WO2006077340A1 - Method for detecting a change of material on machining - Google Patents

Method for detecting a change of material on machining Download PDF

Info

Publication number
WO2006077340A1
WO2006077340A1 PCT/FR2006/050007 FR2006050007W WO2006077340A1 WO 2006077340 A1 WO2006077340 A1 WO 2006077340A1 FR 2006050007 W FR2006050007 W FR 2006050007W WO 2006077340 A1 WO2006077340 A1 WO 2006077340A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
current
machining
change
tool
Prior art date
Application number
PCT/FR2006/050007
Other languages
French (fr)
Inventor
Alain Gérard SCHWEITZER
Original Assignee
Digital Way
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Digital Way filed Critical Digital Way
Publication of WO2006077340A1 publication Critical patent/WO2006077340A1/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration
    • G05B19/4163Adaptive control of feed or cutting velocity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/08Control or regulation of cutting velocity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • B23Q17/0952Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining
    • B23Q17/0961Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining by measuring power, current or torque of a motor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49088As a function of, regulate feed as function of material, tool
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49097Material type of each layer to be drilled, to be joined

Definitions

  • the invention relates to the technical sector means for measuring the current and / or the power absorbed by a drive motor of a tool, in particular a machine tool.
  • the absorbed current and / or the power absorbed by the drive motor of the tool may depend directly on the hardness of the thickness of the layer of material considered: a thickness and / or a high hardness generates a significant power consumption.
  • FIG. 1 represents the work of a tool (O), for example a drill bit, for drilling the various layers of material constituting the product, namely an aluminum layer (Al), a layer of carbon (C), a layer of titanium (Ti).
  • a tool for example a drill bit
  • Al aluminum layer
  • C carbon
  • Ti titanium
  • Pc the detection threshold between the aluminum layer and the carbon layer.
  • This solution can be regarded as satisfactory as long as the tool is new, as can be seen from the solid line curve of FIG. 2 representing machining with a new tool.
  • the detection threshold (Pc) is not crossed, so that the change of material is not detected.
  • the definition of the instant of measurement of the power in full material necessary for the calculation of the relative threshold is very delicate to establish. It is difficult to determine the instant (T 0 ) since the stability of the measurements is very short. As a result, the detection threshold is poorly defined, so that the detection of the material change is very random.
  • the object of the invention is to remedy these disadvantages in a simple, safe, efficient and rational manner.
  • the technical problem to be solved by the invention is to be able to set the material change threshold, even with very thin machining thicknesses, to overcome the state of wear of the tool and to be able to to cross this threshold, even when the thicknesses of materials to be machined vary significantly.
  • the current or the power absorbed by a drive motor of the tool is measured and positioning detection thresholds are set to each change in current or power measurement.
  • the thresholds are positioned on the derivative of the current and / or the power absorbed.
  • the device comprises a module traversed by the three motor supply phases and integrating the components able to measure the active current and / or the active power absorbed by the motor, said module being connected to a differentiating module of the current and / or power signal, said signal being sent in a comparison module of its derivative with a reference threshold.
  • FIGS. 1, 2, 3 and 4 are graphs showing in particular the power curves as a function of time in the case of a product resulting from a stack of three layers of different materials, the different graphs showing the limits obtained according to the solutions of the prior art;
  • FIG. 5 shows, by a graph, the positioning of the thresholds on the derivative of the power or the current absorbed according to the invention in correspondence with machining curves, illustrated in FIG. 4, one of which represents the machining in a low thickness, while the other represents the same machining with a thickness for the first larger material.
  • FIG. 6 is a schematic diagram of the means for implementing the method according to the invention
  • FIG. 7 represents a machining curve in the context of an automatic drilling of an aluminum / carbon / titanium structure
  • FIG. 8 shows, in correspondence with FIG. 7, the positioning of the detection thresholds on the derivative of the power
  • FIG. 9 shows an operating diagram of an automatic drilling corresponding to the curve of FIG. 7.
  • FIG. 6 illustrates a motor (1) for driving a machine tool tool for example.
  • a module (2) integrating the components able to measure the active current and / or the active power absorbed by said motor (1).
  • the sensor is connected to a differentiation module of the current and / or power signal.
  • the signals of the module (3) are sent to a module (4) for comparing the current or the power absorbed with a reference threshold. It therefore appears that, according to the invention, the reference thresholds are positioned on the derivative of the power or the current absorbed (e).
  • FIG. 5 shows the positioning of the thresholds on the derivative of the power absorbed in correspondence with the machining curves illustrated in FIG. 4.
  • the device can operate with very thin machining thicknesses, since there is no power measurement to achieve to set the material change threshold.
  • the values of the material change thresholds are independent of the wear state of the tool, so that it is possible to display a complete life of the tool at material change detection thresholds. Settings can be made graphically, very easily.
  • FIGS. 7 and 8 illustrate the application of the method and the device according to the invention to the automatic drilling of a structure composed of an aluminum layer, a carbon layer and a layer of titanium.
  • Figure 7 shows the power curve absorbed at the aluminum layer (Al), the carbon layer (C) and the titanium layer (Ti).
  • (A) represents the forward speed change
  • (B) the change of material
  • (M) the stopping of advances
  • (D) the change of speed of the drive motor
  • (E) the speed reached by the drive motor
  • (F) feedrate the speed reached by the drive motor
  • (G) material change
  • (H) feed stop the motor speed change
  • J speed reached engine
  • K advance work.
  • (S1) corresponds to a coin-contact contact detection
  • (S2) corresponds to the carbon aluminum detection threshold
  • (S3) corresponds to the titanium carbon detection threshold
  • (S4) to the material-out detection threshold.
  • Figure 9 which shows the operating flow diagram of the automatic drilling of the aluminum structure, carbon, titanium, according to the graphs of Figures 7 and 8.
  • the method finds an advantageous application for milling operations.
  • the principle is independent of the wear of the tool and is also independent of machining thickness variations in the case of milling operations. Whatever the variations in thickness and machining differences, the material changes considered at the level of the derivatives are always identical.
  • the method finds an application for detecting the piece tool contact, as well as for detecting the output of the material.
  • the derivative of the power can also be calculated numerically.

Abstract

The invention relates to a method for detection of a change of material on the operation of machining by a tool, in which the current or power drawn by a drive motor (1) for the tool is measured and thresholds are imposed for detection of each change in measurement of the current and/or power. According to the invention, the thresholds are placed in the current derivative and/or absorbed power.

Description

PROCEDE POUR DETECTER UN CHANGEMENT DE MATIERE LORS D1UN USINAGEMETHOD FOR DETECTION OF MATERIAL CHANGE DURING 1 MACHINING
L'invention se rattache au secteur technique des moyens de mesure du courant et/ou de la puissance absorbée par un moteur d'entraînement d'un outil, notamment d'une machine-outil.The invention relates to the technical sector means for measuring the current and / or the power absorbed by a drive motor of a tool, in particular a machine tool.
Il est connu de réaliser des produits divers en plusieurs matériaux ayant des épaisseurs et des duretés différentes. Par exemple trois matériaux de structures différentes peuvent être superposés en effectuant un empilage, sans pour autant connaître l'épaisseur des différentes couches. Or, il s'avère important, lors d'une opération d'usinage telle qu'un perçage, de pouvoir détecter les changements et transitions de matières afin de pouvoir adapter les conditions d'usinage aux caractéristiques spécifiques du matériau concerné. Par exemple, il est important de pouvoir moduler l'avance et la vitesse de rotation de l'outil, c'est-à-dire d'un moteur d'entraînement.It is known to produce various products in several materials having different thicknesses and hardnesses. For example, three materials of different structures can be superimposed by performing a stack, without knowing the thickness of the different layers. However, it is important, during a machining operation such as drilling, to be able to detect the changes and transitions of materials in order to adapt the machining conditions to the specific characteristics of the material concerned. For example, it is important to be able to modulate the feedrate and the rotational speed of the tool, that is to say of a drive motor.
Bien évidemment, le courant absorbé et/ou la puissance absorbée par le moteur d'entraînement de l'outil, peut dépendre directement de la dureté de l'épaisseur de la couche de matériau considéré : une épaisseur et/ou une dureté importante engendre une puissance absorbée importante.Of course, the absorbed current and / or the power absorbed by the drive motor of the tool, may depend directly on the hardness of the thickness of the layer of material considered: a thickness and / or a high hardness generates a significant power consumption.
On renvoie au graphe de la figure 1 qui représente le travail d'un outil (O), par exemple un foret, pour le perçage des différentes couches de matières constituant le produit, à savoir une couche d'aluminium (Al), une couche de carbone (C), une couche de titane (Ti). Sur ce graphe est représentée, en ordonnée, la puissance absorbée par l'outil, tandis qu'en abscisse est porté le temps. A partir de ce graphe, une solution peut consister à placer des seuils pour détecter chaque changement de niveau de puissance, soit (Pc) le seuil de détection entre la couche d'aluminium et la couche de carbone. Cette solution peut être considérée comme satisfaisante tant que l'outil est neuf, comme il ressort de la courbe en traits pleins de la figure 2 représentant l'usinage avec un outil neuf. Par contre, en cas d'usure de l'outil comme montré en traits mixtes sur la figure 2, le seuil de détection (Pc) n'est pas franchi, de sorte que le changement de matière n'est pas détecté.Reference is made to the graph of FIG. 1 which represents the work of a tool (O), for example a drill bit, for drilling the various layers of material constituting the product, namely an aluminum layer (Al), a layer of carbon (C), a layer of titanium (Ti). On this graph is represented, on the ordinate, the power absorbed by the tool, while on the abscissa is carried the time. From this graph, one solution may consist in placing thresholds for detecting each change in power level, ie (Pc) the detection threshold between the aluminum layer and the carbon layer. This solution can be regarded as satisfactory as long as the tool is new, as can be seen from the solid line curve of FIG. 2 representing machining with a new tool. By cons, in case of wear of the tool as shown in phantom in Figure 2, the detection threshold (Pc) is not crossed, so that the change of material is not detected.
Pour tenter de remédier à ces inconvénients, on peut tenter d'utiliser le seuil relatif, la puissance absorbée étant mesurée à un instant donné lorsque l'outil usine en pleine matière. Le seuil de détection est alors fixé en relatif par rapport à la mesure effectuée en pleine matière à l'instant (T0). On renvoie au graphe de la figure 3. Cette solution présente toutefois certains inconvénients, compte tenu d'un nombre important de contraintes.To try to remedy these drawbacks, we can try to use the relative threshold, the power absorbed being measured at a given time when the tool is machined in full material. The detection threshold is then set in relative relation to the measurement made in full matter at time (T 0 ). However, this solution has certain drawbacks, given a large number of constraints.
Lorsque les épaisseurs à usiner sont très minces, la définition de l'instant de mesure de la puissance en pleine matière nécessaire au calcul du seuil relatif, est très délicate à établir. Il est difficile de déterminer l'instant (T0) étant donné que la stabilité des mesures est très brève. Il en résulte que le seuil de détection est mal défini, de sorte que la détection du changement matière est très aléatoire.When the thicknesses to be machined are very thin, the definition of the instant of measurement of the power in full material necessary for the calculation of the relative threshold, is very delicate to establish. It is difficult to determine the instant (T 0 ) since the stability of the measurements is very short. As a result, the detection threshold is poorly defined, so that the detection of the material change is very random.
On observe également que la représentation graphique des seuils relatifs est très délicate étant donné que les seuils sont différents pour chaque usinage. Il est impossible de représenter toute la durée de vie d'un outil avec le seuil de changement matière. Les seuils de réglage relatifs nécessitent une mise au point très longue. Enfin, on a pu observer que pour des usinages dans les matériaux où l'épaisseur varie dans de grande proportion (de 1 à 5 par exemple), le réglage des seuils relatifs ne fonctionne pas toujours. En effet, la mesure de puissance d'usinage et le calcul du seuil de détection de changement matière, doivent être compatibles avec l'épaisseur la plus faible à usiner. Il en résulte que si la puissance ne reste pas constante, en fonction de la profondeur de l'usinage, le seuil relatif ne peut plus détecter le changement de matière.It is also observed that the graphical representation of the relative thresholds is very delicate since the thresholds are different for each machining. It is impossible to represent the entire lifespan of a tool with the material change threshold. Relative thresholds require very long focus. Finally, it has been observed that for machining in materials where the thickness varies in large proportion (from 1 to 5 for example), the setting of the relative thresholds does not always work. Indeed, the measurement of machining power and the calculation of the material change detection threshold must be compatible with the lowest thickness to be machined. As a result, if the power does not remain constant, depending on the depth of the machining, the relative threshold can no longer detect the change of material.
On renvoie à la figure 4 où la courbe en trait plein représente l'usinage dans une faible épaisseur, tandis que la courbe en traits mixtes représente le même usinage avec une épaisseur, pour le premier matériau, plus importante. A partir d'une certaine épaisseur de perçage, la puissance absorbée augmente régulièrement. La détection avec le seuil relatif ne fonctionne plus.Referring to Figure 4 where the solid line curve represents the machining in a small thickness, while the curve in phantom represents the same machining with a thickness, for the first material, more important. From a certain piercing thickness, the absorbed power increases steadily. Detection with the relative threshold no longer works.
L'invention s'est fixée pour but de remédier à ces inconvénients, d'une manière simple, sûre, efficace et rationnelle.The object of the invention is to remedy these disadvantages in a simple, safe, efficient and rational manner.
Le problème technique que se propose de résoudre l'invention est de pouvoir fixer le seuil de changement de matière, même avec des épaisseurs d'usinage très minces, de s'affranchir de l'état d'usure de l'outil et de pouvoir franchir ce seuil, même lorsque les épaisseurs de matériaux à usiner varient d'une manière importante.The technical problem to be solved by the invention is to be able to set the material change threshold, even with very thin machining thicknesses, to overcome the state of wear of the tool and to be able to to cross this threshold, even when the thicknesses of materials to be machined vary significantly.
Pour résoudre un tel problème, il a été conçu et mis au point un procédé selon lequel on mesure le courant ou la puissance absorbée par un moteur d'entraînement de l'outil et on positionne des seuils de détection à chaque changement de mesure de courant ou de puissance. Selon ce procédé, on positionne les seuils sur la dérivée du courant et/ou de la puissance absorbée.To solve such a problem, it has been conceived and developed a method according to which the current or the power absorbed by a drive motor of the tool is measured and positioning detection thresholds are set to each change in current or power measurement. According to this method, the thresholds are positioned on the derivative of the current and / or the power absorbed.
Pour la mise en œuvre du procédé, le dispositif comprend un module traversé par les trois phases d'alimentation du moteur et intégrant les composants aptes à mesurer le courant actif et/ou la puissance active absorbé(e) par le moteur, ledit module étant relié à un module de différentiation du signal de courant et/ou de puissance, ledit signal étant envoyé dans un module de comparaison de sa dérivée avec un seuil de référence.For the implementation of the method, the device comprises a module traversed by the three motor supply phases and integrating the components able to measure the active current and / or the active power absorbed by the motor, said module being connected to a differentiating module of the current and / or power signal, said signal being sent in a comparison module of its derivative with a reference threshold.
L'invention est exposée ci-après plus en détail à l'aide des figures des dessins annexés dans lesquels : - les figures 1, 2, 3 et 4 sont des graphes montrant notamment les courbes de puissance en fonction du temps dans le cas d'un produit résultant d'un empilage de trois couches de matériaux différents, les différents graphes montrant les limites obtenues selon les solutions de l'état antérieur de la technique ; - la figure 5 montre par un graphe le positionnement des seuils sur la dérivée de la puissance ou du courant absorbé selon l'invention en correspondance avec des courbes d'usinage, illustrées figure 4, dont l'une représente l'usinage dans une faible épaisseur, tandis que l'autre représente le même usinage avec une épaisseur pour le premier matériau plus importante.The invention is described below in more detail with reference to the figures of the accompanying drawings, in which: FIGS. 1, 2, 3 and 4 are graphs showing in particular the power curves as a function of time in the case of a product resulting from a stack of three layers of different materials, the different graphs showing the limits obtained according to the solutions of the prior art; FIG. 5 shows, by a graph, the positioning of the thresholds on the derivative of the power or the current absorbed according to the invention in correspondence with machining curves, illustrated in FIG. 4, one of which represents the machining in a low thickness, while the other represents the same machining with a thickness for the first larger material.
- la figure 6 est un schéma de principe des moyens de mise en œuvre du procédé selon l'invention ; - la figure 7 représente une courbe d'usinage dans le cadre d'un perçage automatique d'une structure aluminium/carbone/titane ;FIG. 6 is a schematic diagram of the means for implementing the method according to the invention; FIG. 7 represents a machining curve in the context of an automatic drilling of an aluminum / carbon / titanium structure;
- la figure 8 montre, en correspondance avec la figure 7, le positionnement des seuils de détection sur la dérivée de la puissance ;FIG. 8 shows, in correspondence with FIG. 7, the positioning of the detection thresholds on the derivative of the power;
- la figure 9 montre un organigramme de fonctionnement d'un perçage automatique correspondant à la courbe de la figure 7.FIG. 9 shows an operating diagram of an automatic drilling corresponding to the curve of FIG. 7.
On a illustré figure 6, un moteur (1) d'entraînement d'un outil de machine outil par exemple. Sur les trois phases d'alimentation (a), (b), (c) du moteur (1), un module (2) intégrant les composants aptes à mesurer le courant actif et/ou la puissance active absorbée par ledit moteur (1). Le capteur est relié à un module de différenciation du signal de courant et/ou de puissance. Les signaux du module (3) sont envoyés dans un module (4) de comparaison du courant ou de la puissance absorbée avec un seuil de référence. Il apparaît donc que, selon l'invention, les seuils de référence sont positionnés sur la dérivée de la puissance ou du courant absorbé (e).FIG. 6 illustrates a motor (1) for driving a machine tool tool for example. In the three supply phases (a), (b), (c) of the motor (1), a module (2) integrating the components able to measure the active current and / or the active power absorbed by said motor (1). ). The sensor is connected to a differentiation module of the current and / or power signal. The signals of the module (3) are sent to a module (4) for comparing the current or the power absorbed with a reference threshold. It therefore appears that, according to the invention, the reference thresholds are positioned on the derivative of the power or the current absorbed (e).
On renvoie au graphe de la figure 5 qui montre le positionnement des seuils sur la dérivée de la puissance absorbée en correspondance avec les courbes d'usinage illustrées figure 4.Reference is made to the graph of FIG. 5 which shows the positioning of the thresholds on the derivative of the power absorbed in correspondence with the machining curves illustrated in FIG. 4.
Les avantages du procédé selon l'invention sont exposés ci-après.The advantages of the process according to the invention are described below.
- Le dispositif peut fonctionner avec des épaisseurs d'usinage très minces, étant donné qu'il n'y a aucune mesure de puissance à réaliser pour fixer le seuil de changement matière.- The device can operate with very thin machining thicknesses, since there is no power measurement to achieve to set the material change threshold.
- Les valeurs des seuils de changement matière sont indépendantes de l'état de l'usure de l'outil, de sorte qu'il est possible d'afficher une vie complète de l'outil à des seuils de détection de changement matière. Les réglages peuvent être réalisés graphiquement, très facilement.- The values of the material change thresholds are independent of the wear state of the tool, so that it is possible to display a complete life of the tool at material change detection thresholds. Settings can be made graphically, very easily.
- Le seuil de changement de matière détecté est franchi y compris lorsque les épaisseurs de matériaux à usiner varient d'une manière importante.- The threshold of change of material detected is crossed even when the thicknesses of materials to be machined vary significantly.
On a illustré aux figures 7 et 8, l'application du procédé et du dispositif selon l'invention au perçage en automatique d'une structure composée d'une couche d'aluminium, d'une couche de carbone et d'une couche de titane.FIGS. 7 and 8 illustrate the application of the method and the device according to the invention to the automatic drilling of a structure composed of an aluminum layer, a carbon layer and a layer of titanium.
La figure 7 montre la courbe de puissance absorbée au niveau de la couche d'aluminium (Al), de la couche de carbone (C) et la couche de titane (Ti). Sur cette courbe, (A) représente le changement de vitesse d'avance, (B) le changement de matière, (M) l'arrêt des avances, (D) le changement de vitesse du moteur d'entraînement, (E) la vitesse atteinte du moteur d'entraînement, (F) l'avance de travail, (G) le changement de matière, (H) l'arrêt des avances, (I) le changement de vitesse du moteur, (J) la vitesse atteinte du moteur, et (K) l'avance travail.Figure 7 shows the power curve absorbed at the aluminum layer (Al), the carbon layer (C) and the titanium layer (Ti). On this curve, (A) represents the forward speed change, (B) the change of material, (M) the stopping of advances, (D) the change of speed of the drive motor, (E) the speed reached by the drive motor, (F) feedrate, (G) material change, (H) feed stop, (I) motor speed change, (J) speed reached engine, and (K) advance work.
Sur la figure 8, sont représentés le positionnement des seuils de détection sur la dérivée de la puissance absorbée correspondant aux différents changements de matière, et aux différentes vitesses d'entraînement du moteur. Ainsi, (Sl) correspond à une détection contact outil pièce, (S2) correspond au seuil de détection aluminium carbone, (S3) au seuil de détection carbone titane, puis (S4) au seuil de détection sortie matière. On renvoie à la figure 9 qui montre l'organigramme de fonctionnement du perçage automatique de la structure aluminium, carbone, titane, selon les graphes des figures 7 et 8.In FIG. 8, the positioning of the detection thresholds on the derivative of the absorbed power corresponding to the different material changes, and to the different drive speeds of the motor are represented. Thus, (S1) corresponds to a coin-contact contact detection, (S2) corresponds to the carbon aluminum detection threshold, (S3) to the titanium carbon detection threshold, and then (S4) to the material-out detection threshold. Referring to Figure 9 which shows the operating flow diagram of the automatic drilling of the aluminum structure, carbon, titanium, according to the graphs of Figures 7 and 8.
Sans pour cela sortir du cadre de l'invention, le procédé trouve une application avantageuse pour les opérations de fraisage. Comme indiqué, le principe est indépendant de l'usure de l'outil et est également indépendant des variations d'épaisseur d'usinage dans le cas d'opérations de fraisage. Quelles que soient les variations d'épaisseur et des différences d'usinage, les changements de matières considérées aux niveaux des dérivés, sont toujours identiques.Without departing from the scope of the invention, the method finds an advantageous application for milling operations. As indicated, the principle is independent of the wear of the tool and is also independent of machining thickness variations in the case of milling operations. Whatever the variations in thickness and machining differences, the material changes considered at the level of the derivatives are always identical.
On observe également que le procédé trouve une application pour détecter le contact outil pièce, ainsi que pour la détection de la sortie de la matière.It is also observed that the method finds an application for detecting the piece tool contact, as well as for detecting the output of the material.
Sans pour cela sortir du cadre de l'invention, la dérivée de la puissance peut aussi être calculée numériquement. Dans ce cas, pour amplifier les variations de matière par rapport au mode d'usinage, il peut être avantageux de calculer la dérivée à l'instant (tn), comme de la différence entre deux échantillons de puissance non consécutifs. Cette pseudo-dérivée trouve avantage lorsque les différences entre les duretés de matière sont faibles.Without departing from the scope of the invention, the derivative of the power can also be calculated numerically. In this case, to amplify the material variations with respect to the machining mode, it may be advantageous to calculate the derivative at time (tn) as the difference between two non-consecutive power samples. This pseudo-derivative is advantageous when the differences between the material hardnesses are small.
Les avantages ressortent bien de la description. The advantages are apparent from the description.

Claims

R E V E N D I C A T I O N S R E V E N D I C A T IO N S
-1- Procédé pour détecter un changement de matière lors d'une opération d'usinage par un outil selon lequel on mesure le courant et/ou la puissance absorbée par un moteur d'entraînement (1) de l'outil et on positionne des seuils pour détecter chaque changement de mesure de courant et/ou de puissance, caractérisé en ce qu'on positionne les seuils sur la dérivée du courant et/ou de la puissance absorbée.-1- Method for detecting a change of material during a machining operation by a tool according to which the current and / or the power absorbed by a drive motor (1) of the tool is measured and positioning of thresholds for detecting each measurement change of current and / or power, characterized in that the thresholds are set on the derivative of the current and / or the power absorbed.
-2- Procédé selon la revendication 1, caractérisé en ce que l'on calcule la dérivée numériquement.-2- Method according to claim 1, characterized in that one calculates the derivative numerically.
-3- Procédé selon la revendication 1, caractérisé en ce que l'on calcule la dérivée selon un intervalle de temps important.-3- Method according to claim 1, characterized in that one calculates the derivative at a significant time interval.
-4- Dispositif pour la mise en œuvre du procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'il comprend un module (2) traversé par les trois phases d'alimentation (a), (b), (c) du moteur (1) et intégrant les composants aptes à mesurer le courant actif et/ou la puissance active absorbé(e) par le moteur, ledit module (2) étant relié à un module de différentiation (3) du signal de courant et/ou de puissance, ledit signal étant envoyé dans un module (4) de comparaison de sa dérivée avec un seuil de référence. -4- Device for implementing the method according to any one of claims 1 to 3, characterized in that it comprises a module (2) traversed by the three supply phases (a), (b), (c) the motor (1) and integrating the components able to measure the active current and / or the active power absorbed by the motor, said module (2) being connected to a differentiation module (3) of the signal of current and / or power, said signal being sent in a module (4) for comparing its derivative with a reference threshold.
PCT/FR2006/050007 2005-01-24 2006-01-09 Method for detecting a change of material on machining WO2006077340A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0550195A FR2881068B1 (en) 2005-01-24 2005-01-24 METHOD FOR DETECTOR MATERIAL CHANGE
FR0550195 2005-01-24

Publications (1)

Publication Number Publication Date
WO2006077340A1 true WO2006077340A1 (en) 2006-07-27

Family

ID=34953494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2006/050007 WO2006077340A1 (en) 2005-01-24 2006-01-09 Method for detecting a change of material on machining

Country Status (2)

Country Link
FR (1) FR2881068B1 (en)
WO (1) WO2006077340A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2128729A2 (en) * 2008-05-30 2009-12-02 The Boeing Company Adaptive thrust sensor drilling
WO2010014305A1 (en) * 2008-08-01 2010-02-04 The Boeing Company Adaptive positive feed drilling system
US20110091295A1 (en) * 2008-04-18 2011-04-21 Atlas Copco Tools Ab Portable power drill with drilling implement rotating and feeding means
CN103447567A (en) * 2013-08-09 2013-12-18 贵州风雷航空军械有限责任公司 Method for processing axial holes of thin-wall cone
CN105643296A (en) * 2016-03-14 2016-06-08 沈阳航空航天大学 Ancillary supporting device for machining thin-wall revolving member and using method for ancillary supporting device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2978932B1 (en) * 2011-08-08 2014-05-09 Snecma MACHINING MACHINE
FR3018618B1 (en) 2014-03-11 2017-09-22 Univ Nantes METHOD AND SYSTEM FOR CONTROLLING ORBITAL SANDING

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4198180A (en) * 1978-05-11 1980-04-15 Mcdonnell Douglas Corporation Thrust controlled drilling apparatus
US4688970A (en) * 1985-08-09 1987-08-25 Dresser Industries, Inc. Power drill and automatic control system therefore
US4786220A (en) * 1984-06-18 1988-11-22 Borg-Warner Corporation Cutting tool wear monitor
DE19622374A1 (en) * 1996-06-04 1997-12-11 Nienkemper Maschinenbau Gmbh & Method for controlling electrically-driven saw
EP1457851A2 (en) * 2003-03-04 2004-09-15 OBER S.p.A. Digital device for command and control of the translation and rotation of a tool

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4198180A (en) * 1978-05-11 1980-04-15 Mcdonnell Douglas Corporation Thrust controlled drilling apparatus
US4786220A (en) * 1984-06-18 1988-11-22 Borg-Warner Corporation Cutting tool wear monitor
US4688970A (en) * 1985-08-09 1987-08-25 Dresser Industries, Inc. Power drill and automatic control system therefore
DE19622374A1 (en) * 1996-06-04 1997-12-11 Nienkemper Maschinenbau Gmbh & Method for controlling electrically-driven saw
EP1457851A2 (en) * 2003-03-04 2004-09-15 OBER S.p.A. Digital device for command and control of the translation and rotation of a tool

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110091295A1 (en) * 2008-04-18 2011-04-21 Atlas Copco Tools Ab Portable power drill with drilling implement rotating and feeding means
US8696265B2 (en) * 2008-04-18 2014-04-15 Atlas Copco Industrial Technique Aktiebolag Portable power drill with drilling implement rotating and feeding means
EP2128729A2 (en) * 2008-05-30 2009-12-02 The Boeing Company Adaptive thrust sensor drilling
EP2128729A3 (en) * 2008-05-30 2010-08-11 The Boeing Company Adaptive thrust sensor drilling
US8277154B2 (en) 2008-05-30 2012-10-02 The Boeing Company Adaptive thrust sensor drilling
WO2010014305A1 (en) * 2008-08-01 2010-02-04 The Boeing Company Adaptive positive feed drilling system
US8317437B2 (en) 2008-08-01 2012-11-27 The Boeing Company Adaptive positive feed drilling system
CN103447567A (en) * 2013-08-09 2013-12-18 贵州风雷航空军械有限责任公司 Method for processing axial holes of thin-wall cone
CN103447567B (en) * 2013-08-09 2016-01-20 贵州风雷航空军械有限责任公司 A kind of method of processing thin-walled cone axial hole
CN105643296A (en) * 2016-03-14 2016-06-08 沈阳航空航天大学 Ancillary supporting device for machining thin-wall revolving member and using method for ancillary supporting device
CN105643296B (en) * 2016-03-14 2018-01-02 沈阳航空航天大学 A kind of thin-walled revolving member processing auxiliary support apparatus and its application method

Also Published As

Publication number Publication date
FR2881068A1 (en) 2006-07-28
FR2881068B1 (en) 2007-03-23

Similar Documents

Publication Publication Date Title
WO2006077340A1 (en) Method for detecting a change of material on machining
EP3318940B1 (en) Drilling method comprising a measurement of drag, and corresponding piercing device
FR2553519A1 (en) APPARATUS FOR MEASURING THE SPEED OF A ROTATING ELEMENT
EP2935759B1 (en) Method for checking a screwing state of a tubular threaded seal
EP3405305A1 (en) Method for determining the state of wear of a drill, and corresponding device
EP1954447B1 (en) Angle-head screwdriving tool incorporating a torque sensor mounted on the output shaft, and corresponding transmission module
EP3074748B1 (en) Method and device for determining the wear of a cutting tool flank
WO2010082006A1 (en) Microsensor produced in microsystem technologies for the measurement and/or detection of fouling
EP1982783A1 (en) Machining machine
WO2006003347A1 (en) Method for monitoring a resistance welding process and device therefor
EP1882547A1 (en) Method for the detection and quantification of drilling anomalies
WO2014207369A1 (en) Bearing nut for measuring the rotational speed of a shaft connected to a turbomachine and associated measuring device
FR3029283A1 (en) CAMSHAFT OR CRANKSHAFT SENSOR FOR MOTOR VEHICLE AND METHOD FOR DIAGNOSING SUCH SENSOR
EP0974839A1 (en) Method for quickly determining the resistivity index of solid samples, such as rock samples
EP1428081B1 (en) Tool wear and/or breakage control device for a machine tool
FR2569365A1 (en) METHOD AND DEVICE FOR CONTROLLING THE ADVANCE OF A TOOL TO A WORKPIECE IN A MACHINE TOOL
CH691797A5 (en) Apparatus for electrical discharge machining.
FR3055235A1 (en) OPTIMIZED OUTPUT TORQUE MEASURING DEVICE AND METHOD FOR DETERMINING THE CORRESPONDING OUTPUT TORQUE
FR2911528A1 (en) SCREWDRIVER TOOL INCLUDING ONE OR MORE TORQUE SENSORS MOUNTED FOR MEASURING DEFORMATIONS IN A PLAN PERPENDICULAR TO A AXIS OF REVOLUTION, AND CORRESPONDING SENSOR SUPPORT
EP0257164B1 (en) Device for relative positioning between a tool and a work piece
EP2151725A1 (en) Method and device for accurately detecting contact between a rotating tool and a part machined by the tool
FR3069636B1 (en) METHOD AND DEVICE FOR DETECTING INVERSION OF A CRANKSHAFT SENSOR
FR2996917A1 (en) Method for determining appearance of defect in composite material panel during drilling operation, involves determining appearance of chipping and/or delamination at emerging end of hole based on acoustic waves detected during drilling
FR3014199A1 (en) METHOD AND DEVICE FOR EVALUATING THE WEAR OF A FACE OF A CUTTING TOOL
WO2011036193A1 (en) Improvements to the detection of deposits comprising at least one ferromagnetic material on or in the vicinity of the outer wall of a tube

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase

Ref document number: 06709395

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6709395

Country of ref document: EP