wärmealterungsbeständige polyamide

Country Status (12)

Country Link
US (2) US20080262133A1 (de)
EP (1) EP1851265B1 (de)
JP (1) JP5118976B2 (de)
KR (2) KR101278734B1 (de)
CN (1) CN101115786B (de)
AT (1) ATE398645T1 (de)
BR (1) BRPI0606914B1 (de)
DE (2) DE102005005847A1 (de)
ES (1) ES2306429T3 (de)
MY (1) MY139749A (de)
PL (1) PL1851265T3 (de)
WO (1) WO2006084862A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110021686A1 (en) * 2008-03-18 2011-01-27 Basf Se Polyamide nanocomposites with hyper-branched polyetheramines
US20110021687A1 (en) * 2008-03-18 2011-01-27 Basf Se Polyamide nanocomposites with hyper-branched polyethyleneimines
US7902287B2 (en) * 2008-01-21 2011-03-08 Basf Aktiengesellschaft Polyamide resin composition and method of preparing
EP3670576A1 (de) 2018-12-19 2020-06-24 EMS-Patent AG Polyamid-formmassen für glasverbunde
WO2021170715A1 (en) * 2020-02-26 2021-09-02 Basf Se Heat-aging resistant polyamide molding compositions

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1683830A1 (de) * 2005-01-12 2006-07-26 DSM IP Assets B.V. Thermostabilisierte Formmassen
EP1681313A1 (de) 2005-01-17 2006-07-19 DSM IP Assets B.V. Hitzestabilisierte Formmasse
AU2007331458B2 (en) 2006-12-15 2013-06-13 Basf Se Polymer dispersions containing highly branched polycarbonates
WO2009077492A2 (de) * 2007-12-18 2009-06-25 Basf Se Thermoplastische polyamide mit polyetheraminen
US20110290209A1 (en) * 2008-11-11 2011-12-01 Basf Se Stabilized polyamides
DE102008058246A1 (de) 2008-11-19 2010-05-20 Basf Se Hochmolekulare Polyamide
JP5656865B2 (ja) * 2008-12-16 2015-01-21 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 熱老化抵抗性ポリアミド
DE102010062538A1 (de) 2009-12-17 2011-06-22 Basf Se, 67063 Verfahren zur Herstellung geschweisster Formkörper aus Polyamid-6.10
US20120181487A1 (en) * 2011-01-18 2012-07-19 Basf Se Thermoplastic molding composition
CN103492487B (zh) * 2011-02-22 2015-08-19 株式会社普利司通 聚酰胺树脂组合物、其制造方法和制冷剂输送软管
EP2570448A1 (de) * 2011-09-13 2013-03-20 Basf Se Verwendung von Polyethyleniminen in der Herstellung von Polyamiden
WO2013188323A1 (en) 2012-06-13 2013-12-19 E. I. Du Pont De Nemours And Company Thermoplastic melt-mixed composition with polyetherol heat stabilizer
JP6416756B2 (ja) 2012-06-13 2018-10-31 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company アミノ酸熱安定剤を含む熱可塑性溶融混合組成物
US8871874B2 (en) 2012-06-13 2014-10-28 E I Du Pont De Nemours And Company Thermoplastic melt-mixed composition with epoxy-amino acid compound heat stabilizer and processes for their preparation
CN104364315A (zh) 2012-06-13 2015-02-18 纳幕尔杜邦公司 具有环氧-羧酸化合物热稳定剂的熔融混合的热塑性组合物
EP2719726B1 (de) * 2012-10-10 2017-03-22 LANXESS Deutschland GmbH Formmassen
US10583595B2 (en) 2013-08-21 2020-03-10 Basf Se Method for producing a composite plastic part (CK)
KR102330567B1 (ko) * 2013-08-21 2021-11-25 바스프 에스이 복합 플라스틱 부품에 함유된 플라스틱 성분들 간의 접착이 개선된 복합 플라스틱 부품
EP3036076B1 (de) * 2013-08-21 2017-10-11 Basf Se Compositkunststoffteil mit verbesserter wärmealterungsbeständigkeit
JP2015199938A (ja) * 2014-04-03 2015-11-12 旭化成ケミカルズ株式会社 ポリアミド樹脂組成物及び成形品
CN104045922A (zh) * 2014-07-16 2014-09-17 苏州新区华士达工程塑胶有限公司 一种改良性epdm
JP6724368B2 (ja) * 2015-02-23 2020-07-15 東レ株式会社 成形品およびポリアミド樹脂組成物
WO2018075431A1 (en) * 2016-10-18 2018-04-26 Ascend Performance Materials Operations Llc Low-halogen flame retardant polyamide compositions resistant to heat aging
EP3896112B1 (de) * 2018-12-10 2024-07-03 Nippon Soda Co., Ltd. Polyalkyleniminmodifiziertes polyamid 4
JP7513626B2 (ja) * 2019-03-06 2024-07-09 ビーエーエスエフ ソシエタス・ヨーロピア 高光沢用途のためのポリアミド成形組成物
WO2021191209A1 (en) 2020-03-25 2021-09-30 Basf Se Heat-aging resistant polyamide molding compositions
JPWO2023033043A1 (de) * 2021-09-01 2023-03-09
CN115594966B (zh) * 2022-09-30 2024-01-02 上海金发科技发展有限公司 一种聚酰胺复合材料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54103475A (en) * 1978-02-01 1979-08-14 Mitsubishi Plastics Ind Ltd Preparation of laminated drawn film
JPH0418426A (ja) * 1990-05-11 1992-01-22 Toyobo Co Ltd 耐ブロッキング性の優れた易接着性フィルム
US6391982B1 (en) * 1999-06-29 2002-05-21 Degussa Ag Highly branched polyamide graft copolymers
US20030195296A1 (en) * 2000-06-29 2003-10-16 Burkhardt Dames Stabilized thermoplastic moulding materials

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE721457A (de) * 1967-09-28 1969-03-03
ES372097A1 (es) * 1968-10-09 1971-12-16 Union Carbide Canada Ltd Procedimiento para preparar una composicion de nylon que tiene receptividad mejorada para los tintes acidos.
JPH04202357A (ja) * 1990-11-29 1992-07-23 Toray Ind Inc 耐熱安定性の優れた難燃性ポリアミド樹脂組成物
JPH04220460A (ja) * 1990-12-20 1992-08-11 Asahi Chem Ind Co Ltd 耐熱性ポリアミド組成物
DE4305166A1 (de) * 1993-02-19 1994-08-25 Bayer Ag Thermostabile kupferhaltige Polyamidformmassen
DE4339509A1 (de) * 1993-11-22 1995-05-24 Basf Ag PPE/PA-Frommassen zur Herstellung von Formkörpern mittels Blasformen, Profilextrusion und Rohrextrusion
DE19519820A1 (de) * 1995-05-31 1996-12-05 Bayer Ag Thermostabile, witterungsbeständige Polyamidformmassen
JP3714788B2 (ja) * 1998-02-13 2005-11-09 旭化成ケミカルズ株式会社 成形特性に優れるポリアミド樹脂組成物のペレットの製造方法
JP2000344960A (ja) * 1999-03-31 2000-12-12 Chisso Corp 難燃性樹脂組成物、それを用いた難燃性シートおよびフィルム成形物
DE10064333A1 (de) * 2000-12-21 2002-06-27 Degussa Mehrschichtverbund mit einer EVOH-Schicht
JP4245327B2 (ja) * 2002-10-25 2009-03-25 旭化成ケミカルズ株式会社 ポリアミド樹脂組成物
EP1498445A1 (de) * 2003-07-18 2005-01-19 DSM IP Assets B.V. Wärmestabilisierte Formmasse

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54103475A (en) * 1978-02-01 1979-08-14 Mitsubishi Plastics Ind Ltd Preparation of laminated drawn film
JPH0418426A (ja) * 1990-05-11 1992-01-22 Toyobo Co Ltd 耐ブロッキング性の優れた易接着性フィルム
US6391982B1 (en) * 1999-06-29 2002-05-21 Degussa Ag Highly branched polyamide graft copolymers
US20030195296A1 (en) * 2000-06-29 2003-10-16 Burkhardt Dames Stabilized thermoplastic moulding materials

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 003, no. 123 (C - 061) 16 October 1979 (1979-10-16) *
PATENT ABSTRACTS OF JAPAN vol. 016, no. 176 (C - 0934) 27 April 1992 (1992-04-27) *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7902287B2 (en) * 2008-01-21 2011-03-08 Basf Aktiengesellschaft Polyamide resin composition and method of preparing
US20110021686A1 (en) * 2008-03-18 2011-01-27 Basf Se Polyamide nanocomposites with hyper-branched polyetheramines
US20110021687A1 (en) * 2008-03-18 2011-01-27 Basf Se Polyamide nanocomposites with hyper-branched polyethyleneimines
EP3670576A1 (de) 2018-12-19 2020-06-24 EMS-Patent AG Polyamid-formmassen für glasverbunde
EP3670577A1 (de) 2018-12-19 2020-06-24 EMS-Patent AG Polyamid-formmassen für glasverbunde
US11807718B2 (en) 2018-12-19 2023-11-07 Ems-Patent Ag Polyamide moulding compositions for glass composites
WO2021170715A1 (en) * 2020-02-26 2021-09-02 Basf Se Heat-aging resistant polyamide molding compositions

Also Published As

Publication number Publication date
ATE398645T1 (de) 2008-07-15
EP1851265A1 (de) 2007-11-07
CN101115786B (zh) 2012-06-20
ES2306429T3 (es) 2008-11-01
EP1851265B1 (de) 2008-06-18
KR101278734B1 (ko) 2013-06-25
JP5118976B2 (ja) 2013-01-16
US20120149817A1 (en) 2012-06-14
US20080262133A1 (en) 2008-10-23
DE102005005847A1 (de) 2006-08-10
KR20130041392A (ko) 2013-04-24
PL1851265T3 (pl) 2008-11-28
DE502006000958D1 (de) 2008-07-31
CN101115786A (zh) 2008-01-30
JP2008530290A (ja) 2008-08-07
KR20070102739A (ko) 2007-10-19
BRPI0606914A2 (pt) 2009-12-01
BRPI0606914B1 (pt) 2017-04-04
MY139749A (en) 2009-10-30

Similar Documents

Publication Publication Date Title
EP1851265B1 (de) Wärmealterungsbeständige polyamide
EP2379644B1 (de) Wärmealterungsbeständige polyamide
EP2356174B1 (de) Stabilisierte polyamide
EP2001951B1 (de) Wärmeleitfähige polyamide
EP2510056B1 (de) Teilaromatische, teilkristalline copolyamide
EP2652032B1 (de) Glühdrahtbeständige polyamide
EP2294120B1 (de) Wärmeleitfähige polyamide mit diatomeenerde
WO2007042446A1 (de) Flammgeschütze formmassen
WO2011051123A1 (de) Wärmealterungsbeständige polyamide
EP2582759B1 (de) Wärmealterungsbeständige polyamide
WO2006010543A1 (de) Wärmestabilisierte polyamide
EP2861666B1 (de) Flammgeschützte polyamide mit polyacrylnitrilhomopolymerisaten
EP2817363B1 (de) Cuo/zno-mischungen als stabilisatoren für flammgeschützte polyamide
WO2011069942A1 (de) Teilaromatische copolyamidformmassen auf der basis von octamethylendiamin
EP2828336A1 (de) Hellgefärbte flammgeschützte polyamide
WO2012098063A1 (de) Hydrolysestabile polyamide
EP2756033B1 (de) Silber-zinkoxid-mischungen als stabilisator für flammgeschützte polyamide enthaltend roten phosphor
WO2012146624A1 (de) Flammgeschütze formmassen
EP2650331A1 (de) Polyamide für Trinkwasseranwendungen
EP2415827A1 (de) Flammgeschützte Polyamide mit Schichtsilikaten
DE102008058246A1 (de) Hochmolekulare Polyamide
WO2013083508A1 (de) Flammgeschützte polyamide mit flüssigkristallinen polyestern

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006708109

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11815723

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007554552

Country of ref document: JP

Ref document number: 200680004409.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077020471

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2006708109

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2006708109

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0606914

Country of ref document: BR

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 1020137008597

Country of ref document: KR