WO2006083433A2 - Method and system for evaluating number of additional admissible calls for use in call admission control - Google Patents

Method and system for evaluating number of additional admissible calls for use in call admission control Download PDF

Info

Publication number
WO2006083433A2
WO2006083433A2 PCT/US2005/047114 US2005047114W WO2006083433A2 WO 2006083433 A2 WO2006083433 A2 WO 2006083433A2 US 2005047114 W US2005047114 W US 2005047114W WO 2006083433 A2 WO2006083433 A2 WO 2006083433A2
Authority
WO
WIPO (PCT)
Prior art keywords
time
percentage
calls
downlink
voice packets
Prior art date
Application number
PCT/US2005/047114
Other languages
French (fr)
Other versions
WO2006083433A3 (en
Inventor
Lu Qian
Bretton Douglas
David Sheldon Stephenson
Sandeep Jay Shetty
Rajneesh Kumar
Wenfeng Huang
Original Assignee
Cisco Technology, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cisco Technology, Inc. filed Critical Cisco Technology, Inc.
Priority to EP05855637A priority Critical patent/EP1844575B1/en
Publication of WO2006083433A2 publication Critical patent/WO2006083433A2/en
Publication of WO2006083433A3 publication Critical patent/WO2006083433A3/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/28Flow control; Congestion control in relation to timing considerations
    • H04L47/283Flow control; Congestion control in relation to timing considerations in response to processing delays, e.g. caused by jitter or round trip time [RTT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/15Flow control; Congestion control in relation to multipoint traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/80Actions related to the user profile or the type of traffic
    • H04L47/801Real time traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/82Miscellaneous aspects
    • H04L47/822Collecting or measuring resource availability data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/82Miscellaneous aspects
    • H04L47/824Applicable to portable or mobile terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/02Access restriction performed under specific conditions
    • H04W48/06Access restriction performed under specific conditions based on traffic conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/04Registration at HLR or HSS [Home Subscriber Server]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup

Definitions

  • the present invention relates generally to communication networks, and more particularly, to call admission control in wireless networks.
  • CAC Call admission control
  • EEEE 802.11 covers the media access control (MAC) layer and physical layer specifications for WLANs.
  • the physical properties of the wireless medium and 802.11 MAC protocols impose an upper boundary on the number of admissible wireless voice over IP (WVoIP) calls a wireless network (WLAN) can support (i.e., the call capacity).
  • the call capacity depends on many factors, including, for example, channel conditions, background data traffic loads, and multi-BSS (basic service set) interference. Admission of even one more call than the call capacity can bring the WLAN from stable to unstable, causing a significant degradation of the voice quality of admitted calls. CAC must therefore be in place to ensure the quality of service.
  • the call capacity for a network varies with network conditions and configurations. Metrics for use in CAC decisions, therefore, need to adjust to changes in wireless medium conditions and network traffic conditions.
  • Local channel conditions which need to be accounted for, include foreign interference (e.g., from microwave radios, Bluetooth radios, etc.) that may only affect one or two access points (APs) rather than an entire WLAN.
  • APs access points
  • frequency reuse in the WLAN may reduce the number of calls per AP as several APs can share the RF channel and its capacity. The amount of channel overlap may be difficult to predict due to the wide variety of deployments and radio propagation conditions found therein.
  • the call capacity or equivalently the number of additional admissible calls, Na, given a certain number of admitted calls is a promising metric for a reliable CAC procedure.
  • the call capacity and Na depend on many aspects of the network conditions, including, for example, the wireless channel conditions, background data traffic loads, and QoS capabilities of the WLAN. These dependencies are often numerically intangible and only WLAN simulations can provide an answer for a given network condition. In field deployments, the combinations of wireless network conditions are unlimited, making it unrealistic to use metrics predetermined by network simulations. In addition, network conditions for a WLAN often change with time, thus making evaluating the call capacity or Na even more challenging. Many CAC schemes have been proposed. Many of these schemes use metrics such as delay, jitter, and packet loss rate. However, these metrics do not possess the desired properties discussed above, and do not provide an optimal call admission decision. Moreover, existing CAC metrics do not provide predictive measurements, which allow the CAC to predict the impact of the admission of new calls on a WLAN before it actually admits the call. Furthermore, conventional CAC schemes often make the implementation complex and lead to performance degradation.
  • a method for evaluating number of additional admissible calls for use in call admission control generally comprises tracking a percentage of channel busy time and transmission time of downlink and uplink voice packets, receiving a call admission request, and calculating the number of admissible calls.
  • the number of admissible calls is calculated based on a channel bandwidth requirement determined from the percentage of channel busy time and a voice packet queuing requirement determined from the transmission time of downlink and uplink voice packets.
  • the call admission request is approved if the number of admissible calls is greater than one and rejected if the number of admissible calls is less than one.
  • a system for evaluating number of additional admissible calls for use in call admission control generally comprises a metrics measurement module and an admission control module.
  • the metrics measurement module is operable to track a percentage of channel busy time and transmission time of downlink and uplink voice packets.
  • the admission control module is operable to receive a call admission request, calculate the number of admissible calls based on a channel bandwidth requirement determined from the percentage of channel busy time, and a voice packet queuing requirement determined from the transmission time of downlink and uplink voice packets, and approve the call admission request if the number of admissible calls is greater than one and reject the call admission request if the number of admissible calls is less than one.
  • Fig. 1 is a diagram illustrating an exemplary wireless communication system.
  • Fig. 2 is a flowchart illustrating one example of a process of the present invention for evaluating the number of additional admissible calls for use in call admission control.
  • Fig. 3 is a block diagram illustrating components of an access point of the wireless communication system of Fig. 1.
  • Fig. 4 is a block diagram of one example of a network device for use in implementing embodiments of the present invention.
  • a method and system for evaluating the number of additional admissible calls for use in call admission control (CAC) are disclosed herein.
  • the number of additional admissible calls is based on network requirements for WVoIP.
  • an AP access point
  • the method and system may be applied extensively to WVoIP in both large enterprise environments and small or medium business environments.
  • Fig. 1 illustrates an example of a wireless communication network suitable for implementing one embodiment of the present invention.
  • the wireless communication system facilitates two-way communication between a plurality of subscriber units (fixed and portable mobile stations) 10 and a fixed network infrastructure 18.
  • Mobile stations 10 may be cellular telephones, personal communication systems such as personal digital assistants (PDAs), laptop computers, pagers, or other suitable wireless devices providing voice, video, data, and other wireless services to users.
  • PDAs personal digital assistants
  • the network includes one or more access points (APs) 12, one or more wireless domain services (WDSs) 14, one or more access switches (AS) 16, and multiple subscriber units (mobile stations) 10.
  • the mobile stations 10 are in communication with the APs 12 and may also be in communication with one or more satellites to enable communication with one or more devices coupled to the IP network 18 or any other network.
  • the mobile station 10 may also communicate directly with other devices, such as other mobile stations using suitable wireless communication techniques.
  • Each access point 12 is in communication with WDS 14 and access switch 16. Multiple access points 12 may report to one WDS 14.
  • the access points 12 are coupled to the IP network 18 and allow mobile stations 10 to communicate with other devices coupled to the WLAN.
  • the WLAN may include, for example, access routers, core routers, and other network elements, as is well known by those skilled in the art.
  • the network may include any number of subnetworks and routers, and the subnetworks can form a network topology other than LAN, such as a wide area network, an enterprise network, and a metropolitan area network, for example. It is to be understood that the network shown and described herein is only one example and that the present invention may be implemented in any telecommunication network utilizing call admission control policies. For example, the method and system described herein may be used with packet data other than IEEE standard 802.11.
  • the method and system described herein utilize a CAC quality metric for QoS traffic that provides information sufficient to make call admission control decisions. These metrics are preferably made available to the access points 12 in relatively frequent intervals (e.g., 5 second intervals).
  • the call admission control function allocates bandwidth to client devices on a first-come, first-serve basis, and may also be used to maintain a small reserve so mobile phone clients can roam into a BSS (basic service set) (even though the BSS would otherwise be at full capacity).
  • the CAC metrics may also be used to reserve a specified amount of bandwidth for voice or data. For example, fifty percent of a channel capacity may be reserved for voice and fifty percent reserved for data.
  • the system may also be configured to set a priority to voice or data or used in real time video conferencing to prioritize critical data.
  • the CAC metrics may also be used for load balancing at the WDS based on data received from the APs.
  • a user interface (UI) may be provided to configure channel reservation for roaming or load balancing.
  • the user interface may also display the number of admitted calls, number of additional admissible calls, or other metrics.
  • the metrics set forth below for use in making a CAC decision are dynamic since the call capacity for a network varies with the network conditions and configurations.
  • the CAC metrics are configured to adjust to changes in wireless medium conditions and network traffic conditions and account for local channel conditions such as foreign interference (e.g., from microwave radios, Bluetooth radios, etc.) that may only affect one or two APs 12 and not the entire WLAN.
  • the CAC metrics described herein are used to predict the impact of a new call on the WLAN before the system admits the call to reduce the chances of a new call causing the WLAN to become unstable.
  • the CAC metric is based on two requirements (conditions) for a stable WLAN involving the presence of voice clients; channel bandwidth and voice packet queuing, as described in detail below.
  • the channel bandwidth requirement ensures that there is enough channel bandwidth for voice packets. If a number (N) of calls have already been admitted in a basic service set (BSS), the available network bandwidth for additional admissible calls within a voice packet time interval (dT) is represented by: dT*(l-Pb); where: dT: voice packet interval; and Pb: % of channel busy time from an AP' s perspective.
  • the voice packet interval dT is determined by a Codec in the voice clients and may be, for example, 20 ms.
  • Pb is the percentage of time that the receiver is busy demodulating IEEE standard 802.11 traffic and includes the time the AP 12 transmits packets and the time the AP's clear channel assessment (CCA) reports that a channel is busy. If the WLAN can accommodate a number of additional calls (Na), the additional calls will take a network bandwidth of:
  • T ' i_u'- average transmission time for voice packets in an uplink Tl_d: average transmission time for voice packets in a downlink
  • Pb % of channel busy time from an AP's perspective.
  • TI u and Tl_d are the transmission time for voice packets starting when they reach the front end of their transmission queues to the time they receive an acknowledgement for the uplink and downlink respectively, measured and averaged over a sliding time window.
  • Tl_d is measured by the AP itself and Tl_u is measured and reported to the AP by each voice client. The AP further averages Tl_u over the number of voice clients. The retransmission of packets and the time in back-off are counted in the transmission time.
  • a new CAC metric for use in defining the number of additional calls that can be supported is therefore defined as:
  • the CAC metric Na is determined by real-time measurable metrics and is therefore very accurate. Since Na is self-adaptive, it can dynamically adjust to changes in network conditions. For example, when the data traffic increases, the number of allowed calls can be lowered automatically. Na also includes other network factors, such as traffic load, channel conditions, and multi-cell interference.
  • Fig. 2 is a flowchart illustrating one example of a process of the present invention for evaluating the number of additional admissible calls for use in call admission control.
  • the AP keeps track of a moving average of Pb over a sliding time window.
  • Pb is derived from the time the AP is in transmission and the time the AP's CCA reports busy.
  • the AP also keeps track of a moving average of Tl_d over a sliding time window (step 22).
  • Each voice client keeps track of a moving average of its Tl_u over a sliding time window and reports TI u to the AP periodically (step 24).
  • the AP maintains an average of Tl_u over the number of received Tl_u's within a sliding time window (step 26).
  • the AP Upon receiving a Tl_u from a voice client, the AP adjusts the average Tl_u it maintains accordingly.
  • the AP gets a new call admission request, it computes NaI, Na2 and Na from N, Pb, Tl_u and TI d by using the above formulas (steps 28 and 30). IfNa is greater than 1, the AP can safely admit the new call (steps 32 and 34). IfNa is less than or equal to 1, the AP rejects the admission request (steps 32 and 36).
  • the process described above is only one example, and that the process may be modified without departing from the scope of the invention.
  • the method can easily be extended so that some call slots are reserved for roaming calls.
  • the process may also be applied to admission control for other QoS applications such as video streams.
  • other co-channel APs can exchange information so that the total N (number of calls on the channel) is accounted for in the formula for Na2.
  • other co-channel APs can exchange information so that only Pb due to voice calls (and not best-effort data packets) is measured, thereby providing a more accurate estimate of Na. This may be important since EDCA will, to a large extent, prioritize voice and video packets ahead of data packets.
  • the process may be extended to use different voice packet intervals other than 20ms or even a mixture of intervals within a BSS.
  • Fig. 3 illustrates an admission control module 40 located within the AP 12 for calculation of the CAC metrics.
  • a metrics measurement module 42 posts the latest measurement of metrics such as Tl_u, Tl_d, and Pb.
  • the admission control module 40 computes Na from these values, as previously described.
  • Information from the mobile stations 10 is transferred to the AP 12 as management information.
  • the admission control and metrics measurement modules 40, 42 are shown in Fig. 2 as part of the AP 12. It is to be understood, however, that the admission control module 40 may also be located within the WDS 14. In this case, requests for voice metrics are sent to the APs 12 over the WDS 14. As the APs 12 receive the request for voice measurements, they respond to the WDS 14 with requested data.
  • the AP 12 (or WDS 14) collects the data and dynamically performs the calculations to determine the CAC metrics. If the AP 12 determines that the number of calls has reached its limit based on the CAC metrics, it rejects new requests and may direct the requests to other APs 12.
  • the admission control module 40 may respond to a request with a bandwidth confirm message permitting a call to be placed or a bandwidth reject message refusing to make the necessary connection for the call.
  • the admission control module 40 may be a controller having a processor configured to execute software stored in memory and receive input from interfaces for use in executing the software, as described below with respect to Fig. 4, for example.
  • Fig. 4 depicts a network device 60 that may be used to implement the method and system described above.
  • network device 60 is a programmable machine that may be implemented in hardware, software, or any combination thereof.
  • a processor 62 executes code stored in a program memory 64.
  • Program memory 64 is one example of a computer-readable medium.
  • Program memory 64 can be a volatile memory.
  • Another form of computer-readable medium storing the same codes is a type of non-volatile storage such as floppy disks, CD-ROMs, DVD-ROMs, hard disks, flash memory, etc.
  • a carrier wave that carries the code across a network is another example of a computer-readable medium.
  • Network device 60 may interface with transmission media via a plurality of interfaces 66.
  • interfaces 66 may incorporate processing and memory resources similar to those discussed above in connection with the network device as a whole. As packets are received, processed, and forwarded by network device 60, they may be stored in a packet memory 68.
  • Network device 60 shown in Fig. 4 is only one example of a computer system suitable for use with the invention. Other devices and systems having different configurations of subsystems may also be utilized.
  • the system and method described herein have many advantages.
  • the number of admissible calls (Na) is determined by real-time measurable metrics of the network, so it is very precise for the real time network conditions.
  • Na is also self-adaptive and, therefore, can dynamically adjust to changes in network conditions. For example, when the data traffic decreases, the number of allowed calls can be increased automatically.
  • Na automatically includes other network factors, such as traffic loads, channel conditions, and multi-cell interference via the percentage of channel business and retransmissions and back-off counted in transmission time. It also accounts for local channel conditions including foreign interference that may only affect one or more APs and not the entire WLAN. Since Na is a function of N, Na has a good predictability demanded by any reliable CAC procedure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Databases & Information Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Small-Scale Networks (AREA)

Abstract

A method for evaluating number of additional admissible calls for use in call admission control includes tracking a percentage of channel busy time and transmission time of downlink and uplink voice packets, receiving a call admission request, and calculating the number of admissible calls. The number of admissible calls is calculated based on a channel bandwidth requirement determined from the percentage of channel busy time and a voice packet queuing requirement determined from the transmission time of downlink and uplink voice packets. The call admission request is approved if the number of admissible calls is greater than one and rejected if the number of admissible calls is less than one.

Description

METHOD AND SYSTEM FOR EVALUATING NUMBER OF
ADDITIONAL ADMISSIBLE CALLS FOR USE IN CALL
ADMISSION CONTROL
BACKGROUND OF THE INVENTION
The present invention relates generally to communication networks, and more particularly, to call admission control in wireless networks.
In recent years wireless networks have gained popularity and have been widely deployed. With fast deployment of wireless local area networks (WLANs), the ability of WLAN to support real time services while maintaining quality of service (QoS) requirements has become an important issue. In order to support a wide range of traffic on a wireless network, the infrastructure must be capable of supporting various quality of service (QoS) requirements, including call admission. Call admission control (CAC) plays a significant role in providing the desired quality of service in wireless networks. CAC limits the number of call connections into the network in order to reduce network congestion and call dropping. CAC operates to maximize the use of available bandwidth, either in calls accepted or traffic scheduled according to channel utilization, while minimizing a blocking probability for new calls and call drop probability for connected calls.
EEEE 802.11 covers the media access control (MAC) layer and physical layer specifications for WLANs. The physical properties of the wireless medium and 802.11 MAC protocols impose an upper boundary on the number of admissible wireless voice over IP (WVoIP) calls a wireless network (WLAN) can support (i.e., the call capacity). The call capacity depends on many factors, including, for example, channel conditions, background data traffic loads, and multi-BSS (basic service set) interference. Admission of even one more call than the call capacity can bring the WLAN from stable to unstable, causing a significant degradation of the voice quality of admitted calls. CAC must therefore be in place to ensure the quality of service.
The call capacity for a network varies with network conditions and configurations. Metrics for use in CAC decisions, therefore, need to adjust to changes in wireless medium conditions and network traffic conditions. Local channel conditions which need to be accounted for, include foreign interference (e.g., from microwave radios, Bluetooth radios, etc.) that may only affect one or two access points (APs) rather than an entire WLAN. Also, frequency reuse in the WLAN may reduce the number of calls per AP as several APs can share the RF channel and its capacity. The amount of channel overlap may be difficult to predict due to the wide variety of deployments and radio propagation conditions found therein. The call capacity or equivalently the number of additional admissible calls, Na, given a certain number of admitted calls is a promising metric for a reliable CAC procedure. However, the call capacity and Na depend on many aspects of the network conditions, including, for example, the wireless channel conditions, background data traffic loads, and QoS capabilities of the WLAN. These dependencies are often numerically intangible and only WLAN simulations can provide an answer for a given network condition. In field deployments, the combinations of wireless network conditions are unlimited, making it unrealistic to use metrics predetermined by network simulations. In addition, network conditions for a WLAN often change with time, thus making evaluating the call capacity or Na even more challenging. Many CAC schemes have been proposed. Many of these schemes use metrics such as delay, jitter, and packet loss rate. However, these metrics do not possess the desired properties discussed above, and do not provide an optimal call admission decision. Moreover, existing CAC metrics do not provide predictive measurements, which allow the CAC to predict the impact of the admission of new calls on a WLAN before it actually admits the call. Furthermore, conventional CAC schemes often make the implementation complex and lead to performance degradation.
There is, therefore, a need for a dynamic and predictive method and system for use in call admission control to evaluate the number of additional calls that can be admitted without degrading the voice quality of admitted calls.
SUMMARY OF THE INVENTION
A method for evaluating number of additional admissible calls for use in call admission control generally comprises tracking a percentage of channel busy time and transmission time of downlink and uplink voice packets, receiving a call admission request, and calculating the number of admissible calls. The number of admissible calls is calculated based on a channel bandwidth requirement determined from the percentage of channel busy time and a voice packet queuing requirement determined from the transmission time of downlink and uplink voice packets. The call admission request is approved if the number of admissible calls is greater than one and rejected if the number of admissible calls is less than one. A system for evaluating number of additional admissible calls for use in call admission control generally comprises a metrics measurement module and an admission control module. The metrics measurement module is operable to track a percentage of channel busy time and transmission time of downlink and uplink voice packets. The admission control module is operable to receive a call admission request, calculate the number of admissible calls based on a channel bandwidth requirement determined from the percentage of channel busy time, and a voice packet queuing requirement determined from the transmission time of downlink and uplink voice packets, and approve the call admission request if the number of admissible calls is greater than one and reject the call admission request if the number of admissible calls is less than one.
Further understanding of the nature and advantages of the inventions herein may be realized by reference to the remaining portions of the specification and the attached drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is a diagram illustrating an exemplary wireless communication system.
Fig. 2 is a flowchart illustrating one example of a process of the present invention for evaluating the number of additional admissible calls for use in call admission control.
Fig. 3 is a block diagram illustrating components of an access point of the wireless communication system of Fig. 1.
Fig. 4 is a block diagram of one example of a network device for use in implementing embodiments of the present invention.
Corresponding reference characters indicate corresponding parts throughout the several views of the drawings. DESCRIPTION OF SPECIFIC EMBODIMENTS
The following description is presented to enable one of ordinary skill in the art to make and use the invention. Descriptions of specific embodiments and applications are provided only as examples and various modifications will be readily apparent to those skilled in the art. The general principles described herein may be applied to other embodiments and applications without departing from the scope of the invention. Thus, the present invention is not to be limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features described herein. For purpose of clarity, details relating to technical material that is known in the technical fields related to the invention have not been described in detail.
A method and system for evaluating the number of additional admissible calls for use in call admission control (CAC) are disclosed herein. The number of additional admissible calls is based on network requirements for WVoIP. By keeping track of the percentage of channel busy time and the transmission time of downlink and uplink voice packets, an AP (access point) is able to efficiently evaluate the number of additional admissible calls so as to safely make a real-time CAC decision without running the risk of adversely affecting the admitted calls. The method and system may be applied extensively to WVoIP in both large enterprise environments and small or medium business environments. Fig. 1 illustrates an example of a wireless communication network suitable for implementing one embodiment of the present invention. The wireless communication system facilitates two-way communication between a plurality of subscriber units (fixed and portable mobile stations) 10 and a fixed network infrastructure 18. Mobile stations 10 may be cellular telephones, personal communication systems such as personal digital assistants (PDAs), laptop computers, pagers, or other suitable wireless devices providing voice, video, data, and other wireless services to users. As shown in Fig. 1, the network includes one or more access points (APs) 12, one or more wireless domain services (WDSs) 14, one or more access switches (AS) 16, and multiple subscriber units (mobile stations) 10. The mobile stations 10 are in communication with the APs 12 and may also be in communication with one or more satellites to enable communication with one or more devices coupled to the IP network 18 or any other network. The mobile station 10 may also communicate directly with other devices, such as other mobile stations using suitable wireless communication techniques. Each access point 12 is in communication with WDS 14 and access switch 16. Multiple access points 12 may report to one WDS 14. The access points 12 are coupled to the IP network 18 and allow mobile stations 10 to communicate with other devices coupled to the WLAN. The WLAN may include, for example, access routers, core routers, and other network elements, as is well known by those skilled in the art. The network may include any number of subnetworks and routers, and the subnetworks can form a network topology other than LAN, such as a wide area network, an enterprise network, and a metropolitan area network, for example. It is to be understood that the network shown and described herein is only one example and that the present invention may be implemented in any telecommunication network utilizing call admission control policies. For example, the method and system described herein may be used with packet data other than IEEE standard 802.11.
In order to provide sufficient quality of service for voice packets, only a certain amount of voice bandwidth can be serviced or admitted by the AP 12. If the amount of voice traffic is increased beyond this limit, the QoS of all calls would suffer. The method and system described herein utilize a CAC quality metric for QoS traffic that provides information sufficient to make call admission control decisions. These metrics are preferably made available to the access points 12 in relatively frequent intervals (e.g., 5 second intervals).
The call admission control function allocates bandwidth to client devices on a first-come, first-serve basis, and may also be used to maintain a small reserve so mobile phone clients can roam into a BSS (basic service set) (even though the BSS would otherwise be at full capacity). The CAC metrics may also be used to reserve a specified amount of bandwidth for voice or data. For example, fifty percent of a channel capacity may be reserved for voice and fifty percent reserved for data. The system may also be configured to set a priority to voice or data or used in real time video conferencing to prioritize critical data. The CAC metrics may also be used for load balancing at the WDS based on data received from the APs. A user interface (UI) may be provided to configure channel reservation for roaming or load balancing. The user interface may also display the number of admitted calls, number of additional admissible calls, or other metrics. The metrics set forth below for use in making a CAC decision are dynamic since the call capacity for a network varies with the network conditions and configurations. The CAC metrics are configured to adjust to changes in wireless medium conditions and network traffic conditions and account for local channel conditions such as foreign interference (e.g., from microwave radios, Bluetooth radios, etc.) that may only affect one or two APs 12 and not the entire WLAN. The CAC metrics described herein are used to predict the impact of a new call on the WLAN before the system admits the call to reduce the chances of a new call causing the WLAN to become unstable. The CAC metric is based on two requirements (conditions) for a stable WLAN involving the presence of voice clients; channel bandwidth and voice packet queuing, as described in detail below.
The channel bandwidth requirement ensures that there is enough channel bandwidth for voice packets. If a number (N) of calls have already been admitted in a basic service set (BSS), the available network bandwidth for additional admissible calls within a voice packet time interval (dT) is represented by: dT*(l-Pb); where: dT: voice packet interval; and Pb: % of channel busy time from an AP' s perspective.
The voice packet interval dT is determined by a Codec in the voice clients and may be, for example, 20 ms. Pb is the percentage of time that the receiver is busy demodulating IEEE standard 802.11 traffic and includes the time the AP 12 transmits packets and the time the AP's clear channel assessment (CCA) reports that a channel is busy. If the WLAN can accommodate a number of additional calls (Na), the additional calls will take a network bandwidth of:
(Tl_u+Tl_d)*Na; and (Tl_u+Tl_d)*Na< dT*(l-Pb) where:
Na: number of additional admissible calls; " T'i_u'- average transmission time for voice packets in an uplink; Tl_d: average transmission time for voice packets in a downlink; and Pb: % of channel busy time from an AP's perspective.
TI u and Tl_d are the transmission time for voice packets starting when they reach the front end of their transmission queues to the time they receive an acknowledgement for the uplink and downlink respectively, measured and averaged over a sliding time window. Tl_d is measured by the AP itself and Tl_u is measured and reported to the AP by each voice client. The AP further averages Tl_u over the number of voice clients. The retransmission of packets and the time in back-off are counted in the transmission time. When N=O, a predefined value may be used to estimate Tl_u and Tl_d since there are no AP or client measurements of Tl_d and Tl_u respectively as measurements are only made where a voice call is present.
The Na equations set forth above can be represented as: Na≤Nal; where:
NaI= dT*(l-Pb)/ (Tl_u+Tl_d). The following describes the voice packet queuing requirement. The rate that voice packets leave a transmission queue of a network node should be no slower than the arrival rate of voice packets. Otherwise the transmission queue for voice packets in a network node will be overloaded. For the AP, this requirement can be written as:
(N+Na)*Tl_d ≤ dT or
Na <Na2; where:
Na2= dT /Tl_d-N.
A new CAC metric for use in defining the number of additional calls that can be supported is therefore defined as:
Na= min (NaI, Na2); where: WaI= dT*(l-Pb)/ (Tl_u+Tl_d); Na2= dT / Tl_d - N. If Na>l, then a new call can be admitted.
The CAC metric Na is determined by real-time measurable metrics and is therefore very accurate. Since Na is self-adaptive, it can dynamically adjust to changes in network conditions. For example, when the data traffic increases, the number of allowed calls can be lowered automatically. Na also includes other network factors, such as traffic load, channel conditions, and multi-cell interference.
Fig. 2 is a flowchart illustrating one example of a process of the present invention for evaluating the number of additional admissible calls for use in call admission control. At step 20, the AP keeps track of a moving average of Pb over a sliding time window. As described above, Pb is derived from the time the AP is in transmission and the time the AP's CCA reports busy. The AP also keeps track of a moving average of Tl_d over a sliding time window (step 22). Each voice client keeps track of a moving average of its Tl_u over a sliding time window and reports TI u to the AP periodically (step 24). The AP maintains an average of Tl_u over the number of received Tl_u's within a sliding time window (step 26). Upon receiving a Tl_u from a voice client, the AP adjusts the average Tl_u it maintains accordingly. When the AP gets a new call admission request, it computes NaI, Na2 and Na from N, Pb, Tl_u and TI d by using the above formulas (steps 28 and 30). IfNa is greater than 1, the AP can safely admit the new call (steps 32 and 34). IfNa is less than or equal to 1, the AP rejects the admission request (steps 32 and 36).
It is to be understood that the process described above is only one example, and that the process may be modified without departing from the scope of the invention. For example, the method can easily be extended so that some call slots are reserved for roaming calls. The process may also be applied to admission control for other QoS applications such as video streams. Also, other co-channel APs can exchange information so that the total N (number of calls on the channel) is accounted for in the formula for Na2. In another embodiment, other co-channel APs can exchange information so that only Pb due to voice calls (and not best-effort data packets) is measured, thereby providing a more accurate estimate of Na. This may be important since EDCA will, to a large extent, prioritize voice and video packets ahead of data packets. Also, the process may be extended to use different voice packet intervals other than 20ms or even a mixture of intervals within a BSS.
Fig. 3 illustrates an admission control module 40 located within the AP 12 for calculation of the CAC metrics. A metrics measurement module 42 posts the latest measurement of metrics such as Tl_u, Tl_d, and Pb. The admission control module 40 computes Na from these values, as previously described. Information from the mobile stations 10 is transferred to the AP 12 as management information. The admission control and metrics measurement modules 40, 42 are shown in Fig. 2 as part of the AP 12. It is to be understood, however, that the admission control module 40 may also be located within the WDS 14. In this case, requests for voice metrics are sent to the APs 12 over the WDS 14. As the APs 12 receive the request for voice measurements, they respond to the WDS 14 with requested data.
The AP 12 (or WDS 14) collects the data and dynamically performs the calculations to determine the CAC metrics. If the AP 12 determines that the number of calls has reached its limit based on the CAC metrics, it rejects new requests and may direct the requests to other APs 12. The admission control module 40 may respond to a request with a bandwidth confirm message permitting a call to be placed or a bandwidth reject message refusing to make the necessary connection for the call. The admission control module 40 may be a controller having a processor configured to execute software stored in memory and receive input from interfaces for use in executing the software, as described below with respect to Fig. 4, for example. Fig. 4 depicts a network device 60 that may be used to implement the method and system described above. In one embodiment, network device 60 is a programmable machine that may be implemented in hardware, software, or any combination thereof. A processor 62 executes code stored in a program memory 64. Program memory 64 is one example of a computer-readable medium. Program memory 64 can be a volatile memory. Another form of computer-readable medium storing the same codes is a type of non-volatile storage such as floppy disks, CD-ROMs, DVD-ROMs, hard disks, flash memory, etc. A carrier wave that carries the code across a network is another example of a computer-readable medium. Network device 60 may interface with transmission media via a plurality of interfaces 66. To implement functionality according to the present invention, interfaces 66 may incorporate processing and memory resources similar to those discussed above in connection with the network device as a whole. As packets are received, processed, and forwarded by network device 60, they may be stored in a packet memory 68. Network device 60 shown in Fig. 4 is only one example of a computer system suitable for use with the invention. Other devices and systems having different configurations of subsystems may also be utilized.
As can be observed from the foregoing, the system and method described herein have many advantages. For example, the number of admissible calls (Na) is determined by real-time measurable metrics of the network, so it is very precise for the real time network conditions. Na is also self-adaptive and, therefore, can dynamically adjust to changes in network conditions. For example, when the data traffic decreases, the number of allowed calls can be increased automatically. Furthermore, Na automatically includes other network factors, such as traffic loads, channel conditions, and multi-cell interference via the percentage of channel business and retransmissions and back-off counted in transmission time. It also accounts for local channel conditions including foreign interference that may only affect one or more APs and not the entire WLAN. Since Na is a function of N, Na has a good predictability demanded by any reliable CAC procedure.
Although the present invention has been described in accordance with the embodiments shown, one of ordinary skill in the art will readily recognize that there could be variations made to the embodiments without departing from the scope of the present invention. Accordingly, it is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.

Claims

WHAT IS CLAIMED IS:
1. A method for evaluating number of additional admissible calls for use in call admission control, comprising: tracking a percentage of channel busy time and transmission time of downlink and uplink voice packets; receiving a call admission request; calculating the number of admissible calls based on the percentage of channel busy time and the transmission time of downlink and uplink voice packets; and approving the call admission request if the number of additional admissible calls is greater than one and rejecting the call admission request if the number of additional admissible calls is less than one.
2. The method of claim 1 wherein the tracking is performed at an access point of a wireless network.
3. The method of claim 1 wherein tracking the percentage of channel busy time comprises measuring the percentage of time that a receiver is busy demodulating traffic.
4. The method of claim 3 wherein tracking the percentage of channel busy time further comprises measuring a time to transmit packets and report that a channel is busy.
5. The method of claim 1 wherein tracking the percentage of channel busy time comprises tracking a moving average over a sliding time window.
6. The method of claim 1 wherein tracking transmission time of downlink voice packets comprises measuring time from voice packets reaching a front end of their transmission queue to receiving an acknowledgement for the downlink. 7. The method of claim 6 wherein tracking transmission time of uplink voice packets comprises receiving a measurement from a mobile station.
8. The method of claim 6 wherein tracking transmission time comprises tracking a moving average of transmission time of downlink packets over a sliding time window.
9. The method of claim 1 wherein calculating the number of additional calls comprises calculating: Na = min (NaI, Na2); where:
Nal=dt*(l-Pb)/(Tl_u+Tl_d); and Na2=dT/Tl_d-N; where: dT is an interval of voice packets; N is number of admitted calls; Pb is the percentage of channel busy time;
Tl_u is the transmission time of downlink voice packets; and
Tl_d is the transmission time of uplink voice packets.
10. The method of claim 1 further comprising reserving bandwidth for roaming calls.
11. The method of claim 1 wherein tracking the percentage of channel busy time and transmission time of downlink and uplink voice packets comprises tracking at a wireless domain services node and receiving measurement data from a plurality of access points.
12. The method of claim 1 wherein tracking the percentage of channel busy time and transmission time of downlink and uplink voice packets comprises receiving data from a plurality of mobile stations in a wireless network. 13. A system for evaluating number of additional admissible calls for use in call admission control, comprising: a metrics measurement module operable to track a percentage of channel busy time and transmission time of downlink and uplink packets; an admission control module operable to receive a call admission request, calculate the number of additional admissible calls based on the percentage of channel busy time and the transmission time of downlink and uplink packets, and approve the call admission request if the number of admissible calls is greater than one and reject the call admission request if the number of admissible calls is less than one.
14. The system of claim 13 wherein the admission control module and the metrics measurement module are located within an access point in a wireless network and configured for receiving data from one or more mobile stations in communication with the access point with an admitted call, and a mobile station in communication with the access point and sending the call admission request.
15. The system of claim 13 wherein the admission control module is located within a wireless domain services node in communication with a plurality of access points.
16. A computer program product for evaluating number of additional admissible calls for use in call admission control, comprising: code that tracks a percentage of channel busy time and transmission time of downlink and uplink voice packets; code that receives a call admission request; code that calculates the number of admissible calls based on the percentage of channel busy time and the transmission time of downlink and uplink voice packets; code that approves the call admission request if the number of admissible calls is greater than one and rejects the call admission request if the number of admissible calls is less than one; and a computer readable medium for storing said codes. 1 /. 1 he computer program product of claim 16 wherein code that tracks the percentage of channel busy time comprises code that measures the percentage of time that a receiver is busy demodulating traffic.
18. The computer program product of claim 16 wherein code that tracks transmission time of downlink voice packets comprises code that measures time from voice packets reaching a front end of their transmission queue to code that receives an acknowledgement for the downlink.
19. The computer program product of claim 18 wherein code that tracks transmission time of uplink voice packets comprises code that receives a measurement from a mobile station.
20. The computer program product of claim 16 wherein code that calculates the number of admissible calls comprises code that calculates:
Na = min (NaI, Na2); where:
Nal=dt*(l-Pb)/(Tl_u+Tl_d); and Na2=dT/Tl_d-N; where: dT is an interval of voice packets; N is the number of admitted calls;
Pb is the percentage of channel busy time; Tl_u is the transmission time of downlink voice packets; and
Tl_d is the transmission time of uplink voice packets.
21. A system for evaluating number of additional admissible calls for use in call admission control, comprising: means for tracking a percentage of channel busy time and transmission time of downlink and uplink voice packets; means for receiving a call admission request; means for calculating the number of admissible calls based on a channel bandwidth requirement determined from the percentage of channel busy time, and a voice packet queuing requirement determined from the transmission time of downlink and uplink voice packets; and means for approving the call admission request if the number of admissible calls is greater than one and rejecting the call admission request if the number of admissible calls is less than one.
22. The system of claim 21 wherein means for tracking the percentage of channel busy time comprises means for measuring the percentage of time that a receiver is busy demodulating WLAN traffic.
PCT/US2005/047114 2005-02-02 2005-12-27 Method and system for evaluating number of additional admissible calls for use in call admission control WO2006083433A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP05855637A EP1844575B1 (en) 2005-02-02 2005-12-27 Method and system for evaluating number of additional admissible calls for use in call admission control

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/049,793 US7468951B2 (en) 2005-02-02 2005-02-02 Method and system for evaluting number of additional admissible calls for use in call admission control
US11/049,793 2005-02-02

Publications (2)

Publication Number Publication Date
WO2006083433A2 true WO2006083433A2 (en) 2006-08-10
WO2006083433A3 WO2006083433A3 (en) 2007-04-12

Family

ID=36756430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/047114 WO2006083433A2 (en) 2005-02-02 2005-12-27 Method and system for evaluating number of additional admissible calls for use in call admission control

Country Status (4)

Country Link
US (1) US7468951B2 (en)
EP (1) EP1844575B1 (en)
CN (1) CN100581118C (en)
WO (1) WO2006083433A2 (en)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7480241B2 (en) * 2003-09-02 2009-01-20 Arris International, Inc. Method for processor overload control in a voice over internet protocol cable modem termination system
KR100694215B1 (en) * 2005-11-24 2007-03-14 삼성전자주식회사 Wireless lan network and channel selection method of wlan station
WO2007071277A1 (en) * 2005-12-22 2007-06-28 Telecom Italia S.P.A. Method and system for simulating a communication network, related network and computer program product therefor
US8194643B2 (en) 2006-10-19 2012-06-05 Embarq Holdings Company, Llc System and method for monitoring the connection of an end-user to a remote network
US8477614B2 (en) 2006-06-30 2013-07-02 Centurylink Intellectual Property Llc System and method for routing calls if potential call paths are impaired or congested
US8717911B2 (en) 2006-06-30 2014-05-06 Centurylink Intellectual Property Llc System and method for collecting network performance information
US8289965B2 (en) 2006-10-19 2012-10-16 Embarq Holdings Company, Llc System and method for establishing a communications session with an end-user based on the state of a network connection
US9094257B2 (en) 2006-06-30 2015-07-28 Centurylink Intellectual Property Llc System and method for selecting a content delivery network
US8488447B2 (en) 2006-06-30 2013-07-16 Centurylink Intellectual Property Llc System and method for adjusting code speed in a transmission path during call set-up due to reduced transmission performance
US7693526B2 (en) * 2006-08-16 2010-04-06 Cisco Technology, Inc. Enhanced load based wireless call admission control
US8307065B2 (en) 2006-08-22 2012-11-06 Centurylink Intellectual Property Llc System and method for remotely controlling network operators
US8064391B2 (en) 2006-08-22 2011-11-22 Embarq Holdings Company, Llc System and method for monitoring and optimizing network performance to a wireless device
US8102770B2 (en) 2006-08-22 2012-01-24 Embarq Holdings Company, LP System and method for monitoring and optimizing network performance with vector performance tables and engines
US8537695B2 (en) 2006-08-22 2013-09-17 Centurylink Intellectual Property Llc System and method for establishing a call being received by a trunk on a packet network
US8238253B2 (en) 2006-08-22 2012-08-07 Embarq Holdings Company, Llc System and method for monitoring interlayer devices and optimizing network performance
US7843831B2 (en) 2006-08-22 2010-11-30 Embarq Holdings Company Llc System and method for routing data on a packet network
US8750158B2 (en) 2006-08-22 2014-06-10 Centurylink Intellectual Property Llc System and method for differentiated billing
US8224255B2 (en) 2006-08-22 2012-07-17 Embarq Holdings Company, Llc System and method for managing radio frequency windows
US8125897B2 (en) 2006-08-22 2012-02-28 Embarq Holdings Company Lp System and method for monitoring and optimizing network performance with user datagram protocol network performance information packets
US8531954B2 (en) 2006-08-22 2013-09-10 Centurylink Intellectual Property Llc System and method for handling reservation requests with a connection admission control engine
US8407765B2 (en) 2006-08-22 2013-03-26 Centurylink Intellectual Property Llc System and method for restricting access to network performance information tables
US8015294B2 (en) 2006-08-22 2011-09-06 Embarq Holdings Company, LP Pin-hole firewall for communicating data packets on a packet network
US8189468B2 (en) 2006-10-25 2012-05-29 Embarq Holdings, Company, LLC System and method for regulating messages between networks
US8199653B2 (en) 2006-08-22 2012-06-12 Embarq Holdings Company, Llc System and method for communicating network performance information over a packet network
US7684332B2 (en) 2006-08-22 2010-03-23 Embarq Holdings Company, Llc System and method for adjusting the window size of a TCP packet through network elements
US8743703B2 (en) 2006-08-22 2014-06-03 Centurylink Intellectual Property Llc System and method for tracking application resource usage
US8619600B2 (en) 2006-08-22 2013-12-31 Centurylink Intellectual Property Llc System and method for establishing calls over a call path having best path metrics
US8144587B2 (en) * 2006-08-22 2012-03-27 Embarq Holdings Company, Llc System and method for load balancing network resources using a connection admission control engine
US8228791B2 (en) 2006-08-22 2012-07-24 Embarq Holdings Company, Llc System and method for routing communications between packet networks based on intercarrier agreements
US8107366B2 (en) 2006-08-22 2012-01-31 Embarq Holdings Company, LP System and method for using centralized network performance tables to manage network communications
US8576722B2 (en) 2006-08-22 2013-11-05 Centurylink Intellectual Property Llc System and method for modifying connectivity fault management packets
US8194555B2 (en) 2006-08-22 2012-06-05 Embarq Holdings Company, Llc System and method for using distributed network performance information tables to manage network communications
US8144586B2 (en) * 2006-08-22 2012-03-27 Embarq Holdings Company, Llc System and method for controlling network bandwidth with a connection admission control engine
US9479341B2 (en) 2006-08-22 2016-10-25 Centurylink Intellectual Property Llc System and method for initiating diagnostics on a packet network node
US8223655B2 (en) 2006-08-22 2012-07-17 Embarq Holdings Company, Llc System and method for provisioning resources of a packet network based on collected network performance information
US8130793B2 (en) 2006-08-22 2012-03-06 Embarq Holdings Company, Llc System and method for enabling reciprocal billing for different types of communications over a packet network
US8274905B2 (en) 2006-08-22 2012-09-25 Embarq Holdings Company, Llc System and method for displaying a graph representative of network performance over a time period
US8549405B2 (en) 2006-08-22 2013-10-01 Centurylink Intellectual Property Llc System and method for displaying a graphical representation of a network to identify nodes and node segments on the network that are not operating normally
ATE538561T1 (en) * 2006-09-18 2012-01-15 Ericsson Telefon Ab L M METHOD AND ARRANGEMENT RELATING TO THE APPROVAL CONTROL OF BROADBAND SERVICES
US7822064B2 (en) * 2006-10-02 2010-10-26 Cisco Technology, Inc. Backhaul-level call admission control for a wireless mesh network
US7852759B2 (en) * 2007-02-05 2010-12-14 Cisco Technology, Inc. Finite state machine of traffic stream metrics for adaptation of load-based call admission control in wireless networks
US8111692B2 (en) 2007-05-31 2012-02-07 Embarq Holdings Company Llc System and method for modifying network traffic
US8068425B2 (en) 2008-04-09 2011-11-29 Embarq Holdings Company, Llc System and method for using network performance information to determine improved measures of path states
CN101990205A (en) * 2009-08-03 2011-03-23 秦志强 Method and system for realizing air interface congestion call admission control of wireless local area network
US8411629B1 (en) 2009-08-11 2013-04-02 Cisco Technology, Inc. Dynamic admission control of wireless video to a wireless network
TW201106645A (en) * 2009-08-14 2011-02-16 Ralink Technology Corp Method for detecting continuous channel noise and apparatus for using the same
US8711693B2 (en) 2011-10-14 2014-04-29 Hewlett-Packard Development Company, L.P. Gateway channel utilization
US9408177B2 (en) 2011-12-19 2016-08-02 Cisco Technology, Inc. System and method for resource management for operator services and internet
US9210728B2 (en) 2011-12-19 2015-12-08 Cisco Technology, Inc. System and method for resource management for operator services and internet
US9137171B2 (en) * 2011-12-19 2015-09-15 Cisco Technology, Inc. System and method for resource management for operator services and internet
US9661522B2 (en) 2012-07-09 2017-05-23 Cisco Technology, Inc. System and method associated with a service flow router
US9736859B2 (en) 2012-11-28 2017-08-15 Samsung Electronics Co., Ltd. Method and apparatus for providing voice service in wireless local area network

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0941003A2 (en) 1998-03-05 1999-09-08 Lucent Technologies Inc. Flexible channel allocation for a cellular system based on a hybrid of measurement-based dynamic channel assignment and a reuse-distance criterion algorithm

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5884174A (en) 1996-06-07 1999-03-16 Lucent Technologies Inc. Call admission control for wireless networks
CA2248487C (en) * 1997-10-31 2002-01-15 Lucent Technologies Inc. Power control for mobile wireless communication system
US6459681B1 (en) * 1998-11-13 2002-10-01 Sprint Communications Company L.P. Method and system for connection admission control
US6515964B1 (en) 1998-12-29 2003-02-04 At&T Corp. Method and apparatus for dynamically controlling the admission of calls to a network
US6735172B1 (en) 1999-12-21 2004-05-11 Nortel Networks Limited Providing connection admission control in a communications network
SG147300A1 (en) * 2000-02-02 2008-11-28 Ntt Docomo Inc A single carrier/ds-cdma packet transmission method, an uplink packet transmission method in a multi-carrier/ds-cdma mobile communications system, and a structure of a downlink channel in a multi-carrier/ds-cdma mobile communications system
US6842618B2 (en) * 2002-03-14 2005-01-11 Interdigital Technology Corporation Method and system for performing call admission control in the uplink for third generation wireless communication systems
US7296067B2 (en) * 2002-12-19 2007-11-13 Research In Motion Limited Wireless/LAN router queuing method and system
US7106708B2 (en) * 2003-02-19 2006-09-12 Interdigital Technology Corp. Method for implementing fast dynamic channel allocation (F-DCA) call admission control in radio resource management

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0941003A2 (en) 1998-03-05 1999-09-08 Lucent Technologies Inc. Flexible channel allocation for a cellular system based on a hybrid of measurement-based dynamic channel assignment and a reuse-distance criterion algorithm

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP1844575A4
WEI ZHUNG ET AL.: "Adaptive Quality of Service Handoff Priority Scheme for Mobile Multimedia Networks", IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, vol. 49, no. 2, March 2000 (2000-03-01), pages 494 - 505

Also Published As

Publication number Publication date
EP1844575A2 (en) 2007-10-17
EP1844575A4 (en) 2011-09-21
US20060171314A1 (en) 2006-08-03
CN101288264A (en) 2008-10-15
CN100581118C (en) 2010-01-13
EP1844575B1 (en) 2012-12-12
US7468951B2 (en) 2008-12-23
WO2006083433A3 (en) 2007-04-12

Similar Documents

Publication Publication Date Title
US7468951B2 (en) Method and system for evaluting number of additional admissible calls for use in call admission control
US7693526B2 (en) Enhanced load based wireless call admission control
US7852759B2 (en) Finite state machine of traffic stream metrics for adaptation of load-based call admission control in wireless networks
US8660008B2 (en) Traffic management in distributed wireless networks
US8085709B2 (en) Method and system for managing radio resources in mobile communication networks, related network and computer program product therefor
US9197528B2 (en) Traffic management in distributed wireless networks
Lu et al. A wireless fair service algorithm for packet cellular networks
US8233448B2 (en) Apparatus and method for scheduler implementation for best effort (BE) prioritization and anti-starvation
US9077655B2 (en) Traffic management in distributed wireless networks
US7454213B2 (en) Traffic management in radio system
US8774100B2 (en) Resource management techniques for wireless networks
KR101507677B1 (en) Method and apparatus for supporting uplink starvation avoidance in a long term evolution system
KR101542042B1 (en) Cellular telecommunication system network element, corresponding method and computer -readable storage medium
US20060120321A1 (en) System, apparatus, and method for uplink resource allocation
US20060166677A1 (en) Balancing load of cells in inter-frequency handover of wireless communications
US8009609B2 (en) Maintaining quality of service for wireless communications
JP2009517968A (en) Flow control of low bit rate users in high speed downlink
Al-Maqri et al. Review on QoS provisioning approaches for supporting video traffic in IEEE802. 11e: Challenges and issues
Balasubramanian QoS in cellular networks
Boukerche et al. Design and performance evaluation of a QoS-based dynamic channel allocation protocol for wireless and mobile networks
US20230422080A1 (en) Dynamic assignment of uplink discard timers
Popova et al. Efficiency and dependability of direct mobile-to-mobile data transfer for UMTS downlink in multi-service networks
Bellalta et al. VoIP Call Admission Control in WLANs in presence of elastic traffic
AU2007216874A1 (en) System, apparatus and method for uplink resource allocation

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580045704.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 4544/DELNP/2007

Country of ref document: IN

Ref document number: 2005855637

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE