WO2006080278A1 - Portable terminal and projected image camera shake correcting method for portable terminal - Google Patents

Portable terminal and projected image camera shake correcting method for portable terminal Download PDF

Info

Publication number
WO2006080278A1
WO2006080278A1 PCT/JP2006/300977 JP2006300977W WO2006080278A1 WO 2006080278 A1 WO2006080278 A1 WO 2006080278A1 JP 2006300977 W JP2006300977 W JP 2006300977W WO 2006080278 A1 WO2006080278 A1 WO 2006080278A1
Authority
WO
WIPO (PCT)
Prior art keywords
change amount
terminal device
image
position change
mobile terminal
Prior art date
Application number
PCT/JP2006/300977
Other languages
French (fr)
Japanese (ja)
Inventor
Katsuhiro Sakai
Takashi Enoki
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2006080278A1 publication Critical patent/WO2006080278A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/48Details of cameras or camera bodies; Accessories therefor adapted for combination with other photographic or optical apparatus
    • G03B17/54Details of cameras or camera bodies; Accessories therefor adapted for combination with other photographic or optical apparatus with projector
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B29/00Combinations of cameras, projectors or photographic printing apparatus with non-photographic non-optical apparatus, e.g. clocks or weapons; Cameras having the shape of other objects
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2217/00Details of cameras or camera bodies; Accessories therefor
    • G03B2217/005Blur detection

Definitions

  • the present invention relates to a mobile terminal device and a projected image camera shake correction method for the mobile terminal device, and more particularly to a mobile terminal device for correcting camera shake of an image projected by the mobile terminal device and a projected image camera shake correction method for the mobile terminal device.
  • a mobile terminal device for correcting camera shake of an image projected by the mobile terminal device and a projected image camera shake correction method for the mobile terminal device is about.
  • Patent Document 1 discloses a projection lens for enlarging a light image of a display unit of a mopile PC, and a concave mirror as a field lens for forming a light image from the projection lens as a real image by reflection or transmission.
  • a display enlarging apparatus is shown that forms an image obtained by enlarging the above-mentioned optical image as a real image by using. According to the display enlarging device of Patent Document 1, even an image on a display unit of a portable information device with a small amount of backlight light can be displayed in an enlarged and bright manner.
  • Patent Document 2 a prism that reflects a light image displayed on the display unit, a projection lens that magnifies the light image reflected by the prism, and a prism that is attached to the prism and supplied from a power source. And an enlarged display device that enlarges and displays a light image displayed on the display unit by light from the light source.
  • the shortage of light quantity can be compensated, and a bright and clear enlargement image display is possible, so that small numbers and characters can be read and complex images and figures can be displayed.
  • a plurality of people can view the screen displayed on the mobile terminal device at once, and a presentation can be performed using information stored in the mobile terminal device. It can be used as a simple projector.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-344766
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-309638
  • the conventional apparatus has a problem that the projected image is blurred due to the shaking of the hand holding the mobile terminal device.
  • An object of the present invention is to provide a mobile terminal device and a projected image camera shake correction method for the mobile terminal device that can make a projected image easy to see even if the mobile terminal device is held by hand. Is to provide.
  • the portable terminal device of the present invention is a portable terminal device including an image projecting unit that projects an image, and a position change amount detecting unit that detects a change amount of the position of the portable terminal device.
  • Position change amount integrating means for integrating the change amount to obtain a position change amount integrated value; and the display position so as to cancel the influence of the position change amount integrated value on the display position of the image projected by the image projecting means.
  • a display position correcting means for correcting.
  • a projected image camera shake correction method for a mobile terminal device includes a step of projecting an image by an image projecting unit provided in the mobile terminal device, and a change amount of the position of the mobile terminal device during the projection.
  • a step of correcting the position includes a step of projecting an image by an image projecting unit provided in the mobile terminal device, and a change amount of the position of the mobile terminal device during the projection.
  • FIG. 1 is a block diagram showing a configuration of a mobile terminal device according to Embodiment 1 of the present invention.
  • FIG. 2 is a flowchart showing a projected image camera shake correction method for the mobile terminal device according to the first embodiment of the present invention.
  • FIG. 3 is a diagram showing a method of using the mobile terminal device according to Embodiment 1 of the present invention.
  • FIG. 4 is a block diagram showing a configuration of a mobile terminal device according to Embodiment 2 of the present invention.
  • FIG. 5 is a flowchart showing a projected image camera shake correction method for the mobile terminal device according to the second embodiment of the present invention.
  • FIG. 6 is a block diagram showing a configuration of a mobile terminal device according to Embodiment 3 of the present invention.
  • FIG. 7 is a flowchart showing a method of correcting a projected image camera shake of the mobile terminal device according to the third embodiment of the present invention.
  • a mobile terminal device capable of reducing the shake of a projected image even when camera shake due to parallel movement occurs will be described.
  • FIG. 1 is a block diagram showing a configuration of a mobile terminal device according to Embodiment 1 of the present invention.
  • the mobile terminal device includes an image projection unit 101 that projects an image, and a projected image camera shake correction unit 102 that corrects camera shake of an image projected by the image projection unit 101.
  • the mobile terminal device in FIG. 1 can perform communication such as a telephone call, but FIG.
  • a projection display such as a projection liquid crystal display can be used.
  • the image projection unit 101 can also include a projection lens and a movable unit for adjusting the focal length of the lens. Since the image projection unit 101 is obvious from Patent Document 1 or Patent Document 2 and other documents, the details are omitted.
  • the projected image blur correction unit 102 obtains a position change amount integrated value by integrating the position change amount detection unit 103 that detects the position change amount and the position change amount detected by the position change amount detection unit 103.
  • a position change amount integrated value subtracting unit 106 that decreases the absolute value of the position change amount integrated value by a predetermined value.
  • the position change amount detection unit 103 is an acceleration sensor 10 that detects the acceleration of the mobile terminal device. Has 7. Acceleration is one of the position change amounts. In general, every movement can be considered as a combination of translation and rotation. Among these, the acceleration sensor 107 is used for correcting camera shake due to parallel movement. The velocity can be obtained by integrating the detected acceleration. Also, the displacement can be obtained by integrating the velocity. Both velocity and displacement are one of the integrated values of position change. Various types of acceleration sensor 107 can be used. In particular, an acceleration sensor (MEMS acceleration sensor) using MEMS (Micro Electro Mechanical System) technology is small and lightweight, so it is small and lightweight. It is suitable for use in portable terminal devices that are required.
  • MEMS acceleration sensor Micro Electro Mechanical System
  • the position change amount integration unit 104 integrates the acceleration detected by the acceleration sensor 107 and obtains and holds the velocity, and integrates the velocity held by the acceleration integration unit 108 to obtain the displacement. And a speed integration unit 109 for holding.
  • Acceleration that can be detected on the earth includes dynamic acceleration and static acceleration (gravity acceleration).
  • the acceleration sensor 107 may detect both dynamic acceleration and static acceleration.
  • the acceleration integration unit 108 integrates only the dynamic acceleration of the acceleration detected by the acceleration sensor 107, excluding the static acceleration, and obtains the velocity.
  • the dynamic acceleration can be obtained by subtracting the value.
  • the display position correction unit 105 corrects the display position of the image projected by the image projection unit 101 so as to cancel the position change amount integrated value. Specifically, the display position of the image projected by the image projection unit 101 is corrected so as to cancel the displacement generated in the projection image due to the displacement held by the speed integration unit 109.
  • the position change integrated value subtracting unit 106 is initialized by resetting the position change integrated value. That is, the position change integrated value subtracting unit 106 is initialized by resetting the velocity held by the acceleration integrating unit 108 and the displacement held by the velocity integrating unit 109. In addition, the position change integrated value subtracting unit 106 is connected to the absolute value of the velocity held in the acceleration integrating unit 108. In order to prevent the absolute value of the displacement held in the speed integration unit 109 from becoming too large and out of the range that can be corrected by the display position correction unit 105, the position change amount integration is performed by a predetermined value. Decrease the absolute value. That is, the position change integrated value subtracting unit 106 decreases the absolute value by a predetermined value for the velocity held by the acceleration integrating unit 108 and the displacement held by the velocity integrating unit 109.
  • FIG. 2 is a flowchart showing a camera shake correction method for a projected image of the mobile terminal device
  • FIG. 3 is a diagram showing a method for using the mobile terminal device 300.
  • an image 314 includes characters, figures, patterns, photographs, or combinations thereof.
  • the screen 313 is a surface on which an image is projected, and may be a wall surface or the like.
  • the mobile terminal device 300 has the configuration shown in FIG.
  • the acceleration sensor 107 is initialized (step S201).
  • the position change integrated value subtraction unit 106 resets the speed (step S202) and resets the displacement (step S203).
  • the mobile terminal device 300 projects the image 314 from the image projection unit 101 onto the screen 313.
  • the projected image blur correction unit 102 of the mobile terminal device 300 detects parallel movement as acceleration. That is, when camera shake due to translation occurs, the acceleration sensor 107 detects this as acceleration in the directions of the X axis, the y axis, and the z axis (step S2 04).
  • the z-axis is an axis that faces the surface (screen) 313 on which an image is projected from the mobile terminal device 300, and the X-axis and y-axis are perpendicular to the z-axis.
  • the acceleration integration unit 108 integrates the acceleration and holds it as a velocity (step S206).
  • the speed integration unit 109 integrates the speed and holds it as a displacement (step S208).
  • the position change integrated value subtracting unit 106 reduces the absolute value of the speed held in the acceleration integrating unit 108 by a predetermined value (step S209), and stores it in the speed integrating unit 109.
  • the absolute value of the displacement that is held is determined in advance and is reduced by that value (step S210).
  • the display position correction unit 105 performs correction so as to cancel the displacement of the display position of the image projected on the surface (screen) 313 on which the image is projected (step S211).
  • the display position correcting unit 105 translates the display position of the image projected by the image projecting unit 101 in the directions of the X axis and the y axis by ⁇ and dy, and projects the image projected by the image projecting unit 101. Correct the display position of. As for the orientation of the z-axis, the display position correction unit 105 reverses the image by the amount that has been enlarged or reduced by parallel movement on the z-axis when the image is being enlarged or reduced. The image projection unit 101 corrects the display position of the image projected so that the image is reduced or enlarged.
  • step S212 it is determined whether or not the end is detected. If the end is detected (YES in step S212), the process ends. If the end is not detected (step S212, NO), the process returns to step S204 to continue processing. . By such an operation, even if the hand holding the mobile terminal device is shaken by translation, the shake of the projected image can be reduced.
  • step S209 and step S210 are performed when the absolute value of the velocity and displacement is not large or does not increase or the position change integrated value subtraction unit 106 is used for applications where the movement is not large or for a short period of use. If you do not have, you can omit it.
  • a method for determining a predetermined value that is, a value for reducing the absolute value of the velocity and displacement, in the position change amount integrated value subtracting unit 106 will be described.
  • the value that reduces the absolute value of velocity and displacement is determined in consideration of the following (1) to (3).
  • the RMS average value of errors such as noise generated by the acceleration sensor 107 (nrms) is 0.005 g
  • the processing time interval (t) for reducing the absolute values of speed and displacement is 0.001.
  • the value that decreases the absolute value of velocity is nrms 't (that is, approximately 0.049 mmZs)
  • the value that decreases the absolute value of displacement is nrms' t2 (that is, approximately 0.049 / zm). ).
  • a predetermined value is determined as a value for reducing the absolute value of speed and displacement. This determined value is larger than the value determined in (1) above. Also, the speed or displacement may be reset. On the contrary, a predetermined value may be returned to the value determined in the above (1) according to the magnitude of the absolute value of the acceleration detected by the acceleration sensor 107. Examples of the case where the absolute value of the acceleration detected by the acceleration sensor 107 is large include a case where the acceleration sensor 107 projects while walking. In such a case, the absolute values of speed and displacement may be outside the range that can be corrected with only the values determined in (1) above.
  • the position change amount integrated value subtracting unit 106 By including the position change amount integrated value subtracting unit 106 in this way, the absolute value of the displacement held in the speed integrating unit 109 becomes too large and can be corrected by the display position correcting unit 105. It is possible to prevent the damage.
  • the position change integration value subtraction unit 106 if the position change integration value subtraction unit 106 is not provided, noise and offset errors generated by the acceleration sensor 107 are integrated by the position change integration unit 104, so that they increase with time. There may be an error in speed and displacement, which may be outside the range where correction is possible. Therefore, by reducing the absolute values of the velocity and displacement by predetermined values, it is possible to correct the fast movements such as camera shake and prevent it from going out of the range that can be corrected. .
  • Such a configuration is effective when the position change amount value includes noise or offset error, or when the absolute value of the position change amount detected by the position change amount detecting means is large.
  • the position change integrated value subtracting unit 106 is not necessary if the position change integrated value does not deviate from the correctable range in applications where the movement is not large or used for a short time. It's good.
  • the portion other than the position change amount detection unit 103 among the parts constituting the projected image shake correction unit 102 can be realized using hardware such as a dedicated LSI, or a general-purpose CPU. It can be realized by using hardware such as ROM or RAM and software.
  • the distance sensor is used to detect the displacement of the mobile terminal device force in the direction (z-axis direction) toward the surface (screen) onto which the image is projected. You may correct
  • acceleration is a force with different values detected depending on the position in the mobile terminal device when the mobile terminal device rotates. Specifically, the acceleration of each part varies depending on the distance from the center of rotation. In addition, the displacement, which is the acceleration integrated twice, also depends on the distance from the center of rotation. Therefore, by shortening the distance from the image projection unit 101 to the acceleration sensor 107, the acceleration of the image projection unit 101 can be detected with high accuracy, and the displacement of the image projection unit 101 can be obtained with high accuracy. In the case where a distance sensor is used, it is desirable that the distance sensor shortens the distance from the image projection unit 101 as with the acceleration sensor 107.
  • the shake of the projected image can be reduced. Even if the terminal device is held by hand, camera shake is not an issue, and the projected image can be easily viewed.
  • Embodiment 2 of the present invention a mobile terminal device capable of reducing the shake of a projected image even when camera shake due to rotation occurs will be described.
  • FIG. 4 is a block diagram showing a configuration of the mobile terminal device according to Embodiment 2 of the present invention. Here, the description will focus on the differences from the block diagram of the mobile terminal device according to Embodiment 1 shown in FIG.
  • the mobile terminal device includes an image projecting unit 101 that projects an image, and a projected image handshake that corrects camera shake of an image projected by the image projecting unit 101. And a correction unit 402.
  • the display position correcting unit 105 and the position change integrated value subtracting unit 106 in the second embodiment are the display position correcting unit 105 and the position change integrated value in the first embodiment. It differs from the subtracting unit 106 in that the integrated value of the position change amount specifically handled is different, but the essence of the operation is the same.
  • the position change amount detection unit 403 is an angular velocity sensor 41 that detects the angular velocity of the mobile terminal device.
  • a distance sensor 411 distance detection means for detecting a distance from the portable terminal device to a surface (screen) on which an image is projected. Angular velocity and distance are both positional changes.
  • the angular velocity sensor 410 is used to correct rotation.
  • the angular velocity sensor 410 is a sensor that detects angular velocity.
  • Angular velocity is one of the positional changes.
  • the angular displacement can be obtained by integrating the angular velocity.
  • the angular displacement is the rotation angle from the reference.
  • the angular displacement is one of the position change integrated values.
  • the angular velocity sensor 410 does not need to shorten the distance from the image projection unit 101. This is because the angular velocity is theoretically the same regardless of the position detected in the mobile terminal device.
  • Rotation can also be detected by using a magnetic azimuth sensor instead of the angular velocity sensor 410.
  • the magnetic azimuth sensor refers to the direction of geomagnetism and detects the azimuth, and the rotation angle can be obtained from the detected azimuth.
  • the magnetic azimuth sensor need not shorten the distance from the image projection unit 101.
  • the distance sensor 411 detects a distance (referred to as Dz) from the portable terminal device to a surface (screen) onto which an image is projected.
  • the distance Dz is used to correct camera shake due to rotation (rotation in the direction of ⁇ X and ⁇ y) of the mobile terminal device about the X axis and the y axis. It is desirable that the distance sensor 411 shortens the distance from the image projection unit 101 as with the acceleration sensor 107. Note that the distance sensor 411 may be omitted if the blurring of the projected image due to the rotation of the mobile terminal device about the X axis and the y axis is not corrected.
  • the position change amount integration unit 404 includes an angular velocity integration unit 412 that integrates the angular velocity detected by the angular velocity sensor 410 to obtain and hold an angular displacement.
  • the display position correction unit 105 corrects the display position on the image projection unit 101 so as to cancel the position change amount integrated value. Specifically, the display position correcting unit 105 corrects the display position of the image projected by the image projecting unit 101 so as to cancel the displacement of the projected image due to the angular displacement held by the angular velocity integrating unit 412.
  • the position change integrated value subtraction unit 106 resets the position change integrated value or decreases the absolute value of the position change integrated value by a predetermined value. That is, the angular displacement held by the angular velocity integrating unit 412 is reset or the absolute value is decreased by a predetermined value.
  • FIG. 5 is a flowchart showing a method of correcting the projected image camera shake of the mobile terminal device. As shown in Fig. 3, let ⁇ ⁇ , ⁇ y, and ⁇ z be angular displacements around the X, y, and z axes, respectively.
  • step S501 the angular velocity sensor 410 and the distance sensor 411 are initialized (step S501).
  • step S502 the position change integrated value subtraction unit 106 resets the angular displacement.
  • the mobile terminal device 300 projects the image 314 from the image projection unit 101 onto the screen 313.
  • the angular velocity sensor 410 detects this as angular velocities around the X-axis, y-axis, and z-axis of the mobile terminal device (step S504).
  • the distance Dz is detected by the distance sensor 411 (step S505).
  • the angular velocity integrating unit 412 integrates the angular velocity, and obtains and holds the angular displacements ⁇ , ⁇ y, and ⁇ z (step S508).
  • the position change amount integrated value subtracting unit 106 reduces the absolute value of the angular displacement held in the angular velocity integrating unit 412 by a predetermined value (step S509).
  • the display position correcting unit 105 corrects the image display position so as to cancel the influence of the angular displacement on the display position of the image projected by the image projecting unit 101 (step S511). In other words, the display position correction unit 105 rotates the display position on the image projection unit around the z axis by ⁇ z to cancel the angular displacement, and in each of the X direction and the y direction, Dz'sin ( Translate by ⁇ x) and — Dz-sin ( ⁇ y).
  • the display position correction unit 105 sets -Dz-sin ( ⁇ x) to — By approximating Dz- 0 x and approximating ⁇ 02 '3 (0) as ⁇ 0 2 ' 0 y, it is rotated around the z axis by ⁇ z, and the X direction and y Translate in the direction by —Dz ' ⁇ X and —Dz- ⁇ y, respectively.
  • the units of the angular displacements ⁇ , ⁇ y, and ⁇ z are radians.
  • step S212 YES
  • step S212, NO the process returns to step S504 to continue the process.
  • step S509 does not have the position change integrated value subtraction unit 106 when the absolute value of the angular displacement is not large or does not increase due to an application in which the movement is not large or in a short-time use. In some cases, it can be omitted.
  • a method for determining a predetermined value that is, a value for reducing the absolute value of the velocity and displacement in the position change integrated value subtracting unit 106 will be described.
  • the value for reducing the absolute value of the angular displacement is determined in consideration of the following (1) to (3), as in the first embodiment.
  • An angular velocity sensor 410 determines a predetermined value as a value that decreases the absolute value of the velocity and displacement according to the magnitude of the angular velocity detected by the sensor. This determined value is larger than the value determined in (1) above. Further, the angular displacement may be reset. On the other hand, depending on the angular velocity detected by the angular velocity sensor 410, the predetermined value may be restored to the value determined in (1) above.
  • portions other than the position change amount detection unit 403 among the portions constituting the projected image camera shake correction unit 402 use hardware such as a dedicated LSI. It can be realized, or it can be realized using hardware and software such as general-purpose CPU, ROM, or RAM.
  • the shake of the projected image can be reduced. Even if the device is held by hand, camera shake does not matter, and the projected image can be easily viewed.
  • Embodiment 3 of the present invention a mobile terminal device capable of reducing the shake of a projected image regardless of any hand shake will be described.
  • FIG. 6 is a block diagram showing a configuration of the mobile terminal apparatus according to Embodiment 3 of the present invention.
  • the mobile terminal device includes an image projection unit 101 and a projected image camera shake correction unit 60.
  • the projected image camera shake correction unit 602 includes a position change amount detection unit 603, a position change amount integration unit 604, a display position correction unit 105, and a position change amount integration value subtraction unit 106.
  • the position change amount detection unit 603 includes an acceleration sensor 107 that detects acceleration of the mobile terminal device, a distance sensor 411 that detects a distance from the mobile terminal device to a surface (screen) on which an image is projected, And an angular velocity sensor 410 that detects the angular velocity of the terminal device. These sensors are the same as those described in the first and second embodiments. Note that the distance sensor 411 may be omitted if the blurring of the projected image due to the rotation of the mobile terminal device about the X axis and the y axis is not corrected.
  • Position change amount integration section 604 integrates the acceleration detected by acceleration sensor 107 to obtain a velocity.
  • Acceleration integration unit 108 that obtains and holds the velocity
  • velocity integration unit 109 that integrates the velocity held by acceleration integration unit 108 to obtain and hold the displacement
  • angular velocity detected by angular velocity sensor 410 to obtain the angular displacement.
  • the angular velocity integration unit 412 and the angular velocity integration unit 412 that are held in the same way and the displacement held in the angular displacement and velocity integration unit 109 and the distance vector force from the image projection unit 101 to the acceleration sensor 107 also correct the displacement value.
  • a displacement correction unit 613 that holds the corrected displacement.
  • the configurations of the acceleration integration unit 108, the speed integration unit 109, and the angular velocity integration unit 412 are basically the same as those described in the first embodiment and the second embodiment.
  • the displacement correction unit 613 corrects the displacement held in the speed integration unit 109. Specifically, the displacements dx, dy, and dz held in the velocity integration unit 109 are respectively changed to ⁇ y ⁇ z— ⁇ ⁇ ⁇ ⁇ y, ⁇ ⁇ ⁇ ⁇ ⁇ - ⁇ ⁇ ⁇ ⁇ and ⁇ ⁇ ⁇ ⁇ ⁇ - A value obtained by adding ⁇ ⁇ ⁇ is held as a corrected displacement.
  • ⁇ ⁇ , 0 y, and 0 ⁇ are components in the X-axis, y-axis, and ⁇ -axis directions of the angular displacement held by the angular velocity integrating unit 412, respectively.
  • ⁇ , ⁇ y, and ⁇ are components of the distance vector from the image projection unit 101 to the acceleration sensor 107 in the X-axis, y-axis, and ⁇ -axis directions, respectively.
  • the distance vector is a vector having components of distances in the X-axis, y-axis, and z-axis directions with the axis direction being positive. Since the distance vectors ⁇ , ⁇ y, and ⁇ are determined by the arrangement of the image projection unit 101 and the acceleration sensor 107, they are treated as constants.
  • Display position The display position of the image projected by the image projection unit 101 so that the correction unit 102 cancels the corrected displacement held in the displacement correction unit 613 instead of the displacement held in the speed integration unit 109.
  • the displacement correction unit 613 may be omitted if the distance from the image projection unit 101 to the acceleration sensor 107 is short, or the accuracy of camera shake correction is not required.
  • the display position correction unit 105 similar to the first embodiment, corrects the image projected by the image projection unit 101 so as to cancel the displacement of the projection image due to the displacement held in the speed integration unit 109. Correct the display position.
  • the display position correction unit 105 and the position change amount integrated value subtraction unit 106 in the third embodiment are the same as the display position correction unit 105 and the position in the first and second embodiments.
  • the change amount integrated value subtracting unit 106 is different in that the position change amount integrated value specifically handled is different, but the essence of the operation is the same. Further, the position change integrated value subtracting unit 106 may be omitted when the position change integrated value does not fall outside the correctable range, for example, in an application where the movement is not large or used for a short time.
  • the portions other than the position change amount detection unit 603 among the portions constituting the projected image blur correction unit 602 are provided with a hard disk such as a dedicated LSI. It can be implemented by using hardware or software such as general-purpose CPU, ROM or RAM.
  • FIG. 7 is a flowchart showing a method of correcting the projected image camera shake of the mobile terminal device.
  • the same step numbers as those in FIGS. 2 and 5 indicate the same steps as those in FIGS. That is, the operation of the third embodiment includes the steps of the operations described in the first and second embodiments.
  • the mobile terminal device 300 projects the image 314 from the image projection unit 101 onto the screen 313.
  • the projected image blur correction unit 602 of the mobile terminal device 300 detects this as an acceleration and an angular velocity, and the embodiment By combining the operations as described in the first to third embodiments, the shake of the projected image 314 can be reduced. That is, the displacement correction unit 613 corrects the displacement held in the speed integration unit 109.
  • the displacement correction unit 613 adds ⁇ y 0 z- ⁇ ⁇ ⁇ 0 y, ⁇ ⁇ ⁇ ⁇ ⁇ - ⁇ ⁇ ⁇ ⁇ and the displacements dx, dy, and dz held in the velocity integration unit 109, respectively.
  • a value obtained by adding ⁇ ⁇ ⁇ - ⁇ ⁇ ⁇ is held as a corrected displacement (step S707).
  • the display position correcting unit 105 uses the corrected displacement held in the displacement correcting unit 613 instead of the displacement held in the speed integrating unit 109 to change the display position of the image projected by the image projecting unit 101. Correct (Step S211).
  • Such an operation can reduce the blurring of the projected image even if it is shaken by the hand-power of holding the mobile terminal device or by an appropriate movement.
  • step S707 the distance from the image projection unit 101 to the acceleration sensor 107 is short. In cases where the accuracy of camera shake correction is not required, or when the displacement correction unit 613 is not provided, this can be omitted.
  • Step S209, Step S210, and Step S509 are performed when the absolute values of the velocity, displacement, and angular displacement are not large or do not increase in applications where movement is not large or applications are used for a short period of time. If the change integrated value subtraction unit 106 is not provided, it can be omitted.
  • the shake of the projected image can be reduced. Even if the device is held by hand, camera shake does not matter and the projected image can be viewed easily.
  • the portable terminal device and the projected image camera shake correction method for the mobile terminal device according to the present invention are suitable for correcting camera shake of an image projected by the mobile terminal device.

Abstract

A portable terminal showing a projected image which can be easily viewed and camera shake is not perceivable even if the portable terminal is held by a hand. An image projecting section (101) of the portable terminal projects an image. A position variation detecting section (103) detects a position variation. A position variation integrating section (104) integrates the position variation detected by the position variation detecting section (103) to determine and hold the position variation integrated value. A display position correcting section (105) corrects the display position of the image projected by the image projecting section (101) so as to cancel the influence of the position variation integrated value held in the position variation integrating section (104) on the display position of the projected image. A position variation integrated value subtracting section (106) resets the position variation integrated value held in the position variation integrating section (104) and decreases the absolute value of the position variation integrated value by a predetermined value repetitively.

Description

携帯端末装置及び携帯端末装置の投影画像手ぶれ補正方法 技術分野  TECHNICAL FIELD Field of the Invention
[0001] 本発明は、携帯端末装置及び携帯端末装置の投影画像手ぶれ補正方法に関し、 特に携帯端末装置により投影された画像の手ぶれを補正する携帯端末装置及び携 帯端末装置の投影画像手ぶれ補正方法に関する。  TECHNICAL FIELD [0001] The present invention relates to a mobile terminal device and a projected image camera shake correction method for the mobile terminal device, and more particularly to a mobile terminal device for correcting camera shake of an image projected by the mobile terminal device and a projected image camera shake correction method for the mobile terminal device. About.
背景技術  Background art
[0002] 近年、携帯電話、 PDA(Personal Digital Assistant)、モパイル PC等の携帯端 末装置は小型 ·高性能化されており、それにつれて携帯端末装置を利用して簡易に 画像を投影した 、と 、う要望がでてきた。  [0002] In recent years, mobile terminal devices such as mobile phones, PDAs (Personal Digital Assistants), and mopile PCs have become smaller and more sophisticated, and along with that, images have been projected easily using mobile terminal devices. The request came out.
[0003] 例えば、特許文献 1には、モパイル PCの表示部の光像を拡大する投影レンズと、 反射又は透過により、その投影レンズからの光像を実像として結像させる視野レンズ としての凹面鏡とを用いて、上記光像を拡大した像を実像として形成する表示拡大 装置が示されている。特許文献 1の表示拡大装置によれば、バックライトの光量が少 ない携帯情報機器の表示部の画像でも明るく拡大表示することができる。  [0003] For example, Patent Document 1 discloses a projection lens for enlarging a light image of a display unit of a mopile PC, and a concave mirror as a field lens for forming a light image from the projection lens as a real image by reflection or transmission. A display enlarging apparatus is shown that forms an image obtained by enlarging the above-mentioned optical image as a real image by using. According to the display enlarging device of Patent Document 1, even an image on a display unit of a portable information device with a small amount of backlight light can be displayed in an enlarged and bright manner.
[0004] また、特許文献 2には、表示部に表示される光像を反射させるプリズムと、このプリ ズムにより反射された光像を拡大する投影レンズと、プリズムに取り付けられるとともに 電源から供給される電気により発光する光源とを備え、光源からの光により表示部に 表示される光像を結像面に拡大表示する拡大表示装置が示されて 、る。特許文献 2 の拡大表示装置によれば、光量の不足を補うことができ、明るく鮮明な拡大画像表示 が可能になり、小さな数字や文字の判読や、複雑な画像、図形の表示もできるように なる。また、特許文献 2の拡大表示装置によれば、携帯端末装置に表示された画面 を複数の人が一度に見ることができ、携帯端末装置に記憶された情報を利用してプ レゼンテーシヨン等ができ、簡易プロジェクタ一として利用することができる。  In Patent Document 2, a prism that reflects a light image displayed on the display unit, a projection lens that magnifies the light image reflected by the prism, and a prism that is attached to the prism and supplied from a power source. And an enlarged display device that enlarges and displays a light image displayed on the display unit by light from the light source. According to the enlargement display device of Patent Document 2, the shortage of light quantity can be compensated, and a bright and clear enlargement image display is possible, so that small numbers and characters can be read and complex images and figures can be displayed. Become. Further, according to the enlarged display device of Patent Document 2, a plurality of people can view the screen displayed on the mobile terminal device at once, and a presentation can be performed using information stored in the mobile terminal device. It can be used as a simple projector.
特許文献 1:特開平 11― 344766号公報  Patent Document 1: Japanese Patent Laid-Open No. 11-344766
特許文献 2:特開 2003 - 309638号公報  Patent Document 2: Japanese Patent Laid-Open No. 2003-309638
発明の開示 発明が解決しょうとする課題 Disclosure of the invention Problems to be solved by the invention
[0005] し力しながら、従来の装置は、携帯端末装置を保持している手がぶれることにより、 投影した画像がぶれて見づらくなるという課題がある。  [0005] However, the conventional apparatus has a problem that the projected image is blurred due to the shaking of the hand holding the mobile terminal device.
[0006] 本発明の目的は、携帯端末装置を手で保持しても手ぶれが気にならず、投影され た画像を見やすくすることができる携帯端末装置及び携帯端末装置の投影画像手 ぶれ補正方法を提供することである。 [0006] An object of the present invention is to provide a mobile terminal device and a projected image camera shake correction method for the mobile terminal device that can make a projected image easy to see even if the mobile terminal device is held by hand. Is to provide.
課題を解決するための手段  Means for solving the problem
[0007] 本発明の携帯端末装置は、画像を投影する画像投影手段を具備する携帯端末装 置であって、前記携帯端末装置の位置の変化量を検出する位置変化量検出手段と 、検出した前記変化量を積分して位置変化量積分値を求める位置変化量積分手段 と、前記画像投影手段にて投影する画像の表示位置に対する前記位置変化量積分 値の影響を打ち消すように前記表示位置を補正する表示位置補正手段と、を具備す る構成を採る。 [0007] The portable terminal device of the present invention is a portable terminal device including an image projecting unit that projects an image, and a position change amount detecting unit that detects a change amount of the position of the portable terminal device. Position change amount integrating means for integrating the change amount to obtain a position change amount integrated value; and the display position so as to cancel the influence of the position change amount integrated value on the display position of the image projected by the image projecting means. And a display position correcting means for correcting.
[0008] 本発明の携帯端末装置の投影画像手ぶれ補正方法は、携帯端末装置に設けられ た画像投影手段にて画像を投影するステップと、前記投影中に前記携帯端末装置 の位置の変化量を検出するステップと、検出した前記変化量を積分して位置変化量 積分値を求めるステップと、前記画像投影手段で投影する画像の表示位置に対する 前記位置変化量積分値の影響を打ち消すように前記表示位置を補正するステップと 、を具備するようにした。  [0008] A projected image camera shake correction method for a mobile terminal device according to the present invention includes a step of projecting an image by an image projecting unit provided in the mobile terminal device, and a change amount of the position of the mobile terminal device during the projection. A step of detecting, a step of integrating the detected amount of change to obtain an integrated value of a position change amount, and the display so as to cancel the influence of the position change amount integrated value on the display position of the image projected by the image projection means And a step of correcting the position.
発明の効果  The invention's effect
[0009] 本発明によれば、携帯端末装置を手で保持しても手ぶれが気にならず、投影され た画像を見やすくすることができる。  [0009] According to the present invention, even if the mobile terminal device is held by hand, camera shake does not matter and the projected image can be easily viewed.
図面の簡単な説明  Brief Description of Drawings
[0010] [図 1]本発明の実施の形態 1に係る携帯端末装置の構成を示すブロック図 FIG. 1 is a block diagram showing a configuration of a mobile terminal device according to Embodiment 1 of the present invention.
[図 2]本発明の実施の形態 1に係る携帯端末装置の投影画像手ぶれ補正方法を示 すフロー図  FIG. 2 is a flowchart showing a projected image camera shake correction method for the mobile terminal device according to the first embodiment of the present invention.
[図 3]本発明の実施の形態 1に係る携帯端末装置の使用方法を示す図 [図 4]本発明の実施の形態 2に係る携帯端末装置の構成を示すブロック図 FIG. 3 is a diagram showing a method of using the mobile terminal device according to Embodiment 1 of the present invention. FIG. 4 is a block diagram showing a configuration of a mobile terminal device according to Embodiment 2 of the present invention.
[図 5]本発明の実施の形態 2に係る携帯端末装置の投影画像手ぶれ補正方法を示 すフロー図  FIG. 5 is a flowchart showing a projected image camera shake correction method for the mobile terminal device according to the second embodiment of the present invention.
[図 6]本発明の実施の形態 3に係る携帯端末装置の構成を示すブロック図  FIG. 6 is a block diagram showing a configuration of a mobile terminal device according to Embodiment 3 of the present invention.
[図 7]本発明の実施の形態 3に係る携帯端末装置の投影画像手ぶれ補正方法を示 すフロー図 発明を実施するための最良の形態  FIG. 7 is a flowchart showing a method of correcting a projected image camera shake of the mobile terminal device according to the third embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 以下に、本発明の実施の形態について、図面を参照しながら説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0012] (実施の形態 1)  [0012] (Embodiment 1)
本発明の実施の形態 1では、平行移動による手ぶれが発生しても、投影画像のぶ れを小さくすることができる携帯端末装置について説明する。  In the first embodiment of the present invention, a mobile terminal device capable of reducing the shake of a projected image even when camera shake due to parallel movement occurs will be described.
[0013] 図 1は、本発明の実施の形態 1に係る携帯端末装置の構成を示すブロック図である 。図 1に示すように、携帯端末装置は、画像を投影する画像投影部 101と、画像投影 部 101により投影された画像の手ぶれを補正する投影画像手ぶれ補正部 102を有 する。なお、図 1における携帯端末装置は、通話等の通信を行うこともできるが、図 1 にお!/、ては、通信を行う部分の記載は省略する。  FIG. 1 is a block diagram showing a configuration of a mobile terminal device according to Embodiment 1 of the present invention. As shown in FIG. 1, the mobile terminal device includes an image projection unit 101 that projects an image, and a projected image camera shake correction unit 102 that corrects camera shake of an image projected by the image projection unit 101. Note that the mobile terminal device in FIG. 1 can perform communication such as a telephone call, but FIG.
[0014] 画像投影部 101には、例えば、投射型液晶ディスプレー等の投射型ディスプレー を用いることができる。また、画像投影部 101には、投影レンズ及びレンズの焦点距 離を調節するための可動部等も含めることができる。画像投影部 101は、特許文献 1 又は特許文献 2をはじめとして他の文献等から明らかなので、詳細については省略 する。  For the image projection unit 101, for example, a projection display such as a projection liquid crystal display can be used. The image projection unit 101 can also include a projection lens and a movable unit for adjusting the focal length of the lens. Since the image projection unit 101 is obvious from Patent Document 1 or Patent Document 2 and other documents, the details are omitted.
[0015] 投影画像手ぶれ補正部 102は、位置変化量を検出する位置変化量検出部 103と 、位置変化量検出部 103で検出した位置変化量を積分して位置変化量積分値を求 めて保持する位置変化量積分部 104と、位置変化量積分値を打ち消すように画像 投影部 101により投影される画像の表示位置を補正する表示位置補正部 105と、位 置変化量積分値をリセット (零にすることをいう)し又は予め決められた値ずつ位置変 化量積分値の絶対値を小さくする位置変化量積分値差引部 106とを有する。  The projected image blur correction unit 102 obtains a position change amount integrated value by integrating the position change amount detection unit 103 that detects the position change amount and the position change amount detected by the position change amount detection unit 103. The position change integration unit 104 to be held, the display position correction unit 105 for correcting the display position of the image projected by the image projection unit 101 so as to cancel the position change integration value, and the position change integration value are reset ( A position change amount integrated value subtracting unit 106 that decreases the absolute value of the position change amount integrated value by a predetermined value.
[0016] 位置変化量検出部 103は、携帯端末装置の加速度を検出する加速度センサー 10 7を有する。加速度は位置変化量のひとつである。一般にあらゆる動きは、平行移動 と回転の組み合わせに分解して考えることができる。これらのうち、加速度センサー 1 07は平行移動による手ぶれを補正するために用いる。検出した加速度を積分するこ とによって速度を求めることができる。また、速度を積分することによって変位を求め ることができる。速度と変位はどちらも位置変化量積分値のひとつである。加速度セ ンサー 107としては種々のタイプのものを用いることができるが、特に MEMS (Micro Electro Mechanical System)技術を用いた加速度センサー(MEMS加速度セ ンサ一)は、小型軽量であるため、小型軽量性を要求される携帯端末装置に用いるも のとして適している。 The position change amount detection unit 103 is an acceleration sensor 10 that detects the acceleration of the mobile terminal device. Has 7. Acceleration is one of the position change amounts. In general, every movement can be considered as a combination of translation and rotation. Among these, the acceleration sensor 107 is used for correcting camera shake due to parallel movement. The velocity can be obtained by integrating the detected acceleration. Also, the displacement can be obtained by integrating the velocity. Both velocity and displacement are one of the integrated values of position change. Various types of acceleration sensor 107 can be used. In particular, an acceleration sensor (MEMS acceleration sensor) using MEMS (Micro Electro Mechanical System) technology is small and lightweight, so it is small and lightweight. It is suitable for use in portable terminal devices that are required.
[0017] 位置変化量積分部 104は、加速度センサー 107が検出した加速度を積分して速度 を求めて保持する加速度積分部 108と、加速度積分部 108で保持した速度を積分し て変位を求めて保持する速度積分部 109とを有する。  [0017] The position change amount integration unit 104 integrates the acceleration detected by the acceleration sensor 107 and obtains and holds the velocity, and integrates the velocity held by the acceleration integration unit 108 to obtain the displacement. And a speed integration unit 109 for holding.
[0018] 地球上で検出されうる加速度には、動加速度と静加速度 (重力加速度)がある。例 えば、加速度センサー 107として MEMS加速度センサーを用いた場合、加速度セン サー 107は、動加速度と静加速度の両方を検出する場合がある。その場合には、加 速度積分部 108は、加速度センサー 107で検出される加速度のうち、静加速度を除 いて動加速度のみを積分して速度とする。この際に、加速度積分部 108は、静加速 度は地球上ではほぼ一定値(ほぼ標準重力加速度 g = 9. 80665mZs2)であると考 えられるので、加速度センサー 107で検出される加速度から一定値を引くことで動加 速度を求めることができる。 [0018] Acceleration that can be detected on the earth includes dynamic acceleration and static acceleration (gravity acceleration). For example, when a MEMS acceleration sensor is used as the acceleration sensor 107, the acceleration sensor 107 may detect both dynamic acceleration and static acceleration. In that case, the acceleration integration unit 108 integrates only the dynamic acceleration of the acceleration detected by the acceleration sensor 107, excluding the static acceleration, and obtains the velocity. At this time, the acceleration integration unit 108 assumes that the static acceleration is almost constant on the earth (almost standard gravitational acceleration g = 9. 80665mZs 2 ), so it is constant from the acceleration detected by the acceleration sensor 107. The dynamic acceleration can be obtained by subtracting the value.
[0019] 表示位置補正部 105は、位置変化量積分値を打ち消すように画像投影部 101によ り投影される画像の表示位置を補正する。具体的には、速度積分部 109で保持した 変位によって投影画像に生ずる変位を打ち消すように、画像投影部 101により投影 される画像の表示位置を補正する。  [0019] The display position correction unit 105 corrects the display position of the image projected by the image projection unit 101 so as to cancel the position change amount integrated value. Specifically, the display position of the image projected by the image projection unit 101 is corrected so as to cancel the displacement generated in the projection image due to the displacement held by the speed integration unit 109.
[0020] 位置変化量積分値差引部 106は、位置変化量積分値をリセットすることにより初期 化する。すなわち、位置変化量積分値差引部 106は、加速度積分部 108で保持した 速度と、速度積分部 109で保持した変位をリセットすることにより初期化する。また、 位置変化量積分値差引部 106は、加速度積分部 108に保持される速度の絶対値と 速度積分部 109に保持される変位の絶対値が大きくなりすぎて表示位置補正部 105 で補正が可能な範囲外になつてしまうことを防止するために、予め決められた値ずつ 位置変化量積分値の絶対値を小さくする。すなわち、位置変化量積分値差引部 106 は、加速度積分部 108で保持した速度と、速度積分部 109で保持した変位を予め決 められた値ずつその絶対値を小さくする。 [0020] The position change integrated value subtracting unit 106 is initialized by resetting the position change integrated value. That is, the position change integrated value subtracting unit 106 is initialized by resetting the velocity held by the acceleration integrating unit 108 and the displacement held by the velocity integrating unit 109. In addition, the position change integrated value subtracting unit 106 is connected to the absolute value of the velocity held in the acceleration integrating unit 108. In order to prevent the absolute value of the displacement held in the speed integration unit 109 from becoming too large and out of the range that can be corrected by the display position correction unit 105, the position change amount integration is performed by a predetermined value. Decrease the absolute value. That is, the position change integrated value subtracting unit 106 decreases the absolute value by a predetermined value for the velocity held by the acceleration integrating unit 108 and the displacement held by the velocity integrating unit 109.
[0021] 次に、図 1の投影画像手ぶれ補正部 102を用いた平行移動による手ぶれの補正方 法について図 2及び図 3を用いて説明する。図 2は、携帯端末装置の投影画像の手 ぶれ補正方法を示すフロー図であり、図 3は、携帯端末装置 300の使用方法を示す 図である。図 3において、画像 314には、文字、図形、模様若しくは写真又はこれらの 組み合わせ等が含まれる。また、スクリーン 313は画像を投影する面のことであり、壁 面等であってもよい。なお、携帯端末装置 300は、図 1の構成を具備している。  Next, a method for correcting camera shake by translation using the projected image camera shake correction unit 102 of FIG. 1 will be described with reference to FIGS. FIG. 2 is a flowchart showing a camera shake correction method for a projected image of the mobile terminal device, and FIG. 3 is a diagram showing a method for using the mobile terminal device 300. In FIG. 3, an image 314 includes characters, figures, patterns, photographs, or combinations thereof. The screen 313 is a surface on which an image is projected, and may be a wall surface or the like. The mobile terminal device 300 has the configuration shown in FIG.
[0022] 初めに加速度センサー 107を初期化する (ステップ S201)。次に、位置変化量積 分値差引部 106は、速度をリセットし (ステップ S 202)、変位をリセットする (ステップ S 203)。  [0022] First, the acceleration sensor 107 is initialized (step S201). Next, the position change integrated value subtraction unit 106 resets the speed (step S202) and resets the displacement (step S203).
[0023] 携帯端末装置 300は、画像投影部 101からスクリーン 313に画像 314を投影する。  The mobile terminal device 300 projects the image 314 from the image projection unit 101 onto the screen 313.
このとき、携帯端末装置 300を保持する手がぶれて、携帯端末装置 300が平行移動 したとする。この際に、携帯端末装置 300の投影画像手ぶれ補正部 102が、平行移 動を加速度として検出する。すなわち、平行移動による手ぶれが発生すると、加速度 センサー 107がこれを X軸、 y軸及び z軸の向きの加速度として検出する (ステップ S2 04)。  At this time, it is assumed that the hand holding the mobile terminal device 300 is shaken and the mobile terminal device 300 is translated. At this time, the projected image blur correction unit 102 of the mobile terminal device 300 detects parallel movement as acceleration. That is, when camera shake due to translation occurs, the acceleration sensor 107 detects this as acceleration in the directions of the X axis, the y axis, and the z axis (step S2 04).
[0024] ここで、図 3に示すように、 z軸を携帯端末装置 300から画像を投影する面 (スクリー ン) 313に向力う向きの軸とし、 X軸及び y軸を z軸に垂直で互いに直交する 2つの向 きの軸とし、 X軸、 y軸及び z軸の向きの手ぶれによる変位をそれぞれ dx、 dy及び dzと する。  Here, as shown in FIG. 3, the z-axis is an axis that faces the surface (screen) 313 on which an image is projected from the mobile terminal device 300, and the X-axis and y-axis are perpendicular to the z-axis. Let dx, dy, and dz be the displacements caused by camera shake in the directions of the X, y, and z axes, respectively.
[0025] 次に加速度積分部 108で、加速度を積分して、速度として保持する (ステップ S206 )。次に速度積分部 109で、速度を積分して、変位として保持する (ステップ S 208)。 次に位置変化量積分値差引部 106が、加速度積分部 108に保持されて ヽる速度の 絶対値を予め決めておいた値だけ小さくし (ステップ S209)、速度積分部 109に保 持されて!ヽる変位の絶対値を予め決めてぉ 、た値だけ小さくする (ステップ S210)。 次に、表示位置補正部 105は、画像を投影する面 (スクリーン) 313に投影される画 像の表示位置の変位を打ち消すように補正する (ステップ S211)。すなわち、表示位 置補正部 105は、画像投影部 101で投影される画像の表示位置を、 X軸と y軸の向き にそれぞれ— と dyだけ平行移動して画像投影部 101にて投影する画像の表示 位置を補正する。 z軸の向きについては、表示位置補正部 105は、画像を拡大又は 縮小して投影している場合には、 z軸上を平行移動したことにより画像が拡大又は縮 小した分だけ逆に画像が縮小又は拡大するように、画像投影部 101にて投影する画 像の表示位置を補正する。 Next, the acceleration integration unit 108 integrates the acceleration and holds it as a velocity (step S206). Next, the speed integration unit 109 integrates the speed and holds it as a displacement (step S208). Next, the position change integrated value subtracting unit 106 reduces the absolute value of the speed held in the acceleration integrating unit 108 by a predetermined value (step S209), and stores it in the speed integrating unit 109. The absolute value of the displacement that is held is determined in advance and is reduced by that value (step S210). Next, the display position correction unit 105 performs correction so as to cancel the displacement of the display position of the image projected on the surface (screen) 313 on which the image is projected (step S211). That is, the display position correcting unit 105 translates the display position of the image projected by the image projecting unit 101 in the directions of the X axis and the y axis by − and dy, and projects the image projected by the image projecting unit 101. Correct the display position of. As for the orientation of the z-axis, the display position correction unit 105 reverses the image by the amount that has been enlarged or reduced by parallel movement on the z-axis when the image is being enlarged or reduced. The image projection unit 101 corrects the display position of the image projected so that the image is reduced or enlarged.
[0026] 次に終了を検出したかどうか判断し、終了を検出した場合 (ステップ S212、 YES) は終了し、終了を検出しない場合 (ステップ S212、 NO)はステップ S204に戻って処 理を続ける。このような動作によって、携帯端末装置を保持する手が平行移動によつ てぶれても、投影画像のぶれを小さくすることができる。  [0026] Next, it is determined whether or not the end is detected. If the end is detected (YES in step S212), the process ends. If the end is not detected (step S212, NO), the process returns to step S204 to continue processing. . By such an operation, even if the hand holding the mobile terminal device is shaken by translation, the shake of the projected image can be reduced.
[0027] なお、ステップ S209及びステップ S210は、動きが大きくない用途若しくは短時間 の使用の用途等でそれぞれ速度及び変位の絶対値が大きくない場合若しくは大きく ならない場合又は位置変化量積分値差引部 106を有さない場合には省略することが できる。  [0027] Note that step S209 and step S210 are performed when the absolute value of the velocity and displacement is not large or does not increase or the position change integrated value subtraction unit 106 is used for applications where the movement is not large or for a short period of use. If you do not have, you can omit it.
[0028] 次に、位置変化量積分値差引部 106において、予め決められた値、すなわち速度 と変位の絶対値を小さくする値を決定する方法にっ 、て説明する。速度と変位の絶 対値を小さくする値は、以下の(1)〜(3)を考慮して決定する。  Next, a method for determining a predetermined value, that is, a value for reducing the absolute value of the velocity and displacement, in the position change amount integrated value subtracting unit 106 will be described. The value that reduces the absolute value of velocity and displacement is determined in consideration of the following (1) to (3).
[0029] (1)加速度センサー 107で発生するノイズ及びオフセット(ノイズ等)の誤差並びに 位置変化量積分値差引部 106での処理の時間間隔を考慮して速度と変位の絶対値 を小さくする値を決定する。例えば、加速度センサー 107で発生するノイズ等の誤差 の RMS平均値 (nrmsとする)が 0. 005gで、且つ速度と変位の絶対値を小さくする 処理の時間間隔 (tとする)が 0. 001秒の場合においては、速度の絶対値を小さくす る値を nrms ' t (すなわち、およそ 0. 049mmZs)とし、変位の絶対値を小さくする値 を nrms ' t2 (すなわち、およそ 0. 049 /z m)とする。なお、この値の決め方の趣旨を 逸脱しな 、範囲内でこの値よりも若干大きな値又は小さな値を用いる場合もこれに含 まれるものとする。なお、オフセットの誤差としては、加速度センサー 107で検出する 加速度の値そのものに含まれるオフセットの誤差にカ卩えて、動加速度と静加速度の 両方が検出される場合において、静加速度を除く際に発生する誤差も考慮する。 [0029] (1) A value that decreases the absolute value of the velocity and displacement in consideration of the noise and offset (noise, etc.) generated by the acceleration sensor 107 and the processing time interval in the position change integrated value subtraction unit 106. To decide. For example, the RMS average value of errors such as noise generated by the acceleration sensor 107 (nrms) is 0.005 g, and the processing time interval (t) for reducing the absolute values of speed and displacement is 0.001. In the case of seconds, the value that decreases the absolute value of velocity is nrms 't (that is, approximately 0.049 mmZs), and the value that decreases the absolute value of displacement is nrms' t2 (that is, approximately 0.049 / zm). ). Note that this includes cases where a value slightly larger or smaller than this value is used within the range without departing from the purpose of determining this value. Shall be rare. Note that the offset error occurs when static acceleration is removed when both dynamic acceleration and static acceleration are detected in addition to the offset error contained in the acceleration value itself detected by the acceleration sensor 107. Also consider the error.
[0030] (2)加速度センサー 107の検出する加速度の絶対値の大きさに応じて、予め決め られた値を速度と変位の絶対値を小さくする値として決定する。この決定した値は、 上記(1)で決定した値よりも大きい値とする。又、速度若しくは変位をリセットできるよ うにしてもよい。反対に、加速度センサー 107の検出する加速度の絶対値の大きさに 応じて、予め決められた値を再び上記(1)で決定した値に戻せるようにしてもよい。加 速度センサー 107の検出する加速度の絶対値が大きい場合としては、例えば、歩行 しながら投影している場合等があげられる。このような場合には、上記(1)で決定した 値のみでは速度と変位の絶対値が補正の可能な範囲外になつてしまう場合がある。  (2) In accordance with the magnitude of the absolute value of acceleration detected by the acceleration sensor 107, a predetermined value is determined as a value for reducing the absolute value of speed and displacement. This determined value is larger than the value determined in (1) above. Also, the speed or displacement may be reset. On the contrary, a predetermined value may be returned to the value determined in the above (1) according to the magnitude of the absolute value of the acceleration detected by the acceleration sensor 107. Examples of the case where the absolute value of the acceleration detected by the acceleration sensor 107 is large include a case where the acceleration sensor 107 projects while walking. In such a case, the absolute values of speed and displacement may be outside the range that can be corrected with only the values determined in (1) above.
[0031] (3)速度と変位の絶対値が予め決められた値よりも小さい場合には、絶対値を零よ りも小さくはできないので、その場合には、速度と変位の双方を零にする力、又は速 度と変位の双方を小さくしない処理とする。  [0031] (3) If the absolute values of speed and displacement are smaller than a predetermined value, the absolute value cannot be made smaller than zero. In this case, both the speed and displacement are set to zero. The processing force is not reduced, or both speed and displacement are not reduced.
[0032] このように位置変化量積分値差引部 106を有することによって、速度積分部 109に 保持される変位の絶対値が、大きくなりすぎて表示位置補正部 105で補正が可能な 範囲外になつてしまうことを防止することができる。反対に、もしも、位置変化量積分 値差引部 106が無ければ、加速度センサー 107で発生するノイズ及びオフセットの 誤差が、位置変化量積分部 104で積分されることによって、時間の経過につれて大 きな速度及び変位の誤差になり、補正が可能な範囲外になつてしまう場合がある。そ こで、速度及び変位の絶対値を予め決められた値ずつ小さくすることで、手ぶれのよ うな速い動きは補正しつつ、補正が可能な範囲外になつてしまうことを防止することが できる。このような構成は、位置変化量の値にノイズ若しくはオフセットの誤差が含ま れる場合又は位置変化量検出手段の検出する位置変化量の絶対値が大きい場合 に効果がある。  By including the position change amount integrated value subtracting unit 106 in this way, the absolute value of the displacement held in the speed integrating unit 109 becomes too large and can be corrected by the display position correcting unit 105. It is possible to prevent the damage. On the other hand, if the position change integration value subtraction unit 106 is not provided, noise and offset errors generated by the acceleration sensor 107 are integrated by the position change integration unit 104, so that they increase with time. There may be an error in speed and displacement, which may be outside the range where correction is possible. Therefore, by reducing the absolute values of the velocity and displacement by predetermined values, it is possible to correct the fast movements such as camera shake and prevent it from going out of the range that can be corrected. . Such a configuration is effective when the position change amount value includes noise or offset error, or when the absolute value of the position change amount detected by the position change amount detecting means is large.
[0033] なお、位置変化量積分値差引部 106は動きが大きくない用途又は短時間の使用の 用途等で位置変化量積分値が補正の可能な範囲カゝら外れない場合には、無くてもよ い。 [0034] また、投影画像手ぶれ補正部 102を構成する部分のうち位置変化量検出部 103以 外の部分は、専用の LSI等のハードウェアを利用して実現することもできるし、汎用 の CPU、 ROM若しくは RAM等のハードウェア及びソフトウェアを利用して実現する ことちでさる。 [0033] It should be noted that the position change integrated value subtracting unit 106 is not necessary if the position change integrated value does not deviate from the correctable range in applications where the movement is not large or used for a short time. It's good. [0034] In addition, the portion other than the position change amount detection unit 103 among the parts constituting the projected image shake correction unit 102 can be realized using hardware such as a dedicated LSI, or a general-purpose CPU. It can be realized by using hardware such as ROM or RAM and software.
[0035] また、加速度センサー 107に加えて又は代えて、距離センサーを用いて携帯端末 装置力も画像を投影する面 (スクリーン)に向かう向き (z軸の向き)の変位を検出して 、この向きの平行移動による投影画像のぶれを補正してもよい。  [0035] Further, in addition to or instead of the acceleration sensor 107, the distance sensor is used to detect the displacement of the mobile terminal device force in the direction (z-axis direction) toward the surface (screen) onto which the image is projected. You may correct | amend the blurring of the projection image by parallel translation.
[0036] 因みに、精度よく手ぶれを補正するためには、画像投影部 101から加速度センサ 一 107までの距離を短くすることが望ましい。なぜならば、加速度は、携帯端末装置 が回転の動きをする場合には、携帯端末装置内の位置によって検出される値が異な る力らである。具体的には、回転の中心からの距離によってそれぞれの部分の加速 度は異なる。また、加速度を 2回積分したものである変位も、回転の中心からの距離 によって異なる。従って、画像投影部 101から加速度センサー 107までの距離を短く することにより、画像投影部 101の加速度を精度よく検出し、画像投影部 101の変位 を精度よく求めることができる。また、距離センサーを用いる場合、距離センサーは、 加速度センサー 107と同様に画像投影部 101からの距離を短くすることが望ましい。  Incidentally, in order to correct camera shake with high accuracy, it is desirable to shorten the distance from the image projection unit 101 to the acceleration sensor 107. This is because acceleration is a force with different values detected depending on the position in the mobile terminal device when the mobile terminal device rotates. Specifically, the acceleration of each part varies depending on the distance from the center of rotation. In addition, the displacement, which is the acceleration integrated twice, also depends on the distance from the center of rotation. Therefore, by shortening the distance from the image projection unit 101 to the acceleration sensor 107, the acceleration of the image projection unit 101 can be detected with high accuracy, and the displacement of the image projection unit 101 can be obtained with high accuracy. In the case where a distance sensor is used, it is desirable that the distance sensor shortens the distance from the image projection unit 101 as with the acceleration sensor 107.
[0037] このように、本実施の形態 1によれば、携帯端末装置を保持する手がぶれ、平行移 動による手ぶれが発生しても、投影画像のぶれを小さくすることができるので、携帯 端末装置を手で保持しても手ぶれが気にならず、投影された画像を見やすくすること ができる。  As described above, according to the first embodiment, even if the hand holding the mobile terminal device is shaken or the shake due to the parallel movement is generated, the shake of the projected image can be reduced. Even if the terminal device is held by hand, camera shake is not an issue, and the projected image can be easily viewed.
[0038] (実施の形態 2)  [0038] (Embodiment 2)
本発明の実施の形態 2では、回転による手ぶれが発生しても、投影画像のぶれを 小さくすることができる携帯端末装置について説明する。  In Embodiment 2 of the present invention, a mobile terminal device capable of reducing the shake of a projected image even when camera shake due to rotation occurs will be described.
[0039] 図 4は本発明の実施の形態 2における携帯端末装置の構成を示すブロック図であ る。ここでは、図 1に示す実施の形態 1における携帯端末装置のブロック図と異なる点 を中心に説明する。  FIG. 4 is a block diagram showing a configuration of the mobile terminal device according to Embodiment 2 of the present invention. Here, the description will focus on the differences from the block diagram of the mobile terminal device according to Embodiment 1 shown in FIG.
[0040] 図 4に示すように、本実施の形態 2の携帯端末装置は、画像を投影する画像投影 部 101と、画像投影部 101により投影された画像の手ぶれを補正する投影画像手ぶ れ補正部 402とを有する。 As shown in FIG. 4, the mobile terminal device according to the second embodiment includes an image projecting unit 101 that projects an image, and a projected image handshake that corrects camera shake of an image projected by the image projecting unit 101. And a correction unit 402.
[0041] 投影画像手ぶれ補正部 402のうち、本実施の形態 2における表示位置補正部 105 及び位置変化量積分値差引部 106は、実施の形態 1における表示位置補正部 105 及び位置変化量積分値差引部 106とは、具体的に扱う位置変化量積分値が異なる 点で相違するが、動作の本質は同様である。 [0041] Of the projected image shake correcting unit 402, the display position correcting unit 105 and the position change integrated value subtracting unit 106 in the second embodiment are the display position correcting unit 105 and the position change integrated value in the first embodiment. It differs from the subtracting unit 106 in that the integrated value of the position change amount specifically handled is different, but the essence of the operation is the same.
[0042] 位置変化量検出部 403は、携帯端末装置の角速度を検出する角速度センサー 41The position change amount detection unit 403 is an angular velocity sensor 41 that detects the angular velocity of the mobile terminal device.
0と、携帯端末装置から画像を投影する面 (スクリーン)までの距離を検出する距離セ ンサー 411 (距離検出手段)とを有する。角速度と距離はどちらも位置変化量のひと つである。 0 and a distance sensor 411 (distance detection means) for detecting a distance from the portable terminal device to a surface (screen) on which an image is projected. Angular velocity and distance are both positional changes.
[0043] 角速度センサー 410は、回転を補正するために用いる。角速度センサー 410は角 速度を検出するセンサーである。角速度は位置変化量のひとつである。角速度を積 分することによって角度変位を求めることができる。ここで、角度変位とは基準からの 回転角度とする。角度変位は位置変化量積分値のひとつである。なお、角速度セン サー 410は、加速度センサー 107とは異なり、画像投影部 101からの距離を短くする 必要はない。なぜならば、角速度は、携帯端末装置内のどの位置で検出しても原理 的に同じ値になるからである。  [0043] The angular velocity sensor 410 is used to correct rotation. The angular velocity sensor 410 is a sensor that detects angular velocity. Angular velocity is one of the positional changes. The angular displacement can be obtained by integrating the angular velocity. Here, the angular displacement is the rotation angle from the reference. The angular displacement is one of the position change integrated values. Unlike the acceleration sensor 107, the angular velocity sensor 410 does not need to shorten the distance from the image projection unit 101. This is because the angular velocity is theoretically the same regardless of the position detected in the mobile terminal device.
[0044] 角速度センサー 410に代えて磁気方位センサーを用いても回転を検出することが できる。磁気方位センサーは地磁気の向きを参照して方位を検出するセンサーであ り、検出した方位から回転の角度を求めることができる。磁気方位センサーも、角速 度センサー 410と同様に、画像投影部 101からの距離を短くする必要はない。  [0044] Rotation can also be detected by using a magnetic azimuth sensor instead of the angular velocity sensor 410. The magnetic azimuth sensor refers to the direction of geomagnetism and detects the azimuth, and the rotation angle can be obtained from the detected azimuth. Similarly to the angular velocity sensor 410, the magnetic azimuth sensor need not shorten the distance from the image projection unit 101.
[0045] 距離センサー 411は携帯端末装置から画像を投影する面 (スクリーン)までの距離 ( Dzとする)を検出する。距離 Dzは、 X軸及び y軸を軸とする携帯端末装置の回転( θ X 及び Θ yの向きの回転)による手ぶれを補正するために用いる。距離センサー 411は 、加速度センサー 107と同様に画像投影部 101からの距離を短くすることが望ましい 。なお、 X軸及び y軸を軸とする携帯端末装置の回転による投影画像のぶれを補正し ない場合には、距離センサー 411は無くてもよい。  The distance sensor 411 detects a distance (referred to as Dz) from the portable terminal device to a surface (screen) onto which an image is projected. The distance Dz is used to correct camera shake due to rotation (rotation in the direction of θ X and Θ y) of the mobile terminal device about the X axis and the y axis. It is desirable that the distance sensor 411 shortens the distance from the image projection unit 101 as with the acceleration sensor 107. Note that the distance sensor 411 may be omitted if the blurring of the projected image due to the rotation of the mobile terminal device about the X axis and the y axis is not corrected.
[0046] 位置変化量積分部 404は、角速度センサー 410が検出した角速度を積分して角度 変位を求めて保持する角速度積分部 412を有する。 [0047] 表示位置補正部 105は、位置変化量積分値を打ち消すように画像投影部 101上 の表示位置を補正する。具体的には、表示位置補正部 105は、角速度積分部 412 で保持した角度変位による投影画像の変位を打ち消すように、画像投影部 101によ り投影される画像の表示位置を補正する。 [0046] The position change amount integration unit 404 includes an angular velocity integration unit 412 that integrates the angular velocity detected by the angular velocity sensor 410 to obtain and hold an angular displacement. [0047] The display position correction unit 105 corrects the display position on the image projection unit 101 so as to cancel the position change amount integrated value. Specifically, the display position correcting unit 105 corrects the display position of the image projected by the image projecting unit 101 so as to cancel the displacement of the projected image due to the angular displacement held by the angular velocity integrating unit 412.
[0048] 位置変化量積分値差引部 106は、位置変化量積分値をリセットし又は予め決めら れた値ずつ位置変化量積分値の絶対値を小さくする。すなわち、角速度積分部 412 で保持した角度変位をリセットし又は予め決められた値ずつその絶対値を小さくする  [0048] The position change integrated value subtraction unit 106 resets the position change integrated value or decreases the absolute value of the position change integrated value by a predetermined value. That is, the angular displacement held by the angular velocity integrating unit 412 is reset or the absolute value is decreased by a predetermined value.
[0049] 次に、図 4の投影画像手ぶれ補正部 402の回転による手ぶれの補正動作について 、図 3及び図 5を用いて説明する。図 5は、携帯端末装置の投影画像手ぶれ補正方 法を示すフロー図である。図 3に示すように、 θ χ、 Θ y及び Θ zを、それぞれ X軸、 y軸 及び z軸のまわりの角度変位とする。 Next, a camera shake correction operation caused by the rotation of the projected image camera shake correction unit 402 in FIG. 4 will be described with reference to FIGS. FIG. 5 is a flowchart showing a method of correcting the projected image camera shake of the mobile terminal device. As shown in Fig. 3, let θ χ, Θ y, and Θ z be angular displacements around the X, y, and z axes, respectively.
[0050] 初めに、角速度センサー 410及び距離センサー 411を初期化する(ステップ S501 )。次に、位置変化量積分値差引部 106は、角度変位をリセットする (ステップ S502)  First, the angular velocity sensor 410 and the distance sensor 411 are initialized (step S501). Next, the position change integrated value subtraction unit 106 resets the angular displacement (step S502).
[0051] 携帯端末装置 300は、画像投影部 101からスクリーン 313に画像 314を投影する。 The mobile terminal device 300 projects the image 314 from the image projection unit 101 onto the screen 313.
このとき、携帯端末装置 300を保持する手がぶれて、携帯端末装置 300が回転した とする。回転による手ぶれが発生すると、角速度センサー 410は、これを携帯端末装 置の X軸、 y軸及び z軸のまわりの角速度として検出する(ステップ S504)。次に、距 離センサー 411で距離 Dzを検出する (ステップ S505)。次に角速度積分部 412で、 角速度を積分し、角度変位 θ χ、 Θ y及び Θ zを求めて保持する (ステップ S508)。次 に位置変化量積分値差引部 106が、角速度積分部 412に保持されている角度変位 の絶対値を予め決めておいた値だけ小さくする (ステップ S509)。次に、表示位置補 正部 105は、画像投影部 101により投影される画像の表示位置に対する角度変位の 影響を打ち消すように、画像の表示位置を補正する (ステップ S511)。すなわち、表 示位置補正部 105は、角度変位を打ち消すために、画像投影部上の表示位置を、 z 軸のまわりに— Θ zだけ回転し、 X方向及び y方向にそれぞれ— Dz'sin ( θ x)及び— Dz-sin( Θ y)だけ平行移動する。又は、表示位置補正部 105は、 -Dz-sin ( θ x)を— Dz- 0 xのように近似するとともに、ー02' 3 (0 )をー02' 0 yのように近似することに より、 z軸のまわりに— Θ zだけ回転し、 X方向及び y方向にそれぞれ— Dz' θ X及び— Dz- Θ yだけ平行移動する。ここで、角度変位 θ χ、 Θ y及び θ zの単位はラジアンとす る。 At this time, it is assumed that the hand holding the mobile terminal device 300 shakes and the mobile terminal device 300 rotates. When camera shake due to rotation occurs, the angular velocity sensor 410 detects this as angular velocities around the X-axis, y-axis, and z-axis of the mobile terminal device (step S504). Next, the distance Dz is detected by the distance sensor 411 (step S505). Next, the angular velocity integrating unit 412 integrates the angular velocity, and obtains and holds the angular displacements θχ, Θy, and Θz (step S508). Next, the position change amount integrated value subtracting unit 106 reduces the absolute value of the angular displacement held in the angular velocity integrating unit 412 by a predetermined value (step S509). Next, the display position correcting unit 105 corrects the image display position so as to cancel the influence of the angular displacement on the display position of the image projected by the image projecting unit 101 (step S511). In other words, the display position correction unit 105 rotates the display position on the image projection unit around the z axis by Θz to cancel the angular displacement, and in each of the X direction and the y direction, Dz'sin ( Translate by θ x) and — Dz-sin (Θ y). Alternatively, the display position correction unit 105 sets -Dz-sin (θ x) to — By approximating Dz- 0 x and approximating −02 '3 (0) as −0 2 ' 0 y, it is rotated around the z axis by Θz, and the X direction and y Translate in the direction by —Dz 'θ X and —Dz-Θ y, respectively. Here, the units of the angular displacements θχ, Θy, and θz are radians.
[0052] 次に終了を検出したかどうか判断し、終了を検出した場合 (ステップ S212、 YES) は終了し、終了を検出しない場合 (ステップ S212、 NO)はステップ S504に戻って処 理を続ける。このような動作によって、携帯端末装置を保持する手が回転によってぶ れても、投影画像のぶれを小さくすることができる。  [0052] Next, it is determined whether or not the end has been detected. When the end is detected (step S212, YES), the process ends. When the end is not detected (step S212, NO), the process returns to step S504 to continue the process. . By such an operation, even if the hand holding the mobile terminal device is shaken by rotation, the shake of the projected image can be reduced.
[0053] なお、ステップ S509は、動きが大きくない用途若しくは短時間の使用の用途等で 角度変位の絶対値が大きくない場合若しくは大きくならない場合又は位置変化量積 分値差引部 106を有さない場合には省略することができる。  [0053] Note that step S509 does not have the position change integrated value subtraction unit 106 when the absolute value of the angular displacement is not large or does not increase due to an application in which the movement is not large or in a short-time use. In some cases, it can be omitted.
[0054] 次に、位置変化量積分値差引部 106において、予め決められた値、すなわち速度 と変位の絶対値を小さくする値を決定する方法について説明する。角度変位の絶対 値を小さくする値は、実施の形態 1と同様に、以下の(1)〜(3)を考慮して決定する。  Next, a method for determining a predetermined value, that is, a value for reducing the absolute value of the velocity and displacement in the position change integrated value subtracting unit 106 will be described. The value for reducing the absolute value of the angular displacement is determined in consideration of the following (1) to (3), as in the first embodiment.
[0055] (1)角速度センサー 410で発生するノイズ及びオフセット(ノイズ等)の誤差並びに 位置変化量積分値差引部 106での処理の時間間隔を考慮して速度と変位の絶対値 を小さくする値を決定する。例えば、角速度センサー 410で発生するノイズ等の誤差 の RMS平均値が nrmsで、且つ速度と変位の絶対値を小さくする処理の時間間隔が tの場合には、角度変位の絶対値を小さくする値を nrms' tとする。なお、この値の決 め方の趣旨を逸脱しない範囲内でこの値よりも若干大きな値又は小さな値を用いる 場合もこれに含まれるものとする。  [0055] (1) A value that decreases the absolute value of the velocity and displacement in consideration of the noise and offset (noise, etc.) generated by the angular velocity sensor 410 and the processing time interval in the position change integrated value subtraction unit 106. To decide. For example, when the RMS average value of errors such as noise generated by the angular velocity sensor 410 is nrms and the processing time interval for reducing the absolute value of velocity and displacement is t, the value that decreases the absolute value of angular displacement Is nrms' t. It should be noted that the case where a value slightly larger or smaller than this value is used within a range not departing from the purpose of determining this value is included.
[0056] (2)角速度センサー 410で検出する角速度の大きさに応じて、予め決められた値を 速度と変位の絶対値を小さくする値として決定する。この決定した値は、上記(1)で 決定した値よりも大きい値とする。又、角度変位をリセットできるようにしてもよい。反対 に、角速度センサー 410で検出する角速度の大きさに応じて、予め決められた値を 再び上記(1)で決定した値に戻せるようにしてもょ 、。  (2) An angular velocity sensor 410 determines a predetermined value as a value that decreases the absolute value of the velocity and displacement according to the magnitude of the angular velocity detected by the sensor. This determined value is larger than the value determined in (1) above. Further, the angular displacement may be reset. On the other hand, depending on the angular velocity detected by the angular velocity sensor 410, the predetermined value may be restored to the value determined in (1) above.
[0057] (3)速度と変位の絶対値が予め決められた値よりも小さい場合には、絶対値を零よ りも小さくはできないので、その場合には、速度と変位の双方を零にする力、又は速 度と変位の双方を小さくしない処理とする。なお、位置変化量積分値差引部 106は 動きが大きくない用途又は短時間の使用の用途等で位置変化量積分値が補正の可 能な範囲力も外れない場合には、無くてもよい。 [0057] (3) If the absolute values of the velocity and displacement are smaller than the predetermined values, the absolute value cannot be smaller than zero. In this case, both the velocity and displacement are set to zero. Force or speed It is assumed that both the degree and displacement are not reduced. The position change integrated value subtracting unit 106 may be omitted if the position change integrated value does not deviate from the correctable range force for an application where the movement is not large or used for a short time.
[0058] なお、本実施の形態 2にお ヽて、投影画像手ぶれ補正部 402を構成する部分のう ち位置変化量検出部 403以外の部分は、専用の LSI等のハードウェアを利用して実 現することもできるし、汎用の CPU、 ROM若しくは RAM等のハードウェア及びソフト ウェアを利用して実現することもできる。  It should be noted that, in the second embodiment, portions other than the position change amount detection unit 403 among the portions constituting the projected image camera shake correction unit 402 use hardware such as a dedicated LSI. It can be realized, or it can be realized using hardware and software such as general-purpose CPU, ROM, or RAM.
[0059] このように、本実施の形態 2によれば、携帯端末装置を保持する手がぶれ、回転に よる手ぶれが発生しても、投影画像のぶれを小さくすることができるので、携帯端末 装置を手で保持しても手ぶれが気にならず、投影された画像を見やすくすることがで きる。  As described above, according to the second embodiment, even if the hand holding the mobile terminal device is shaken or the camera shake due to the rotation occurs, the shake of the projected image can be reduced. Even if the device is held by hand, camera shake does not matter, and the projected image can be easily viewed.
[0060] (実施の形態 3)  [0060] (Embodiment 3)
本発明の実施の形態 3では、いかなる手ぶれが発生しても、投影画像のぶれを小さ くすることができる携帯端末装置について説明する。  In Embodiment 3 of the present invention, a mobile terminal device capable of reducing the shake of a projected image regardless of any hand shake will be described.
[0061] 図 6は本発明の実施の形態 3に係る携帯端末装置の構成を示すブロック図である。 FIG. 6 is a block diagram showing a configuration of the mobile terminal apparatus according to Embodiment 3 of the present invention.
ここでは、図 1及び図 4に示す実施の形態 1及び実施の形態 2における携帯端末装 置のブロック図と異なる点を中心に説明する。  Here, the description will focus on points different from the block diagram of the mobile terminal device in Embodiment 1 and Embodiment 2 shown in FIGS.
[0062] 図 6に示すように、携帯端末装置は、画像投影部 101と投影画像手ぶれ補正部 60As shown in FIG. 6, the mobile terminal device includes an image projection unit 101 and a projected image camera shake correction unit 60.
2とを有する。 And 2.
[0063] 投影画像手ぶれ補正部 602は、位置変化量検出部 603と、位置変化量積分部 60 4と、表示位置補正部 105と、位置変化量積分値差引部 106とを有する。  The projected image camera shake correction unit 602 includes a position change amount detection unit 603, a position change amount integration unit 604, a display position correction unit 105, and a position change amount integration value subtraction unit 106.
[0064] 位置変化量検出部 603は、携帯端末装置の加速度を検出する加速度センサー 10 7と、携帯端末装置から画像を投影する面 (スクリーン)までの距離を検出する距離セ ンサー 411と、携帯端末装置の角速度を検出する角速度センサー 410とを有する。 これらのセンサーは実施の形態 1及び実施の形態 2で説明したものと同じものである 。なお、 X軸及び y軸を軸とする携帯端末装置の回転による投影画像のぶれを補正し ない場合には、距離センサー 411は無くてもよい。  [0064] The position change amount detection unit 603 includes an acceleration sensor 107 that detects acceleration of the mobile terminal device, a distance sensor 411 that detects a distance from the mobile terminal device to a surface (screen) on which an image is projected, And an angular velocity sensor 410 that detects the angular velocity of the terminal device. These sensors are the same as those described in the first and second embodiments. Note that the distance sensor 411 may be omitted if the blurring of the projected image due to the rotation of the mobile terminal device about the X axis and the y axis is not corrected.
[0065] 位置変化量積分部 604は、加速度センサー 107が検出した加速度を積分して速度 を求めて保持する加速度積分部 108と、加速度積分部 108で保持した速度を積分し て変位を求めて保持する速度積分部 109と、角速度センサー 410で検出した角速度 を積分して角度変位を求めて保持する角速度積分部 412と、角速度積分部 412〖こ 保持された角度変位及び速度積分部 109に保持された変位並びに画像投影部 101 から加速度センサー 107までの距離ベクトル力も変位の値を補正し、補正した変位を 保持する変位補正部 613とを有する。これらのうち、加速度積分部 108、速度積分部 109及び角速度積分部 412の構成は実施の形態 1及び実施の形態 2で説明したも のと基本的に同じである。 [0065] Position change amount integration section 604 integrates the acceleration detected by acceleration sensor 107 to obtain a velocity. Acceleration integration unit 108 that obtains and holds the velocity, velocity integration unit 109 that integrates the velocity held by acceleration integration unit 108 to obtain and hold the displacement, and integrates the angular velocity detected by angular velocity sensor 410 to obtain the angular displacement. The angular velocity integration unit 412 and the angular velocity integration unit 412 that are held in the same way and the displacement held in the angular displacement and velocity integration unit 109 and the distance vector force from the image projection unit 101 to the acceleration sensor 107 also correct the displacement value. A displacement correction unit 613 that holds the corrected displacement. Among these, the configurations of the acceleration integration unit 108, the speed integration unit 109, and the angular velocity integration unit 412 are basically the same as those described in the first embodiment and the second embodiment.
[0066] 変位補正部 613は、速度積分部 109に保持された変位を補正する。具体的には、 速度積分部 109に保持された変位 dx、 dy及び dzにそれぞれ δ y Θ z— δ ζ· Θ y、 δ ζ· θ χ- δ χ· θ ζ及び δ χ· θ γ- δ γ· θ χを加えたものを補正した変位として保持する 。ここで、 θ χ, 0 y、及び 0 ζ、は、それぞれ角速度積分部 412で保持した角度変位 の X軸、 y軸及び ζ軸方向の成分である。また、 δ χ、 δ y及び δ ζはそれぞれ画像投影 部 101から加速度センサー 107までの距離ベクトルの X軸、 y軸及び ζ軸方向の成分 である。ここで、距離ベクトルとは、軸の向きを正とした、 X軸、 y軸及び z軸方向の距離 を成分として有するベクトルとする。距離ベクトル δ χ、 δ y及び δ ζは、画像投影部 10 1と加速度センサー 107の配置によって決まるものなので、定数として扱う。表示位置 補正部 102が、速度積分部 109に保持された変位に代えて、変位補正部 613に保 持された補正した変位を打ち消すように、画像投影部 101により投影される画像の表 示位置を補正することによって、画像投影部 101から加速度センサー 107までの距 離が長い場合にも精度よく手ぶれを補正することができる。  The displacement correction unit 613 corrects the displacement held in the speed integration unit 109. Specifically, the displacements dx, dy, and dz held in the velocity integration unit 109 are respectively changed to δ y Θ z— δ ζ · Θ y, δ ζ · θ χ- δ χ · θ ζ and δ χ · θ γ- A value obtained by adding δγ · θχ is held as a corrected displacement. Here, θ χ, 0 y, and 0 ζ are components in the X-axis, y-axis, and ζ-axis directions of the angular displacement held by the angular velocity integrating unit 412, respectively. Further, δχ, δy, and δζ are components of the distance vector from the image projection unit 101 to the acceleration sensor 107 in the X-axis, y-axis, and ζ-axis directions, respectively. Here, the distance vector is a vector having components of distances in the X-axis, y-axis, and z-axis directions with the axis direction being positive. Since the distance vectors δχ, δy, and δζ are determined by the arrangement of the image projection unit 101 and the acceleration sensor 107, they are treated as constants. Display position The display position of the image projected by the image projection unit 101 so that the correction unit 102 cancels the corrected displacement held in the displacement correction unit 613 instead of the displacement held in the speed integration unit 109. By correcting the camera shake, it is possible to accurately correct camera shake even when the distance from the image projection unit 101 to the acceleration sensor 107 is long.
[0067] なお、変位補正部 613は、画像投影部 101から加速度センサー 107までの距離が 短 、場合又は手ぶれ補正の精度が要求されな 、場合には無くてもょ 、。その場合に は、表示位置補正部 105は、実施の形態 1と同様に、速度積分部 109に保持された 変位による投影画像の変位を打ち消すように、画像投影部 101により投影される画 像の表示位置を補正する。  [0067] It should be noted that the displacement correction unit 613 may be omitted if the distance from the image projection unit 101 to the acceleration sensor 107 is short, or the accuracy of camera shake correction is not required. In that case, the display position correction unit 105, similar to the first embodiment, corrects the image projected by the image projection unit 101 so as to cancel the displacement of the projection image due to the displacement held in the speed integration unit 109. Correct the display position.
[0068] また、本実施の形態 3における表示位置補正部 105及び位置変化量積分値差引 部 106は、実施の形態 1及び実施の形態 2における表示位置補正部 105及び位置 変化量積分値差引部 106とは、具体的に扱う位置変化量積分値が異なる点で相違 するが、動作の本質は同様である。また、位置変化量積分値差引部 106は、動きが 大きくない用途又は短時間の使用の用途等で、位置変化量積分値が補正の可能な 範囲から外れない場合には、無くてもよい。 In addition, the display position correction unit 105 and the position change amount integrated value subtraction unit 106 in the third embodiment are the same as the display position correction unit 105 and the position in the first and second embodiments. The change amount integrated value subtracting unit 106 is different in that the position change amount integrated value specifically handled is different, but the essence of the operation is the same. Further, the position change integrated value subtracting unit 106 may be omitted when the position change integrated value does not fall outside the correctable range, for example, in an application where the movement is not large or used for a short time.
[0069] また、実施の形態 1及び実施の形態 2と同様に、投影画像手ぶれ補正部 602を構 成する部分のうち位置変化量検出部 603以外の部分は、専用の LSI等のハードゥエ ァを利用して実現することもできるし、汎用の CPU、 ROM若しくは RAM等のハード ウェア及びソフトウェアを利用して実現することもできる。  [0069] As in the first and second embodiments, the portions other than the position change amount detection unit 603 among the portions constituting the projected image blur correction unit 602 are provided with a hard disk such as a dedicated LSI. It can be implemented by using hardware or software such as general-purpose CPU, ROM or RAM.
[0070] 次に、図 6の投影画像手ぶれ補正部 602のあらゆる動きによる手ぶれの補正動作 について、図 3及び図 7を用いて説明する。図 7は、携帯端末装置の投影画像手ぶ れ補正方法を示すフロー図である。図 7において、図 2及び図 5と同じステップ番号は 、図 2及び図 5と同じステップであることを示す。すなわち、本実施の形態 3の動作は、 実施の形態 1及び実施の形態 2で述べた動作の各ステップを有する。  Next, camera shake correction operations due to all the movements of the projected image camera shake correction unit 602 in FIG. 6 will be described with reference to FIGS. 3 and 7. FIG. FIG. 7 is a flowchart showing a method of correcting the projected image camera shake of the mobile terminal device. In FIG. 7, the same step numbers as those in FIGS. 2 and 5 indicate the same steps as those in FIGS. That is, the operation of the third embodiment includes the steps of the operations described in the first and second embodiments.
[0071] 携帯端末装置 300は、画像投影部 101からスクリーン 313に画像 314を投影する。  The mobile terminal device 300 projects the image 314 from the image projection unit 101 onto the screen 313.
このとき、携帯端末装置 300を保持する手がぶれて、携帯端末装置 300が動いたと する。この際に、あらゆる動きは平行移動と回転の組み合わせに分解して考えること ができるので、携帯端末装置 300の投影画像手ぶれ補正部 602が、これを加速度及 び角速度として検出して、実施の形態 1乃至実施の形態 3で述べたとおりの動作の組 み合わせにより、投影された画像 314のぶれを小さくすることができる。すなわち、変 位補正部 613が速度積分部 109に保持された変位を補正する。具体的には、変位 補正部 613は、速度積分部 109に保持された変位 dx、 dy及び dzにそれぞれ δ y 0 z - δ ζ· 0 y, δ ζ· θ χ- δ χ· θ ζ及び δ χ· θ γ- δ γ· θ χを加えたものを補正した変位 として保持する (ステップ S 707)。そして、表示位置補正部 105が、速度積分部 109 に保持された変位に代えて、変位補正部 613に保持された補正した変位を用いて画 像投影部 101により投影される画像の表示位置を補正する (ステップ S211)。このよ うな動作によって、携帯端末装置を保持する手力 ^、かなる運動によってぶれても、投 影された画像のぶれを小さくすることができる。  At this time, it is assumed that the hand holding the mobile terminal device 300 is shaken and the mobile terminal device 300 moves. At this time, since every movement can be considered as a combination of parallel movement and rotation, the projected image blur correction unit 602 of the mobile terminal device 300 detects this as an acceleration and an angular velocity, and the embodiment By combining the operations as described in the first to third embodiments, the shake of the projected image 314 can be reduced. That is, the displacement correction unit 613 corrects the displacement held in the speed integration unit 109. Specifically, the displacement correction unit 613 adds δ y 0 z-δ ζ · 0 y, δ ζ · θ χ-δ χ · θ ζ and the displacements dx, dy, and dz held in the velocity integration unit 109, respectively. A value obtained by adding δχ · θγ-δγ · θχχ is held as a corrected displacement (step S707). Then, the display position correcting unit 105 uses the corrected displacement held in the displacement correcting unit 613 instead of the displacement held in the speed integrating unit 109 to change the display position of the image projected by the image projecting unit 101. Correct (Step S211). Such an operation can reduce the blurring of the projected image even if it is shaken by the hand-power of holding the mobile terminal device or by an appropriate movement.
[0072] なお、ステップ S707は画像投影部 101から加速度センサー 107までの距離が短い 場合若しくは手ぶれ補正の精度が要求されない場合又は変位補正部 613を有さな い場合には省略することができる。 [0072] In step S707, the distance from the image projection unit 101 to the acceleration sensor 107 is short. In cases where the accuracy of camera shake correction is not required, or when the displacement correction unit 613 is not provided, this can be omitted.
[0073] また、ステップ S209、ステップ S210及びステップ S509は、動きが大きくない用途 若しくは短時間の使用の用途等でそれぞれ速度、変位及び角度変位の絶対値が大 きくない場合若しくは大きくならない場合又は位置変化量積分値差引部 106を有さ ない場合には省略することができる。 [0073] Step S209, Step S210, and Step S509 are performed when the absolute values of the velocity, displacement, and angular displacement are not large or do not increase in applications where movement is not large or applications are used for a short period of time. If the change integrated value subtraction unit 106 is not provided, it can be omitted.
[0074] このように、本実施の形態 3によれば、携帯端末装置を保持する手がぶれ、いかな る手ぶれが発生しても、投影画像のぶれを小さくすることができるので、携帯端末装 置を手で保持しても手ぶれが気にならず、投影された画像を見やすくすることができ る。 As described above, according to the third embodiment, even if the hand holding the mobile terminal device is shaken or any hand shake occurs, the shake of the projected image can be reduced. Even if the device is held by hand, camera shake does not matter and the projected image can be viewed easily.
[0075] 本明細書は、 2005年 1月 26日出願の特願 2005— 18089に基づく。この内容は すべてここに含めておく。  [0075] This specification is based on Japanese Patent Application No. 2005-18089 filed on Jan. 26, 2005. All this content is included here.
産業上の利用可能性  Industrial applicability
[0076] 本発明にかかる携帯端末装置及び携帯端末装置の投影画像手ぶれ補正方法は、 携帯端末装置により投影された画像の手ぶれを補正するのに好適である。 The portable terminal device and the projected image camera shake correction method for the mobile terminal device according to the present invention are suitable for correcting camera shake of an image projected by the mobile terminal device.

Claims

請求の範囲 The scope of the claims
[1] 画像を投影する画像投影手段を具備する携帯端末装置であって、  [1] A portable terminal device comprising image projection means for projecting an image,
前記携帯端末装置の位置の変化量を検出する位置変化量検出手段と、 検出した前記変化量を積分して位置変化量積分値を求める位置変化量積分手段 と、  Position change amount detecting means for detecting a change amount of the position of the mobile terminal device; position change amount integrating means for integrating the detected change amount to obtain a position change amount integrated value;
前記画像投影手段にて投影する画像の表示位置に対する前記位置変化量積分 値の影響を打ち消すように前記表示位置を補正する表示位置補正手段と、 を具備する携帯端末装置。  And a display position correction unit that corrects the display position so as to cancel the influence of the position change amount integral value on the display position of the image projected by the image projection unit.
[2] 前記位置変化量積分値の絶対値を所定の値小さくする位置変化量積分値差引手 段を具備する請求項 1記載の携帯端末装置。  2. The portable terminal device according to claim 1, further comprising a position change amount integrated value subtracting means for reducing an absolute value of the position change amount integrated value by a predetermined value.
[3] 前記位置変化量検出手段は、前記携帯端末装置の加速度を前記変化量として検 出し、 [3] The position change amount detecting means detects the acceleration of the mobile terminal device as the change amount,
前記位置変化量積分手段は、検出した前記加速度を積分して速度を求めるととも に、求めた前記速度を積分して前記位置変化量積分値を求める請求項 1記載の携 帯端末装置。  2. The mobile terminal device according to claim 1, wherein the position change amount integration means obtains the speed by integrating the detected acceleration, and obtains the position change amount integrated value by integrating the obtained speed.
[4] 前記位置変化量検出手段は、前記携帯端末装置の角速度を前記変化量として検 出し、  [4] The position change amount detecting means detects an angular velocity of the mobile terminal device as the change amount,
前記位置変化量積分手段は、検出した前記角速度を積分して前記位置変化量積 分値を求める請求項 1記載の携帯端末装置。  2. The portable terminal device according to claim 1, wherein the position change amount integration means obtains the position change amount integrated value by integrating the detected angular velocity.
[5] 前記位置変化量検出手段は、前記携帯端末装置から画像を投影する面までの距 離を検出し、 [5] The position change amount detecting means detects a distance from the portable terminal device to a surface on which an image is projected,
前記表示位置補正手段は、検出した前記距離と検出した前記角速度を積分した角 度変位とで表される前記位置変化量積分値の影響を打ち消すように前記表示位置 を補正する請求項 4記載の携帯端末装置。  5. The display position correction unit according to claim 4, wherein the display position correction unit corrects the display position so as to cancel the influence of the position change integrated value represented by the detected distance and an angular displacement obtained by integrating the detected angular velocity. Mobile terminal device.
[6] 前記位置変化量検出手段は、前記携帯端末装置の加速度と角速度を前記変化量 として検出し、 [6] The position change amount detection means detects the acceleration and angular velocity of the mobile terminal device as the change amount,
前記位置変化量積分手段は、検出した前記加速度を積分して速度を求めるととも に、求めた前記速度と検出した前記角速度を各々積分して前記位置変化量積分値 を求める請求項 1記載の携帯端末装置。 The position change amount integration means integrates the detected acceleration to obtain a speed, and integrates the obtained speed and the detected angular velocity to integrate the position change amount integrated value. The mobile terminal device according to claim 1, wherein:
[7] 携帯端末装置に設けられた画像投影手段にて画像を投影するステップと、 前記投影中に前記携帯端末装置の位置の変化量を検出するステップと、 検出した前記変化量を積分して位置変化量積分値を求めるステップと、 前記画像投影手段で投影する画像の表示位置に対する前記位置変化量積分値 の影響を打ち消すように前記表示位置を補正するステップと、 [7] A step of projecting an image by an image projecting means provided in the mobile terminal device, a step of detecting a change amount of the position of the mobile terminal device during the projection, and integrating the detected change amount Obtaining a position change integrated value; correcting the display position so as to cancel the influence of the position change integrated value on the display position of the image projected by the image projecting means;
を具備する携帯端末装置の投影画像手ぶれ補正方法。  A projection image camera shake correction method for a portable terminal device comprising:
PCT/JP2006/300977 2005-01-26 2006-01-23 Portable terminal and projected image camera shake correcting method for portable terminal WO2006080278A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005018089A JP2008096457A (en) 2005-01-26 2005-01-26 Portable terminal
JP2005-018089 2005-01-26

Publications (1)

Publication Number Publication Date
WO2006080278A1 true WO2006080278A1 (en) 2006-08-03

Family

ID=36740309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300977 WO2006080278A1 (en) 2005-01-26 2006-01-23 Portable terminal and projected image camera shake correcting method for portable terminal

Country Status (2)

Country Link
JP (1) JP2008096457A (en)
WO (1) WO2006080278A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009075147A (en) * 2007-09-18 2009-04-09 Seiko Epson Corp Projector, image adjustment method for projector, and program
JP2009081616A (en) * 2007-09-26 2009-04-16 Funai Electric Co Ltd Projection type video display device and mobile electronic device
WO2012157546A1 (en) * 2011-05-13 2012-11-22 ローム株式会社 Projector

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105502A1 (en) * 2010-02-24 2011-09-01 京セラ株式会社 Portable electronic device and projection system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03254286A (en) * 1990-03-02 1991-11-13 Funai Electric Co Ltd Hand blur preventing device for video camera
JPH07123317A (en) * 1993-10-21 1995-05-12 Canon Inc Photographing device with vibration proofing function
JPH08294041A (en) * 1995-04-20 1996-11-05 Hitachi Ltd Image pickup device
JP2001021992A (en) * 1999-07-09 2001-01-26 C Media:Kk Portable terminal, portable terminal system and portable telephone
JP2001221641A (en) * 2000-02-09 2001-08-17 Canon Inc Projection apparatus with damping function
JP2004527779A (en) * 2000-09-28 2004-09-09 シーメンス アクチエンゲゼルシヤフト Terminal device with projection display
JP2005128506A (en) * 2003-09-30 2005-05-19 Sanyo Electric Co Ltd Portable projector
JP2005189733A (en) * 2003-12-26 2005-07-14 Nikon Corp Projector

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03254286A (en) * 1990-03-02 1991-11-13 Funai Electric Co Ltd Hand blur preventing device for video camera
JPH07123317A (en) * 1993-10-21 1995-05-12 Canon Inc Photographing device with vibration proofing function
JPH08294041A (en) * 1995-04-20 1996-11-05 Hitachi Ltd Image pickup device
JP2001021992A (en) * 1999-07-09 2001-01-26 C Media:Kk Portable terminal, portable terminal system and portable telephone
JP2001221641A (en) * 2000-02-09 2001-08-17 Canon Inc Projection apparatus with damping function
JP2004527779A (en) * 2000-09-28 2004-09-09 シーメンス アクチエンゲゼルシヤフト Terminal device with projection display
JP2005128506A (en) * 2003-09-30 2005-05-19 Sanyo Electric Co Ltd Portable projector
JP2005189733A (en) * 2003-12-26 2005-07-14 Nikon Corp Projector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009075147A (en) * 2007-09-18 2009-04-09 Seiko Epson Corp Projector, image adjustment method for projector, and program
JP2009081616A (en) * 2007-09-26 2009-04-16 Funai Electric Co Ltd Projection type video display device and mobile electronic device
WO2012157546A1 (en) * 2011-05-13 2012-11-22 ローム株式会社 Projector
US9686388B2 (en) 2011-05-13 2017-06-20 Rohm Co., Ltd. Projector
US9942368B2 (en) 2011-05-13 2018-04-10 Rohm Co., Ltd. Projector

Also Published As

Publication number Publication date
JP2008096457A (en) 2008-04-24

Similar Documents

Publication Publication Date Title
JP5354168B2 (en) Projector and control method
JP6098874B2 (en) Imaging apparatus and image processing apparatus
US7293459B2 (en) Image-based sensing of acceleration
US8854482B2 (en) Digital camera with integrated accelerometers
US7593627B2 (en) Angle correction for camera
US7564482B2 (en) Image capturing device, correction device, mobile phone, and correcting method
WO2007069116A2 (en) A device incorporating a display
KR20140014787A (en) Camera module
TWI757387B (en) Method for calibrating driving amount of actuator configured to correct blurring of image taken by camera
WO2006080278A1 (en) Portable terminal and projected image camera shake correcting method for portable terminal
JP2010211166A (en) Image pickup apparatus, portable terminal device, and focusing mechanism control method
JP2014016451A (en) Imaging device, method for calculating camera shake correction amount, and program for calculating camera shake correction amount
JP2009031353A (en) Imaging apparatus
JP2013054193A (en) Shake correction device and optical apparatus
JP5183389B2 (en) Vibration correction apparatus and imaging apparatus
JP2012237884A (en) Blur correction device and optical instrument
JP7017961B2 (en) Blur correction device and blur correction method
JP2006343652A (en) Method for estimating camera shake direction in camera shake correction and camera shake correction device
JPH07301839A (en) Camera shake correcting device
JP2008067081A (en) Portable imaging display device
US20230417553A1 (en) Orientation calculation apparatus, orientation calculation method, imaging apparatus including orientation calculation apparatus, and method for controlling same
JP5710809B2 (en) Dimension measurement terminal
JP2006258902A (en) Shake correcting device for camera and portable electronic equipment with camera using the same
CN114125272A (en) Method for acquiring attitude angle, camera anti-shake control method and electronic equipment
JP2019109391A (en) Shake amount calculation device, shake amount correction device, imaging apparatus, method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase

Ref document number: 06712193

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6712193

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP