WO2006075437A1 - Antenna assembly, wireless communication apparatus and radar - Google Patents

Antenna assembly, wireless communication apparatus and radar Download PDF

Info

Publication number
WO2006075437A1
WO2006075437A1 PCT/JP2005/020352 JP2005020352W WO2006075437A1 WO 2006075437 A1 WO2006075437 A1 WO 2006075437A1 JP 2005020352 W JP2005020352 W JP 2005020352W WO 2006075437 A1 WO2006075437 A1 WO 2006075437A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna device
dielectric lens
electromagnetic beam
primary radiator
circumferential direction
Prior art date
Application number
PCT/JP2005/020352
Other languages
French (fr)
Japanese (ja)
Inventor
Nobumasa Kitamori
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Publication of WO2006075437A1 publication Critical patent/WO2006075437A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • H01Q19/062Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens for focusing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/12Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems
    • H01Q3/14Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems for varying the relative position of primary active element and a refracting or diffracting device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9315Monitoring blind spots
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93272Sensor installation details in the back of the vehicles

Definitions

  • the present invention relates to an antenna device, a wireless communication device, and a radar device that can scan an electromagnetic beam such as a microwave or a millimeter wave over a predetermined angle range.
  • Patent Document 1 Conventionally, as this type of antenna device, for example, there are technologies disclosed in Patent Document 1 and Patent Document 2.
  • the antenna device disclosed in Patent Document 1 has a configuration in which a rectangular waveguide is connected to a fixed-side circular waveguide and a primary radiator is connected to a rotating-side circular waveguide.
  • a high-frequency signal fed from the wave tube to the fixed circular waveguide can be emitted from the primary radiator.
  • the electromagnetic beam emitted from the primary radiator can be scanned.
  • the antenna device disclosed in Patent Document 2 has six horn antennas opened radially over a 180 ° angle range in a casing, and these horn antennas are connected by an antenna switching switch. With this configuration, the electromagnetic beam can be scanned in a desired direction by switching the horn antenna at any time using the antenna switching switch.
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-112660
  • Patent Document 2 Japanese Patent Laid-Open No. 2004-158911
  • the electromagnetic beam B transmitted from the antenna device 100 attached to the automobile 200 spreads in the vertical direction with respect to the road 210, the road surface reflection or multiple reflection of the electromagnetic beam B occurs. causes false detection. Therefore, as shown in Fig. 20 (b), the electromagnetic beam B is narrowed by narrowing it in the vertical direction with respect to the road 210 to avoid road surface reflections and the like. There is a need to. However, in order to achieve such a narrow beam structure in an antenna device including only a primary radiator such as a horn antenna, the antenna device itself must be made large, which increases the cost. It will be connected.
  • Patent Document 1 there is a method of narrowing the electromagnetic beam B by arranging a secondary radiator made of a convex dielectric lens in front of the primary radiator. Conceivable. This technology makes it possible to narrow the beam of the electromagnetic beam B in the direction perpendicular to the lead while avoiding an increase in the size of the antenna device 100.
  • the pattern of the electromagnetic beam B of the secondary radiator force only changes depending on the scanning direction. If the position of the radiator is shifted from the center of the dielectric lens, there is a problem that the antenna gain is greatly deteriorated.
  • the present invention has been made to solve the above-described problem, and can narrow a beam in the vertical direction without changing the antenna gain at the time of horizontal wide-angle scanning.
  • An object is to provide a communication device and a radar device.
  • an antenna device includes a primary radiator that radiates an electromagnetic beam, and secondary radiation that is disposed on the electromagnetic beam radiation side of the primary radiator.
  • the secondary radiator is a dielectric lens that is curved in a circular arc shape at a predetermined central angle and whose cross section perpendicular to the circumferential direction is the same shape, and the primary radiator is The structure is located on the center side of the dielectric lens.
  • the electromagnetic beam is transmitted via the secondary radiator.
  • the secondary radiator is a dielectric lens whose cross section perpendicular to the circumferential direction is the same shape, the pattern of the electromagnetic beam emitted from the secondary radiator is radiated at the desired angle.
  • the antenna gain and the like are the same in all scanning directions.
  • the invention of claim 2 is configured such that the center angle of the dielectric lens is an angle within a range of 40 ° to 360 ° in the antenna device according to claim 1.
  • the invention of claim 3 is the antenna device according to claim 1 or claim 2, wherein the primary radiator is a focal point of a lens surface formed in a cross section perpendicular to the circumferential direction of the dielectric lens. Position Is arranged near the focal position to narrow the electromagnetic beam emitted from this dielectric lens in the vertical direction.
  • the electromagnetic beam of the primary radiator force is narrowed in the vertical direction by the dielectric lens, so that the influence of road surface reflection due to diffusion of the electromagnetic beam can be reduced.
  • the invention of claim 4 is the antenna device according to claim 1 or claim 2, wherein the radiation direction of the electromagnetic beam radiated by the primary radiator is a cross section perpendicular to the circumferential direction of the dielectric lens.
  • the lens surface is set relatively upward with respect to the lens surface.
  • the invention of claim 5 is the antenna device according to any one of claims 1 to 4, wherein the primary radiator is a circle of the dielectric lens around the central axis of the dielectric lens. By rotating it in the circumferential direction, it was configured to have a rotation drive mechanism that enabled the primary radiator to scan the dielectric lens in the circumferential direction.
  • rotating the primary radiator enables continuous beam scanning, and the beam pattern and antenna gain are the same in all scanning directions.
  • the invention of claim 6 is the antenna device according to any one of claims 1 to 4, wherein the primary radiators are arranged in a radial pattern so as to be arranged along a circumferential direction of the dielectric lens.
  • the configuration is equipped with electromagnetic beam cutting ⁇ that enables scanning in the circumferential direction.
  • the invention of claim 7 is the antenna device according to any one of claims 1 to 6, wherein the dielectric lens is engraved on the inner surface or the outer surface along the circumferential direction.
  • the configuration is a zoeng lens with multiple engravings.
  • a wireless communication device is the antenna device according to any one of claims 1 and 7 and a transmitter that outputs a transmission signal to the antenna device, A receiving unit for receiving the received signal of the antenna device is used.
  • the transmission signal is output to the antenna device by the transmission unit, and the reception signal of the antenna device force is received by the reception unit.
  • Antenna characteristics such as antenna gain and beam pattern of the radiated electromagnetic beam do not change with the radiation angle.
  • a radar apparatus is the antenna apparatus according to claim 1 or 7, and a transmitter that outputs a transmission signal to the antenna apparatus, and the antenna A configuration is provided that includes a reception unit that receives a reception signal of the device force, and a detection processing unit that detects an electromagnetic beam reflecting object based on the reception signal received by the reception unit.
  • the transmission signal is output to the antenna device by the transmission unit. Also, after receiving the received signal of the antenna device force by the receiving unit, the electromagnetic beam reflecting object is detected by the detection processing unit based on the received signal. At this time, antenna characteristics such as antenna gain and beam pattern of the electromagnetic beam radiated from the antenna device force do not change according to the radiation angle, so that the detection distance, angle accuracy and resolution for the object do not change.
  • the invention of claim 10 is the radar apparatus according to claim 9, wherein a primary radiator is arranged in a radome integrated with a dielectric lens to constitute an antenna apparatus, and a transmitting unit And a housing housing the receiving unit and the detection processing unit are attached to the outside of the antenna device.
  • the secondary radiator is a dielectric lens whose cross section perpendicular to the circumferential direction has the same shape, and radiates from the secondary radiator. Since the pattern of the electromagnetic beam and the antenna gain, etc., are the same in all scanning directions, the antenna characteristics of the electromagnetic beam radiated from the secondary radiator are also affected by the difference in the radiation direction of the electromagnetic radiation emitted from the primary radiator There is an excellent effect that adverse effects due to changes in beam pattern, antenna gain, etc. can be prevented.
  • the electromagnetic beam can be narrowed in the vertical direction to reduce the influence of road surface reflection due to electromagnetic beam diffusion, it is small and has high performance. There is an effect that an antenna device can be provided.
  • the dielectric lens is a zoning lens, it is possible to provide an antenna device that can be thinned and reduced in cost and can be easily formed.
  • the antenna characteristics such as the antenna gain and beam pattern of the electromagnetic beam radiated from the antenna device do not change depending on the radiation angle, so that the detection distance is an angle. As a result, it is possible to provide a high-performance wireless communication apparatus with a low false detection rate that does not change due to the above.
  • the primary radiator is arranged in the radome in which the dielectric lens is integrally formed to constitute the antenna device, and the transmission unit, the reception unit, and the detection processing unit are arranged. Since the housed housing is attached to the outside of the antenna device, it is possible to provide a radar device that can be manufactured at low cost and can be easily assembled. Furthermore, in the invention of the radar device including the antenna device according to claim 5, the radar device for high-resolution and narrow-angle detection in long-distance detection, or conversely low in short-range detection, by changing only the radome. If radar devices with different applications such as a radar device with resolution and wide-angle detection can be configured, there is an effect.
  • FIG. 1 is a perspective view showing an antenna apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a plan view of the antenna device.
  • FIG. 3 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 4 is a schematic plan view showing wide-angle scanning.
  • FIG. 5 is a schematic sectional view showing narrowing of the beam.
  • FIG. 6 is a partially enlarged cross-sectional view for explaining each set value.
  • FIG. 7 is a diagram showing the relationship between the angle of an electromagnetic beam emitted from a dielectric lens cover and the relative antenna gain.
  • FIG. 8 is a schematic sectional view showing the internal structure of a radar apparatus according to a second embodiment of the invention.
  • FIG. 9 is an external view of a radar device.
  • FIG. 10 is a block diagram of a radar apparatus.
  • FIG. 11 is a plan view showing a mounting state of the radar apparatus.
  • FIG. 12 is a plan view showing a wide-angle scanning state.
  • FIG. 13 is a rear view showing a narrow beam state.
  • FIG. 14 is an external view of a radar apparatus according to a third embodiment of the present invention.
  • FIG. 15 is a perspective view of the antenna device portion excluding the upper surface portion of the radome in order to show the shape of the dielectric lens.
  • FIG. 16 is a schematic sectional view showing the internal structure of the radar apparatus according to this embodiment.
  • FIG. 17 is a schematic perspective view of an antenna apparatus according to a fourth embodiment of the present invention.
  • FIG. 18 is a perspective view showing a dielectric lens that is a main part of an antenna apparatus according to a fifth embodiment of the present invention.
  • FIG. 19 is a schematic sectional view showing a modification.
  • FIG. 20 is a schematic diagram for explaining the necessity of narrowing the electromagnetic beam.
  • FIG. 1 is a perspective view showing an antenna apparatus according to a first embodiment of the present invention
  • FIG. 2 is a plan view of the antenna apparatus
  • FIG. 3 is an arrow A—A in FIG. It is sectional drawing.
  • the antenna device 1 includes a dielectric lens 2 as a secondary radiator and a primary radiator 3.
  • the dielectric lens 2 is disposed on the electromagnetic beam radiation side of the primary radiator 3, and the shape thereof is an arc shape in a plan view as shown in FIG. Curved to surround ing.
  • the central angle ⁇ 2 of the dielectric lens 2 is set to 180 °.
  • the cross section perpendicular to the circumferential direction of the dielectric lens 2 is all set to the same shape. That is, as shown in FIG. 2, an arbitrary radial line length extending in the radial direction from the central axis M of the dielectric lens 2 and the circumferential direction of the dielectric lens 2 indicated by an arrow C are orthogonal to each other.
  • the surface S in which the radial line R cuts the dielectric lens 2 in the vertical direction is a cross section that is straight in the circumferential direction of the dielectric lens 2, and this cross section S is the dielectric material.
  • the cross section S of the dielectric lens 2 is formed into a convex lens shape that curves outward.
  • the aperture distribution and size are set as needed according to the expected antenna characteristics.
  • the primary radiator 3 is a horn antenna that radiates an electromagnetic beam toward the dielectric lens 2, and is located on the central axis M side of the dielectric lens 2, and is connected by a motor 30 as a rotational drive mechanism. And is rotatably supported. Specifically, as shown in FIG. 2, the motor 30 can rotate the primary radiator 3 in the circumferential direction of the dielectric lens 2 around the central axis M of the dielectric lens 2. It has become. Thus, the primary radiator 3 can scan in the circumferential direction of the dielectric lens 2 while emitting an electromagnetic beam. In this embodiment, the scanning angle 03 is set to 150 °.
  • the primary radiator 3 is disposed near the focal position f of the convex lens surface formed by the section S perpendicular to the circumferential direction of the dielectric lens 2 or near the focal position f.
  • the primary radiator 3 rotates in the circumferential direction while maintaining a distance D between the opening 3a and the inner surface S1 of the convex lens-shaped cross section S at a substantially focal length f.
  • FIG. 4 is a schematic plan view showing wide-angle scanning
  • FIG. 5 is a schematic cross-sectional view showing narrowing of the beam.
  • the primary radiator 3 is rotated by the motor 30 in the circumferential direction of the dielectric lens 2 and the electromagnetic lens B is radiated from the primary radiator 3 while rotating the circumference of the dielectric lens 2.
  • Wide-angle scanning can be performed at a scanning angle of 150 ° in the direction.
  • the cross section perpendicular to the circumferential direction of the dielectric lens 2 is all set to the same shape!
  • the antenna gain of the electromagnetic beam passing through the central part of the lens 2 and the antenna gain of the electromagnetic beam passing through a part different from the central part of the dielectric lens 2 are the same value.
  • the pattern of the electromagnetic beam B1 radiated from the center of the dielectric lens 2 as shown by the solid line and the radiation from the dielectric lens 2 at a different angle from the electromagnetic beam B1 as shown by the two-dot chain line and the broken line The pattern of electromagnetic beams B2 and B3 is the same. That is, the pattern of the electromagnetic beam B radiated from the dielectric lens 2 and the antenna gain are the same in all scanning directions of the primary radiator 3.
  • the primary radiator 3 is disposed at the focal position f of the dielectric lens 2 or in the vicinity of the focal position f, the primary radiator 3 is radiated from the outer surface S2 of the dielectric lens 2 as shown in FIG.
  • the electromagnetic beam B is typically a nearly parallel beam and is narrowed.
  • wide-angle scanning of the same beam pattern can be performed in the circumferential direction of the dielectric lens 2, and the electromagnetic beam can be projected in the vertical direction.
  • the beam can be narrowed.
  • the inventor performed a simulation to confirm the points to be applied.
  • FIG. 6 is a partially enlarged cross-sectional view for explaining each set value
  • FIG. 7 is a diagram showing the relationship between the angle of the electromagnetic beam B radiated from the dielectric lens 2 and the relative antenna gain.
  • a polycarbonate with a dielectric constant of 2.78 was used as the dielectric lens 2
  • the thickness T of the dielectric lens 2 was set to 12 mm
  • the vertical height H was set to 40 mm.
  • primary radiator 3 its width w is set to 4.5 mm
  • height h is set to 9 mm
  • depth m is set to 7 mm
  • distance D to dielectric lens 2 is set to 4 mm.
  • Fig. 7 In the simulation under the powerful setting, the results shown in Fig. 7 were obtained.
  • the curve bl shown by the solid line in Fig. 7 shows the relative antenna gain (dB) in the vertical direction of the electromagnetic beam
  • the curve b2 shown by the broken line shows the relative antenna gain in the scanning direction of the electromagnetic beam.
  • the antenna gain decreases greatly when the antenna gain deviates most from the angle in the radial direction (Odeg). That is, it can be seen that the electromagnetic beam B radiated from the primary radiator 3 is narrowed in the vertical direction by the dielectric lens 2.
  • the antenna is the most at the angle of radial direction (Odeg) The gain is high, but even if this angular force shifts, the antenna gain does not decrease greatly.
  • the electromagnetic beam B radiated from the primary radiator 3 is not narrowed in the circumferential direction by the dielectric lens 2 and the beam width remains relatively wide.
  • FIG. 8 is a schematic sectional view showing the internal structure of the radar apparatus according to the second embodiment of the present invention
  • FIG. 9 is an external view of the radar apparatus
  • FIG. 10 is a block diagram of the radar apparatus.
  • the radar device 4 of this embodiment includes the antenna device 1 of the first embodiment, a transmission unit 5, a reception unit 6, and a detection processing unit 7.
  • the antenna device 1 is assembled in the radome 40 of the radar device 4. That is, the dielectric lens 2 is provided with the upper and lower surface portions 40a and 40b of the dielectric, and the radome 40 in which the dielectric lens 2 is integrated is formed. The primary radiator 3 and the motor 30 were mounted in the radome 40.
  • the transmission unit 5, the reception unit 6, and the detection processing unit 7 are housed in a housing 42 that is attached to the outside of the radome 40 via a partition plate 41.
  • the transmission unit 5 is a part that outputs a transmission signal to the antenna device 1
  • the reception unit 6 is a part that receives a reception signal from the antenna device 1
  • the detection processing unit 7 is a reception signal received by the reception unit 6. This is the part that detects the electromagnetic beam reflecting object.
  • a voltage control oscillator 51 and an amplifier 52 constitute a transmission unit 5, and the amplifier 52 of this transmission unit 5 is connected to the antenna device 1 via a circulator 50. It has been continued.
  • the receiver 61 is configured by the mixer 61 and the directional coupler 62 for down-converting the signal received from the antenna device 1 to the intermediate frequency signal IF, and the input side of the mixer 61 of the receiver 6 has the circulator 50. And the output side is connected to the detection processing unit 7.
  • the oscillation signal output from the voltage controlled oscillator 51 is amplified by the amplifier 52 and transmitted from the antenna device 1 as a transmission signal via the directional coupler 62 and the circulator 50.
  • the received signal received from the antenna device 1 is input to the mixer 61 through the circuit 50 and a local signal from the directional coupler 62. Is down-converted using, and output to the detection processing unit 7 as an intermediate frequency signal IF.
  • FIG. 11 is a plan view showing a mounting state of the radar apparatus 4
  • FIG. 12 is a plan view showing a wide-angle scanning state
  • FIG. 13 is a rear view showing a narrow beam state.
  • the radar apparatus 4 is mounted on both sides of the rear part 201 of the automobile 200 so that the blind spot range of the driver can be detected.
  • the output terminal of the detection processing unit 7 of the radar device 4 is connected to a monitor (not shown) in the automobile 200 and the radar device 4 is operated, a transmission signal is output to the antenna device 1 by the transmission unit 5 and the electromagnetic beam B is emitted from the antenna device 1.
  • the primary radiator 3 of the antenna device 1 rotates within a range of 150 °
  • the electromagnetic beam B is scanned within a range of 150 ° on both sides of the automobile 200 as shown in FIG.
  • the electromagnetic beam B is reflected by the vehicle 20 (and received by the dielectric lens 2 and the primary radiator 3 of the antenna device 1.
  • the received signal is input to the detection processing unit 7 through the receiving unit 6, and the detection processing unit 7 detects the rear vehicle 200 'based on this received signal! It will be projected on.
  • the antenna gain, beam pattern, and the like of the electromagnetic beam B radiated from the antenna device 1 do not change depending on the scanning angle, so the detection distance, angular accuracy, and The resolution does not change.
  • the primary radiator 3 is supported by the motor 30, it can be changed to the radome 40 of the dielectric lens 2 with different characteristics, so that the radar with high resolution and narrow angle detection can be used for long-distance detection. It is possible to configure radar devices with different applications, such as low resolution and wide angle radar devices for short-range detection.
  • FIG. 14 is an external view of a radar apparatus according to a third embodiment of the present invention
  • FIG. 15 is a perspective view of the antenna apparatus portion shown excluding the upper surface of the radome to show the shape of the dielectric lens
  • FIG. 16 is a schematic sectional view showing the internal structure of the radar apparatus of this embodiment.
  • the radar apparatus ⁇ of this embodiment has a circular radome 4 (and a radome 40 ′). And a casing 42 'mounted underneath, and has a structure capable of omnidirectional detection.
  • the dielectric lens 2 integrated with the radome 4 has a ring shape with a central angle of 360 °, and a primary radiator on the central axis M thereof.
  • the ring-shaped dielectric lens 2 is provided with an upper surface portion 40a 'and the radome 4 (is used as the primary radiator 3 by the motor 30. Is rotated 360 ° on the central axis M of the dielectric lens 2. And it is attached to the lower side of the casing 42 'force radome 4 (in a state of being partitioned by the partition plate 41 /.
  • a transmitter 5, a receiver 6, and a detection processing unit 7 are accommodated as in the radar device 4 of the second embodiment.
  • the primary radiator 3 is rotated 360 ° by the motor 30 so that the antenna gain and beam pattern of the electromagnetic beam are the same in all directions, and the electromagnetic beam is narrow in the vertical direction. Turn into a beam.
  • FIG. 17 is a schematic perspective view of an antenna apparatus according to a fourth embodiment of the present invention.
  • the antenna device of this embodiment has a structure in which a force primary radiator having a dielectric lens 2 having a central angle of 180 ° and a primary radiator is fixed and does not rotate. ing.
  • the primary radiator was composed of five radiators 31 to 35 arranged in a radial pattern so as to be arranged along the circumferential direction of the dielectric lens 2.
  • a switch 36 as an electromagnetic beam switching device for transmitting and receiving a transmission signal and a reception signal to any one of the five radiators 31 to 35 is provided in the subsequent stage of the five radiators 31 to 35.
  • the electromagnetic beam B is sequentially emitted from the five radiators 31-35. That is, the electromagnetic beam B radiated from the antenna device 1 can be scanned in the circumferential direction of the dielectric lens 2 by the switching operation of the switch 36.
  • FIG. 18 is a perspective view showing a dielectric lens, which is a main part of the antenna device according to the fifth embodiment of the present invention.
  • This embodiment differs from the first embodiment in that a dielectric lens is a zoung lens.
  • a plurality of, for example, four engravings 21 to 24 were engraved on the outer surface S2 of the dielectric lens 2.
  • the four engravings 21 to 24 are engraved in parallel along the circumferential direction of the dielectric lens 2 so that the antenna gain and beam pattern of the electromagnetic beam during wide-angle scanning of the primary radiator 3 can be reduced. No change occurs.
  • the dielectric lens 2 as a zoom lens, the dielectric lens 2 can be reduced in thickness and cost, and the antenna device can be further reduced in size.
  • the engravings 21 to 24 may be provided on the force inner surface S 1 provided on the outer surface S 2 of the dielectric lens 2.
  • the shape of the zoung is selected so as to satisfy desired antenna characteristics.
  • the present invention is not limited to this, and the antenna to which the dielectric lens having an arbitrary central angle is applied. Devices are included within the scope of this invention.
  • the primary radiator 3, 3 ′ using a horn antenna as the primary radiator has been described as an example.
  • the primary radiator may be configured by a planar patch antenna instead of the horn antenna. good.
  • the convex dielectric lens 2 is used as a shape capable of narrowing the beam.
  • the present invention is not limited to this, and a concave dielectric lens or an aspherical lens type dielectric lens can be used. May be applied.
  • the primary radiator 3 is arranged at or near the focal position f of the dielectric lens 2 to narrow the electromagnetic beam B in the vertical direction. This is for avoiding road surface reflection by the electromagnetic beam B spreading in the vertical direction.
  • the primary radiator 3 is disposed at a position away from the focal position f of the dielectric lens 2, it is possible to avoid road surface reflection and the like. That is, as shown in FIG. 19 (a), by setting the radiation direction of the electromagnetic beam B of the primary radiator 3 upward with respect to the convex cross section S of the dielectric lens 2, the vertical direction As a result, the electromagnetic beam B spreading in the whole direction is directed upward. As a result, the incidence of the electromagnetic beam B on the road surface can be avoided. Furthermore, as shown in FIG.
  • the radar devices 4 and 4 ′ are listed as examples of the device provided with the antenna device 1.
  • the antenna device 1 that includes only the radar device and the transmission that outputs a transmission signal to the antenna device 1 are used.
  • a wireless communication device including a receiver and a receiving unit that receives a reception signal from the antenna device 1 is also a technique within the scope of the present invention.

Abstract

An antenna assembly capable of narrowing the beam in the vertical direction without varying the antenna gain at the time of wide angle scanning in the horizontal direction, a wireless communication apparatus and a radar. The antenna assembly (1) comprises a dielectric lens (2), and a primary emitter (3). The dielectric lens (2) is arcuate. The primary emitter (3) can perform scanning in the circumferential direction of the dielectric lens (2) while emitting an electromagnetic beam, and the primary emitter (3) is arranged at the focal point of the dielectric lens (2) or in the vicinity thereof. Since all cross-sections of the dielectric lens (2) perpendicular to the circumferential direction are set to have an identical profile, pattern of the electromagnetic beam emitted from the dielectric lens (2), antenna gain, and the like, become identical in all scanning directions of the primary emitter (3). Since the primary emitter (3) is arranged at the focal point of the dielectric lens (2) or in the vicinity thereof, the electromagnetic beam emitted from the dielectric lens (2) is made narrow.

Description

明 細 書  Specification
アンテナ装置,無線通信装置及びレーダ装置  ANTENNA DEVICE, RADIO COMMUNICATION DEVICE, AND RADAR DEVICE
技術分野  Technical field
[0001] この発明は、マイクロ波やミリ波等の電磁ビームを所定角度範囲に亘つて走査可能 なアンテナ装置,無線通信装置及びレーダ装置に関するものである。  The present invention relates to an antenna device, a wireless communication device, and a radar device that can scan an electromagnetic beam such as a microwave or a millimeter wave over a predetermined angle range.
背景技術  Background art
[0002] 従来、この種のアンテナ装置としては、例えば、特許文献 1及び特許文献 2に開示 された技術がある。  Conventionally, as this type of antenna device, for example, there are technologies disclosed in Patent Document 1 and Patent Document 2.
特許文献 1に開示されたアンテナ装置は、矩形導波管を固定側円形導波管に接続 する共に 1次放射器を回転側円形導波管に接続した構成をとり、かかる構成により、 矩形導波管から固定側円形導波管に給電した高周波信号を 1次放射器から放射さ せることができるようになつている。また、 1次放射器を回転側円形導波管と一緒に回 転させること〖こよって、 1次放射器カゝら放射される電磁ビームを走査することができる ようにもなつている。  The antenna device disclosed in Patent Document 1 has a configuration in which a rectangular waveguide is connected to a fixed-side circular waveguide and a primary radiator is connected to a rotating-side circular waveguide. A high-frequency signal fed from the wave tube to the fixed circular waveguide can be emitted from the primary radiator. In addition, by rotating the primary radiator together with the rotating circular waveguide, the electromagnetic beam emitted from the primary radiator can be scanned.
[0003] 一方、特許文献 2に開示されたアンテナ装置は、ケーシングに 180° の角度範囲 に亘つて開口した 6本のホーンアンテナを放射状に配置すると共に、これらホーンァ ンテナをアンテナ切換スィッチで接続した構成をとり、かかる構成により、アンテナ切 換スィッチを用いてホーンアンテナを随時切り換えることで、電磁ビームを所望方向 へ走査することができるようになって 、る。  [0003] On the other hand, the antenna device disclosed in Patent Document 2 has six horn antennas opened radially over a 180 ° angle range in a casing, and these horn antennas are connected by an antenna switching switch. With this configuration, the electromagnetic beam can be scanned in a desired direction by switching the horn antenna at any time using the antenna switching switch.
[0004] 特許文献 1:特開平 2004 - 112660号公報  [0004] Patent Document 1: Japanese Patent Laid-Open No. 2004-112660
特許文献 2:特開平 2004 - 158911号公報  Patent Document 2: Japanese Patent Laid-Open No. 2004-158911
発明の開示  Disclosure of the invention
[0005] しかし、上記した従来の技術では、次のような問題がある。  [0005] However, the above-described conventional technology has the following problems.
図 20の(a)に示すように、自動車 200に取り付けたアンテナ装置 100から送信され た電磁ビーム Bが道路 210に対して鉛直方向に広がると、電磁ビーム Bの路面反射 や多重反射が生じ、誤探知の原因となる。したがって、図 20の(b)に示すように、電 磁ビーム Bを道路 210に対して鉛直方向に絞って狭ビーム化し、路面反射等を回避 する必要がある。しかし、ホーンアンテナ等の 1次放射器だけのアンテナ装置におい て、このような狭ビーム化が可能な構造にするには、アンテナ装置自体を大型にしな ければならず、その分、コストアップに繋がってしまう。 As shown in FIG. 20 (a), when the electromagnetic beam B transmitted from the antenna device 100 attached to the automobile 200 spreads in the vertical direction with respect to the road 210, the road surface reflection or multiple reflection of the electromagnetic beam B occurs. Causes false detection. Therefore, as shown in Fig. 20 (b), the electromagnetic beam B is narrowed by narrowing it in the vertical direction with respect to the road 210 to avoid road surface reflections and the like. There is a need to. However, in order to achieve such a narrow beam structure in an antenna device including only a primary radiator such as a horn antenna, the antenna device itself must be made large, which increases the cost. It will be connected.
これに対して、特許文献 1に開示されているように、凸状の誘電体レンズでなる 2次 放射器を 1次放射器の前に配置して、電磁ビーム Bを狭ビーム化する方法が考えら れる。この技術により、アンテナ装置 100の大型化を回避しつつ、電磁ビーム Bの鉛 直方向への狭ビーム化が可能となる。  On the other hand, as disclosed in Patent Document 1, there is a method of narrowing the electromagnetic beam B by arranging a secondary radiator made of a convex dielectric lens in front of the primary radiator. Conceivable. This technology makes it possible to narrow the beam of the electromagnetic beam B in the direction perpendicular to the lead while avoiding an increase in the size of the antenna device 100.
し力しながら、かかる技術では、アンテナ装置 100を道路 210に対して水平方向に 走査すると、 2次放射器力 の電磁ビーム Bのパターンが走査方向に応じて変化して しまうだけでなぐ 1次放射器の位置が誘電体レンズの中心からずれると、アンテナ利 得が大きく劣化してしまうという問題がある。  However, in such a technique, when the antenna device 100 is scanned in the horizontal direction with respect to the road 210, the pattern of the electromagnetic beam B of the secondary radiator force only changes depending on the scanning direction. If the position of the radiator is shifted from the center of the dielectric lens, there is a problem that the antenna gain is greatly deteriorated.
[0006] この発明は、上述した課題を解決するためになされたもので、水平方向の広角走査 時におけるアンテナ利得を変化させずに、鉛直方向の狭ビーム化を図ることができる アンテナ装置,無線通信装置及びレーダ装置を提供することを目的とする。  [0006] The present invention has been made to solve the above-described problem, and can narrow a beam in the vertical direction without changing the antenna gain at the time of horizontal wide-angle scanning. An object is to provide a communication device and a radar device.
[0007] 上記課題を解決するために、請求項 1の発明に係るアンテナ装置は、電磁ビームを 放射する 1次放射器と、この 1次放射器の電磁ビーム放射側に配された 2次放射器と を備えるアンテナ装置であって、 2次放射器は、所定中心角で円弧状に湾曲し且つ その円周方向に鉛直な断面が全て同一形状の誘電体レンズであり、 1次放射器は、 誘電体レンズの中心側に位置する構成とした。  In order to solve the above-described problem, an antenna device according to the invention of claim 1 includes a primary radiator that radiates an electromagnetic beam, and secondary radiation that is disposed on the electromagnetic beam radiation side of the primary radiator. The secondary radiator is a dielectric lens that is curved in a circular arc shape at a predetermined central angle and whose cross section perpendicular to the circumferential direction is the same shape, and the primary radiator is The structure is located on the center side of the dielectric lens.
力かる構成により、誘電体レンズの中心側に位置する 1次放射器を用いて、電磁ビ ームを誘電体レンズの円周方向に走査すると、電磁ビームは、 2次放射器を介して所 望の角度に放射されるが、 2次放射器が、その円周方向に鉛直な断面が全て同一形 状の誘電体レンズであるので、 2次放射器から放射される電磁ビームのパターンゃァ ンテナ利得等が全走査方向で同一となる。  When the electromagnetic beam is scanned in the circumferential direction of the dielectric lens using the primary radiator located on the center side of the dielectric lens, the electromagnetic beam is transmitted via the secondary radiator. Although the secondary radiator is a dielectric lens whose cross section perpendicular to the circumferential direction is the same shape, the pattern of the electromagnetic beam emitted from the secondary radiator is radiated at the desired angle. The antenna gain and the like are the same in all scanning directions.
[0008] 請求項 2の発明は、請求項 1に記載のアンテナ装置において、誘電体レンズの中 心角は、 40° 〜360° の範囲内の角度である構成とした。  [0008] The invention of claim 2 is configured such that the center angle of the dielectric lens is an angle within a range of 40 ° to 360 ° in the antenna device according to claim 1.
[0009] 請求項 3の発明は、請求項 1又は請求項 2に記載のアンテナ装置において、 1次放 射器を、誘電体レンズの円周方向に鉛直な断面で形成されるレンズ面の焦点位置又 は焦点位置近傍に配して、この誘電体レンズから放射される電磁ビームを鉛直方向 に狭ビーム化する構成とした。 [0009] The invention of claim 3 is the antenna device according to claim 1 or claim 2, wherein the primary radiator is a focal point of a lens surface formed in a cross section perpendicular to the circumferential direction of the dielectric lens. Position Is arranged near the focal position to narrow the electromagnetic beam emitted from this dielectric lens in the vertical direction.
力かる構成により、 1次放射器力 の電磁ビームが誘電体レンズによって鉛直方向 に狭ビーム化されるので、電磁ビームの拡散による路面反射の影響を低減することが できる。  Due to the powerful structure, the electromagnetic beam of the primary radiator force is narrowed in the vertical direction by the dielectric lens, so that the influence of road surface reflection due to diffusion of the electromagnetic beam can be reduced.
[0010] 請求項 4の発明は、請求項 1又は請求項 2に記載のアンテナ装置において、 1次放 射器が放射する電磁ビームの放射方向を、誘電体レンズの円周方向に鉛直な断面 で形成されるレンズ面に対して相対的に上向きに設定した構成とする。  [0010] The invention of claim 4 is the antenna device according to claim 1 or claim 2, wherein the radiation direction of the electromagnetic beam radiated by the primary radiator is a cross section perpendicular to the circumferential direction of the dielectric lens. The lens surface is set relatively upward with respect to the lens surface.
[0011] 請求項 5の発明は、請求項 1ないし請求項 4のいずれかに記載のアンテナ装置に おいて、 1次放射器を上記誘電体レンズの中心軸を中心にして誘電体レンズの円周 方向に回転させることにより、 1次放射器による誘電体レンズの円周方向への走査を 可能にした回転駆動機構を備える構成とした。  [0011] The invention of claim 5 is the antenna device according to any one of claims 1 to 4, wherein the primary radiator is a circle of the dielectric lens around the central axis of the dielectric lens. By rotating it in the circumferential direction, it was configured to have a rotation drive mechanism that enabled the primary radiator to scan the dielectric lens in the circumferential direction.
力かる構成により、 1次放射器を回転させることで、連続的なビーム走査が可能にな り、かつ、ビームパターン及びアンテナ利得が全走査方向で同一となる。  With a powerful configuration, rotating the primary radiator enables continuous beam scanning, and the beam pattern and antenna gain are the same in all scanning directions.
[0012] 請求項 6の発明は、請求項 1ないし請求項 4のいずれかに記載のアンテナ装置に おいて、 1次放射器は、誘電体レンズの円周方向に沿って並ぶように放射状に配さ れた複数の放射器と、これら複数の放射器のうちのいずれか 1つの放射器から電磁 ビームを放射させて電磁ビームの放射方向を切り換えることにより、当該 1次放射器 による誘電体レンズの円周方向への走査を可能にした電磁ビーム切^^とを備える 構成とした。  [0012] The invention of claim 6 is the antenna device according to any one of claims 1 to 4, wherein the primary radiators are arranged in a radial pattern so as to be arranged along a circumferential direction of the dielectric lens. A plurality of radiators arranged and a dielectric lens formed by the primary radiator by radiating an electromagnetic beam from any one of the plurality of radiators and switching the radiation direction of the electromagnetic beam. The configuration is equipped with electromagnetic beam cutting ^^ that enables scanning in the circumferential direction.
[0013] 請求項 7の発明は、請求項 1ないし請求項 6のいずれかに記載のアンテナ装置に おいて、誘電体レンズは、その内面又は外面に、円周方向に沿って刻設された複数 の彫り込みを有するゾーユングレンズである構成とした。  [0013] The invention of claim 7 is the antenna device according to any one of claims 1 to 6, wherein the dielectric lens is engraved on the inner surface or the outer surface along the circumferential direction. The configuration is a zoeng lens with multiple engravings.
[0014] 請求項 8の発明に係る無線通信装置は、請求項 1な!、し請求項 7の 、ずれかに記 載のアンテナ装置と、送信信号をこのアンテナ装置に出力する送信部と、このアンテ ナ装置力もの受信信号を受ける受信部とを備える構成とした。 [0014] A wireless communication device according to the invention of claim 8 is the antenna device according to any one of claims 1 and 7 and a transmitter that outputs a transmission signal to the antenna device, A receiving unit for receiving the received signal of the antenna device is used.
力かる構成により、送信信号が送信部によってアンテナ装置に出力され、また、アン テナ装置力 の受信信号が受信部によって受けられる。このとき、アンテナ装置から 放射される電磁ビームのアンテナ利得やビームパターン等のアンテナ特性が放射角 度によって変化しない。 With this configuration, the transmission signal is output to the antenna device by the transmission unit, and the reception signal of the antenna device force is received by the reception unit. At this time, from the antenna device Antenna characteristics such as antenna gain and beam pattern of the radiated electromagnetic beam do not change with the radiation angle.
[0015] 請求項 9の発明に係るレーダ装置は、請求項 1な!、し請求項 7の 、ずれかに記載の アンテナ装置と、送信信号をこのアンテナ装置に出力する送信部と、このアンテナ装 置力 の受信信号を受ける受信部と、この受信部で受けた受信信号に基づいて、電 磁ビーム反射物体を探知する探知処理部とを備える構成とした。  [0015] A radar apparatus according to the invention of claim 9 is the antenna apparatus according to claim 1 or 7, and a transmitter that outputs a transmission signal to the antenna apparatus, and the antenna A configuration is provided that includes a reception unit that receives a reception signal of the device force, and a detection processing unit that detects an electromagnetic beam reflecting object based on the reception signal received by the reception unit.
力かる構成により、送信信号が送信部によってアンテナ装置に出力される。また、ァ ンテナ装置力 の受信信号は受信部によって受けられた後、この受信信号に基づい て、電磁ビーム反射物体が探知処理部によって探知される。このとき、アンテナ装置 力も放射される電磁ビームのアンテナ利得やビームパターン等のアンテナ特性が放 射角度によって変化しないので、物体に対する探知距離,角度精度及び分解能も変 化しない。  With this configuration, the transmission signal is output to the antenna device by the transmission unit. Also, after receiving the received signal of the antenna device force by the receiving unit, the electromagnetic beam reflecting object is detected by the detection processing unit based on the received signal. At this time, antenna characteristics such as antenna gain and beam pattern of the electromagnetic beam radiated from the antenna device force do not change according to the radiation angle, so that the detection distance, angle accuracy and resolution for the object do not change.
[0016] 請求項 10の発明は、請求項 9に記載のレーダ装置において、誘電体レンズが一体 ィ匕されたレドーム内に 1次放射器を配設してアンテナ装置を構成すると共に、送信部 と受信部と探知処理部とを収納した筐体をこのアンテナ装置の外側に取り付けた構 成とする。  [0016] The invention of claim 10 is the radar apparatus according to claim 9, wherein a primary radiator is arranged in a radome integrated with a dielectric lens to constitute an antenna apparatus, and a transmitting unit And a housing housing the receiving unit and the detection processing unit are attached to the outside of the antenna device.
[0017] 以上詳しく説明したように、この発明のアンテナ装置によれば、 2次放射器が、その 円周方向に鉛直な断面が全て同一形状の誘電体レンズであり、 2次放射器から放射 される電磁ビームのパターンやアンテナ利得等が全走査方向で同一となるので、 1次 放射器力も放射される電磁ビームの放射方向の違いによって、 2次放射器から放射 される電磁ビームのアンテナ特性 (ビームパターンやアンテナ利得等)の変化による 弊害を防止することができるという優れた効果がある。  [0017] As described above in detail, according to the antenna device of the present invention, the secondary radiator is a dielectric lens whose cross section perpendicular to the circumferential direction has the same shape, and radiates from the secondary radiator. Since the pattern of the electromagnetic beam and the antenna gain, etc., are the same in all scanning directions, the antenna characteristics of the electromagnetic beam radiated from the secondary radiator are also affected by the difference in the radiation direction of the electromagnetic radiation emitted from the primary radiator There is an excellent effect that adverse effects due to changes in beam pattern, antenna gain, etc. can be prevented.
[0018] また、請求項 3の発明によれば、電磁ビームを鉛直方向に狭ビーム化して、電磁ビ ーム拡散による路面反射等の影響を低減することができるので、小型で且つ高性能 なアンテナ装置を提供することができるという効果がある。  [0018] Further, according to the invention of claim 3, since the electromagnetic beam can be narrowed in the vertical direction to reduce the influence of road surface reflection due to electromagnetic beam diffusion, it is small and has high performance. There is an effect that an antenna device can be provided.
[0019] 特に、請求項 7の発明によれば、誘電体レンズを、ゾ一二ングレンズとしたので、薄 型化及び低コストィ匕が可能で且つ成形容易性なアンテナ装置を提供することができ る。 [0020] また、請求項 8の発明によれば、送受信時に、アンテナ装置から放射される電磁ビ ームのアンテナ利得やビームパターン等のアンテナ特性が放射角度によって変化し ないので、検知距離が角度により変化することがない誤検知率の小さい高性能な無 線通信装置を提供することができるという効果がある。 [0019] In particular, according to the invention of claim 7, since the dielectric lens is a zoning lens, it is possible to provide an antenna device that can be thinned and reduced in cost and can be easily formed. The [0020] According to the invention of claim 8, at the time of transmission / reception, the antenna characteristics such as the antenna gain and beam pattern of the electromagnetic beam radiated from the antenna device do not change depending on the radiation angle, so that the detection distance is an angle. As a result, it is possible to provide a high-performance wireless communication apparatus with a low false detection rate that does not change due to the above.
[0021] 請求項 9の発明によれば、物体に対する探知距離,角度精度及び分解能が変化し ないため、誤検知率の小さい高性能なレーダ装置を提供することができるという効果 がある。 [0021] According to the invention of claim 9, since the detection distance to the object, the angular accuracy, and the resolution do not change, there is an effect that it is possible to provide a high-performance radar apparatus with a low false detection rate.
特に、請求項 10の発明によれば、誘電体レンズが一体ィ匕されたレドーム内に 1次 放射器を配設してアンテナ装置を構成すると共に、送信部と受信部と探知処理部と を収納した筐体をこのアンテナ装置の外側に取り付けた構成としたので、低コストィ匕 が可能で且つ組み立て容易なレーダ装置を提供することができる。さらに、請求項 5 に記載のアンテナ装置を備えるレーダ装置の発明では、レドームのみを変更するだ けで、遠距離探知における高分解能及び狭角探知のレーダ装置や、逆に近距離探 知における低分解能及び広角探知のレーダ装置等、用途の異なるレーダ装置を構 成することができると 、う効果がある。  In particular, according to the invention of claim 10, the primary radiator is arranged in the radome in which the dielectric lens is integrally formed to constitute the antenna device, and the transmission unit, the reception unit, and the detection processing unit are arranged. Since the housed housing is attached to the outside of the antenna device, it is possible to provide a radar device that can be manufactured at low cost and can be easily assembled. Furthermore, in the invention of the radar device including the antenna device according to claim 5, the radar device for high-resolution and narrow-angle detection in long-distance detection, or conversely low in short-range detection, by changing only the radome. If radar devices with different applications such as a radar device with resolution and wide-angle detection can be configured, there is an effect.
図面の簡単な説明  Brief Description of Drawings
[0022] [図 1]この発明の第 1実施例に係るアンテナ装置を示す斜視図である。 FIG. 1 is a perspective view showing an antenna apparatus according to a first embodiment of the present invention.
[図 2]アンテナ装置の平面図である。  FIG. 2 is a plan view of the antenna device.
[図 3]図 1の矢視 A— A断面図である。  FIG. 3 is a cross-sectional view taken along the line AA in FIG.
[図 4]広角走査を示す概略平面図である。  FIG. 4 is a schematic plan view showing wide-angle scanning.
[図 5]狭ビーム化を示す概略断面図である。  FIG. 5 is a schematic sectional view showing narrowing of the beam.
[図 6]各設定値を説明するための部分拡大断面図である。  FIG. 6 is a partially enlarged cross-sectional view for explaining each set value.
[図 7]誘電体レンズカゝら放射される電磁ビームの角度と相対アンテナ利得との関係を 示す線図である。  FIG. 7 is a diagram showing the relationship between the angle of an electromagnetic beam emitted from a dielectric lens cover and the relative antenna gain.
[図 8]この発明の第 2実施例に係るレーダ装置の内部構造を示す概略断面図である  FIG. 8 is a schematic sectional view showing the internal structure of a radar apparatus according to a second embodiment of the invention.
[図 9]レーダ装置の外観図である。 FIG. 9 is an external view of a radar device.
[図 10]レーダ装置のブロック図である。 [図 11]レーダ装置の取付状態を示す平面図である。 FIG. 10 is a block diagram of a radar apparatus. FIG. 11 is a plan view showing a mounting state of the radar apparatus.
[図 12]広角走査状態を示す平面図である。  FIG. 12 is a plan view showing a wide-angle scanning state.
[図 13]狭ビーム状態を示す後面図である。  FIG. 13 is a rear view showing a narrow beam state.
[図 14]この発明の第 3実施例に係るレーダ装置の外観図である。  FIG. 14 is an external view of a radar apparatus according to a third embodiment of the present invention.
[図 15]誘電体レンズの形状を示すためにレドームの上面部を除いて示すアンテナ装 置部分の斜視図である。  FIG. 15 is a perspective view of the antenna device portion excluding the upper surface portion of the radome in order to show the shape of the dielectric lens.
[図 16]この実施例のレーダ装置の内部構造を示す概略断面図である。  FIG. 16 is a schematic sectional view showing the internal structure of the radar apparatus according to this embodiment.
[図 17]この発明の第 4実施例に係るアンテナ装置の概略斜視図である。  FIG. 17 is a schematic perspective view of an antenna apparatus according to a fourth embodiment of the present invention.
[図 18]この発明の第 5実施例に係るアンテナ装置の要部である誘電体レンズを示す 斜視図である。  FIG. 18 is a perspective view showing a dielectric lens that is a main part of an antenna apparatus according to a fifth embodiment of the present invention.
[図 19]変形例を示す概略断面図である。  FIG. 19 is a schematic sectional view showing a modification.
[図 20]電磁ビームの狭ビーム化の必要性を説明するための概略図である。  FIG. 20 is a schematic diagram for explaining the necessity of narrowing the electromagnetic beam.
符号の説明  Explanation of symbols
[0023] 1…アンテナ装置、 2…誘電体レンズ、 3, 3' ···!_次放射器、 3a…開口、 4, 4' …レーダ装置、 5…送信部、 6…受信部、 7…探知処理部、 21〜24· ··彫り 込み、 30· ··モータ、 31〜35· ··放射器、 36· ··スィッチ、 40, 40' …レドーム、 40a, 40a' …上面部、 墨…下面部、 41, 41/ …仕切り板、 42, 42, …筐 体、 B, B1〜: B3…電磁ビーム、 M…中心軸、 S…断面、 S1…内面、 S2"-外 面、 f…焦点位置。  [0023] 1 ... Antenna device, 2 ... Dielectric lens, 3, 3 '...! Next radiator, 3a ... Aperture, 4, 4' ... Radar device, 5 ... Transmitter, 6 ... Receiver, 7 ... Detection processing section, 21-24 ... engraving, 30 ... motor, 31-35 ... radiator, 36 ... switch, 40, 40 '... radome, 40a, 40a' ... top face, Black: 41, 41 / ... Partition plate, 42, 42, ... Case, B, B1 ~: B3 ... Electromagnetic beam, M ... Central axis, S ... Section, S1 ... Inner surface, S2 "-Outer surface, f ... Focus position.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0024] 以下、この発明の最良の形態について図面を参照して説明する。 Hereinafter, the best mode of the present invention will be described with reference to the drawings.
実施例 1  Example 1
[0025] 図 1は、この発明の第 1実施例に係るアンテナ装置を示す斜視図であり、図 2は、ァ ンテナ装置の平面図であり、図 3は、図 1の矢視 A— A断面図である。  FIG. 1 is a perspective view showing an antenna apparatus according to a first embodiment of the present invention, FIG. 2 is a plan view of the antenna apparatus, and FIG. 3 is an arrow A—A in FIG. It is sectional drawing.
図 1に示すように、このアンテナ装置 1は、 2次放射器としての誘電体レンズ 2と 1次 放射器 3とを備えている。  As shown in FIG. 1, the antenna device 1 includes a dielectric lens 2 as a secondary radiator and a primary radiator 3.
[0026] 誘電体レンズ 2は、 1次放射器 3の電磁ビーム放射側に配されており、その形状は、 図 2に示すように、平面視において、円弧状をなし、 1次放射器 3を囲むように湾曲し ている。 The dielectric lens 2 is disposed on the electromagnetic beam radiation side of the primary radiator 3, and the shape thereof is an arc shape in a plan view as shown in FIG. Curved to surround ing.
具体的には、誘電体レンズ 2の中心角 Θ 2が 180° に設定されている。また、誘電 体レンズ 2の円周方向に鉛直な断面が全て同一形状に設定されている。すなわち、 図 2に示すように、誘電体レンズ 2の中心軸 Mから半径方向に延びる任意の径線尺と 矢印 Cで示す誘電体レンズ 2の円周方向とは直交する。このとき、径線 Rが誘電体レ ンズ 2を鉛直方向(図 2の表裏方向)に切った面 Sが誘電体レンズ 2の円周方向に鉛 直な断面であり、この断面 Sが誘電体レンズ 2の円周方向のどの位置に置 、ても同一 である。この実施例では、図 3に示すように、誘電体レンズ 2の断面 Sを外方に湾曲す る凸型のレンズ形状にした。勿論、誘電体レンズ 2においては、期待するアンテナ特 性に応じて開口面分布及びサイズ等を随時設定する。  Specifically, the central angle Θ 2 of the dielectric lens 2 is set to 180 °. Further, the cross section perpendicular to the circumferential direction of the dielectric lens 2 is all set to the same shape. That is, as shown in FIG. 2, an arbitrary radial line length extending in the radial direction from the central axis M of the dielectric lens 2 and the circumferential direction of the dielectric lens 2 indicated by an arrow C are orthogonal to each other. At this time, the surface S in which the radial line R cuts the dielectric lens 2 in the vertical direction (the front and back direction in FIG. 2) is a cross section that is straight in the circumferential direction of the dielectric lens 2, and this cross section S is the dielectric material. It is the same regardless of the position of the lens 2 in the circumferential direction. In this embodiment, as shown in FIG. 3, the cross section S of the dielectric lens 2 is formed into a convex lens shape that curves outward. Of course, in the dielectric lens 2, the aperture distribution and size are set as needed according to the expected antenna characteristics.
[0027] 1次放射器 3は、誘電体レンズ 2に向けて電磁ビームを放射するホーンアンテナで あり、誘電体レンズ 2の中心軸 M側に位置し、回転駆動機構としてのモータ 30によつ て回動自在に支持されている。具体的には、図 2に示すように、モータ 30が、誘電体 レンズ 2の中心軸 Mを中心にして誘電体レンズ 2の円周方向に 1次放射器 3を回転さ せることができるようになつている。これ〖こより、 1次放射器 3が、電磁ビームを放射し ながら誘電体レンズ 2の円周方向に走査することができる。なお、この実施例では、そ の走査角度 0 3を 150° に設定した。 [0027] The primary radiator 3 is a horn antenna that radiates an electromagnetic beam toward the dielectric lens 2, and is located on the central axis M side of the dielectric lens 2, and is connected by a motor 30 as a rotational drive mechanism. And is rotatably supported. Specifically, as shown in FIG. 2, the motor 30 can rotate the primary radiator 3 in the circumferential direction of the dielectric lens 2 around the central axis M of the dielectric lens 2. It has become. Thus, the primary radiator 3 can scan in the circumferential direction of the dielectric lens 2 while emitting an electromagnetic beam. In this embodiment, the scanning angle 03 is set to 150 °.
さらに、 1次放射器 3は、図 3に示すように、誘電体レンズ 2の円周方向に鉛直な断 面 Sで形成される凸型レンズ面の焦点位置 f又は焦点位置 fの近傍に配されている。 これにより、 1次放射器 3は、その開口 3aと凸レンズ状の断面 Sの内面 S1との距離 D をほぼ焦点距離 fに保ちながら円周方向に回動することとなる。  Further, as shown in FIG. 3, the primary radiator 3 is disposed near the focal position f of the convex lens surface formed by the section S perpendicular to the circumferential direction of the dielectric lens 2 or near the focal position f. Has been. As a result, the primary radiator 3 rotates in the circumferential direction while maintaining a distance D between the opening 3a and the inner surface S1 of the convex lens-shaped cross section S at a substantially focal length f.
[0028] 次に、この実施例のアンテナ装置が示す作用及び効果について説明する。 [0028] Next, functions and effects of the antenna device of this embodiment will be described.
図 4は、広角走査を示す概略平面図であり、図 5は、狭ビーム化を示す概略断面図 である。  FIG. 4 is a schematic plan view showing wide-angle scanning, and FIG. 5 is a schematic cross-sectional view showing narrowing of the beam.
図 4に示すように、 1次放射器 3をモータ 30によって誘電体レンズ 2の円周方向に回 転させると共に、 1次放射器 3から電磁ビーム Bを放射しながら誘電体レンズ 2の円周 方向に走査角度 150° で広角走査することができる。このとき、上記したように、誘電 体レンズ 2の円周方向に鉛直な断面が全て同一形状に設定されて!、るので、誘電体 レンズ 2中央部を通過する電磁ビームのアンテナ利得と、誘電体レンズ 2の中央部と 異なる部位を通過する電磁ビームのアンテナ利得とは同値となる。したがって、実線 で示すような誘電体レンズ 2中央部からの放射される電磁ビーム B1のパターンと、二 点鎖線や破線で示すように、電磁ビーム B1と異なる角度で誘電体レンズ 2から放射 される電磁ビーム B2, B3のパターンとは同一となる。すなわち、誘電体レンズ 2から 放射される電磁ビーム Bのパターンやアンテナ利得等が 1次放射器 3の全走査方向 で同一となる。 As shown in Fig. 4, the primary radiator 3 is rotated by the motor 30 in the circumferential direction of the dielectric lens 2 and the electromagnetic lens B is radiated from the primary radiator 3 while rotating the circumference of the dielectric lens 2. Wide-angle scanning can be performed at a scanning angle of 150 ° in the direction. At this time, as described above, the cross section perpendicular to the circumferential direction of the dielectric lens 2 is all set to the same shape! The antenna gain of the electromagnetic beam passing through the central part of the lens 2 and the antenna gain of the electromagnetic beam passing through a part different from the central part of the dielectric lens 2 are the same value. Therefore, the pattern of the electromagnetic beam B1 radiated from the center of the dielectric lens 2 as shown by the solid line and the radiation from the dielectric lens 2 at a different angle from the electromagnetic beam B1 as shown by the two-dot chain line and the broken line The pattern of electromagnetic beams B2 and B3 is the same. That is, the pattern of the electromagnetic beam B radiated from the dielectric lens 2 and the antenna gain are the same in all scanning directions of the primary radiator 3.
[0029] また、 1次放射器 3が、誘電体レンズ 2の焦点位置 f又は焦点位置 fの近傍に配され ているので、図 5に示すように、誘電体レンズ 2の外面 S2から放射される電磁ビーム B は模式的にほぼ平行なビームとなり、狭ビーム化される。  [0029] Further, since the primary radiator 3 is disposed at the focal position f of the dielectric lens 2 or in the vicinity of the focal position f, the primary radiator 3 is radiated from the outer surface S2 of the dielectric lens 2 as shown in FIG. The electromagnetic beam B is typically a nearly parallel beam and is narrowed.
[0030] 以上のように、この実施例のアンテナ装置 1によれば、誘電体レンズ 2の円周方向 に同一ビームパターンの広角走査を行うことができると共に、電磁ビームを鉛直方向 にお 、て狭ビーム化することができる。 [0030] As described above, according to the antenna device 1 of this embodiment, wide-angle scanning of the same beam pattern can be performed in the circumferential direction of the dielectric lens 2, and the electromagnetic beam can be projected in the vertical direction. The beam can be narrowed.
発明者は、力かる点を確認すべくシミュレーションを行った。  The inventor performed a simulation to confirm the points to be applied.
図 6は、各設定値を説明するための部分拡大断面図であり、図 7は、誘電体レンズ 2から放射される電磁ビーム Bの角度と相対アンテナ利得との関係を示す線図である シミュレーションにおいては、誘電体レンズ 2として誘電率が 2. 78のポリカーボネィ トを用い、誘電体レンズ 2の厚さ Tを 12mmに、鉛直高さ Hを 40mmにそれぞれ設定 した。また、 1次放射器 3においては、その幅 wを 4. 5mmに、高さ hを 9mmに、奥行 き mを 7mmに設定すると共に、誘電体レンズ 2との距離 Dを 4mmに設定した。  FIG. 6 is a partially enlarged cross-sectional view for explaining each set value, and FIG. 7 is a diagram showing the relationship between the angle of the electromagnetic beam B radiated from the dielectric lens 2 and the relative antenna gain. In this example, a polycarbonate with a dielectric constant of 2.78 was used as the dielectric lens 2, and the thickness T of the dielectric lens 2 was set to 12 mm, and the vertical height H was set to 40 mm. For primary radiator 3, its width w is set to 4.5 mm, height h is set to 9 mm, depth m is set to 7 mm, and distance D to dielectric lens 2 is set to 4 mm.
力かる設定下でのシミュレーションにおいて、図 7に示すような結果を得た。 図 7の実線で示す曲線 blが電磁ビームの鉛直方向の相対アンテナ利得 (dB)を示 し、破線で示す曲線 b2が電磁ビームの走査方向の相対アンテナ利得を示す。  In the simulation under the powerful setting, the results shown in Fig. 7 were obtained. The curve bl shown by the solid line in Fig. 7 shows the relative antenna gain (dB) in the vertical direction of the electromagnetic beam, and the curve b2 shown by the broken line shows the relative antenna gain in the scanning direction of the electromagnetic beam.
曲線 blから明らかなように、放射方向の角度 (Odeg)で最もアンテナ利得が高ぐこ の角度からずれると、アンテナ利得が大きく減少している。すなわち、 1次放射器 3か ら放射された電磁ビーム Bは、誘電体レンズ 2によって鉛直方向で狭ビーム化されて いることが判る。一方、曲線 b2においては、放射方向の角度 (Odeg)で最もアンテナ 利得が高いが、この角度力 ずれても、アンテナ利得が大きく減少しない。すなわちAs can be seen from the curve bl, the antenna gain decreases greatly when the antenna gain deviates most from the angle in the radial direction (Odeg). That is, it can be seen that the electromagnetic beam B radiated from the primary radiator 3 is narrowed in the vertical direction by the dielectric lens 2. On the other hand, in the curve b2, the antenna is the most at the angle of radial direction (Odeg) The gain is high, but even if this angular force shifts, the antenna gain does not decrease greatly. Ie
、 1次放射器 3から放射された電磁ビーム Bは、誘電体レンズ 2によって円周方向で 狭ビーム化されず、ビーム幅が比較的広 、ままであることが判る。 It can be seen that the electromagnetic beam B radiated from the primary radiator 3 is not narrowed in the circumferential direction by the dielectric lens 2 and the beam width remains relatively wide.
実施例 2  Example 2
[0031] 次に、この発明の第 2実施例について説明する。  Next, a second embodiment of the present invention will be described.
図 8は、この発明の第 2実施例に係るレーダ装置の内部構造を示す概略断面図で あり、図 9は、レーダ装置の外観図であり、図 10は、レーダ装置のブロック図である。 この実施例のレーダ装置 4は、図 8に示すように、上記第 1実施例のアンテナ装置 1 と、送信部 5と受信部 6と探知処理部 7とを備えて 、る。  FIG. 8 is a schematic sectional view showing the internal structure of the radar apparatus according to the second embodiment of the present invention, FIG. 9 is an external view of the radar apparatus, and FIG. 10 is a block diagram of the radar apparatus. As shown in FIG. 8, the radar device 4 of this embodiment includes the antenna device 1 of the first embodiment, a transmission unit 5, a reception unit 6, and a detection processing unit 7.
[0032] 具体的には、アンテナ装置 1は、レーダ装置 4のレドーム 40内に組み付けられてい る。すなわち、誘電体レンズ 2に誘電体の上,下面部 40a, 40bを設けて、誘電体レン ズ 2が一体化されたレドーム 40を形成する。そして、 1次放射器 3とモータ 30とをこの レドーム 40内に取り付けた。  Specifically, the antenna device 1 is assembled in the radome 40 of the radar device 4. That is, the dielectric lens 2 is provided with the upper and lower surface portions 40a and 40b of the dielectric, and the radome 40 in which the dielectric lens 2 is integrated is formed. The primary radiator 3 and the motor 30 were mounted in the radome 40.
[0033] 一方、送信部 5と受信部 6と探知処理部 7とは、レドーム 40の外側に仕切り板 41を 介して取り付けられた筐体 42内に収納されている。送信部 5は、送信信号をアンテナ 装置 1に出力する部分であり、受信部 6は、アンテナ装置 1からの受信信号を受ける 部分であり、探知処理部 7は、受信部 6で受けた受信信号に基づいて、電磁ビーム反 射物体を探知する部分である。  On the other hand, the transmission unit 5, the reception unit 6, and the detection processing unit 7 are housed in a housing 42 that is attached to the outside of the radome 40 via a partition plate 41. The transmission unit 5 is a part that outputs a transmission signal to the antenna device 1, the reception unit 6 is a part that receives a reception signal from the antenna device 1, and the detection processing unit 7 is a reception signal received by the reception unit 6. This is the part that detects the electromagnetic beam reflecting object.
[0034] 具体的には、図 10に示すように、電圧制御発振器 51と増幅器 52とで送信部 5が構 成され、この送信部 5の増幅器 52がサーキユレータ 50を介してアンテナ装置 1に接 続されている。また、アンテナ装置 1から受信した信号を中間周波信号 IFにダウンコ ンバートするためのミキサ 61と方向性結合器 62とによって受信部 6が構成され、この 受信部 6のミキサ 61の入力側がサーキユレータ 50を介してアンテナ装置 1に接続さ れると共に、出力側が探知処理部 7に接続されている。  Specifically, as shown in FIG. 10, a voltage control oscillator 51 and an amplifier 52 constitute a transmission unit 5, and the amplifier 52 of this transmission unit 5 is connected to the antenna device 1 via a circulator 50. It has been continued. In addition, the receiver 61 is configured by the mixer 61 and the directional coupler 62 for down-converting the signal received from the antenna device 1 to the intermediate frequency signal IF, and the input side of the mixer 61 of the receiver 6 has the circulator 50. And the output side is connected to the detection processing unit 7.
これにより、電圧制御発振器 51から出力された発振信号が増幅器 52によって増幅 され、方向性結合器 62及びサーキユレータ 50を経由して、送信信号としてアンテナ 装置 1から送信される。一方、アンテナ装置 1から受信された受信信号はサーキユレ ータ 50を通じてミキサ 61に入力されると共に、方向性結合器 62によるローカル信号 を用いてダウンコンバートされ、中間周波信号 IFとして探知処理部 7に出力される。 As a result, the oscillation signal output from the voltage controlled oscillator 51 is amplified by the amplifier 52 and transmitted from the antenna device 1 as a transmission signal via the directional coupler 62 and the circulator 50. On the other hand, the received signal received from the antenna device 1 is input to the mixer 61 through the circuit 50 and a local signal from the directional coupler 62. Is down-converted using, and output to the detection processing unit 7 as an intermediate frequency signal IF.
[0035] 次に、このレーダ装置 4の使用例について説明する。 Next, a usage example of the radar device 4 will be described.
図 11は、レーダ装置 4の取付状態を示す平面図であり、図 12は、広角走査状態を 示す平面図であり、図 13は、狭ビーム状態を示す後面図である。  FIG. 11 is a plan view showing a mounting state of the radar apparatus 4, FIG. 12 is a plan view showing a wide-angle scanning state, and FIG. 13 is a rear view showing a narrow beam state.
レーダ装置 4は、例えば図 11に示すように、ドライバの死角範囲を探知できるように 、自動車 200のリア部 201の両側に装着する。そして、レーダ装置 4の探知処理部 7 の出力端を自動車 200内の図示しないモニタに接続して、レーダ装置 4を作動させる すると、送信信号が送信部 5によってアンテナ装置 1に出力され、電磁ビーム Bがァ ンテナ装置 1から放射される。このとき、アンテナ装置 1の 1次放射器 3が 150° の範 囲で回転するので、図 12に示すように、電磁ビーム Bが自動車 200の両側 150° の 範囲で走査される。そして、後方力も他の自動車 20( が所定距離内に近づくと、電 磁ビーム Bがこの自動車 20( で反射し、アンテナ装置 1の誘電体レンズ 2及び 1次 放射器 3で受信される。すると、その受信信号が受信部 6を通じて探知処理部 7に入 力され、探知処理部 7が、この受信信号に基づ!/、て、後方の自動車 200' を探知し、 図示しな!、モニタに映し出すこととなる。  For example, as shown in FIG. 11, the radar apparatus 4 is mounted on both sides of the rear part 201 of the automobile 200 so that the blind spot range of the driver can be detected. When the output terminal of the detection processing unit 7 of the radar device 4 is connected to a monitor (not shown) in the automobile 200 and the radar device 4 is operated, a transmission signal is output to the antenna device 1 by the transmission unit 5 and the electromagnetic beam B is emitted from the antenna device 1. At this time, since the primary radiator 3 of the antenna device 1 rotates within a range of 150 °, the electromagnetic beam B is scanned within a range of 150 ° on both sides of the automobile 200 as shown in FIG. When the rear force of the other vehicle 20 (approaches within a predetermined distance, the electromagnetic beam B is reflected by the vehicle 20 (and received by the dielectric lens 2 and the primary radiator 3 of the antenna device 1. The received signal is input to the detection processing unit 7 through the receiving unit 6, and the detection processing unit 7 detects the rear vehicle 200 'based on this received signal! It will be projected on.
[0036] 上記したように、アンテナ装置 1から放射される電磁ビーム Bのアンテナ利得やビー ムパターン等は、走査角度によって変化しないので、自動車 20( 等の物体に対す る探知距離,角度精度及び分解能も変化しない。 [0036] As described above, the antenna gain, beam pattern, and the like of the electromagnetic beam B radiated from the antenna device 1 do not change depending on the scanning angle, so the detection distance, angular accuracy, and The resolution does not change.
また、図 13に示すように、電磁ビーム Bは鉛直方向に狭ビーム化されているので、 道路 210の路面反射や多重反射が低減される。  Further, as shown in FIG. 13, since the electromagnetic beam B is narrowed in the vertical direction, road surface reflection and multiple reflection of the road 210 are reduced.
さらに、 1次放射器 3がモータ 30で支持された構造になっているので、異なる特性 の誘電体レンズ 2のレドーム 40に変更することで、遠距離探知における高分解能及 び狭角探知のレーダ装置や、逆に近距離探知における低分解能及び広角探知のレ ーダ装置等、用途の異なるレーダ装置を構成することができる。  Furthermore, since the primary radiator 3 is supported by the motor 30, it can be changed to the radome 40 of the dielectric lens 2 with different characteristics, so that the radar with high resolution and narrow angle detection can be used for long-distance detection. It is possible to configure radar devices with different applications, such as low resolution and wide angle radar devices for short-range detection.
その他の構成,作用及び効果は上記第 1実施例と同様であるので、その記載は省 略する。  Since other configurations, operations, and effects are the same as those in the first embodiment, description thereof is omitted.
実施例 3 [0037] 次に、この発明の第 3実施例について説明する。 Example 3 [0037] Next, a third embodiment of the present invention will be described.
図 14は、この発明の第 3実施例に係るレーダ装置の外観図であり、図 15は、誘電 体レンズの形状を示すためにレドームの上面部を除 、て示すアンテナ装置部分の斜 視図であり、図 16は、この実施例のレーダ装置の内部構造を示す概略断面図である この実施例のレーダ装置^ は、図 14に示すように、円形のレドーム 4( とこのレ ドーム 40' の下に取り付けた筐体 42' とを有し、全方位探知可能な構造をなす。  FIG. 14 is an external view of a radar apparatus according to a third embodiment of the present invention, and FIG. 15 is a perspective view of the antenna apparatus portion shown excluding the upper surface of the radome to show the shape of the dielectric lens. FIG. 16 is a schematic sectional view showing the internal structure of the radar apparatus of this embodiment. As shown in FIG. 14, the radar apparatus ^ of this embodiment has a circular radome 4 (and a radome 40 ′). And a casing 42 'mounted underneath, and has a structure capable of omnidirectional detection.
[0038] 具体的には、レドーム 4( に一体化される誘電体レンズ 2は、図 15に示すように、 中心角が 360° のリング状をなし、その中心軸 M上に 1次放射器 3が回転自在に配 置されている。すなわち、図 16に示すように、リング状の誘電体レンズ 2に上面部 40a ' を設けてレドーム 4( をとし、モータ 30によって、 1次放射器 3を誘電体レンズ 2の 中心軸 M上で 360° 回転させる構造をなす。そして、仕切り板 41/ で仕切られた状 態で、筐体 42' 力レドーム 4( の下側に取り付けられている。この筐体 42' 内には 、第 2実施例のレーダ装置 4と同様に、送信部 5と受信部 6と探知処理部 7とが収納さ れている。 [0038] Specifically, as shown in Fig. 15, the dielectric lens 2 integrated with the radome 4 (has a ring shape with a central angle of 360 °, and a primary radiator on the central axis M thereof. In other words, as shown in Fig. 16, the ring-shaped dielectric lens 2 is provided with an upper surface portion 40a 'and the radome 4 (is used as the primary radiator 3 by the motor 30. Is rotated 360 ° on the central axis M of the dielectric lens 2. And it is attached to the lower side of the casing 42 'force radome 4 (in a state of being partitioned by the partition plate 41 /. In the casing 42 ', a transmitter 5, a receiver 6, and a detection processing unit 7 are accommodated as in the radar device 4 of the second embodiment.
[0039] 力かる構成により、 1次放射器 3をモータ 30によって 360° 回転させることで、全方 向において、電磁ビームのアンテナ利得やビームパターンが同一となり、また、電磁 ビームが鉛直方向で狭ビーム化する。  [0039] With the powerful configuration, the primary radiator 3 is rotated 360 ° by the motor 30 so that the antenna gain and beam pattern of the electromagnetic beam are the same in all directions, and the electromagnetic beam is narrow in the vertical direction. Turn into a beam.
勿論、 1次放射器 3の回転角度を用途に応じて調整することで、走査角度 90° や 1 80° 等、 360° 以内の角度における探知も可能である。  Of course, by adjusting the rotation angle of the primary radiator 3 according to the application, it is possible to detect at an angle within 360 ° such as 90 ° or 1 80 ° scanning angle.
その他の構成,作用及び効果は上記第 2実施例と同様であるので、その記載は省 略する。  Since other configurations, operations, and effects are the same as those in the second embodiment, description thereof is omitted.
実施例 4  Example 4
[0040] 次に、この発明の第 4実施例について説明する。  Next, a fourth embodiment of the present invention will be described.
図 17は、この発明の第 4実施例に係るアンテナ装置の概略斜視図である。 この実施例のアンテナ装置も上記第 1実施例と同様に中心角 180° の誘電体レン ズ 2と 1次放射器 とを有している力 1次放射器 が固定され、回転しない構造 となっている。 具体的には、 1次放射器 を、誘電体レンズ 2の円周方向に沿って並ぶように放 射状に配した 5つの放射器 31〜35で構成した。そして、 5つの放射器 31〜35のい ずれかに送信信号及び受信信号を送受信させる電磁ビーム切換器としてのスィッチ 36を 5つの放射器 31〜35の後段に設けた。 FIG. 17 is a schematic perspective view of an antenna apparatus according to a fourth embodiment of the present invention. Similarly to the first embodiment, the antenna device of this embodiment has a structure in which a force primary radiator having a dielectric lens 2 having a central angle of 180 ° and a primary radiator is fixed and does not rotate. ing. Specifically, the primary radiator was composed of five radiators 31 to 35 arranged in a radial pattern so as to be arranged along the circumferential direction of the dielectric lens 2. Then, a switch 36 as an electromagnetic beam switching device for transmitting and receiving a transmission signal and a reception signal to any one of the five radiators 31 to 35 is provided in the subsequent stage of the five radiators 31 to 35.
[0041] 力かる構成により、スィッチ 36を切り換えていくことで、電磁ビーム Bが順次 5つの放 射器 31〜35から放射される。すなわち、スィッチ 36の切り換え動作によって、アンテ ナ装置 1から放射される電磁ビーム Bを誘電体レンズ 2の円周方向に走査させること ができる。 [0041] By switching the switch 36 with a powerful configuration, the electromagnetic beam B is sequentially emitted from the five radiators 31-35. That is, the electromagnetic beam B radiated from the antenna device 1 can be scanned in the circumferential direction of the dielectric lens 2 by the switching operation of the switch 36.
その他の構成,作用及び効果は上記第 1実施例と同様であるので、その記載は省 略する。  Since other configurations, operations, and effects are the same as those in the first embodiment, description thereof is omitted.
実施例 5  Example 5
[0042] 次に、この発明の第 5実施例について説明する。  Next, a fifth embodiment of the present invention will be described.
図 18は、この発明の第 5実施例に係るアンテナ装置の要部である誘電体レンズを 示す斜視図である。  FIG. 18 is a perspective view showing a dielectric lens, which is a main part of the antenna device according to the fifth embodiment of the present invention.
この実施例では、誘電体レンズをゾーユングレンズとした点が上記第 1実施例と異 なる。  This embodiment differs from the first embodiment in that a dielectric lens is a zoung lens.
[0043] 具体的には、図 18に示すように、誘電体レンズ 2の外面 S2に、複数本、例えば 4本 の彫り込み 21〜24を刻設した。 4本の彫り込み 21〜24は、誘電体レンズ 2の円周方 向に沿って平行に刻設されており、これにより、 1次放射器 3の広角走査時における 電磁ビームのアンテナ利得やビームパターンの変化が生じな 、ようにして 、る。 このように誘電体レンズ 2をゾ一二ングレンズとすることで、誘電体レンズ 2を薄型化 及び低コストィ匕することができ、アンテナ装置のさらなる小型化が可能となる。  Specifically, as shown in FIG. 18, a plurality of, for example, four engravings 21 to 24 were engraved on the outer surface S2 of the dielectric lens 2. The four engravings 21 to 24 are engraved in parallel along the circumferential direction of the dielectric lens 2 so that the antenna gain and beam pattern of the electromagnetic beam during wide-angle scanning of the primary radiator 3 can be reduced. No change occurs. Thus, by using the dielectric lens 2 as a zoom lens, the dielectric lens 2 can be reduced in thickness and cost, and the antenna device can be further reduced in size.
この実施例では、彫り込み 21〜24を誘電体レンズ 2の外面 S2に設けた力 内面 S 1に設けても良いことは勿論である。また、ゾーユングの形状については、所望のアン テナ特性を満足するように選択することは勿論である。  In this embodiment, it goes without saying that the engravings 21 to 24 may be provided on the force inner surface S 1 provided on the outer surface S 2 of the dielectric lens 2. Of course, the shape of the zoung is selected so as to satisfy desired antenna characteristics.
その他の構成,作用及び効果は上記第 1実施例と同様であるので、その記載は省 略する。  Since other configurations, operations, and effects are the same as those in the first embodiment, description thereof is omitted.
[0044] なお、この発明は、上記実施例に限定されるものではなぐ発明の要旨の範囲内に お 、て種々の変形や変更が可能である。 It should be noted that the present invention is not limited to the above-described embodiments, but is within the scope of the invention. Various modifications and changes are possible.
例えば、上記実施例では、中心角が 180° 及び 360° の誘電体レンズを適用した 例について説明したが、これに限定されるものでなぐ任意の中心角を有した誘電体 レンズを適用したアンテナ装置がこの発明の範囲内に含まれる。  For example, in the above-described embodiment, the example in which the dielectric lens having the central angles of 180 ° and 360 ° is applied has been described. However, the present invention is not limited to this, and the antenna to which the dielectric lens having an arbitrary central angle is applied. Devices are included within the scope of this invention.
また、上記実施例では、 1次放射器としてホーンアンテナを用いた 1次放射器 3, 3 ' を例にして説明したが、 1次放射器をホーンアンテナでなく平面パッチアンテナで 構成しても良い。  In the above embodiment, the primary radiator 3, 3 ′ using a horn antenna as the primary radiator has been described as an example. However, the primary radiator may be configured by a planar patch antenna instead of the horn antenna. good.
また、上記実施例では、狭ビーム化可能な形状として、凸型の誘電体レンズ 2を用 いたが、これに限定されるものではでなぐ凹型の誘電体レンズや非球面レンズ型の 誘電体レンズを適用しても良 、。  In the above-described embodiment, the convex dielectric lens 2 is used as a shape capable of narrowing the beam. However, the present invention is not limited to this, and a concave dielectric lens or an aspherical lens type dielectric lens can be used. May be applied.
[0045] また、上記第 1実施例では、 1次放射器 3を誘電体レンズ 2の焦点位置 f又はその近 傍に配して、電磁ビーム Bの鉛直方向の狭ビーム化を図った。これは、鉛直方向に拡 散した電磁ビーム Bによる路面反射等を回避するためである。しかし、 1次放射器 3を 誘電体レンズ 2の焦点位置 fから外れた位置に配しても、路面反射等を回避すること ができる。すなわち、図 19の(a)に示すように、 1次放射器 3の電磁ビーム Bの放射方 向を、誘電体レンズ 2の凸状の断面 Sに対して上向きに設定することで、鉛直方向に 広がった電磁ビーム Bが全体的に上方を向くことになり、この結果、電磁ビーム Bの路 面への入射を回避することができる。また、図 19の(b)に示すよう、 1次放射器 3の電 磁ビーム Bの放射方向に対して、誘電体レンズ 2の凸状の断面 Sを上向きに設定する ことでも、鉛直方向に広がった電磁ビーム Bを全体的に上方に向けることができる。な お、図 19の(a)及び (b)において符号 Mlは、断面 Sの中心軸である。  In the first embodiment, the primary radiator 3 is arranged at or near the focal position f of the dielectric lens 2 to narrow the electromagnetic beam B in the vertical direction. This is for avoiding road surface reflection by the electromagnetic beam B spreading in the vertical direction. However, even if the primary radiator 3 is disposed at a position away from the focal position f of the dielectric lens 2, it is possible to avoid road surface reflection and the like. That is, as shown in FIG. 19 (a), by setting the radiation direction of the electromagnetic beam B of the primary radiator 3 upward with respect to the convex cross section S of the dielectric lens 2, the vertical direction As a result, the electromagnetic beam B spreading in the whole direction is directed upward. As a result, the incidence of the electromagnetic beam B on the road surface can be avoided. Furthermore, as shown in FIG. 19 (b), by setting the convex cross section S of the dielectric lens 2 upward with respect to the radiation direction of the electromagnetic beam B of the primary radiator 3, The spread electromagnetic beam B can be directed upward as a whole. In FIGS. 19 (a) and 19 (b), the symbol Ml is the central axis of the cross section S.
[0046] 上記実施例では、アンテナ装置 1を備える装置の例として、レーダ装置 4, 4' を挙 げたが、レーダ装置だけでなぐアンテナ装置 1と、送信信号をこのアンテナ装置 1に 出力する送信部と、このアンテナ装置 1からの受信信号を受ける受信部とを備える無 線通信装置もこの発明の範囲内の技術である。  In the above embodiment, the radar devices 4 and 4 ′ are listed as examples of the device provided with the antenna device 1. However, the antenna device 1 that includes only the radar device and the transmission that outputs a transmission signal to the antenna device 1 are used. A wireless communication device including a receiver and a receiving unit that receives a reception signal from the antenna device 1 is also a technique within the scope of the present invention.

Claims

請求の範囲 The scope of the claims
[1] 電磁ビームを放射する 1次放射器と、この 1次放射器の電磁ビーム放射側に配された 2次放射器とを備えるアンテナ装置であって、  [1] An antenna device comprising a primary radiator that radiates an electromagnetic beam, and a secondary radiator disposed on the electromagnetic beam radiation side of the primary radiator,
上記 2次放射器は、所定中心角で円弧状に湾曲し且つその円周方向に鉛直な断 面が全て同一形状の誘電体レンズであり、  The secondary radiator is a dielectric lens that is curved in a circular arc shape at a predetermined central angle and whose cross sections perpendicular to the circumferential direction are all the same shape.
上記 1次放射器は、上記誘電体レンズの中心側に位置する、  The primary radiator is located on the center side of the dielectric lens.
ことを特徴とするアンテナ装置。  An antenna device characterized by that.
[2] 上記誘電体レンズの上記中心角は、 40° 〜360° の範囲内の角度である、 [2] The central angle of the dielectric lens is an angle within a range of 40 ° to 360 °.
ことを特徴とする請求項 1に記載のアンテナ装置。  The antenna device according to claim 1, wherein:
[3] 上記 1次放射器を、上記誘電体レンズの円周方向に鉛直な断面で形成されるレンズ 面の焦点位置又は焦点位置近傍に配して、この誘電体レンズから放射される電磁ビ ームを鉛直方向に狭ビーム化する、 [3] The primary radiator is disposed at or near the focal position of the lens surface formed in a cross section perpendicular to the circumferential direction of the dielectric lens, and the electromagnetic beam radiated from the dielectric lens is disposed. To narrow the beam vertically.
ことを特徴とする請求項 1又は請求項 2に記載のアンテナ装置。  The antenna device according to claim 1 or claim 2, wherein
[4] 上記 1次放射器が放射する電磁ビームの放射方向を、上記誘電体レンズの円周方 向に鉛直な断面で形成されるレンズ面に対して相対的に上向きに設定した、 ことを特徴とする請求項 1又は請求項 2に記載のアンテナ装置。 [4] The radiation direction of the electromagnetic beam radiated from the primary radiator is set to be relatively upward with respect to the lens surface formed by a cross section perpendicular to the circumferential direction of the dielectric lens. 3. The antenna device according to claim 1, wherein the antenna device is characterized.
[5] 上記 1次放射器を上記誘電体レンズの中心軸を中心にして誘電体レンズの円周方 向に回転させることにより、当該 1次放射器による誘電体レンズの円周方向への走査 を可能にした回転駆動機構を備える、 [5] By rotating the primary radiator in the circumferential direction of the dielectric lens around the central axis of the dielectric lens, scanning of the dielectric lens in the circumferential direction by the primary radiator is performed. Equipped with a rotation drive mechanism that enables
ことを特徴とする請求項 1な 、し請求項 4の 、ずれかに記載のアンテナ装置。  The antenna device according to any one of claims 1 and 4, wherein the antenna device is misaligned.
[6] 上記 1次放射器は、上記誘電体レンズの円周方向に沿って並ぶように放射状に配さ れた複数の放射器と、これら複数の放射器のうちのいずれか 1つの放射器から電磁 ビームを放射させて電磁ビームの放射方向を切り換えることにより、当該 1次放射器 による誘電体レンズの円周方向への走査を可能にした電磁ビーム切^^とを備える ことを特徴とする請求項 1な 、し請求項 4の 、ずれかに記載のアンテナ装置。 [6] The primary radiator includes a plurality of radiators arranged radially along the circumferential direction of the dielectric lens, and any one of the plurality of radiators. Electromagnetic beam cutting ^^ that enables scanning in the circumferential direction of the dielectric lens by the primary radiator by switching the radiation direction of the electromagnetic beam by radiating the electromagnetic beam from The antenna device according to any one of claims 1 and 4.
[7] 上記誘電体レンズは、その内面又は外面に、円周方向に沿って刻設された複数の 彫り込みを有するゾーユングレンズである、 ことを特徴とする請求項 1な 、し請求項 6の 、ずれかに記載のアンテナ装置。 [7] The dielectric lens is a zoeng lens having a plurality of engravings engraved along the circumferential direction on an inner surface or an outer surface thereof. The antenna device according to any one of claims 1 and 6, wherein the antenna device is shifted.
[8] 請求項 1ないし請求項 7のいずれかに記載のアンテナ装置と、送信信号をこのアンテ ナ装置に出力する送信部と、このアンテナ装置力 の受信信号を受ける受信部とを 備える、 [8] The antenna device according to any one of claims 1 to 7, a transmission unit that outputs a transmission signal to the antenna device, and a reception unit that receives a reception signal of the antenna device power.
ことを特徴とする無線通信装置。  A wireless communication apparatus.
[9] 請求項 1ないし請求項 7のいずれかに記載のアンテナ装置と、送信信号をこのアンテ ナ装置に出力する送信部と、このアンテナ装置力 の受信信号を受ける受信部と、こ の受信部で受けた受信信号に基づ 、て、電磁ビーム反射物体を探知する探知処理 部とを備える、 [9] The antenna device according to any one of claims 1 to 7, a transmission unit that outputs a transmission signal to the antenna device, a reception unit that receives a reception signal of the antenna device power, and the reception A detection processing unit for detecting an electromagnetic beam reflecting object based on the received signal received by the unit,
ことを特徴とするレーダ装置。  Radar apparatus characterized by the above.
[10] 上記誘電体レンズが一体ィ匕されたレドーム内に上記 1次放射器を配設して上記アン テナ装置を構成すると共に、上記送信部と受信部と探知処理部とを収納した筐体を このアンテナ装置の外側に取り付けた、 [10] The antenna device is configured by disposing the primary radiator in a radome in which the dielectric lens is integrated, and a housing that houses the transmitting unit, the receiving unit, and the detection processing unit. I attached my body to the outside of this antenna device,
ことを特徴とする請求項 9に記載のレーダ装置。  The radar apparatus according to claim 9, wherein:
PCT/JP2005/020352 2005-01-17 2005-11-07 Antenna assembly, wireless communication apparatus and radar WO2006075437A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-008932 2005-01-17
JP2005008932 2005-01-17

Publications (1)

Publication Number Publication Date
WO2006075437A1 true WO2006075437A1 (en) 2006-07-20

Family

ID=36677470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/020352 WO2006075437A1 (en) 2005-01-17 2005-11-07 Antenna assembly, wireless communication apparatus and radar

Country Status (1)

Country Link
WO (1) WO2006075437A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2509112A (en) * 2012-12-20 2014-06-25 Canon Kk Antenna system electromagnetic lens arrangement
JP2014518059A (en) * 2011-04-28 2014-07-24 アライアント・テクシステムズ・インコーポレーテッド Equipment for transmitting energy wirelessly using near-field energy
JP2016029363A (en) * 2014-07-24 2016-03-03 株式会社ユーシン Radio sensing device, and radar system
US9397407B2 (en) 2012-12-20 2016-07-19 Canon Kabushiki Kaisha Antenna system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2044006A (en) * 1978-11-23 1980-10-08 Decca Ltd Radar antenna
US5264859A (en) * 1991-11-05 1993-11-23 Hughes Aircraft Company Electronically scanned antenna for collision avoidance radar
JPH09222506A (en) * 1996-02-12 1997-08-26 Boeing North American Inc Lens
JP2693497B2 (en) * 1988-07-22 1997-12-24 株式会社東芝 Mechanical beam scanning antenna device
JP2000004118A (en) * 1998-06-16 2000-01-07 Mitsubishi Electric Corp Multi meter wave zone antenna device
RU2147150C1 (en) * 1998-05-26 2000-03-27 16 Центральный научно-исследовательский испытательный институт Министерства обороны Российской Федерации Toroidal scanning lens antenna
JP2001127537A (en) * 1999-10-27 2001-05-11 Mitsubishi Electric Corp Lens antenna system
JP2004056276A (en) * 2002-07-17 2004-02-19 Alps Electric Co Ltd Patch antenna
RU2236073C2 (en) * 2002-09-11 2004-09-10 16 Центральный научно-исследовательский испытательный институт Министерства обороны Российской Федерации Toroidal two-plane scanning lens antenna

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2044006A (en) * 1978-11-23 1980-10-08 Decca Ltd Radar antenna
JP2693497B2 (en) * 1988-07-22 1997-12-24 株式会社東芝 Mechanical beam scanning antenna device
US5264859A (en) * 1991-11-05 1993-11-23 Hughes Aircraft Company Electronically scanned antenna for collision avoidance radar
JPH09222506A (en) * 1996-02-12 1997-08-26 Boeing North American Inc Lens
RU2147150C1 (en) * 1998-05-26 2000-03-27 16 Центральный научно-исследовательский испытательный институт Министерства обороны Российской Федерации Toroidal scanning lens antenna
JP2000004118A (en) * 1998-06-16 2000-01-07 Mitsubishi Electric Corp Multi meter wave zone antenna device
JP2001127537A (en) * 1999-10-27 2001-05-11 Mitsubishi Electric Corp Lens antenna system
JP2004056276A (en) * 2002-07-17 2004-02-19 Alps Electric Co Ltd Patch antenna
RU2236073C2 (en) * 2002-09-11 2004-09-10 16 Центральный научно-исследовательский испытательный институт Министерства обороны Российской Федерации Toroidal two-plane scanning lens antenna

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014518059A (en) * 2011-04-28 2014-07-24 アライアント・テクシステムズ・インコーポレーテッド Equipment for transmitting energy wirelessly using near-field energy
GB2509112A (en) * 2012-12-20 2014-06-25 Canon Kk Antenna system electromagnetic lens arrangement
GB2509112B (en) * 2012-12-20 2016-07-06 Canon Kk Antenna system
US9397407B2 (en) 2012-12-20 2016-07-19 Canon Kabushiki Kaisha Antenna system
JP2016029363A (en) * 2014-07-24 2016-03-03 株式会社ユーシン Radio sensing device, and radar system

Similar Documents

Publication Publication Date Title
EP1416584B1 (en) Sector antenna apparatus and vehicle-mounted transmission and reception apparatus
US7064726B2 (en) Antenna device and transmitting/receiving device
JP4337876B2 (en) Antenna device and radar device using the same
US6864852B2 (en) High gain antenna for wireless applications
JP3650952B2 (en) Dielectric lens, dielectric lens antenna using the same, and radio apparatus using the same
US20020067314A1 (en) Antenna device, communication apparatus and radar module
JP2004325160A (en) On-vehicle radar
WO1994026001A1 (en) Steerable antenna systems
JPH10293175A (en) Collision avoidance system and collision avoidance method of vehicle
US7773042B2 (en) Conical scanning antenna system using nutation method
WO2006075437A1 (en) Antenna assembly, wireless communication apparatus and radar
JP2898862B2 (en) Object detection sensor using dielectric lens
JP2007049691A (en) Antenna module and radio apparatus
US20020118140A1 (en) Antenna system
GB2559009A (en) A frequency scanned array antenna
US7271778B1 (en) Antenna device and radar device using the same
JP3401284B2 (en) Radar / Communication Equipment
JP3229609B2 (en) Radio beam turning device and its utilization device
JPH10253746A (en) Antenna device for radar
JPH06334432A (en) Antenna system
JP2000353914A (en) Antenna device
JP2538745Y2 (en) Transceiver
JP2000114845A (en) Beam switching antenna
JPH04344706A (en) Fan beam antenna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05799888

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5799888

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP