WO2006080225A1 - 落下検知方法および落下検知装置 - Google Patents

落下検知方法および落下検知装置 Download PDF

Info

Publication number
WO2006080225A1
WO2006080225A1 PCT/JP2006/300706 JP2006300706W WO2006080225A1 WO 2006080225 A1 WO2006080225 A1 WO 2006080225A1 JP 2006300706 W JP2006300706 W JP 2006300706W WO 2006080225 A1 WO2006080225 A1 WO 2006080225A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
acceleration
time
fall
predetermined time
Prior art date
Application number
PCT/JP2006/300706
Other languages
English (en)
French (fr)
Inventor
Masaru Noda
Isao Sakaguchi
Original Assignee
Hitachi Metals, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals, Ltd. filed Critical Hitachi Metals, Ltd.
Priority to CN2006800036172A priority Critical patent/CN101111770B/zh
Priority to JP2007500472A priority patent/JP4637165B2/ja
Priority to US11/813,576 priority patent/US7690253B2/en
Priority to EP06711952A priority patent/EP1850138A4/en
Publication of WO2006080225A1 publication Critical patent/WO2006080225A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B21/00Head arrangements not specific to the method of recording or reproducing
    • G11B21/02Driving or moving of heads
    • G11B21/12Raising and lowering; Back-spacing or forward-spacing along track; Returning to starting position otherwise than during transducing operation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0891Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values with indication of predetermined acceleration values
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B19/00Driving, starting, stopping record carriers not specifically of filamentary or web form, or of supports therefor; Control thereof; Control of operating function ; Driving both disc and head
    • G11B19/02Control of operating function, e.g. switching from recording to reproducing
    • G11B19/04Arrangements for preventing, inhibiting, or warning against double recording on the same blank or against other recording or reproducing malfunctions
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B21/00Head arrangements not specific to the method of recording or reproducing
    • G11B21/02Driving or moving of heads
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1116Determining posture transitions
    • A61B5/1117Fall detection

Definitions

  • the present invention relates to a drop detection method and a drop detection apparatus that can be used for drop protection of a portable electronic device or the like equipped with a magnetic disk.
  • Patent Document 1 Due to the nature of portable electronic devices, there is a high risk of being dropped accidentally! Some notebook PCs with built-in magnetic disks, such as some digital music players, are especially sensitive to shocks and require protection measures against falling. Such protection measures are described in Patent Document 1 and Patent Document 2.
  • Patent Document 1 a 3-axis acceleration sensor is provided, and the acceleration signal is a small acceleration of almost zero on all 3 axes, and when it continues for a certain period of time, it is determined that it is in free fall and the magnetic head is retracted. It is moved to the area to prevent the magnetic disk from being destroyed by the impact at the time of falling collision.
  • Patent Document 2 when the magnitude of the combined vector of the three-axis calorie velocity exceeds a certain threshold for 90 milliseconds or more, a drop is detected, and the magnetic head is moved to the retreat area, and the magnetic force due to the impact at the time of the drop collision is detected. Prevent disc destruction.
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-241442
  • Patent Document 2 US Patent 5982573
  • the fall detection method of the present invention is such that when a portable electronic device or the like equipped with an acceleration sensor and equipped with a magnetic disk starts to fall, it touches something in the middle of the fall and the fall temporarily stops. If the temporary fall stops for a certain period of time (sometimes referred to as the “first predetermined time”). For example, the drop force that occurred before the temporary fall is determined to continue, and there is a fear that the continued fall will damage the portable electronic device (“No. 2)
  • the second predetermined time is precisely the time obtained by subtracting the allowance for evacuation from the fall time that may cause damage. Take measures such as evacuation.
  • the output from the acceleration sensor attached to the portable electronic device or the like corresponds to a fall
  • the output is short and time ("third" If it is shorter than the predetermined time, it may be determined that the electronic equipment has been vibrated and no action is taken in response to the fall.
  • the fall detection method of the present invention measures the acceleration applied to the acceleration sensor using an acceleration sensor at each successive timing, compares the measured acceleration with a certain threshold value, and corresponds to a fall ( "Falling acceleration” sometimes occurs)) or a value equivalent to falling (“Non-falling acceleration” sometimes occurs))
  • the time during which the calo speed measured at each timing is continuously falling acceleration is defined as the output duration, and the output duration is compared with the second predetermined time.
  • the output duration time reaches the second predetermined time, it is determined that the vehicle has fallen.
  • the acceleration measured at each timing is a non-falling acceleration, it is measured at each timing. Since the acceleration was the fall acceleration before that time, the time during which the acceleration was continuously non-falling acceleration was defined as the output interruption time, and the output interruption time was compared with the first predetermined time.
  • the previous output continuation time is corrected with the output interruption time, and the measurement returns to the step of comparing the measured acceleration with the threshold value of the measured acceleration.
  • the threshold for comparing the measured acceleration is set to a value smaller than the gravitational acceleration.
  • the acceleration is equal to or smaller than the threshold, it is determined that the acceleration is a falling acceleration.
  • the acceleration sensor has no acceleration, but the threshold is set to the gravitational acceleration (9. By setting 20 to 60% of 8mZs 2 ), preferably about 40% of gravitational acceleration, the effect of offset can be avoided.
  • the measured acceleration is the drop acceleration. It is preferable to return to the step of determining the comparison between the measured acceleration and the threshold of the measured acceleration by correcting the output continuation time by adding the output interruption time to the output time immediately before that, .
  • the measured acceleration is Before that, when the force was non-falling acceleration, the time that was continuously falling acceleration was taken as the preliminary duration, and the preliminary duration was compared with the third predetermined time,
  • the time during which the acceleration measured at each timing is continuously non-falling acceleration is taken as the output interruption time, and output is in progress. It is preferable to proceed to the step of comparing the interruption time with a first predetermined time.
  • the acceleration sensor measures the acceleration in each axial direction of a three-axis coordinate system orthogonal to each other, and compares the square sum or square sum of squares of the measured acceleration in each axis direction with a threshold value. can do. Alternatively, each measured acceleration in each axial direction can be compared with a threshold value.
  • the output corresponding to the fall acceleration measured by the acceleration sensor is temporarily interrupted, but the output corresponding to the fall acceleration is interrupted.
  • the output continuation time is corrected and the output continuation time is corrected.Therefore, the output continuation time of the fall acceleration is not affected by the output interruption corresponding to the drop acceleration. In other words, the duration of the fall can be determined, and even when a person or object is touched during the fall, the fall can be determined with high accuracy.
  • the first predetermined time corresponds to the longest output interruption time that can correct the fall acceleration interruption, and by making the first predetermined time 1Z2 or less of the second predetermined time, non-falling conditions such as vertical vibrations This makes it possible to prevent erroneous fall detection due to overcorrection of the intermittent small acceleration detection output that occurs at.
  • the correction of the output duration is interrupted. It is preferable to consider that the fall continued during this time and add the output interruption time to the output continuation time before correction to make it the output continuation time. If the output corresponding to the fall acceleration is output for a short period of time and the fall acceleration disappears after that, the fall acceleration will continue! By comparing with a third predetermined time that is even shorter than the time, an erroneous determination can be avoided when an output corresponding to the fall acceleration is generated for a short time due to vertical vibration or the like.
  • the acceleration detection device of the present invention includes an acceleration sensor that measures applied acceleration at each successive timing;
  • An output detection means for comparing the measured acceleration with a certain threshold value to determine whether the measured acceleration is falling acceleration or non-falling acceleration, and outputting the determination result;
  • the output from the output detection means corresponds to the fall acceleration, receive the output. Then, measure the time during which the output corresponding to the fall acceleration is continuous to obtain the output duration, compare the output duration with the second predetermined time,
  • the output from the output detection means corresponds to non-falling acceleration
  • the output is received and the output force corresponding to non-falling acceleration. Is measured as the output interruption time, and the output interruption time is compared with the first predetermined time.
  • the output interruption time has not reached the first predetermined time, the output corresponding to the fall acceleration continues, and the output duration is corrected by adding the output interruption time to the output immediately before that.
  • the preliminary duration was compared with the third predetermined time
  • the preliminary duration is reset and the output corresponding to the non-falling acceleration from the output detection means is transmitted to the output interruption correction means.
  • the output interruption correction means resets the count when receiving an output corresponding to the fall acceleration from the output detection means, and corresponds to a non-fall acceleration from the output detection means.
  • the clock counter count reaches the count corresponding to the first predetermined time.
  • the output counter time is corrected by counting the clock counter count in the output duration immediately before that, and the clock counter count is When the count corresponding to the first predetermined time is reached, it is possible to output a determination result that the fall has stopped.
  • the output interruption correcting means can include a multistage delay means in which a plurality of delay means having a delay time shorter than the first predetermined time are connected in series.
  • the logical sum of each delay tap output of the multistage delay means obtained by passing the output of the output detection means through the multistage delay means and the output of the output detection means can be used as the output of the output interruption correction means.
  • the acceleration sensor measures the acceleration in each axial direction of a three-axis coordinate system orthogonal to each other, and the output detection means calculates 2 of the acceleration in each axial direction measured by the acceleration sensor.
  • the sum of squares or square sum of squares can be compared with a threshold.
  • each axis acceleration measured by the acceleration sensor can be compared with a threshold value.
  • the fall detection method and fall detection device eliminates the risk of missing a drop even in a fall state in which a person or an object is touched during the fall and the free fall condition force is temporarily removed. The fall can be judged with accuracy.
  • the effect of the present invention is effective regardless of the calibration method of the acceleration detection means and the detection characteristics.
  • FIG. 1 is a block diagram showing a fall detection device according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram showing a configuration example of output detection means used in the drop detection device according to Embodiment 1 of the present invention.
  • FIG. 3A and FIG. 3B are explanatory diagrams showing examples of acceleration output waveforms and output interruption correction waveforms in the first embodiment.
  • FIG. 4A and FIG. 4B are explanatory diagrams showing the output of each stage in the drop detection device described in the first embodiment of the present invention.
  • FIG. 5 is a flow chart showing the process of drop detection of the present invention described in the second embodiment.
  • FIG. 6 is a block diagram showing output interruption correction means and output duration determination means used in the drop detection device of Embodiment 3 of the present invention.
  • FIG. 7 is a block diagram showing the output interruption correcting means used in the drop detection device according to the fourth embodiment of the present invention.
  • FIG. 8 is a block diagram showing a fall detection device according to Embodiment 5 of the present invention.
  • Fig. 9 is a block diagram showing a fall detection device according to Embodiment 6 of the present invention.
  • FIG. 10 is a flowchart showing a process of the fall detection method of the present invention described in Example 7 of the present invention.
  • Fig. 11 is a block diagram showing the output interruption correcting means used in the drop detection device according to the eighth embodiment of the present invention.
  • FIG. 12 is a diagram for explaining the operation of the drop detection device according to the eighth embodiment.
  • FIG. 13 is a block diagram showing the output interruption correcting means and the output duration determining means used in the drop detection device according to the ninth embodiment of the present invention.
  • FIG. 1 shows a block diagram of a fall detection device according to a first embodiment of the present invention.
  • the fall detection device includes a three-axis acceleration sensor 1, an output detection means 2, an output interruption correction means 3, and an output duration determination means 4.
  • the output detection means 2 has the configuration shown in Fig. 2, and when the absolute values of the three-axis accelerations Ax, Ay, and Az measured by the three-axis acceleration sensor 1 are equal to or smaller than the force threshold Th, the fall acceleration is detected.
  • Corresponding output (abbreviated as “falling acceleration”) 25 is output. As shown in Fig. 3, when the fall acceleration disappears from the output 25 of the output detection means 2 and then recovers within a certain time (first predetermined time), the output interruption correction means 3 outputs the fall acceleration.
  • the duration is corrected with the drop acceleration interruption time, and the fall acceleration waveform that has continued for the corrected output duration is designated as output 35.
  • the determination result is Output.
  • the output duration determination means 4 generates a drop determination output 45 when the corrected output 35 continues for a second predetermined time or more.
  • the second predetermined time is a time for determining a fall, and is set so that the fall can be judged before the end of the fall. Strictly speaking, the time is required to be shorter than the time required for drop detection from the height required for drop detection minus the time required for protection processing after drop detection. However, if the drop determination time (second predetermined time) is excessively shortened, the probability that a fall will be erroneously detected when a drop acceleration due to non-fall such as vertical vibration is detected increases. Good results were obtained when the first predetermined time was set around 10 milliseconds and the second predetermined time was set around 100 milliseconds.
  • FIG. 3 shows an example of an acceleration output waveform and an output interruption corrected waveform.
  • 3A shows a waveform example of the acceleration output 25 output from the output detection means 2
  • FIG. 3B shows a waveform example of the output 35 corrected by the output interruption correction means 3.
  • 3A and 3B schematically show waveforms.
  • Fig. 3A when there is no fall acceleration output, output 25 is displayed as level 0, and drop acceleration output as level 1.
  • the fall acceleration output is interrupted twice immediately after the fall starts.
  • the fall acceleration output interruption occurs when the free fall condition force is temporarily removed when the hand begins to slide down or when a person or object is touched on the way.
  • the acceleration output 35 with the output interruption corrected is shown in Fig. 3B.
  • Level 1 will continue until the end time is extended for the first predetermined time set at around 10 milliseconds.
  • FIG. 4A shows an example in which output interruption of acceleration output can be corrected
  • FIG. 4B shows an example in which correction cannot be made.
  • reference numeral 25 is the acceleration output from the output detection means 2
  • reference numeral 35 is the acceleration output with the output interruption corrected by the output interruption correction means 3
  • reference numeral 45 is the fall detection output from the output duration determination means 4.
  • T1 is the first predetermined time
  • T2 is the second predetermined time
  • T3 is the time that can be spent for the protection process after the drop determination.
  • the fall acceleration output is interrupted at the acceleration output 25, but recovered in a time shorter than T1, so the output interruption is corrected at the corrected acceleration output 35.
  • the drop judgment output 45 is generated at the time when the duration of the corrected acceleration output 35 reaches T2.
  • the fall acceleration output 25 is interrupted for a time longer than T1, and the output interruption remains even in the corrected acceleration output 35. Since the suspended output remains in the corrected acceleration output 35, the duration of the corrected acceleration output 35 does not reach T2, so the drop judgment output 45 does not occur. If there are multiple output interruptions shorter than T1, the output interruption is corrected as in the example shown in Figure 4A. As a result, even a case that falls while touching a person or an object can be detected without missing the fall.
  • the output detection means 2 is not limited to outputting the fall acceleration output 25 when any of the absolute values of the three-axis accelerations Ax, Ay, and Az described above is equal to or smaller than the force threshold value Th.
  • the sum of squares of triaxial acceleration can be compared with the threshold Th.
  • the acceleration output is the logical product of the result of comparing the absolute value of the triaxial acceleration with the threshold Th and the result of comparing the absolute value of the triaxial acceleration Ax, Ay, Az with the threshold Th. It can also be. In this way, an acceleration output can be obtained by combining a plurality of methods. It is only necessary to determine whether the magnitude of the acceleration applied to the three-axis acceleration sensor is smaller than the gravitational acceleration and larger than a predetermined value (threshold value).
  • the interruption correction means 3 has an output interruption time counter.
  • Output detection means 2 output 25 force After the fall acceleration disappears, the output interruption time counter 1 counts the time when the fall acceleration is interrupted, and compares it with the first predetermined time.
  • the output duration determination means 4 includes an output duration counter. In order to determine whether the time during which the fall acceleration from output 25 of output detection means 2 is interrupted is shorter than the first predetermined time, the count of the output interruption time counter is compared with the first predetermined time. If it is short, the count of the output duration counter is corrected using the count of the output interruption time counter to obtain the corrected output duration. To correct the output duration counter count, add the normal output interruption time counter count to the output duration counter count. The output duration counter 1 counts the time during which the fall acceleration continues, and compares the output duration counter with the second predetermined time.
  • the output time counter and the output interruption time counter are reset at the beginning of the fall acceleration measurement (step 101).
  • the output from the 3-axis acceleration sensor 1 is measured at each successive clock timing (step 102), and the output detection means 2 compares the acceleration sensor output with a certain threshold value as described in Example 1 to determine whether or not it falls. It is determined whether the value is a value that does not correspond to falling or not (step 103).
  • the routine proceeds to step 104, the output interruption time counter is reset, and the output is outputted as the output interruption time determination means 4. To tell.
  • the time width of the fall acceleration or one count is added to the count of one output duration counter (step 105), and the count of the output duration counter is compared with the second predetermined time (step 105). 106). If the count of the output duration counter has reached the second predetermined time in step 106, the process proceeds to step 107 to make a fall determination. In step 106, if the output duration counter has not reached the second predetermined time, the process returns to step 102 and the acceleration is measured at the next timing.
  • the output interruption correction means 3 receives the output 25, and the non-falling acceleration is counted in the output interruption time counter.
  • the time interval or 1 count is counted (step 110), and the count of the output interruption time counter is compared with the first predetermined time (step 111).
  • step 111 if the output interruption time force count has reached the first predetermined time, the fall has disappeared and the process returns to the first step of the fall acceleration.
  • step 111 if the count of the output interruption time counter has not reached the first predetermined time, correct the count of the output duration counter using the output interruption time counter count (step 121), and step 102. Return to and measure the acceleration at the next timing.
  • FIG. 6 shows a specific example of the circuit configuration of the output interruption correction means 3 and the output duration determination means 4 as the drop detection device of the third embodiment.
  • the output interruption correcting means 3 includes a clock counter 31, a coincidence comparator 32, a T1 register 33, and an RS type flip-flop 34.
  • the clock counter 31 corresponds to the output interruption time counter in the second embodiment.
  • the output duration determination means 4 includes a clock counter 41, a coincidence comparator 42, and a T2 register 43.
  • the clock counter 41 corresponds to the output duration counter in the second embodiment. Assuming that the R-S flip-flop 34 is initially reset, when the acceleration output 25 rises, the R-S flip-flop 34 is set and raises the output Q, and is high (1 until the next reset. ) Will continue.
  • the clock counter 31 continues to be cleared while the acceleration output 25 input to the CLR pin is high, and the count value remains at the initial value (usually zero is the initial value).
  • clock counter 31 releases the clearing power and counts up the clock.
  • the coincidence comparator 32 constantly compares the value corresponding to the first predetermined time stored in the T1 register 33 with the count value of the clock counter 31 and generates an output when the two coincide with each other. To reset the R-S flip-flop 34. If the count value recovers from the output interruption before reaching the value of the T1 register 33, the clock counter 31 returns to the initial value again. If the duration of the output interruption is shorter than the first predetermined time, the R-S type Flip-flop 34 is not reset and maintains output Q high.
  • FIG. 7 shows output interruption correction means used in the drop detection device of the fourth embodiment.
  • reference numeral 36 is a D-type flip-flop
  • reference numeral 37 is an OR logic circuit.
  • the D-type flip-flop 36 takes the binary data applied to the D pin at the timing of the clock CLK and outputs it to the Q pin while holding it until the next clock timing.
  • a multistage delay means is configured by cascading a plurality of stages of D-type flip-flops 36. By taking the OR output of the acceleration output 25 and the acceleration output 25 through the multi-stage delay means and the OR output of multiple delay tap outputs, the output 35 with the output interruption corrected can be obtained.
  • the time obtained by multiplying the clock period by the number of delay stages corresponds to the first predetermined time.
  • FIG. 8 shows a drop detection device according to the fifth embodiment.
  • the three-axis acceleration Ax, Ay, Az measured by the three-axis acceleration sensor 1 is converted into a digital value by the AZD change ⁇ 5 and loaded into the microcomputer 6.
  • the microcomputer 6 compares the magnitude of the acceleration measured by the triaxial acceleration sensor 1 with a threshold value, determines whether it corresponds to the fall acceleration, and uses the result to follow the flowchart of FIG. 5 described in the second embodiment. Perform drop judgment. When it is determined that it has fallen, protection processing is performed such as retreating the head of the hard disk drive to a predetermined safe area.
  • the comparison with the measured acceleration threshold can be based on the processing algorithm illustrated in FIG. Alternatively, the determination can be made by comparing the sum of squares of the three-axis accelerations Ax, Ay, Az, or the square root thereof with a predetermined threshold value.
  • FIG. 9 shows a fall detection device according to the sixth embodiment.
  • An output detection means 2 that generates a detection output when the accelerations Ax, Ay, and Az detected by the triaxial acceleration sensor 1 are equal to or less than a predetermined threshold value smaller than the gravitational acceleration, and a microcomputer 6 are provided.
  • the processing process executed by the microcomputer 6 starts from step 104 in the flowchart of FIG. 5 described in the second embodiment. Determine fall according to 121.
  • the microcomputer 6 performs protection processing such as retreating the head of the hard disk device to a predetermined safety area.
  • the advantage of this embodiment is that no AZD modification is required.
  • Example 1 to Example 6 the output interruption correction means 3 in Example 6 compares the count of the output interruption time counter with the first predetermined time, but here it is before comparing the output interruption time counter with the first predetermined time.
  • the preliminary continuation time is compared with the third predetermined time.
  • vibration with a very short period is applied to the accelerometer, in order to avoid judging that the acceleration due to the vibration is falling, a preliminary duration is set to a third time shorter than the first predetermined time. If the preliminary duration is shorter than the third predetermined time, it is determined that there is vibration and the output duration is not corrected.
  • a preliminary duration counter is provided for measuring the preliminary duration.
  • the output interruption correction means receives the judgment result of whether it is a value that does not correspond to force or drop, and the acceleration measured at each timing corresponds to the drop acceleration, the process proceeds to step 130, and the fall acceleration is counted in the preliminary duration counter count. Proceed to step 104 with the time width or 1 count. The process after step 104 is the same as the flowchart in FIG.
  • step 103 If the fall acceleration is not determined in step 103, the count of the preliminary duration counter is compared with a third predetermined time (step 131). Preliminary duration counter in step 131 If the first count reaches the third predetermined time, the preliminary duration counter is reset (step 132), meaning that there was no force in vibration, and the procedure proceeds to step 110 .
  • the processes after step 110 are the same as those in the flowchart of FIG.
  • step 131 the count of the preliminary duration counter has not reached the third predetermined time. If this is the case, it means that the acceleration output has been interrupted after a short drop acceleration time, so it is determined that there is vibration and the process returns to the initial stage of acceleration measurement.
  • FIG. 11 shows the output interruption correcting means 3 ′ used in the drop detection device of the eighth embodiment.
  • the output interruption correction means 3 ′ includes a preliminary duration determination means 38 for comparing the preliminary duration described in the seventh embodiment with a third predetermined time T3.
  • Preliminary duration determination means 38 determines whether the output duration before the acceleration output is interrupted is longer than a third predetermined time T3, and determines that it is “long”.
  • Set 34 The output interruption determination means 39 determines whether or not the output interruption is longer than the first predetermined time T1, and resets the RS flip-flop 34 when it is determined to be “long”. Then, output 35 with output interruption corrected is output to the Q output terminal of R-S type flip-flop 34.
  • FIG. 12 is an explanatory diagram of the operation of the output interruption correcting means 3 ′.
  • the waveform of acceleration output 25 is an example in which the first half corresponds to a vibrating state and the second half corresponds to a falling state. In order to deepen the understanding of the operation, we will explain one of the rare cases of falling.
  • the acceleration output 25 may have an intermittent waveform as shown in FIG. If the standby duration determination means 38 is not provided, the output interruption correction means corrects the output duration for such an intermittent waveform and corrects the output duration if it exceeds the second predetermined time.
  • FIG. 13 shows a circuit configuration in which the eighth embodiment is applied to the third embodiment as the output interruption correcting means 3 ′ used in the drop detection device of the ninth embodiment.
  • a clock counter 301, a coincidence comparator 3002, and a T3 register 303 are added to the fall detection device of Example 3 (see FIG. 6).
  • the clock counter 301 corresponds to the preliminary duration counter in the seventh embodiment, and the T3 register 303 stores a third predetermined time. These correspond to the preliminary duration determination means 38 described in the eighth embodiment.
  • the clock counter 301 counts the clock while the small acceleration detection output is high, and the coincidence comparator 302 generates an output when the count value matches the value set in the T3 register 303, and the R ⁇ S type flip-flop Set 34. As a result, the same operation as in Example 8 was obtained.

Abstract

 落下途中に人や物に触れた時にも高い確度で落下を判定できる落下検知方法および落下検知装置を提供する。落下検知装置は、3軸加速度センサーが検出した加速度の大きさをある閾値と比較して加速度検知出力を発生する出力検知手段と、落下加速度出力が中断した後に第一の所定時間以内に復帰した場合にその間の中断を修正した出力中断修正済み加速度出力を発生する出力中断修正手段と、出力中断修正済み加速度出力が第一の所定時間よりも長い第二の所定時間以上継続した時に落下判定出力を発生する出力継続時間判定手段を備える。

Description

明 細 書
落下検知方法および落下検知装置
技術分野
[0001] 本発明は、磁気ディスクを搭載した携帯型電子機器等の落下保護に利用できる落 下検知方法および落下検知装置に関する。
背景技術
[0002] 携帯型電子機器等はその性格上、誤って落下させられる危険性が高!、。ノートパソ コンゃ一部のディジタル音楽プレーヤのように磁気ディスクを内蔵しているものは、特 に衝撃に対してデリケートであり、落下に備えた保護策が必要である。このような保護 策が特許文献 1及び特許文献 2に記載されている。特許文献 1では、 3軸加速度セン サーを備え、加速度信号が 3軸共に略零の小さな加速度になり、それがある時間 ϋ 続したときに自由落下中であると判断して、磁気ヘッドを退避領域に移動させて、落 下衝突時の衝撃による磁気ディスクの破壊を防止している。特許文献 2では、 3軸カロ 速度の合成ベクトルの大きさが 90ミリ秒以上にわたってある閾値を超えたときに落下 を検知して、磁気ヘッドを退避領域に移動させて落下衝突時の衝撃による磁気ディ スクの破壊を防止して ヽる。
特許文献 1:特開 2000— 241442号公報
特許文献 2:米国特許第 5982573号明細書
発明の開示
発明が解決しょうとする課題
[0003] 携帯型電子機器等が手から滑り落ち始める時や落下途中で、機器が人や物に触 れた時などは、一時的に完全な自由落下状態力も外れることがある。そのような場合 、特許文献 1および 2に開示された技術では落下検知を見逃すことがある。これは小 さな加速度が継続する時間の計測が人や物に触れて途中でリセットされることによる ものである。物を誤って落としそうになったとき、人はそれを防ごうと反射的に動作を 行い、それに伴い、一時的に完全な自由落下状態力 外れる「不完全自由落下」が 発生する可能性が極めて高 、。 [0004] 本発明はこのような事情に鑑みてなされたもので、落下途中に人や物に触れた時 にも高い確度で落下を判定できる落下検知方法および落下検知装置を提供すること を目的とする。
課題を解決するための手段
[0005] 本発明の落下検知方法は、加速度センサーを備え磁気ディスクを搭載した携帯型 電子機器等が落下を始めて、落下の途中で何かに接触して落下が一時的に止まつ たとき、その一時的な落下の停止がある時間(「第一の所定時間」ということがある。 ) 以上続けば落下がそこで終わったと判断し、一時的な落下が停まってもそれが短い 時間であればその一時的な落下の前に起こっていた落下力 継続して落下が続い て 、ると判断をし、継続した落下がその携帯型電子機器等にダメッジを与える怖れの ある時間(「第二の所定時間」ということがある。第二の所定時間はダメッジを与えるお それのある落下時間から退避処置をする余裕を差し引いた時間とするのが正確であ る。)続いている場合は、退避などの対策を取れるようにする。
[0006] 本発明の落下検知方法では更に、携帯型電子機器等に取り付けられている加速 度センサーからの出力が落下に相当するものであっても、その出力がある短 、時間( 「第三の所定時間」 t 、うことがある。 )よりも短!、場合は電子機器等に振動が加えら れて 、るものと判断して落下に対応する処置をとらな 、ようにすることが好ま 、。
[0007] 本発明の落下検知方法は、加速度センサーを用いて加速度センサーに印加され て 、る加速度を連続したタイミング毎に測定し、測定した加速度をある閾値と比較し て落下に相当した値 (「落下加速度」 、うことがある。 )であるか落下に相当しな 、値 (「非落下加速度」と 、うことがある。 )であるかを判定し、
タイミング毎に測定した加速度が落下加速度の時には、タイミング毎に測定したカロ 速度が連続して落下加速度となっている時間を出力継続時間とし、出力継続時間を 第二の所定時間と比較し、
出力継続時間が第二の所定時間に達するまでは加速度の測定と測定した 加速度の前記閾値との比較判定をするステップに戻り、
出力継続時間が第二の所定時間に達したら落下と判定し、 タイミング毎に測定した加速度が非落下加速度の時には、タイミング毎に測定した 加速度が、その前に落下加速度であったとき以来、連続して非落下加速度になって いる時間を出力中断時間とし、出力中断時間を第一の所定時間と比較し、
出力中断時間が第一の所定時間に達していないときにはその直前の出力 継続時間を出力中断時間で修正し加速度の測定と測定した加速度の前記閾値との 比較判定をする前記ステップに戻り、
出力中断時間が第一の所定時間に達していたら落下が止まったと判定す る。
[0008] 測定した加速度を比較する閾値は、重力加速度よりも小さい値とし、加速度が閾値 と同等もしくは小さいときに落下加速度であると判定し、加速度が閾値よりも大きいと きに非落下加速度であると判定する。加速度センサーを装備した携帯型電子機器等 が落下しているときには運動加速度と重力加速度とが相殺して、理論上は加速度セ ンサ一には加速度が力からないが、閾値を重力加速度(9. 8mZs2)の 20〜60%、 好ましくは重力加速度のほぼ 40%とすることによって、オフセットの影響を避けること ができる。
[0009] 本発明の前記落下検知方法において、出力中断時間と第一の所定時間とを比較 するステップで、出力中断時間が第一の所定時間に達していないときには測定した 加速度が落下加速度であると見なしてその直前の出力 «続時間に出力中断時間を 加えて出力継続時間を修正して加速度の測定と測定した加速度の前記閾値との比 較判定をする前記ステップに戻るのが好まし 、。
[0010] 本発明の前記落下検知方法において、加速度の測定と測定した加速度の前記閾 値との比較判定をする前記ステップでタイミング毎に測定した加速度が非落下加速 度の時には、測定した加速度がその前に非落下加速度であった時力 連続して落下 加速度であった時間を予備継続時間として、予備継続時間を第三の所定時間と比 較し、
予備継続時間が第三の所定時間に達して 、な 、ときは落下が止まったと 判定し、
予備継続時間が第三の所定時間に達している場合は、タイミング毎に測定 した加速度が連続して非落下加速度になっている時間を出力中断時間とし、出力中 断時間を第一の所定時間と比較するステップに進むのが好ましい。
[0011] 本発明の落下検知方法で、加速度センサーが直交した 3軸座標系の各軸方向の 加速度を測定し、測定した各軸方向の加速度の 2乗和あるいは 2乗和平方根を閾値 と比較することができる。あるいは、測定した各軸方向の加速度それぞれを閾値と比 較することができる。
[0012] 携帯型電子機器等が落下途中に人や物に触れた時などに、加速度センサーが測 定した落下加速度に相当した出力が一時的に中断するが、落下加速度に相当した 出力の中断時間が短く第一の所定時間未満に回復した時には、その間の出力中断 時間を修正した出力継続時間となるので、落下加速度に相当した出力の中断の影 響を受けることなく落下加速度の出力継続時間、すなわち落下の継続時間を判定で き、落下途中に人や物に触れた時にも高い確度で落下を判定できる。第一の所定時 間は落下加速度の中断を修正できる最長の出力中断時間に相当し、第一の所定時 間を第二の所定時間の 1Z2以下にすることで、上下振動などの非落下条件で発生 する断続した小加速度検知出力の過剰補正による落下誤判定が起き難いようにでき る。
[0013] 落下加速度に相当した出力が中断し、すなわち非落下加速度に相当した出力が 短時間 (第一の所定時間よりも短い時間)出たときの出力継続時間の修正は、その中 断している間も落下が継続していたとみなして修正前の出力継続時間に出力中断時 間を加えてそれを出力継続時間とすることが好ましい。また、落下加速度に相当した 出力が短時間のみ出て、その後落下加速度がなくなった場合には、落下加速度が 継続して!/ヽた時間を予備継続時間として、予備継続時間を第一の所定時間よりも更 に短い第三の所定時間と比較することによって、上下振動などによって短時間だけ 落下加速度に相当した出力が出たときに誤判定を避けることができる。
[0014] 本発明の加速度検知装置は、印加されている加速度を連続したタイミング毎に測 定する加速度センサーと、
測定した加速度をある閾値と比較して測定した加速度が落下加速度か非落下加速 度かを判定し、その判定結果を出力する出力検知手段と、
出力検知手段からの出力が落下加速度に相当した出力の場合にはその出力を受け て、落下加速度に相当した出力が連続している時間を計測して出力継続時間とし、 出力継続時間を第二の所定時間と比較し、
出力継続時間が第二の所定時間に達したら落下との判定結果を出力する 出力 «続時間判定手段と、
出力検知手段からの出力が非落下加速度に相当した出力の場合にはその出力を受 けて、非落下加速度に相当した出力力 その前に落下加速度であったとき以来、連 続している時間を計測して出力中断時間とし、出力中断時間を第一の所定時間と比 較し、
出力中断時間が第一の所定時間に達していない時には落下加速度に相 当した出力が «続して 、ると見なしてその直前の出力 «続時間に出力中断時間を 加えて出力継続時間を修正し、
出力中断時間が第一の所定時間に達しておれば落下が止まったとの判定 結果を出力する
出力中断修正手段とを有する。
[0015] 本発明の前記落下検知装置が、
前回に非落下加速度に相当した出力を受けて力 それまでの落下加速度に相当し た出力が連続していた時間を予備継続時間として、予備継続時間を第三の所定時 間と比較し、
予備継続時間が第三の所定時間に達して ヽな ヽ場合は、落下が止まった との判定を行い、
予備継続時間が第三の所定時間に達している場合は、予備継続時間をリ セットして、出力検知手段からの非落下加速度に相当した出力を出力中断修正手段 に伝える
予備継続時間判定手段を更に有して 、ることが好ま 、。
[0016] 本発明の前記落下検知装置で、前記出力中断修正手段は、出力検知手段から落 下加速度に相当した出力を受けたときにカウントをリセットし、出力検知手段から非落 下加速度に相当した出力が連続している時間を計測するクロックカウンターを有する ことができる。そして、そのクロックカウンターのカウントを第一の所定時間に相当した カウントと比較し、
クロックカウンターのカウントが第一の所定時間に相当したカウントに達して
Vヽな 、ときには、落下加速度に相当した出力が «I続して 、ると見なしてその直前の 出力継続時間にクロックカウンターのカウントをカ卩えて出力継続時間を修正し、 クロックカウンターのカウントが第一の所定時間に相当したカウントに達した ら落下が止まったとの判定結果を出力することができる。
[0017] また、本発明の落下検知装置で、出力中断修正手段は、遅延時間が第一の所定 時間よりも短い遅延手段を複数個直列に連結した多段遅延手段を有することができ る。出力検知手段の出力を多段遅延手段に通して得られる多段遅延手段の各遅延 タップ出力と出力検知手段の出力との論理和を出力中断修正手段の出力とすること ができる。
[0018] 本発明の落下検知装置で、前記加速度センサーが直交した 3軸座標系の各軸方 向の加速度を測定し、前記出力検知手段が、加速度センサーが測定した各軸方向 の加速度の 2乗和あるいは 2乗和平方根を閾値と比較することができる。あるいは、加 速度センサーが測定した各軸方向の加速度それぞれを閾値と比較することができる
発明の効果
[0019] 本発明による落下検知方法および落下検知装置は、落下途中に人や物に触れた りして一時的に自由落下条件力 外れるような落下状態でも、落下を見逃す危険性 を無くし、高い確度で落下を判定できる。なお、本発明の効果は、加速度検知手段 の校正方法ゃ検知特性の如何に関わらず有効である。
図面の簡単な説明
[0020] [図 1]図 1は、本発明の実施例 1による落下検知装置をブロックダイヤグラムで示す図 である。
[図 2]図 2は、本発明の実施例 1による落下検知装置に用いている出力検知手段の 構成例をブロックダイヤグラムで示す図である。
[図 3]図 3Aと図 3Bとは、実施例 1における加速度出力波形及び出力中断修正波形 の例を示す説明図である。 [図 4]図 4Aと図 4Bとは、本発明の実施例 1で説明する落下検知装置で各段の出力 を示す説明図である。
[図 5]図 5は、実施例 2で説明する本発明の落下検知のプロセスを示すフローチヤ一 トである。
[図 6]図 6は、本発明の実施例 3の落下検知装置に用いている出力中断修正手段と 出力継続時間判定手段をブロックダイヤグラムで示す図である。
[図 7]図 7は、本発明の実施例 4の落下検知装置に用いている出力中断修正手段を ブロックダイヤグラムで示す図である。
[図 8]図 8は、本発明の実施例 5の落下検知装置をブロックダイヤグラムで示す図であ る。
[図 9]図 9は、本発明の実施例 6の落下検知装置をブロックダイヤグラムで示す図であ る。
[図 10]図 10は、本発明の実施例 7で説明する本発明の落下検知方法のプロセスを 示すフローチャートである。
[図 11]図 11は、本発明の実施例 8の落下検知装置に用いている出力中断修正手段 をブロックダイヤグラムで示す図である。
[図 12]図 12は、実施例 8の落下検知装置の動作を説明する図である。
[図 13]図 13は、本発明の実施例 9の落下検知装置に用いている出力中断修正手段 と出力継続時間判定手段をブロックダイヤグラムで示す図である。
符号の説明
[0021] 1 (3軸)加速度センサー
2 出力検知手段
3 出力中断修正手段
4 出力 «続時間判定手段
31、 41 クロックカウンター
36 遅延手段
発明を実施するための最良の形態
[0022] 本発明に係るさらに詳しい形態について、実施例を挙げて説明する。 実施例 1
[0023] 図 1に本発明による実施例 1の落下検知装置をブロックダイヤグラムで示す。落下 検知装置は、 3軸加速度センサー 1、出力検知手段 2、出力中断修正手段 3および 出力継続時間判定手段 4から構成されている。出力検知手段 2は図 2に示す構成を とり、 3軸加速度センサー 1で測定された 3軸の加速度 Ax, Ay, Azの絶対値のいず れも力 閾値 Thと同等もしくは小さい時に落下加速度に相当する出力(「落下加速度 」と略す。) 25を出す。図 3に示すように、出力検知手段 2の出力 25から落下加速度 が消えた後に、落下加速度がある時間 (第一の所定時間)内に回復した場合、出力 中断修正手段 3は落下加速度の出力継続時間を落下加速度の中断時間で修正し て、修正した出力継続時間続いている落下加速度波形をその出力 35とする。すなわ ち、落下加速度出力の中断が第一の所定時間以上続いた時に落下加速度出力が 消滅したと判定し、それ以外の時は落下加速度出力が継続していると判定し、その 判定結果を出力する。出力継続時間判定手段 4は、修正した出力 35が第二の所定 時間以上継続した時に落下判定出力 45を発生する。
[0024] 第二の所定時間は、落下を判定する時間であり、落下の終了前に落下判定が出来 るように設定する。更に厳密には、落下判定の対象とする高さからの落下所要時間か ら落下判定後の保護処理の所要時間を差し引いた時間よりも短くする。しかし、落下 判定時間 (第二の所定時間)を過度に短くすると、上下振動などの非落下による落下 加速度を検知したときに落下と誤判定する確率が高まる。第一の所定時間を 10ミリ 秒前後、第二の所定時間を 100ミリ秒前後に設定すると良好な結果が得られた。
[0025] 図 3に、加速度出力波形と出力中断修正済み波形の例を示す。図 3Aは出力検知 手段 2から出力された加速度出力 25の波形例を示し、図 3Bは出力中断修正手段 3 で修正した出力 35の波形例を示す。図 3A、図 3Bとも、波形を模式的に示している。 図 3Aで、落下加速度出力がないときの出力 25をレベル 0、落下加速度出力をレべ ル 1として表示している。図 3Aに示す波形では、落下開始直後に落下加速度出力が 2回中断している。落下加速度出力の中断は、手を滑り落ち始める時及び途中で人 や物に触れた時などに、一時的に自由落下条件力も外れたことにより生じる。出力中 断を修正した加速度出力 35は図 3Bに示す波形のように、落下の始まりから落下の 終了までの時間を 10ミリ秒前後に設定された第一の所定時間延長された時までレべ ル 1の状態が継続する。
[0026] 図 4Aは、加速度出力の出力中断を修正できる例で、図 4Bは、修正できない例を 示す。図 4で、符号 25は出力検知手段 2からの加速度出力、符号 35は出力中断修 正手段 3で出力中断を修正した加速度出力、符号 45は出力継続時間判定手段 4か らの落下判定出力を示し、 T1が第一の所定時間、 T2が第二の所定時間、 T3が落 下判定後の保護処理に費やし得る時間を意味している。図 4Aに示す例において、 加速度出力 25では落下加速度出力が中断しているが T1よりも短い時間に回復して いるので、修正済み加速度出力 35では出力中断が修正されている。そして、修正済 み加速度出力 35の継続時間が T2に達した時刻で、落下判定出力 45が発生してい る。図 4Bに示す例において、落下加速度出力 25が途中で T1よりも長い時間途切れ ており、修正した加速度出力 35でも出力中断が残っている。修正した加速度出力 35 に出力中断が残っているために、修正した加速度出力 35の継続時間が T2に達しな いので、落下判定出力 45の発生がない。 T1より短い出力中断が複数回有るような場 合では、図 4Aに示した例と同様に、出力中断が修正される。これにより、人や物に触 れながら落下するケースであっても落下を見逃すことなく検知できる。
[0027] 出力検知手段 2は、前述した 3軸の加速度 Ax, Ay, Azの絶対値のいずれも力 閾 値 Thと同等もしくは小さい時に落下加速度出力 25を出力することに限定されない。 3軸加速度の 2乗和を閾値 Thと比較判定することもできる。あるいは、 3軸加速度の 絶対値の和を閾値 Thと比較判定した結果と、 3軸加速度 Ax, Ay, Azの絶対値のい ずれをも閾値 Thと比較判定した結果との論理積を加速度出力とすることもできる。こ の様に、複数の方式を組み合わせて加速度出力を得ることができる。 3軸加速度セン サ一に印加されて 、る加速度の大きさが、重力加速度よりも小さ 、所定の値(閾値) よりも大であるかどうかを判定することができれば良い。
実施例 2
[0028] 図 1から図 4を参照して説明した実施例 1の落下検知装置の働きを図 5のフローチヤ ートを参照しながら説明する。
[0029] 出力検知手段 2からの加速度出力 25の出力中断時間をカウントするために、出力 中断修正手段 3は出力中断時間カウンターを備えている。出力検知手段 2の出力 25 力 落下加速度が消えた後に出力中断時間カウンタ一は落下加速度が中断してい る時間をカウントし、第一の所定時間と比較判定をする。出力検知手段 2からの加速 度出力 25の出力継続時間をカウントするために、出力継続時間判定手段 4は出力 継続時間カウンターを備えている。出力検知手段 2の出力 25からの落下加速度が中 断している時間が、第一の所定時間よりも短いかどうかを判定するために、出力中断 時間カウンターのカウントが第一の所定時間と比較して短い場合には、出力中断時 間カウンターのカウントを用いて出力 «I続時間カウンターのカウントを修正して、修正 した出力継続時間とする。出力継続時間カウンターのカウントの修正は、通常出力中 断時間カウンターのカウントを出力 «続時間カウンターのカウントに加える。出力 « 続時間カウンタ一は落下加速度が継続している時間をカウントし、出力継続時間カウ ンターのカウントを第二の所定時間と比較判定をする。
[0030] 図 5のフローチャートでは、落下加速度の測定の最初に出力 «I続時間カウンターと 出力中断時間カウンターとをリセットする (ステップ 101)。 3軸加速度センサー 1から の出力をクロックの連続したタイミング毎に測定 (ステップ 102)して、出力検知手段 2 では加速度センサー出力を実施例 1で説明したようにある閾値と比較して落下に相 当した値か落下に相当しない値であるかを判定する (ステップ 103)。その出力 25を 出力中断修正手段 3が受けて、タイミング毎に測定した加速度が落下加速度の時に は、ステップ 104に進んで出力中断時間カウンターをリセットして、その出力を出力継 続時間判定手段 4に伝える。出力継続時間判定手段 4では、出力継続時間カウンタ 一のカウントに落下加速度の時間幅あるいは 1カウントをカ卩えて (ステップ 105)、出力 継続時間カウンターのカウントを第二の所定時間と比較する (ステップ 106)。ステツ プ 106で、出力継続時間カウンターのカウントが第二の所定時間に達しておれば、ス テツプ 107に進んで落下判定を行う。ステップ 106で、出力継続時間カウンターが第 二の所定時間に達していない場合には、ステップ 102に戻り次のタイミングで加速度 を測定する。
[0031] ステップ 103の判定で出力が落下加速度となっていない場合には、その出力 25を 出力中断修正手段 3が受けて、出力中断時間カウンターのカウントに非落下加速度 の時間幅あるいは 1カウントをカ卩えて (ステップ 110)、出力中断時間カウンターのカウ ントを第一の所定時間と比較する (ステップ 111)。ステップ 111で、出力中断時間力 ゥンターのカウントが第一の所定時間に達しておれば、落下が消滅したことになり、落 下加速度の最初のステップへ戻る。ステップ 111で、出力中断時間カウンターのカウ ントが第一の所定時間に達していない場合は、出力中断時間カウンターのカウントを 用いて出力継続時間カウンターのカウントを修正して (ステップ 121)、ステップ 102に 戻り次のタイミングで加速度を測定する。
実施例 3
実施例 3の落下検知装置として、出力中断修正手段 3と出力継続時間判定手段 4と の回路構成の具体例を図 6に示す。出力中断修正手段 3は、クロックカウンター 31、 一致比較器 32、 T1レジスター 33および R—S型フリップフロップ 34から構成されて いる。クロックカウンター 31は実施例 2における出力中断時間カウンターに相当する 。出力継続時間判定手段 4は、クロックカウンター 41、一致比較器 42および T2レジ スター 43で構成されている。クロックカウンター 41は実施例 2における出力継続時間 カウンターに相当する。 R—S型フリップフロップ 34が初期リセットされているとして、 加速度出力 25が立ち上がると、 R—S型フリップフロップ 34はセットされて出力 Qを立 ち上げ、次にリセットが入るまではハイ(1)の状態を続ける。クロックカウンター 31は C LR端子に入力される加速度出力 25がハイの期間はクリアされ続け、カウント値は初 期値 (普通はゼロを初期値とする)を保つ。加速度出力 25が中断してロー (0)に下が ると、クロックカウンター 31はクリア力 解放されてクロックをカウントアップする。一致 比較器 32は T1レジスター 33に格納されている第一の所定時間に対応する値とクロ ックカウンター 31のカウント値とを常に比較していて、両者が一致した時に出力を発 生して、これにより R—S型フリップフロップ 34にリセットをかける。カウント値が T1レジ スター 33の値に到達する前に出力中断から回復するとクロックカウンター 31は再び 初期値に戻るので、出力中断の継続時間が第一の所定時間より短い場合には R— S 型フリップフロップ 34はリセットされず、出力 Qをハイに維持する。これにより、出力中 断を修正した出力 35が得られる。クロックカウンター 41は出力中断を修正した出力 3 5のローの期間はクリアされて初期値を続け、ハイに立ち上がると初期値力もカウント アップする。一致比較器 42は T2レジスター 43に格納されている第二の所定時間に 対応する値とクロックカウンター 41のカウント値とを常に比較して 、て、両者が一致し た時に出力を発生する。これにより、出力中断を修正した出力が第二の所定時間継 続した時に落下判定出力 45を発生させることができる。
実施例 4
[0033] 図 7に、実施例 4の落下検知装置に用いる出力中断修正手段を示す。図 7で、符号 36は D型フリップフロップ、符号 37は OR論理回路である。 D型フリップフロップ 36は D端子に印加されている 2値データをクロック CLKのタイミングで取り込み次のクロッ クタイミングまで保持しながら Q端子に出力する。 D型フリップフロップ 36を複数段縦 続することで多段遅延手段を構成した。加速度出力 25と加速度出力 25を多段遅延 手段に通して得られる複数の遅延タップ出力との論理和出力を OR論理回路 37でと ることで、出力中断を修正した出力 35を得ることが出来る。クロック周期を遅延段数 倍した時間が、第一の所定時間に対応する。
実施例 5
[0034] 図 8に、実施例 5の落下検知装置を示す。 3軸加速度センサー 1で測定された 3軸 加速度 Ax, Ay, Azを、 AZD変^ ^5でディジタル値に変換し、マイクロコンピュー ター 6に取り込む。マイクロコンピューター 6は 3軸加速度センサー 1が測定した加速 度の大きさを閾値と比較して落下加速度に相当するかどうかを判定してその結果を 用いて実施例 2で説明した図 5のフローチャートに従って落下判定を実行する。落下 と判定された時にハードディスク装置のヘッドを所定の安全領域に退避させる等の保 護処理を行う。測定した加速度の閾値との比較は、実施例 1で図 2に例示した処理ァ ルゴリズムに基づくものとすることができる。もしくは、 3軸加速度 Ax, Ay, Azの 2乗 和、または更にその平方根の値を所定の閾値と比較して判定することができる。 実施例 6
[0035] 図 9に、実施例 6の落下検知装置を示す。 3軸加速度センサー 1が検出した加速度 Ax, Ay, Azが、重力加速度より小さな所定の閾値以下である時に検知出力を発生 する出力検知手段 2と、マイクロコンピューター 6を備える。マイクロコンピューター 6が 実行する処理プロセスは実施例 2で説明した図 5のフローチャートのステップ 104から 121までに従って落下判定をする。マイクロコンピューター 6は、落下と判定された時 にハードディスク装置のヘッドを所定の安全領域に退避させる等の保護処理を行う。 本実施例の利点は、 AZD変^^が不要なことである。
実施例 7
[0036] 実施例 6までに説明した落下検知装置に予備継続時間判定手段 38を加えた場合 の落下検知方法を図 10のフローチャートを参照しながら説明する。実施例 1から実 施例 6の出力中断修正手段 3では出力中断時間カウンターのカウントを第一の所定 時間と比較していたが、ここでは出力中断時間カウンターを第一の所定時間と比較 する前に、予備継続時間を第三の所定時間と比較判定する。きわめて短い周期をも つた振動が加速度センサーに加えられたときに、その振動による加速度を落下と判 定することを避けるために、予備継続時間を第一の所定時間よりも短く設定された第 三の所定時間と比較し、予備継続時間が第三の所定時間よりも短い場合は振動であ ると判定して出力継続時間を修正しな 、。
[0037] 図 10のフローチャートでは予備継続時間を測定するために予備継続時間カウンタ 一を設けている。落下加速度の測定の最初に出力継続時間カウンターと出力中断時 間カウンターとをリセットするとともに、予備継続時間カウンターをリセットする (ステツ プ 101 ) 0ステップ 103での加速度出力が落下に相当した値である力、落下に相当 しない値であるかの判定結果を出力中断修正手段 が受けて、タイミング毎に測定 した加速度が落下加速度に相当するときには、ステップ 130に進んで予備継続時間 カウンターのカウントに落下加速度の時間幅あるいは 1カウントカ卩えて、ステップ 104 に進む。ステップ 104以降のプロセスは図 5のフローチャートと同じなので説明を省略 する。
[0038] ステップ 103の判定で落下加速度でない場合、予備継続時間カウンターのカウント を第三の所定時間と比較する (ステップ 131)。ステップ 131で予備継続時間カウンタ 一のカウントが第三の所定時間に達しておれば、振動ではな力つたということになつ て、予備継続時間カウンターをリセットして (ステップ 132)、ステップ 110に進む。ステ ップ 110以降のプロセスは図 5のフローチャートと同じなので説明を省略する。
[0039] ステップ 131で予備継続時間カウンターのカウントが第三の所定時間に達していな い場合は、短い落下加速度の時間のあとに加速度出力の中断があったことになるの で、振動であるとの判断をして、加速度測定の初期に戻る。
実施例 8
[0040] 図 11に、実施例 8の落下検知装置に用いる出力中断修正手段 3' を示す。出力中 断修正手段 3' は実施例 7で説明した予備継続時間を第三の所定時間 T3と比較す るために予備継続時間判定手段 38を備えている。予備継続時間判定手段 38は、加 速度出力に中断が発生する以前の出力 «続時間が第三の所定時間 T3よりも長いか どうかを判定し、「長い」と判定した時に R—S型フリップフロップ 34をセットする。出力 中断判定手段 39は、出力の中断が第一の所定時間 T1よりも長いかどうかを判定し、 「長い」と判定した時に R—S型フリップフロップ 34をリセットする。そして、 R— S型フリ ップフロップ 34の Q出力端子に出力中断を修正した出力 35を出す。
[0041] 図 12は、出力中断修正手段 3' の動作説明図である。加速度出力 25の波形は、 前半部分が振動中の状態に対応し、後半部分が落下中の状態に対応する例である 。動作の理解を深めるため、非常に稀な落下例の一つを挙げて説明する。加速度セ ンサ一に、数 100Hzの振動が大きな振幅で継続的に与えられた時に、加速度出力 2 5は図 12に示したような断続波形となることがある。予備継続時間判定手段 38を備え ていない場合には、出力中断修正手段 はこのような断続波形に対しても、出力継 続時間を修正して第二の所定時間以上の場合出力継続時間修正済み出力を生じ、 継続した大きな振幅の数 100Hzの振動を落下として誤判定 (検出)する危険性が非 常に高い。予備継続時間判定手段 38を用いることで、振動中の波形に対しては予 備継続時間判定結果が否となり、 R—S型フリップフロップ 34はセットされず修正出力 を発生しない。そのため、継続する大きな振幅の数 100Hzの振動を落下と誤判定( 検出)することはない。出力中断を修正した出力 35が生じるのは、落下による加速度 出力 25が第三の所定時間以上継続してからとなる。図 12では、落下途中に T1より 短い時間で出力中断があるが、この出力中断は修正されて出力されている。そして、 この修正した出力 35が T2以上継続した時、落下判定出力 45が発生する。実施例 5 または実施例 6に本実施例 8を適用する場合は、実施例 7と実施例 8に説明した一連 の処理はマイクロコンピューター 6で実行される。 実施例 9
[0042] 図 13に、実施例 9の落下検知装置に用いられる出力中断修正手段 3' として、実 施例 3に実施例 8を適用した回路構成を示す。クロックカウンター 301と一致比較器 3 02と T3レジスター 303とが実施例 3の落下検知装置(図 6参照)に加えられている。 クロックカウンター 301は実施例 7における予備継続時間カウンターに相当し、 T3レ ジスター 303は第三の所定時間を格納している。これらは、実施例 8で述べた予備継 続時間判定手段 38に対応する。クロックカウンター 301は小加速度検知出力がハイ の間クロックをカウントし、一致比較器 302はカウント値が T3レジスター 303で設定さ れた値と一致した時に出力を発生して、 R—S型フリップフロップ 34をセットする。これ により、前述した実施例 8と同様の動作が得られた。
[0043] 以上説明した通り、本発明により、人や物に触れながら落下する場合であっても落 下を見逃すことなく検知可能な落下検知装置を提供することが出来る。更に、継続し て加えられた振動を落下として誤検出することを回避できる。
産業上の利用可能性
[0044] 以上説明した通り、本発明により、人や物に触れながら落下する場合であっても落 下を見逃すことなく検知可能な落下検知方法および落下検知装置を提供することが 出来る。更に、継続して加えられた振動を落下として誤検出することを回避できる。

Claims

請求の範囲
[1] 加速度センサーを用いて加速度センサーに印加されている加速度を連続したタイミ ング毎に測定し、測定した加速度をある閾値と比較して落下に相当した値 (落下加速 度)か落下に相当しな 、値 (非落下加速度)かを判定し、
タイミング毎に測定した加速度が落下加速度の時には、タイミング毎に測定したカロ 速度が連続して落下加速度となっている時間を出力継続時間とし、出力継続時間を 第二の所定時間と比較し、
出力継続時間が第二の所定時間に達するまでは加速度の測定と測定した 加速度の前記閾値との比較判定をするステップに戻り、
出力継続時間が第二の所定時間に達したら落下と判定し、
タイミング毎に測定した加速度が非落下加速度の時には、タイミング毎に測定した 加速度が、その前に落下加速度であったとき以来、連続して非落下加速度になって いる時間を出力中断時間とし、出力中断時間を第一の所定時間と比較し、
出力中断時間が第一の所定時間に達していないときにはその直前の出力 継続時間を出力中断時間で修正し加速度の測定と測定した加速度の前記閾値との 比較判定をする前記ステップに戻り、
出力中断時間が第一の所定時間に達していたら落下が止まったと判定す る
落下検知方法。
[2] 出力中断時間と第一の所定時間とを比較するステップにおいて、出力中断時間が 第一の所定時間に達していないときには測定した加速度が落下加速度であると見な してその直前の出力継続時間に出力中断時間を加えて出力継続時間を修正してカロ 速度の測定と測定した加速度の前記閾値との比較判定をする前記ステップに戻る請 求項 1記載の落下検知方法。
[3] 加速度の測定と測定した加速度の前記閾値との比較判定をする前記ステップでタ イミング毎に測定した加速度が非落下加速度の時には、測定した加速度がその前に 非落下加速度であった時力 連続して落下加速度であった時間を予備継続時間とし て、予備継続時間を第三の所定時間と比較し、 予備継続時間が第三の所定時間に達して 、な 、ときは落下が止まったと 判定し、
予備継続時間が第三の所定時間に達している場合は、タイミング毎に測定 した加速度が連続して非落下加速度になっている時間を出力中断時間とし、出力中 断時間を第一の所定時間と比較するステップに進む請求項 1記載の落下検知方法。
[4] 加速度の測定と測定した加速度の前記閾値との比較判定をする前記ステップでタ イミング毎に測定した加速度が非落下加速度の時には、測定した加速度がその前に 非落下加速度であった時力 連続して落下加速度であった時間を予備継続時間とし て、予備継続時間を第三の所定時間と比較し、
予備継続時間が第三の所定時間に達して 、な 、ときは落下が止まったと 判定し、
予備継続時間が第三の所定時間に達している場合は、タイミング毎に測定 した加速度が連続して非落下加速度になっている時間を出力中断時間とし、出力中 断時間を第一の所定時間と比較するステップに進む請求項 2記載の落下検知方法。
[5] 加速度センサーが直交した 3軸座標系の各軸方向の加速度を測定し、測定した各 軸方向の加速度の 2乗和あるいは 2乗和平方根を閾値と比較する請求項 1記載の落 下検知方法。
[6] 加速度センサーが直交した 3軸座標系の各軸方向の加速度を測定し、測定した各 軸方向の加速度それぞれを閾値と比較する請求項 1記載の落下検知方法。
[7] 印加されて 、る加速度を連続したタイミング毎に測定する加速度センサーと、
測定した加速度をある閾値と比較して測定した加速度が落下に相当した値 (落下 加速度)であるか落下に相当しな 、値 (非落下加速度)であるかを判定し、その判定 結果を出力する出力検知手段と、
出力検知手段力もの出力が落下加速度に相当した出力の場合にはその出力を受 けて、落下加速度に相当した出力が連続している時間を計測して出力継続時間とし 、出力継続時間を第二の所定時間と比較し、
出力継続時間が第二の所定時間に達したら落下との判定結果を出力する 出力 «続時間判定手段と、 出力検知手段力 の出力が非落下加速度に相当した出力の場合にはその出力を 受けて、非落下加速度に相当した出力力 その前に落下加速度であったとき以来、 連続している時間を計測して出力中断時間とし、出力中断時間を第一の所定時間と 比較し、
出力中断時間が第一の所定時間に達していない時には落下加速度に相 当した出力が «続して 、ると見なしてその直前の出力 «続時間に出力中断時間を 加えて出力継続時間を修正し、
出力中断時間が第一の所定時間に達しておれば落下が止まったとの判定 結果を出力する
出力中断修正手段とを有する落下検知装置。
[8] 前回に非落下加速度に相当した出力を受けて力 それまでの落下加速度に相当 した出力が連続していた時間を予備継続時間として、予備継続時間を第三の所定時 間と比較し、
予備継続時間が第三の所定時間に達して ヽな ヽ場合は、落下が止まった との判定を行い、
予備継続時間が第三の所定時間に達している場合は、予備継続時間をリ セットして、出力検知手段からの非落下加速度に相当した出力を出力中断修正手段 に伝える
予備継続時間判定手段を更に有している請求項 7記載の落下検知装置。
[9] 前記出力中断修正手段は、出力検知手段力 落下加速度に相当した出力を受け たときにカウントをリセットし、出力検知手段力 非落下加速度に相当した出力が連続 している時間を計測するクロックカウンターを有し、
クロックカウンターのカウントを第一の所定時間に相当したカウントと比較し、
クロックカウンターのカウントが第一の所定時間に相当したカウントに達して Vヽな 、ときには、落下加速度に相当した出力が «I続して 、ると見なしてその直前の 出力継続時間にクロックカウンターのカウントをカ卩えて出力継続時間を修正し、 クロックカウンターのカウントが第一の所定時間に相当したカウントに達した ら落下が止まったとの判定結果を出力する、 請求項 7記載の落下検知装置。
[10] 前記出力中断修正手段は、遅延時間が第一の所定時間よりも短い遅延手段を複 数個直列に連結した多段遅延手段を有し、出力検知手段の出力を多段遅延手段に 通して得られる多段遅延手段の各遅延タップ出力と出力検知手段の出力との論理和 を出力中断修正手段の出力とする請求項 7記載の落下検知装置。
[11] 前記加速度センサーが直交した 3軸座標系の各軸方向の加速度を測定し、前記出 カ検知手段力 加速度センサーが測定した各軸方向の加速度の 2乗和あるいは 2乗 和平方根を閾値と比較する請求項 7記載の落下検知装置。
[12] 前記加速度センサーが直交した 3軸座標系の各軸方向の加速度を測定し、前記出 カ検知手段が、加速度センサーが測定した各軸方向の加速度それぞれを閾値と比 較する請求項 7記載の落下検知装置。
PCT/JP2006/300706 2005-01-31 2006-01-19 落下検知方法および落下検知装置 WO2006080225A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2006800036172A CN101111770B (zh) 2005-01-31 2006-01-19 掉落检测方法和掉落检测设备
JP2007500472A JP4637165B2 (ja) 2005-01-31 2006-01-19 落下検知方法および落下検知装置
US11/813,576 US7690253B2 (en) 2005-01-31 2006-01-19 Fall detecting method and fall detecting device
EP06711952A EP1850138A4 (en) 2005-01-31 2006-01-19 METHOD AND DEVICE FOR DETECTING A FALL

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005022926 2005-01-31
JP2005-022926 2005-01-31
JP2005283537 2005-09-29
JP2005-283537 2005-09-29

Publications (1)

Publication Number Publication Date
WO2006080225A1 true WO2006080225A1 (ja) 2006-08-03

Family

ID=36740259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300706 WO2006080225A1 (ja) 2005-01-31 2006-01-19 落下検知方法および落下検知装置

Country Status (6)

Country Link
US (1) US7690253B2 (ja)
EP (1) EP1850138A4 (ja)
JP (1) JP4637165B2 (ja)
KR (1) KR20070102588A (ja)
CN (1) CN101111770B (ja)
WO (1) WO2006080225A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251148A (ja) * 2006-12-05 2008-10-16 Stmicroelectronics Srl 危機的な運動状態、特に、落下の場合における電子機器の保護装置及び方法
US8260570B2 (en) 2007-01-22 2012-09-04 National University Of Singapore Method and system for fall-onset detection

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4168407B2 (ja) * 2005-08-05 2008-10-22 日立金属株式会社 落下検知装置
JP2007115309A (ja) * 2005-10-19 2007-05-10 Hitachi Global Storage Technologies Netherlands Bv 磁気ディスク装置
ITTO20060861A1 (it) 2006-12-04 2008-06-05 St Microelectronics Srl Dispositivo sensore dotato di un circuito di rilevamento di eventi singoli o multipli per la generazione di corrispondenti segnali di interruzione
TW200918898A (en) * 2007-06-05 2009-05-01 Murata Manufacturing Co Drop detector, magnetic disc drive and portable electronic apparatus
JP5043549B2 (ja) * 2007-07-30 2012-10-10 キヤノン株式会社 電子機器および撮像装置、電子機器の制御方法
WO2009037970A1 (ja) * 2007-09-21 2009-03-26 Murata Manufacturing Co., Ltd. 落下検知装置、磁気ディスク装置および携帯電子機器
US8628478B2 (en) * 2009-02-25 2014-01-14 Empire Technology Development Llc Microphone for remote health sensing
US9008995B2 (en) 2008-03-21 2015-04-14 Analog Devices, Inc. Activity detection in MEMS accelerometers
WO2010010781A1 (ja) * 2008-07-23 2010-01-28 株式会社村田製作所 落下検知装置、磁気ディスク装置および携帯電子機器
JP5529872B2 (ja) * 2008-08-28 2014-06-25 コーニンクレッカ フィリップス エヌ ヴェ 転倒検知システム及び/又は転倒防止システム
US8866621B2 (en) * 2009-02-25 2014-10-21 Empire Technology Development Llc Sudden infant death prevention clothing
US8824666B2 (en) * 2009-03-09 2014-09-02 Empire Technology Development Llc Noise cancellation for phone conversation
US8193941B2 (en) 2009-05-06 2012-06-05 Empire Technology Development Llc Snoring treatment
US20100286545A1 (en) * 2009-05-06 2010-11-11 Andrew Wolfe Accelerometer based health sensing
US20100286567A1 (en) * 2009-05-06 2010-11-11 Andrew Wolfe Elderly fall detection
CN102269643A (zh) * 2010-06-03 2011-12-07 纬创资通股份有限公司 测量系统及测量方法
SE535210C2 (sv) * 2010-10-07 2012-05-22 Scania Cv Ab Förfarande och system för att fastställa drifttillstånd hos ett motorfordon
US8878475B2 (en) * 2010-11-05 2014-11-04 Stmicroelectronics, Inc. Current limiting for a motor winding
CN102393992A (zh) * 2011-03-15 2012-03-28 苏州摩多物联科技有限公司 人体摔倒自动检测报警终端
KR101110639B1 (ko) 2011-06-22 2012-06-12 팅크웨어(주) 세이프 서비스 시스템 및 그 방법
US9047907B2 (en) * 2011-06-23 2015-06-02 Western Digital Technologies, Inc. Electronic device avoiding false detection of free fall event based on detected operating modes
DK2769557T3 (en) * 2011-10-19 2017-09-11 Sonova Ag MICROPHONE DEVICE / MICROPHONE ASSEMBLY
WO2013184620A1 (en) * 2012-06-06 2013-12-12 Analog Devices, Inc. Activity detection in mems accelerometers
CN102980557B (zh) * 2012-11-26 2015-02-18 广东欧珀移动通信有限公司 便携式终端设备及使用其测量建筑物高度的方法
US8953274B1 (en) 2013-06-06 2015-02-10 Western Digital Technologies, Inc. Deceleration of spindle motor in disk drive
US8885285B1 (en) 2013-07-23 2014-11-11 Western Digital Technologies, Inc. Impact detection for data storage device
US9076471B1 (en) * 2013-07-31 2015-07-07 Western Digital Technologies, Inc. Fall detection scheme using FFS
CN103581852B (zh) * 2013-09-30 2018-03-06 吴家宝 人体摔倒检测的方法、装置及移动终端系统
US9058826B1 (en) 2014-02-13 2015-06-16 Western Digital Technologies, Inc. Data storage device detecting free fall condition from disk speed variations
CN104173057B (zh) * 2014-08-18 2016-04-13 复旦大学 基于移动通信的可穿戴式跌倒检测系统
DE102014015910B4 (de) 2014-10-29 2019-03-21 Dräger Safety AG & Co. KGaA Mobile Gasmesseinrichtung mit verbesserter Funktionssicherheit und Zuverlässigkeit
CN107102805A (zh) * 2016-02-23 2017-08-29 西安中兴新软件有限责任公司 一种显示方法及显示装置
CN109074718A (zh) * 2016-04-15 2018-12-21 Msa技术有限公司 坠落检测系统
CN107184214B (zh) * 2016-06-01 2021-01-22 湖北航天化学技术研究所 一种老年人用跌倒预先识别装置
JP6567471B2 (ja) * 2016-06-30 2019-08-28 株式会社ブリヂストン 加速度センサの脱落判定方法及び加速度センサの脱落判定装置
CN106652347A (zh) * 2017-01-24 2017-05-10 深圳前海零距物联网科技有限公司 智能头盔摔倒检测方法及智能头盔
JP6658656B2 (ja) * 2017-03-31 2020-03-04 新東工業株式会社 検出装置
CN108111996A (zh) * 2017-12-07 2018-06-01 联想(北京)有限公司 蓝牙耳机的查找方法及设备
CN108307045A (zh) * 2018-01-09 2018-07-20 广东欧珀移动通信有限公司 电子设备及相关产品
JP2019125858A (ja) 2018-01-12 2019-07-25 シャープ株式会社 電子機器、制御装置および制御プログラム
US20220005341A1 (en) * 2018-11-07 2022-01-06 World Wide Warranty Life Services Inc. Method and system for detecting presence of a protective case on a portable electronic device during drop impact
US11585828B2 (en) * 2019-02-01 2023-02-21 Seiko Epson Corporation Sensor system and sensor drop determination method
US11768522B2 (en) 2019-10-18 2023-09-26 World Wide Warranty Life Services Inc. Method and system for detecting the presence or absence of a protective case on an electronic device
CN111027105B (zh) * 2019-12-20 2022-05-03 上海海鸥数码照相机有限公司 一种坠落自检的数据防泄漏方法、装置及无人机
US11255875B2 (en) * 2020-02-18 2022-02-22 Stmicroelectronics Asia Pacific Pte Ltd. System and method for determining distance of free fall
CN115244950A (zh) * 2020-03-12 2022-10-25 唯听助听器公司 音频流式传输装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0832420A (ja) * 1994-07-15 1996-02-02 Toshiba Microelectron Corp ノイズフィルタ装置
JP2000249717A (ja) * 1999-02-26 2000-09-14 Japan Aviation Electronics Industry Ltd 無重力センサ
JP2002174641A (ja) * 2000-12-05 2002-06-21 Ubukata Industries Co Ltd 落下検出機構

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5982573A (en) * 1993-12-15 1999-11-09 Hewlett-Packard Company Disk drive and method for minimizing shock-induced damage
US5835298A (en) * 1996-08-16 1998-11-10 Telxon Corporation Hard drive protection system and method
JP3441668B2 (ja) 1999-02-22 2003-09-02 シャープ株式会社 落下検出機構、磁気ディスク装置の保護機構および携帯型機器
JP2000258453A (ja) * 1999-03-10 2000-09-22 Japan Aviation Electronics Industry Ltd 墜落検知装置
JP4491114B2 (ja) * 2000-06-23 2010-06-30 株式会社日立グローバルストレージテクノロジーズ 落下感知センサ及びこれを用いた情報処理装置
CN100407155C (zh) * 2002-07-31 2008-07-30 深圳易拓科技有限公司 便携式计算机硬盘驱动器的保护装置和方法
US7191089B2 (en) * 2004-12-01 2007-03-13 Freescale Semiconductor, Inc. System and method for fall detection
US7369345B1 (en) * 2004-12-03 2008-05-06 Maxtor Corporation Mobile hard disk drive free fall detection and protection
US7248172B2 (en) * 2005-03-22 2007-07-24 Freescale Semiconductor, Inc. System and method for human body fall detection
JP4168407B2 (ja) * 2005-08-05 2008-10-22 日立金属株式会社 落下検知装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0832420A (ja) * 1994-07-15 1996-02-02 Toshiba Microelectron Corp ノイズフィルタ装置
JP2000249717A (ja) * 1999-02-26 2000-09-14 Japan Aviation Electronics Industry Ltd 無重力センサ
JP2002174641A (ja) * 2000-12-05 2002-06-21 Ubukata Industries Co Ltd 落下検出機構

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1850138A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251148A (ja) * 2006-12-05 2008-10-16 Stmicroelectronics Srl 危機的な運動状態、特に、落下の場合における電子機器の保護装置及び方法
US8260570B2 (en) 2007-01-22 2012-09-04 National University Of Singapore Method and system for fall-onset detection

Also Published As

Publication number Publication date
US7690253B2 (en) 2010-04-06
CN101111770B (zh) 2010-07-14
KR20070102588A (ko) 2007-10-18
EP1850138A1 (en) 2007-10-31
EP1850138A4 (en) 2011-05-18
JPWO2006080225A1 (ja) 2008-06-19
CN101111770A (zh) 2008-01-23
JP4637165B2 (ja) 2011-02-23
US20090031803A1 (en) 2009-02-05

Similar Documents

Publication Publication Date Title
WO2006080225A1 (ja) 落下検知方法および落下検知装置
JP5064235B2 (ja) 落下検出のためのシステム及び方法
US8676532B2 (en) Fall detection device, magnetic disk drive, and portable electronic apparatus
CN102439404B (zh) 使用加速度计的定向轻击探测算法
JP3441668B2 (ja) 落下検出機構、磁気ディスク装置の保護機構および携帯型機器
EP2083276A1 (en) Method and device for detecting anomalous events for an electronic apparatus, in particular a portable apparatus
EP1947424A2 (en) Dual acceleration sensor system
US6510014B2 (en) Disturbance detection circuit, memory device thereof, and disturbance detection method
KR20070072627A (ko) 낙하검지 장치 및 자기디스크 장치
CN110114644A (zh) 测震装置和使用该测震装置的安全装置
KR100630762B1 (ko) 디스크 드라이브의 자유 낙하 검출 방법 및 그 장치
CN102099859A (zh) 下落检测装置、磁盘装置、以及便携式电子设备
JP2009156871A (ja) 自由落下検出方法及び自由落下検出装置
JP5294138B2 (ja) パルス出力装置
JP7143711B2 (ja) 車速センサ故障検出装置
JP2008020250A (ja) 衝撃検知装置
EP1933316B1 (en) Device and method for protecting an electronic appliance in critical motion conditions, in particular in case of fall
CN111122905A (zh) 植入式医疗设备及其跌落检测方法
JP3744331B2 (ja) 感震装置
KR100823862B1 (ko) 낙하 검지 장치
JP2012053814A (ja) 携帯型異常検知装置
JPS5820180B2 (ja) 速度歪検出方式
JPS61131856A (ja) 切削工具異常検出装置
JPH05225404A (ja) 接続検知回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007500472

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11813576

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200680003617.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006711952

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077019949

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2006711952

Country of ref document: EP