WO2006077737A1 - Method for preparation of aqueous fluorinated polymer dispersion - Google Patents

Method for preparation of aqueous fluorinated polymer dispersion Download PDF

Info

Publication number
WO2006077737A1
WO2006077737A1 PCT/JP2005/024115 JP2005024115W WO2006077737A1 WO 2006077737 A1 WO2006077737 A1 WO 2006077737A1 JP 2005024115 W JP2005024115 W JP 2005024115W WO 2006077737 A1 WO2006077737 A1 WO 2006077737A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
fluoropolymer
aqueous
surfactant
aqueous dispersion
Prior art date
Application number
PCT/JP2005/024115
Other languages
French (fr)
Japanese (ja)
Inventor
Nobuhiko Tsuda
Chie Sawauchi
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to JP2006553850A priority Critical patent/JPWO2006077737A1/en
Publication of WO2006077737A1 publication Critical patent/WO2006077737A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/14Treatment of polymer emulsions
    • C08F6/16Purification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/18Monomers containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/14Treatment of polymer emulsions
    • C08F6/20Concentration

Definitions

  • the present invention relates to a method for producing an aqueous fluoropolymer dispersion.
  • emulsion polymerization of the fluorine-containing polymer is carried out in the absence of the fluorine-containing emulsifier, so that an aqueous dispersion containing no fluorine-containing emulsifier can be obtained, but tetrafluoroethylene [TFE ]
  • TFE tetrafluoroethylene
  • Fluorine-containing polymer aqueous dispersion power A method for reducing the fluorine-containing emulsifier is, for example, adding a certain amount of water and a specific type of nonionic surfactant to polytetrafluoroethylene [PTFE] aqueous dispersion. Concentration operation was carried out, the fluorine-containing emulsifier adsorbed on the surface of PTFE particles was transferred to the aqueous phase, the aqueous phase was removed after concentration, and this concentration operation was repeated to repeat the concentration in the aqueous dispersion.
  • PTFE polytetrafluoroethylene
  • Patent Document 1 US Application Publication No. 2002Z0198334
  • Patent Document 2 International Publication No. 2003Z078479 Pamphlet
  • an object of the present invention is to provide a method for producing a fluorine-containing polymer aqueous dispersion in which the remaining amount of a fluorine-containing emulsifier and the like is reduced.
  • the present invention is a method for producing an aqueous fluoropolymer dispersion comprising producing an aqueous fluoropolymer dispersion through a concentration step, wherein the concentration step comprises a specific nonionic surfactant and Z Or an aqueous fluoropolymer dispersion in the presence of a specific surfactant
  • the specific nonionic surfactant is a nonionic surfactant having a hydrophilic group molecular weight of not more than 00 and a hydrophobic group having 10 to 20 carbon atoms.
  • the specific anion surfactant is a fluorine-free anionic surfactant having a hydrocarbon group as a hydrophobic group and having a total of 10 to 20 carbon atoms in the hydrocarbon group. This is a method for producing an aqueous fluoropolymer dispersion.
  • the fluorine-containing polymer aqueous dispersion production method of the present invention comprises producing a fluorine-containing polymer aqueous dispersion through a concentration step.
  • the concentration step is a step comprising concentrating the fluoropolymer aqueous dispersion A in the presence of a specific non-one surfactant and Z or a specific key-on surfactant.
  • the concentration in the concentration step is an operation of separating into a supernatant phase not containing a fluorine-containing polymer and a concentrated phase containing a fluorine-containing polymer (hereinafter, sometimes referred to as “separation operation”). .).
  • the fluoropolymer aqueous dispersion A is obtained by dispersing fluoropolymer particles in an aqueous medium.
  • fluorinated polymer aqueous dispersion A refers to an aqueous component before separation into a supernatant phase and a concentrated phase in the concentration step in the present invention. Means spray.
  • the “fluorinated polymer aqueous dispersion A” is the subject of the above-mentioned separation.
  • the “fluorinated polymer aqueous dispersion” described later obtained by the method for producing a fluoropolymer aqueous dispersion of the present invention is described below. Is a concept that distinguishes the two in that they have undergone the above separation.
  • the aqueous fluoropolymer dispersion A is a post-polymerization aqueous dispersion (including primary particles made of a fluoropolymer) after post-treatment such as concentration and dilution after polymerization of the fluoropolymer.
  • it may be a fluoropolymer aqueous dispersion obtained by the above-mentioned post-treatment after the polymerization, and after the separation operation described later is performed once, the separation operation described later is performed once. In the case where two or more operation cycles are performed, a separation operation may be performed.
  • the fluorine-containing polymer constituting the fluorine-containing polymer particle is a polymer having a fluorine atom bonded to a carbon atom.
  • fluorine-containing polymer examples include an elastomeric fluorine-containing polymer and a fluorine-containing polymer constituting a resin.
  • the elastomeric fluorine-containing polymer is an amorphous fluorine-containing polymer having rubber elasticity, and usually has a monomer unit of 30 to 80 mol% of the first monomer. is there.
  • the “first monomer” means that a monomer unit occupying the most molar ratio among all monomer units in the molecular structure of the elastomeric fluoropolymer. Means a monomer. Examples of the first monomer include vinylidene fluoride [VDF] and tetrafluoroethylene [TFE].
  • the “monomer unit” such as the monomer unit of the first monomer means a part derived from the corresponding monomer, which is a part of the molecular structure of the fluorine-containing polymer.
  • the TFE unit is a part of the molecular structure of the fluorine-containing polymer, is a part derived from TFE, and is represented by one (CF—CF 3) —.
  • TFE-based polymers include TFE Z propylene copolymer, TFEZ perfluorobule ether [PAVE] copolymer, V DF polymers include VDFZHFP copolymer, VDFZ black trifluoroethylene [C
  • TFE copolymer, VDFZTFE copolymer, VDFZPAVE copolymer, VDFZTFEZ HFP copolymer, VDFZTFEZCTFE copolymer, VDFZTFEZPAVE copolymer and the like.
  • Examples of the fluorine-containing polymer constituting the resin include non-melt processable fluorine-containing polymers and melt strength fluorine-containing polymers.
  • non-melting power fluorine-containing polymer examples include polytetrafluoroethylene [PTFE].
  • the PTFE is a concept including not only a TFE homopolymer but also a modified polytetrafluoroethylene [modified PTFE].
  • modified PTFE means a copolymer of TFE and a trace monomer other than TFE, which is non-melt processable.
  • the trace monomer examples include fluoroolefins such as HFP and CTFE, fluoro having an alkyl group having 1 to 5 carbon atoms, particularly 1 to 3 carbon atoms (alkyl butyl etherol); Rosioxol; perfluoroalkylethylene; ⁇ -hydroperfluoroolefin.
  • fluoroolefins such as HFP and CTFE
  • fluoro having an alkyl group having 1 to 5 carbon atoms, particularly 1 to 3 carbon atoms alkyl butyl etherol
  • Rosioxol perfluoroalkylethylene
  • ⁇ -hydroperfluoroolefin examples include fluoroolefins such as HFP and CTFE, fluoro having an alkyl group having 1 to 5 carbon atoms, particularly 1 to 3 carbon atoms (alkyl butyl etherol); Rosioxol; perfluoroalkylethylene; ⁇ -hydroper
  • the content of the trace monomer units derived from the trace monomer in the total monomer units is usually in the range of 0.001 to 2 mol%.
  • the content (mol%) of the trace monomer unit in the total monomer units means the monomer from which the above “all monomer units” is derived, that is, the content. This means the mole fraction (mol%) of the trace monomer derived from the trace monomer unit in the total amount of the monomer that constitutes the fluoropolymer.
  • melt-resistant fluorine-containing polymer examples include, for example, ethylene ZTFE copolymer [ETF E], TFEZHFP copolymer [FEP], TFEZ perfluoro (alkyl butyl ether) copolymer [TFEZPAVE copolymer] ], PVDF, PVD copolymer, polyfluoride bur [p VF ] and the like.
  • TFEZPAVE copolymers include TFEZ perfluoro (methyl vinyl ether) [PMVE] copolymer [MFA], TFEZ perfluoro (ethyl vinyl ether) [PEVE ], TFEZ perfluoro (propyl butyl ether) [PPVE] copolymer, and the like. Among them, MFA and TFEZPPVE copolymer are preferred. TFEZPPVE copolymer is more preferred.
  • the fluoropolymer is more preferably PTFE, which is preferably a perfluoropolymer or a fluoropolymer that is substantially perfluoro.
  • the fluoropolymer particles constituting the fluoropolymer aqueous dispersion A preferably have an average primary particle diameter of 50 to 500 nm from the viewpoint of dispersion stability.
  • the average primary particle size is more preferably lower limit of lOOnm and more preferable upper limit force of 00 nm.
  • the above average primary particle size is measured by measuring the transmittance of 550 nm projection light per unit length of an aqueous dispersion with the fluorine-containing polymer concentration adjusted to 0.22 mass%, and the unidirectional diameter in a transmission electron micrograph.
  • the transmittance force is determined based on a calibration curve with the average particle diameter determined in the above.
  • the fluoropolymer aqueous dispersion A preferably contains 1 to 50% by mass of a fluoropolymer.
  • the fluoropolymer aqueous dispersion A contains 10 to 30% by mass of the fluoropolymer.
  • the content of the fluoropolymer may be within the above range at the start of the separation operation in the concentration step.
  • the aqueous medium constituting the fluoropolymer aqueous dispersion A is not particularly limited as long as it is a liquid containing water, and can be stored in water, for example, non-fluorine such as alcohol, ether, ketone, and paraffin wax. It also contains the organic solvent containing Z and fluorine-containing organic solvent.
  • the fluoropolymer aqueous dispersion A includes the fluoropolymer particles and the aqueous medium described above.
  • a surfactant may also be included.
  • the surfactant contained in the fluoropolymer aqueous dispersion A is not particularly limited, and for example, a fluorine-containing emulsifier, a fluorine-free emulsifier, and the like can be used.
  • the aqueous fluoropolymer dispersion A may contain one or more of the surfactants.
  • the fluorinated emulsifier is not particularly limited as long as it has an emulsifying effect due to the strength of the fluorinated compound, but those having an average molecular weight of 1000 or less are preferably easy to remove and have an average molecular weight. More preferred are those that are 500 or less.
  • fluorine-containing emulsifier those having a fluorine-containing compound having 5 to 12 carbon atoms are also preferable. When the number of carbon atoms is less than 5, generally, an emulsifying action cannot be exhibited.
  • fluorine-containing emulsifier examples include fluorine-containing carboxylic acid compounds such as fluorine-containing carboxylic acid compounds and fluorine-containing sulfonic acid compounds.
  • a compound made of a compound is more preferred, and a compound having a compound strength of a fluorine-containing carboxylic acid having 5 to 12 carbon atoms is more preferred.
  • perfluorooctanoic acid or a salt thereof is preferable.
  • perfluorooctanoic acid or a salt thereof may be abbreviated as “PFOA” hereinafter.
  • examples of the counter ion forming the salt include an alkali metal ion or NH +.
  • examples of the alkali metal ion include Na +, Ka +.
  • the concentration of the fluoroemulsifier is preferably 5 parts by mass or less with respect to 100 parts by mass of the aqueous medium. More preferably, the amount is 0.3 parts by mass or less. If it is in the said range, it may be 0.005 mass part or more with respect to 100 mass parts of aqueous media, and may be 0.01 mass part or more.
  • the concentration of the fluorinated emulsifier is determined by HPLC measurement after Soxhlet extraction is performed by adding an equal amount of methanol to the fluoropolymer aqueous dispersion to be measured. Is obtained under certain conditions.
  • non-fluorine-containing emulsifier examples include “non-ionic surfactants having HLB of 10 to 15” described later.
  • non-ionic surfactant having HLB of 10 to 15 The content of the “non-ionic surfactant having HLB of 10 to 15” will be described later.
  • the fluoropolymer aqueous dispersion A may contain an emulsifier used in the polymerization of the fluoropolymer (hereinafter, also referred to as "polymerization emulsifier" in the present specification).
  • polymerization emulsifier used in the polymerization of the fluoropolymer
  • concentration step in the present invention when the fluoropolymer aqueous dispersion A contains the above-described polymerization emulsifier, not only the specific surfactant but also the polymerization emulsifier is used as the surfactant. It may be.
  • polymerization emulsifier examples include the above-described fluorine-containing emulsifiers such as PFOA.
  • the fluoropolymer aqueous dispersion A can be prepared by polymerizing the fluoropolymer by a known method such as suspension polymerization or emulsion polymerization.
  • fluorine-containing monomer non-fluorine-containing monomer, and additive such as a polymerization initiator and a chain transfer agent in each of the above polymerizations
  • additive such as a polymerization initiator and a chain transfer agent in each of the above polymerizations
  • known ones can be used as appropriate.
  • the above-described polymerization emulsifier can be used.
  • Each of the above polymerizations is preferably carried out in the presence of a fluorine-containing emulsifier in an amount of 0.0001 to 10% by mass of the aqueous medium from the viewpoint of polymerization efficiency.
  • the amount of the fluorinated emulsifier is preferably 0.001% by mass or more of the aqueous medium, more preferably 1% by mass or more.
  • the polymerization is preferably carried out at a temperature of 10 to 120 ° C, for example, when preparing a fluorine-containing polymer having an average particle diameter in the above-mentioned range.
  • LOMPa, preferably 1. OMPa or higher, more preferably 6.2 MPa or lower.
  • the polymerized aqueous dispersion obtained after polymerization preferably has a fluorine-containing polymer concentration of 5 to 40% by mass, more preferably 15 to 35% by mass.
  • the concentration step in the present invention is performed in the presence of a specific non-one surfactant and Z or a specific key-on surfactant.
  • the specific nonionic surfactant has a molecular weight of a hydrophilic group of 00 or less and a nonionic compound having a hydrophobic group having 10 to 20 carbon atoms.
  • the hydrophilic group preferably has a molecular weight of 150 to 350.
  • the number of carbon atoms in the hydrophobic group is within the above range, it is preferably 16 or less.
  • the hydrophilic group is a repeating unit to which alkylene oxide is added (one O—R—, where R represents an alkylene group having 2 to 4 carbon atoms). Powerful groups are preferred.
  • the repeating unit of alkylene oxide may be an oxypropylene group! /, But an oxyethylene group is preferred.
  • the hydrophilic group is preferably one having an alkylene oxide repeating unit of 7 or less, and preferably having an oxyethylene group strength of 5 or less. More preferred.
  • the hydrophilic group may be one in which a hydrocarbon group (including a polyoxyalkylene group) has a hydroxyalkyl group as a side chain! /.
  • non-ionic surfactant those having HLB of 5 or more and less than 10 are particularly preferable.
  • cloud point concentration sometimes referred to as phase separation method or heat concentration method
  • a non-ionic surfactant having an HLB power of less than 10 was not used for concentration because of its low cloud point.
  • the present invention can include concentration using a nonionic surfactant having an HLB of 5 or more and less than 10.
  • TDS-50 (Daiichi Kogyo Seiyaku Co., Ltd.) is preferably used.
  • the specific anion surfactant is a fluorine-free anionic surfactant having a hydrocarbon group as a hydrophobic group and a total carbon number of 10 to 20 carbon atoms.
  • the total number of carbon atoms of the hydrocarbon group means that when the fluorine-free ionic surfactant has only one hydrocarbon group as a hydrophobic group in one molecule, Means the number of carbon atoms of the hydrocarbon group, and when the fluorine-free cation surfactant has two or more hydrocarbon groups as hydrophobic groups in one molecule, It means the total number of carbon atoms obtained by summing up the carbon number of each hydrogen group.
  • the hydrocarbon group that the non-fluorine-containing surfactant, which is the specific surfactant, has as a hydrophobic group is preferably an alkyl group.
  • R 1 represents an alkyl group having 8 to 20 carbon atoms, preferably 10 to 20 carbon atoms, and M 1 represents H, NH, Na or K), or a salt thereof,
  • R 1 represents an alkyl group having 8 to 20 carbon atoms, preferably 10 to 20 carbon atoms, and M 1 represents H, NH, Na or K
  • M 1 represents H, NH, Na or K
  • R 2 and R 4 are the same or different and each represents an alkyl group having 4 to 12 carbon atoms
  • R 3 represents an alkylene group having 1 to 3 carbon atoms
  • M 2 represents H
  • NH Represents Na or K, provided above
  • the carbon number of each alkyl group represented by R 2 and R 4 is 10 to 20 in total.
  • the sulfodicarboxylic acid ester or its salt represented by) is preferred! /.
  • the preferred lower limit of the carbon number of the alkyl group represented by R 1 is 10
  • the preferred upper limit is 16
  • the more preferred upper limit is 14. It is.
  • Na is preferred.
  • alkyl sulfuric acid represented by the general formula (I) or the general formula (II) or a salt thereof examples include sodium dodecyl sulfate [SDS].
  • the alkyl group represented by R 2 and R 4 each has a preferred lower limit of 5 carbon atoms, a more preferred lower limit of 6, and a preferred upper limit of 10, A more preferred upper limit is 8.
  • the alkyl groups represented by R 2 and R 4 may be the same or different from each other. Yes.
  • the number of carbon atoms of the alkylene group represented by R 3 is not particularly limited as long as it is within the above range, but the preferable upper limit is 2, more preferably 1.
  • Na is preferred.
  • Examples of the sulfodicarboxylic acid ester represented by the general formula ( ⁇ ) or a salt thereof include sodium dioctylsulfosuccinate.
  • the specific non-ionic surfactant and Z or the specific cationic surfactant are present in a total of 1 to 50 parts by mass with respect to 100 parts by mass of the fluoropolymer. .
  • the preferred upper limit of the amount of the specific surfactant present relative to 100 parts by mass of the fluoropolymer is the sum of suppressing the increase in viscosity and suppressing the increase in the amount of specific surfactant transferred into the supernatant phase. It is 20 parts by mass.
  • the specific non-one surfactant and the Z or specific key-on surfactant are added after the above-mentioned fluoropolymer polymerization.
  • “added after polymerization of the fluorine-containing polymer” means adding after the completion of the polymerization reaction rather than being added as an emulsifier in the polymerization reaction for obtaining the fluorine-containing polymer.
  • the timing of “adding after the fluoropolymer polymerization” may be added at any time as long as it is after the completion of the fluoropolymer polymerization reaction and before the separation operation described later. For example, adding after performing a post-treatment such as dilution after completion of the fluoropolymer reaction can be said to be “added after polymerization of fluoropolymer”.
  • the separation operation is not particularly limited.
  • known separation methods such as cloud point concentration, phase separation concentration using centrifugation, electric concentration, ultrafiltration concentration, ion exchange concentration, etc.
  • the operation by a method is mentioned.
  • the separation operation is carried out in the presence of a specific non-ionic surfactant.
  • a specific anionic surfactant phase separation concentration using cloud point concentration, centrifugation, etc. is preferred.
  • phase separation and concentration using centrifugation is preferable, but other separation operations may be possible by using other surfactants in combination.
  • a non-surfactant having an HLB of 10 to 15 is used in combination.
  • the fluorine-containing polymer is precipitated with a nonionic surfactant having an HLB of 10 to 15, and the above-mentioned specific surfactant is a fluorine-containing polymer aqueous dispersion A containing a fluorine-containing emulsifier.
  • a fluorine-containing polymer aqueous dispersion A containing a fluorine-containing emulsifier.
  • the non-ionic surfactant that can be used for the cloud point concentration generally has an HLB of 10 to 15.
  • nonionic surfactant having an HLB of 10 to 15 examples include, for example, the following general formula (IV):
  • R 5 is a linear or branched alkyl group having 8 to 19, and preferably 10 to 16 carbon atoms;
  • a 1 is a polyoxyalkylene chain having 8 to 58 carbon atoms
  • a polyoxyalkylene alkyl ether represented by the following general formula (V): R 6 — CHO— A 2 — H (V)
  • R 6 is a linear or branched alkyl group having 4 to 12 carbon atoms, and A 2 is a polyoxyalkylene chain having 8 to 58 carbon atoms.
  • Examples thereof include those composed of oxyethylene alkyl kiln ether.
  • the nonionic surfactant having an HLB of 10 to 15 is preferably added in an amount of 3 to 50% by mass of the fluoropolymer.
  • the separation operation comprises an operation of separating the fluoropolymer aqueous dispersion A into a supernatant phase and a concentrated phase under the condition that the field coefficient exceeds 1. It may be.
  • the above “field coefficient” is the ratio [GZG] of the gravitational acceleration [G] under a certain gravitational acceleration condition to the standard heavy acceleration [G] on the ground.
  • the product of the field factor and the processing time T is 1 X 10 5 to 1 X 10 in that separation of the supernatant phase and the concentrated phase can be performed quickly and efficiently.
  • the condition that is 7 in this specification In some cases, it is called “specific gravity acceleration conditions”. ) Is preferred.
  • the separation operation When the separation operation is performed under the specific gravity acceleration condition, aggregation of the fluorine-containing polymer transferred to the concentrated phase can be suppressed, and the fluorine-containing polymer that is not substantially aggregated in the concentrated phase. Can be dispersed again in a dispersion medium such as an aqueous medium.
  • An example of the separation operation performed under the specific gravity acceleration condition includes centrifugation.
  • the concentration step includes increasing the amount of water in the fluoropolymer aqueous dispersion A by dilution or the like, if necessary, in order to improve selectivity in two-phase separation. It may be preferable to adjust the fluoropolymer concentration within the above-mentioned range.
  • the amount of water in the fluoropolymer aqueous dispersion A is relatively large, for example, even if the fluoropolymer aqueous dispersion A contains a fluorinated emulsifier, the fluorinated polymer aqueous dispersion A will contain a fluorinated polymer throughout the separation operation. Basic polymer strength Easily to separate the fluorine-containing emulsifier.
  • the fluoropolymer aqueous dispersion production method of the present invention may further include a fractionation step comprising removing the supernatant phase in addition to the concentration step.
  • the fractionation step is not particularly limited as long as the supernatant phase can be removed.
  • the fractionation step can be performed by a known fractionation operation such as filtration or decantation.
  • the fluorinated emulsifier contained in the supernatant phase can be discharged out of the system as the supernatant phase obtained by the separation operation is removed.
  • the method for producing an aqueous fluoropolymer dispersion of the present invention may comprise a concentration step performed in the presence of the above-mentioned specific surfactant and another concentration step other than the concentration step.
  • the “other concentration step” is a step different from the above-described concentration step in that the cloud point concentration method, the electric concentration method, and the like are performed in the absence of the above-mentioned specific surfactant.
  • the separation operation is performed once and then the fractionation operation is performed once. Even if the operation cycle is performed more than once.
  • the removal rate of the fluorine-containing emulsifier and the like can usually be increased by performing the operation cycle twice or more. Choose the number of operation cycles from the balance with ease of operation.
  • the method for producing an aqueous fluoropolymer dispersion of the present invention comprises the above-described concentration step and fractionation step, and further, with respect to the concentrated phase obtained by the fractionation step, the target fluoropolymer aqueous dispersion It may include a post-process for performing fine adjustment for imparting characteristics.
  • the fine adjustment is not particularly limited.
  • a stirring operation in which the concentrated phase obtained by the fractionation step is appropriately stirred to obtain a uniform aqueous dispersion, (2) the concentrated phase is a desired fluorine-containing polymer concentration (3)
  • additive agents such as surfactants and film-forming aids. It can be carried out by blending operation, etc.
  • the present invention performs the cloud point concentration in the presence of the above-mentioned specific surfactant, not only the concentration of the fluorine-containing polymer but also the removal of the fluorine-containing emulsifier can be performed efficiently. It is.
  • Conventional cloud point concentration is a force capable of precipitating a fluorine-containing polymer using a nonionic surfactant having an HLB of 10 to 15 and having a HLB of 10 to 15.
  • ON Surfactant cannot transfer fluorinated emulsifier to the supernatant phase during cloud point concentration when the substitution efficiency of the fluorinated emulsifier is extremely poor, and therefore the fluorinated emulsifier cannot be removed. It was.
  • the aqueous fluoropolymer dispersion obtained by the method of the present invention is the above-mentioned fluoropolymer monoaqueous dispersion A force, and is obtained by dispersing fluoropolymer particles in an aqueous medium. It is.
  • the fluoropolymer aqueous dispersion is added to the surfactant (preferably a surfactant other than the fluoroemulsifier) and the fluoropolymer aqueous dispersion A in addition to the fluoropolymer particles and the aqueous medium. It may contain various additives.
  • the aqueous fluoropolymer dispersion obtained by the method of the present invention preferably has a fluoropolymer concentration of S30 to 80% by mass.
  • the fluorine-containing polymer concentration has a more preferable lower limit of 50% by mass, and a more preferable lower limit of 5%. 5% by mass, a particularly preferred lower limit is 60% by mass, a more preferred upper limit is 75% by mass, and a further preferred upper limit is 70% by mass.
  • the specific surfactant is preferably 15 parts by mass or less with respect to 100 parts by mass of the fluoropolymer. If the amount exceeds 15 parts by mass with respect to 100 parts by mass of the fluoropolymer, a dispersion effect commensurate with the abundance may not be obtained, and if it is necessary to reduce the concentration to the desired specific surfactant, it is removed. Processing becomes complicated.
  • the above-mentioned specific surfactant concentration has a more preferable upper limit of 10 parts by mass with respect to 100 parts by mass of the fluorine-containing polymer, and a more preferable upper limit of 5 parts by mass, in that the effect of allowing the specific surfactant to exist is obtained. It is preferably 5 parts by mass or more.
  • the aqueous fluoropolymer dispersion obtained by the method of the present invention is preferably such that the concentration of the fluoroemulsifier is not more than lOOOppm of the fluoropolymer in terms of maintaining the properties of the fluoropolymer. 10 ppm or less is more preferred 10 ppm or less is more preferred 1 ppm or less is particularly preferred.
  • the fluoropolymer aqueous dispersion has a high fluoropolymer concentration as described above, it is excellent in handleability and can be easily processed into a fluoropolymer powder, a fluoropolymer molded body, and the like.
  • the aqueous fluoropolymer dispersion is a high-purity fluoropolymer with a low concentration of various surfactants, so that the heat-resistant properties of the fluoropolymer are not deteriorated due to the fluoroemulsion. It is possible to cover a fluoropolymer molded article having excellent physical properties such as property, chemical resistance, durability, weather resistance, surface characteristics, and mechanical characteristics.
  • the fluorine-containing polymer aqueous dispersion production method of the present invention has the above-mentioned configuration, the fluorine-containing polymer mono-aqueous dispersion containing very little contaminants such as a fluorine-containing emulsifier easily and efficiently. Can be prepared.
  • Average particle size determined by measuring the transmittance of 55 Onm projection light with respect to the unit length of the aqueous dispersion with the fluorine-containing polymer concentration adjusted to 0.22% by mass and the directional direction diameter in the transmission electron micrograph. Based on the calibration curve with the diameter, it was determined from the transmittance.
  • HPLC measurement was performed under the following conditions.
  • PFOA perfluorooctanoic acid ammonium
  • the efficiency of transferring PFOA to the aqueous phase (efficiency of removing PFOA from the fluoropolymer aqueous dispersion A) can be compared.
  • PFOA perfluorooctanoic acid ammonium
  • the PFOA concentration was 994 ppm of the fluorine-containing polymer (resin solid content). In other words, 67% of PFOA has been transferred to the water phase.
  • TFE homopolymer concentration 34% by weight, average particle size 280 ⁇ m, pH3, PFOA concentration 22.8ppm of rosin solids
  • sodium dodecyl sulfonate average molecular weight 272, reagent
  • 50 ml of the obtained TFE homopolymer aqueous dispersion A-2 The mixture was placed in a centrifuge tube having a capacity and centrifuged in the same manner as in Example 1 to separate into a supernatant phase (aqueous phase) and a concentrated phase.
  • the PFOA concentration was 550 ppm of the fluorine-containing polymer (resin solid content). In other words, 37% of PFOA has shifted to the water phase.
  • TFE homopolymer aqueous dispersion (TFE homopolymer concentration 34% by mass, average particle size 280 ⁇ m, pH 3, PFOA concentration 2900ppm with respect to the solid content of rosin), sodium dioctylsulfosuccinate (average molecular weight 443) 056mmol ZgTFE homopolymer was added and mixed, and dispersed uniformly.
  • the obtained aqueous TFE homopolymer dispersion A-3 was placed in a 50 ml centrifuge tube and centrifuged in the same manner as in Example 1 to separate the supernatant phase (aqueous phase) and the concentrated phase.
  • the PFOA concentration was 690 ppm of the fluorine-containing polymer (solid resin). In other words, 46% of PFOA has shifted to the water phase.
  • TFE homopolymer concentration 34% by weight, average particle size 280 ⁇ m, pH 3, PFOA concentration 2900ppm with respect to the solid content of resin), polyoxyethylene octylphenol ether TritonX-100 (EO number 9) 5 and an average molecular weight of 624) were added so as to be a 0.056 mmol molZgTFE homopolymer, mixed and dispersed uniformly.
  • the obtained TFE homopolymer aqueous dispersion was placed in a 50 ml centrifuge tube and subjected to centrifugal separation in the same manner as in Example 1 to separate into a supernatant phase (aqueous phase) and a concentrated phase.
  • the PFOA concentration was 355 ppm of the fluorine-containing polymer (solid resin). In other words, 24% of PFOA has shifted to the water phase.
  • TFE homopolymer aqueous dispersion TFE homopolymer concentration 34% by weight, average particle size 280 ⁇ m, pH3, PFOA concentration 2900ppm with respect to solids of resin
  • Tilphenol ether TritonX-100 EO number 9.5, average molecular weight 624 was added to be a 0.16 mm olZgTFE homopolymer, mixed and dispersed uniformly.
  • the obtained TFE homopolymer aqueous dispersion was placed in a 50 ml centrifuge tube and centrifuged in the same manner as in Example 1 to separate the supernatant phase (aqueous phase) and the concentrated phase.
  • the PFOA concentration was 680 ppm of the fluorine-containing polymer (solid resin). In other words, 46% of PFOA has shifted to the water phase.
  • TFE homopolymer concentration 34% by mass, average particle size 280 ⁇ m, pH 3, PFOA concentration 2900ppm with respect to the solid content of rosin), sodium octyl sulfonate (average molecular weight 216), 0.056mmolZgTFE The mixture was added to form a homopolymer, mixed and dispersed uniformly.
  • the obtained TFE homopolymer aqueous dispersion was placed in a 50 ml centrifuge tube, centrifuged as in Example 1, and separated into a supernatant phase (aqueous phase) and a concentrated phase.
  • the PFOA concentration was 26 ppm of the fluorine-containing polymer (solid resin). In other words, 1.7% of PFOA has shifted to the water phase.
  • the method for producing an aqueous fluoropolymer dispersion of the present invention makes it possible to prepare an aqueous fluoropolymer dispersion with very few contaminants such as a fluorine-containing emulsifier easily and efficiently.
  • the aqueous fluoropolymer dispersion is excellent as a material for a fluoropolymer molded article having excellent physical properties such as heat resistance, chemical resistance, durability, weather resistance, surface characteristics, and mechanical properties.

Abstract

Disclosed is a method for the preparation of an aqueous fluorinated polymer dispersion having a reduced amount of a fluorinated emulsifier or the like remaining in the dispersion. The method comprises preparing an aqueous fluorinated polymer dispersion via a concentration step, in which the concentration step comprises concentrating an aqueous fluorinated polymer dispersion A in the presence of a specific nonionic surfactant and/or a specific anionic surfactant. The specific nonionic surfactant has a hydrophilic group with a molecular weight of 400 or lower and a hydrophobic group with 10 to 20 carbon atoms. The specific anionic surfactant is a non-fluorinated anionic surfactant which has a hydrocarbon group as a hydrophobic group and has a total of 10 to 20 carbon atoms in the hydrocarbon group.

Description

明 細 書  Specification
含フッ素ポリマー水性分散液製造方法  Fluorine-containing polymer aqueous dispersion production method
技術分野  Technical field
[0001] 本発明は、含フッ素ポリマー水性分散液製造方法に関する。  [0001] The present invention relates to a method for producing an aqueous fluoropolymer dispersion.
背景技術  Background art
[0002] 含フッ素ポリマー水性分散液の製造方法として、含フッ素乳化剤の存在下に重合を 行う方法が知られている。  [0002] As a method for producing a fluorine-containing polymer aqueous dispersion, a method of carrying out polymerization in the presence of a fluorine-containing emulsifier is known.
しかしながら、含フッ素乳化剤は、含フッ素ポリマーの製造に非常に有用ではあるも のの、高価であることから、含フッ素乳化剤の非存在下に含フッ素ポリマーを乳化重 合する方法が検討されてきた (例えば、特許文献 1参照。 ) o  However, although the fluorine-containing emulsifier is very useful for the production of a fluorine-containing polymer, it is expensive, and therefore, a method of emulsion-polymerizing the fluorine-containing polymer in the absence of the fluorine-containing emulsifier has been studied. (For example, see Patent Document 1.) o
この製造方法は、し力しながら、含フッ素乳化剤の非存在下で含フッ素ポリマーの乳 化重合を行うので、含フッ素乳化剤を含有しない水性分散液が得られるものの、テト ラフルォロエチレン [TFE]ホモポリマー等の一部のフッ素ポリマーについては、水性 分散液の安定性が充分でな 、問題があった。  In this production method, emulsion polymerization of the fluorine-containing polymer is carried out in the absence of the fluorine-containing emulsifier, so that an aqueous dispersion containing no fluorine-containing emulsifier can be obtained, but tetrafluoroethylene [TFE ] Some fluoropolymers such as homopolymers have a problem in that the aqueous dispersion is not sufficiently stable.
[0003] 含フッ素ポリマー水性分散液は、各種コーティング材料等として適用する際、含フッ 素乳化剤が混入していると、耐熱性、耐薬品性、機械的強度等、含フッ素ポリマーの 特性が発揮されな 、ことがあるので、含フッ素ポリマー水性分散液力 含フッ素乳化 剤を低減する方法が検討されて 、る。 [0003] When a fluorine-containing polymer aqueous dispersion is applied as various coating materials and the like, if a fluorine-containing emulsifier is mixed, the properties of the fluorine-containing polymer such as heat resistance, chemical resistance and mechanical strength are exhibited. In some cases, however, a method for reducing the fluorine-containing polymer aqueous dispersion power and the fluorine-containing emulsifier is being studied.
含フッ素ポリマー水性分散液力 含フッ素乳化剤を低減する方法としては、例えば、 水と特定種類のノ-オン界面活性剤とをポリテトラフルォロエチレン [PTFE]水性分 散液に一定量添加する濃縮操作を行 ヽ、 PTFE粒子表面に吸着して ヽる含フッ素 乳化剤を水相に移行させ、濃縮後に水相を除去する方法、及び、この濃縮操作を繰 り返すことによって、水性分散液中の含フッ素乳化剤を更に低減する方法が知られ ている (特許文献 2参照。 ) 0しかしながら、この濃縮方法は、濃縮操作に時間を要す るので、 PTFE粒子表面に吸着している含フッ素乳化剤を水相に移行させる効率が 極めて低 、ものであった。 Fluorine-containing polymer aqueous dispersion power A method for reducing the fluorine-containing emulsifier is, for example, adding a certain amount of water and a specific type of nonionic surfactant to polytetrafluoroethylene [PTFE] aqueous dispersion. Concentration operation was carried out, the fluorine-containing emulsifier adsorbed on the surface of PTFE particles was transferred to the aqueous phase, the aqueous phase was removed after concentration, and this concentration operation was repeated to repeat the concentration in the aqueous dispersion. fluorinated emulsifier further method of reducing is known (see Patent Document 2.) of 0, however, this concentration method, as they may time consuming to concentration operation, the fluorinated emulsifier adsorbed on the PTFE particle surface The efficiency of transferring water to the aqueous phase was extremely low.
特許文献 1 :米国出願公開第 2002Z0198334号公報 特許文献 2:国際公開第 2003Z078479号パンフレット Patent Document 1: US Application Publication No. 2002Z0198334 Patent Document 2: International Publication No. 2003Z078479 Pamphlet
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 本発明の目的は、上記現状に鑑み、含フッ素乳化剤等の残存量を低減した含フッ素 ポリマー水性分散液を製造する方法を提供することにある。 [0004] In view of the above situation, an object of the present invention is to provide a method for producing a fluorine-containing polymer aqueous dispersion in which the remaining amount of a fluorine-containing emulsifier and the like is reduced.
課題を解決するための手段  Means for solving the problem
[0005] 本発明は、濃縮工程を経て含フッ素ポリマー水性分散液を製造することよりなる含フ ッ素ポリマー水性分散液製造方法であって、上記濃縮工程は、特定ノニオン界面活 性剤及び Z又は特定ァ-オン界面活性剤の存在下に含フッ素ポリマー水性分散液[0005] The present invention is a method for producing an aqueous fluoropolymer dispersion comprising producing an aqueous fluoropolymer dispersion through a concentration step, wherein the concentration step comprises a specific nonionic surfactant and Z Or an aqueous fluoropolymer dispersion in the presence of a specific surfactant
Aを濃縮することよりなる工程であり、上記特定ノ-オン界面活性剤は、親水基の分 子量力 00以下であり且つ疎水基の炭素数が 10〜20であるノ-オン界面活性剤で あり、上記特定ァニオン界面活性剤は、疎水基として炭化水素基を有しており上記 炭化水素基合計の炭素数が 10〜20であるフッ素非含有ァ-オン界面活性剤である ことを特徴とする含フッ素ポリマー水性分散液製造方法である。 The specific nonionic surfactant is a nonionic surfactant having a hydrophilic group molecular weight of not more than 00 and a hydrophobic group having 10 to 20 carbon atoms. And the specific anion surfactant is a fluorine-free anionic surfactant having a hydrocarbon group as a hydrophobic group and having a total of 10 to 20 carbon atoms in the hydrocarbon group. This is a method for producing an aqueous fluoropolymer dispersion.
以下に、本発明を詳細に説明する。  The present invention is described in detail below.
[0006] 本発明の含フッ素ポリマー水性分散液製造方法は、濃縮工程を経て含フッ素ポリマ 一水性分散液を製造することよりなる。 [0006] The fluorine-containing polymer aqueous dispersion production method of the present invention comprises producing a fluorine-containing polymer aqueous dispersion through a concentration step.
上記濃縮工程は、特定ノ-オン界面活性剤及び Z又は特定ァ-オン界面活性剤の 存在下に含フッ素ポリマー水性分散液 Aを濃縮することよりなる工程である。  The concentration step is a step comprising concentrating the fluoropolymer aqueous dispersion A in the presence of a specific non-one surfactant and Z or a specific key-on surfactant.
上記濃縮工程における上記濃縮は、含フッ素ポリマーを含有しない上清相と、含フッ 素ポリマーを含有する濃縮相とに分離する操作 (本明細書において、以下、「分離操 作」ということがある。)を行うものである。  The concentration in the concentration step is an operation of separating into a supernatant phase not containing a fluorine-containing polymer and a concentrated phase containing a fluorine-containing polymer (hereinafter, sometimes referred to as “separation operation”). .).
本明細書にお!、て、「特定ノニオン界面活性剤及び Z又は特定ァニオン界面活性剤 In this specification, te, “specific nonionic surfactant and Z or specific anionic surfactant
」をまとめて「特定界面活性剤」 t 、うことがある。 "Surfactants" may be collectively referred to.
[0007] 本発明にお 、て、含フッ素ポリマー水性分散液 Aは、含フッ素ポリマー粒子が水性媒 体中に分散してなるものである。  [0007] In the present invention, the fluoropolymer aqueous dispersion A is obtained by dispersing fluoropolymer particles in an aqueous medium.
本明細書において、「含フッ素ポリマー水性分散液 A」は、本発明における濃縮工程 にて上清相と濃縮相とに分離する前のものであって、該分離を行う対象となる水性分 散液を意味する。 In the present specification, the “fluorinated polymer aqueous dispersion A” refers to an aqueous component before separation into a supernatant phase and a concentrated phase in the concentration step in the present invention. Means spray.
本明細書において、「含フッ素ポリマー水性分散液 A」は、上記分離の対象であり、 一方、本発明の含フッ素ポリマー水性分散液製造方法により得られる後述の「含フッ 素ポリマー水性分散液」は、上記分離を経たものである点で、両者は区別される概念 である。  In the present specification, the “fluorinated polymer aqueous dispersion A” is the subject of the above-mentioned separation. On the other hand, the “fluorinated polymer aqueous dispersion” described later obtained by the method for producing a fluoropolymer aqueous dispersion of the present invention is described below. Is a concept that distinguishes the two in that they have undergone the above separation.
上記含フッ素ポリマー水性分散液 Aは、含フッ素ポリマーの重合後に、濃縮、希釈等 の後処理を行って 、な 、重合上がりの水性分散液 (含フッ素ポリマーからなる一次粒 子を含む)であってもよいし、重合後、上記後処理をして得られた含フッ素ポリマー水 性分散液であってもよ 、し、後述の分離操作を 1回行った後に後述の分別操作を 1 回行うことよりなる操作サイクルを 2回以上行う場合、分離操作を経たものであっても よい。  The aqueous fluoropolymer dispersion A is a post-polymerization aqueous dispersion (including primary particles made of a fluoropolymer) after post-treatment such as concentration and dilution after polymerization of the fluoropolymer. Alternatively, it may be a fluoropolymer aqueous dispersion obtained by the above-mentioned post-treatment after the polymerization, and after the separation operation described later is performed once, the separation operation described later is performed once. In the case where two or more operation cycles are performed, a separation operation may be performed.
[0008] 本発明において、上記含フッ素ポリマー粒子を構成する含フッ素ポリマーは、炭素原 子に結合して 、るフッ素原子を有して 、る重合体である。  [0008] In the present invention, the fluorine-containing polymer constituting the fluorine-containing polymer particle is a polymer having a fluorine atom bonded to a carbon atom.
上記含フッ素ポリマーとしては、例えば、エラストマ一性含フッ素ポリマー、榭脂を構 成する含フッ素ポリマー等が挙げられる。  Examples of the fluorine-containing polymer include an elastomeric fluorine-containing polymer and a fluorine-containing polymer constituting a resin.
[0009] 上記エラストマ一性含フッ素ポリマーは、ゴム弾性を有する非晶質の含フッ素ポリマ 一であって、通常、 30〜80モル%の第 1単量体の単量体単位を有するものである。 本明細書において、上記「第 1単量体」とは、エラストマ一性含フッ素ポリマーの分子 構造において、全単量体単位のうち最多モル比率を占める単量体単位を構成するこ ととなつた単量体を意味する。上記第 1単量体としては、例えば、ビニリデンフルオラ イド [VDF]、テトラフルォロエチレン [TFE]等が挙げられる。 [0009] The elastomeric fluorine-containing polymer is an amorphous fluorine-containing polymer having rubber elasticity, and usually has a monomer unit of 30 to 80 mol% of the first monomer. is there. In the present specification, the “first monomer” means that a monomer unit occupying the most molar ratio among all monomer units in the molecular structure of the elastomeric fluoropolymer. Means a monomer. Examples of the first monomer include vinylidene fluoride [VDF] and tetrafluoroethylene [TFE].
本明細書において、上記第 1単量体の単量体単位等の「単量体単位」は、含フッ素 ポリマーの分子構造上の一部分であって、対応する単量体に由来する部分を意味 する。例えば、 TFE単位は、含フッ素ポリマーの分子構造上の一部分であって、 TF Eに由来する部分であり、一(CF— CF )—で表される。上記「全単量体単位」は、  In the present specification, the “monomer unit” such as the monomer unit of the first monomer means a part derived from the corresponding monomer, which is a part of the molecular structure of the fluorine-containing polymer. To do. For example, the TFE unit is a part of the molecular structure of the fluorine-containing polymer, is a part derived from TFE, and is represented by one (CF—CF 3) —. The above "total monomer units"
2 2  twenty two
含フッ素ポリマーの分子構造上、単量体に由来する部分の全てである。  It is all the part derived from a monomer on the molecular structure of a fluorine-containing polymer.
[0010] 上記エラストマ一性含フッ素ポリマーに関し、例えば、 TFE系重合体としては、 TFE Zプロピレン共重合体、 TFEZパーフルォロビュルエーテル [PAVE]共重合体、 V DF系重合体としては、 VDFZHFP共重合体、 VDFZクロ口トリフルォロエチレン [C[0010] Regarding the elastomeric fluorine-containing polymer, for example, TFE-based polymers include TFE Z propylene copolymer, TFEZ perfluorobule ether [PAVE] copolymer, V DF polymers include VDFZHFP copolymer, VDFZ black trifluoroethylene [C
TFE]共重合体、 VDFZTFE共重合体、 VDFZPAVE共重合体、 VDFZTFEZ HFP共重合体、 VDFZTFEZCTFE共重合体、 VDFZTFEZPAVE共重合体 等が挙げられる。 TFE] copolymer, VDFZTFE copolymer, VDFZPAVE copolymer, VDFZTFEZ HFP copolymer, VDFZTFEZCTFE copolymer, VDFZTFEZPAVE copolymer and the like.
[0011] 上記榭脂を構成する含フッ素ポリマーとしては、例えば、非溶融加工性含フッ素ポリ マー、溶融力卩ェ性含フッ素ポリマー等が挙げられる。  [0011] Examples of the fluorine-containing polymer constituting the resin include non-melt processable fluorine-containing polymers and melt strength fluorine-containing polymers.
上記非溶融力卩ェ性含フッ素ポリマーとしては、ポリテトラフルォロエチレン [PTFE]が 挙げられる。  Examples of the non-melting power fluorine-containing polymer include polytetrafluoroethylene [PTFE].
本明細書において、上記 PTFEは、 TFE単独重合体のみならず、変性ポリテトラフル ォロエチレン [変性 PTFE]をも含む概念である。  In the present specification, the PTFE is a concept including not only a TFE homopolymer but also a modified polytetrafluoroethylene [modified PTFE].
本明細書において、上記「変性 PTFE」とは、 TFEと、 TFE以外の微量単量体との共 重合体であって、非溶融加工性であるものを意味する。  In the present specification, the above “modified PTFE” means a copolymer of TFE and a trace monomer other than TFE, which is non-melt processable.
上記微量単量体としては、例えば、 HFP、 CTFE等のフルォロォレフイン、炭素原子 1〜5個、特に炭素原子 1〜3個を有するアルキル基を持つフルォロ(アルキルビュル エーテノレ);フルォロジォキソール;パーフルォロアルキルエチレン; ω—ヒドロパーフ ルォロォレフイン等が挙げられる。  Examples of the trace monomer include fluoroolefins such as HFP and CTFE, fluoro having an alkyl group having 1 to 5 carbon atoms, particularly 1 to 3 carbon atoms (alkyl butyl etherol); Rosioxol; perfluoroalkylethylene; ω-hydroperfluoroolefin.
変性 PTFEにおいて、上記微量単量体に由来する微量単量体単位の全単量体単位 に占める含有率は、通常 0. 001〜2モル%の範囲である。  In the modified PTFE, the content of the trace monomer units derived from the trace monomer in the total monomer units is usually in the range of 0.001 to 2 mol%.
本明細書にぉ 、て、「全単量体単位に占める微量単量体単位の含有率 (モル%)」と は、上記「全単量体単位」が由来する単量体、即ち、含フッ素ポリマーを構成すること となった単量体全量に占める、上記微量単量体単位が由来する微量単量体のモル 分率 (モル%)を意味する。  In this specification, “the content (mol%) of the trace monomer unit in the total monomer units” means the monomer from which the above “all monomer units” is derived, that is, the content. This means the mole fraction (mol%) of the trace monomer derived from the trace monomer unit in the total amount of the monomer that constitutes the fluoropolymer.
[0012] 上記溶融力卩ェ性含フッ素ポリマーとしては、例えば、エチレン ZTFE共重合体 [ETF E]、 TFEZHFP共重合体 [FEP]、 TFEZパーフルォロ(アルキルビュルエーテル) 共重合体 [TFEZPAVE共重合体]、 PVDF、 PVD系共重合体、ポリフッ化ビュル [ pVF]等が挙げられる。 [0012] Examples of the melt-resistant fluorine-containing polymer include, for example, ethylene ZTFE copolymer [ETF E], TFEZHFP copolymer [FEP], TFEZ perfluoro (alkyl butyl ether) copolymer [TFEZPAVE copolymer] ], PVDF, PVD copolymer, polyfluoride bur [p VF ] and the like.
上記 TFEZPAVE共重合体としては、 TFEZパーフルォロ(メチルビ-ルエーテル) [PMVE]共重合体 [MFA]、 TFEZパーフルォロ(ェチルビ-ルエーテル) [PEVE ]共重合体、 TFEZパーフルォロ(プロピルビュルエーテル) [PPVE]共重合体等が 挙げられ、なかでも、 MFA、 TFEZPPVE共重合体が好ましぐ TFEZPPVE共重 合体がより好ましい。 The above TFEZPAVE copolymers include TFEZ perfluoro (methyl vinyl ether) [PMVE] copolymer [MFA], TFEZ perfluoro (ethyl vinyl ether) [PEVE ], TFEZ perfluoro (propyl butyl ether) [PPVE] copolymer, and the like. Among them, MFA and TFEZPPVE copolymer are preferred. TFEZPPVE copolymer is more preferred.
[0013] 上記含フッ素ポリマーとしては、パーフルォロポリマー、又は、ほぼパーフルォロであ る含フッ素ポリマーが好ましぐ PTFEであることがより好ましい。  [0013] The fluoropolymer is more preferably PTFE, which is preferably a perfluoropolymer or a fluoropolymer that is substantially perfluoro.
上記含フッ素ポリマー水性分散液 Aを構成する含フッ素ポリマー粒子は、分散安定 性の点で、平均一次粒子径が 50〜500nmであるものが好ましい。  The fluoropolymer particles constituting the fluoropolymer aqueous dispersion A preferably have an average primary particle diameter of 50 to 500 nm from the viewpoint of dispersion stability.
上記平均一次粒子径は、より好ましい下限が lOOnmであり、より好ましい上限力 00 nmで teる o  The average primary particle size is more preferably lower limit of lOOnm and more preferable upper limit force of 00 nm.
上記平均一次粒子径は、含フッ素ポリマー濃度を 0. 22質量%に調整した水性分散 液の単位長さに対する 550nmの投射光の透過率と、透過型電子顕微鏡写真におけ る定方向径を測定して決定された平均粒子径との検量線をもとにして、上記透過率 力 決定したものである。  The above average primary particle size is measured by measuring the transmittance of 550 nm projection light per unit length of an aqueous dispersion with the fluorine-containing polymer concentration adjusted to 0.22 mass%, and the unidirectional diameter in a transmission electron micrograph. The transmittance force is determined based on a calibration curve with the average particle diameter determined in the above.
[0014] 上記含フッ素ポリマー水性分散液 Aは、好ましくは、含フッ素ポリマーを 1〜50質量 %含有するものである。 [0014] The fluoropolymer aqueous dispersion A preferably contains 1 to 50% by mass of a fluoropolymer.
上記含フッ素ポリマー水性分散液 Aは、上記含フッ素ポリマーを、 10質量%以上、 3 0質量%以下含有することがより好ましい。  More preferably, the fluoropolymer aqueous dispersion A contains 10 to 30% by mass of the fluoropolymer.
本明細書において、含フッ素ポリマーの含有量は、それぞれ、濃縮工程における分 離操作開始時に、上記範囲内にあればよい。  In the present specification, the content of the fluoropolymer may be within the above range at the start of the separation operation in the concentration step.
上記含フッ素ポリマーの含有量は、試料約 lg (X)を 100°Cにて 1時間で加熱したカロ 熱残分 (Yg)、更に、該加熱残分 (Yg)を 300°Cにて 1時間加熱した加熱残分 (Zg)よ り、含フッ素ポリマーの含有量 P= (Z/X) X 100 (%)の関係に基づき算出した値で ある。  The content of the above-mentioned fluoropolymer is as follows: a calorie heat residue (Yg) obtained by heating about lg (X) of a sample at 100 ° C. for 1 hour, and further this heat residue (Yg) 1 at 300 ° C. It is a value calculated based on the relationship of fluoropolymer content P = (Z / X) X 100 (%) from the heating residue (Zg) heated for a period of time.
[0015] 上記含フッ素ポリマー水性分散液 Aを構成する水性媒体は、水を含む液体であれば 特に限定されず、水にカ卩え、例えば、アルコール、エーテル、ケトン、パラフィンヮック ス等のフッ素非含有有機溶媒及び Z又はフッ素含有有機溶媒をも含むものであって ちょい。  [0015] The aqueous medium constituting the fluoropolymer aqueous dispersion A is not particularly limited as long as it is a liquid containing water, and can be stored in water, for example, non-fluorine such as alcohol, ether, ketone, and paraffin wax. It also contains the organic solvent containing Z and fluorine-containing organic solvent.
[0016] 上記含フッ素ポリマー水性分散液 Aは、上述の含フッ素ポリマー粒子及び水性媒体 に加え、更に、界面活性剤をも含むものであってもよい。 [0016] The fluoropolymer aqueous dispersion A includes the fluoropolymer particles and the aqueous medium described above. In addition, a surfactant may also be included.
上記含フッ素ポリマー水性分散液 Aに含まれる界面活性剤としては、特に限定され ず、例えば、含フッ素乳化剤、フッ素非含有乳化剤等を使用することができる。  The surfactant contained in the fluoropolymer aqueous dispersion A is not particularly limited, and for example, a fluorine-containing emulsifier, a fluorine-free emulsifier, and the like can be used.
上記含フッ素ポリマー水性分散液 Aは、上記界面活性剤を 1種又は 2種以上含むも のであってもよい。  The aqueous fluoropolymer dispersion A may contain one or more of the surfactants.
[0017] 上記含フッ素乳化剤としては、含フッ素化合物力 なり乳化作用を有するものであれ ば特に限定されないが、平均分子量が 1000以下であるものが好ましぐ除去容易で ある点で、平均分子量が 500以下であるものがより好まし 、。  [0017] The fluorinated emulsifier is not particularly limited as long as it has an emulsifying effect due to the strength of the fluorinated compound, but those having an average molecular weight of 1000 or less are preferably easy to remove and have an average molecular weight. More preferred are those that are 500 or less.
上記含フッ素乳化剤としては、また、炭素数が 5〜 12の含フッ素化合物力もなるもの が好ましい。上記炭素数が 5未満であると、一般に、乳化作用を発揮することができ ない。  As the fluorine-containing emulsifier, those having a fluorine-containing compound having 5 to 12 carbon atoms are also preferable. When the number of carbon atoms is less than 5, generally, an emulsifying action cannot be exhibited.
上記含フッ素乳化剤としては、例えば、含フッ素カルボン酸ィ匕合物、含フッ素スルホ ン酸ィ匕合物等の含フッ素ァ-オンィ匕合物からなるものが好ましぐ含フッ素カルボン 酸ィ匕合物からなるものがより好ましぐ炭素数が 5〜12の含フッ素カルボン酸ィ匕合物 力もなるものが更に好ましい。  Examples of the fluorine-containing emulsifier include fluorine-containing carboxylic acid compounds such as fluorine-containing carboxylic acid compounds and fluorine-containing sulfonic acid compounds. A compound made of a compound is more preferred, and a compound having a compound strength of a fluorine-containing carboxylic acid having 5 to 12 carbon atoms is more preferred.
上記含フッ素乳化剤としては、例えば、パーフルォロオクタン酸又はその塩力 なる ものが好ましい。本明細書において、上記「パーフルォロオクタン酸又はその塩」を、 以下「PFOA」と略記することがある。  As the fluorine-containing emulsifier, for example, perfluorooctanoic acid or a salt thereof is preferable. In the present specification, the “perfluorooctanoic acid or a salt thereof” may be abbreviated as “PFOA” hereinafter.
上記含フッ素乳化剤が塩である場合、該塩を形成する対イオンとしては、アルカリ金 属イオン又は NH +等が挙げられ、アルカリ金属イオンとしては、例えば、 Na+、 Ka+  When the fluorine-containing emulsifier is a salt, examples of the counter ion forming the salt include an alkali metal ion or NH +. Examples of the alkali metal ion include Na +, Ka +.
4  Four
等が挙げられる。上記対イオンとしては、 NH +が好ましい。  Etc. As the counter ion, NH + is preferable.
4  Four
[0018] 上記含フッ素ポリマー水性分散液 Aにおいて、上記含フッ素乳化剤の濃度は、水性 媒体 100質量部に対して 5質量部以下であることが好ましぐ 1質量部以下であること 力 り好ましぐ 0. 3質量部以下であることが更に好ましい。上記範囲内であれば、水 性媒体 100質量部に対して 0. 005質量部以上であってよいし、 0. 01質量部以上で あってもよい。  [0018] In the fluoropolymer aqueous dispersion A, the concentration of the fluoroemulsifier is preferably 5 parts by mass or less with respect to 100 parts by mass of the aqueous medium. More preferably, the amount is 0.3 parts by mass or less. If it is in the said range, it may be 0.005 mass part or more with respect to 100 mass parts of aqueous media, and may be 0.01 mass part or more.
本発明において、上記含フッ素乳化剤の濃度は、測定対象の含フッ素ポリマー水性 分散液に、等量のメタノールを添カ卩してソックスレー抽出を行ったのち、 HPLC測定 を一定の条件にて行うことにより求めたものである。 In the present invention, the concentration of the fluorinated emulsifier is determined by HPLC measurement after Soxhlet extraction is performed by adding an equal amount of methanol to the fluoropolymer aqueous dispersion to be measured. Is obtained under certain conditions.
[0019] 上記フッ素非含有乳化剤としては、例えば、後述の「HLBが 10〜15であるノ-オン 界面活性剤」等が挙げられる。  [0019] Examples of the non-fluorine-containing emulsifier include “non-ionic surfactants having HLB of 10 to 15” described later.
該「HLBが 10〜 15であるノ-オン界面活性剤」の含有量については、後述する。  The content of the “non-ionic surfactant having HLB of 10 to 15” will be described later.
[0020] 含フッ素ポリマー水性分散液 Aは、含フッ素ポリマー重合時に用いた乳化剤 (本明細 書において、以下、「重合乳化剤」ということがある。)を含有するものであってもよい。 本発明における濃縮工程は、含フッ素ポリマー水性分散液 Aが上記重合乳化剤を含 有するものである場合、特定界面活性剤のみならず、該重合乳化剤をも界面活性剤 として利用することとなるものであってよい。 [0020] The fluoropolymer aqueous dispersion A may contain an emulsifier used in the polymerization of the fluoropolymer (hereinafter, also referred to as "polymerization emulsifier" in the present specification). In the concentration step in the present invention, when the fluoropolymer aqueous dispersion A contains the above-described polymerization emulsifier, not only the specific surfactant but also the polymerization emulsifier is used as the surfactant. It may be.
上記重合乳化剤としては、例えば、 PFOA等、上述の含フッ素乳化剤等が挙げられ る。  Examples of the polymerization emulsifier include the above-described fluorine-containing emulsifiers such as PFOA.
[0021] 上記含フッ素ポリマー水性分散液 Aは、懸濁重合、乳化重合等、公知の方法にて含 フッ素ポリマーの重合を行うことにより調製することができる。  [0021] The fluoropolymer aqueous dispersion A can be prepared by polymerizing the fluoropolymer by a known method such as suspension polymerization or emulsion polymerization.
上記各重合におけるフッ素含有単量体、フッ素非含有単量体、及び、重合開始剤、 連鎖移動剤等の添加剤として、適宜公知のものを使用することができ、また、上記各 重合にお 、て、上述の重合乳化剤を使用することができる。  As the fluorine-containing monomer, non-fluorine-containing monomer, and additive such as a polymerization initiator and a chain transfer agent in each of the above polymerizations, known ones can be used as appropriate. The above-described polymerization emulsifier can be used.
上記各重合は、重合効率の点で、含フッ素乳化剤を上記水性媒体の 0. 0001〜10 質量%の量存在させて行うことが好ましい。上記含フッ素乳化剤の量は、上記水性 媒体の 0. 001質量%以上であることが好ましぐ 1質量%以上であることがより好まし い。  Each of the above polymerizations is preferably carried out in the presence of a fluorine-containing emulsifier in an amount of 0.0001 to 10% by mass of the aqueous medium from the viewpoint of polymerization efficiency. The amount of the fluorinated emulsifier is preferably 0.001% by mass or more of the aqueous medium, more preferably 1% by mass or more.
[0022] 上記重合は、例えば、上述した範囲内の平均粒子径を有する含フッ素ポリマーを調 製する場合、 10〜120°Cの温度にて行うことが好ましぐまた、通常、 0. 5〜: LOMPa 、好ましくは、 1. OMPa以上、より好ましくは 6. 2MPa以下の圧力にて行うことができ る。  [0022] The polymerization is preferably carried out at a temperature of 10 to 120 ° C, for example, when preparing a fluorine-containing polymer having an average particle diameter in the above-mentioned range. ~: LOMPa, preferably 1. OMPa or higher, more preferably 6.2 MPa or lower.
上記重合力 得られる重合上がりの水性分散液は、含フッ素ポリマー濃度が 5〜40 質量%が好ましぐ 15〜35質量%がより好ましい。  The polymerized aqueous dispersion obtained after polymerization preferably has a fluorine-containing polymer concentration of 5 to 40% by mass, more preferably 15 to 35% by mass.
[0023] 本発明における濃縮工程は、特定ノ-オン界面活性剤及び Z又は特定ァ-オン界 面活性剤の存在下に行うものである。 [0024] 上記特定ノニオン界面活性剤は、親水基の分子量力 00以下であり且つ疎水基の 炭素数が 10〜20であるノ-オン化合物力もなるものである。 [0023] The concentration step in the present invention is performed in the presence of a specific non-one surfactant and Z or a specific key-on surfactant. [0024] The specific nonionic surfactant has a molecular weight of a hydrophilic group of 00 or less and a nonionic compound having a hydrophobic group having 10 to 20 carbon atoms.
上記親水基は、分子量が 150〜350であることが好ましい。  The hydrophilic group preferably has a molecular weight of 150 to 350.
上記疎水基における炭素数は、上記範囲内であれば、 16以下であることが好ましい  If the number of carbon atoms in the hydrophobic group is within the above range, it is preferably 16 or less.
[0025] 上記特定ノ-オン界面活性剤において、上記親水基としては、アルキレンオキサイド が付加してなる繰返し単位(一 O—R—。 Rは、炭素数 2〜4のアルキレン基を表す。 ) 力 なる基が好ましい。アルキレンオキサイドの繰返し単位としては、ォキシプロピレ ン基であってもよ!/、が、ォキシエチレン基が好ま 、。 [0025] In the specific non-one surfactant, the hydrophilic group is a repeating unit to which alkylene oxide is added (one O—R—, where R represents an alkylene group having 2 to 4 carbon atoms). Powerful groups are preferred. The repeating unit of alkylene oxide may be an oxypropylene group! /, But an oxyethylene group is preferred.
[0026] 上記特定ノ-オン界面活性剤にお 、て、上記親水基は、アルキレンオキサイドの繰 返し単位が 7以下であるものが好ましぐ 5個以下のォキシエチレン基力もなるもので あることがより好ましい。  [0026] In the specific nonionic surfactant, the hydrophilic group is preferably one having an alkylene oxide repeating unit of 7 or less, and preferably having an oxyethylene group strength of 5 or less. More preferred.
上記親水基は、また、炭化水素基 (ポリオキシアルキレン基を含む。)が側鎖としてヒド ロキシアルキル基を有するものであってもよ!/、。  The hydrophilic group may be one in which a hydrocarbon group (including a polyoxyalkylene group) has a hydroxyalkyl group as a side chain! /.
[0027] 特定ノ-オン界面活性剤としては、 HLBが 5以上、 10未満であるものが特に好ましい 。従来、 HLBが 10〜15であるノ-オン界面活性剤を用い、その曇点を利用し加熱し て行う曇点濃縮 (相分離法、熱濃縮法ということもある。)が頻用されてきたが、 HLB 力 以上、 10未満であるノ-オン界面活性剤は、曇点が低いのでので、濃縮のため に用いられていなかった。これに対し、本発明は、 HLBが 5以上、 10未満であるノ- オン界面活性剤を用いる濃縮を含み得るものである。 [0027] As the specific non-ionic surfactant, those having HLB of 5 or more and less than 10 are particularly preferable. Conventionally, cloud point concentration (sometimes referred to as phase separation method or heat concentration method) that uses a nonionic surfactant with an HLB of 10 to 15 and heats the cloud point to heat it has been frequently used. However, a non-ionic surfactant having an HLB power of less than 10 was not used for concentration because of its low cloud point. On the other hand, the present invention can include concentration using a nonionic surfactant having an HLB of 5 or more and less than 10.
上記特定ノ-オン界面活性剤としては、例えば、 TDS— 50 (第一工業製薬社製)等 が好ましく用いられる。  As the specific non-one surfactant, for example, TDS-50 (Daiichi Kogyo Seiyaku Co., Ltd.) is preferably used.
[0028] 上記特定ァニオン界面活性剤は、疎水基として炭化水素基を有しており上記炭化水 素基合計の炭素数が 10〜20であるフッ素非含有ァ-オン界面活性剤である。  [0028] The specific anion surfactant is a fluorine-free anionic surfactant having a hydrocarbon group as a hydrophobic group and a total carbon number of 10 to 20 carbon atoms.
本明細書において、「炭化水素基合計の炭素数」とは、上記フッ素非含有ァ-オン界 面活性剤が 1分子中に疎水基として炭化水素基を 1つのみ有するものである場合、 該炭化水素基の炭素数を意味し、上記フッ素非含有ァ-オン界面活性剤が 1分子 中に疎水基として炭化水素基を 2つ以上有するものである場合、該 2つ以上の炭化 水素基それぞれの炭素数を合計してなる総炭素数を意味する。 In the present specification, “the total number of carbon atoms of the hydrocarbon group” means that when the fluorine-free ionic surfactant has only one hydrocarbon group as a hydrophobic group in one molecule, Means the number of carbon atoms of the hydrocarbon group, and when the fluorine-free cation surfactant has two or more hydrocarbon groups as hydrophobic groups in one molecule, It means the total number of carbon atoms obtained by summing up the carbon number of each hydrogen group.
[0029] 上記特定ァ-オン界面活性剤であるフッ素非含有ァ-オン界面活性剤が疎水基とし て有している炭化水素基としては、アルキル基が好ましぐ例えば、下記一般式 (I)及 び (Π)における R 並びに、下記一般式 (Π)における R2及び R4に相当するものが挙 げられる。 [0029] The hydrocarbon group that the non-fluorine-containing surfactant, which is the specific surfactant, has as a hydrophobic group is preferably an alkyl group. For example, the following general formula (I ) And (Π) and those corresponding to R 2 and R 4 in the following general formula (Π).
上記特定ァ-オン界面活性剤としては、下記一般式 (I)  As the specific key-on surfactant, the following general formula (I)
R1— SO M1 (I) R 1 — SO M 1 (I)
3  Three
(式中、 R1は、炭素数 8〜20、好ましくは 10〜20のアルキル基を表し、 M1は、 H、 N H、 Na又は Kを表す。)で表されるアルキル硫酸若しくはその塩、 (Wherein R 1 represents an alkyl group having 8 to 20 carbon atoms, preferably 10 to 20 carbon atoms, and M 1 represents H, NH, Na or K), or a salt thereof,
4  Four
下記一般式 (π)  The following general formula (π)
R'-OSO M1 (II) R'-OSO M 1 (II)
3  Three
(式中、 R1は、炭素数 8〜20、好ましくは 10〜20のアルキル基を表し、 M1は、 H、 N H、 Na又は Kを表す。)で表されるアルキル硫酸エステル若しくはその塩、又は、(Wherein R 1 represents an alkyl group having 8 to 20 carbon atoms, preferably 10 to 20 carbon atoms, and M 1 represents H, NH, Na or K) or a salt thereof Or
4 Four
下記一般式 (III)  The following general formula (III)
R2-OCO-CH (-SO M2) -R3-COO-R4 (III) R 2 -OCO-CH (-SO M 2 ) -R 3 -COO-R 4 (III)
3  Three
(式中、 R2及び R4は、同一又は異なって、炭素数 4〜 12のアルキル基を表し、 R3は、 炭素数 1〜3のアルキレン基を表し、 M2は、 H、 NH、 Na又は Kを表す。但し、上記 (Wherein R 2 and R 4 are the same or different and each represents an alkyl group having 4 to 12 carbon atoms, R 3 represents an alkylene group having 1 to 3 carbon atoms, M 2 represents H, NH, Represents Na or K, provided above
4  Four
R2及び R4で表される各アルキル基の炭素数は、合計 10〜20である。)で表されるス ルホジカルボン酸エステル若しくはその塩が好まし!/、。 The carbon number of each alkyl group represented by R 2 and R 4 is 10 to 20 in total. The sulfodicarboxylic acid ester or its salt represented by) is preferred! /.
[0030] 上記一般式 (I)及び上記一般式 (Π)にお 、て、 R1で表されるアルキル基の炭素数の 好ましい下限は 10であり、好ましい上限は 16、より好ましい上限は 14である。 [0030] In the above general formula (I) and the above general formula (上 記), the preferred lower limit of the carbon number of the alkyl group represented by R 1 is 10, the preferred upper limit is 16, and the more preferred upper limit is 14. It is.
上記 M1としては、 Naが好ましい。 As the M 1, Na is preferred.
上記一般式 (I)又は上記一般式 (II)で表されるアルキル硫酸若しくはその塩としては 、例えば、ドデシル硫酸ナトリウム塩 [SDS]等が挙げられる。  Examples of the alkyl sulfuric acid represented by the general formula (I) or the general formula (II) or a salt thereof include sodium dodecyl sulfate [SDS].
[0031] 上記一般式 (ΠΙ)にお 、て、 R2及び R4で表されるアルキル基は、それぞれ、炭素数 の好ましい下限が 5、より好ましい下限が 6であり、好ましい上限が 10、より好ましい上 限が 8である。 [0031] In the general formula (ΠΙ), the alkyl group represented by R 2 and R 4 each has a preferred lower limit of 5 carbon atoms, a more preferred lower limit of 6, and a preferred upper limit of 10, A more preferred upper limit is 8.
上記 R2及び R4で表されるアルキル基は、同一であってもよいし、互いに異なってもよ い。 The alkyl groups represented by R 2 and R 4 may be the same or different from each other. Yes.
上記一般式 (m)において、 R3で表されるアルキレン基の炭素数は、上記範囲内であ れば特に限定されないが、好ましい上限は 2であり、より好ましくは 1である。 In the general formula (m), the number of carbon atoms of the alkylene group represented by R 3 is not particularly limited as long as it is within the above range, but the preferable upper limit is 2, more preferably 1.
上記 M2としては、 Naが好ましい。 As the M 2, Na is preferred.
上記一般式 (ΠΙ)で表されるスルホジカルボン酸エステル若しくはその塩としては、例 えば、ジォクチルスルホコハク酸ナトリウム等が挙げられる。  Examples of the sulfodicarboxylic acid ester represented by the general formula (ΠΙ) or a salt thereof include sodium dioctylsulfosuccinate.
[0032] 本発明における濃縮工程において、特定ノ-オン界面活性剤及び Z又は特定ァ- オン界面活性剤は、含フッ素ポリマー 100質量部に対して合計で 1〜50質量部存在 させることが好ましい。 [0032] In the concentration step in the present invention, it is preferable that the specific non-ionic surfactant and Z or the specific cationic surfactant are present in a total of 1 to 50 parts by mass with respect to 100 parts by mass of the fluoropolymer. .
含フッ素ポリマー 100質量部に対する上記特定界面活性剤の存在量の好ましい上 限は、粘度上昇を抑制する点、及び、上清相中への特定界面活性剤移行量増加を 抑制する点で、合計で 20質量部である。  The preferred upper limit of the amount of the specific surfactant present relative to 100 parts by mass of the fluoropolymer is the sum of suppressing the increase in viscosity and suppressing the increase in the amount of specific surfactant transferred into the supernatant phase. It is 20 parts by mass.
[0033] 特定ノ-オン界面活性剤及び Z又は特定ァ-オン界面活性剤は、上述の含フッ素 ポリマー重合後に添加するものであることが好まし 、。 [0033] It is preferable that the specific non-one surfactant and the Z or specific key-on surfactant are added after the above-mentioned fluoropolymer polymerization.
本明細書において、「含フッ素ポリマー重合後に添加する」とは、含フッ素ポリマーを 得るための重合反応において乳化剤として添加するものではなぐ該重合反応終了 後に添加することを意味する。本発明において、上記「含フッ素ポリマー重合後に添 加する」時期としては、含フッ素ポリマー重合反応終了後であって後述の分離操作を 行う前であれば、何れの時点に添加してもよぐ例えば、含フッ素ポリマー反応終了 後に希釈等の後処理を行った上で添加を行うことも、「含フッ素ポリマー重合後に添 加する」といえる。  In the present specification, “added after polymerization of the fluorine-containing polymer” means adding after the completion of the polymerization reaction rather than being added as an emulsifier in the polymerization reaction for obtaining the fluorine-containing polymer. In the present invention, the timing of “adding after the fluoropolymer polymerization” may be added at any time as long as it is after the completion of the fluoropolymer polymerization reaction and before the separation operation described later. For example, adding after performing a post-treatment such as dilution after completion of the fluoropolymer reaction can be said to be “added after polymerization of fluoropolymer”.
[0034] 本発明における濃縮工程において、分離操作としては特に限定されず、例えば、曇 点濃縮、遠心分離等を利用した相分離濃縮、電気濃縮、限外ろ過濃縮、イオン交換 濃縮等、公知の方法による操作が挙げられる。  [0034] In the concentration step of the present invention, the separation operation is not particularly limited. For example, known separation methods such as cloud point concentration, phase separation concentration using centrifugation, electric concentration, ultrafiltration concentration, ion exchange concentration, etc. The operation by a method is mentioned.
本発明における分離操作としては、特定ノ-オン界面活性剤の存在下に行うもので ある場合、曇点濃縮、遠心分離等を利用した相分離濃縮が好ましぐ特定ァニオン 界面活性剤の存在下に行うものである場合、遠心分離を利用した相分離濃縮が好ま しいが、他の界面活性剤を併用することにより、他の分離操作も可能となり得る。他の 界面活性剤を併用する場合としては、例えば、特定ァニオン界面活性剤と、 HLBが 10〜 15であるノ-オン界面活性剤とを併用することにより、曇点濃縮も可能となるこ と等が挙げられる。 In the present invention, the separation operation is carried out in the presence of a specific non-ionic surfactant. In the presence of a specific anionic surfactant, phase separation concentration using cloud point concentration, centrifugation, etc. is preferred. However, phase separation and concentration using centrifugation is preferable, but other separation operations may be possible by using other surfactants in combination. other When using a surfactant in combination, for example, it is possible to concentrate cloud points by using a specific anionic surfactant and a nonionic surfactant having an HLB of 10 to 15 in combination. Can be mentioned.
[0035] 本発明における分離操作として、曇点濃縮を行う場合、 HLBが 10〜15であるノ-ォ ン界面活性剤を併用する。  [0035] As a separation operation in the present invention, when performing cloud point concentration, a non-surfactant having an HLB of 10 to 15 is used in combination.
該曇点濃縮において、上記 HLBが 10〜 15であるノ-オン界面活性剤により含フッ 素ポリマーの沈降を行い、上述の特定界面活性剤は、含フッ素ポリマー水性分散液 Aが含フッ素乳化剤を含むものである場合、該含フッ素乳化剤を置換するものと考え られる。  In the cloud point concentration, the fluorine-containing polymer is precipitated with a nonionic surfactant having an HLB of 10 to 15, and the above-mentioned specific surfactant is a fluorine-containing polymer aqueous dispersion A containing a fluorine-containing emulsifier. When it is contained, it is considered that the fluorine-containing emulsifier is replaced.
[0036] 上記曇点濃縮に用い得るノ-オン界面活性剤は、一般に、 HLBが 10〜15である。  [0036] The non-ionic surfactant that can be used for the cloud point concentration generally has an HLB of 10 to 15.
上記 HLBが 10〜 15であるノ-オン界面活性剤としては、例えば、下記一般式 (IV): Examples of the nonionic surfactant having an HLB of 10 to 15 include, for example, the following general formula (IV):
R^O-A' -H (IV) R ^ O-A '-H (IV)
(式中、 R5は、直鎖状又は分岐鎖状の炭素数 8〜19、好ましくは 10〜16のアルキル 基; A1は、炭素数 8〜58のポリオキシアルキレン鎖) (Wherein R 5 is a linear or branched alkyl group having 8 to 19, and preferably 10 to 16 carbon atoms; A 1 is a polyoxyalkylene chain having 8 to 58 carbon atoms)
で表されるポリオキシアルキレンアルキルエーテル力もなるもの、下記一般式 (V): R6— C H O— A2— H (V) A polyoxyalkylene alkyl ether represented by the following general formula (V): R 6 — CHO— A 2 — H (V)
6 4  6 4
(式中、 R6は、炭素数 4〜 12の直鎖状若しくは分岐鎖状のアルキル基であり、 A2は、 炭素数 8〜58のポリオキシアルキレン鎖である。 )により表されるポリオキシエチレンァ ルキルフ -ルエーテルからなるもの等が挙げられる。 (Wherein R 6 is a linear or branched alkyl group having 4 to 12 carbon atoms, and A 2 is a polyoxyalkylene chain having 8 to 58 carbon atoms.) Examples thereof include those composed of oxyethylene alkyl kiln ether.
上記 HLBが 10〜15であるノ-オン界面活性剤は、含フッ素ポリマーの 3〜50質量 %の量を添加することが好ま 、。  The nonionic surfactant having an HLB of 10 to 15 is preferably added in an amount of 3 to 50% by mass of the fluoropolymer.
[0037] 本発明における濃縮工程において、分離操作は、場係数 (field coefficient)が 1 を超える条件下に含フッ素ポリマー水性分散液 Aを上清相と濃縮相とに分離する操 作よりなるものであってもよい。 [0037] In the concentration step in the present invention, the separation operation comprises an operation of separating the fluoropolymer aqueous dispersion A into a supernatant phase and a concentrated phase under the condition that the field coefficient exceeds 1. It may be.
上記「場係数」とは、ある重力加速条件下における重力加速度 [G]と、地上の標準重 力加速度 [G ]との比 [GZG ]である。  The above “field coefficient” is the ratio [GZG] of the gravitational acceleration [G] under a certain gravitational acceleration condition to the standard heavy acceleration [G] on the ground.
0 0  0 0
[0038] 上記場係数について、上清相と濃縮相との分離を迅速かつ効率良く行うことができる 点で、場係数と処理時間 T (秒)との積が 1 X 105〜1 X 107である条件 (本明細書に おいて、「特定の重力加速条件」ということがある。)が好ましい。 [0038] With respect to the above field factor, the product of the field factor and the processing time T (seconds) is 1 X 10 5 to 1 X 10 in that separation of the supernatant phase and the concentrated phase can be performed quickly and efficiently. The condition that is 7 (in this specification In some cases, it is called “specific gravity acceleration conditions”. ) Is preferred.
上記分離操作は、上記特定の重力加速条件下にて行うと、濃縮相に移行した含フッ 素ポリマーの凝集を抑制することができ、濃縮相において、実質的に凝集していない 上記含フッ素ポリマーは、水性媒体等の分散媒に再度分散させることができる。 上記特定の重力加速条件下にて行う分離操作としては、例えば、遠心分離が挙げら れる。  When the separation operation is performed under the specific gravity acceleration condition, aggregation of the fluorine-containing polymer transferred to the concentrated phase can be suppressed, and the fluorine-containing polymer that is not substantially aggregated in the concentrated phase. Can be dispersed again in a dispersion medium such as an aqueous medium. An example of the separation operation performed under the specific gravity acceleration condition includes centrifugation.
[0039] 本発明において、濃縮工程は、分離操作に先立ち、 2相分離における選択性向上の ために必要に応じ、希釈等により、含フッ素ポリマー水性分散液 A中の水の量を高め て含フッ素ポリマー濃度を上述の範囲内に調整しておくことが好ましい場合がある。 含フッ素ポリマー水性分散液 A中の水の量が比較的多いと、例えば、該含フッ素ポリ マー水性分散液 Aが含フッ素乳化剤を含むものであっても、分離操作にぉ ヽて含フ ッ素ポリマー力 該含フッ素乳化剤を分離しやす 、。  [0039] In the present invention, prior to the separation operation, the concentration step includes increasing the amount of water in the fluoropolymer aqueous dispersion A by dilution or the like, if necessary, in order to improve selectivity in two-phase separation. It may be preferable to adjust the fluoropolymer concentration within the above-mentioned range. When the amount of water in the fluoropolymer aqueous dispersion A is relatively large, for example, even if the fluoropolymer aqueous dispersion A contains a fluorinated emulsifier, the fluorinated polymer aqueous dispersion A will contain a fluorinated polymer throughout the separation operation. Basic polymer strength Easily to separate the fluorine-containing emulsifier.
[0040] 本発明の含フッ素ポリマー水性分散液製造方法は、上記濃縮工程に加え、更に、上 清相を除去することよりなる分別工程をも含むものであってもよい。  [0040] The fluoropolymer aqueous dispersion production method of the present invention may further include a fractionation step comprising removing the supernatant phase in addition to the concentration step.
上記分別工程は、上清相を除去することができるものであれば特に限定されず、例 えば、濾過、デカンテーシヨン等の公知の分別操作により行うことができる。  The fractionation step is not particularly limited as long as the supernatant phase can be removed. For example, the fractionation step can be performed by a known fractionation operation such as filtration or decantation.
上記分別工程を行うことにより、分離操作により得られる上清相を除去することに伴つ て、該上清相に含まれていた含フッ素乳化剤等を系外に排することができる。  By performing the fractionation step, the fluorinated emulsifier contained in the supernatant phase can be discharged out of the system as the supernatant phase obtained by the separation operation is removed.
[0041] 本発明の含フッ素ポリマー水性分散液製造方法は、上述の特定界面活性剤の存在 下に行う濃縮工程と、該濃縮工程以外のその他の濃縮工程とを含むものであっても よい。  [0041] The method for producing an aqueous fluoropolymer dispersion of the present invention may comprise a concentration step performed in the presence of the above-mentioned specific surfactant and another concentration step other than the concentration step.
上記「その他の濃縮工程」とは、曇点濃縮法、電気濃縮法等を上述の特定界面活性 剤の非存在下に行うものである点で、上述した濃縮工程とは異なる工程である。  The “other concentration step” is a step different from the above-described concentration step in that the cloud point concentration method, the electric concentration method, and the like are performed in the absence of the above-mentioned specific surfactant.
[0042] 本発明の含フッ素ポリマー水性分散液製造方法は、濃縮工程に加え、更に、分別ェ 程をも含むものである場合、分離操作を 1回行った後に分別操作を 1回行うことよりな る操作サイクルを 2回以上行うものであってもよ 、。 [0042] In the fluoropolymer aqueous dispersion production method of the present invention, in the case where it further includes a fractionation step in addition to the concentration step, the separation operation is performed once and then the fractionation operation is performed once. Even if the operation cycle is performed more than once.
本発明において、操作サイクルを 2回以上行うことにより、通常、含フッ素乳化剤等の 系外への除去率を高めることができるので、目的とする含フッ素乳化剤の残存量と操 作簡便化とのバランスから、上記操作サイクルの回数を適宜選択すればょ 、。 In the present invention, the removal rate of the fluorine-containing emulsifier and the like can usually be increased by performing the operation cycle twice or more. Choose the number of operation cycles from the balance with ease of operation.
[0043] 本発明の含フッ素ポリマー水性分散液製造方法は、上述の濃縮工程と分別工程とを 含み、更に、該分別工程により得られる濃縮相に対し、目的とする含フッ素ポリマー 水性分散液の特性を付与するための微調整を行う後工程をも含むものであってもよ い。  [0043] The method for producing an aqueous fluoropolymer dispersion of the present invention comprises the above-described concentration step and fractionation step, and further, with respect to the concentrated phase obtained by the fractionation step, the target fluoropolymer aqueous dispersion It may include a post-process for performing fine adjustment for imparting characteristics.
上記微調整としては特に限定されず、例えば、(1)上記分別工程により得られる濃縮 相を適宜攪拌して均一な水性分散液とする攪拌操作、 (2)濃縮相を所望の含フッ素 ポリマー濃度に調整するために水性媒体等により希釈する希釈操作、(3)分散安定 性、造膜性等の所望の特性の向上'付与のために界面活性剤、造膜助剤等の添カロ 剤を配合する操作、等により行うことができる。  The fine adjustment is not particularly limited. For example, (1) a stirring operation in which the concentrated phase obtained by the fractionation step is appropriately stirred to obtain a uniform aqueous dispersion, (2) the concentrated phase is a desired fluorine-containing polymer concentration (3) To improve the desired properties such as dispersion stability and film-forming property, and to add additive agents such as surfactants and film-forming aids. It can be carried out by blending operation, etc.
[0044] 本発明は、上述の特定界面活性剤を存在させて曇点濃縮を行うものなので、含フッ 素ポリマーの濃縮のみならず、含フッ素乳化剤の除去をも効率的に行うことができる ものである。 [0044] Since the present invention performs the cloud point concentration in the presence of the above-mentioned specific surfactant, not only the concentration of the fluorine-containing polymer but also the removal of the fluorine-containing emulsifier can be performed efficiently. It is.
従来の曇点濃縮は、上記 HLBが 10〜 15であるノ-オン界面活性剤を利用して含フ ッ素ポリマーを沈降させることは可能であった力 上記 HLBが 10〜15であるノ-オン 界面活性剤は、含フッ素乳化剤の置換効率が極めて悪ぐ曇点濃縮時に含フッ素乳 ィ匕剤を上清相に移行させることができず、従って、含フッ素乳化剤を除去することが できなかった。  Conventional cloud point concentration is a force capable of precipitating a fluorine-containing polymer using a nonionic surfactant having an HLB of 10 to 15 and having a HLB of 10 to 15. ON Surfactant cannot transfer fluorinated emulsifier to the supernatant phase during cloud point concentration when the substitution efficiency of the fluorinated emulsifier is extremely poor, and therefore the fluorinated emulsifier cannot be removed. It was.
[0045] 本発明の方法により得られる含フッ素ポリマー水性分散液は、上述の含フッ素ポリマ 一水性分散液 A力 得られたものであり、含フッ素ポリマー粒子が水性媒体中に分散 してなるものである。  [0045] The aqueous fluoropolymer dispersion obtained by the method of the present invention is the above-mentioned fluoropolymer monoaqueous dispersion A force, and is obtained by dispersing fluoropolymer particles in an aqueous medium. It is.
上記含フッ素ポリマー水性分散液は、上述の含フッ素ポリマー粒子及び水性媒体に 加え、界面活性剤 (好ましくは含フッ素乳化剤以外の界面活性剤)、上記含フッ素ポ リマー水性分散液 Aの調製時に添加した各種添加剤等を含有するものであってもよ い。  The fluoropolymer aqueous dispersion is added to the surfactant (preferably a surfactant other than the fluoroemulsifier) and the fluoropolymer aqueous dispersion A in addition to the fluoropolymer particles and the aqueous medium. It may contain various additives.
[0046] 本発明の方法により得られる含フッ素ポリマー水性分散液は、含フッ素ポリマー濃度 力 S30〜80質量%であることが好ましい。  [0046] The aqueous fluoropolymer dispersion obtained by the method of the present invention preferably has a fluoropolymer concentration of S30 to 80% by mass.
上記含フッ素ポリマー濃度は、より好ましい下限が 50質量%、更に好ましい下限が 5 5質量%、特に好ましい下限が 60質量%であり、より好ましい上限が 75質量%、更に 好まし 、上限が 70質量%である。 The fluorine-containing polymer concentration has a more preferable lower limit of 50% by mass, and a more preferable lower limit of 5%. 5% by mass, a particularly preferred lower limit is 60% by mass, a more preferred upper limit is 75% by mass, and a further preferred upper limit is 70% by mass.
[0047] 上記含フッ素ポリマー水性分散液において、上記特定界面活性剤は、含フッ素ポリ マー 100質量部に対し 15質量部以下であることが好まし 、。含フッ素ポリマー 100質 量部に対し 15質量部を超えると、存在量に見合った分散効果が得られない場合が あり、また、目的とする特定界面活性剤濃度に低減する必要がある場合、除去処理 が煩雑となる。 [0047] In the fluoropolymer aqueous dispersion, the specific surfactant is preferably 15 parts by mass or less with respect to 100 parts by mass of the fluoropolymer. If the amount exceeds 15 parts by mass with respect to 100 parts by mass of the fluoropolymer, a dispersion effect commensurate with the abundance may not be obtained, and if it is necessary to reduce the concentration to the desired specific surfactant, it is removed. Processing becomes complicated.
上記特定界面活性剤濃度は、より好ましい上限が含フッ素ポリマー 100質量部に対 し 10質量部、更に好ましい上限は 5質量部であり、特定界面活性剤を存在させる効 果を得る点で、 0. 5質量部以上であることが好ましい。  The above-mentioned specific surfactant concentration has a more preferable upper limit of 10 parts by mass with respect to 100 parts by mass of the fluorine-containing polymer, and a more preferable upper limit of 5 parts by mass, in that the effect of allowing the specific surfactant to exist is obtained. It is preferably 5 parts by mass or more.
[0048] 本発明の方法により得られる含フッ素ポリマー水性分散液は、含フッ素ポリマーの特 性を維持する点で、含フッ素乳化剤の濃度が、含フッ素ポリマーの lOOOppm以下で あることが好ましぐ lOOppm以下であることがより好ましぐ lOppm以下であることが 更に好ましぐ lppm以下であることが特に好ましい。 [0048] The aqueous fluoropolymer dispersion obtained by the method of the present invention is preferably such that the concentration of the fluoroemulsifier is not more than lOOOppm of the fluoropolymer in terms of maintaining the properties of the fluoropolymer. 10 ppm or less is more preferred 10 ppm or less is more preferred 1 ppm or less is particularly preferred.
[0049] 上記含フッ素ポリマー水性分散液は、上述したように、含フッ素ポリマー濃度が高 、 ので、取り扱い性に優れており、含フッ素ポリマー粉末、含フッ素ポリマー成形体等 に加工しやすい。 [0049] Since the fluoropolymer aqueous dispersion has a high fluoropolymer concentration as described above, it is excellent in handleability and can be easily processed into a fluoropolymer powder, a fluoropolymer molded body, and the like.
上記含フッ素ポリマー水性分散液は、また、各種界面活性剤の濃度が低ぐ含フッ素 ポリマーの純度が高いものであるので、含フッ素乳ィ匕剤に起因する含フッ素ポリマー の特性劣化がなぐ耐熱性、耐薬品性、耐久性、耐侯性、表面特性、機械的特性等 の物性に優れた含フッ素ポリマー成形体にカ卩ェすることができる。  The aqueous fluoropolymer dispersion is a high-purity fluoropolymer with a low concentration of various surfactants, so that the heat-resistant properties of the fluoropolymer are not deteriorated due to the fluoroemulsion. It is possible to cover a fluoropolymer molded article having excellent physical properties such as property, chemical resistance, durability, weather resistance, surface characteristics, and mechanical characteristics.
発明の効果  The invention's effect
[0050] 本発明の含フッ素ポリマー水性分散液製造方法は、上述の構成よりなるものであるの で、簡便に且つ効率よぐ含フッ素乳化剤等の混入物が極めて少ない含フッ素ポリマ 一水性分散液を調製することができる。  [0050] Since the fluorine-containing polymer aqueous dispersion production method of the present invention has the above-mentioned configuration, the fluorine-containing polymer mono-aqueous dispersion containing very little contaminants such as a fluorine-containing emulsifier easily and efficiently. Can be prepared.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0051] 本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれらの実施例 及び比較例により限定されるものではない。 [0052] 各実施例及び比較例で行った測定は、以下の方法により行った。 [0051] The present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples and Comparative Examples. [0052] Measurements performed in each example and comparative example were performed by the following method.
(1)含フッ素ポリマー濃度及び特定界面活性剤濃度  (1) Concentration of fluoropolymer and specific surfactant
試料約 lg (Xg)を直径 5cmのアルミカップにとり、 100°Cにて 1時間で加熱した加熱 残分 (Yg)、更に、得られた加熱残分 (Yg)を 300°Cにて 1時間加熱した加熱残分 (Z より、特定界面活性剤濃度 (S)、含フッ素ポリマー濃度 (P)を下式で決定した。 S = [ ( Y— Z) /X] X 100 ( % )  About 1 lg (Xg) of the sample is placed in an aluminum cup with a diameter of 5 cm, and heated residue (Yg) heated at 100 ° C for 1 hour, and the obtained heated residue (Yg) is further heated at 300 ° C for 1 hour. Heated residue (from Z, specific surfactant concentration (S) and fluoropolymer concentration (P) were determined by the following formula. S = [(Y—Z) / X] X 100 (%)
P= (Z/X) X 100 (%)  P = (Z / X) X 100 (%)
(2)平均一次粒子径  (2) Average primary particle size
含フッ素ポリマー濃度を 0. 22質量%に調整した水性分散液の単位長さに対する 55 Onmの投射光の透過率と、透過型電子顕微鏡写真における定方向径を測定して決 定された平均粒子径との検量線をもとにして、上記透過率から決定した。  Average particle size determined by measuring the transmittance of 55 Onm projection light with respect to the unit length of the aqueous dispersion with the fluorine-containing polymer concentration adjusted to 0.22% by mass and the directional direction diameter in the transmission electron micrograph. Based on the calibration curve with the diameter, it was determined from the transmittance.
(3)含フッ素乳化剤濃度  (3) Fluorine-containing emulsifier concentration
水性分散液に、等量のメタノールを添カ卩してソックスレー抽出を行ったのち、 HPLC 測定を以下の条件にて行うことにより求めた。  After soxhlet extraction was performed by adding an equal amount of methanol to the aqueous dispersion, HPLC measurement was performed under the following conditions.
(測定条件)  (Measurement condition)
カラム; ODS— 120Τ(4. 6 X 250mm,トーソ一社製)  Column; ODS—120 mm (4.6 x 250 mm, manufactured by Toso Co., Ltd.)
展開液;ァセトニトリル ZO. 6質量%過塩素酸水溶液 = 1Z1 (vol/vol%) サンプル量;20 /z L  Developing solution: acetonitrile ZO. 6 mass% perchloric acid aqueous solution = 1Z1 (vol / vol%) Sample amount: 20 / z L
流速; 1. OmlZ分  Flow rate; 1. OmlZ min
検出波長; UV210nm  Detection wavelength: UV210nm
カラム温度; 40°C  Column temperature; 40 ° C
なお、含フッ素乳化剤濃度算出にあたり、既知の濃度の含フッ素乳化剤濃度につい て上記溶出液及び条件にて HPLC測定して得られた検量線を用いた。  In calculating the fluorine-containing emulsifier concentration, a calibration curve obtained by HPLC measurement of the known concentration of the fluorine-containing emulsifier with the above eluate and conditions was used.
[0053] 比較例 1 [0053] Comparative Example 1
パーフルォロオクタン酸アンモ-ゥム [PFOA]を添カ卩して調製したテトラフルォロェ チレン [TFE]単独重合体水性分散体 (TFE単独重合体濃度 34質量%、平均粒子 径 280nm、 pH3、榭脂固形分に対する PFOA濃度 2900ppm)を、 50ml容量の遠 心分離管に入れ、 2500rpm (場係数 =419)の重力加速度下にて 30分間遠心分離 を行い、上清相(水相)と濃縮相(フルォロポリマー水性分散液相)とに分離した。 上清について、上記測定条件にて HPLCを行ったところ、 PFOA濃度は 20ppmであ つた。系中の PFOAが全て水相にあると仮定すれば、水相の PFOA濃度は 1494pp mになるが(水性分散液が 100gとすれば、含まれる PTFEは 34g、残りが水であるか ら 66g、 PFOAiま 34 X 2900ppm=0. 0986g。これ力 S水ネ目にすべてあれば、、 0. 09Tetrafluoroethylene [TFE] homopolymer aqueous dispersion prepared by adding perfluorooctanoic acid ammonium [PFOA] (TFE homopolymer concentration 34 mass%, average particle size 280 nm, pH 3, PFOA concentration (2900 ppm with respect to fat solids) is placed in a 50 ml centrifuge tube and centrifuged for 30 minutes under a gravitational acceleration of 2500 rpm (field factor = 419) And separated into a supernatant phase (aqueous phase) and a concentrated phase (fluoropolymer aqueous dispersion phase). When the supernatant was subjected to HPLC under the above measurement conditions, the PFOA concentration was 20 ppm. Assuming that all PFOA in the system is in the aqueous phase, the concentration of PFOA in the aqueous phase is 1494ppm (if the aqueous dispersion is 100g, the PTFE contained is 34g, and the rest is water, so 66g , PFOAi 34 X 2900ppm = 0.0986g.If this is all S
86Z66 = 1494ppmと言う計算となる。)、水相に移行した PFOAは l% (20ppmZ 1494ppm)とわずかであり、残りが粒子表面に吸着していることになる。 The calculation is 86Z66 = 1494ppm. ), PFOA transferred to the water phase is only 1% (20ppmZ 1494ppm), and the rest is adsorbed on the particle surface.
したがって、遠心分離によって生じた上清中の PFOA濃度を測定することにより、 PF OAを水相に移行させる効率 (PFOAを含フッ素ポリマー水性分散液 Aから除去する 効率)を比較することができる。  Therefore, by measuring the PFOA concentration in the supernatant generated by centrifugation, the efficiency of transferring PFOA to the aqueous phase (efficiency of removing PFOA from the fluoropolymer aqueous dispersion A) can be compared.
[0054] 実施例 1 [0054] Example 1
パーフルォロオクタン酸アンモ-ゥム [PFOA]を添カ卩して調製したテトラフルォロェ チレン [TFE]単独重合体水性分散体 (TFE単独重合体濃度 34質量%、平均粒子 径 280nm、 pH3、榭脂固形分に対する PFOA濃度 2900ppm)に、ポリオキシェチ レントリデシルエーテル TDS— 50 (エチレンオキサイド [EO]数 5、平均分子量 420、 第一工業製薬社製)を、 0. 16mmolZgTFE単独重合体の割合となるよう添加し、 混合して、均一に分散させた。  Tetrafluoroethylene [TFE] homopolymer aqueous dispersion prepared by adding perfluorooctanoic acid ammonium [PFOA] (TFE homopolymer concentration 34 mass%, average particle size 280 nm, pH 3, Polyoxyethylene tridecyl ether TDS-50 (ethylene oxide [EO] number 5, average molecular weight 420, manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) is 0.16 mmol ZgTFE homopolymer ratio to PFOA concentration 2900ppm of fat solid content) Added, mixed and dispersed uniformly.
得られた TFE単独重合体水性分散液 A— 1を、 50ml容量の遠心分離管に入れ、 25 00 111(場係数=419)の重力加速度下にて 30分間遠心分離を行い、上清相(水 相)と濃縮相とに分離した。  The obtained TFE homopolymer aqueous dispersion A-1 was placed in a 50 ml centrifuge tube, centrifuged at a gravitational acceleration of 25 00 111 (field factor = 419) for 30 minutes, and the supernatant phase ( The aqueous phase and the concentrated phase were separated.
上清について、上記測定条件にて HPLCを行ったところ、 PFOA濃度は含フッ素ポ リマー(榭脂固形分)の 994ppmであった。すなわち、水相に 67%の PFOAが移行し たこととなる。  When the supernatant was subjected to HPLC under the above measurement conditions, the PFOA concentration was 994 ppm of the fluorine-containing polymer (resin solid content). In other words, 67% of PFOA has been transferred to the water phase.
[0055] 実施例 2 [0055] Example 2
TFE単独重合体水性分散体 (TFE単独重合体濃度 34質量%、平均粒子径 280η m、 pH3、榭脂固形分に対する PFOA濃度 2900ppm)に、ドデシルスルホン酸ナトリ ゥム(平均分子量 272、試薬)を、 0. 056mmolZgTFE単独重合体となるよう添カロし 、混合して、均一に分散させた。得られた TFE単独重合体水性分散液 A— 2を 50ml 容量の遠心分離管に入れ、実施例 1と同様に遠心分離を行い、上清相 (水相)と濃 縮相とに分離した。 Aqueous dispersion of TFE homopolymer (TFE homopolymer concentration 34% by weight, average particle size 280ηm, pH3, PFOA concentration 22.8ppm of rosin solids) and sodium dodecyl sulfonate (average molecular weight 272, reagent) 0.0556 mmol ZgTFE homopolymer was added and mixed and dispersed uniformly. 50 ml of the obtained TFE homopolymer aqueous dispersion A-2 The mixture was placed in a centrifuge tube having a capacity and centrifuged in the same manner as in Example 1 to separate into a supernatant phase (aqueous phase) and a concentrated phase.
上清について、上記測定条件にて HPLCを行ったところ、 PFOA濃度は含フッ素ポ リマー(榭脂固形分)の 550ppmであった。すなわち、 37%の PFOAが水相に移行し たこととなる。  When the supernatant was subjected to HPLC under the above measurement conditions, the PFOA concentration was 550 ppm of the fluorine-containing polymer (resin solid content). In other words, 37% of PFOA has shifted to the water phase.
[0056] 実施例 3 [0056] Example 3
TFE単独重合体水性分散体 (TFE単独重合体濃度 34質量%、平均粒子径 280η m、 pH3、榭脂固形分に対する PFOA濃度 2900ppm)に、ジォクチルスルホコハク 酸ナトリウム(平均分子量 443)を、 0. 056mmolZgTFE単独重合体となるよう添カロ し、混合して、均一に分散させた。得られた TFE単独重合体水性分散液 A— 3を 50 ml容量の遠心分離管に入れ、実施例 1と同様に遠心分離を行い、上清相 (水相)と 濃縮相とに分離した。  To a TFE homopolymer aqueous dispersion (TFE homopolymer concentration 34% by mass, average particle size 280ηm, pH 3, PFOA concentration 2900ppm with respect to the solid content of rosin), sodium dioctylsulfosuccinate (average molecular weight 443) 056mmol ZgTFE homopolymer was added and mixed, and dispersed uniformly. The obtained aqueous TFE homopolymer dispersion A-3 was placed in a 50 ml centrifuge tube and centrifuged in the same manner as in Example 1 to separate the supernatant phase (aqueous phase) and the concentrated phase.
上清について、上記測定条件にて HPLCを行ったところ、 PFOA濃度は含フッ素ポ リマー(榭脂固形分)の 690ppmであった。すなわち、 46%の PFOAが水相に移行し たこととなる。  When the supernatant was subjected to HPLC under the above measurement conditions, the PFOA concentration was 690 ppm of the fluorine-containing polymer (solid resin). In other words, 46% of PFOA has shifted to the water phase.
[0057] 比較例 2 [0057] Comparative Example 2
TFE単独重合体水性分散体 (TFE単独重合体濃度 34質量%、平均粒子径 280η m、 pH3、榭脂固形分に対する PFOA濃度 2900ppm)に、ポリオキシエチレンオタ チルフエ-ルエーテル TritonX—100 (EO数 9. 5、平均分子量 624)を、 0. 056m molZgTFE単独重合体となるよう添加し、混合して、均一に分散させた。得られた T FE単独重合体水性分散体を 50ml容量の遠心分離管に入れ、実施例 1と同様に遠 心分離を行い、上清相 (水相)と濃縮相とに分離した。  An aqueous dispersion of TFE homopolymer (TFE homopolymer concentration 34% by weight, average particle size 280ηm, pH 3, PFOA concentration 2900ppm with respect to the solid content of resin), polyoxyethylene octylphenol ether TritonX-100 (EO number 9) 5 and an average molecular weight of 624) were added so as to be a 0.056 mmol molZgTFE homopolymer, mixed and dispersed uniformly. The obtained TFE homopolymer aqueous dispersion was placed in a 50 ml centrifuge tube and subjected to centrifugal separation in the same manner as in Example 1 to separate into a supernatant phase (aqueous phase) and a concentrated phase.
上清について、上記測定条件にて HPLCを行ったところ、 PFOA濃度は含フッ素ポ リマー(榭脂固形分)の 355ppmであった。すなわち、 24%の PFOAが水相に移行し たこととなる。  When the supernatant was subjected to HPLC under the above measurement conditions, the PFOA concentration was 355 ppm of the fluorine-containing polymer (solid resin). In other words, 24% of PFOA has shifted to the water phase.
[0058] 比較例 3 [0058] Comparative Example 3
TFE単独重合体水性分散体 (TFE単独重合体濃度 34質量%、平均粒子径 280η m、 pH3、榭脂固形分に対する PFOA濃度 2900ppm)に、ポリオキシエチレンオタ チルフエ-ルエーテル TritonX—100 (EO数 9. 5、平均分子量 624)を、 0. 16mm olZgTFE単独重合体となるよう添加し、混合して、均一に分散させた。得られた TF E単独重合体水性分散体を 50ml容量の遠心分離管に入れ、実施例 1と同様に遠心 分離を行い、上清相 (水相)と濃縮相とに分離した。 TFE homopolymer aqueous dispersion (TFE homopolymer concentration 34% by weight, average particle size 280ηm, pH3, PFOA concentration 2900ppm with respect to solids of resin) Tilphenol ether TritonX-100 (EO number 9.5, average molecular weight 624) was added to be a 0.16 mm olZgTFE homopolymer, mixed and dispersed uniformly. The obtained TFE homopolymer aqueous dispersion was placed in a 50 ml centrifuge tube and centrifuged in the same manner as in Example 1 to separate the supernatant phase (aqueous phase) and the concentrated phase.
上清について、上記測定条件にて HPLCを行ったところ、 PFOA濃度は含フッ素ポ リマー(榭脂固形分)の 680ppmであった。すなわち、 46%の PFOAが水相に移行し たこととなる。  When the supernatant was subjected to HPLC under the above measurement conditions, the PFOA concentration was 680 ppm of the fluorine-containing polymer (solid resin). In other words, 46% of PFOA has shifted to the water phase.
[0059] 比較例 4 [0059] Comparative Example 4
TFE単独重合体水性分散体 (TFE単独重合体濃度 34質量%、平均粒子径 280η m、 pH3、榭脂固形分に対する PFOA濃度 2900ppm)に、ォクチルスルホン酸ナト リウム(平均分子量 216)を、 0. 056mmolZgTFE単独重合体になるよう添カ卩し、混 合して、均一に分散させた。得られた TFE単独重合体水性分散体を 50ml容量の遠 心分離管に入れ、実施例 1と同様に遠心分離を行い、上清相 (水相)と濃縮相とに分 離し 7こ。  Aqueous dispersion of TFE homopolymer (TFE homopolymer concentration 34% by mass, average particle size 280ηm, pH 3, PFOA concentration 2900ppm with respect to the solid content of rosin), sodium octyl sulfonate (average molecular weight 216), 0.056mmolZgTFE The mixture was added to form a homopolymer, mixed and dispersed uniformly. The obtained TFE homopolymer aqueous dispersion was placed in a 50 ml centrifuge tube, centrifuged as in Example 1, and separated into a supernatant phase (aqueous phase) and a concentrated phase.
上清について、上記測定条件にて HPLCを行ったところ、 PFOA濃度は含フッ素ポ リマー(榭脂固形分)の 26ppmであった。すなわち、 1. 7%の PFOAが水相に移行し たこととなる。  When the supernatant was subjected to HPLC under the above measurement conditions, the PFOA concentration was 26 ppm of the fluorine-containing polymer (solid resin). In other words, 1.7% of PFOA has shifted to the water phase.
産業上の利用可能性  Industrial applicability
[0060] 本発明の含フッ素ポリマー水性分散液製造方法は、簡便に且つ効率よぐ含フッ素 乳化剤等の混入物が極めて少ない含フッ素ポリマー水性分散液を調製することがで きる。 [0060] The method for producing an aqueous fluoropolymer dispersion of the present invention makes it possible to prepare an aqueous fluoropolymer dispersion with very few contaminants such as a fluorine-containing emulsifier easily and efficiently.
上記含フッ素ポリマー水性分散液は、耐熱性、耐薬品性、耐久性、耐侯性、表面特 性、機械的特性等の物性に優れた含フッ素ポリマー成形体等の材料として優れて ヽ る。  The aqueous fluoropolymer dispersion is excellent as a material for a fluoropolymer molded article having excellent physical properties such as heat resistance, chemical resistance, durability, weather resistance, surface characteristics, and mechanical properties.

Claims

請求の範囲 The scope of the claims
[1] 濃縮工程を経て含フッ素ポリマー水性分散液を製造することよりなる含フッ素ポリマ 一水性分散液製造方法であって、  [1] A fluorine-containing polymer aqueous dispersion production method comprising producing a fluorine-containing polymer aqueous dispersion through a concentration step,
前記濃縮工程は、特定ノニオン界面活性剤及び Z又は特定ァニオン界面活性剤の 存在下に含フッ素ポリマー水性分散液 Aを濃縮することよりなる工程であり、 前記特定ノ-オン界面活性剤は、親水基の分子量力 00以下であり且つ疎水基の 炭素数が 10〜20であるノ-オン界面活性剤であり、  The concentration step is a step comprising concentrating the fluoropolymer aqueous dispersion A in the presence of a specific nonionic surfactant and Z or a specific anionic surfactant, and the specific nonionic surfactant is hydrophilic. A non-ionic surfactant having a molecular weight of 00 or less and a hydrophobic group having 10 to 20 carbon atoms,
前記特定ァニオン界面活性剤は、疎水基として炭化水素基を有しており前記炭化水 素基合計の炭素数が 10〜20であるフッ素非含有ァ-オン界面活性剤である ことを特徴とする含フッ素ポリマー水性分散液製造方法。  The specific anion surfactant is a fluorine-free anion surfactant having a hydrocarbon group as a hydrophobic group and a total carbon number of 10 to 20 carbon atoms. Fluorine-containing polymer aqueous dispersion production method.
[2] 特定ノ-オン界面活性剤の親水基は、アルキレンオキサイドの繰返し単位が 7以下で ある請求項 1記載の含フッ素ポリマー水性分散液製造方法。 [2] The method for producing an aqueous fluoropolymer dispersion according to claim 1, wherein the hydrophilic group of the specific non-ionic surfactant has 7 or less repeating units of alkylene oxide.
[3] 特定ノ-オン界面活性剤及び Z又は特定ァ-オン界面活性剤は、含フッ素ポリマー 重合後に添加するものである請求項 1又は 2記載の含フッ素ポリマー水性分散液製 造方法。 [3] The method for producing an aqueous fluoropolymer dispersion according to claim 1 or 2, wherein the specific non-one surfactant and Z or specific key-on surfactant are added after polymerization of the fluoropolymer.
[4] 含フッ素ポリマー水性分散液 Aは、含フッ素乳化剤を含有しているものである請求項 [4] The fluorine-containing polymer aqueous dispersion A contains a fluorine-containing emulsifier.
1、 2又は 3記載の含フッ素ポリマー水性分散液製造方法。 The method for producing a fluoropolymer aqueous dispersion according to 1, 2 or 3.
[5] 含フッ素乳化剤は、平均分子量が 1000以下である含フッ素化合物からなる請求項 4 記載の含フッ素ポリマー水性分散液製造方法。 5. The method for producing an aqueous fluoropolymer dispersion according to claim 4, wherein the fluorine-containing emulsifier comprises a fluorine-containing compound having an average molecular weight of 1000 or less.
[6] 含フッ素乳化剤は、炭素数が 5〜12である含フッ素化合物からなる請求項 4又は 5記 載の含フッ素ポリマー水性分散液製造方法。 6. The method for producing an aqueous fluoropolymer dispersion according to claim 4 or 5, wherein the fluorine-containing emulsifier comprises a fluorine-containing compound having 5 to 12 carbon atoms.
[7] 含フッ素乳化剤は、パーフルォロカルボン酸又はその塩力もなるものである請求項 4[7] The fluorine-containing emulsifier is a perfluorocarboxylic acid or a salt thereof.
、 5又は 6記載の含フッ素ポリマー水性分散液製造方法。 5. The method for producing a fluoropolymer aqueous dispersion according to 5 or 6.
[8] 含フッ素ポリマー水性分散液 Aを構成する含フッ素ポリマー粒子は、平均粒子径が 5[8] The fluoropolymer particles constituting the fluoropolymer aqueous dispersion A have an average particle size of 5
0〜500nmである請求項 1、 2、 3、 4、 5、 6又は 7記載の含フッ素ポリマー水性分散 液製造方法。 The method for producing an aqueous fluoropolymer dispersion according to claim 1, 2, 3, 4, 5, 6, or 7, wherein the dispersion is from 0 to 500 nm.
[9] 含フッ素ポリマーは、ポリテトラフルォロエチレンである請求項 1、 2、 3、 4、 5、 6、 7又 は 8記載の含フッ素ポリマー水性分散液製造方法。  [9] The method for producing an aqueous fluoropolymer dispersion according to claim 1, 2, 3, 4, 5, 6, 7 or 8, wherein the fluoropolymer is polytetrafluoroethylene.
PCT/JP2005/024115 2004-12-28 2005-12-28 Method for preparation of aqueous fluorinated polymer dispersion WO2006077737A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006553850A JPWO2006077737A1 (en) 2004-12-28 2005-12-28 Fluorine-containing polymer aqueous dispersion production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-381961 2004-12-28
JP2004381961 2004-12-28

Publications (1)

Publication Number Publication Date
WO2006077737A1 true WO2006077737A1 (en) 2006-07-27

Family

ID=36692127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/024115 WO2006077737A1 (en) 2004-12-28 2005-12-28 Method for preparation of aqueous fluorinated polymer dispersion

Country Status (2)

Country Link
JP (1) JPWO2006077737A1 (en)
WO (1) WO2006077737A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111413432A (en) * 2020-04-20 2020-07-14 山东东岳高分子材料有限公司 Method for detecting trace PFOA (perfluorooctanoic acid) in fluorine-containing polymer emulsion product
WO2022191286A1 (en) * 2021-03-10 2022-09-15 ダイキン工業株式会社 Method for producing aqueous fluoropolymer dispersion
CN115466343A (en) * 2021-06-11 2022-12-13 中昊晨光化工研究院有限公司 Polyether diacid or salt surfactant thereof and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3037953A (en) * 1961-04-26 1962-06-05 Du Pont Concentration of aqueous colloidal dispersions of polytetrafluoroethylene
WO2003078479A1 (en) * 2002-03-20 2003-09-25 Asahi Glass Company, Limited Aqueous polytetrafluoroethylene dispersion composition and process for producing the same
WO2004050719A1 (en) * 2002-11-29 2004-06-17 Daikin Industries, Ltd. Method for purification of aqueous fluoropolymer emulsions, purified emulsions, and fluorine-containing finished articles
JP2005008775A (en) * 2003-06-19 2005-01-13 Asahi Glass Co Ltd Polytetrafluoroethylene aqueous dispersion composition and method for producing the same
JP2005126715A (en) * 2003-10-21 2005-05-19 Solvay Solexis Spa Preparation method of fluoropolymer dispersion liquid

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19857111A1 (en) * 1998-12-11 2000-06-15 Dyneon Gmbh Aqueous dispersions of fluoropolymers
EP1364972B1 (en) * 2002-05-22 2006-08-30 3M Innovative Properties Company Process for reducing the amount of fluorinated surfactant in aqueous fluoropolymer dispersions
ITMI20032377A1 (en) * 2003-12-04 2005-06-05 Solvay Solexis Spa COPOLYMERS OF TFE.
ITMI20040031A1 (en) * 2004-01-14 2004-04-14 Solvay Solexis Spa PROCESS FOR THE PREPARATION OF FLUOROPOLYMER DISPERSERS

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3037953A (en) * 1961-04-26 1962-06-05 Du Pont Concentration of aqueous colloidal dispersions of polytetrafluoroethylene
WO2003078479A1 (en) * 2002-03-20 2003-09-25 Asahi Glass Company, Limited Aqueous polytetrafluoroethylene dispersion composition and process for producing the same
WO2004050719A1 (en) * 2002-11-29 2004-06-17 Daikin Industries, Ltd. Method for purification of aqueous fluoropolymer emulsions, purified emulsions, and fluorine-containing finished articles
JP2005008775A (en) * 2003-06-19 2005-01-13 Asahi Glass Co Ltd Polytetrafluoroethylene aqueous dispersion composition and method for producing the same
JP2005126715A (en) * 2003-10-21 2005-05-19 Solvay Solexis Spa Preparation method of fluoropolymer dispersion liquid

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111413432A (en) * 2020-04-20 2020-07-14 山东东岳高分子材料有限公司 Method for detecting trace PFOA (perfluorooctanoic acid) in fluorine-containing polymer emulsion product
WO2022191286A1 (en) * 2021-03-10 2022-09-15 ダイキン工業株式会社 Method for producing aqueous fluoropolymer dispersion
CN115466343A (en) * 2021-06-11 2022-12-13 中昊晨光化工研究院有限公司 Polyether diacid or salt surfactant thereof and application thereof
CN115466343B (en) * 2021-06-11 2023-10-27 中昊晨光化工研究院有限公司 Polyether diacid or salt surfactant thereof and application thereof

Also Published As

Publication number Publication date
JPWO2006077737A1 (en) 2008-06-19

Similar Documents

Publication Publication Date Title
JP2006522836A (en) Aqueous fluoropolymer dispersion comprising a melt processable fluoropolymer and having a reduced amount of fluorinated surfactant
JP5338667B2 (en) Low molecular weight polytetrafluoroethylene aqueous dispersion, low molecular weight polytetrafluoroethylene powder and method for producing low molecular weight polytetrafluoroethylene
JP4494932B2 (en) Method for producing fluoropolymer dispersion
RU2294940C2 (en) Fluoropolymer dispersion containing no or small amount of low-molecular weight fluorinated surfactant
JP4782408B2 (en) TFE copolymer
CN1249104C (en) Aqueous dispersions of fluoropolymers
JP5236725B2 (en) Method for removing a fluorinated emulsifier from a fluoropolymer dispersion using an anion exchange resin and a pH-dependent surfactant, and a fluoropolymer dispersion containing a pH-dependent surfactant
JP5244298B2 (en) Method for producing fluoropolymer dispersion
JP4961352B2 (en) Reduced viscosity control of fluorosurfactant aqueous fluoropolymer dispersions by addition of cationic surfactants
JP5287310B2 (en) Low molecular weight polytetrafluoroethylene aqueous dispersion, low molecular weight polytetrafluoroethylene powder and method for producing low molecular weight polytetrafluoroethylene
WO2013146947A1 (en) Aqueous fluoropolymer dispersion
WO2005042593A1 (en) Process for producing aqueous fluoropolymer dispersion and aqueous fluoropolymer dispersion
JP5435089B2 (en) Fluorine-containing polymer aqueous dispersion
US11591430B2 (en) Method for making fluoropolymers
JP5332788B2 (en) Fluorine-containing polymer aqueous dispersion
WO2006109854A1 (en) Process for producing aqueous fluoropolymer dispersion
WO2006077737A1 (en) Method for preparation of aqueous fluorinated polymer dispersion
JP5417847B2 (en) Method for producing fluoropolymer aqueous dispersion and fluoropolymer aqueous dispersion
JP4784603B2 (en) Method for producing aqueous fluoropolymer dispersion
JP2006188556A (en) Method for producing aqueous dispersion of fluorine-containing polymer
JP4985399B2 (en) Fluoropolymer aqueous dispersion
JP2008013669A (en) Method for producing fluoropolymer aqueous dispersion
JP2006316242A (en) Method for producing aqueous dispersion of fluoropolymer
JP2007314691A (en) Method for producing aqueous dispersion of fluorine-containing polymer
JP4605160B2 (en) Method for producing aqueous fluoropolymer dispersion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006553850

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05844873

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5844873

Country of ref document: EP