WO2006073839A2 - Acid fungal proteases - Google Patents

Acid fungal proteases Download PDF

Info

Publication number
WO2006073839A2
WO2006073839A2 PCT/US2005/046435 US2005046435W WO2006073839A2 WO 2006073839 A2 WO2006073839 A2 WO 2006073839A2 US 2005046435 W US2005046435 W US 2005046435W WO 2006073839 A2 WO2006073839 A2 WO 2006073839A2
Authority
WO
WIPO (PCT)
Prior art keywords
protease
seq
nsp24
composition
isolated
Prior art date
Application number
PCT/US2005/046435
Other languages
French (fr)
Other versions
WO2006073839A3 (en
Inventor
Kathleen A. Clarkson
Nigel Dunn-Coleman
Suzanne E. Lantz
Craig E. Pilgrim
Pieter Van Solingen
Michael Ward
Original Assignee
Genencor International, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genencor International, Inc. filed Critical Genencor International, Inc.
Priority to EP05855059A priority Critical patent/EP1831362B1/en
Priority to DK05855059.1T priority patent/DK1831362T3/en
Priority to CN200580045498.2A priority patent/CN101094918B/en
Priority to MX2007007862A priority patent/MX2007007862A/en
Priority to CA2593080A priority patent/CA2593080C/en
Priority to MX2010001481A priority patent/MX2010001481A/en
Priority to BRPI0519766-0A priority patent/BRPI0519766A2/en
Priority to AT05855059T priority patent/ATE530643T1/en
Priority to JP2007549480A priority patent/JP5087407B2/en
Publication of WO2006073839A2 publication Critical patent/WO2006073839A2/en
Publication of WO2006073839A3 publication Critical patent/WO2006073839A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/58Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from fungi
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L13/00Meat products; Meat meal; Preparation or treatment thereof
    • A23L13/40Meat products; Meat meal; Preparation or treatment thereof containing additives
    • A23L13/42Additives other than enzymes or microorganisms in meat products or meat meals
    • A23L13/424Addition of non-meat animal protein material, e.g. blood, egg, dairy products, fish; Proteins from microorganisms, yeasts or fungi
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • A23L33/18Peptides; Protein hydrolysates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • C12P7/10Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate substrate containing cellulosic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the invention relates to polynucleotides encoding acid proteases, designated NSB24 family proteases, NSP25 family proteases and PepA proteases; the NSP24 and NSP25 family protease polypeptides; compositions including said proteases and uses thereof.
  • Proteases are enzymes capable of cleaving peptide bonds.
  • Acid proteases e.g., proteases having an acidic pH optimum
  • microbial acid proteases are produced -by bacterial strains such as strains of Bacillus sp. (JP 01240184) and fungal strains, such as strains of Rhizopus sp. (EP 72978), Schytalidi ⁇ m sp. (JP 48091273), Sulpholobus sp., Thermoplasma sp. (WO/90 10072) and Aspergillus sp. (JP 50121486 and €P 82 395).
  • Berka et al. disclose a gene encoding the aspartic proteinase aspergillopepsin A from Aspergillus awamori.
  • the cloning of a gene encoding the -aspartic proteinase aspergillopepsin O from Aspergillus oryzae is described by Berka e ⁇ al. (Gene (1993) 125:195-198).
  • the cloning of a gene encoding the acid protease (PepA) from Aspergillus oryzae is disclosed by Gomi et al. (Biosci. Biotech. Biochem. (1993) 57(7):1O95- 1100).
  • proteases and particualrly acid proteases are widely used in industrial applications, e.g., in the preparation of food and feed, in the leather industry (-e.g., to dehair hides), in the production of protein hydrolysates, and in the production of alcohols, sudi as etbanol production, wine production and brewing. Yet, there is a continuing need for proteases for many different applications, especially in the food and feed industry.
  • novel protease genes which include a novel nsp24 gene that encodes an NSP24 protease (SEQ ID NO: 2 or SEQ ID NO: 10); a novel nsp25 gene that encodes an NSP25 protease (SEQ ID NO: 9); and a novel pepA variant gene that encodes a novel PepA protease (SEQ ID NO: 7).
  • the invention features a recombinant or substantially pure preparation of an NSP24 protease, an NSP25 protease or a PepA protease and variants thereof.
  • the protease is an NSP24 family protease polypeptide which includes an amino acid sequence essentially the same as an amino acid sequence in SEQ ID NO: 2 or SEQ ID NO: 10 (illustrated in Figure 6, infra).
  • an NSP24 family protease polypeptide is encoded by the nucleic acid in SEQ ID NO: 8 (illustrated in Figure 5, infra), or by a nucleic acid having essentially the same nucleic acid sequence as with the nucleic acid from 'SEQ ID NO: 8.
  • the NSP24 family protease polypeptide differs in amino acid sequence at up to 10 residues, from a sequence in SEQ ID NO: 10. In some embodiments, the NSP24 family protease polypeptide differs in amino acid sequence at up to 10 % of the residues from a sequence in SEQ ID NO: 10. In some embodiments, the differences are such that the NSP24 family protease polypeptide exhibits an NSP24 protease biological activity, e.g., the NSP24 protease retains a biological activity of a naturally occurring NSP24 protease.
  • the NSP24 family protease polypeptide includes a NSP24 protease sequence described herein as well as other N-terminal and/or C-terminal amino acid sequences.
  • the NSP24 family protease polypeptide includes all or a fragment of an amino acid sequence from SEQ ID NO: 2 or SEQ ID NO: 10, fused, in reading frame, to additional amino acid residues, preferably to residues encoded by genomic DNA 5' to the genomic DNA which encodes a sequence from SEQ ID NO: 1 or SEQ ID NO: 8.
  • the NSP24 family protease is a recombinant fusion protein having a first NSP24 family protease portion and a second polypeptide portion, e.g., a second polypeptide portion having an amino acid sequence unrelated to an NSP24 family protease.
  • the second polypeptide portion can be a DNA binding domain or a polymerase activating domain.
  • Polypeptides of the invention include those which arise as a result of the existence of multiple genes, alternative transcription events, alternative RNA splicing events, and alternative translational and postranslational events.
  • the polypeptide can be expressed in systems, e.g., cultured cells, which result in substantially the same postranslational modifications present when expressed NSP24 protease is expressed in a native cell, or in systems which result in the omission of postranslational modifications present when expressed in a native cell.
  • the invention relates to an enzyme composition, which includes a NSP24 family protease and one or more additional components, e.g., a carrier, diluent, or solvent.
  • the additional component can be one, which renders the composition useful for in vitro, in vivo, pharmaceutical, or veterinary use.
  • the enzyme composition will include additional enzymes.
  • the additional enzyme will be a glucoamylase, an alpha amylase or combinations thereof.
  • the invention provides a substantially pure nucleic acid having or comprising a nucleotide sequence which encodes an NSP24 family protease polypeptide comprising an amino acid sequence having at least 80% sequence identity to the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 10.
  • the NSP24 family protease nucleic acid will include a transcriptional regulatory sequence, e.g. at least one of a transcriptional promoter or transcriptional enhancer sequence, operably linked to the NSP24 family protease -gene sequence, e.g., to render the NSP24 family protease gene sequence suitable for use as an expression vector.
  • a transcriptional regulatory sequence e.g. at least one of a transcriptional promoter or transcriptional enhancer sequence
  • operably linked to the NSP24 family protease -gene sequence e.g., to render the NSP24 family protease gene sequence suitable for use as an expression vector.
  • the nucleic acid which encodes an NSP24 protease -polypeptide of the invention hybridizes under stringent conditions to a nucleic acid probe corresponding to at least 12 consecutive nucleotides from SEQ ID NO: 8, more preferably to at least 20 consecutive nucleotides from SEQ ID NO: 8.
  • NSP24 family protease e.g. NSP24
  • the NSP24 family protease may be used to enzymatically breakdown agricultural wastes for production of alcohol fuels and other important industrial chemicals, for production of animal or human foodstuffs, or as a component in a detergent composition, for leather processing and protein based fiber processing (such as wool or silk), for biomass applications, for personal care applications (skin, hair, oral care, etc.) for pharmaceutical and health care applications and for production of novel peptides for use in applications above.
  • NSP24 family protease may be used to enzymatically breakdown agricultural wastes for production of alcohol fuels and other important industrial chemicals, for production of animal or human foodstuffs, or as a component in a detergent composition, for leather processing and protein based fiber processing (such as wool or silk), for biomass applications, for personal care applications (skin, hair, oral care, etc.) for pharmaceutical and health care applications and for production of novel peptides for use in applications above.
  • the invention relates to polynucleotides encoding a pepA variant protease, L388M having SEQ ID NO: 7.
  • the polynucleotide has the sequence of SEQ ID NO: 5.
  • the invention relates to NSP25 family proteases.
  • the NSP25 family protease will have at least 85% sequence identity to SEQ ID NO: 9.
  • the NSP25 family protease will be encoded by a polynucleotide having at least 85% sequence identity to SEQ ID NO: 4.
  • the NSP25 family protease will be a biologically active fragment of a parent NSP25 family protease.
  • FIG. 1 illustrates the sugar degradation (DP+3) % w/v using 1) NSP24, 2) a commercially available protease, GC106 and 3) DISTILLASE, which does not include a protease (see, Example 5).
  • FIG. 2 depicts sugar degradation (DP2) % w/v using NSP24, GC106 and
  • FIG. 3 illustrates glucose formation (DP1) using NSP24, ⁇ 3C106 and DISTILLASE.
  • the amount of glucose remaining at the end of 40 hours is less than 0.2% w/v and less than 0.1% w/v at the end of 48 hours for both the NSP24 and GC106 -samples.
  • the amount of glucose measured as % w/v at the end of 48 hours is slightly -greater than 1.0% w/v for DISTILLASE.
  • FIG. 4 illustrates ethanol production (% v/v) for NSP24, GC106 and DISTILLASE.
  • the rate and amount of ethanol produced by use of the two protease samples is essentially the same.
  • DISTILLASE produced less ethanol and at a slower rate
  • FIGS. 5A-D illustrate the nucleotide sequence (SEQ ID NO: 1) of a pTrex3g_NSP24 cDNA clone obtained from Trichoderma reesei.
  • the NSP24 gene sequence is underlined, and the putative gene intron sequence is identified in bolded format.
  • the nucleic acid sequence which encodes the protease is represented by the sequence of SEQ ID NO: 8.
  • FIGS. 6A - B illustrates the predicted amino acid sequence (407 amino acids) (SEQ ID NO: 2) for NSP24 from Trichoderma reesei (FIG. 6A) and the NSP24 nucleotide sequence with the putative intron identified in bolded letters (Fig. 6B) (SEQ ID NO: 8).
  • the signal peptide is in bold
  • the prepro sequence is in bold and underlined
  • the mature NSP24 protein starts with KYGAPIS... and is represented by SEQ ID NO: 10.
  • FIG. 7 illustrates the pTrex3g_NSP24 vector and locations of restriction enzyme cleavage sites along the nucleotide sequence of FIO. 5.
  • FIG. 8 illustrates the nucleic acid sequence (SEQ ID NO: 3) for a pepA protease. The putative introns are in bold.
  • FIG. 9A-B illustrate the nucleic acid sequence (SEQ IO NO: 4) -encoding a novel NSP25 protease (399 amino acids) (SEQ ID NO: 9). The signal sequence is in bold.
  • FIG. 10 illustrates the nucleic acid sequence (SEQ ID NO: 5) for a novel pepA protease variant (L388M) (SEQ ID NO: 7), wherein the underlined 'A' in the figure, is changed from a 'C in pepA, in Figure 8.
  • FIG. 11 illustrates the expression vector, pSL899_pepA.
  • FIGS. 12A-E illustrate the nucleotide sequence (SEQ ID NO: 6) of the expression vector pSL899_pepA.
  • the Xho I cleavage site is indicated by ⁇ and the Xba I site is indicated by * .
  • the coding sequence for pepA is shown in bold. The intr ⁇ ns are underlined.
  • FIG. 13 illustrates the amino acid sequence of the PepA variant, L388M (SEQ ID NO: 7) for the protein encoded by SEQ ID NO: 5.
  • Protease means a protein or polypeptide domain of a protein or polypeptide derived from a microorganism, e.g. a fungus, bacterium, or from a plant er animal, and that has the ability to catalyze cleavage of peptide -bonds at one or more of various positions of a protein backbone (e.g. E.C. 3.4).
  • an “acid protease” refers to a protease having the ability to hydrolyze proteins under acid conditions.
  • NSP24 family protease means an enzyme having protease activity in its native or wild type form, (e.g. the protein of FIG. 6), protease proteins having at least 50%, at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 93%, at least 95%, at least 97%, at least 98% and at least 99% sequence identity with the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 10; a derivative of the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 10, and biologically active fragments of a protease sequence.
  • derivative means a protein which is derived from a precursor or parent protein (e.g., the native protein) by addition of one or more amino acids to either or both the C- and N-terminal end, substitution of one or more amino acids at one or a number of different sites in the amino acid sequence, deletion of one or more amino acids at either or both ends of the protein or at one or more sites in the amino acid sequence, or insertion of one or more amino acids at one or more sites in the amino acid sequence.
  • a "native sequence NSP24" or “wildtype NSP24 sequence” includes a polypeptide having the same amino acid sequence as an NSP24 family protease derived from nature.
  • a “biologically active fragment” (e.g., a biologically active fragment of the NSP24 family protease having the sequence of SEQ ID NO: 10) means an NSP24 family protease or an NSP25 family protease, having protease activity but comprising less than the full sequence of a NSP24 family protease or NSP25 family protease precursor or parent protein.
  • isolated or “purified” refers to a protease that is altered from its natural state by virtue of separating the protease from one or more or all of the naturally occurring constituents with which it is associated in nature.
  • PepA refers to an acid protease having at least 95% sequence identity to SEQ ID NO: 7.
  • L388M refers to a variant PepA having the sequence of SEQ ID NO: 7.
  • NSP25 family protease means a protease enzyme having at least
  • Unrelated to an NSP24 family protease means having an amino acid sequence with less than 30% homology, less than 20% homology, or less than 10% homology with the NSP24 protease of SEQ ID NO: 10.
  • the terms "peptides”, “proteins”, and “polypeptides” are used interchangeably herein.
  • percent (%) sequence identity with respect to the amino acid or nucleotides sequences identified is defined as the percentage of amino acid residues or nucleotides in a candidate sequence that are identical with the amino acid residues or nucleotides in a sequence of interest (e.g. a NSP24 family protease sequence), after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any conservative substitutions as part of the sequence identity.
  • alpha-amylase e.g., E.G. class 3.2.1.1
  • alpha-1 ,4-glucosidic linkages These enzymes have also been described as those effecting the exo or endohydrolysis of 1 ,4- ⁇ -D-glucosidic linkages in polysaccharides containing 1 ,4- ⁇ -linked D-glucose units.
  • Another term used to describe these enzymes is "glycogenase”.
  • Exemplary enzymes include alpha-1 , 4-glucan 4- glucanohydrase glucanohydrolase.
  • glucoamylase refers to the amyloglucosidase class of enzymes (e.g., EC.3.2.1.3, glucoamylase, 1 , 4-alpha-D-glucan glucohydrolase). These are exo-acting enzymes, which release glucosyl residues from the non-reducing ends of amylose and amylopectin molecules. The enzyme also hydrolyzes alpha-1 , 6 and alpha -1 ,3 linkages although at much slower rate than alpha-1 , 4 linkages.
  • promoter means a regulatory sequence involved in binding RNA polymerase to initiate transcription of a gene.
  • heterologous promoter is a promoter which is not naturally associated with a gene or a purified nucleic acid.
  • a “purified preparation” or a “substantially pure preparation” of a polypeptide, as used herein, means a polypeptide that has been separated from cells, other proteins, lipids or nucleic acids with which it naturally occurs.
  • a “purified preparation of cells”, as used herein, refers to, in the case of plant or animal cells, an in vitro preparation of cells and not an entire intact plant or animal. In the case of cultured cells or microbial cells, it consists of a preparation of at least 10% and more preferably 50% of the subject cells.
  • a “substantially pure nucleic acid”, e.g., a substantially pure DNA, is a nucleic acid which is one or both of: not immediately contiguous with either one or both of the sequences, e.g., coding sequences, with which it is immediately contiguous (e.g., one at the 5' end and one at the 3' end) in the naturally-occurring genome of the organism from which the nucleic acid is derived; or which is substantially free of a nucleic acid sequence with which it occurs in the organism from which the nucleic acid is derived.
  • the term includes, for example, a recombinant DNA which is incorporated into a vector, e.g., into an autonomously replicating plasmid or virus, or into the genomic DNA of a prokaryote or eukaryote, or which exists as a separate molecule (e.g., a cDNA or a genomic DNA fragment produced by PCR or restriction endonuclease treatment) independent of -other DNA sequences.
  • Substantially pure DNA also includes a recombinant DNA which is part of a hybrid gene encoding additional NSP24 protease sequence.
  • homologous refers to the sequence similarity between two polypeptide molecules or between two nucleic acid molecules. When a position in both of the two compared sequences is occupied by the same base or amino acid monomer subunit, e.g., if a position in each of two DNA molecules is occupied by adenine, then the molecules are homologous at that position.
  • the percent of homology between two sequences is a function of the number of matching or homologous positions shared by the two sequences divided by the number of positions compared x 100. For example, if 6 of 10, of the positions in two sequences are matched or homologous then the two sequences are 60% homologous.
  • the DNA sequences ATTGCC and TATGGC share 50% homology. Generally, a comparison is made when two sequences are aligned to give maximum homology.
  • vector refers to a polynucleotide sequence designed to introduce nucleic acids into one or more cell types.
  • Vectors include cloning vectors, expression vectors, shuttle vectors, plasmids, phage particles, cassettes and the like.
  • expression vector means a DNA construct including a DNA sequence which is operably linked to a suitable control sequence capable of affecting the expression of the DNA in a suitable host.
  • expression means the process by which a polypeptide is produced based on the nucleic acid sequence of a gene.
  • operably linked means that a regulatory region, such as a promoter, terminator, secretion signal or enhancer region is attached to or linked to a structural gene and controls the expression of that gene.
  • a substance e.g. a polynucleotide or protein
  • derived from a microorganism means that the substance is native to the microorganism.
  • microorganism refers to a bacterium, a fungus, a virus, a protozoan, and other microbes or microscopic organisms.
  • host strain or "host cell” means a suitable host for an expression vector including DNA according to the present invention and includes progeny of said cells.
  • filamentous fungi refers to all filamentous forms of the subdivision
  • Eumycotina See, Alexopoulos, C. J. (1962), INTRODUCTORY MYCOLOGY, Wiley, New York and AINSWORTH AND BlSBY DICTIONARY OF THE FUNGI, 9 th Ed. (2001) Kirk et al., EdS., CAB International University Press, Cambridge UK).
  • These fungi are characterized by a vegetative mycelium with a cell wall composed of chitin, cellulose, and other complex polysaccharides.
  • the filamentous fungi of the present invention are morphologically, physiologically, and genetically distinct from yeasts. Vegetative growth by filamentous fungi is by hyphal elongation and carbon catabolism is obligatory aerobic.
  • Trichoderma or “Trichoderma sp.” refer to any fungal genus previously or currently classified as Trichoderma.
  • quadrete or “quad-deleted” host cells, refers to both the cells and protoplasts created from the cells of a Trichoderma host strain that lacks at least two genes coding for functional endoglucanases and at least two genes coding for functional cellobiohydrolases.
  • culturing refers to growing a population of microbial cells under suitable conditions in a liquid or solid medium.
  • culturing refers to fermentative bioconversion of a starch substrate, such as a substrate comprising granular starch, to an end-product (typically in a vessel or reactor).
  • Fermentation is the enzymatic and anaerobic breakdown of organic substances by microorganisms to produce simpler organic compounds. While fermentation occurs under anaerobic conditions it is not intended that the term be solely limited to strict anaerobic conditions, as fermentation also occurs in the presence of oxygen.
  • contacting refers to the placing of the respective enzyme(s) in sufficiently close proximity to the respective substrate to enable the enzyme(s) to convert the substrate to the end-product.
  • Those skilled in the art will recognize that mixing solutions of the enzyme with ' the respective substrates can effect contacting.
  • the term "introduced” in the context of inserting a nucleic acid -sequence into a cell means “transfection", or “transformation” or “transduction” and includes reference to the incorporation of a nucleic acid sequence into a eukaryotic or prokaryotic cell wherein the nucleic acid sequence may be incorporated into the genome of the cell ⁇ e.g., chromosome, plasmid, plastid, or mitochondrial DNA), converted into an autonomous replicon, or transiently expressed (e.g., transfected mRNA).
  • the terms “transformed”, “stably transformed” and “transgenic” used in reference to a cell means the cell has a non-native (e.g., heterologous) nucleic acid sequence integrated into its genome or as an episomal plasmid that is maintained through multiple generations.
  • heterologous with reference to a polypeptide or polynucleotide means a polypeptide or polynucleotide that does not naturally occur in a host cell.
  • overexpression means the process of expressing a polypeptide in a host cell wherein a polynucleotide has been introduced into the host cell.
  • one aspect of the invention features a "substantially pure” (or recombinant) nucleic acid that includes a nucleotide sequence encoding a NSP24 family protease or a NSP25 family protease, and/or equivalents of such nucleic acids.
  • Equivalent refers to nucleotide sequences encoding functionally equivalent polypeptides.
  • Equivalent nucleotide sequences will include sequences that differ by one or more nucleotide substitutions, additions or deletions, such as allelic variants.
  • due to the degeneracy of the genetic code equivalent nucleotide sequences include sequences that differ from the nucleotide sequence of SEQ ID NO: 8, which encodes the NSP24 protease shown in SEQ ID NO: 2.
  • sacharification refers to enzymatic conversion of starch to glucose.
  • starch refers to any material comprised of the complex polysaccharide carbohydrates of plants comprised of amylase and amylopectin with the formula (C 6 H 10 O 5 ) X , wherein X can be any number.
  • granular starch refers to uncooked (raw) starch (e.g. starch that has not been subject to gelatinization).
  • gelatinization means solubilization of a starch molecule by cooking to form a viscous suspension.
  • reaction refers to the stage in starch conversion in which gelatinized starch is hydrolyzed to give low molecular weight soluble dextrins.
  • soluble starch hydrolyzate refers to soluble products resulting from starch hydrolysis, which may comprise mono-, di-, and oligosaccharides ⁇ -e.g. glucose, maltose and higher sugars).
  • polysaccharide means a monomeric unit of a polymer such as starch wherein the degree of polymerization (DP) is 1 (e.g., glucose, mannose, fructose and galactose).
  • disaccharide means a compound that comprises two covalently linked monosaccharide units (DP2) (e.g., sucrose, lactose and maltose).
  • DP2 covalently linked monosaccharide units
  • DP3+ means polymers with a degree of polymerization greater than 3.
  • the invention relates to NSP24 family proteases, such as an acid protease and also an acid fungal protease, having at least 50%, at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 93%, at least 95%, at least 97%, at least 98% and at least 99% sequence identity to the protease of SEQ ID NO: 2 or the protease of SEQ ID NO: 10 (Fig. 6).
  • the NSP24 family protease is designated NSP24 comprising the sequence of SEQ ID NO: 10 (the mature protein sequence) or also the preprotein sequence of SEQ ID NO: 2.
  • the invention relates to biologically active fragments Of an NSP24 family protease.
  • biologically active fragments include proteases having at least 250 amino acid residues, at least 300 amino acid residues, at least 350 amino acid residues, at least 375 amino acid residues, and also at least 400 amino acid residues.
  • biologically active fragments include at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 93%, at least 95%, at least 97%, at least 98%, at least 99% of a polypeptide sequence having at least 80%, at least 85%, at least 90%, at least 93%, at least 95%, at least 97%, at least 98% and at least 99% sequence identity with the protein sequence in Figure 6 (SEQ ID NO: 2 or SEQ ID NO: 10).
  • a biologically active fragment will comprise at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 95% and at least 98% of a polypeptide sequence having at least 95% sequence identity to the parent NSP24 protease having SEQ ID NO: 2 or SEQ ID NO: 10. In some embodiments, a biologically active fragment will comprise at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 95% and at least 98% of a polypeptide sequence having at least 99% sequence identity to the parent NSP24 protease having SEQ ID NO: 2 or SEQ ID NO: 10.
  • biologically active fragments are fragments that exist in vivo, e.g., fragments which arise from post transcriptional processing or which arise from translation of alternatively spliced RNA's. Fragments include those expressed in native or endogenous cells, e.g., as a result of post-translational processing, e.g., as the result of the removal of an amino-terminal signal sequence, as well as those made in expression systems, e.g., in CHO cells. Some preferred fragments are fragments, e.g., active fragments, which are generated by proteolytic cleavage or alternative splicing events.
  • a useful NSP24 family protease fragment or NSP24 family protease analog is one which exhibits a biological activity in any biological assay for NSP24 protease activity.
  • a biologically active fragment will comprise at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, and at least 100% of the protease activity of the NSP24 having SEQ ID NO: 2 or SEQ ID NO: 10.
  • a fragment or analog possesses at least 40% or at least 90% of the protease activity of NSP24 protease (SEQ ID NO: 2 or SEQ ID NO: 10), in any in vivo or in vitro NSP24 protease assay.
  • NSP24 protease SEQ ID NO: 2 or SEQ ID NO: 10
  • Fragments of an NSP24 family protease or an NSP25 family protease can be generated by methods known to those skilled in the art.
  • the ability of a candidate fragment to exhibit a biological activity of a protease can be assessed by methods known to those skilled in the art as described herein.
  • NSP24 family proteases and NSP25 family protease containing residues that are not required for biological activity of the peptide or that result from alternative mRNA splicing or alternative protein processing events are also included.
  • the protease encompassed by the invention is a derivative of a protease having SSEQ ID NO: 2 or SEQ ID NO: 10.
  • a derivative may have at least 80%, 85%, 90%, 93%, 95%, 97%, 98% and 99% sequence identity to SEQ ID NO: 10.
  • the invention also includes protease analogs.
  • the analogs are those with modifications which increase peptide stability; such analogs may contain, for example, one or more non-peptide bonds (which replace the peptide bonds) in the peptide sequence.
  • analogs that include residues other than naturally occurring L-amino acids, e.g., D-amino acids or non-naturally occurring or synthetic amino acids, e.g., b or amino acids; and cyclic analogs.
  • Analogs can differ from naturally occurring proteases, such as an NSP24 or NSP25 protein, in amino acid sequence or in ways that do not involve sequence, or both.
  • Non-sequence modifications include in vivo or in vitro chemical derivatization of the proteases encompassed by the invention.
  • Non-sequence modifications include changes in acetylation, methylation, phosphorylation, carboxylation, or glycosylation.
  • the invention includes NSP25 family proteases.
  • NSP25 family proteases are acid proteases having at least 85%, at least 90%, at least 93%, at least 95%, at least 97%, at least 98%, and at least 99% amino acid sequence identity to the mature protein sequence of SEQ ID NO: 9 (Fig. 9) or biologically active fragments thereof.
  • One specific NSP25 family protease is the protease designated NSP25 having SEQ ID NO: 9.
  • a NSP25 family protease will be a biologically active fragment of a protease comprising at least 75%, at least 80%, at least 85%, at least 90% and at least 95% of a sequence having at least 90% sequence identity to SEQ ID NO: 9.
  • an NSP25 family protease will be a biologically active fragment of a protease comprising at least 75%, at least 80%, at least 85%, at least 90% and at least 95% of a sequence having at least 95% sequence identity to SEQ ID NO: 9.
  • an optimum pH for protease activity is in the range of pH 3.0 to 5.5. In some embodiments, the optimum pH range for protease activity is between pH 3.0 and 5.0 and in other embodiments the optimum pH range for protease activity is between pH 3.0 and 4.5.
  • a protease according to the invention, such as an NSP24 family protease or an NSP25 family protease may include an amino acid substitution such as a "conservative amino acid substitution" using L-amino acids, wherein one amino acid is replaced by another biologically similar amino acid.
  • Conservative amino acid substitutions are those that preserve the general charge, hydrophobicity /hydrophilicity, and/or steric bulk of the amino acid being substituted. Examples of conservative substitutions are those between the following groups: Gly/Ala, Val/lle/Leu, Lys/Arg, Asn/Gln, Glu/Asp, Ser/Cys/Thr, and Phe/Trp/Tyr.
  • a derivative may, for example, differ by as few as 1 to 10 amino acid residues, such as 6 -10, as few as 5, as few as 4, 3, 2, or even 1 amino acid residue.
  • Table 1 illustrates exemplary amino acid substitutions that are recognized in the art.
  • substitution may be by one or more non-conservative amino acid substitutions, deletions, or insertions that do not abolish the protease biological activity.
  • the proteases of the invention are native sequences. Such a native sequence can be isolated from nature or can be produced by recombinant or synthetic means.
  • the term "native sequence” specifically encompasses naturally-occurring truncated or secreted forms of an NSP24 or NSP25 family protease (e.g., biologically active fragments), and naturally-occurring variant forms (e.g., alternatively spliced forms).
  • an acid protease of the invention is a PepA protease having at least 97%, at least 98%, and at least 99% sequence identity to SEQ ID NO: 7.
  • the protease has the sequence of SEQ ID NO: 7 and is designated "L388M.
  • the protease is encoded by a nucleotide sequence having the sequence of SEQ ID NO: 5 or SEQ JD NO: 3.
  • the invention also relates to polynucleotide sequences encoding proteases encompassed by the invention.
  • Some of these polynucleotides include: a) polynucleotides encoding an NSP24 family protease having at least 80% at least 85%, at least 90%, at least 93%, at least 95%, at least 97%, at least 98%, and at least 99% sequence identity to SEQ ID NO: 2 or SEQ ID NO: 10; b) polynucleotides encoding the sequence of SEQ ID NO: 2; c) a polynucleotide having the sequence of SEQ ID NO: 8; d) polynucleotides encoding a biologically active fragment of an NSP24 family protease; e) polynucleotides which have at least 80%, at least 85%, at least 90%, at least
  • polynucleotides which hybridizes to a nucleic acid probe corresponding to the DNA sequence of SEQ ID NO: 4, SEQ ID NO: 8 or a fragment of SEQ ID NO: 4 or SEQ ID NO: 8, said fragment having at least 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100 or 150 consecutive nucleotides; g) polynucleotides encoding a NSP25 family protease having at least 85%, at least 90%, at least 93%, at least 95%, at least 97%, at least 98%, and at least 99% sequence identity to SEQ ID NO: 4; h) polynucleotides encoding the protease of SEQ ID NO: 9; i) a polynucleotide having the sequence of SEQ ID NO: 4; j) polynucleotides encoding a biologically active
  • the present invention encompasses polynucleotides which encode the same polypeptide.
  • a nucleic acid is hybridizable to another nucleic acid sequence when a single stranded form of the nucleic acid can anneal to the other nucleic acid under appropriate conditions of temperature and solution ionic strength.
  • Hybridization and washing conditions are well known in the art for hydridization under low, medium, high and very high stringency conditions (See, e.g., Sambrook (1989) supra, particularly chapters 9 and 11).
  • hybridization involves a nucleotide probe and a homologous DNA sequence that from stable double stranded hybrids by extensive base-pairing of complementary polynucleotides (Also see, Chapter 8, Gene Cloning, An Introduction, T.A. Brown (1995) Chapman and Hall
  • the filter with the probe and homologous sequence may be washed in 2x sodium chloride/sodium citrate (SSC), 0.5% SDS at about 6O 0 C (medium stringency), 65 0 C (medium/high stringency), 70 0 C (high stringency) and about 75°C (very high stringency) (Current Protocols in Molecular Biology, John Wiley & Sons, New York, 1989, 6.3.1 - 6.3.6, hereby incorporated by reference);
  • SSC sodium chloride/sodium citrate
  • allelic variations include allelic variations; natural mutants; induced mutants; proteins encoded by DNA that hybridizes under high or low stringency conditions to a nucleic acid which encodes a polypeptide of SEQ ID NO: 2, SEQ ID NO: 8, SEQ ID NO: 9 and SEQ ID NO: 10 and polypeptides specifically bound by antisera to an NSP24 protease having SEQ ID NO: 2 or SEQ ID NO: 10, especially by antisera to an active site or binding domain of NSP24 protease.
  • a nucleic acid which encodes a NSP24 family protease of the invention hybridizes under high stringency conditions to a nucleic acid corresponding to at least 12, 15 or 20 consecutive nucleotides from SEQ ID NO: 8.
  • Nucleic acids and polypeptides of the invention include those that differ from the sequences disclosed herein by virtue of sequencing errors in the disclosed sequences.
  • Homology of DNA sequences is determined by the degree of identity between two DNA sequences. Homology or percent identity may be determined for polypeptide sequences or nucleotides sequences using computer programs. Methods for performing sequence alignment and determining sequence identity are known to the skilled artisan, may be performed without undue experimentation, and calculations of identity values may be obtained with definiteness. See, for example, Ausubel et al., eds. (1995) Current Protocols in Molecular Biology, Chapter 19 (Greene Publishing and Wiley-lnterscience, New York); and the ALIGN program (Dayhoff (1978) in Atlas of Protein Sequence and Structure 5:Suppl. 3 (National Biomedical Research Foundation, Washington, D.C.).
  • a number of algorithms are available for aligning sequences and determining sequence identity and include, for example, the homology alignment algorithm of Needleman et al. (1970) J. MoI. Biol. 48:443; the local homology algorithm of Smith et al. (1981) Adv. Appl. Math. 2:482; the search for similarity method of Pearson et al. (1988) Proc. Natl. Acad. Sci. 85:2444; the Smith-Waterman algorithm (Meth. MoI. Biol. 70:173-187 (1997); and BLASTP, BLASTN, and BLASTX algorithms (see Altschul et al. (1990) J. MoI. Biol. 215:403-410).
  • Computerized programs using these algorithms are also available, and include, but are not limited to: ALIGN or Megalign (DNASTAR) software, or WU-BLAST-2 (Altschul et al., Meth. Enzym., 266:460-480 (1996)); or GAP, BESTFIT, BLAST Altschul et al., supra, FASTA, and TFASTA, available in the Genetics Computing Group (GCG) package, Version 8, Madison, Wis., USA; and CLUSTAL in the PC/Gene program by Intelligenetics, Mountain View, Calif. Those skilled in the art can determine appropriate parameters for measuring alignment, including algorithms needed to achieve maximal alignment over the length of the sequences being compared.
  • GCG Genetics Computing Group
  • sequence identity is determined using the default parameters determined by the program. Specifically, sequence identity can be determined by the Smith-Waterman homology search algorithm (Meth. MoI. Biol. 70:173-187 (1997)) as implemented in MSPRCH program (Oxford Molecular) using an affine gap search with the following search parameters: gap open penalty of 12, and gap extension penalty of 1.
  • paired amino acid comparisons can be carried out using the GAP -program of the GCG sequence analysis software package of Genetics Computer Group, Inc., Madison, Wis., employing the blosum62 amino acid substitution matrix, with a gap weight of 12 and a length weight of 2.
  • the contiguous segment of the variant amino acid sequence may have additional amino acid residues or deleted amino acid residues with respect to the reference amino acid sequence.
  • the contiguous segment used for comparison to the reference amino acid sequence will include at least 20 contiguous amino acid residues, and may be 30, 40, 50, or more amino acid residues. Corrections for increased sequence identity associated with inclusion of gaps in the derivative's amino acid sequence can be made by assigning gap penalties.
  • the proteases encompassed by the invention is derived from a bacterium or a fungus, such as a filamentous fungus.
  • a bacterium or a fungus such as a filamentous fungus.
  • filamentous fungi include Aspergillus spp. and Trichoderma spp.
  • Trichoderma spp. is T. reesei.
  • the proteases and/or DNA encoding the proteases according to the instant invention may be derived from a fungus, such as, Absidia spp.; Acremonium spp.; Aga ⁇ cus spp.; Anaeromyces spp.; Aspergillus spp., including A. aculeatus, A. awamori, A. flavus, A. foetidus, A. fumaricus, A. fumigatus, A. nidulans, A. niger, A. oryzae, A. terreus and A.
  • Neocallimastix spp. spp.
  • Orpinomyces spp. Penicillium spp; Phanerochaete spp.; Phlebia spp.; Piromyces spp.; Rhizopus spp.; Schizophyllum spp.; Trametes spp.; Trichoderma spp., including T. reesei, T. reesei (longibrachiatum) and T. viride; and Zygorhynchus spp.
  • this invention provides for host cells transformed with DNA constructs and vector as described herein.
  • a polynucleotide encoding a protease encompassed by the invention e.g. a NSP24 family protease having at least 95% sequence identity to SEQ ID NO: 2
  • a polynucleotide encoding a protease encompassed by the invention e.g. a NSP24 family protease having at least 95% sequence identity to SEQ ID NO: 2
  • the polynucleotide codes for an endogenous protease which is overexpressed in the host cell.
  • the invention provides for the expression of heterologous protease genes or overexpression of protease genes under control of gene promoters functional in host cells such as bacterial and fungal host cells.
  • filamentous fungal host cells include Trichoderma spp. (e.g. T. viride and T. reesei, the asexual morph of Hypocrea jecorina, previously classified as T. longibrachiatum), Penicillium spp., Humicola spp. (e.g. H. insolens and H. grisea), Aspergillus spp. (e.g., A. niger, A. nidulans, A. orzyae, and A. awamori), Fusarium spp. (F. graminum), Neurospora spp., Hypocrea spp.
  • Trichoderma spp. e.g. T. viride and T. reesei, the asexual morph of Hypocrea jecorina, previously classified as T. longibrachiatum
  • Penicillium spp. e.g. H. insolens and H. grisea
  • Further host cells may include Bacillus spp (e.g. B. subtilis, B. licheniformis, B. lent ⁇ s, B. stearothremophilus and B. brevis) and Str-eptomyces spp. (e.g., S coelicolor and S. lividans (TK23 and TK21)).
  • Bacillus spp e.g. B. subtilis, B. licheniformis, B. lent ⁇ s, B. stearothremophilus and B. brevis
  • Str-eptomyces spp. e.g., S coelicolor and S. lividans (TK23 and TK21)
  • Heterologous genes comprising gene promoter sequences for example of filamentous fungi are typically cloned into intermediate vectors before transformation into host cells, such as Thchoderma reesei cells for replication and/or expression.
  • These intermediate vectors are typically prokaryotic vectors, e.g., plasmids, or shuttle vectors.
  • the heterologous gene is preferably positioned about the same distance from the promoter as is in the naturally occurring gene. As is known in the art, however, some variation in this distance can be accommodated without loss of promoter function.
  • a natural promoter can be modified by replacement, substitution, addition or elimination of one or more nucleotides without changing its function.
  • the practice of the invention encompasses and is not constrained by such alterations to the promoter.
  • the expression vector/construct typically contains a transcription unit or expression cassette that contains all the additional elements r.equired for the expression of the heterologous sequence.
  • a typical expression cassette thus -contains a promoter operably linked to the heterologous nucleic acid sequence and signals required for efficient polyadenylation of the transcript, ribosome binding sites, and translation termination.
  • Additional elements of the cassette may include enhancers and, if genomic DNA is used as the structural gene, introns with functional splice donor and acceptor sites.
  • exemplary promoters are the Thchoderma r ⁇ ese/cbh1 ,.cbh2, eg1 , eg2, eg3, eg5, xln1 and xln2 promoters. Also promoters from A. awamori and A. niger glucoamylase genes (glaA) (Nunberg et al., (1984) MoI. Cell Biol. 4:2306 - 2315) and the promoter from A. nidulans acetamidase find use in the vectors.
  • glaA A. awamori and A. niger glucoamylase genes
  • a preferred promoter for vectors used in Bacillus subtilis is the AprE promoter; a preferred promoter used in E. coli is the Lac promoter, a preferred promoter used in Saccharomyces cerevisiae is PGK1 , a preferred promoter used in Aspergillus niger is glaA, and a preferred promoter for Trichoderma reesei is cbhl.
  • the expression cassette should also contain a transcription termination region downstream of the structural gene to provide for efficient termination.
  • the termination region may be obtained from the same gene as the promoter sequence or may be obtained from different genes.
  • terminators include: the terminator from Aspergillus nid ⁇ lans trpC gene (Yelton, M. et al. (1984) PNAS USA 81 :1470-1474, Mullaney, E.J. et al. (1985) MGG 199:37-45), the Aspergillus awamori or Aspergillus niger glucoamylase genes (Nunberg, J. H. et al. (1984) MoI. Cell Biol. 4:2306, Boel, E. et al.(1984) EMBO J. 3:1581-1585), the Aspergillus oryzae TAKA amylase gene, and the Mucor miehei carboxyl protease gene (EPO Publication No. 0 215 594).
  • the particular expression vector used to transport the genetic information into the cell is not particularly critical. Any of the conventional vectors used for expression in eukaryotic or prokaryotic cells may be used. Standard bacterial expression vectors include bacteriophages ⁇ and M13, as well as plasmids such as pBR322 based plasmids, pSKF, pET23D, and fusion expression systems such as MBP, GST, and LacZ. Epitope tags can also be added to recombinant proteins to provide convenient methods of isolation, e.g., c- myc.
  • Suitable expression and/or integration vectors are provided in Sambrook et al., (1989) supra, Bennett and Lasure (Eds.) More Gene Manipulations in Fungi, (1991) Academic Press pp. 70 - 76 and pp. 396 - 428 and articles cited therein; USP 5,874,276 and Fungal Genetic Stock Center Catalogue of Strains, (FGSC, www.fgsc.net.).
  • Useful vectors may be obtained from Promega and Invitrogen. Some specific useful vectors include pBR322, pUC18, pUCIOO, pDONTM201 , pENTRTM, pGEN®3Z and pG'EN®4Z.
  • the invention is intended to include other forms of expression vectors which serve equivalent functions and which are, or become, known in the art.
  • host/expression vector combinations may be employed in expressing the DNA sequences of this invention.
  • Useful expression vectors may consist of segments of chromosomal, non-chromosomal and synthetic DNA sequences such as various known derivatives of SV40 and known bacterial plasmids, e.g., plasmids from E.
  • an expression vector includes a selectable marker.
  • selectable markers include ones which confer antimicrobial resistance.
  • Nutritional markers also find use in the present invention including those markers known in the art as amdS, argB and pyr4. Markers useful for the transformation of Trichoderma are known in the art (see, e.g., Finkelstein, chapter 6, in Biotechnology of Filamentous Fungi, Finkelstein et al., EDS Butterworth-Heinemann, Boston MA (1992) and Kinghorn et al.,
  • the expression vectors will also include a replicon, a gene encoding antibiotic resistance to permit selection of bacteria that harbor recombinant plasmids, and unique restriction sites in nonessential regions of the plasmid to allow insertion of heterologous sequences.
  • antibiotic resistance gene chosen is not critical, any of the many resistance genes known in the art are suitable.
  • the prokaryotic sequences are preferably chosen such that they do not interfere with the replication or integration of the DNA in Trichoderma reesei.
  • the methods of transformation of the present invention may result in the stable integration of all or part of the transformation vector into the genome of a host cell, such as a filamentous fungal host cell.
  • transformation resulting in the maintenance of a self-replicating extra-chromosomal transformation vector is also contemplated.
  • any of the well-known procedures for introducing foreign nucleotide sequences into host cells may be used. These include the use of calcium phosphate - transfection, polybrene, protoplast fusion, electroporation, biolistics, liposomes, microinjection, plasma vectors, viral vectors and any of the other well known methods for introducing cloned genomic DNA, cDNA, synthetic DNA or other foreign genetic material into a host cell (see, e.g., Sambrook et al., supra). Also of use is the Agrobacterium- mediated transfection method described in U.S. Patent No. 6,255,115. It is only necessary that the particular genetic engineering procedure used be capable of successfully introducing at least one gene into the host cell capable of expressing the gene.
  • the invention concerns a method for producing a protease encompassed by the invention (e.g. an NSP 24 family protease) which comprises introducing into a host cell a polynucleotide comprising a promoter operably linked to a nucleic acid encoding a protease, such as a NSP family protease, culturing the host cell under suitable culture conditions for the expression and production of the protease, and producing said protease.
  • the protease is a NSP24 family protease having at least 95% sequence identity to SEQ ID NO: 2 or SEQ ID NO: 10 or biologically active fragments thereof.
  • the transfected or transformed cells are cultured under conditions favoring expression of genes under control of protease gene promoter sequences. Large batches of transformed cells can be cultured as described in Example 3, infra. Finally, product is recovered from the culture using standard techniques.
  • the invention herein provides for the expression and enhanced secretion of desired polypeptides whose expression is under control of gene promoter sequences including naturally occurring protease genes, fusion DNA sequences, and various heterologous constructs.
  • the invention also provides processes for expressing and secreting high levels of such desired polypeptides.
  • Protein Expression Proteins of the present invention are produced by culturing cells transformed with a vector such as an expression vector containing genes whose expression is under control of gene promoter sequences.
  • the present invention is particularly useful for enhancing the intracellular and/or extracellular production of proteins, such as proteases encompassed by the invention.
  • the protein may be homologous or heterologous.
  • Conditions appropriate for expression of said genes comprise providing to the culture an inducing feed composition of the instant invention. Optimal conditions for the production of the proteins will vary with the choice of the host cell, and with the choice of protease protein to be expressed. Such conditions will be easily ascertained by one skilled in the art through routine experimentation or optimization.
  • the protease protein of interest is may be isolated or recovered and purified after expression.
  • the protein of interest may be isolated or purified in a variety of ways known to those skilled in the art depending on what other components are present in the sample. Standard purification methods include electrophoretic, molecular, immunological and chromatographic techniques, including ion exchange, hydrophobic, affinity, and reverse- phase HPLC chromatography, and chromatofocusing.
  • the protein of interest may be purified using a standard anti-protein of interest antibody column. Ultrafiltration and diafiltration techniques, in conjunction with protein concentration, are also useful.
  • suitable purification techniques see Scopes, Protein Purification (1982). The degree of purification necessary will vary depending on the use of the protein of interest. In some instances no purification will be necessary.
  • Host cells and transformed cells can be cultured in conventional nutrient media.
  • the culture media for transformed host cells may be modified as appropriate for activating promoters and selecting transformants.
  • the specific culture conditions such as temperature, pH and the like, may be those that are used for the host cell selected for expression, and will be apparent to those skilled in the art.
  • preferred culture conditions may be found in the scientific literature such as Sambrook, (1982) supra; Kieser, T, MJ. Bibb, MJ. Buttner, KF Chater, and D.A. Hopwood (2000) PRACTICAL STREPTOMYCES GENETICS. John lnnes Foundation, Norwich UK; Harwood.
  • Stable transformants of fungal host cells such as Trichoderma cells can generally be distinguished from unstable transformants by their faster growth rate or the formation of circular colonies with a smooth rather than ragged outline on solid culture medium.
  • a polypeptide encompassed by the invention such as a polypeptide having at least 80% sequence identity to SEQ ID NO: 10, produced by the transformed host cell may -be recovered from the culture medium by conventional procedures including separating the host cells from the medium by centrifugation or filtration, or if necessary, disrupting the cells and removing the supernatant from the cellular fraction and debris.
  • a salt e.g., ammonium sulphate.
  • the precipitated proteins are then solubilized and may be purified by a variety of chromatographic procedures, e.g., ion exchange chromatography, gel filtration chromatography, affinity chromatography, and other art- recognized procedures.
  • Antibodies to the peptides and proteins can be made -by immunizing an animal, e.g., a rabbit or mouse, and recovering anti-NSP24 protease antibodies by prior art methods.
  • Assays that find use in the present invention include, but are not limited to those described in WO 9934011 and USP 6,605,458.
  • the present invention is directed to compositions comprising a protease of the invention as described herein.
  • Some non-limiting examples of -proteases useful in compositions and applications according to the invention include for example an NSP24 family protease or a NSP25 family protease, more specifically an NSP24 family protease having at least 85% sequence identity to SEQ ID NO: 2 or biologically active fragments thereof, such as a protease having at least 90% sequence identity to the sequence of SEQ ID NO: 10.
  • the enzyme composition is a single- component protease composition.
  • the present invention is directed to methods of using the proteases of the invention in industrial and commercial applications. The following description of compositions and industrial applications is intended to be exemplary and non-inclusive.
  • compositions comprising proteases of the invention may further include additional enzymes, such as, but not limited to, glucoamylases, alpha amylases, granular starch hydrolyzing enzymes, cellulases, lipases, xylanases, cutinases, hemicellulases, oxidases and combinations thereof.
  • additional enzymes such as, but not limited to, glucoamylases, alpha amylases, granular starch hydrolyzing enzymes, cellulases, lipases, xylanases, cutinases, hemicellulases, oxidases and combinations thereof.
  • the compositions will include a protease of the invention having at least 85% sequence identity to the sequence of SEQ ID NO: 10 and a . glucoamylase.
  • the glucoamylase may be a wild type glucoamylase obtained from a filamentous fungal source, such as a strain of Aspergillus, Trichoderma or Bhizop ⁇ s ox the glucoamylase may be a protein engineered glucoamylase, such as a variant of an Aspergillus niger glucoamylase.
  • a composition will include a protease of the invention and an alpha amylase.
  • the alpha amylase may be obtained from a bacterial source such as a Bacillus spp or from a fungal source such as an Aspergillus spp.
  • the compositions may include a protease according to the invention and both glucoamylase and alpha amylase enzymes. Commercially sources of these enzymes are known and available from, for example Genencor International, Inc. and Novozymes A/S.
  • the present invention has contemplated use in ethanol production, baking, fruit juice production, brewing, distilling, wine making, leather, oils and fats, paper and pulp and the animal feed production.
  • the present invention as contemplated is the active "biological" component of detergents and cleaning products.
  • proteases, amylases and lipases are used to break down protein, starch and fatty stains.
  • Embodiments of the invention include testing the compatibility of enzymes with detergent ingredients by doing stability studies and testing them in a variety of formulations.
  • the present invention has contemplated enzymatic uses for the liquefaction and saccharification of starch into glucose and isomerisation into fructose.
  • the present invention may be used to convert large volumes of plant substrates, such as grains, ⁇ e.g. corn, wheat, milo, rye and the like) into sweeteners, like high fructose corn syrup and maltose syrup.
  • the enzyme(s) of the instant invention has application in the food and feed industry to improve the digestibility of proteins.
  • the proteases also find uses in various industrial applications, particularly in the textile, lithographic, chemical arts, agriculture, environmental waste conversion, biopulp processing, biomass conversion , to fuel, and other chemical procedure(s). Further, the proteases have applications, which find use in healthcare and personal care products such as cosmetics, skin care, toothpaste and the like.
  • the present enzymes described herein find use in animal feeds.
  • the feeds may include plant material such as corn, wheat, sorghum, soybean, canola, sunflower or mixtures of any of these plant materials or plant protein sources for poultry, pigs, ruminants, aquaculture and pets. It is contemplated that the performance parameters, such as growth, feed intake and feed efficiency, but also improved uniformity, reduced ammonia concentration in the animal house and consequently improved welfare and health status of the animals will be improved.
  • Dietary protein hydrolysates represent a small, but important market segment. Such preparations are used for postoperative patients or for individuals with an impaired digestive system.
  • the hydrolysates may be administered as comparatively crude preparations per se (Clegg, 1978 In “Biochemical Aspects of New Protein Food", J, Adler-Nissen, B,O, Eggum, L, Munck & H.S. Olsen eds., p. 109-117, Pergamon, Oxford) or as highly purified mixtures of amino acids for intravenous administration. Enzyme hydrolysates of milk proteins have been applied as dietary preparations.
  • Enzymatic tenderization of muscle foods, and in particular meat represents a large market segment, which is presently dominated by plant proteases and certain microbial enzymes. Enzymatic maturation and tenderization of fish muscle is also of considerable importance in many countries. Thus, the presently describe enzymes find use in various uses in food.
  • the enzyme or enzyme compositions of the invention may be useful to make protein hydrolysates from, e.g., vegetable proteins like soy, pea, lupine or rape- ⁇ eed protein, milk like casein, meat proteins, or fish proteins.
  • the enzyme(s) described herein may be used for protein hydrolysates to improve the solubility, consistency or fermentability, to reduce antigenicity, to reduce bitter taste of hydrolysates or for other purposes to make food, feed or medical products.
  • the enzyme(s) described herein may be used alone or together with other peptidases or together with other. enzymes like exopeptidases.
  • the use of the enzyme(s) described herein together with exopeptidase rich enzyme preparations will improve the taste of the protein hydrolysates.
  • the enzyme or enzyme compositions may be used in the processing of fish or meat, e.g. to change texture and/or viscosity.
  • Wool and Silk - Proteases described herein find use in the industrial treatment of wool goods to impart desirable properties.
  • the present invention provides compositions for the treatment of textiles.
  • the composition can be used to treat for example silk or wool (See e.g., RE 216,034; EP 134,267; US 4,533,359; and EP 344,259).
  • the method of this invention can be applied to treat protein containing fibers, for instance keratin fibers. It is suitable to treat wool, wool fiber or animal hair, such as -angora, mohair, cashmere, alpacca, or other commercially useful animal hair product, which may originate from sheep, goat, lama, camel, rabbit etc. Also silk, spidersilk or human hair can be treated with the method of this invention.
  • the fibers may be in the form of fiber, top, yarn or woven or knitted fabric or garments.
  • the present invention also relates to cleaning compositions containing the protease(s) of the invention.
  • the cleaning compositions may additionally ⁇ ontain additives which are commonly used in cleaning compositions. These can be selected from, but not limited to, bleaches, surfactants, builders, enzymes and bleach catalysts. It would be readily apparent to one of ordinary skill in the art what additives are suitable for inclusion into the compositions. The list provided herein is by no means exhaustive and should be only taken as examples of suitable additives. It will also be readily apparent to one of ordinary skill in the art to only use those additives which are compatible with the enzymes and other components in the composition, for example, surfactant.
  • Proteins, particularly those of the invention can be formulated into known powdered and liquid detergents having an acidic pH between 3.5 and 7.0 at levels of about .01 to about 5% (preferably 0.1 % to 0.5%) by weight.
  • these detergent cleaning compositions further include other enzymes such as amylases, additional proteases, cellulases, lipases or endoglycosidases, as well as builders and stabilizers.
  • the pH is between 4.0 and 6.5, preferably between 4.0 and 5.6.
  • proteins to conventional cleaning compositions does not create any special use limitations.
  • any temperature and pH suitable for the detergent are also suitable for the present compositions, as long as the pH is within the above range, and the temperature is below the described protein's denaturing temperature.
  • proteins of the invention find use in cleaning compositions without detergents, again either alone or in combination with builders and stabilizers.
  • the bitter peptides occurring in protein hydrolysates may represent a considerable practical problem, as is the case, e,g,, during the ripening of different types of cheese and in the production of dietary protein hydrolysates.
  • the bitterness of hydrolysates is usually due to particular peptides, and especially those which contain a high proportion of hydrophobic amino acids. Bitterness can be effectively reduced by complete or partial hydrolyses of the bitter peptides.
  • the enzymes described herein find use in debittering of foods.
  • the enzyme or enzyme compositions of the invention may be used for reducing the bitterness of proteins and/or protein hydrolysate for foodstuff.
  • Also contemplated according to the invention is the production of free amino acids from proteins and/or protein hydrolysates. In the case when the free amino acid is glutamine acid, it enhances the flavor of food products.
  • Said protein or protein hydrolysate may be of animal or vegetable origin.
  • the protein to be hydrolyzed is casein or soy protein.
  • the protein may be use for producing foodstuff such as cheese and foodstuff containing cocoa.
  • the enzyme(s) described herein and enzyme preparations enriched with an enzyme of the invention may be used especially advantageously in connection with producing proteins or protein hydrolysates without bitter taste
  • the enzyme(s) described herein can be used for a number of industrial applications, including degradation or modification of protein containing substances, such cell walls.
  • Some proteins, like extensins, are components of plant cell walls. The enzyme(s) described herein will therefore facilitate the degradation or modification of plant cell walls.
  • the dosage of the enzyme preparation of the invention and other conditions under which the preparation is used may be determined on the basis of methods known in the art.
  • Protein precipitates may also present a considerable problem in certain products such as e.g, beer, because the precipitate causes the product to be hazy, In beer the haziness arises when soluble proteins precipitate during chill storage of the beer, The problem is of considerable economic importance and, apart from selecting suitable raw materials for the manufacture of beer, the main way of avoiding the problem today is to add proteolytic enzymes to the beer.
  • an effective amount is added to personal care composition(s) that find use in personal care products.
  • personal care products can be classified/described as cosmetic, over-the-counter (“OTC") compounds that find use in personal care applications (e.g., cosmetics, skin care, oral care, hair care, nail care).
  • OTC over-the-counter
  • the proteases described herein are added to a personal care composition such as a hair care composition, a skin care composition, a nail care composition, a cosmetic composition, or any combinations thereof.
  • the enzyme or enzyme preparation may be used, for example, in solutions for cleaning contact lenses, toothpaste, cosmetics and skin care products.
  • Proteases described herein find use in the production of high maltose or high fructose syrups as well as other sweeteners.
  • Raw materials that contain fermentable sugars or constituents which can be converted into sugars are usually starch -containing plant materials including but not limited to tubers, roots, stems, cobs and grains of cereal plants (e.g. corn, wheat, milo, barely, and rye) and sugar-containing raw materials such as sugar beet, sugar cane, fruit materials, and molasses.
  • the enzyme preparation may be useful for production of peptides from proteins, where it is advantageous to use a cloned enzyme essentially free from other proteolytic activities.
  • enzyme(s) e.g. purified enzymes
  • hydrolyze a suitable protein source it is possible to produce a crude preparation of free amino acids and peptides which is highly suitable as a substrate for microorganisms that have a specific requirement for amino acids for growth.
  • prebiotic refers to a food or feed ingredient that beneficially affects the host by selectively stimulating 4he growth and/or activity of one or a limited number of bacteria in the digestive track, preferably in the colon.
  • Fermentation and Bioethanol - Production of alcohol from the fermentation of starch containing substrates using protease compositions of the invention may include the production of fuel alcohol or portable alcohol.
  • the enzyme compositions may also be used to facilitate yeast fermentation of barley, malt and other raw materials for the production of e.g. beer.
  • Amylases are enzymes fundamental to the brewing and baking industries. Amylases are required to break down starch in malting and in certain baking procedures carried out in the absence of added sugars or other carbohydrates. Obtaining adequate activity of these enzymes is problematic especially in the malting industry. A method of adequately increasing the activity of amylases with a physiologically acceptable system, leads to more rapid malting methods and, owing to increased sugar availability, to alcoholic beverages such as beers with reduced carbohydrate content. In some embodiments, the hydrolysis of starch containing substrates, such as grains
  • the protease will be used in compositions with glucoamylase and optionally alpha amylases in a combined saccharification and fermentation step, also referred to as simultaneous saccharification and fermentation.
  • USP 5,231 ,017 discloses a process for producing ethanol using a protease derived from Aspergillus niger which includes obtaining a liquefied mash and introducing the protease into the liquefied mash during the saccharification step which may be combined with a fermentation step
  • the protease composition of the invention will be used to produce alcohol, e.g.
  • the process in a no cook process with granular starch substrates, wherein the process is conducted at a temperature below the gelatinization temperature of the starch in the substrate used to produce the alcohol.
  • the quantity of the protease used in the starch hydrolysis processes will depend on the enzymatic activity of the protease. In some embodiments, the amount will be in the range of 0.001 to 2.0 ml of a 2% solution of the protease added to 450 g of a slurry adjusted to 20 - 33% dry solids, wherein the slurry is the liquefied mash during the saccharification and/or in the hydrolyzed starch. Other useful ranges include 0.005 to 1.5 ml and also 0.01 to 1.0 ml.
  • Seeds or grains treated with proteases provide advantages in the production of malt and beverages produced by a fermentation process. It is desirable also to use proteases during saccharification so as to hydrolyze the proteins in the flour and thus enrich the wort with soluble nitrogen in anticipation of the subsequent alcoholic fermentation stage. Enhanced activity of amylases in grain increases the speed and efficiency of germination, important in malting, where malt is produced having increased enzymatic activity resulting in enhanced hydrolysis of starch to fermentable carbohydrates, thereby, improving the efficiency of fermentation in the production of alcoholic beverages, for example, beer and scotch whiskey.
  • SAPU spectrophotometric acid protease unit, wherein in 1 SAPU is the amount of protease enzyme activity that liberates one micromole of tyrosine per minute from a casein substrate under conditions of the assay
  • GAU glucoamylase unit, which is defined as the amount of enzyme that will produce 1 g of reducing sugar calculated as glucose per hour from a soluble starch substrate at pH 4.2 and 60 0 C).
  • Genomic DNA was extracted from T. reesei strain QM6a.
  • PCR primers were designed, based on the putative protease sequence found in contig 1 -5500 of the T. reesei genome (Joint Genome Institute (JGI) T. reesei genome v1.0).
  • the forward primer contained a motif for directional cloning into the pENTR/D vector (Invitrogen).
  • the sequence of the afp6f primer was CACCATGCAGACCTTTGGAGCT (SEQ ID NO: 11), and the sequence of the afp7r primer was TTATTTCTGAGCCCAGCCCAG (SEQ ID NO: 12).
  • the 1.3 kb 'PCPI product was purified by gel extraction (OeI Purification kit, Qiagen) and cloned into pENTR/D, according to the Invitrogen Gateway system protocol. The vector was then transformed into chemically competent Topi 0 E.coli (Invitrogen) with kanamycin selection. Plasmid DNA, from several independent clones, was digested with restriction enzymes to confirm the correct size insert.
  • the protease gene insert was sequenced (Sequetech, Mountain View, CA) from several clones. Plasmid DNA from one clone, pENTR/D_55.3, was added to the LR clonase reaction (Invitrogen Gateway system) with pTrex3g/amdS destination vector DNA.
  • the pTrex3g vector is based on the E. coli pSL1180 (Pharmacia Inc., NJ), which is a pUC118 phagemid based vector and is described in WO 05/001036. Recombination, in the LR clonase reaction, replaced the CmR and ccdB genes of the destination vector with the T.
  • Plasmid DNA from clone, pTrex3g_55.3.1 was digested with Xbal to release the expression cassette including the cbhl promoter:NSP24 protease:terminator:amdS.
  • This 5.8kb cassette was purified by agarose gel extraction, using standard techniques, and transformed into a strain of T. reesei derived from the publicly available strain QM6a (See, WO 05/001036).
  • Genomic DNA was extracted from T. reesei strain QM6a.
  • PCR primers were designed, based on the putative protease sequence found in contig 22-263400 of the T. reesei genome (JGI T. reesei genome v1.0).
  • the forward primer contained a motif for directional cloning into the pENTR/D vector (Invitrogen).
  • the sequence of the afp ⁇ f primer was CACCATGCAGCCCTCATTTGGCAG (SEQ
  • the 1.2 kb PCR product was purified by gel extraction (Gel Purification kit, Qiagen) and cloned into pENTR/D, according to the Invitrogen Gateway system protocol. The vector was then transformed into chemically competent Top10 E.coli (Invitrogen) with kanamycin selection. Plasmid DNA, from several independent clones, was digested with restriction enzymes to confirm the correct size insert. The protease gene insert was sequenced (Sequetech, Mountain View, CA) from several clones.
  • Plasmid DNA from one clone, pENTR/D_22.2 was added to the LR clonase reaction ( I nvitrogen Gateway system) with pTrex3g/amdS destination vector DNA. Recombination, in the LR clonase reaction, replaced the CmR and ccdB genes of the destination vector with the T. reese/protease from pENTR/D_22.2. This recombination directionally inserted protease between the cbhl promoter and terminator of the destination vector. Recombination site sequences of 44 and 50 bp remained upstream and downstream, respectively, of the protease gene.
  • Plasmid DNA from several clones was digested with restriction enzymes to confirm the correct insert size. Plasmid DNA from clone, pTrex3g_22.2#1 was digested with Xbal (and EcoRI to digest the bacterial backbone into small fragments, which migrated away from the cassette during electrophoresis) to release the expression cassette including the cbhl promoter: NSP25 protease:terminator:amc ( S. This 5.7 kb cassette was purified by agarose gel extraction, using standard techniques, and transformed into a strain of T. reesei derived from the publicly available strain QM6a. The plasmid used for transformation was essentially the same as the plasmid illustrated in Figure 7 except, the NSP24 insert was replaced with the NSP25 sequence.
  • Trichoderma PEG Fungal Transformation A 2 cm 2 agar plug from a plate of sporulated mycelia was inoculated into 50ml of
  • the mycelia were recovered by transferring liquid volume into 50ml conical tubes and spun at 2500 rpm for 10 minutes. The supernatant was aspirated off.
  • the mycelial pellet was transferred into a 250ml, 0.22 ⁇ m CA Corning filter bottle containing 40ml of filter- sterilized ⁇ -D-glucanase (InterSpex Products, Inc.) solution and incubated at 3O 0 C, 200rpm for 2 hours.
  • the mycelia were harvested through sterile Miracloth (CalBiochem, LaJoIIa, CA) into a 50 ml conical centrifuge tube, centrifuged at 2000 rpm for 5 minutes, aspirated. The pellet was washed once with 50 ml of 1.2M sorbitol, centrifuged again, aspirated, and washed with 25 ml of sorbitol/CaCI 2 . The protoplasts were counted using a hemocytometer, centrifuged, aspirated, and resuspended in a volume of sorbitol/CaCI 2 sufficient to generate a protoplast concentration of 1.25 x 10 8 AnI. Aliquots of 200 ⁇ l were used per transformation reaction.
  • Acetamide Sorbitol Agar (Plates and top agar)
  • Acetamide (Aldrich 99% sublimed) - 0.6 g/L; CsCI - 1.68 g/L; Glucose - 20 g/L; KH 2 PO 4 - 20 g/L; MgSO 4 * 7H 2 O - 0.6 g/L; CaCI 2 * 2H 2 O - 0.6 g/L; 1000X salts (see below) - 1 ml. pH adjusted to 5.5 and volume brought to 300 ml. Filter sterilized with 0.22 micron filter and warmed to 55 0 C in an oven.
  • T. reesei culture media (Davis, et al., (1970) Methods Enzymol. 17:79 - 143) was inoculated with an agar plug. Cultures were incubated for 3 days at 3O 0 C, with shaking. Culture broth was passed through a 0.22 micron filter, and the filtrate spotted onto 1 % Skim milk agar. Clearing zones were observed following overnight incubation at room temperature.
  • the pH-activity profiles of PepA (Wild type and L388M), NSP24 and NSR25 all of which were overexpressed in a strain of Trichoderma reesei were determined using a fluorescently labeled casein assay obtained from Molecular Probes (EnzChek Portease Kit- Green fluorescence).
  • the PepA (wildtype and L388M) and NSP were whole fermentation samples and NSP24 was a purified protein stabilized in 50% glycerol.
  • the enzymes were diluted to 1.0 mg/ml, 0.5 mg/ml and 0.25 mg/ml. Fluorescently labeled substrate was diluted to 0.1 mg/ml in Dl H 2 0.
  • NSP24 has optimal activity at pH 3.7
  • wild-type PepA has optimal activity at pH 3.4
  • L388M pepA has optimal pH at 3.5
  • NSP25 has optimal activity at pH 4.6.
  • a standard protease used in the ethanol industry today is the protease GC106 sold commercially by Genencor International, Inc.
  • the functionality of NSP24 to GC 106 was compared with respect to sugar degradation, glucose formation, and ethanol production.
  • Mash and thin stillage also referred to as backset, prior to fermentation
  • the pH was adjusted to pH 4.3 using 1 N HCL. Samples were then divided into 3-300 gram aliquots and placed into a 32 C C water bath. After equilibration, the following enzyme combinations were added:
  • DISTILLASEL-400 is a liquid glucoamylase derived from Aspergillus niger which can be obtained from Genencor International Inc. After enzyme addition, 1.00 gram/flask of Red Star Red yeast was added. Samples were taken at 16, 24, 40, and 48 hours and centrifuged. 500 ul of each sample was placed into a test tube with 50 ul of a 1.1 NH 2 SO 4 to stop the reaction. After 2 minutes, the samples were diluted with 4.5 ml of Dl H 2 O and mixed. After mixing, the samples were run through a 0.45-micron filter and placed into HPLC vials for analysis. The samples were analyzed by HPLC (Phenomenex Ftezex ⁇ u). Results are illustrated in Figures 1 - 4. NSP24 performed similarly to GC 106.
  • a 30% DS slurry of ground corn was made up with Dl H 2 O.
  • the ground corn was a typical sample of #2 Yellow dent corn used in the ethanol industry, which was ground so that greater than 70% would pass thru a 30 mesh screen.
  • the moisture content of the grain was measured using an OHAUS, MB 35 Halogen moisture balance (NJ).
  • the pH was adjusted to 4.2 using 6N H 2 SO 4 . Fermentations were conducted in 125 ml flasks containing 100 g mash with STARGEN 001 dosed at 1.0 GAU/g and with or without NSP24 dosed at 0.5kg/MT.
  • Red Star Ethanol Red dry yeast (Lesaffre yeast Corporation, Milwaukee, Wl) in 45 mis of water was prepared and mixed in a 32°C water bath one hour prior to inoculating the fermenters. 0.5 ml of the yeast slurry was added to each 125 ml flask. The flasks were placed in a 32°C water bath and the mash mixed gently.
  • a 29.5 % DS mash using endosperm (degermed corn, 75.8% starch, particle size of 99.5% ⁇ 30 mesh) as a granular starch substrate was prepared.
  • One hundred grams of each mash was transferred to a 125 ml flask, and the pH of the medium was adjusted to pH 4.5.

Abstract

The present invention is directed to novel acid proteases and more specifically to NSP24 family proteases and NSP25 family proteases including biologically active fragments thereof and to nucleic acid molecules encoding said proteases. Also provided are vectors and host cells including nucleic acid sequences coding for the proteases, methods for producing the proteases, enzyme compositions and methods employing said proteases.

Description

ACID FUNGAL PROTEASES
RELATED APPLICATIONS
The present application claims priority to U.S. Provisional Patent Application No. 60/640,399, entitled Acid Fungal Proteases, filed December 30, 2004 and U.S. Provisional Patent Application No. 60/648,233, entitled Acid Fungal Proteases, filed January 27, 2005, the contents of which are fully incorporated herein by reference.
FIELD OF THE INVENTION
The invention relates to polynucleotides encoding acid proteases, designated NSB24 family proteases, NSP25 family proteases and PepA proteases; the NSP24 and NSP25 family protease polypeptides; compositions including said proteases and uses thereof.
BACKGROUND OF THE INVENTION
Proteases are enzymes capable of cleaving peptide bonds. Acid proteases (e.g., proteases having an acidic pH optimum) are produced by a number of different organisms including mammals and microbes. For instance, microbial acid proteases are produced -by bacterial strains such as strains of Bacillus sp. (JP 01240184) and fungal strains, such as strains of Rhizopus sp. (EP 72978), Schytalidiυm sp. (JP 48091273), Sulpholobus sp., Thermoplasma sp. (WO/90 10072) and Aspergillus sp. (JP 50121486 and€P 82 395).
Berka et al. (Gene (1990) 96:313) disclose a gene encoding the aspartic proteinase aspergillopepsin A from Aspergillus awamori. The cloning of a gene encoding the -aspartic proteinase aspergillopepsin O from Aspergillus oryzae is described by Berka e\ al. (Gene (1993) 125:195-198). The cloning of a gene encoding the acid protease (PepA) from Aspergillus oryzae is disclosed by Gomi et al. (Biosci. Biotech. Biochem. (1993) 57(7):1O95- 1100).
Proteases and particualrly acid proteases are widely used in industrial applications, e.g., in the preparation of food and feed, in the leather industry (-e.g., to dehair hides), in the production of protein hydrolysates, and in the production of alcohols, sudi as etbanol production, wine production and brewing. Yet, there is a continuing need for proteases for many different applications, especially in the food and feed industry.
SUMMARY OF THE INVENTION
Applicants have discovered a number of novel protease genes, which include a novel nsp24 gene that encodes an NSP24 protease (SEQ ID NO: 2 or SEQ ID NO: 10); a novel nsp25 gene that encodes an NSP25 protease (SEQ ID NO: 9); and a novel pepA variant gene that encodes a novel PepA protease (SEQ ID NO: 7).
Accordingly, the invention features a recombinant or substantially pure preparation of an NSP24 protease, an NSP25 protease or a PepA protease and variants thereof. In some aspects of the invention, the protease is an NSP24 family protease polypeptide which includes an amino acid sequence essentially the same as an amino acid sequence in SEQ ID NO: 2 or SEQ ID NO: 10 (illustrated in Figure 6, infra). In some embodiments, an NSP24 family protease polypeptide is encoded by the nucleic acid in SEQ ID NO: 8 (illustrated in Figure 5, infra), or by a nucleic acid having essentially the same nucleic acid sequence as with the nucleic acid from 'SEQ ID NO: 8.
In other aspects of the invention, the NSP24 family protease polypeptide differs in amino acid sequence at up to 10 residues, from a sequence in SEQ ID NO: 10. In some embodiments, the NSP24 family protease polypeptide differs in amino acid sequence at up to 10 % of the residues from a sequence in SEQ ID NO: 10. In some embodiments, the differences are such that the NSP24 family protease polypeptide exhibits an NSP24 protease biological activity, e.g., the NSP24 protease retains a biological activity of a naturally occurring NSP24 protease.
In further aspects of the invention, the NSP24 family protease polypeptide includes a NSP24 protease sequence described herein as well as other N-terminal and/or C-terminal amino acid sequences.
In additional aspects of the invention, the NSP24 family protease polypeptide includes all or a fragment of an amino acid sequence from SEQ ID NO: 2 or SEQ ID NO: 10, fused, in reading frame, to additional amino acid residues, preferably to residues encoded by genomic DNA 5' to the genomic DNA which encodes a sequence from SEQ ID NO: 1 or SEQ ID NO: 8.
In yet other aspects of the invention, the NSP24 family protease is a recombinant fusion protein having a first NSP24 family protease portion and a second polypeptide portion, e.g., a second polypeptide portion having an amino acid sequence unrelated to an NSP24 family protease. The second polypeptide portion can be a DNA binding domain or a polymerase activating domain. Polypeptides of the invention include those which arise as a result of the existence of multiple genes, alternative transcription events, alternative RNA splicing events, and alternative translational and postranslational events. The polypeptide can be expressed in systems, e.g., cultured cells, which result in substantially the same postranslational modifications present when expressed NSP24 protease is expressed in a native cell, or in systems which result in the omission of postranslational modifications present when expressed in a native cell.
In still other aspects, the invention relates to an enzyme composition, which includes a NSP24 family protease and one or more additional components, e.g., a carrier, diluent, or solvent. The additional component can be one, which renders the composition useful for in vitro, in vivo, pharmaceutical, or veterinary use. In some embodiments of this aspect, the enzyme composition will include additional enzymes. In preferred embodiments, the additional enzyme will be a glucoamylase, an alpha amylase or combinations thereof.
In yet a further aspect, the invention provides a substantially pure nucleic acid having or comprising a nucleotide sequence which encodes an NSP24 family protease polypeptide comprising an amino acid sequence having at least 80% sequence identity to the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 10.
In some aspects, the NSP24 family protease nucleic acid will include a transcriptional regulatory sequence, e.g. at least one of a transcriptional promoter or transcriptional enhancer sequence, operably linked to the NSP24 family protease -gene sequence, e.g., to render the NSP24 family protease gene sequence suitable for use as an expression vector.
In yet other aspects, the nucleic acid which encodes an NSP24 protease -polypeptide of the invention (e.g., SEQ ID NO: 2), hybridizes under stringent conditions to a nucleic acid probe corresponding to at least 12 consecutive nucleotides from SEQ ID NO: 8, more preferably to at least 20 consecutive nucleotides from SEQ ID NO: 8.
Another aspect of the present invention provides for applications of an NSP24 family protease (e.g. NSP24) in a variety of industrial settings. For example, the NSP24 family protease may be used to enzymatically breakdown agricultural wastes for production of alcohol fuels and other important industrial chemicals, for production of animal or human foodstuffs, or as a component in a detergent composition, for leather processing and protein based fiber processing (such as wool or silk), for biomass applications, for personal care applications (skin, hair, oral care, etc.) for pharmaceutical and health care applications and for production of novel peptides for use in applications above. In further aspects, the invention relates to polynucleotides encoding a pepA variant protease, L388M having SEQ ID NO: 7. In some embodiments, the polynucleotide has the sequence of SEQ ID NO: 5.
In yet another aspect, the invention relates to NSP25 family proteases. Income embodiments, the NSP25 family protease will have at least 85% sequence identity to SEQ ID NO: 9. In other embodiments the NSP25 family protease will be encoded by a polynucleotide having at least 85% sequence identity to SEQ ID NO: 4. In yet other embodiments the NSP25 family protease will be a biologically active fragment of a parent NSP25 family protease.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates the sugar degradation (DP+3) % w/v using 1) NSP24, 2) a commercially available protease, GC106 and 3) DISTILLASE, which does not include a protease (see, Example 5). FIG. 2 depicts sugar degradation (DP2) % w/v using NSP24, GC106 and
DISTILLASE.
FIG. 3 illustrates glucose formation (DP1) using NSP24, <3C106 and DISTILLASE. The amount of glucose remaining at the end of 40 hours is less than 0.2% w/v and less than 0.1% w/v at the end of 48 hours for both the NSP24 and GC106 -samples. In contrast, the amount of glucose measured as % w/v at the end of 48 hours is slightly -greater than 1.0% w/v for DISTILLASE.
FIG. 4 illustrates ethanol production (% v/v) for NSP24, GC106 and DISTILLASE. The rate and amount of ethanol produced by use of the two protease samples is essentially the same. In contrast, DISTILLASE produced less ethanol and at a slower rate, FIGS. 5A-D illustrate the nucleotide sequence (SEQ ID NO: 1) of a pTrex3g_NSP24 cDNA clone obtained from Trichoderma reesei. The NSP24 gene sequence is underlined, and the putative gene intron sequence is identified in bolded format. The nucleic acid sequence which encodes the protease is represented by the sequence of SEQ ID NO: 8.
FIGS. 6A - B illustrates the predicted amino acid sequence (407 amino acids) (SEQ ID NO: 2) for NSP24 from Trichoderma reesei (FIG. 6A) and the NSP24 nucleotide sequence with the putative intron identified in bolded letters (Fig. 6B) (SEQ ID NO: 8). In Figure 6A, the signal peptide is in bold, the prepro sequence is in bold and underlined and the mature NSP24 protein starts with KYGAPIS... and is represented by SEQ ID NO: 10. FIG. 7 illustrates the pTrex3g_NSP24 vector and locations of restriction enzyme cleavage sites along the nucleotide sequence of FIO. 5. FIG. 8 illustrates the nucleic acid sequence (SEQ ID NO: 3) for a pepA protease. The putative introns are in bold.
FIG. 9A-B illustrate the nucleic acid sequence (SEQ IO NO: 4) -encoding a novel NSP25 protease (399 amino acids) (SEQ ID NO: 9). The signal sequence is in bold.
FIG. 10 illustrates the nucleic acid sequence (SEQ ID NO: 5) for a novel pepA protease variant (L388M) (SEQ ID NO: 7), wherein the underlined 'A' in the figure, is changed from a 'C in pepA, in Figure 8.
FIG. 11 illustrates the expression vector, pSL899_pepA.
FIGS. 12A-E illustrate the nucleotide sequence (SEQ ID NO: 6) of the expression vector pSL899_pepA. The Xho I cleavage site is indicated by Λ and the Xba I site is indicated by *. The coding sequence for pepA is shown in bold. The intrøns are underlined.
FIG. 13 illustrates the amino acid sequence of the PepA variant, L388M (SEQ ID NO: 7) for the protein encoded by SEQ ID NO: 5.
DETAILED DESCRIPTION OF THE INVENTION The invention will now be described in detail by way of reference only using the following definitions and examples. All patents and publications, including all sequences disclosed within such patents and publications, referred to herein are expressly incorporated by reference. "
The practice of the present invention will employ, unless otherwise indicated, conventional techniques of cell biology, cell culture, molecular -biology, transgenic biology, microbiology, recombinant DNA, and immunology, which are within 4he skill of the art. Such techniques are described in the literature. See, for example, Molecular Cloning A Laboratory Manual, 2nd Ed., ed. by Sambrook, Fritsch and Maniatis (Cold Spring Harbor Laboratory Press: 1989); Ausubel et al., "Eds Short Protocols in Molecular Biology (5th Ed. 2002); DNA Cloning, Volumes I and Il (D. N. Glover ed., 1985); Oligonucleotide Synthesis (M. J. Gait ed., 1984); Mullis et al. U.S. Patent No: 4,683,195; Nucleic Acid Hybridization (B. D. Hames & S. J. Higgins eds. 1984); Transcription And Translation (B. D. Hames & S. J. Higgins eds. 1984); Culture Of Animal Cells (R. I. Freshney, Alan R. Liss, Inc., 1987); Immobilized Cells And Enzymes (IRL Press, 1986); B. Perbal, A Practical-Guide To Molecular Cloning (1984); the treatise, Methods In Enzymology (Academic Press, Inc.,
N.Y.); Gene Transfer Vectors For Mammalian Cells (J. H. Miller and M. P. Calos eds., 1987, Cold Spring Harbor Laboratory); Methods In Enzymology, VoIs. 154 and 155 (Wu et al. eds.), Immunochemical Methods In Cell And Molecular Biology (Mayer and Walker, eds., Academic Press, London, 1987); Handbook Of Experimental Immunology, Volumes I-IV <D. M. Weir and C. C. Blackwell, eds., 1986); Manipulating the Mouse Embryo, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1986). Also, information regarding methods of preparation, expression, isolation and use of proteases may be obtained by review of U.S. Pat. No. 6,768,001 , which is herein, in its entirety, incorporated by reference.
Other features and advantages of the invention will be apparent from the following detailed description, and from the claims. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials are described.
Unless defined otherwise herein, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Singleton, et al., DICTIONARY OF MICROBIOLOGY AND MOLECULAR BIOLOGY, 2D ED., John Wiley and Sons, New York (1994), and Hale & Markham, THE HARPER COLLINS DICTIONARY OF BIOLOGY, Harper Perennial, NY (1991) provide one of skill with general dictionaries of many of the terms used in this invention.
The headings provided herein are not limitations of the various aspects or embodiments of the invention which can be had by reference to the specification as a whole. Accordingly, the terms defined immediately below are more fully defined by reference to the specification as a whole.
Numeric ranges are inclusive of the numbers defining the range. Unless otherwise indicated, nucleic acids are written left to right in 51 to 3' orientation; amino acid sequences are written left to right in amino to carboxy orientation, respectively. It should be noted that, as used in this specification and the appended claims, the singular forms "a," "an," and "the" include plural references unless the content clearly dictates otherwise. Thus, for example, reference to a composition containing "a compound" includes a mixture of two or more compounds. It should also be noted that the term "or" is generally employed in its sense including "and/or" unless the content clearly dictates otherwise.
Definitions -
"Protease" means a protein or polypeptide domain of a protein or polypeptide derived from a microorganism, e.g. a fungus, bacterium, or from a plant er animal, and that has the ability to catalyze cleavage of peptide -bonds at one or more of various positions of a protein backbone (e.g. E.C. 3.4).
An "acid protease" refers to a protease having the ability to hydrolyze proteins under acid conditions.
As used herein, "NSP24 family protease" means an enzyme having protease activity in its native or wild type form, (e.g. the protein of FIG. 6), protease proteins having at least 50%, at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 93%, at least 95%, at least 97%, at least 98% and at least 99% sequence identity with the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 10; a derivative of the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 10, and biologically active fragments of a protease sequence. As used herein, "derivative" means a protein which is derived from a precursor or parent protein (e.g., the native protein) by addition of one or more amino acids to either or both the C- and N-terminal end, substitution of one or more amino acids at one or a number of different sites in the amino acid sequence, deletion of one or more amino acids at either or both ends of the protein or at one or more sites in the amino acid sequence, or insertion of one or more amino acids at one or more sites in the amino acid sequence.
As used herein, a "native sequence NSP24" or "wildtype NSP24 sequence "includes a polypeptide having the same amino acid sequence as an NSP24 family protease derived from nature.
A "biologically active fragment " (e.g., a biologically active fragment of the NSP24 family protease having the sequence of SEQ ID NO: 10) means an NSP24 family protease or an NSP25 family protease, having protease activity but comprising less than the full sequence of a NSP24 family protease or NSP25 family protease precursor or parent protein.
The terms "isolated" or "purified" refers to a protease that is altered from its natural state by virtue of separating the protease from one or more or all of the naturally occurring constituents with which it is associated in nature.
"PepA" refers to an acid protease having at least 95% sequence identity to SEQ ID NO: 7.
"L388M" refers to a variant PepA having the sequence of SEQ ID NO: 7. As used herein "NSP25 family protease" means a protease enzyme having at least
85% sequence identity to SEQ ID NO: 9 and biologically active fragments thereof.
"Unrelated to an NSP24 family protease " means having an amino acid sequence with less than 30% homology, less than 20% homology, or less than 10% homology with the NSP24 protease of SEQ ID NO: 10. The terms "peptides", "proteins", and "polypeptides" are used interchangeably herein.
As used herein, "percent (%) sequence identity" with respect to the amino acid or nucleotides sequences identified is defined as the percentage of amino acid residues or nucleotides in a candidate sequence that are identical with the amino acid residues or nucleotides in a sequence of interest (e.g. a NSP24 family protease sequence), after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any conservative substitutions as part of the sequence identity.
As used herein the term "alpha-amylase (e.g., E.G. class 3.2.1.1)" refers to enzymes that catalyze the hydrolysis of alpha-1 ,4-glucosidic linkages. These enzymes have also been described as those effecting the exo or endohydrolysis of 1 ,4-α-D-glucosidic linkages in polysaccharides containing 1 ,4-α-linked D-glucose units. Another term used to describe these enzymes is "glycogenase". Exemplary enzymes include alpha-1 , 4-glucan 4- glucanohydrase glucanohydrolase.
As used herein the term "glucoamylase" refers to the amyloglucosidase class of enzymes (e.g., EC.3.2.1.3, glucoamylase, 1 , 4-alpha-D-glucan glucohydrolase). These are exo-acting enzymes, which release glucosyl residues from the non-reducing ends of amylose and amylopectin molecules. The enzyme also hydrolyzes alpha-1 , 6 and alpha -1 ,3 linkages although at much slower rate than alpha-1 , 4 linkages.
The term "promoter" means a regulatory sequence involved in binding RNA polymerase to initiate transcription of a gene.
A "heterologous promoter", as used herein is a promoter which is not naturally associated with a gene or a purified nucleic acid.
A "purified preparation" or a "substantially pure preparation" of a polypeptide, as used herein, means a polypeptide that has been separated from cells, other proteins, lipids or nucleic acids with which it naturally occurs.
A "purified preparation of cells", as used herein, refers to, in the case of plant or animal cells, an in vitro preparation of cells and not an entire intact plant or animal. In the case of cultured cells or microbial cells, it consists of a preparation of at least 10% and more preferably 50% of the subject cells. A "substantially pure nucleic acid", e.g., a substantially pure DNA, is a nucleic acid which is one or both of: not immediately contiguous with either one or both of the sequences, e.g., coding sequences, with which it is immediately contiguous (e.g., one at the 5' end and one at the 3' end) in the naturally-occurring genome of the organism from which the nucleic acid is derived; or which is substantially free of a nucleic acid sequence with which it occurs in the organism from which the nucleic acid is derived. The term includes, for example, a recombinant DNA which is incorporated into a vector, e.g., into an autonomously replicating plasmid or virus, or into the genomic DNA of a prokaryote or eukaryote, or which exists as a separate molecule (e.g., a cDNA or a genomic DNA fragment produced by PCR or restriction endonuclease treatment) independent of -other DNA sequences. Substantially pure DNA also includes a recombinant DNA which is part of a hybrid gene encoding additional NSP24 protease sequence.
"Homologous", as used herein, refers to the sequence similarity between two polypeptide molecules or between two nucleic acid molecules. When a position in both of the two compared sequences is occupied by the same base or amino acid monomer subunit, e.g., if a position in each of two DNA molecules is occupied by adenine, then the molecules are homologous at that position. The percent of homology between two sequences is a function of the number of matching or homologous positions shared by the two sequences divided by the number of positions compared x 100. For example, if 6 of 10, of the positions in two sequences are matched or homologous then the two sequences are 60% homologous. By way of example, the DNA sequences ATTGCC and TATGGC share 50% homology. Generally, a comparison is made when two sequences are aligned to give maximum homology.
As used herein the term "vector" refers to a polynucleotide sequence designed to introduce nucleic acids into one or more cell types. Vectors include cloning vectors, expression vectors, shuttle vectors, plasmids, phage particles, cassettes and the like. As used herein, "expression vector" means a DNA construct including a DNA sequence which is operably linked to a suitable control sequence capable of affecting the expression of the DNA in a suitable host.
The term "expression" means the process by which a polypeptide is produced based on the nucleic acid sequence of a gene.
As used herein, "operably linked" means that a regulatory region, such as a promoter, terminator, secretion signal or enhancer region is attached to or linked to a structural gene and controls the expression of that gene.
As used herein, a substance (e.g. a polynucleotide or protein) "derived from" a microorganism means that the substance is native to the microorganism.
As used herein, "microorganism" refers to a bacterium, a fungus, a virus, a protozoan, and other microbes or microscopic organisms.
As used herein, "host strain" or "host cell" means a suitable host for an expression vector including DNA according to the present invention and includes progeny of said cells. The term "filamentous fungi" refers to all filamentous forms of the subdivision
Eumycotina (See, Alexopoulos, C. J. (1962), INTRODUCTORY MYCOLOGY, Wiley, New York and AINSWORTH AND BlSBY DICTIONARY OF THE FUNGI, 9th Ed. (2001) Kirk et al., EdS., CAB International University Press, Cambridge UK). These fungi are characterized by a vegetative mycelium with a cell wall composed of chitin, cellulose, and other complex polysaccharides. The filamentous fungi of the present invention are morphologically, physiologically, and genetically distinct from yeasts. Vegetative growth by filamentous fungi is by hyphal elongation and carbon catabolism is obligatory aerobic.
As used herein, the term "Trichoderma" or "Trichoderma sp." refer to any fungal genus previously or currently classified as Trichoderma.
As used herein the term "quad-delete" or "quad-deleted" host cells, refers to both the cells and protoplasts created from the cells of a Trichoderma host strain that lacks at least two genes coding for functional endoglucanases and at least two genes coding for functional cellobiohydrolases.
As used herein the term "culturing" refers to growing a population of microbial cells under suitable conditions in a liquid or solid medium. In one embodiment, culturing refers to fermentative bioconversion of a starch substrate, such as a substrate comprising granular starch, to an end-product (typically in a vessel or reactor). Fermentation is the enzymatic and anaerobic breakdown of organic substances by microorganisms to produce simpler organic compounds. While fermentation occurs under anaerobic conditions it is not intended that the term be solely limited to strict anaerobic conditions, as fermentation also occurs in the presence of oxygen.
As used herein the term "contacting" refers to the placing of the respective enzyme(s) in sufficiently close proximity to the respective substrate to enable the enzyme(s) to convert the substrate to the end-product. Those skilled in the art will recognize that mixing solutions of the enzyme with' the respective substrates can effect contacting. The term "introduced" in the context of inserting a nucleic acid -sequence into a cell, means "transfection", or "transformation" or "transduction" and includes reference to the incorporation of a nucleic acid sequence into a eukaryotic or prokaryotic cell wherein the nucleic acid sequence may be incorporated into the genome of the cell {e.g., chromosome, plasmid, plastid, or mitochondrial DNA), converted into an autonomous replicon, or transiently expressed (e.g., transfected mRNA).
As used herein, the terms "transformed", "stably transformed" and "transgenic" used in reference to a cell means the cell has a non-native (e.g., heterologous) nucleic acid sequence integrated into its genome or as an episomal plasmid that is maintained through multiple generations. As used herein the term "heterologous" with reference to a polypeptide or polynucleotide means a polypeptide or polynucleotide that does not naturally occur in a host cell.
The term "overexpression" means the process of expressing a polypeptide in a host cell wherein a polynucleotide has been introduced into the host cell. As described herein, one aspect of the invention features a "substantially pure" (or recombinant) nucleic acid that includes a nucleotide sequence encoding a NSP24 family protease or a NSP25 family protease, and/or equivalents of such nucleic acids.
The term "equivalent" refers to nucleotide sequences encoding functionally equivalent polypeptides. Equivalent nucleotide sequences will include sequences that differ by one or more nucleotide substitutions, additions or deletions, such as allelic variants. For example in some embodiments, due to the degeneracy of the genetic code equivalent nucleotide sequences include sequences that differ from the nucleotide sequence of SEQ ID NO: 8, which encodes the NSP24 protease shown in SEQ ID NO: 2.
As used herein the term "saccharification" refers to enzymatic conversion of starch to glucose.
As used herein "starch" refers to any material comprised of the complex polysaccharide carbohydrates of plants comprised of amylase and amylopectin with the formula (C6H10O5)X , wherein X can be any number.
The term "granular starch" refers to uncooked (raw) starch (e.g. starch that has not been subject to gelatinization).
As used herein the term "gelatinization" means solubilization of a starch molecule by cooking to form a viscous suspension.
As used herein the term "liquefaction" refers to the stage in starch conversion in which gelatinized starch is hydrolyzed to give low molecular weight soluble dextrins. As used herein the term "soluble starch hydrolyzate" refers to soluble products resulting from starch hydrolysis, which may comprise mono-, di-, and oligosaccharides {-e.g. glucose, maltose and higher sugars).
The term "monosaccharide" means a monomeric unit of a polymer such as starch wherein the degree of polymerization (DP) is 1 (e.g., glucose, mannose, fructose and galactose).
The term "disaccharide" means a compound that comprises two covalently linked monosaccharide units (DP2) (e.g., sucrose, lactose and maltose).
The term "DP3+" means polymers with a degree of polymerization greater than 3.
Proteases and polynucleotides encoding the same -
The invention relates to NSP24 family proteases, such as an acid protease and also an acid fungal protease, having at least 50%, at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 93%, at least 95%, at least 97%, at least 98% and at least 99% sequence identity to the protease of SEQ ID NO: 2 or the protease of SEQ ID NO: 10 (Fig. 6). In some embodiments, the NSP24 family protease is designated NSP24 comprising the sequence of SEQ ID NO: 10 (the mature protein sequence) or also the preprotein sequence of SEQ ID NO: 2.
In some embodiments, the invention relates to biologically active fragments Of an NSP24 family protease. In some embodiments, biologically active fragments include proteases having at least 250 amino acid residues, at least 300 amino acid residues, at least 350 amino acid residues, at least 375 amino acid residues, and also at least 400 amino acid residues.
In other embodiments, biologically active fragments include at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 93%, at least 95%, at least 97%, at least 98%, at least 99% of a polypeptide sequence having at least 80%, at least 85%, at least 90%, at least 93%, at least 95%, at least 97%, at least 98% and at least 99% sequence identity with the protein sequence in Figure 6 (SEQ ID NO: 2 or SEQ ID NO: 10). In some embodiments, a biologically active fragment will comprise at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 95% and at least 98% of a polypeptide sequence having at least 95% sequence identity to the parent NSP24 protease having SEQ ID NO: 2 or SEQ ID NO: 10. In some embodiments, a biologically active fragment will comprise at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 95% and at least 98% of a polypeptide sequence having at least 99% sequence identity to the parent NSP24 protease having SEQ ID NO: 2 or SEQ ID NO: 10.
In some embodiments, biologically active fragments are fragments that exist in vivo, e.g., fragments which arise from post transcriptional processing or which arise from translation of alternatively spliced RNA's. Fragments include those expressed in native or endogenous cells, e.g., as a result of post-translational processing, e.g., as the result of the removal of an amino-terminal signal sequence, as well as those made in expression systems, e.g., in CHO cells. Some preferred fragments are fragments, e.g., active fragments, which are generated by proteolytic cleavage or alternative splicing events.
Because peptides, such as an NSP24 family protease often exhibit a range of physiological properties and because such properties may be attributable to different portions of the molecule, a useful NSP24 family protease fragment or NSP24 family protease analog is one which exhibits a biological activity in any biological assay for NSP24 protease activity. In some embodiments, a biologically active fragment will comprise at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, and at least 100% of the protease activity of the NSP24 having SEQ ID NO: 2 or SEQ ID NO: 10. In some preferred embodiments, a fragment or analog possesses at least 40% or at least 90% of the protease activity of NSP24 protease (SEQ ID NO: 2 or SEQ ID NO: 10), in any in vivo or in vitro NSP24 protease assay. Fragments of an NSP24 family protease or an NSP25 family protease can be generated by methods known to those skilled in the art. The ability of a candidate fragment to exhibit a biological activity of a protease can be assessed by methods known to those skilled in the art as described herein. Also included are NSP24 family proteases and NSP25 family protease containing residues that are not required for biological activity of the peptide or that result from alternative mRNA splicing or alternative protein processing events.
In some embodiments, the protease encompassed by the invention is a derivative of a protease having SSEQ ID NO: 2 or SEQ ID NO: 10. A derivative may have at least 80%, 85%, 90%, 93%, 95%, 97%, 98% and 99% sequence identity to SEQ ID NO: 10. The invention also includes protease analogs. The analogs are those with modifications which increase peptide stability; such analogs may contain, for example, one or more non-peptide bonds (which replace the peptide bonds) in the peptide sequence. Also included are: analogs that include residues other than naturally occurring L-amino acids, e.g., D-amino acids or non-naturally occurring or synthetic amino acids, e.g., b or amino acids; and cyclic analogs. Analogs can differ from naturally occurring proteases, such as an NSP24 or NSP25 protein, in amino acid sequence or in ways that do not involve sequence, or both. Non-sequence modifications include in vivo or in vitro chemical derivatization of the proteases encompassed by the invention. Non-sequence modifications include changes in acetylation, methylation, phosphorylation, carboxylation, or glycosylation.
In further embodiments, the invention includes NSP25 family proteases. NSP25 family proteases are acid proteases having at least 85%, at least 90%, at least 93%, at least 95%, at least 97%, at least 98%, and at least 99% amino acid sequence identity to the mature protein sequence of SEQ ID NO: 9 (Fig. 9) or biologically active fragments thereof. One specific NSP25 family protease is the protease designated NSP25 having SEQ ID NO: 9. In some embodiments, a NSP25 family protease will be a biologically active fragment of a protease comprising at least 75%, at least 80%, at least 85%, at least 90% and at least 95% of a sequence having at least 90% sequence identity to SEQ ID NO: 9. In other embodiments, an NSP25 family protease will be a biologically active fragment of a protease comprising at least 75%, at least 80%, at least 85%, at least 90% and at least 95% of a sequence having at least 95% sequence identity to SEQ ID NO: 9.
While an acid protease according to the invention is one able to hydrolyze proteins under acid conditions, in some embodiments an optimum pH for protease activity is in the range of pH 3.0 to 5.5. In some embodiments, the optimum pH range for protease activity is between pH 3.0 and 5.0 and in other embodiments the optimum pH range for protease activity is between pH 3.0 and 4.5. A protease according to the invention, such as an NSP24 family protease or an NSP25 family protease may include an amino acid substitution such as a "conservative amino acid substitution" using L-amino acids, wherein one amino acid is replaced by another biologically similar amino acid. Conservative amino acid substitutions are those that preserve the general charge, hydrophobicity /hydrophilicity, and/or steric bulk of the amino acid being substituted. Examples of conservative substitutions are those between the following groups: Gly/Ala, Val/lle/Leu, Lys/Arg, Asn/Gln, Glu/Asp, Ser/Cys/Thr, and Phe/Trp/Tyr. A derivative may, for example, differ by as few as 1 to 10 amino acid residues, such as 6 -10, as few as 5, as few as 4, 3, 2, or even 1 amino acid residue. Table 1 illustrates exemplary amino acid substitutions that are recognized in the art. In addition, substitution may be by one or more non-conservative amino acid substitutions, deletions, or insertions that do not abolish the protease biological activity.
TABLE l CONSERVATIVE AMINO ACID REPLACEMENTS
Figure imgf000016_0001
Figure imgf000017_0001
In some embodiments, the proteases of the invention are native sequences. Such a native sequence can be isolated from nature or can be produced by recombinant or synthetic means. The term "native sequence" specifically encompasses naturally-occurring truncated or secreted forms of an NSP24 or NSP25 family protease (e.g., biologically active fragments), and naturally-occurring variant forms (e.g., alternatively spliced forms).
In some embodiments, an acid protease of the invention is a PepA protease having at least 97%, at least 98%, and at least 99% sequence identity to SEQ ID NO: 7. In some embodiments, the protease has the sequence of SEQ ID NO: 7 and is designated "L388M. In further embodiments, the protease is encoded by a nucleotide sequence having the sequence of SEQ ID NO: 5 or SEQ JD NO: 3.
The invention also relates to polynucleotide sequences encoding proteases encompassed by the invention. Some of these polynucleotides include: a) polynucleotides encoding an NSP24 family protease having at least 80% at least 85%, at least 90%, at least 93%, at least 95%, at least 97%, at least 98%, and at least 99% sequence identity to SEQ ID NO: 2 or SEQ ID NO: 10; b) polynucleotides encoding the sequence of SEQ ID NO: 2; c) a polynucleotide having the sequence of SEQ ID NO: 8; d) polynucleotides encoding a biologically active fragment of an NSP24 family protease; e) polynucleotides which have at least 80%, at least 85%, at least 90%, at least
95%, at least 97%, at least 98% and at least 99% sequence identity to the sequence of SEQ ID NO:8; f) polynucleotides which hybridizes to a nucleic acid probe corresponding to the DNA sequence of SEQ ID NO: 4, SEQ ID NO: 8 or a fragment of SEQ ID NO: 4 or SEQ ID NO: 8, said fragment having at least 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100 or 150 consecutive nucleotides; g) polynucleotides encoding a NSP25 family protease having at least 85%, at least 90%, at least 93%, at least 95%, at least 97%, at least 98%, and at least 99% sequence identity to SEQ ID NO: 4; h) polynucleotides encoding the protease of SEQ ID NO: 9; i) a polynucleotide having the sequence of SEQ ID NO: 4; j) polynucleotides encoding a biologically active fragment of NSP25 family proteases; k) polynucleotides encoding the sequence of S€Q ID NO: 7 and biologically active fragments thereof; and
I) a polynucleotide having the sequence of SEQ ID NO: 3 or SEQ ID NO: 5.
Because of the degeneracy of the genetic code, more than one codon may be used to code for a particular amino acid. Therefore different DNA sequences may^ncode a polypeptide having the same amino acid sequence as the polypeptide of, for example SEQ ID NO: 2. The present invention encompasses polynucleotides which encode the same polypeptide.
A nucleic acid is hybridizable to another nucleic acid sequence when a single stranded form of the nucleic acid can anneal to the other nucleic acid under appropriate conditions of temperature and solution ionic strength. Hybridization and washing conditions are well known in the art for hydridization under low, medium, high and very high stringency conditions (See, e.g., Sambrook (1989) supra, particularly chapters 9 and 11). In general hybridization involves a nucleotide probe and a homologous DNA sequence that from stable double stranded hybrids by extensive base-pairing of complementary polynucleotides (Also see, Chapter 8, Gene Cloning, An Introduction, T.A. Brown (1995) Chapman and Hall
London). In some embodiments the filter with the probe and homologous sequence may be washed in 2x sodium chloride/sodium citrate (SSC), 0.5% SDS at about 6O0C (medium stringency), 650C (medium/high stringency), 700C (high stringency) and about 75°C (very high stringency) (Current Protocols in Molecular Biology, John Wiley & Sons, New York, 1989, 6.3.1 - 6.3.6, hereby incorporated by reference);
Included in the invention are: allelic variations; natural mutants; induced mutants; proteins encoded by DNA that hybridizes under high or low stringency conditions to a nucleic acid which encodes a polypeptide of SEQ ID NO: 2, SEQ ID NO: 8, SEQ ID NO: 9 and SEQ ID NO: 10 and polypeptides specifically bound by antisera to an NSP24 protease having SEQ ID NO: 2 or SEQ ID NO: 10, especially by antisera to an active site or binding domain of NSP24 protease. In some embodiments, a nucleic acid which encodes a NSP24 family protease of the invention, such as the nucleic acid which encodes the NSP24 protease of SEQ ID NO: 2, hybridizes under high stringency conditions to a nucleic acid corresponding to at least 12, 15 or 20 consecutive nucleotides from SEQ ID NO: 8. Nucleic acids and polypeptides of the invention include those that differ from the sequences disclosed herein by virtue of sequencing errors in the disclosed sequences.
Homology of DNA sequences is determined by the degree of identity between two DNA sequences. Homology or percent identity may be determined for polypeptide sequences or nucleotides sequences using computer programs. Methods for performing sequence alignment and determining sequence identity are known to the skilled artisan, may be performed without undue experimentation, and calculations of identity values may be obtained with definiteness. See, for example, Ausubel et al., eds. (1995) Current Protocols in Molecular Biology, Chapter 19 (Greene Publishing and Wiley-lnterscience, New York); and the ALIGN program (Dayhoff (1978) in Atlas of Protein Sequence and Structure 5:Suppl. 3 (National Biomedical Research Foundation, Washington, D.C.). A number of algorithms are available for aligning sequences and determining sequence identity and include, for example, the homology alignment algorithm of Needleman et al. (1970) J. MoI. Biol. 48:443; the local homology algorithm of Smith et al. (1981) Adv. Appl. Math. 2:482; the search for similarity method of Pearson et al. (1988) Proc. Natl. Acad. Sci. 85:2444; the Smith-Waterman algorithm (Meth. MoI. Biol. 70:173-187 (1997); and BLASTP, BLASTN, and BLASTX algorithms (see Altschul et al. (1990) J. MoI. Biol. 215:403-410). Computerized programs using these algorithms are also available, and include, but are not limited to: ALIGN or Megalign (DNASTAR) software, or WU-BLAST-2 (Altschul et al., Meth. Enzym., 266:460-480 (1996)); or GAP, BESTFIT, BLAST Altschul et al., supra, FASTA, and TFASTA, available in the Genetics Computing Group (GCG) package, Version 8, Madison, Wis., USA; and CLUSTAL in the PC/Gene program by Intelligenetics, Mountain View, Calif. Those skilled in the art can determine appropriate parameters for measuring alignment, including algorithms needed to achieve maximal alignment over the length of the sequences being compared. Preferably, the sequence identity is determined using the default parameters determined by the program. Specifically, sequence identity can be determined by the Smith-Waterman homology search algorithm (Meth. MoI. Biol. 70:173-187 (1997)) as implemented in MSPRCH program (Oxford Molecular) using an affine gap search with the following search parameters: gap open penalty of 12, and gap extension penalty of 1. Preferably, paired amino acid comparisons can be carried out using the GAP -program of the GCG sequence analysis software package of Genetics Computer Group, Inc., Madison, Wis., employing the blosum62 amino acid substitution matrix, with a gap weight of 12 and a length weight of 2. With respect to optimal alignment of two amino acid sequences, the contiguous segment of the variant amino acid sequence may have additional amino acid residues or deleted amino acid residues with respect to the reference amino acid sequence. The contiguous segment used for comparison to the reference amino acid sequence will include at least 20 contiguous amino acid residues, and may be 30, 40, 50, or more amino acid residues. Corrections for increased sequence identity associated with inclusion of gaps in the derivative's amino acid sequence can be made by assigning gap penalties.
In some embodiments, the proteases encompassed by the invention (e.g. an NSP24 family protease having at least 80% sequence identity to the-sequence of SEQ ID NO: 2), is derived from a bacterium or a fungus, such as a filamentous fungus. Some preferred filamentous fungi include Aspergillus spp. and Trichoderma spp. One preferred Trichoderma spp. is T. reesei. However, the proteases and/or DNA encoding the proteases according to the instant invention may be derived from a fungus, such as, Absidia spp.; Acremonium spp.; Agaήcus spp.; Anaeromyces spp.; Aspergillus spp., including A. aculeatus, A. awamori, A. flavus, A. foetidus, A. fumaricus, A. fumigatus, A. nidulans, A. niger, A. oryzae, A. terreus and A. versicolor; Aeurobasidium spp.; Cephalosporum spp.; Chaetomium spp.; Coprinus spp.; Dactyllum spp.; Fusarium spp., including F. conglomerans, F. decemcellulare, F. javanicum, F. lini, F. oxysporum and F. solani; Gliocladium spp.; Humicola spp., including H. insolens and H. lanuginosa; Mucor spp.; Neurospora spp., including N. crassa and N. sitophila; Neocallimastix spp.; Orpinomyces spp.; Penicillium spp; Phanerochaete spp.; Phlebia spp.; Piromyces spp.; Rhizopus spp.; Schizophyllum spp.; Trametes spp.; Trichoderma spp., including T. reesei, T. reesei (longibrachiatum) and T. viride; and Zygorhynchus spp.
Host cells -
In some embodiments, this invention provides for host cells transformed with DNA constructs and vector as described herein. In some embodiments, a polynucleotide encoding a protease encompassed by the invention (e.g. a NSP24 family protease having at least 95% sequence identity to SEQ ID NO: 2) that is introduced into a host cell codes for a heterologous protease and in other embodiments the polynucleotide codes for an endogenous protease which is overexpressed in the host cell. In some embodiments the invention provides for the expression of heterologous protease genes or overexpression of protease genes under control of gene promoters functional in host cells such as bacterial and fungal host cells. Some preferred host cells include filamentous fungal cells. Non-limiting examples of filamentous fungal host cells include Trichoderma spp. (e.g. T. viride and T. reesei, the asexual morph of Hypocrea jecorina, previously classified as T. longibrachiatum), Penicillium spp., Humicola spp. (e.g. H. insolens and H. grisea), Aspergillus spp. (e.g., A. niger, A. nidulans, A. orzyae, and A. awamori), Fusarium spp. (F. graminum), Neurospora spp., Hypocrea spp. and Mucorspp. Further host cells may include Bacillus spp (e.g. B. subtilis, B. licheniformis, B. lentυs, B. stearothremophilus and B. brevis) and Str-eptomyces spp. (e.g., S coelicolor and S. lividans (TK23 and TK21)).
Molecular Biology -
This invention relies on routine techniques in the field of recombinant genetics. Basic texts disclosing the general methods of use in this invention include Sambrook et al., Molecular Cloning, A Laboratory Manual (2nd ed. 1989); Kriegler, Gene Transfer and Expression: A Laboratory Manual (1990); and Ausubel et al., eds., Current Protocols in Molecular Biology (1994)).
Heterologous genes comprising gene promoter sequences for example of filamentous fungi are typically cloned into intermediate vectors before transformation into host cells, such as Thchoderma reesei cells for replication and/or expression. These intermediate vectors are typically prokaryotic vectors, e.g., plasmids, or shuttle vectors.
Tp obtain high level expression of a cloned gene, the heterologous gene is preferably positioned about the same distance from the promoter as is in the naturally occurring gene. As is known in the art, however, some variation in this distance can be accommodated without loss of promoter function.
Those skilled in the art are aware that a natural promoter can be modified by replacement, substitution, addition or elimination of one or more nucleotides without changing its function. The practice of the invention encompasses and is not constrained by such alterations to the promoter.
The expression vector/construct typically contains a transcription unit or expression cassette that contains all the additional elements r.equired for the expression of the heterologous sequence. A typical expression cassette thus -contains a promoter operably linked to the heterologous nucleic acid sequence and signals required for efficient polyadenylation of the transcript, ribosome binding sites, and translation termination.
Additional elements of the cassette may include enhancers and, if genomic DNA is used as the structural gene, introns with functional splice donor and acceptor sites.
The practice of the invention is not constrained by the choice of promoter in the genetic construct. However, exemplary promoters are the Thchoderma røese/cbh1 ,.cbh2, eg1 , eg2, eg3, eg5, xln1 and xln2 promoters. Also promoters from A. awamori and A. niger glucoamylase genes (glaA) (Nunberg et al., (1984) MoI. Cell Biol. 4:2306 - 2315) and the promoter from A. nidulans acetamidase find use in the vectors. A preferred promoter for vectors used in Bacillus subtilis is the AprE promoter; a preferred promoter used in E. coli is the Lac promoter, a preferred promoter used in Saccharomyces cerevisiae is PGK1 , a preferred promoter used in Aspergillus niger is glaA, and a preferred promoter for Trichoderma reesei is cbhl.
In addition to a promoter sequence, the expression cassette should also contain a transcription termination region downstream of the structural gene to provide for efficient termination. The termination region may be obtained from the same gene as the promoter sequence or may be obtained from different genes.
Although any fungal terminator is likely to be functional in the present invention, some preferred terminators include: the terminator from Aspergillus nidυlans trpC gene (Yelton, M. et al. (1984) PNAS USA 81 :1470-1474, Mullaney, E.J. et al. (1985) MGG 199:37-45), the Aspergillus awamori or Aspergillus niger glucoamylase genes (Nunberg, J. H. et al. (1984) MoI. Cell Biol. 4:2306, Boel, E. et al.(1984) EMBO J. 3:1581-1585), the Aspergillus oryzae TAKA amylase gene, and the Mucor miehei carboxyl protease gene (EPO Publication No. 0 215 594).
The particular expression vector used to transport the genetic information into the cell is not particularly critical. Any of the conventional vectors used for expression in eukaryotic or prokaryotic cells may be used. Standard bacterial expression vectors include bacteriophages λ and M13, as well as plasmids such as pBR322 based plasmids, pSKF, pET23D, and fusion expression systems such as MBP, GST, and LacZ. Epitope tags can also be added to recombinant proteins to provide convenient methods of isolation, e.g., c- myc. Examples of suitable expression and/or integration vectors are provided in Sambrook et al., (1989) supra, Bennett and Lasure (Eds.) More Gene Manipulations in Fungi, (1991) Academic Press pp. 70 - 76 and pp. 396 - 428 and articles cited therein; USP 5,874,276 and Fungal Genetic Stock Center Catalogue of Strains, (FGSC, www.fgsc.net.). Useful vectors may be obtained from Promega and Invitrogen. Some specific useful vectors include pBR322, pUC18, pUCIOO, pDON™201 , pENTR™, pGEN®3Z and pG'EN®4Z. However, the invention is intended to include other forms of expression vectors which serve equivalent functions and which are, or become, known in the art. Thus, a wide variety of host/expression vector combinations may be employed in expressing the DNA sequences of this invention. Useful expression vectors, for example, may consist of segments of chromosomal, non-chromosomal and synthetic DNA sequences such as various known derivatives of SV40 and known bacterial plasmids, e.g., plasmids from E. coli including col E1 , pCR1 , pBR322, pMb9, pUC 19 and their derivatives, wider host range plasmids, e.g., RP4, phage DNAs e.g., the numerous derivatives of phage .lambda., e.g., NM989, and other DNA phages, e.g., M13 and filamentous single stranded DNA phages, yeast plasmids such as the 2.mu plasmid or derivatives thereof. In some embodiments, an expression vector includes a selectable marker.
Examples of selectable markers include ones which confer antimicrobial resistance. Nutritional markers also find use in the present invention including those markers known in the art as amdS, argB and pyr4. Markers useful for the transformation of Trichoderma are known in the art (see, e.g., Finkelstein, chapter 6, in Biotechnology of Filamentous Fungi, Finkelstein et al., EDS Butterworth-Heinemann, Boston MA (1992) and Kinghorn et al.,
(1992) Applied Molecular Genetics of Filamentous Fungi, Blackie Academic and Professional, Chapman and Hall, London). In some embodiments, the expression vectors will also include a replicon, a gene encoding antibiotic resistance to permit selection of bacteria that harbor recombinant plasmids, and unique restriction sites in nonessential regions of the plasmid to allow insertion of heterologous sequences. The particular antibiotic resistance gene chosen is not critical, any of the many resistance genes known in the art are suitable. The prokaryotic sequences are preferably chosen such that they do not interfere with the replication or integration of the DNA in Trichoderma reesei.
The methods of transformation of the present invention may result in the stable integration of all or part of the transformation vector into the genome of a host cell, such as a filamentous fungal host cell. However, transformation resulting in the maintenance of a self-replicating extra-chromosomal transformation vector is also contemplated.
Many standard transfection methods can be used to produce bacterial and filamentous fungal (e.g. Aspergillus or Trichoderma) cell lines that express large quantities of the protease. Some of the published methods for the introduction of DNA constructs into cellulase-producing strains of Trichoderma include Lorito, Hayes, DiPietro and Harman,
(1993) Curr. Genet. 24: 349-356; Goldman, VanMontagu and Herrera-Estrella, (1990) Curr. Genet. 17:169-174; and Penttila, Nevalainen, Ratto, Salminen and Knowles, (1987) Gene'6: 155-164, also see USP 6.022,725; USP 6,268,328 and Nevalainen et al., "The Molecular Biology of Trichoderma and its Application to the Expression of Both Homologous and Heterologous Genes" in Molecular Industrial Mycology, Eds, Leong and Berka, Marcel Dekker Inc., NY (1992) pp 129 - 148; for Aspergillus include Yelton, Hamer and Timberlake, (1984) Proc. Natl. Acad. Sci. USA 81: 1470-1474, for Fυsariυm include Bajar, Podila and Kolattukudy, (1991 ) Proc. Natl. Acad. Sci. USA 88: 8202-8212, for Streptomyces include Hopwood et al., 1985, Genetic Manipulation of Streptomyces: Laboratory Manual, The John lnnes Foundation, Norwich, UK and Fernandez-Abalos et al., Microbiol 149:1623 - 1'632 (2003) and for Bacillus include Brigidi, DeRossi, Bertarini, Riccardi and Matteuzzi, (1990) FEMS Microbiol. Lett. 55: 135-138). However, any of the well-known procedures for introducing foreign nucleotide sequences into host cells may be used. These include the use of calcium phosphate - transfection, polybrene, protoplast fusion, electroporation, biolistics, liposomes, microinjection, plasma vectors, viral vectors and any of the other well known methods for introducing cloned genomic DNA, cDNA, synthetic DNA or other foreign genetic material into a host cell (see, e.g., Sambrook et al., supra). Also of use is the Agrobacterium- mediated transfection method described in U.S. Patent No. 6,255,115. It is only necessary that the particular genetic engineering procedure used be capable of successfully introducing at least one gene into the host cell capable of expressing the gene. In one embodiment, the invention concerns a method for producing a protease encompassed by the invention (e.g. an NSP 24 family protease) which comprises introducing into a host cell a polynucleotide comprising a promoter operably linked to a nucleic acid encoding a protease, such as a NSP family protease, culturing the host cell under suitable culture conditions for the expression and production of the protease, and producing said protease. In some preferred embodiments, the protease is a NSP24 family protease having at least 95% sequence identity to SEQ ID NO: 2 or SEQ ID NO: 10 or biologically active fragments thereof.
After the expression vector is introduced into the cells, the transfected or transformed cells are cultured under conditions favoring expression of genes under control of protease gene promoter sequences. Large batches of transformed cells can be cultured as described in Example 3, infra. Finally, product is recovered from the culture using standard techniques.
Thus, the invention herein provides for the expression and enhanced secretion of desired polypeptides whose expression is under control of gene promoter sequences including naturally occurring protease genes, fusion DNA sequences, and various heterologous constructs. The invention also provides processes for expressing and secreting high levels of such desired polypeptides.
Protein Expression Proteins of the present invention are produced by culturing cells transformed with a vector such as an expression vector containing genes whose expression is under control of gene promoter sequences. The present invention is particularly useful for enhancing the intracellular and/or extracellular production of proteins, such as proteases encompassed by the invention. The protein may be homologous or heterologous. Conditions appropriate for expression of said genes comprise providing to the culture an inducing feed composition of the instant invention. Optimal conditions for the production of the proteins will vary with the choice of the host cell, and with the choice of protease protein to be expressed. Such conditions will be easily ascertained by one skilled in the art through routine experimentation or optimization.
The protease protein of interest is may be isolated or recovered and purified after expression. The protein of interest may be isolated or purified in a variety of ways known to those skilled in the art depending on what other components are present in the sample. Standard purification methods include electrophoretic, molecular, immunological and chromatographic techniques, including ion exchange, hydrophobic, affinity, and reverse- phase HPLC chromatography, and chromatofocusing. For example, the protein of interest may be purified using a standard anti-protein of interest antibody column. Ultrafiltration and diafiltration techniques, in conjunction with protein concentration, are also useful. For general guidance in suitable purification techniques, see Scopes, Protein Purification (1982). The degree of purification necessary will vary depending on the use of the protein of interest. In some instances no purification will be necessary.
Cell culture '
Host cells and transformed cells can be cultured in conventional nutrient media. The culture media for transformed host cells may be modified as appropriate for activating promoters and selecting transformants. The specific culture conditions, such as temperature, pH and the like, may be those that are used for the host cell selected for expression, and will be apparent to those skilled in the art. In addition, preferred culture conditions may be found in the scientific literature such as Sambrook, (1982) supra; Kieser, T, MJ. Bibb, MJ. Buttner, KF Chater, and D.A. Hopwood (2000) PRACTICAL STREPTOMYCES GENETICS. John lnnes Foundation, Norwich UK; Harwood. et al., (1990) MOLECULAR BIOLOGICAL METHODS FOR BACILLUS, John Wiley and/or from the American Type Culture Collection (ATCC; www.atcc.org). Stable transformants of fungal host cells, such as Trichoderma cells can generally be distinguished from unstable transformants by their faster growth rate or the formation of circular colonies with a smooth rather than ragged outline on solid culture medium.
Recovery of Expressed Polypeptides and Methods for Purifying the Proteases -
A polypeptide encompassed by the invention, such as a polypeptide having at least 80% sequence identity to SEQ ID NO: 10, produced by the transformed host cell may -be recovered from the culture medium by conventional procedures including separating the host cells from the medium by centrifugation or filtration, or if necessary, disrupting the cells and removing the supernatant from the cellular fraction and debris. In some -cases, after clarification, the proteinaecous components of the supernatant or filtrate are precipitated by means of a salt, e.g., ammonium sulphate. The precipitated proteins are then solubilized and may be purified by a variety of chromatographic procedures, e.g., ion exchange chromatography, gel filtration chromatography, affinity chromatography, and other art- recognized procedures. Antibodies to the peptides and proteins can be made -by immunizing an animal, e.g., a rabbit or mouse, and recovering anti-NSP24 protease antibodies by prior art methods.
Assays that find use in the present invention include, but are not limited to those described in WO 9934011 and USP 6,605,458.
Compositions and Applications -
In some embodiments, the present invention is directed to compositions comprising a protease of the invention as described herein. Some non-limiting examples of -proteases useful in compositions and applications according to the invention include for example an NSP24 family protease or a NSP25 family protease, more specifically an NSP24 family protease having at least 85% sequence identity to SEQ ID NO: 2 or biologically active fragments thereof, such as a protease having at least 90% sequence identity to the sequence of SEQ ID NO: 10. In some embodiments, the enzyme composition is a single- component protease composition. In some embodiments, the present invention is directed to methods of using the proteases of the invention in industrial and commercial applications. The following description of compositions and industrial applications is intended to be exemplary and non-inclusive.
Compositions comprising proteases of the invention may further include additional enzymes, such as, but not limited to, glucoamylases, alpha amylases, granular starch hydrolyzing enzymes, cellulases, lipases, xylanases, cutinases, hemicellulases, oxidases and combinations thereof.
In some preferred embodiments, the compositions will include a protease of the invention having at least 85% sequence identity to the sequence of SEQ ID NO: 10 and a . glucoamylase. The glucoamylase may be a wild type glucoamylase obtained from a filamentous fungal source, such as a strain of Aspergillus, Trichoderma or Bhizopυs ox the glucoamylase may be a protein engineered glucoamylase, such as a variant of an Aspergillus niger glucoamylase. In other preferred embodiments, a composition will include a protease of the invention and an alpha amylase. In some embodiments, the alpha amylase may be obtained from a bacterial source such as a Bacillus spp or from a fungal source such as an Aspergillus spp. in some embodiments, the compositions may include a protease according to the invention and both glucoamylase and alpha amylase enzymes. Commercially sources of these enzymes are known and available from, for example Genencor International, Inc. and Novozymes A/S.
In several embodiments, the present invention has contemplated use in ethanol production, baking, fruit juice production, brewing, distilling, wine making, leather, oils and fats, paper and pulp and the animal feed production.
In other embodiments, the present invention as contemplated is the active "biological" component of detergents and cleaning products. Here, proteases, amylases and lipases are used to break down protein, starch and fatty stains. Embodiments of the invention include testing the compatibility of enzymes with detergent ingredients by doing stability studies and testing them in a variety of formulations.
In yet another embodiment, the present invention has contemplated enzymatic uses for the liquefaction and saccharification of starch into glucose and isomerisation into fructose. The present invention may be used to convert large volumes of plant substrates, such as grains, {e.g. corn, wheat, milo, rye and the like) into sweeteners, like high fructose corn syrup and maltose syrup.
The enzyme(s) of the instant invention has application in the food and feed industry to improve the digestibility of proteins. The proteases also find uses in various industrial applications, particularly in the textile, lithographic, chemical arts, agriculture, environmental waste conversion, biopulp processing, biomass conversion , to fuel, and other chemical procedure(s). Further, the proteases have applications, which find use in healthcare and personal care products such as cosmetics, skin care, toothpaste and the like.
Feed -
The present enzymes described herein find use in animal feeds. The feeds may include plant material such as corn, wheat, sorghum, soybean, canola, sunflower or mixtures of any of these plant materials or plant protein sources for poultry, pigs, ruminants, aquaculture and pets. It is contemplated that the performance parameters, such as growth, feed intake and feed efficiency, but also improved uniformity, reduced ammonia concentration in the animal house and consequently improved welfare and health status of the animals will be improved.
Food -
Dietary protein hydrolysates represent a small, but important market segment. Such preparations are used for postoperative patients or for individuals with an impaired digestive system. The hydrolysates may be administered as comparatively crude preparations per se (Clegg, 1978 In "Biochemical Aspects of New Protein Food", J, Adler-Nissen, B,O, Eggum, L, Munck & H.S. Olsen eds., p. 109-117, Pergamon, Oxford) or as highly purified mixtures of amino acids for intravenous administration. Enzyme hydrolysates of milk proteins have been applied as dietary preparations.
Enzymatic tenderization of muscle foods, and in particular meat, represents a large market segment, which is presently dominated by plant proteases and certain microbial enzymes. Enzymatic maturation and tenderization of fish muscle is also of considerable importance in many countries. Thus, the presently describe enzymes find use in various uses in food.
Further the enzyme or enzyme compositions of the invention may be useful to make protein hydrolysates from, e.g., vegetable proteins like soy, pea, lupine or rape-βeed protein, milk like casein, meat proteins, or fish proteins. The enzyme(s) described herein may be used for protein hydrolysates to improve the solubility, consistency or fermentability, to reduce antigenicity, to reduce bitter taste of hydrolysates or for other purposes to make food, feed or medical products. The enzyme(s) described herein may be used alone or together with other peptidases or together with other. enzymes like exopeptidases. The use of the enzyme(s) described herein together with exopeptidase rich enzyme preparations will improve the taste of the protein hydrolysates.
Furthermore, the enzyme or enzyme compositions may be used in the processing of fish or meat, e.g. to change texture and/or viscosity.
Leather -
Industrial leather manufacture relies on a series of steps involving cleaning, dehairing and finally tanning and dying of the hides. Enzyme treatment plays an important part in the dehairing step, which is achieved by the application of proteolytic enzymes, the present peptide hydrolases; can provide an effective alternative to the mammalian proteases presently used in leather manufacture, both because of their high proteolytic activity, and their efficiency at low pH.
Wool and Silk - Proteases described herein find use in the industrial treatment of wool goods to impart desirable properties. In one embodiment, the present invention provides compositions for the treatment of textiles. The composition can be used to treat for example silk or wool (See e.g., RE 216,034; EP 134,267; US 4,533,359; and EP 344,259).
The method of this invention can be applied to treat protein containing fibers, for instance keratin fibers. It is suitable to treat wool, wool fiber or animal hair, such as -angora, mohair, cashmere, alpacca, or other commercially useful animal hair product, which may originate from sheep, goat, lama, camel, rabbit etc. Also silk, spidersilk or human hair can be treated with the method of this invention. The fibers may be in the form of fiber, top, yarn or woven or knitted fabric or garments.
Cleaning -
The present invention also relates to cleaning compositions containing the protease(s) of the invention. The cleaning compositions may additionally^ontain additives which are commonly used in cleaning compositions. These can be selected from, but not limited to, bleaches, surfactants, builders, enzymes and bleach catalysts. It would be readily apparent to one of ordinary skill in the art what additives are suitable for inclusion into the compositions. The list provided herein is by no means exhaustive and should be only taken as examples of suitable additives. It will also be readily apparent to one of ordinary skill in the art to only use those additives which are compatible with the enzymes and other components in the composition, for example, surfactant. Proteins, particularly those of the invention can be formulated into known powdered and liquid detergents having an acidic pH between 3.5 and 7.0 at levels of about .01 to about 5% (preferably 0.1 % to 0.5%) by weight. In some embodiments, these detergent cleaning compositions further include other enzymes such as amylases, additional proteases, cellulases, lipases or endoglycosidases, as well as builders and stabilizers. In some embodiments the pH is between 4.0 and 6.5, preferably between 4.0 and 5.6.
Although these are referred to as acid proteases due to their pH optimum, depending upon the level of activity required, it may also be possible to use these enzymes at pH 7 - 9.
The addition of proteins to conventional cleaning compositions does not create any special use limitations. In other words, any temperature and pH suitable for the detergent are also suitable for the present compositions, as long as the pH is within the above range, and the temperature is below the described protein's denaturing temperature. In addition, proteins of the invention find use in cleaning compositions without detergents, again either alone or in combination with builders and stabilizers.
Protein processing -
Enzymatic hydrolysis of protein raw materials frequently leads to the formation of bitter peptides (Clegg, 1978). The bitter peptides occurring in protein hydrolysates may represent a considerable practical problem, as is the case, e,g,, during the ripening of different types of cheese and in the production of dietary protein hydrolysates. The bitterness of hydrolysates is usually due to particular peptides, and especially those which contain a high proportion of hydrophobic amino acids. Bitterness can be effectively reduced by complete or partial hydrolyses of the bitter peptides. Thus, the enzymes described herein find use in debittering of foods. The enzyme or enzyme compositions of the invention may be used for reducing the bitterness of proteins and/or protein hydrolysate for foodstuff. Also contemplated according to the invention is the production of free amino acids from proteins and/or protein hydrolysates. In the case when the free amino acid is glutamine acid, it enhances the flavor of food products.
Said protein or protein hydrolysate may be of animal or vegetable origin. In an embodiment of the invention the protein to be hydrolyzed is casein or soy protein.
The protein may be use for producing foodstuff such as cheese and foodstuff containing cocoa.
Even though the enzyme(s) described herein and enzyme preparations enriched with an enzyme of the invention may be used especially advantageously in connection with producing proteins or protein hydrolysates without bitter taste, the enzyme(s) described herein can be used for a number of industrial applications, including degradation or modification of protein containing substances, such cell walls. Some proteins, like extensins, are components of plant cell walls. The enzyme(s) described herein will therefore facilitate the degradation or modification of plant cell walls.
The dosage of the enzyme preparation of the invention and other conditions under which the preparation is used may be determined on the basis of methods known in the art. Protein precipitates may also present a considerable problem in certain products such as e.g, beer, because the precipitate causes the product to be hazy, In beer the haziness arises when soluble proteins precipitate during chill storage of the beer, The problem is of considerable economic importance and, apart from selecting suitable raw materials for the manufacture of beer, the main way of avoiding the problem today is to add proteolytic enzymes to the beer.
Personal Care -
In some embodiments, once the proteases described herein have been synthesized and purified, an effective amount is added to personal care composition(s) that find use in personal care products. Personal care products can be classified/described as cosmetic, over-the-counter ("OTC") compounds that find use in personal care applications (e.g., cosmetics, skin care, oral care, hair care, nail care). In some embodiments, the proteases described herein are added to a personal care composition such as a hair care composition, a skin care composition, a nail care composition, a cosmetic composition, or any combinations thereof. Thus, the enzyme or enzyme preparation may be used, for example, in solutions for cleaning contact lenses, toothpaste, cosmetics and skin care products.
Sweeteners -
Proteases described herein find use in the production of high maltose or high fructose syrups as well as other sweeteners. Raw materials that contain fermentable sugars or constituents which can be converted into sugars are usually starch -containing plant materials including but not limited to tubers, roots, stems, cobs and grains of cereal plants (e.g. corn, wheat, milo, barely, and rye) and sugar-containing raw materials such as sugar beet, sugar cane, fruit materials, and molasses.
Prebiotics -
The enzyme preparation may be useful for production of peptides from proteins, where it is advantageous to use a cloned enzyme essentially free from other proteolytic activities. By using the enzyme(s) (e.g. purified enzymes) described herein to hydrolyze a suitable protein source, it is possible to produce a crude preparation of free amino acids and peptides which is highly suitable as a substrate for microorganisms that have a specific requirement for amino acids for growth.
This is the case of a considerable number of the microorganisms used in industrial fermentations. The supply of the necessary amino acids often represents an important factor for process economy in such fermentations. The preparation of amino acids produced by applying enzymes is suitable as a substrate both in laboratory and large scale industrial fermentations.
The enzyme(s) described herein may also be used for the itrsitu generation of functional peptides, prebiotics and the like. The term "prebiotic" refers to a food or feed ingredient that beneficially affects the host by selectively stimulating 4he growth and/or activity of one or a limited number of bacteria in the digestive track, preferably in the colon.
Fermentation and Bioethanol - Production of alcohol from the fermentation of starch containing substrates using protease compositions of the invention may include the production of fuel alcohol or portable alcohol. In some embodiments, the enzyme compositions may also be used to facilitate yeast fermentation of barley, malt and other raw materials for the production of e.g. beer.
Amylases are enzymes fundamental to the brewing and baking industries. Amylases are required to break down starch in malting and in certain baking procedures carried out in the absence of added sugars or other carbohydrates. Obtaining adequate activity of these enzymes is problematic especially in the malting industry. A method of adequately increasing the activity of amylases with a physiologically acceptable system, leads to more rapid malting methods and, owing to increased sugar availability, to alcoholic beverages such as beers with reduced carbohydrate content. In some embodiments, the hydrolysis of starch containing substrates, such as grains
(e.g. corn, wheat and sorghum), cobs, and other plant residues will produce alcohol such as ethanol. Methods for alcohol production are described in The Alcohol Textbook, A Reference for the Beverage, Fuel and Industrial Alcohol Industries, 3rd Ed., Eds., K.A. Jacques et al., (1999) Nottingham University Press, UK. In some embodiments of the invention, the protease will be used in compositions with glucoamylase and optionally alpha amylases in a combined saccharification and fermentation step, also referred to as simultaneous saccharification and fermentation. Reference is also made to Chapter 2.1 , Fermentation Alcohol, S. Lewis in Industrial Enzymology, 2nd.Ed. £ds., T.Godfrey and S. West, (1996) Stockton Press, NY. Methods for producing ethanol from fermentations using acid fungal proteases in combination with glucoamylases are known. For example, USP 5,231 ,017 discloses a process for producing ethanol using a protease derived from Aspergillus niger which includes obtaining a liquefied mash and introducing the protease into the liquefied mash during the saccharification step which may be combined with a fermentation step In some embodiments, the protease composition of the invention will be used to produce alcohol, e.g. ethanol, in a no cook process with granular starch substrates, wherein the process is conducted at a temperature below the gelatinization temperature of the starch in the substrate used to produce the alcohol. While the quantity of the protease used in the starch hydrolysis processes will depend on the enzymatic activity of the protease. In some embodiments, the amount will be in the range of 0.001 to 2.0 ml of a 2% solution of the protease added to 450 g of a slurry adjusted to 20 - 33% dry solids, wherein the slurry is the liquefied mash during the saccharification and/or in the hydrolyzed starch. Other useful ranges include 0.005 to 1.5 ml and also 0.01 to 1.0 ml.
Seeds or grains treated with proteases provide advantages in the production of malt and beverages produced by a fermentation process. It is desirable also to use proteases during saccharification so as to hydrolyze the proteins in the flour and thus enrich the wort with soluble nitrogen in anticipation of the subsequent alcoholic fermentation stage. Enhanced activity of amylases in grain increases the speed and efficiency of germination, important in malting, where malt is produced having increased enzymatic activity resulting in enhanced hydrolysis of starch to fermentable carbohydrates, thereby, improving the efficiency of fermentation in the production of alcoholic beverages, for example, beer and scotch whiskey.
In the experimental disclosure which follows, the following abbreviations apply: eq (equivalents); M (Molar); μM (micromolar); N (Normal); mol (moles); mmol (millimoles); μmol (micromoles); nmol (nanomoles); g (grams); mg (milligrams); kg (kilograms); μg (micrograms); L (liters); ml (milliliters); μl (microliters); cm (centimeters); mm (millimeters); μm (micrometers); nm (nanometers); ° C. (degrees Centigrade); h (hours); min (minutes); sec (seconds); msec (milliseconds); Ci (Curies) mCi (milliCuries); μCi (microCuries); TLC (thin layer chromatography); Ts (tosyl); Bn (benzyl); Ph (phenyl); Ms (mesyl); Et (ethyl), Me (methyl), ds or DS (dry solids content), SAPU (spectrophotometric acid protease unit, wherein in 1 SAPU is the amount of protease enzyme activity that liberates one micromole of tyrosine per minute from a casein substrate under conditions of the assay) and GAU (glucoamylase unit, which is defined as the amount of enzyme that will produce 1 g of reducing sugar calculated as glucose per hour from a soluble starch substrate at pH 4.2 and 600C).
EXAMPLES
The present invention is described in further detail in the following examples which are not in any way intended to limit the scope of the invention as claimed. The attached Figures are meant to be considered as integral parts of the specification and description of the invention. All references cited are herein specifically incorporated by reference for all that is described therein. The following examples are offered to illustrate, but not to limit the claimed invention.
Example 1
Trichoderma reesei DNA Cloning of a Novel Protease, NSP24
Genomic DNA was extracted from T. reesei strain QM6a. PCR primers were designed, based on the putative protease sequence found in contig 1 -5500 of the T. reesei genome (Joint Genome Institute (JGI) T. reesei genome v1.0). The forward primer contained a motif for directional cloning into the pENTR/D vector (Invitrogen).
The sequence of the afp6f primer was CACCATGCAGACCTTTGGAGCT (SEQ ID NO: 11), and the sequence of the afp7r primer was TTATTTCTGAGCCCAGCCCAG (SEQ ID NO: 12). The 1.3 kb 'PCPI product was purified by gel extraction (OeI Purification kit, Qiagen) and cloned into pENTR/D, according to the Invitrogen Gateway system protocol. The vector was then transformed into chemically competent Topi 0 E.coli (Invitrogen) with kanamycin selection. Plasmid DNA, from several independent clones, was digested with restriction enzymes to confirm the correct size insert. The protease gene insert was sequenced (Sequetech, Mountain View, CA) from several clones. Plasmid DNA from one clone, pENTR/D_55.3, was added to the LR clonase reaction (Invitrogen Gateway system) with pTrex3g/amdS destination vector DNA. The pTrex3g vector is based on the E. coli pSL1180 (Pharmacia Inc., NJ), which is a pUC118 phagemid based vector and is described in WO 05/001036. Recombination, in the LR clonase reaction, replaced the CmR and ccdB genes of the destination vector with the T. reesei protease from pENTR/D_55.3. This recombination directionally inserted protease between the cbhl promoter and terminator of the destination vector. Recombination site sequences of 44 and 50 bp remained upstream and downstream, respectively, of the protease gene. An aliquot of the LR clonase reaction was transformed into chemically competent Top10 E.coli and grown overnight with carbenicillin selection. Plasmid DNA from several clones was digested with restriction enzymes to confirm the correct insert size. Plasmid DNA from clone, pTrex3g_55.3.1 was digested with Xbal to release the expression cassette including the cbhl promoter:NSP24 protease:terminator:amdS. This 5.8kb cassette was purified by agarose gel extraction, using standard techniques, and transformed into a strain of T. reesei derived from the publicly available strain QM6a (See, WO 05/001036). Reference is made to figures 5, 6, and 7.
Example 2 Trichoderma reesei DMA Cloning of a Novel Protease, NSP25
Genomic DNA was extracted from T. reesei strain QM6a. PCR primers were designed, based on the putative protease sequence found in contig 22-263400 of the T. reesei genome (JGI T. reesei genome v1.0). The forward primer contained a motif for directional cloning into the pENTR/D vector (Invitrogen). The sequence of the afpδf primer was CACCATGCAGCCCTCATTTGGCAG (SEQ
ID NO: 13), and the sequence of the afp9r primer was CTATTTCTTCTGCGCCCAGCCAAC (SEQ ID NO: 14). The 1.2 kb PCR product was purified by gel extraction (Gel Purification kit, Qiagen) and cloned into pENTR/D, according to the Invitrogen Gateway system protocol. The vector was then transformed into chemically competent Top10 E.coli (Invitrogen) with kanamycin selection. Plasmid DNA, from several independent clones, was digested with restriction enzymes to confirm the correct size insert. The protease gene insert was sequenced (Sequetech, Mountain View, CA) from several clones. Plasmid DNA from one clone, pENTR/D_22.2, was added to the LR clonase reaction ( I nvitrogen Gateway system) with pTrex3g/amdS destination vector DNA. Recombination, in the LR clonase reaction, replaced the CmR and ccdB genes of the destination vector with the T. reese/protease from pENTR/D_22.2. This recombination directionally inserted protease between the cbhl promoter and terminator of the destination vector. Recombination site sequences of 44 and 50 bp remained upstream and downstream, respectively, of the protease gene. An aliquot of the LR clonase reaction was transformed into chemically competent Top10 E.coli and grown overnight with carbenicillin selection. Plasmid DNA from several clones was digested with restriction enzymes to confirm the correct insert size. Plasmid DNA from clone, pTrex3g_22.2#1 was digested with Xbal (and EcoRI to digest the bacterial backbone into small fragments, which migrated away from the cassette during electrophoresis) to release the expression cassette including the cbhl promoter: NSP25 protease:terminator:amc(S. This 5.7 kb cassette was purified by agarose gel extraction, using standard techniques, and transformed into a strain of T. reesei derived from the publicly available strain QM6a. The plasmid used for transformation was essentially the same as the plasmid illustrated in Figure 7 except, the NSP24 insert was replaced with the NSP25 sequence.
Example 3
Trichoderma PEG Fungal Transformation A 2 cm2 agar plug from a plate of sporulated mycelia was inoculated into 50ml of
YEG broth in a 250ml, 4-baffled shake flask and incubated at 370C for 16-20 hours at 200 rpm. The mycelia were recovered by transferring liquid volume into 50ml conical tubes and spun at 2500 rpm for 10 minutes. The supernatant was aspirated off. The mycelial pellet was transferred into a 250ml, 0.22 μm CA Corning filter bottle containing 40ml of filter- sterilized β-D-glucanase (InterSpex Products, Inc.) solution and incubated at 3O0C, 200rpm for 2 hours. The mycelia were harvested through sterile Miracloth (CalBiochem, LaJoIIa, CA) into a 50 ml conical centrifuge tube, centrifuged at 2000 rpm for 5 minutes, aspirated. The pellet was washed once with 50 ml of 1.2M sorbitol, centrifuged again, aspirated, and washed with 25 ml of sorbitol/CaCI2. The protoplasts were counted using a hemocytometer, centrifuged, aspirated, and resuspended in a volume of sorbitol/CaCI2 sufficient to generate a protoplast concentration of 1.25 x 108AnI. Aliquots of 200μl were used per transformation reaction. 20μg of DNA (>1 μg/ul) was placed into 15 ml conical tubes and the tubes were placed on ice. 200μl of the protoplasts were added. 50μl PEG mix was added and mixed gently and incubated on ice for 20 minutes. 2 ml of PEG mix was added to the tubes and incubated at room temperature for 5 minutes. 4ml sor«bitol/CaCI2 (for a total of 6.25 ml) was added to the tubes. This transformation mixture was divided into 3 aliquots of ~ 2ml per each overlay. The 2ml was added to a tube of melted acetamide sorbitol top agar and the overlay mixture was poured onto acetamide sorbitol plates for selection of transformants able to grow with acetamide as the sole nitrogen source. Plates were incubated at 28-300C until colonies appeared. Transformants were purified -by repeat passage of single colonies on acetamide media (acetamide sorbitol recipe without the sorbitol). Materials -
40ml β-D-qlucanase Solution: 600mq β-D-glucanase; 400mg MgSO4>7H20 and 40 ml 1.2 M sorbitol.
200ml PEG Mix: 50α PEG 4000 (BDH Laboratory Supplies Poole, England) and 1.47g CaCI2 2H2O made up in MiIIi Q water Sorbitol/ CaCI7: 1.2M Sorbitol and 5OmM CaCI2
For amdS selection, Acetamide Sorbitol plates and overlays were used. For spore purification, the same plates were used, but without sorbitol.
Acetamide Sorbitol Agar (Plates and top agar)
Acetamide (Aldrich 99% sublimed) - 0.6 g/L; CsCI - 1.68 g/L; Glucose - 20 g/L; KH2PO4 - 20 g/L; MgSO4 *7H2O - 0.6 g/L; CaCI2 *2H2O - 0.6 g/L; 1000X salts (see below) - 1 ml. pH adjusted to 5.5 and volume brought to 300 ml. Filter sterilized with 0.22 micron filter and warmed to 550C in an oven.
To 700 ml water Noble Agar (low-melt for top agar) 20 g and Sorbitol 218 g was added and then autoclaved. This mixture was cooled to 550C, and filter sterilized acetamide mix was added. Plates or tubes were poured.
1000X SaItS - FeSCWH2O (0.5 g/T00ml); MnSO4 -H2O (0.1« g/100ml); ZnSO4-7H2O (0.14 g/100ml); CoCI2-6H2O (0.1 g/100ml) and filter sterilize with 0.22 micron filter. Potato Dextrose Agar (PDA, Difco Dehydrated Culture Media) - Potatoes, infusion from 200 g/L; Dextrose, 20 g/L and Agar, 15 g/L were mixed well in 50-80% final volume of dH2O, and then brought to 100% final volume. This mixture is autoclaved, cooled to 55 0C and pour.
To make up 1 % skim milk agar for a pH 3.5 media PDA was prepared as above and to 100 ml molten PDA, 1.8 ml 10% tartaric acid and 12.5ml sterilized 8% skim milk was added and plates were poured. To pre-sterilize skim milk, 8% skim milk (Difco) was autoclaved for 10 minutes, 122-1230C, and chamber pressure during exposure of 32-35 psi. The mixture was removed, cooled and stored at room temperature.
Protease Expression was evaluated in transformants after 3 days growth in -shake flasks. T. reesei culture media (Davis, et al., (1970) Methods Enzymol. 17:79 - 143) was inoculated with an agar plug. Cultures were incubated for 3 days at 3O0C, with shaking. Culture broth was passed through a 0.22 micron filter, and the filtrate spotted onto 1 % Skim milk agar. Clearing zones were observed following overnight incubation at room temperature.
_ Example 4
PH activity profiles of NSP24. NSP25 and L388M PeoA
The pH-activity profiles of PepA (Wild type and L388M), NSP24 and NSR25 all of which were overexpressed in a strain of Trichoderma reesei were determined using a fluorescently labeled casein assay obtained from Molecular Probes (EnzChek Portease Kit- Green fluorescence). The PepA (wildtype and L388M) and NSP were whole fermentation samples and NSP24 was a purified protein stabilized in 50% glycerol. The enzymes were diluted to 1.0 mg/ml, 0.5 mg/ml and 0.25 mg/ml. Fluorescently labeled substrate was diluted to 0.1 mg/ml in Dl H20. 10 ml of substrate was added to 50 ml of buffer of various pH and 3OuI Dl H2O. reactions were initiated by the, addition of 10 ml of enzyme and allowed to continue for various time periods before being quenched by the addition of 100ul 1.0M phosphate at pH 10. the fluorescence of the sample was measured at 538 nm emission with excitation at 485 and an emission cut off filter at 530 nm in a SpectraMAX EM fluorescence plate reader. NSP24 has optimal activity at pH 3.7, wild-type PepA has optimal activity at pH 3.4 and L388M pepA has optimal pH at 3.5. NSP25 has optimal activity at pH 4.6.
Example 5 Comparison of Trichoderma reesei NSP24 protease to GC 106 in laboratory fermentations
A standard protease used in the ethanol industry today is the protease GC106 sold commercially by Genencor International, Inc. The functionality of NSP24 to GC 106 was compared with respect to sugar degradation, glucose formation, and ethanol production.
Materials Distillase L-400 (Lot# 107-04057-901 , 372 GAU/g) GC 106 (Lot# A01 -01300-001 , 1010 SAPU/g) NSP 24 (Lot# 20040423, 1165 SAPU/g) Red Star Red Yeast Mash and Thin Stillage (Corn) from an ethanol producer
Method
Mash and thin stillage (also referred to as backset, prior to fermentation) from an ethanol producer was obtained and mixed to 26.5 brix. The pH was adjusted to pH 4.3 using 1 N HCL. Samples were then divided into 3-300 gram aliquots and placed into a 32CC water bath. After equilibration, the following enzyme combinations were added:
Table 2
Figure imgf000038_0001
DISTILLASEL-400 is a liquid glucoamylase derived from Aspergillus niger which can be obtained from Genencor International Inc. After enzyme addition, 1.00 gram/flask of Red Star Red yeast was added. Samples were taken at 16, 24, 40, and 48 hours and centrifuged. 500 ul of each sample was placed into a test tube with 50 ul of a 1.1 NH2SO4 to stop the reaction. After 2 minutes, the samples were diluted with 4.5 ml of Dl H2O and mixed. After mixing, the samples were run through a 0.45-micron filter and placed into HPLC vials for analysis. The samples were analyzed by HPLC (Phenomenex Ftezex βu). Results are illustrated in Figures 1 - 4. NSP24 performed similarly to GC 106.
Example 6 Effect of NSP24 on ethanol yield from ground corn in a non-cook process
A 30% DS slurry of ground corn was made up with Dl H2O. The ground corn was a typical sample of #2 Yellow dent corn used in the ethanol industry, which was ground so that greater than 70% would pass thru a 30 mesh screen. The moisture content of the grain was measured using an OHAUS, MB 35 Halogen moisture balance (NJ). The pH was adjusted to 4.2 using 6N H2SO4. Fermentations were conducted in 125 ml flasks containing 100 g mash with STARGEN 001 dosed at 1.0 GAU/g and with or without NSP24 dosed at 0.5kg/MT.
5 g Red Star Ethanol Red dry yeast (Lesaffre yeast Corporation, Milwaukee, Wl) in 45 mis of water was prepared and mixed in a 32°C water bath one hour prior to inoculating the fermenters. 0.5 ml of the yeast slurry was added to each 125 ml flask. The flasks were placed in a 32°C water bath and the mash mixed gently. During the fermentations, samples were removed for HPLC analysis (HPLC Column: Phenomenex Rezex Organic Acid Column (RHM-Monosaccharide) #00H 0132-KO; Column Temperature: 6OC; Mobile Phase: 0.01 N H2SO4; Flow Rate: 0.6 ml_/min; Detector: Rl; and Injection Volume: 20 uL. The fermentations were terminated after 72 hours. Production of compounds including sugars, lactic acid, glycerol and ethanol at different sampling interval is shown below in Table 3, wherein + indicated that NSP 24 was added to the flasks and - - indicates that NSP24 was not added to the flasks. Lactic acid for all samples was measured at between about 0.01 and 0.02 % w/v and DP-2 was determined to be 0.0. At 54 hours, acetic acid was determine to be approximately 0, and at 71 hours between 0.03 and 0.04 for all samples.
Table 3
Figure imgf000039_0001
Example 7
Comparison of different proteases on ethanol production using corn endosperm
A 29.5 % DS mash using endosperm (degermed corn, 75.8% starch, particle size of 99.5% <30 mesh) as a granular starch substrate was prepared. One hundred grams of each mash was transferred to a 125 ml flask, and the pH of the medium was adjusted to pH 4.5. Proteases, (NSP24; neutral Proteases (MULTIFECT NEUTRAL, PROTEINASE-T) and alkaline proteases (SPEZYME FAN, PROTEX 6L MULTIFECT P-3000 and PROTEASE 899 (Genencor International)), were added at 0.5 kg/MT followed by the addition of STARGEN 001 (Genencor International) at 2.5 Kgs/ MT of starch). The flasks were then inoculated with 0.5 ml of 20 % yeast (Red Star Ethanol Red) and placed in a water bath maintained at 32°C. The contents of the flask were continuously stirred for uniform mixing during incubation. Samples were taken at different intervals of time for HPLC analysis. The residual starch and protein content of the DDGS from 72 hours fermentor broth were determined. The results for ethanol production are shown below in Table 4.
Table 4
Figure imgf000040_0001

Claims

WE CLAIM:
I . An isolated NSP24 family protease having at least 85% amino acid sequence identity to SEQ ID NO:10.
2 The isolated NSP24 family protease of claim 1 having at least 90% amino acid sequence identity to SEQ ID NO:10.
3. The isolated NSP24 family protease of claim 2 having at least 95% amino acid sequence identity to SEQ ID NO:10.
4. The isolated NSP24 family protease of claim 3 having at least 97% amino acid sequence identity to SEQ ID NO:10.
5. An isolated polynucleotide encoding an NSP24 family protease.
6. The isolated polynucleotide of claim 5, wherein said isolated nucleic acid encodes an NSP24 protease having at least 85% sequence identity to SEQ ID NO: 2.
7. The isolated polynucleotide of claim 6 having the sequence of SEQ ID NO:8.
8. A vector comprising the polynucleotide of claim 5.
9. A host cell transformed with the polynucleotide of claim 5.
10. The host cell of claim 9, wherein the host cell is a filamentous fungal cell.
I 1. The host cell of claim 10, wherein the filamentous fungal cell is an Aspergillus spp. a Fυsariυm spp. or Trichoderma spp.
12. The host cell of claim 11 , wherein the Aspergillus is A. niger, A. oryzae, A. nidulans, or A. awamori.
13. The host cell of claim 11 , wherein the Trichoderma is T. reesei.
14. The host cell of claim 10, wherein the host cell is a quad-delete host cell.
15. A method for producing a protease comprising a) introducing into a host cell a polynucleotide comprising a promoter operably linked to a nucleic acid encoding a NSP24 family protease, b) culturing the host cell under suitable culture conditions for the expression and production of the NSP24 family protease, and c) producing said NSP24 family protease.
16. The method according to claim 15 further comprising recovering the produced protease.
17. An isolated biologically active fragment of a parent NSP24 family protease.
18. The isolated biologically active fragment of claim 17, wherein the parent NSP24 family protease has at least 90% sequence identity with SEQ ID NO: 2.
19. The isolated biologically active fragment of claim 17, wherein the fragment has at least 40% of the activity of the NSP24 protease having SEQ ID NO: 2 or SEQ ID NO:10.
20. An enzyme composition comprising the NSP24 family protease of claim 1.
21. An enzyme composition comprising the biologically active fragment of the NSP24 family protease of claim 17.
22. The enzyme composition of claim 20, wherein the composition is a cleaning composition.
23. The enzyme composition of claim 22, wherein the cleaning composition is a detergent composition.
24. The enzyme composition of claim 20, wherein the composition is a starch hydrolyzing composition.
25. The enzyme composition of claim 20, wherein the composition is an animal feed composition.
26. The enzyme composition of claim 20, wherein the composition is used in a process for ethanol production.
27. The enzyme composition of claim 20, wherein the composition is used in a process for starch saccharification.
28. The enzyme composition of claim 20, wherein the composition is used in the production of maltose or fructose.
29. The enzyme composition of claim 20, wherein the composition is a personal care composition.
30. The enzyme composition of claim 20 further comprising a glucoamylase.
31. The enzyme composition of claim 21 further comprising a glucoamylase.
32. The enzyme composition of claim 20 further comprising an alpha amylase.
33. The enzyme composition of claim 21 further comprising an alpha amylase.
34. The enzyme composition of claim 33 further comprising a glucoamylase
35. A method of hydrolyzing starch comprising contacting a substrate containing starch with the enzyme composition of claim 20 under suitable conditions for starch hydrolysis and obtaining hydrolyzed starch.
36. The isolated PepA protease having SEQ ID NO: 7.
37. An isolated polynucleotide encoding the protease of claim 36.
38. The polynucleotide of claim 37 having SEQ ID NO: 5.
39. An isolated NSP25 family protease having at least 90% sequence identity to SEQ ID NO: 9.
40. An isolated polynucleotide encoding the NSP25 protease of claim 39.
PCT/US2005/046435 2004-12-30 2005-12-20 Acid fungal proteases WO2006073839A2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP05855059A EP1831362B1 (en) 2004-12-30 2005-12-20 Acid fungal proteases
DK05855059.1T DK1831362T3 (en) 2004-12-30 2005-12-20 Acidic fungal proteases
CN200580045498.2A CN101094918B (en) 2004-12-30 2005-12-20 Acid fungal proteases
MX2007007862A MX2007007862A (en) 2004-12-30 2005-12-20 Acid fungal proteases.
CA2593080A CA2593080C (en) 2004-12-30 2005-12-20 Acid fungal proteases
MX2010001481A MX2010001481A (en) 2004-12-30 2005-12-20 Acid fungal proteases.
BRPI0519766-0A BRPI0519766A2 (en) 2004-12-30 2005-12-20 Authentic acid proteases
AT05855059T ATE530643T1 (en) 2004-12-30 2005-12-20 ACID-ACTIVE FUNGAL PROTEASE
JP2007549480A JP5087407B2 (en) 2004-12-30 2005-12-20 Acid fungal protease

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US64039904P 2004-12-30 2004-12-30
US60/640,399 2004-12-30
US64823305P 2005-01-27 2005-01-27
US60/648,233 2005-01-27

Publications (2)

Publication Number Publication Date
WO2006073839A2 true WO2006073839A2 (en) 2006-07-13
WO2006073839A3 WO2006073839A3 (en) 2006-11-23

Family

ID=36298718

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2005/046435 WO2006073839A2 (en) 2004-12-30 2005-12-20 Acid fungal proteases
PCT/US2005/046474 WO2006073843A2 (en) 2004-12-30 2005-12-21 Acid fungal protease in fermentation of insoluble starch substrates

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/US2005/046474 WO2006073843A2 (en) 2004-12-30 2005-12-21 Acid fungal protease in fermentation of insoluble starch substrates

Country Status (13)

Country Link
US (6) US7429476B2 (en)
EP (3) EP2363460A3 (en)
JP (1) JP5087407B2 (en)
CN (1) CN101094918B (en)
AT (2) ATE530643T1 (en)
BR (1) BRPI0519766A2 (en)
CA (1) CA2593080C (en)
DE (1) DE602005011486D1 (en)
DK (1) DK1831362T3 (en)
ES (1) ES2318590T3 (en)
MX (2) MX2010001481A (en)
PL (1) PL1831386T3 (en)
WO (2) WO2006073839A2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006073843A2 (en) * 2004-12-30 2006-07-13 Genencor International, Inc. Acid fungal protease in fermentation of insoluble starch substrates
WO2009052101A1 (en) 2007-10-18 2009-04-23 Danisco Us, Inc. Enzyme blends for fermentation
WO2011003968A1 (en) 2009-07-08 2011-01-13 Ab Enzymes Oy A fungal protease and use thereof
WO2011075677A2 (en) 2009-12-18 2011-06-23 Novozymes, Inc. Methods for producing polypeptides in protease-deficient mutants of trichoderma
US8603795B2 (en) 2009-04-30 2013-12-10 Ab Enzymes Oy Fungal protease and use thereof
US8609390B2 (en) 2009-04-30 2013-12-17 Ab Enzymes Oy Fungal serine protease and use thereof
US8945900B2 (en) 2010-10-29 2015-02-03 Ab Enzymes Oy Variants of fungal serine protease
US9404164B2 (en) 2011-03-31 2016-08-02 Ab Enzymes Oy Protease enzyme and uses thereof
EP3277103B1 (en) 2015-03-30 2020-11-11 Société des Produits Nestlé S.A. Milk-based protein hydrolysates and compositions made thereof

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104694595A (en) * 2005-02-07 2015-06-10 诺维信北美公司 Process for producing fermentation product
UA100673C2 (en) 2006-07-21 2013-01-25 Ксилеко, Инк. Method for processing of cellulose or lignocellulose biomass (variants)
US7659098B2 (en) * 2006-09-12 2010-02-09 Masahiro Yamamoto Method of treating waste from alcohol production
WO2008100837A2 (en) * 2007-02-13 2008-08-21 Renessen Llc Fermentation process for the preparation of ethanol from a corn fraction having low oil content
US8093016B2 (en) * 2007-05-21 2012-01-10 Danisco Us Inc. Use of an aspartic protease (NS24) signal sequence for heterologous protein expression
WO2009048917A2 (en) * 2007-10-12 2009-04-16 Archer-Daniels-Midland Company Increased fiber hydrolysis by protease addition
EP2203556A1 (en) * 2007-11-01 2010-07-07 Danisco US Inc. Signal sequences and co-expressed chaperones for improving protein production in a host cell
JP5594899B2 (en) 2007-11-20 2014-09-24 ダニスコ・ユーエス・インク Glucoamylase variants with altered properties
MX2007016073A (en) * 2007-12-14 2009-06-15 Itesm Improved method for obtaining bioethanol from sorghum grain (sorghum bicolor l. moench), comprising steps involving decortication and hydrolysis with proteases.
MX2010009652A (en) 2008-03-11 2010-09-30 Danisco Us Inc Glucoamylase and buttiauxiella phytase during saccharification.
DK2276848T3 (en) * 2008-04-30 2015-03-09 Danisco Us Inc Improved fermentation using molasses
US8252566B2 (en) * 2008-05-20 2012-08-28 Jj Florida Properties Llc Ethanol production from citrus waste through limonene reduction
WO2009143059A1 (en) * 2008-05-20 2009-11-26 Inventus Holdings, Llc Removal of fermentation inhibiting compounds from citrus waste using solvent extraction and production of ethanol
CA2725737A1 (en) * 2008-05-29 2009-12-10 Danisco Us Inc. Process for alcohol and co-product production from grain sorghum
CN102083991A (en) * 2008-06-23 2011-06-01 诺维信公司 Processes for producing fermentation products
PE20121504A1 (en) 2009-08-19 2012-11-05 Dupont Nutrition Biosci Aps GLUCOAMYLASE VARIANTS
EP2467475A1 (en) 2009-08-19 2012-06-27 Danisco US Inc. Combinatorial variants of glucoamylase with improved specific activity and/or thermostability
NZ604846A (en) * 2010-07-19 2014-11-28 Xyleco Inc Processing biomass
US9175316B2 (en) * 2012-12-12 2015-11-03 Ebio, Llc Efficient production of biofuels from cells carrying a metabolic-bypass gene cassette
US9677058B2 (en) 2011-12-22 2017-06-13 Dupont Nutrition Biosciences Aps Polypeptides having glucoamylase activity and method of producing the same
EP2800809B1 (en) 2012-01-05 2018-03-07 Glykos Finland Oy Protease deficient filamentous fungal cells and methods of use thereof
EP2852610B1 (en) 2012-05-23 2018-07-11 Glykos Finland Oy Production of fucosylated glycoproteins
WO2013181647A2 (en) 2012-06-01 2013-12-05 Danisco Us Inc. Compositions and methods of producing isoprene and/or industrrial bio-products using anaerobic microorganisms
MX2015002099A (en) 2012-08-22 2015-05-11 Dupont Nutrition Biosci Aps Wave energy conversion.
US20140134684A1 (en) * 2012-11-09 2014-05-15 The United States Of America, As Represented By The Secretary Of Agriculture Methods For Obtaining Oil From Maize Using Acid Protease and Cell-wall Polysaccharide-degrading Enzymes
CN105518130A (en) 2013-06-21 2016-04-20 丹尼斯科美国公司 Compositions and methods for clostridial transformation
DK3019602T3 (en) 2013-07-10 2018-11-12 Glykos Finland Oy MULTIPLE PROTEASE-DEFECTED FILAMENTARY FUNGAL CELLS AND PROCEDURES FOR USE THEREOF
CA2954974A1 (en) 2014-07-21 2016-01-28 Glykos Finland Oy Production of glycoproteins with mammalian-like n-glycans in filamentous fungi
US11680278B2 (en) 2014-08-29 2023-06-20 Lee Tech Llc Yeast stage tank incorporated fermentation system and method
US9180463B1 (en) 2014-08-29 2015-11-10 Joseph R. Fitzgerald Method for fractionation of dry material using accelerators
US11427839B2 (en) 2014-08-29 2022-08-30 Lee Tech Llc Yeast stage tank incorporated fermentation system and method
EP3353292A4 (en) * 2015-09-25 2019-04-03 Novozymes A/S Use of serine proteases for improving ethanol yield
US11166478B2 (en) 2016-06-20 2021-11-09 Lee Tech Llc Method of making animal feeds from whole stillage
WO2018005229A1 (en) 2016-06-30 2018-01-04 Dupont Nutrition Biosciences Aps In feed assay of microbial proteases using peptide substrates
US11422911B2 (en) 2019-03-14 2022-08-23 International Business Machines Corporation Assisted smart device context performance information retrieval
WO2022159719A1 (en) 2021-01-22 2022-07-28 Lee Tech Llc System and method for improving the corn wet mill and dry mill process

Family Cites Families (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE21604E (en) 1940-10-22 Harvester
JPS5519598B2 (en) 1972-03-10 1980-05-27
JPS5626396B2 (en) 1974-03-11 1981-06-18
JPS5646831B2 (en) * 1974-11-26 1981-11-05
JPS5534046A (en) * 1978-09-01 1980-03-10 Cpc International Inc Novel glucoamyrase having excellent heat resistance and production
GB2089836B (en) * 1980-12-16 1984-06-20 Suntory Ltd Process for producing alcohol by fermentation without cooking
DE3132936A1 (en) 1981-08-20 1983-03-03 Henkel KGaA, 4000 Düsseldorf "METHOD FOR PRODUCING ACID PROTEASE AND THESE FORMING MUTANTS OF THE RHIZOPUS GENUS"
DE3149457A1 (en) 1981-12-14 1983-06-23 Henkel KGaA, 4000 Düsseldorf METHOD FOR PRODUCING ACID PROTEASE AND THESE FORMING MUTANTS OF MUSHROOMS OF THE GENUS ASPERGILLUS
JPS58144105A (en) 1982-02-12 1983-08-27 Kurabo Ind Ltd Production of descaled animal fiber
NO840200L (en) 1983-01-28 1984-07-30 Cefus Corp GLUCOAMYLASE CDNA.
US4587215A (en) * 1984-06-25 1986-05-06 Uop Inc. Highly thermostable amyloglucosidase
ATE95837T1 (en) 1984-08-06 1993-10-15 Genencor Inc ENZYMATIC HYDROLYSIS OF GRANULAR STARCH DIRECTLY TO GLUCOSE.
JPH0630586B2 (en) * 1984-12-15 1994-04-27 サントリー株式会社 Glucoamylase gene
US4683195A (en) 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
EP0208491B1 (en) * 1985-07-03 1993-08-25 Genencor International, Inc. Hybrid polypeptides and process for their preparation
EP0215594B2 (en) 1985-08-29 2003-10-15 Genencor International, Inc. Heterologous polypeptide expressed in filamentous fungi, processes for their preparation, and vectors for their preparation
US5278059A (en) * 1985-12-04 1994-01-11 Kabushiki Kaisha Hayashibara Seibutsu Kagaki Kenkyujo Polypeptide possessing cyclomaltodextrin glucanotransferase activity
EP0344259A4 (en) 1987-10-30 1991-04-24 Lsi Logic Corporation Method and means of fabricating a semiconductor device package
JPH01240184A (en) 1988-03-18 1989-09-25 Ikeda Shiyokuken Kk Thermostable acidic protease
CA1333777C (en) * 1988-07-01 1995-01-03 Randy M. Berka Aspartic proteinase deficient filamentous fungi
US5173403A (en) 1989-02-24 1992-12-22 Oklahoma Medical Research Foundation Thermostable acid protease from sulfolobus acidocaldarius and gene
US5162210A (en) 1990-06-29 1992-11-10 Iowa State University Research Foundation Process for enzymatic hydrolysis of starch to glucose
FR2666590A1 (en) * 1990-09-11 1992-03-13 Sanofi Sa RECOMBINANT DNA ENCODING AN ENDOTHIAPEPSIN PRECURSOR, EXPRESSION VECTOR, BACTERIA AND PROCESSED EUKARYOTIC CELLS.
DE69133100T3 (en) 1990-12-10 2015-09-03 Danisco Us Inc. IMPROVED SACCHARIFICATION OF CELLULOSE BY CLONING AND REPRODUCTION OF THE BETA-GLUCOSIDASE GENE FROM TRICHODERMA REESEI
US5231017A (en) * 1991-05-17 1993-07-27 Solvay Enzymes, Inc. Process for producing ethanol
US5861271A (en) 1993-12-17 1999-01-19 Fowler; Timothy Cellulase enzymes and systems for their expressions
BE1008738A3 (en) 1994-06-17 1996-07-02 Solvay Expression system, integration and vector cell transformed by the vector integration.
CN100419076C (en) 1995-02-03 2008-09-17 诺沃奇梅兹有限公司 Method for disigning alpha-amylase mutants with predetermined properties
US6093562A (en) * 1996-02-05 2000-07-25 Novo Nordisk A/S Amylase variants
US5736499A (en) 1995-06-06 1998-04-07 Genencor International, Inc. Mutant A-amylase
EP0904360B1 (en) * 1996-04-30 2013-07-31 Novozymes A/S alpha-AMYLASE MUTANTS
US5958739A (en) * 1996-06-06 1999-09-28 Genencor International Inc. Mutant α-amylase
US6255515B1 (en) * 1997-01-21 2001-07-03 Mitsubishi Chemical Corporation Processes for producing silicon- or germanium-containing organic compound, transition metal complex, catalyst for polymerization of α-olefin and α-olefin polymer
BR9807941A (en) 1997-04-07 2000-02-22 Unilever Nv Processes for production and for growing a processed mold, and, processed mold
EP1032655B1 (en) * 1997-11-21 2005-06-29 Novozymes A/S Protease variants and compositions
DE19752855C2 (en) 1997-11-28 2003-04-03 Bundesrepublik Deutschland Let Retroviral pseudotype vectors with modified surface envelope proteins and packaging cells for their production for selective gene transfer
AU2207099A (en) 1997-12-24 1999-07-19 Genencor International, Inc. An improved method of assaying for a preferred enzyme and/or preferred detergentcomposition
JPH11328408A (en) * 1998-05-12 1999-11-30 Advantest Corp Device for processing data and information storage medium
US6352851B1 (en) * 1998-07-15 2002-03-05 Novozymes A/S Glucoamylase variants
US6268328B1 (en) 1998-12-18 2001-07-31 Genencor International, Inc. Variant EGIII-like cellulase compositions
US6254914B1 (en) * 1999-07-02 2001-07-03 The Board Of Trustees Of The University Of Illinois Process for recovery of corn coarse fiber (pericarp)
NZ520022A (en) 1999-12-30 2005-01-28 Genencor Int Protein and DNA sequences for XYL-IV from Trichoderma reesei
US6566125B2 (en) * 2000-06-02 2003-05-20 The United States Of America As Represented By The Secretary Of Agriculture Use of enzymes to reduce steep time and SO2 requirements in a maize wet-milling process
US6936294B2 (en) * 2001-12-04 2005-08-30 Satake Usa, Inc. Corn degermination process
CN100564534C (en) 2002-02-08 2009-12-02 金克克国际有限公司 Produce the alcoholic acid method with carbon substrate
CN1330770C (en) 2002-02-14 2007-08-08 诺维信公司 Starch process
CN1788083B (en) * 2003-03-10 2011-10-05 诺维信公司 Alcohol product processes
CN102210376B (en) 2003-03-10 2014-12-31 波伊特研究股份有限公司 Method for producing ethanol using raw starch
WO2004087889A1 (en) * 2003-04-04 2004-10-14 Novozymes A/S Mash viscosity reduction
EP1862626B1 (en) 2003-05-29 2011-09-14 Genencor International, Inc. Novel trichoderma genes
EP1633878A1 (en) 2003-05-30 2006-03-15 Novozymes A/S Alcohol product processes
US6899910B2 (en) * 2003-06-12 2005-05-31 The United States Of America As Represented By The Secretary Of Agriculture Processes for recovery of corn germ and optionally corn coarse fiber (pericarp)
EP1633874A2 (en) 2003-06-13 2006-03-15 Novozymes A/S Method for producing glucoamylases and their uses
US7306935B2 (en) 2003-06-25 2007-12-11 Novozymes North America, Inc Polypeptides having alpha-amylase activity and polypeptides encoding same
EP1675941B1 (en) 2003-06-25 2013-05-22 Novozymes A/S Polypeptides having alpha-amylase activity and polynucleotides encoding same
US20070148287A1 (en) 2003-07-01 2007-06-28 Novozymes A/S Cgtase variants
US6936110B2 (en) * 2003-07-08 2005-08-30 Biorefining, Inc. Grain fractionation
BRPI0416762A (en) 2003-11-21 2007-02-27 Genencor Int Granular starch hydrolyzing enzyme expression in trinchoderma and process for producing glucose from granular starch substrates
US20080113418A1 (en) * 2004-01-16 2008-05-15 Novozymes A/S Processes for Producing a Fermantation Product
WO2005087938A2 (en) 2004-03-10 2005-09-22 Broin And Associates, Inc. Methods and systems for producing ethanol using raw starch and fractionation
CN1981037B (en) * 2004-05-27 2011-08-31 金克克国际有限公司 Heterologous expression of an aspergillus kawachi acid-stable alpha amylase and applications in granular starch hydrolysis
CA2567485C (en) * 2004-05-27 2015-01-06 Genencor International, Inc. Acid-stable alpha amylases having granular starch hydrolyzing activity and enzyme compositions
EP2363460A3 (en) * 2004-12-30 2011-12-28 Genencor International, Inc. Acid fungal proteases
US8093016B2 (en) * 2007-05-21 2012-01-10 Danisco Us Inc. Use of an aspartic protease (NS24) signal sequence for heterologous protein expression
US8048657B2 (en) * 2007-10-18 2011-11-01 Danisco Us Inc. Enzyme compositions comprising a glucoamylase, an acid stable alpha amylase, and an acid fungal protease

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006073843A3 (en) * 2004-12-30 2007-04-05 Genencor Int Acid fungal protease in fermentation of insoluble starch substrates
WO2006073843A2 (en) * 2004-12-30 2006-07-13 Genencor International, Inc. Acid fungal protease in fermentation of insoluble starch substrates
US8075694B2 (en) 2004-12-30 2011-12-13 Danisco Us Inc. Acid fungal protease in fermentation of insoluble starch substrates
US8048657B2 (en) 2007-10-18 2011-11-01 Danisco Us Inc. Enzyme compositions comprising a glucoamylase, an acid stable alpha amylase, and an acid fungal protease
WO2009052101A1 (en) 2007-10-18 2009-04-23 Danisco Us, Inc. Enzyme blends for fermentation
JP2011500058A (en) * 2007-10-18 2011-01-06 ダニスコ・ユーエス・インク Enzyme blend for fermentation
US8937170B2 (en) 2009-04-30 2015-01-20 Ab Enzymes Oy Nucleic acids encoding fungal protease
US8603795B2 (en) 2009-04-30 2013-12-10 Ab Enzymes Oy Fungal protease and use thereof
US8609390B2 (en) 2009-04-30 2013-12-17 Ab Enzymes Oy Fungal serine protease and use thereof
US8877912B2 (en) 2009-04-30 2014-11-04 Ab Enzymes Oy Nucleic acids encoding fungal serine protease
WO2011003968A1 (en) 2009-07-08 2011-01-13 Ab Enzymes Oy A fungal protease and use thereof
US8362222B2 (en) 2009-07-08 2013-01-29 Ab Enzymes Oy Fungal protease and use thereof
EP3000871A1 (en) 2009-12-18 2016-03-30 Novozymes, Inc. Methods for producing polypeptides in protease-deficient mutants of trichoderma
US8986974B2 (en) 2009-12-18 2015-03-24 Novozymes, Inc. Methods for producing polypeptidies in protease-deficient mutants of trichoderma
WO2011075677A2 (en) 2009-12-18 2011-06-23 Novozymes, Inc. Methods for producing polypeptides in protease-deficient mutants of trichoderma
US10400260B2 (en) 2009-12-18 2019-09-03 Novozymes, Inc. Protease-deficient mutants of trichoderma for producing polypeptides
US11001869B2 (en) 2009-12-18 2021-05-11 Novozymes, Inc. Methods for producing polypeptides in protease-deficient mutants of Trichoderma
US11078510B2 (en) 2009-12-18 2021-08-03 Novozymes, Inc. Methods for producing polypeptides in protease-deficient mutants of Trichoderma
US11078509B2 (en) 2009-12-18 2021-08-03 Novozymes, Inc. Methods for producing polypeptides in protease-deficient mutants of Trichoderma
US11078508B2 (en) 2009-12-18 2021-08-03 Novozymes, Inc. Methods for producing polypeptides in protease-deficient mutants of trichoderma
US11427847B2 (en) 2009-12-18 2022-08-30 Novozymes, Inc. Methods for producing polypeptides in protease-deficient mutants of Trichoderma
US8945900B2 (en) 2010-10-29 2015-02-03 Ab Enzymes Oy Variants of fungal serine protease
US9404164B2 (en) 2011-03-31 2016-08-02 Ab Enzymes Oy Protease enzyme and uses thereof
US10221377B2 (en) 2011-03-31 2019-03-05 Ab Enzymes Oy Protease enzyme and uses thereof
EP3277103B1 (en) 2015-03-30 2020-11-11 Société des Produits Nestlé S.A. Milk-based protein hydrolysates and compositions made thereof

Also Published As

Publication number Publication date
US8288517B2 (en) 2012-10-16
EP1831386A2 (en) 2007-09-12
EP1831362B1 (en) 2011-10-26
EP1831386B1 (en) 2008-12-03
CN101094918B (en) 2014-05-14
EP2363460A3 (en) 2011-12-28
MX2010001481A (en) 2010-03-01
DK1831362T3 (en) 2012-01-09
US20090061483A1 (en) 2009-03-05
US20120225469A1 (en) 2012-09-06
EP1831362A2 (en) 2007-09-12
US20090317872A1 (en) 2009-12-24
MX2007007862A (en) 2007-08-17
ES2318590T3 (en) 2009-05-01
CA2593080C (en) 2014-03-18
US20060154342A1 (en) 2006-07-13
BRPI0519766A2 (en) 2009-03-10
JP2008526202A (en) 2008-07-24
JP5087407B2 (en) 2012-12-05
CA2593080A1 (en) 2006-07-13
WO2006073843A3 (en) 2007-04-05
PL1831386T3 (en) 2009-06-30
ATE416258T1 (en) 2008-12-15
CN101094918A (en) 2007-12-26
US7563607B2 (en) 2009-07-21
US8173409B2 (en) 2012-05-08
DE602005011486D1 (en) 2009-01-15
US20060154353A1 (en) 2006-07-13
US7629451B2 (en) 2009-12-08
US20100190208A1 (en) 2010-07-29
US7429476B2 (en) 2008-09-30
EP2363460A2 (en) 2011-09-07
WO2006073839A3 (en) 2006-11-23
WO2006073843A2 (en) 2006-07-13
ATE530643T1 (en) 2011-11-15
US8075694B2 (en) 2011-12-13

Similar Documents

Publication Publication Date Title
US7429476B2 (en) Acid fungal proteases
JP5463146B2 (en) Starch hydrolysis using phytase with alpha-amylase
RU2394101C2 (en) Glucoamylase trichoderma reesei and its homologues
US8349601B2 (en) Trichoderma reesei glucoamylase and homologs thereof
US7723079B2 (en) Trichoderma reesei glucoamylase and homologs thereof
CA3032736A1 (en) Leader-modified glucoamylase polypeptides and engineered yeast strains having enhanced bioproduct production
EP3274461A1 (en) Glucoamylase-modified yeast strains and methods for bioproduct production
JP2023527266A (en) Glucoamylase and method of use thereof
AU2011205074B2 (en) Trichoderma reesei glucoamylase and homologs thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580045498.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2593080

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/a/2007/007862

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2005855059

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007549480

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI0519766

Country of ref document: BR