WO2006070751A1 - 音声符号化装置および音声符号化方法 - Google Patents

音声符号化装置および音声符号化方法 Download PDF

Info

Publication number
WO2006070751A1
WO2006070751A1 PCT/JP2005/023802 JP2005023802W WO2006070751A1 WO 2006070751 A1 WO2006070751 A1 WO 2006070751A1 JP 2005023802 W JP2005023802 W JP 2005023802W WO 2006070751 A1 WO2006070751 A1 WO 2006070751A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
channel
monaural
prediction
speech
Prior art date
Application number
PCT/JP2005/023802
Other languages
English (en)
French (fr)
Inventor
Koji Yoshida
Michiyo Goto
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US11/722,737 priority Critical patent/US7945447B2/en
Priority to BRPI0516376-5A priority patent/BRPI0516376A/pt
Priority to JP2006550764A priority patent/JP5046652B2/ja
Priority to EP05820404A priority patent/EP1818911B1/en
Priority to AT05820404T priority patent/ATE545131T1/de
Priority to CN2005800450695A priority patent/CN101091208B/zh
Publication of WO2006070751A1 publication Critical patent/WO2006070751A1/ja

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/008Multichannel audio signal coding or decoding using interchannel correlation to reduce redundancy, e.g. joint-stereo, intensity-coding or matrixing
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/16Vocoder architecture
    • G10L19/18Vocoders using multiple modes
    • G10L19/24Variable rate codecs, e.g. for generating different qualities using a scalable representation such as hierarchical encoding or layered encoding

Definitions

  • the present invention relates to a speech coding apparatus and speech coding method, and more particularly to a speech coding apparatus and speech coding method for stereo speech.
  • a voice coding scheme having a scalable configuration is desired in order to control traffic on the network and realize multicast communication.
  • a scalable configuration refers to a configuration in which audio data can be decoded even from partial encoded data on the receiving side.
  • Non-Patent Document 1 Ramprashad, SA, "Stereophonic CELP coding using cross channel p rediction", Pro IEEE Workshop on Speech Coding, pp.136-138, Sep. 2000.
  • Non-Patent Document 1 when the correlation between both channels is small, the prediction performance (prediction gain) between the channels decreases, and the coding efficiency is low. to degrade.
  • An object of the present invention is a speech coding having a monaural stereo's scalable configuration, in which speech that can efficiently encode stereo speech even when a correlation between a plurality of stereo signals is small.
  • An encoding device and a speech encoding method are provided.
  • the speech coding apparatus includes a first coding unit that performs coding using a monaural signal of a core layer, a second coding unit that performs coding using a stereo signal of an enhancement layer, And the first encoding means includes generation means for generating a monaural signal from the first channel signal and the second channel signal using a stereo signal including the first channel signal and the second channel signal as an input signal. And the second encoding means includes a synthesizing means for synthesizing the predicted signal of the first channel signal or the second channel signal based on a signal obtained from the monaural signal.
  • stereo sound can be efficiently encoded even when the correlation between a plurality of channel signals of a stereo signal is small.
  • FIG. 1 is a block diagram showing a configuration of a speech encoding apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram showing the configuration of the lch and 2ch prediction signal synthesizers according to Embodiment 1 of the present invention.
  • FIG. 3 is a block diagram showing the configuration of the lch and 2ch prediction signal synthesizers according to Embodiment 1 of the present invention. Lock figure
  • FIG. 4 is a block diagram showing a configuration of a speech decoding apparatus according to Embodiment 1 of the present invention.
  • FIG. 5 is an operation explanatory diagram of the speech coding apparatus according to Embodiment 1 of the present invention.
  • FIG. 6 is an operation explanatory diagram of the speech coding apparatus according to Embodiment 1 of the present invention.
  • FIG. 7 is a block diagram showing a configuration of a speech encoding apparatus according to Embodiment 2 of the present invention.
  • FIG. 8 is a block diagram showing a configuration of a speech decoding apparatus according to Embodiment 2 of the present invention.
  • FIG. 9 is a block diagram showing a configuration of a speech encoding apparatus according to Embodiment 3 of the present invention.
  • FIG. 10 is a block diagram showing the configuration of the lch and 2ch CELP coding sections according to Embodiment 3 of the present invention.
  • FIG. 11 is a block diagram showing a configuration of a speech decoding apparatus according to Embodiment 3 of the present invention.
  • FIG. 12 is a block diagram showing a configuration of lch and 2ch CELP decoding sections according to Embodiment 3 of the present invention.
  • FIG. 13 is an operation flowchart of the speech coding apparatus according to Embodiment 3 of the present invention.
  • FIG. 14 is an operation flow diagram of the lch and second ch CELP code keys according to Embodiment 3 of the present invention.
  • FIG. 15 is a block diagram showing another configuration of the speech coding apparatus according to Embodiment 3 of the present invention.
  • FIG. 16 is a block diagram showing another configuration of the lch and 2ch CELP code key sections according to Embodiment 3 of the present invention.
  • FIG. 17 is a block diagram showing a configuration of a speech encoding apparatus according to Embodiment 4 of the present invention.
  • FIG. 18 is a block diagram showing the configuration of the lch and 2ch CELP coding sections according to Embodiment 4 of the present invention.
  • FIG. 1 shows the configuration of the speech coding apparatus according to the present embodiment.
  • Speech coding apparatus 100 shown in FIG. 1 includes a core layer coding unit 110 for monaural signals and an enhancement layer coding unit 120 for stereo signals. In the following description, the operation is assumed to be performed in units of frames.
  • the monaural signal encoding unit 112 performs encoding on the monaural signal s_mono (n), and outputs the monaural signal encoding signal data to the monaural signal decoding unit 113. Also, the encoded data of the monaural signal is multiplexed with the quantized code or encoded data output from enhancement layer encoding section 120 and transmitted to the speech decoding apparatus as encoded data.
  • the monaural signal decoding unit 113 generates a monaural decoded signal from the monaural signal code key data and outputs the monaural decoded signal to the enhancement layer code key unit 120.
  • lch prediction filter analysis section 121 obtains and quantizes the lch prediction filter parameter from lch speech signal s_chl (n) and the monaural decoded signal, and performs the first ch prediction.
  • the filter quantization parameter is output to the first channel predicted signal synthesis unit 122.
  • the monaural signal s_mono (n) that is the output of the monaural signal generation unit 111 may be used as the input to the lch prediction filter analysis unit 121 instead of the monaural decoded signal.
  • the l-th channel prediction filter analysis unit 121 outputs an l-th channel prediction filter quantization code obtained by encoding the l-th channel prediction filter quantization parameter. This lch prediction filter quantized code is multiplexed with other encoded data and quantized code and transmitted to the speech decoding apparatus as encoded data.
  • First lch prediction signal combining section 122 combines the first decoded signal from the monaural decoded signal and the first ch prediction filter quantization parameter, and outputs the first ch prediction signal to subtractor 123. Details of the lch prediction signal synthesis unit 122 will be described later.
  • the subtracter 123 is the difference between the lch speech signal as the input signal and the lch prediction signal, that is, the signal of the residual component of the lch prediction signal relative to the lch input speech signal (the lch prediction residual). Difference signal) is obtained and output to the l-th prediction residual signal sign key unit 124.
  • the lch prediction residual signal encoding unit 124 encodes the lch prediction residual signal to generate the lch Prediction residual encoded data is output.
  • This lch prediction residual encoded data is multiplexed with other encoded data and quantized code and transmitted to the speech decoding apparatus as encoded data.
  • the second channel prediction filter analysis unit 125 obtains and quantizes the second channel prediction filter parameter from the second channel speech signal s_ch2 (n) and the monaural decoded signal, and quantizes the second channel prediction filter quantum parameter.
  • the prediction signal synthesis unit 126 outputs the result.
  • the second channel prediction filter analyzing unit 125 outputs a second channel prediction filter quantization code obtained by encoding the second channel prediction filter quantization parameter. This second channel predictive filter quantized code is multiplexed with other code data and quantized code and transmitted to the speech decoding apparatus as encoded data.
  • Second channel prediction signal synthesis section 126 synthesizes the second channel prediction signal from the monaural decoded signal and the second channel prediction filter quantization parameter, and outputs the second channel prediction signal to subtractor 127. Details of the second channel predicted signal synthesis unit 126 will be described later.
  • the subtractor 127 is the difference between the second channel speech signal that is the input signal and the second channel predicted signal, that is, the signal of the residual component of the second channel predicted signal relative to the second channel input speech signal (second channel predicted residual). Difference signal) and output it to the second channel prediction residual signal sign key unit 128.
  • Second channel prediction residual signal encoding unit 128 encodes the second channel prediction residual signal and outputs second channel prediction residual encoded data.
  • This second channel prediction residual encoded data is multiplexed with other encoded data and quantized code and transmitted to the speech decoding apparatus as encoded data.
  • the details of the lch prediction signal synthesizer 122 and the 2ch prediction signal synthesizer 126 will be described.
  • the configurations of the l-ch predicted signal synthesizer 122 and the second-ch predicted signal synthesizer 126 are as shown in FIG. 2 ⁇ Configuration example 1> or FIG. 3 ⁇ Configuration example 2>.
  • the delay difference of each channel signal relative to the monaural signal is based on the correlation between the monaural signal that is the sum of the lch input signal and the 2nd channel input signal and each channel signal. (D samples) and amplitude ratio (g) are used as prediction filter quantization parameters to synthesize prediction signals for each channel from monaural signals.
  • the signal synthesizer 126 includes a delay unit 201 and a multiplier 202, and synthesizes a prediction signal sp_ch (n) of each channel from the monaural decoded signal sd_mono (n) by the prediction expressed by the equation (2).
  • the configuration shown in FIG. 2 is further provided with delay devices 203-1 to P, multipliers 204-1 to P, and an adder 205.
  • the prediction coefficient sequence ⁇ a (0), a (l), a (2) , ⁇ , a (P) ⁇ (P is the prediction order, a (0) 1.0) Synthesize the signal sp_ch (n).
  • sp_ch (n) ⁇ ⁇ g * a (k) ⁇ sd_raono (n- ⁇ -k) ⁇ ... (3)
  • the prediction filter quantization parameter obtained by quantizing is output to the l-ch predicted signal synthesis unit 122 and the second-ch predicted signal synthesis unit 126 having the above configuration.
  • the l-th channel prediction filter analysis unit 121 and the 2nd channel prediction filter analysis unit 125 output a prediction filter quantization code obtained by encoding a prediction filter quantization parameter.
  • the lch prediction filter analysis unit 121 and the 2ch prediction filter analysis unit 125 have a correlation between the monaural decoded signal and the input audio signal of each channel. Is a prediction filter for the delay difference D and the ratio of average amplitude per frame g Get it as a parameter.
  • Speech decoding apparatus 300 shown in FIG. 4 includes core layer decoding section 310 for monaural signals and enhancement layer decoding section 320 for stereo signals.
  • the monaural signal decoding unit 311 decodes the encoded data of the input monaural signal, outputs the monaural decoded signal to the enhancement layer decoding unit 320, and outputs it as the final output.
  • the lch prediction filter decoding unit 321 decodes the input lch prediction filter quantization code and outputs the lch prediction filter quantization parameter to the lch prediction signal synthesis unit 322.
  • the lch predicted signal synthesizer 322 has the same configuration as that of the lch predicted signal synthesizer 122 of the speech coder 100, and the lch speech signal is derived from the monaural decoded signal and the lch predictive filter quantization parameter. And the l-th channel predicted speech signal is output to the adder 324.
  • lch prediction residual signal decoding section 323 decodes the input lch prediction residual codeh data and outputs the lch prediction residual signal to adder 324.
  • Adder 324 adds the l-ch predicted speech signal and the l-ch predicted residual signal to obtain a decoded signal of l-ch, and outputs it as the final output.
  • second channel prediction filter decoding section 325 decodes the input second channel prediction filter quantization code and outputs the second channel prediction filter quantization parameter to second channel prediction signal synthesis section 326.
  • Second channel predicted signal synthesis section 326 adopts the same configuration as second channel predicted signal synthesis section 126 of speech encoding apparatus 100, and outputs the second channel speech signal from the monaural decoded signal and the second channel prediction filter quantization parameter. Predict and output the second channel predicted speech signal to adder 328.
  • Second channel prediction residual signal decoding section 327 decodes the input second channel prediction residual code data and outputs the second channel prediction residual signal to adder 328.
  • Adder 328 adds the second channel predicted speech signal and the second channel predicted residual signal to obtain a second channel decoded signal, and outputs it as the final output.
  • a decoded signal obtained only from the code signal data of the monaural signal is monaurally decoded.
  • the first channel decoded signal and second channel decoded signal are decoded and output using all of the received encoded data and quantized code.
  • the monaural signal according to the present embodiment is a signal obtained by adding the 1st ch audio signal s_chl and the 2nd ch audio signal s_ch2, and therefore both channels are used.
  • This is an intermediate signal including the signal components. Therefore, even if the inter-channel correlation between the 1st channel audio signal and the 2nd channel audio signal is small, the correlation between the 1st channel audio signal and the monaural signal and the correlation between the 2nd channel audio signal and the monaural signal are more Is expected to grow. Therefore, the prediction gain and monaural signal power when predicting the monaural signal power 1st channel audio signal and the prediction gain when predicting the 2nd channel audio signal (Fig.
  • prediction gain B are calculated from the 1st channel audio signal to the 2nd channel audio signal. Prediction gain when predicting signal and 2nd channel audio signal strength Expected to be larger than the prediction gain when predicting lch audio signal (Fig. 5: Prediction gain A).
  • Fig. 6 summarizes this relationship. That is, when the inter-channel correlation between the 1st channel audio signal and the 2nd channel audio signal is sufficiently large, the prediction gain A and the prediction gain B do not change so much, and both values are sufficiently large. However, when the inter-channel correlation between the 1st channel audio signal and the 2nd channel audio signal is small, the prediction gain A decreases more rapidly than when the inter-channel correlation is sufficiently large, whereas the prediction gain B is Expected to be a value greater than the predicted gain A, which is less reduced than the gain A.
  • the signals of the respective channels are predicted and synthesized from the monaural signal that is an intermediate signal including the signal components of both the lch audio signal and the 2ch audio signal.
  • a signal having a larger prediction gain than conventional signals can be combined with a signal of a plurality of channels having a small inter-channel correlation.
  • equivalent sound quality can be obtained by encoding at a lower bit rate, and higher sound quality speech can be obtained at an equivalent bit rate. Therefore, according to the present embodiment, it is possible to improve the code efficiency.
  • FIG. 7 shows the configuration of speech encoding apparatus 400 according to the present embodiment.
  • speech coding apparatus 400 has the configuration shown in FIG. 1 (Embodiment 1), second channel prediction filter analysis unit 125, second channel prediction signal synthesis unit 126, subtractor 127, and second channel prediction.
  • the configuration is such that the residual signal encoding unit 128 is removed. That is, speech coding apparatus 400 synthesizes the prediction signal only for lch of lch and 2ch, and encodes the monaural signal encoded data, lch prediction filter quantized code, and lch prediction residual. Only the encoded data is transmitted to the speech decoding device.
  • speech decoding apparatus 500 has second channel prediction filter decoding section 325, second channel prediction signal synthesis section 326, and second channel prediction residual signal decoding section from the configuration shown in FIG. 4 (Embodiment 1). 3 27 and adder 328 are removed, and instead, the second channel decoded signal synthesizer 331 is added.
  • Second channel decoded signal synthesizer 331 uses the monaural decoded signal sd_mono (n) and the first channel decoded signal sd_chl (n), based on the relationship shown in equation (1), according to equation (5). 2ch decoded signal sd_ch 2 (n) is synthesized.
  • enhancement layer encoding section 120 is configured to process only the 1st channel, but may be configured to process only the 2nd channel instead of the 1st channel.
  • the apparatus configuration can be simplified as compared with the first embodiment.
  • the encoding efficiency is further improved.
  • FIG. 9 shows the configuration of speech encoding apparatus 600 according to the present embodiment.
  • the core layer coding unit 110 includes a monaural signal generation unit 111 and a monaural signal CELP coding unit 114
  • the enhancement layer coding unit 120 includes a monaural driving excitation signal holding unit 131, an Ich CELP coding unit 132, and a second ch CELP.
  • An encoding unit 133 is provided.
  • the CELP encoding unit 114 includes the monaural signal generated by the monaural signal generation unit 111.
  • the CELP code is applied to the signal s_mono (n), and the monaural signal encoded data and the monaural driving sound signal obtained by the CELP code are output.
  • the monaural driving sound source signal is held in the monaural driving sound source signal holding unit 131.
  • Ich CELP encoding section 132 performs CELP encoding on the lch audio signal and outputs lch encoded data.
  • the second ch CELP code key unit 133 performs CELP coding on the second ch audio signal and outputs second ch code data.
  • the IchCELP encoding unit 132 and the second chCELP encoding unit 133 use the monaural driving excitation signal held in the monaural driving excitation signal holding unit 131 to predict the driving excitation signal corresponding to the input audio signal of each channel.
  • the Nth channel (N is 1 or 2) LPC analysis unit 401 performs LPC analysis on the Nth channel speech signal, quantizes the obtained LPC parameters, and performs the Nth channel LPC prediction residual.
  • the Nth LPC quantization code is output.
  • the Nth LPC analysis unit 401 uses the fact that the correlation between the LPC parameter for the monaural signal and the LPC parameter (Nth chLPC parameter) obtained from the Nth channel audio signal is large when the LPC parameter is quantized. Encoded data Force Monaural signal quantization LPC parameters are decoded, and efficient quantization is performed by quantizing the difference component of the NchLPC parameters for the monaural signal quantization LPC parameters.
  • Nth channel LPC prediction residual signal generation section 402 calculates an LPC prediction residual signal for the Nth channel speech signal using the Nth channel quantization LPC parameter, and outputs the LPC prediction residual signal to Nth channel prediction filter analysis section 403.
  • Nth channel prediction filter analysis unit 403 obtains and quantizes the Nth channel prediction filter parameter from the LPC prediction residual signal and the monaural driving excitation signal, and quantizes the Nth channel prediction filter quantization parameter. Output to 404 and the Nth channel prediction file Output a quantized code.
  • N-th channel excitation signal synthesizer 404 synthesizes a predicted drive source signal corresponding to the N-th channel audio signal using the monaural drive source signal and the N-th channel predictive filter quantization parameter to generate a multiplier 407— Output to 1.
  • Nth channel prediction filter analysis unit 403 corresponds to first channel prediction filter analysis unit 121 and second channel prediction filter analysis unit 125 in Embodiment 1 (FIG. 1), and their configuration and operation are as follows. It will be the same.
  • N-channel drive excitation signal synthesizer 404 corresponds to l-ch predicted signal synthesizer 122 and second-ch predicted signal synthesizer 126 in Embodiment 1 (FIGS. 1 to 3), and their configuration and operation are the same.
  • the prediction of the monaural decoded signal is not performed and the prediction signal of each channel is not synthesized, but the prediction of the monaural driving sound source signal corresponding to the monaural signal is performed and the prediction driving sound source signal of each channel is determined. It differs from the first embodiment in the point of synthesis.
  • the excitation signal of the residual component (error component that cannot be predicted) for the predicted driving excitation signal is encoded by excitation search using the CELP code.
  • the lch and 2ch ch CELP encoding sections 132 and 133 have an Nch adaptive codebook 405 and an Nch fixed codebook 406, and predict the adaptive excitation, fixed excitation, and monaural driving sound source signal power.
  • Each sound source signal of the predictive driving sound source is multiplied by the gain of each, and calorie calculation is performed.
  • a closed sound source search is performed for the driving sound source obtained by the addition by minimizing distortion.
  • the gain code for the adaptive excitation index, fixed excitation index, adaptive excitation, fixed excitation, and predicted drive excitation signal is output as the Nth channel excitation encoded data. More specifically, it is as follows.
  • the synthesis finalizer 409 uses the quantized LPC parameter output from the N-th channel LPC analysis unit 401 to generate the excitation vector generated by the N-th channel adaptive codebook 405 and the N-th channel fixed codebook 406, and the N-th channel drive
  • the sound source signal synthesis unit 404 performs synthesis using the LPC synthesis filter using the predicted drive source signal synthesized as the drive source.
  • the component corresponding to the Nch predicted driving sound source signal is obtained from the 1st ch predicted signal synthesizer 122 or the 2nd ch predicted signal synthesizer 126 in the first embodiment (Figs .:! To 3). Corresponds to the output prediction signal of each channel.
  • the synthesized signal thus obtained is subtracted. Is output to the device 410.
  • Subtractor 410 calculates an error signal by subtracting the synthesized signal output from synthesis filter 409 from the N-th channel audio signal, and outputs this error signal to auditory weighting section 411. This error signal corresponds to coding distortion.
  • Auditory weighting section 411 performs auditory weighting on the sign distortion output from subtractor 410 and outputs the result to distortion minimizing section 412.
  • Distortion minimizing section 412 determines, for Nth channel adaptive codebook 405 and Nch fixed codebook 406, an index that minimizes the coding distortion output from perceptual weighting section 411, and It indicates the index used by Nch adaptive codebook 405 and Nch fixed codebook 406. Also, the distortion minimizing section 412 has gains corresponding to those indentations, specifically, each gain (adaptive codebook) for the adaptive vector from the Nth channel adaptive codebook 405 and the fixed vector of the Nth channel fixed codebook 406 force. Gain and fixed codebook gain) are output to multipliers 407-2 and 407-4, respectively.
  • the distortion minimizing unit 412 uses the predicted driving sound source signal output from the N-th channel driving sound source signal synthesizing unit 404, the adaptive rule and the multiplier 407- after gain multiplication in the multiplier 407-2.
  • Each gain that adjusts the gain between the three types of signals of the fixed vector after gain multiplication in 4 is generated and output to multipliers 407-1, 407-3, and 407-5, respectively.
  • the three types of gains that adjust the gain between these three types of signals are preferably generated with their relationship to each other.
  • the contribution of the predicted driving sound source signal is compared to the contribution of the adaptive vector no after gain multiplication and the contribution of the fixed vector after gain multiplication.
  • the contribution of the predicted driving sound source signal is relatively relative to the contribution of the adaptive vector after gain multiplication and the contribution of the fixed betaton after gain multiplication. Make it smaller.
  • distortion minimizing section 412 outputs these gains, the codes of the gains corresponding to those indentations, and the codes of the inter-signal adjustment gain as the Nth channel excitation code key data.
  • the N-th channel adaptive codebook 405 is the sound of the driving sound source to the synthesis filter 409 generated in the past.
  • the source vector is stored in the internal buffer, and one sub-routine is stored from the stored excitation vector based on the adaptive codebook lag (pitch lag or pitch period) corresponding to the index specified by the distortion minimizing unit 412. Frames are generated and output to multiplier 407-2 as adaptive codebook vectors.
  • N-th channel fixed codebook 406 outputs the excitation vector corresponding to the instructed from distortion minimizing section 412 to multiplier 407-4 as a fixed codebook vector.
  • Multiplier 407-2 multiplies the adaptive codebook vector output from N-th channel adaptive codebook 405 by the adaptive codebook gain, and outputs the result to multiplier 407-3.
  • Multiplier 407-4 multiplies the fixed codebook vector output from N-th channel fixed codebook 406 by a fixed codebook gain, and outputs the result to multiplier 407-5.
  • Multiplier 407-1 multiplies the predicted driving sound source signal output from N-th channel driving sound source signal combining section 404 by the gain, and outputs the result to adder 408.
  • Multiplier 407-3 multiplies the adaptive beta after gain multiplication in multiplier 407-2 by another gain and outputs the result to adder 408.
  • Multiplier 407-5 multiplies the fixed vector after gain multiplication in multiplier 407-4 by another gain and outputs the result to adder 408.
  • the adder 408 includes the predicted driving excitation signal output from the multiplier 407-1 and the multiplier 407.
  • the adaptive codebook vector output from 3 and the fixed codebook vector output from multiplier 407-5 are added, and the added excitation vector is output to synthesis filter 409 as the driving excitation.
  • the synthesis filter 409 uses the excitation vector output from the adder 408 as a driving excitation LP
  • a series of processes in which encoding distortion is calculated using the sound source vectors generated by the N-th channel adaptive codebook 405 and the N-th channel fixed codebook 406 is a closed loop, and a distortion minimizing unit 412 determines and outputs the indexes of the N-th channel adaptive codebook 405 and the N-th channel fixed codebook 406 so that the code distortion is minimized.
  • FIG. 11 shows the configuration of speech decoding apparatus 700 according to the present embodiment.
  • Speech decoding apparatus 700 shown in FIG. 11 includes core layer decoding section 310 for monaural signals and enhancement layer decoding section 320 for stereo signals.
  • Monaural decoding unit 312 performs CELP decoding on encoded data of the input monaural signal, and outputs a monaural decoded signal and a monaural driving excitation signal obtained by CELP decoding.
  • the monaural driving sound source signal is held in the monaural driving sound source signal holding unit 341.
  • Ich CELP decoding section 342 performs CELP decoding on the lch encoded data and outputs the lch decoded signal.
  • Second channel CELP decoding section 343 performs CELP decoding on the second channel encoded data and outputs a second channel decoded signal.
  • the Ich CELP decoding unit 342 and the second ch CELP decoding unit 343 use the monaural driving excitation signal held in the monaural driving excitation signal holding unit 341 to predict driving excitation signals corresponding to the encoded data of each channel, and CELP decoding is performed on the prediction residual component.
  • speech decoding apparatus 700 having such a configuration, in a monaural-stereo scalable configuration, when the output speech is monaural, a decoded signal obtained only from the code signal data of the monaural signal is monaurally decoded. When output as a signal and the output sound is stereo, the first channel decoded signal and the second channel decoded signal are decoded and output using all of the received encoded data.
  • IchCELP decoding section 342 and second chCELP decoding section 343 The configuration of the IchCELP decoding unit 342 and the second chCELP decoding unit 343 is shown in FIG.
  • the 1st ch and 2nd ch CELP decoding units 342 and 343 convert the Nth channel LPC quantization from the monaural signal encoded data and Nth channel encoded data (N is 1 or 2) transmitted from the speech encoding device 600 (FIG. 9). Decodes the CELP sound source signal including the parameters and the prediction signal of the Nth channel driving sound source signal, and outputs the Nth channel decoded signal. More specifically, it is as follows.
  • N-th channel LPC parameter decoding section 501 uses the monaural signal quantization LPC parameter decoded using the monaural signal encoded data and the N-th channel LPC quantization code to The LPC quantization parameter is decoded, and the obtained quantization LPC parameter is output to the synthesis filter 508.
  • Nth channel prediction filter decoding section 502 decodes the Nth channel prediction filter quantization code, and outputs the obtained Nth channel prediction filter quantization parameter to Nth channel excitation signal synthesis unit 503.
  • N-th channel excitation signal synthesizer 503 uses the monaural excitation source signal and the N-th channel predictive filter quantization parameter to synthesize a predicted excitation source signal corresponding to the N-th channel audio signal and to multiply multiplier 506- Output to 1.
  • Synthesis finalizer 508 uses the quantized LPC parameters output from N-th LchLPC parameter decoding section 501 to generate excitation vectors generated in N-th adaptive codebook 504 and N-ch fixed codebook 505, and Nch drive excitation signal synthesis unit 503 performs synthesis using an LPC synthesis filter using the predicted excitation signal synthesized by the 503 as a drive excitation.
  • the obtained synthesized signal is output as the Nth channel decoded signal.
  • Nch adaptive codebook 504 stores the sound source vector of the driving excitation to synthesis filter 508 generated in the past in the internal buffer, and corresponds to the status included in the Nch excitation code data. Based on the adaptive codebook lag (pitch lag or pitch period), one subframe is generated from the stored excitation vector and output to the multiplier 506-2 as the adaptive codebook vector.
  • Nth channel fixed codebook 505 outputs the excitation vector corresponding to the status included in the Nth channel excitation code key data to multiplier 506-4 as a fixed codebook vector.
  • Multiplier 506-2 multiplies the adaptive codebook vector output from Nth channel adaptive codebook 504 by the adaptive codebook gain included in the Nth channel excitation coded data, and outputs the result to multiplier 506-3. .
  • Multiplier 506-4 multiplies the fixed codebook vector output from Nth channel fixed codebook 505 by the fixed codebook gain included in the Nth channel excitation code data, and outputs the result to multiplier 506-5. .
  • Multiplier 506-1 adjusts the predicted drive excitation signal included in the Nth channel excitation encoded data in the predicted drive sound source signal output from Nth channel drive excitation signal synthesis section 503. Multiply the gain for output and output to adder 507.
  • Multiplier 506-3 multiplies the adaptive vector after gain multiplication in multiplier 506-2 by the adjustment gain for the adaptive extra included in the Nth channel sound source encoded data, and adds adder 507. Output to.
  • Multiplier 506-5 multiplies the fixed vector after gain multiplication in multiplier 506-4 by the adjustment gain for the fixed outer band included in the Nth channel sound source encoded data, and adds an adder 507. Output to.
  • Adder 507 includes a prediction drive excitation signal output from multiplier 506-1, an adaptive codebook vector output from multiplier 506_3, and a fixed codebook output from multiplier 506-5. The vector is added and the added sound source vector is output to the synthesis filter 508 as a drive sound source.
  • the synthesis finalizer 508 performs synthesis by the LPC synthesis filter using the sound source vector output from the adder 507 as a drive sound source.
  • FIG. 13 shows a summary of the operation flow of the speech encoding apparatus 600 described above.
  • a monaural signal is generated from the 1st channel audio signal and the 2nd channel audio signal (ST1301)
  • the CELP encoding of the core layer is performed on the monaural signal (ST1302)
  • the 1st channel CELP encoding is performed.
  • the second channel CELP encoding is performed (ST1303, 1304).
  • FIG. 14 shows a summary of the operation flows of the lch and 2ch chLP coding sections 132 and 133. That is, first, LPC analysis of the Nth channel and LPC parameter quantization are performed (ST1401), and then an LPC prediction residual signal of the Nth channel is generated (ST1402). Next, the Nth channel prediction filter is analyzed (ST1403), and the Nth channel driving sound source signal is predicted (ST1404). Finally, the search for the Nth channel driving sound source and the gain are performed (ST1405).
  • the prediction filter parameters are obtained by the Nth channel prediction filter analysis unit 403 prior to excitation coding by excitation search in CELP coding.
  • a separate codebook for the prediction filter parameters is provided, and in CELP excitation search, along with searches such as adaptive excitation search, the optimal prediction filter parameters are determined based on the codebook by closed loop search by distortion minimization. It may be configured as desired.
  • the N-th channel prediction filter analysis unit 403 obtains a plurality of prediction filter parameter candidates, and selects an optimal prediction filter parameter from the plurality of candidates by a closed loop type search by distortion minimization in CELP sound source search. It is good also as such a structure. By adopting such a configuration, more optimal filter parameters can be calculated, and prediction performance can be improved (that is, decoded speech quality can be improved).
  • each gain is adjusted to multiply each signal to adjust the gain between the three types of signals.
  • the gain may be multiplied only for the predicted driving sound source signal corresponding to the N-th audio signal.
  • the monaural signal encoded data obtained by CELP encoding of the monaural signal and encode the differential component (correction component) for the monaural signal encoded data.
  • the difference value from the adaptive sound source lag obtained by CELP coding of monaural signal, the relative ratio to the adaptive sound source gain 'fixed sound source gain, etc. Hesitate.
  • the coding efficiency for the CELP sound source of each channel can be improved.
  • enhancement layer encoding section 120 of speech encoding apparatus 600 may be only the configuration related to lch as in Embodiment 2 (Fig. 7). That is, enhancement layer coding section 120 performs prediction of the driving sound source signal using the monaural driving sound signal only for the l-th audio signal and CELP coding for the prediction residual component.
  • enhancement layer decoding section 320 of speech decoding apparatus 700 FIG. 11
  • Embodiment 2 FIG.
  • lch and 2ch ch CELP encoding sections 132 and 133 and lch and 2ch ch CELP decoding The units 342 and 343 may use only one of the adaptive sound source and the fixed sound source as the sound source structure in the sound source search.
  • the monaural signal s_mono (n) generated by the monaural signal generation unit 111 is used as the monaural driving sound source signal instead of the Lch prediction residual signal for the Nth channel audio signal. Alternatively, it may be used to calculate the Nth channel prediction filter parameter.
  • FIG. 15 shows the configuration of speech coding apparatus 750 in this case
  • FIG. 16 shows the configuration of first chCELP coding section 141 and second chCELP coding section 142.
  • the monaural signal s_mono (n) generated by the monaural signal generation unit 111 is input to the first chCELP encoding unit 141 and the second chCELP encoding unit 142.
  • the Nch prediction signal analysis unit 403 of the lchch CELP coding unit 141 and the 2chch CELP coding unit 142 shown in FIG. 16 uses the Nch speech signal and the monaural signal s_mono (n) to perform the Nch prediction. Find the filter parameters.
  • the processing for calculating the LPC prediction residual signal for the Nth channel speech signal power using the Nth channel quantization LPC parameter becomes unnecessary.
  • the monaural signal s_mon 0 (n) instead of the monaural driving sound source signal
  • the Nth prediction filter parameter can be obtained using a signal later in time (future) than when the monaural driving sound source signal is used. Can do.
  • the N-th channel prediction filter analysis unit 403 uses the monaural signal s_mono (n) generated by the monaural signal generation unit 111 instead of the monaural signal CELP encoding unit 114 to obtain the monaural decoded signal obtained by the code ⁇ . You may make it use.
  • the decoding side Nch adaptive codebook must have the same configuration.
  • the residual component excitation signal for the prediction drive excitation signal of each channel performed by the lch and 2ch CELP encoding units 132 and 133 excitation search in the time domain by CELP encoding is performed.
  • the residual component excitation signal may be converted to the frequency domain, and the residual component excitation signal may be encoded in the frequency domain.
  • CELP coding suitable for speech coding is used, so that more efficient coding can be performed.
  • FIG. 17 shows the configuration of speech encoding apparatus 800 according to the present embodiment.
  • Speech encoding device
  • core layer encoding section 110 includes a core layer code key unit 110 and an enhancement layer code key unit 120.
  • the configuration of core layer encoding section 110 is the same as that of Embodiment 1 (FIG. 1), and thus the description thereof is omitted.
  • Enhancement layer coding section 120 includes monaural signal LPC analysis section 134, monaural LPC residual signal generation section 135, first IchCELP coding section 136, and second chCELP coding section 137.
  • Monaural signal LPC analysis unit 134 calculates an LPC parameter for the monaural decoded signal, and converts the monaural signal LPC parameter to monaural LPC residual signal generation unit 135, 1st ch CELP coding unit 136, and 2nd ch CELP coding. Output to part 137.
  • the monaural LPC residual signal generation unit 135 generates an LPC residual signal (monaural LPC residual signal) for the monaural decoded signal using the LPC parameters, and outputs the Ich CELP code unit 136 and the second ch CELP code. Output to the conversion unit 137.
  • the Ich CELP coding unit 136 and the second ch CELP coding unit 137 perform CELP coding on the audio signal of each channel using the LPC parameter and the LPC residual signal for the monaural decoded signal, and Output encoded data.
  • FIG. 18 The configuration of the IchCELP code section 136 and the 2nd CELP code section 137 is shown in FIG.
  • FIG. 18 the same components as those in Embodiment 3 (FIG. 10) are denoted by the same reference numerals, and description thereof is omitted.
  • the ⁇ 111 ⁇ ⁇ analysis unit 413 performs LPC analysis on the Nth channel speech signal, quantizes the obtained LPC parameters, and outputs them to the Nth channel LPC prediction residual signal generation unit 402 and the synthesis finalizer 409. In addition, the Nth LPC quantized code is output.
  • the NchLPC analysis unit 413 has a large correlation between the LPC parameter for the monaural signal and the LPC parameter (the NchLPC parameter) obtained from the Nth audio signal when quantizing the LPC parameter. Using this, efficient quantization is performed by quantizing the difference component of the NchLPC parameter with respect to the monaural signal LPC parameter.
  • N-th channel prediction filter analysis unit 414 uses the LPC prediction residual signal output from N-th channel LPC prediction residual signal generation unit 402 and the monaural LPC residual signal output from monaural LPC residual signal generation unit 135.
  • the Nth channel prediction filter parameter is obtained and quantized, the Nth channel prediction filter quantization parameter is output to the Nth channel driving excitation signal synthesizer 415, and the Nth channel prediction filter quantization code is output.
  • N-th channel excitation signal synthesizer 415 uses the monaural LPC residual signal and the N-th channel prediction filter quantization parameter to synthesize a prediction-stimulation source signal corresponding to the N-th channel audio signal to generate a multiplier 407. — Output to 1.
  • the speech decoding apparatus for speech coding apparatus 800 calculates the LPC parameter and the LPC residual signal for the monaural decoded signal in the same manner as speech coding apparatus 800, and the CELP decoding section of each channel Used to synthesize driving sound source signals for each channel.
  • the LPC prediction residual signal output from the Nth channel LPC prediction residual signal generation unit 402 and the monaural LPC residual output from the monaural LPC residual signal generation unit 135 The Nth channel prediction filter parameter may be obtained using the Nth channel audio signal and the monaural signal s_mono (n) generated by the monaural signal generation unit 111 instead of the signal. Furthermore, instead of using the monaural signal s_mono (n) generated by the monaural signal generation unit 111, a monaural decoded signal may be used.
  • the monaural signal LPC analysis section 134 and monaural LPC residual signal generation section 135 are provided, the monaural signal is encoded by an arbitrary encoding method in the core layer. Even in this case, the CELP code can be used in the enhancement layer.
  • the speech encoding apparatus and speech decoding apparatus are mounted on a wireless communication apparatus such as a wireless communication mobile station apparatus or a wireless communication base station apparatus used in a mobile communication system. Is also possible.
  • Each functional block used in the description of each of the above embodiments is typically realized as an LSI which is an integrated circuit. These may be individually arranged on one chip, or may be integrated into one chip so as to include a part or all of them.
  • IC integrated circuit
  • system LSI system LSI
  • super LSI super LSI
  • unilera LSI depending on the difference in power integration as LSI.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • a dedicated circuit or a general-purpose processor.
  • FPGA Field Programmable Gate Array
  • reconfigurable processor that reconfigures the connection and settings of circuit cells inside the LSI.
  • the present invention can be applied to the use of a communication device in a mobile communication system or a packet communication system using the Internet protocol.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Computational Linguistics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Mathematical Physics (AREA)
  • Quality & Reliability (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Reduction Or Emphasis Of Bandwidth Of Signals (AREA)

Abstract

 モノラル-ステレオ・スケーラブル構成を有する音声符号化において、ステレオ信号の複数チャネル信号間の相関が小さい場合でも効率的にステレオ音声を符号化することができる音声符号化装置。この装置のコアレイヤ符号化部(110)において、モノラル信号生成部(111)は、第1ch音声信号および第2ch音声信号からモノラル信号を生成し、モノラル信号符号化部(112)は、モノラル信号に対する符号化を行い、モノラル信号復号部(113)は、モノラル信号の符号化データからモノラルの復号信号を生成して拡張レイヤ符号化部(120)に出力する。拡張レイヤ符号化部(120)において、第1ch予測信号合成部(122)は、モノラル復号信号と第1ch予測フィルタ量子化パラメータとから第1ch予測信号を合成し、第2ch予測信号合成部(126)は、モノラル復号信号と第2ch予測フィルタ量子化パラメータとから第2ch予測信号を合成する。

Description

明 細 書
音声符号化装置および音声符号化方法
技術分野
[0001] 本発明は、音声符号化装置および音声符号化方法に関し、特に、ステレオ音声の ための音声符号化装置および音声符号化方法に関する。
背景技術
[0002] 移動体通信や IP通信での伝送帯域の広帯域化、サービスの多様化に伴い、音声 通信において高音質化、高臨場感化のニーズが高まっている。例えば、今後、テレ ビ電話サービスにおけるハンズフリー形態での通話、テレビ会議における音声通信、 多地点で複数話者が同時に会話を行うような多地点音声通信、臨場感を保持したま ま周囲の音環境を伝送できるような音声通信などの需要が増加すると見込まれる。そ の場合、モノラル信号より臨場感があり、また複数話者の発話位置が認識できるよう な、ステレオ音声による音声通信を実現することが望まれる。このようなステレオ音声 による音声通信を実現するためには、ステレオ音声の符号化が必須となる。
[0003] また、 IPネットワーク上での音声データ通信において、ネットワーク上のトラフィック 制御やマルチキャスト通信実現のために、スケーラブルな構成を有する音声符号ィ匕 が望まれている。スケーラブルな構成とは、受信側で部分的な符号化データからでも 音声データの復号が可能な構成をレ、う。
[0004] よって、ステレオ音声を符号化し伝送する場合にも、ステレオ信号の復号と、符号 化データの一部を用いたモノラル信号の復号とを受信側において選択可能な、モノ ラル一ステレオ間でのスケーラブル構成(モノラル一ステレオ.スケーラブル構成)を 有する符号化が望まれる。
[0005] このような、モノラル一ステレオ'スケーラブル構成を有する音声符号ィ匕方法として は、例えば、チャネル (以下、適宜「ch」と略す)間の信号の予測(第 lch信号から第 2 ch信号の予測、または、第 2ch信号から第 lch信号の予測)を、チャネル相互間のピ ツチ予測により行う、すなわち、 2チャネル間の相関を利用して符号ィ匕を行うものがあ る (非特許文献 1参照)。 非特許文献 1: Ramprashad, S.A., "Stereophonic CELP coding using cross channel p rediction", Pro IEEE Workshop on Speech Coding, pp.136 - 138, Sep. 2000.
発明の開示
発明が解決しょうとする課題
[0006] しかしながら、上記非特許文献 1記載の音声符号化方法では、双方のチャネル間 の相関が小さい場合には、チャネル間の予測の性能(予測ゲイン)が低下してしまい 、符号化効率が劣化する。
[0007] 本発明の目的は、モノラル ステレオ'スケーラブル構成を有する音声符号化にお いて、ステレオ信号の複数チャネル信号間の相関が小さい場合でも効率的にステレ ォ音声を符号化することができる音声符号化装置および音声符号化方法を提供する ことである。
課題を解決するための手段
[0008] 本発明の音声符号化装置は、コアレイヤのモノラル信号を用いた符号ィ匕を行う第 1 符号化手段と、拡張レイヤのステレオ信号を用いた符号化を行う第 2符号化手段と、 を具備し、前記第 1符号化手段は、第 1チャネル信号および第 2チャネル信号を含む ステレオ信号を入力信号として、前記第 1チャネル信号および前記第 2チャネル信号 からモノラル信号を生成する生成手段を具備し、前記第 2符号化手段は、前記モノラ ル信号から得られる信号に基づいて、前記第 1チャネル信号または前記第 2チャネル 信号の予測信号を合成する合成手段を具備する構成を採る。
発明の効果
[0009] 本発明によれば、ステレオ信号の複数チャネル信号間の相関が小さレ、場合でも効 率的にステレオ音声を符号化することができる。
図面の簡単な説明
[0010] [図 1]本発明の実施の形態 1に係る音声符号化装置の構成を示すブロック図
[図 2]本発明の実施の形態 1に係る第 lch、第 2ch予測信号合成部の構成を示すブ ロック図
[図 3]本発明の実施の形態 1に係る第 lch、第 2ch予測信号合成部の構成を示すブ ロック図
[図 4]本発明の実施の形態 1に係る音声復号装置の構成を示すブロック図
[図 5]本発明の実施の形態 1に係る音声符号化装置の動作説明図
[図 6]本発明の実施の形態 1に係る音声符号化装置の動作説明図
[図 7]本発明の実施の形態 2に係る音声符号化装置の構成を示すブロック図
[図 8]本発明の実施の形態 2に係る音声復号装置の構成を示すブロック図
[図 9]本発明の実施の形態 3に係る音声符号化装置の構成を示すブロック図
[図 10]本発明の実施の形態 3に係る第 lch、第 2chCELP符号化部の構成を示すブ ロック図
[図 11]本発明の実施の形態 3に係る音声復号装置の構成を示すブロック図
[図 12]本発明の実施の形態 3に係る第 lch、第 2chCELP復号部の構成を示すプロ ック図
[図 13]本発明の実施の形態 3に係る音声符号化装置の動作フロー図
[図 14]本発明の実施の形態 3に係る第 lch、第 2chCELP符号ィ匕部の動作フロー図 [図 15]本発明の実施の形態 3に係る音声符号化装置の別の構成を示すブロック図 [図 16]本発明の実施の形態 3に係る第 lch、第 2chCELP符号ィ匕部の別の構成を示 すブロック図
[図 17]本発明の実施の形態 4に係る音声符号化装置の構成を示すブロック図
[図 18]本発明の実施の形態 4に係る第 lch、第 2chCELP符号化部の構成を示すブ ロック図
発明を実施するための最良の形態
[0011] 以下、モノラル—ステレオ'スケーラブル構成を有する音声符号化に関する本発明 の実施の形態について、添付図面を参照して詳細に説明する。
[0012] (実施の形態 1)
本実施の形態に係る音声符号化装置の構成を図 1に示す。図 1に示す音声符号 化装置 100は、モノラル信号のためのコアレイヤ符号化部 110とステレオ信号のため の拡張レイヤ符号化部 120とを備える。なお、以下の説明では、フレーム単位での動 作を前提にして説明する。 [0013] コアレイヤ符号化部 110において、モノラル信号生成部 111は、入力される第 lch 音声信号 s_chl(n)、第 2ch音声信号 s_ch2(n) (但し、 n=0〜NF_l ; NFはフレーム長)か ら、式(1)に従ってモノラル信号 s_mono(n)を生成し、モノラル信号符号ィ匕部 112に出 力する。
[数 1]
s— mono (n) = ( s— chl (n) + s_ch2 (n) ) / 2 … (1 )
[0014] モノラル信号符号ィ匕部 112は、モノラル信号 s_mono(n)に対する符号化を行い、この モノラル信号の符号ィ匕データをモノラル信号復号部 113に出力する。また、このモノ ラル信号の符号化データは、拡張レイヤ符号化部 120から出力される量子化符号や 符号化データと多重されて符号化データとして音声復号装置へ伝送される。
[0015] モノラル信号復号部 113は、モノラル信号の符号ィ匕データからモノラルの復号信号 を生成して拡張レイヤ符号ィ匕部 120に出力する。
[0016] 拡張レイヤ符号化部 120において、第 lch予測フィルタ分析部 121は、第 lch音声 信号 s_chl(n)とモノラル復号信号とから第 lch予測フィルタパラメータを求めて量子化 し、第 1 ch予測フィルタ量子化パラメータを第 1 ch予測信号合成部 122に出力する。 なお、第 lch予測フィルタ分析部 121への入力として、モノラル復号信号の代わりに 、モノラル信号生成部 111の出力であるモノラル信号 s_mono(n)を用いてもよレ、。また 、第 lch予測フィルタ分析部 121は、第 lch予測フィルタ量子化パラメータを符号ィ匕 した第 lch予測フィルタ量子化符号を出力する。この第 lch予測フィルタ量子化符号 は他の符号化データや量子化符号と多重されて符号化データとして音声復号装置 へ伝送される。
[0017] 第 lch予測信号合成部 122は、モノラル復号信号と第 lch予測フィルタ量子化パラ メータとから第 lch予測信号を合成し、その第 lch予測信号を減算器 123に出力す る。第 lch予測信号合成部 122の詳細については後述する。
[0018] 減算器 123は、入力信号である第 lch音声信号と第 lch予測信号との差、すなわ ち、第 lch入力音声信号に対する第 lch予測信号の残差成分の信号 (第 lch予測 残差信号)を求め、第 lch予測残差信号符号ィ匕部 124に出力する。
[0019] 第 lch予測残差信号符号化部 124は、第 lch予測残差信号を符号化して第 lch 予測残差符号化データを出力する。この第 lch予測残差符号化データは他の符号 化データや量子化符号と多重されて符号化データとして音声復号装置へ伝送される
[0020] 一方、第 2ch予測フィルタ分析部 125は、第 2ch音声信号 s_ch2(n)とモノラル復号 信号とから第 2ch予測フィルタパラメータを求めて量子化し、第 2ch予測フィルタ量子 ィ匕パラメータを第 2ch予測信号合成部 126に出力する。また、第 2ch予測フィルタ分 析部 125は、第 2ch予測フィルタ量子化パラメータを符号ィ匕した第 2ch予測フィルタ 量子化符号を出力する。この第 2ch予測フィルタ量子化符号は他の符号ィ匕データや 量子化符号と多重されて符号化データとして音声復号装置へ伝送される。
[0021] 第 2ch予測信号合成部 126は、モノラル復号信号と第 2ch予測フィルタ量子化パラ メータとから第 2ch予測信号を合成し、その第 2ch予測信号を減算器 127に出力す る。第 2ch予測信号合成部 126の詳細につレ、ては後述する。
[0022] 減算器 127は、入力信号である第 2ch音声信号と第 2ch予測信号との差、すなわ ち、第 2ch入力音声信号に対する第 2ch予測信号の残差成分の信号 (第 2ch予測 残差信号)を求め、第 2ch予測残差信号符号ィ匕部 128に出力する。
[0023] 第 2ch予測残差信号符号ィ匕部 128は、第 2ch予測残差信号を符号化して第 2ch 予測残差符号化データを出力する。この第 2ch予測残差符号化データは他の符号 化データや量子化符号と多重されて符号化データとして音声復号装置へ伝送される
[0024] 次いで、第 lch予測信号合成部 122および第 2ch予測信号合成部 126の詳細に ついて説明する。第 lch予測信号合成部 122および第 2ch予測信号合成部 126の 構成は図 2 <構成例 1 >または図 3 <構成例 2 >に示すようになる。構成例 1および 2 のいずれも、第 l ch入力信号と第 2ch入力信号との加算信号であるモノラル信号と、 各チャネル信号との間の相関性に基づき、モノラル信号に対する各チャネル信号の 遅延差 (Dサンプル)および振幅比(g)を予測フィルタ量子化パラメータとして用いて 、モノラル信号から各チャネルの予測信号を合成する。
[0025] ぐ構成例 1 >
構成例 1では、図 2に示すように、第 lch予測信号合成部 122および第 2ch予測信 号合成部 1 26は、遅延器 201および乗算器 202を備え、式(2)で表される予測により 、モノラル復号信号 sd_mono(n)から、各チャネルの予測信号 sp_ch(n)を合成する。
[数 2]
sp_ch、n) = g · sd— mono \n - D) … ( 2 )
[0026] <構成例 2 >
構成例 2では、図 3に示すように、図 2に示す構成にさらに、遅延器 203— 1〜P、乗 算器 204— 1〜Pおよび加算器 205を備える。そして、予測フィルタ量子化パラメータ として、モノラル信号に対する各チャネル信号の遅延差 (Dサンプル)および振幅比( g)の他に、予測係数列 { a(0),a(l), a(2), · · . , a(P) } (Pは予測次数、 a(0)= 1.0)を用い、 式(3)で表される予測により、モノラル復号信号 sd_mono(n)から、各チャネルの予測 信号 sp_ch(n)を合成する。
[数 3]
P
sp_ch (n) = ∑ { g * a (k) · sd_raono (n - Ό - k) } … ( 3 )
[0027] これに対し、第 l ch予測フィルタ分析部 121および第 2ch予測フィルタ分析部 1 25 は、式 (4)で表される歪み、すなわち、各チャネルの入力音声信号 s_ch(n) (n=0〜NF - 1)と上式(2)または(3)に従って予測される各チャネルの予測信号 sp_ch(n)との歪 Di stを最小とするような予測フィルタパラメータを求め、そのフィルタパラメータを量子化 した予測フィルタ量子化パラメータを、上記構成を採る第 l ch予測信号合成部 122お よび第 2ch予測信号合成部 126に出力する。また、第 l ch予測フィルタ分析部 121 および第 2ch予測フィルタ分析部 1 25は、予測フィルタ量子化パラメータを符号ィ匕し た予測フィルタ量子化符号を出力する。
[数 4]
NF-1
Di st = ∑ { s_ch (n) - sp_ch (n) } 2 … (4 )
n=0
[0028] なお、構成例 1に対しては、第 l ch予測フィルタ分析部 121および第 2ch予測フィ ルタ分析部 1 25は、モノラル復号信号と各チャネルの入力音声信号との間の相互相 関を最大にするような遅延差 Dおよびフレーム単位の平均振幅の比 gを予測フィルタ パラメータとして求めてもょレヽ。
[0029] 次いで、本実施の形態に係る音声復号装置について説明する。本実施の形態に 係る音声復号装置の構成を図 4に示す。図 4に示す音声復号装置 300は、モノラル 信号のためのコアレイヤ復号部 310と、ステレオ信号のための拡張レイヤ復号部 320 とを備える。
[0030] モノラル信号復号部 311は、入力されるモノラル信号の符号化データを復号し、モ ノラル復号信号を拡張レイヤ復号部 320に出力するとともに、最終出力として出力す る。
[0031] 第 lch予測フィルタ復号部 321は、入力される第 l ch予測フィルタ量子化符号を復 号して、第 lch予測フィルタ量子化パラメータを第 lch予測信号合成部 322に出力 する。
[0032] 第 lch予測信号合成部 322は、音声符号化装置 100の第 lch予測信号合成部 12 2と同じ構成を採り、モノラル復号信号と第 l ch予測フィルタ量子化パラメータとから 第 lch音声信号を予測し、その第 lch予測音声信号を加算器 324に出力する。
[0033] 第 lch予測残差信号復号部 323は、入力される第 lch予測残差符号ィヒデータを復 号し、第 lch予測残差信号を加算器 324に出力する。
[0034] 加算器 324は、第 lch予測音声信号と第 lch予測残差信号とを加算して第 l chの 復号信号を求め、最終出力として出力する。
[0035] 一方、第 2ch予測フィルタ復号部 325は、入力される第 2ch予測フィルタ量子化符 号を復号して、第 2ch予測フィルタ量子化パラメータを第 2ch予測信号合成部 326に 出力する。
[0036] 第 2ch予測信号合成部 326は、音声符号化装置 100の第 2ch予測信号合成部 12 6と同じ構成を採り、モノラル復号信号と第 2ch予測フィルタ量子化パラメータとから 第 2ch音声信号を予測し、その第 2ch予測音声信号を加算器 328に出力する。
[0037] 第 2ch予測残差信号復号部 327は、入力される第 2ch予測残差符号ィ匕データを復 号し、第 2ch予測残差信号を加算器 328に出力する。
[0038] 加算器 328は、第 2ch予測音声信号と第 2ch予測残差信号とを加算して第 2chの 復号信号を求め、最終出力として出力する。 [0039] このような構成を採る音声復号装置 300では、モノラル—ステレオ'スケーラブル構 成において、出力音声をモノラルとする場合は、モノラル信号の符号ィ匕データのみか ら得られる復号信号をモノラル復号信号として出力し、出力音声をステレオとする場 合は、受信される符号化データおよび量子化符号のすべてを用いて第 lch復号信 号および第 2ch復号信号を復号して出力する。
[0040] ここで、本実施の形態に係るモノラル信号は、図 5に示すように、第 lch音声信号 s_ chlと第 2ch音声信号 s_ch2との加算によって得られる信号であるため、双方のチヤネ ルの信号成分を含む中間的な信号である。よって、第 lch音声信号と第 2ch音声信 号とのチャネル間相関が小さい場合でも、第 lch音声信号とモノラル信号との相関お よび第 2ch音声信号とモノラル信号との相関は、チャネル間相関よりは大きくなるもの と予想される。よって、モノラル信号力 第 lch音声信号を予測する場合の予測ゲイ ンおよびモノラル信号力 第 2ch音声信号を予測する場合の予測ゲイン (図 5 :予測 ゲイン B)は、第 lch音声信号から第 2ch音声信号を予測する場合の予測ゲインおよ び第 2ch音声信号力 第 lch音声信号を予測する場合の予測ゲイン (図 5:予測ゲイ ン A)よりも大きくなることが予想、される。
[0041] そして、この関係をまとめたのが図 6である。すなわち、第 lch音声信号と第 2ch音 声信号とのチャネル間相関が十分大きい場合は、予測ゲイン Aおよび予測ゲイン B はそれほど変わらず双方とも十分大きい値が得られる。しかし、第 lch音声信号と第 2ch音声信号とのチャネル間相関が小さレ、場合は、予測ゲイン Aはチャネル間相関 が十分大きい場合に比べ急激に低下するのに対し、予測ゲイン Bは、予測ゲイン Aよ りも低下の度合いが小さぐ予測ゲイン Aよりも大きい値になるものと予想される。
[0042] このように、本実施の形態では、第 lch音声信号および第 2ch音声信号双方の信 号成分を含む中間的な信号であるモノラル信号から各チャネルの信号を予測して合 成するため、チャネル間相関が小さい複数チャネルの信号に対しても従来より予測 ゲインが大きい信号を合成することができる。その結果、同等の音質をより低ビットレ ートの符号化により得ること、および、同等のビットレートでより高音質な音声を得るこ とができる。よって、本実施の形態によれば、符号ィ匕効率の向上を図ることができる。
[0043] (実施の形態 2) 図 7に本実施の形態に係る音声符号化装置 400の構成を示す。図 7に示すように、 音声符号化装置 400は、図 1 (実施の形態 1)に示す構成から第 2ch予測フィルタ分 析部 125、第 2ch予測信号合成部 126、減算器 127および第 2ch予測残差信号符 号化部 128を取り除いた構成を採る。つまり、音声符号化装置 400は、第 lchと第 2c hのうち第 lchに対してのみ予測信号を合成し、モノラル信号の符号化データ、第 lc h予測フィルタ量子化符号および第 lch予測残差符号化データのみを音声復号装 置へ伝送する。
[0044] 一方、本実施の形態に係る音声復号装置 500の構成は図 8に示すようになる。図 8 に示すように、音声復号装置 500は、図 4 (実施の形態 1)に示す構成から第 2ch予 測フィルタ復号部 325、第 2ch予測信号合成部 326、第 2ch予測残差信号復号部 3 27および加算器 328を取り除き、代わりに、第 2ch復号信号合成部 331を加えた構 成を採る。
[0045] 第 2ch復号信号合成部 331は、モノラル復号信号 sd_mono(n)と第 lch復号信号 sd_ chl(n)とを用いて、式(1)に示す関係に基づき、式(5)に従って第 2ch復号信号 sd_ch 2(n)を合成する。
[数 5]
sd— ch2 ui) = 2 · sd_mono (n)一 sd— chl i) … 6 )
[0046] なお、本実施の形態では拡張レイヤ符号化部 120が第 lchに対してのみ処理する 構成としたが、第 lchに代えて第 2chに対してのみ処理する構成としてもよい。
[0047] このように、本実施の形態によれば、実施の形態 1に比べ装置構成を簡単にするこ とができる。また、第 lchおよび第 2chのうち一方のチャネルの符号化データのみの 伝送で済むので、さらに符号化効率が向上する。
[0048] (実施の形態 3)
図 9に本実施の形態に係る音声符号化装置 600の構成を示す。コアレイヤ符号ィ匕 部 110は、モノラル信号生成部 111およびモノラル信号 CELP符号化部 114を備え 、拡張レイヤ符号化部 120は、モノラル駆動音源信号保持部 131、第 IchCELP符 号化部 132および第 2chCELP符号化部 133を備える。
[0049] モノラル信号 CELP符号化部 114は、モノラル信号生成部 111で生成されたモノラ ル信号 s_mono(n)に対して CELP符号ィヒを行い、モノラル信号符号化データ、および 、 CELP符号ィ匕によって得られるモノラル駆動音源信号を出力する。このモノラル駆 動音源信号は、モノラル駆動音源信号保持部 131に保持される。
[0050] 第 IchCELP符号化部 132は、第 lch音声信号に対して CELP符号化を行って第 lch符号化データを出力する。また、第 2chCELP符号ィ匕部 133は、第 2ch音声信 号に対して CELP符号化を行って第 2ch符号ィ匕データを出力する。第 IchCELP符 号化部 132および第 2chCELP符号化部 133は、モノラル駆動音源信号保持部 13 1に保持されたモノラル駆動音源信号を用いて、各チャネルの入力音声信号に対応 する駆動音源信号の予測、および、その予測残差成分に対する CELP符号化を行う
[0051] 次いで、第 IchCELP符号化部 132および第 2chCELP符号化部 133の詳細につ いて説明する。第 IchCELP符号化部 132および第 2chCELP符号化部 133の構 成を図 10に示す。
[0052] 図 10において、第 Nch (Nは 1または 2) LPC分析部 401は、第 Nch音声信号に対 する LPC分析を行レ、、得られた LPCパラメータを量子化して第 NchLPC予測残差 信号生成部 402および合成フィルタ 409に出力するとともに、第 NchLPC量子化符 号を出力する。第 NchLPC分析部 401では、 LPCパラメータの量子化に際し、モノラ ル信号に対する LPCパラメータと第 Nch音声信号から得られる LPCパラメータ(第 N chLPCパラメータ)との相関が大きいことを利用して、モノラル信号の符号化データ 力 モノラル信号量子化 LPCパラメータを復号し、そのモノラル信号量子化 LPCパラ メータに対する NchLPCパラメータの差分成分を量子化することにより効率的な量子 化を行う。
[0053] 第 NchLPC予測残差信号生成部 402は、第 Nch量子化 LPCパラメータを用いて、 第 Nch音声信号に対する LPC予測残差信号を算出して第 Nch予測フィルタ分析部 403に出力する。
[0054] 第 Nch予測フィルタ分析部 403は、 LPC予測残差信号およびモノラル駆動音源信 号から第 Nch予測フィルタパラメータを求めて量子化し、第 Nch予測フィルタ量子化 パラメータを第 Nch駆動音源信号合成部 404に出力するとともに、第 Nch予測フィル タ量子化符号を出力する。
[0055] 第 Nch駆動音源信号合成部 404は、モノラル駆動音源信号および第 Nch予測フィ ルタ量子化パラメータを用いて、第 Nch音声信号に対応する予測駆動音源信号を合 成して乗算器 407— 1へ出力する。
[0056] ここで、第 Nch予測フィルタ分析部 403は、実施の形態 1 (図 1)における第 lch予 測フィルタ分析部 121および第 2ch予測フィルタ分析部 125に対応し、それらの構成 および動作は同様になる。また、第 Nch駆動音源信号合成部 404は、実施の形態 1 (図 1〜3)における第 lch予測信号合成部 122および第 2ch予測信号合成部 126に 対応し、それらの構成および動作は同様になる。但し、本実施の形態では、モノラル 復号信号に対する予測を行って各チャネルの予測信号を合成するのではなぐモノ ラル信号に対応するモノラル駆動音源信号に対する予測を行って各チャネルの予測 駆動音源信号を合成する点において実施の形態 1と異なる。そして、本実施の形態 では、その予測駆動音源信号に対する残差成分 (予測しきれない誤差成分)の音源 信号を、 CELP符号ィ匕における音源探索により符号化する。
[0057] つまり、第 lchおよび第 2chCELP符号化部 132、 133は、第 Nch適応符号帳 405 および第 Nch固定符号帳 406を有し、適応音源、固定音源、およびモノラル駆動音 源信号力 予測した予測駆動音源の各音源信号にそれら各々のゲインを乗じてカロ 算し、その加算によって得られた駆動音源に対して歪み最小化による閉ループ型音 源探索を行う。そして、適応音源インデタス、固定音源インデタス、適応音源、固定音 源および予測駆動音源信号に対するゲイン符号を第 Nch音源符号化データとして 出力する。より具体的には、以下のようになる。
[0058] 合成フイノレタ 409は、第 NchLPC分析部 401から出力される量子化 LPCパラメータ を用いて、第 Nch適応符号帳 405および第 Nch固定符号帳 406で生成された音源 ベクトル、および、第 Nch駆動音源信号合成部 404で合成された予測駆動音源信号 を駆動音源として LPC合成フィルタによる合成を行う。この結果得られる合成信号の うち第 Nchの予測駆動音源信号に対応する成分は、実施の形態 1 (図:!〜 3)におい て第 lch予測信号合成部 122または第 2ch予測信号合成部 126から出力される各 チャネルの予測信号に相当する。そして、このようにして得られた合成信号は、減算 器 410へ出力される。
[0059] 減算器 410は、合成フィルタ 409から出力された合成信号を第 Nch音声信号から 減算することにより誤差信号を算出し、この誤差信号を聴覚重み付け部 411へ出力 する。この誤差信号が符号化歪みに相当する。
[0060] 聴覚重み付け部 411は、減算器 410から出力された符号ィ匕歪みに対して聴覚的な 重み付けを行い、歪最小化部 412へ出力する。
[0061] 歪最小化部 412は、第 Nch適応符号帳 405および第 Nch固定符号帳 406に対し て、聴覚重み付け部 411から出力される符号化歪みを最小とするようなインデクスを 決定し、第 Nch適応符号帳 405および第 Nch固定符号帳 406が使用するインデクス を指示する。また、歪最小化部 412は、それらのインデタスに対応するゲイン、具体 的には、第 Nch適応符号帳 405からの適応ベクトルおよび第 Nch固定符号帳 406 力 の固定ベクトルに対する各ゲイン (適応符号帳ゲインおよび固定符号帳ゲイン) を生成し、それぞれ乗算器 407— 2、 407— 4へ出力する。
[0062] また、歪最小化部 412は、第 Nch駆動音源信号合成部 404から出力された予測駆 動音源信号、乗算器 407— 2でのゲイン乗算後の適応べ外ルおよび乗算器 407— 4でのゲイン乗算後の固定ベクトル、の 3種類の信号間のゲインを調整する各ゲイン を生成し、それぞれ乗算器 407— 1、 407— 3および 407— 5へ出力する。それら 3種 類の信号間のゲインを調整する 3種類のゲインは、好ましくはそれらのゲイン値間に 相互に関係性をもたせて生成することが望ましい。例えば、第 lch音声信号と第 2ch 音声信号とのチャネル間相関が大きい場合は、予測駆動音源信号の寄与分がゲイ ン乗算後の適応べクトノレおよびゲイン乗算後の固定ベクトルの寄与分に対して相対 的に大きくなるように、逆にチャネル間相関が小さい場合は、予測駆動音源信号の寄 与分がゲイン乗算後の適応ベクトルおよびゲイン乗算後の固定べタトノレの寄与分に 対して相対的に小さくなるようにする。
[0063] また、歪最小化部 412は、それらのインデタス、それらのインデタスに対応する各ゲ インの符号および信号間調整用ゲインの符号を第 Nch音源符号ィ匕データとして出力 する。
[0064] 第 Nch適応符号帳 405は、過去に生成された合成フィルタ 409への駆動音源の音 源ベクトルを内部バッファに記憶しており、歪最小化部 412から指示されたインデクス に対応する適応符号帳ラグ(ピッチラグ、または、ピッチ周期)に基づいて、この記憶 されている音源ベクトルから 1サブフレーム分を生成し、適応符号帳ベクトルとして乗 算器 407— 2へ出力する。
[0065] 第 Nch固定符号帳 406は、歪最小化部 412から指示されたインデタスに対応する 音源ベクトルを、固定符号帳ベクトルとして乗算器 407— 4へ出力する。
[0066] 乗算器 407— 2は、第 Nch適応符号帳 405から出力された適応符号帳ベクトルに 適応符号帳ゲインを乗じ、乗算器 407— 3へ出力する。
[0067] 乗算器 407-4は、第 Nch固定符号帳 406から出力された固定符号帳ベクトルに 固定符号帳ゲインを乗じ、乗算器 407— 5へ出力する。
[0068] 乗算器 407— 1は、第 Nch駆動音源信号合成部 404から出力された予測駆動音 源信号にゲインを乗じ、加算器 408へ出力する。乗算器 407— 3は、乗算器 407— 2 でのゲイン乗算後の適応べタトノレに別のゲインを乗じ、加算器 408へ出力する。乗算 器 407— 5は、乗算器 407— 4でのゲイン乗算後の固定ベクトルに別のゲインを乗じ 、加算器 408へ出力する。
[0069] 加算器 408は、乗算器 407— 1から出力された予測駆動音源信号と、乗算器 407
3から出力された適応符号帳ベクトルと、乗算器 407— 5から出力された固定符号 帳ベクトルとを加算し、加算後の音源ベクトルを駆動音源として合成フィルタ 409に出 力する。
[0070] 合成フィルタ 409は、加算器 408から出力される音源ベクトルを駆動音源として LP
C合成フィルタによる合成を行う。
[0071] このように、第 Nch適応符号帳 405および第 Nch固定符号帳 406で生成された音 源ベクトルを用いて符号化歪みが求められる一連の処理は閉ループとなっており、 歪最小化部 412は、この符号ィ匕歪みが最小となるような、第 Nch適応符号帳 405お よび第 Nch固定符号帳 406のインデクスを決定し、出力する。
[0072] 第 lchおよび第 2chCELP符号化部 132、 133は、このようにして得られた符号化 データ (LPC量子化符号、予測フィルタ量子化符号、音源符号化データ)を第 Nch 符号化データとして出力する。 [0073] 次いで、本実施の形態に係る音声復号装置について説明する。本実施の形態に 係る音声復号装置 700の構成を図 11に示す。図 11に示す音声復号装置 700は、モ ノラル信号のためのコアレイヤ復号部 310と、ステレオ信号のための拡張レイヤ復号 部 320とを備える。
[0074] モノラル〇£1^復号部312は、入力されるモノラル信号の符号化データを CELP復 号し、モノラル復号信号、および、 CELP復号によって得られるモノラル駆動音源信 号を出力する。このモノラル駆動音源信号は、モノラル駆動音源信号保持部 341に 保持される。
[0075] 第 IchCELP復号部 342は、第 lch符号化データに対して CELP復号を行って第 lch復号信号を出力する。また、第 2chCELP復号部 343は、第 2ch符号化データ に対して CELP復号を行って第 2ch復号信号を出力する。第 IchCELP復号部 342 および第 2chCELP復号部 343は、モノラル駆動音源信号保持部 341に保持された モノラル駆動音源信号を用いて、各チャネルの符号化データに対応する駆動音源信 号の予測、および、その予測残差成分に対する CELP復号を行う。
[0076] このような構成を採る音声復号装置 700では、モノラル—ステレオ'スケーラブル構 成において、出力音声をモノラルとする場合は、モノラル信号の符号ィ匕データのみか ら得られる復号信号をモノラル復号信号として出力し、出力音声をステレオとする場 合は、受信される符号化データのすべてを用いて第 lch復号信号および第 2ch復号 信号を復号して出力する。
[0077] 次いで、第 IchCELP復号部 342および第 2chCELP復号部 343の詳細について 説明する。第 IchCELP復号部 342および第 2chCELP復号部 343の構成を図 12 に示す。第 lchおよび第 2chCELP復号部 342、 343は、音声符号化装置 600 (図 9 )から伝送されたモノラル信号符号化データおよび第 Nch符号化データ(Nは 1また は 2)から、第 NchLPC量子化パラメータの復号、第 Nch駆動音源信号の予測信号 を含む CELP音源信号の復号を行い、第 Nch復号信号を出力する。より具体的には 、以下のようになる。
[0078] 第 NchLPCパラメータ復号部 501は、モノラル信号符号化データを用いて復号さ れたモノラル信号量子化 LPCパラメータと第 NchLPC量子化符号とを用いて第 Nch LPC量子化パラメータの復号を行レ、、得られた量子化 LPCパラメータを合成フィルタ 508へ出力する。
[0079] 第 Nch予測フィルタ復号部 502は、第 Nch予測フィルタ量子化符号を復号し、得ら れた第 Nch予測フィルタ量子化パラメータを第 Nch駆動音源信号合成部 503へ出 力する。
[0080] 第 Nch駆動音源信号合成部 503は、モノラル駆動音源信号および第 Nch予測フィ ルタ量子化パラメータを用いて、第 Nch音声信号に対応する予測駆動音源信号を合 成して乗算器 506— 1へ出力する。
[0081] 合成フイノレタ 508は、第 NchLPCパラメータ復号部 501から出力される量子化 LPC パラメータを用いて、第 Nch適応符号帳 504および第 Nch固定符号帳 505で生成さ れた音源ベクトル、および、第 Nch駆動音源信号合成部 503で合成された予測駆動 音源信号を駆動音源として LPC合成フィルタによる合成を行う。得られた合成信号は 、第 Nch復号信号として出力される。
[0082] 第 Nch適応符号帳 504は、過去に生成された合成フィルタ 508への駆動音源の音 源ベクトルを内部バッファに記憶しており、第 Nch音源符号化データに含まれるイン デタスに対応する適応符号帳ラグ(ピッチラグ、または、ピッチ周期)に基づいて、この 記憶されている音源ベクトルから 1サブフレーム分を生成し、適応符号帳ベクトルとし て乗算器 506— 2へ出力する。
[0083] 第 Nch固定符号帳 505は、第 Nch音源符号ィ匕データに含まれるインデタスに対応 する音源ベクトルを、固定符号帳ベクトルとして乗算器 506— 4へ出力する。
[0084] 乗算器 506— 2は、第 Nch適応符号帳 504から出力された適応符号帳ベクトルに 第 Nch音源符号化データに含まれる適応符号帳ゲインを乗じ、乗算器 506— 3へ出 力する。
[0085] 乗算器 506— 4は、第 Nch固定符号帳 505から出力された固定符号帳ベクトルに 第 Nch音源符号化データに含まれる固定符号帳ゲインを乗じ、乗算器 506— 5へ出 力する。
[0086] 乗算器 506— 1は、第 Nch駆動音源信号合成部 503から出力された予測駆動音 源信号に、第 Nch音源符号化データに含まれる、予測駆動音源信号に対する調整 用ゲインを乗じ、加算器 507へ出力する。
[0087] 乗算器 506— 3は、乗算器 506— 2でのゲイン乗算後の適応ベクトルに、第 Nch音 源符号化データに含まれる、適応べ外ルに対する調整用ゲインを乗じ、加算器 507 へ出力する。
[0088] 乗算器 506— 5は、乗算器 506— 4でのゲイン乗算後の固定ベクトルに、第 Nch音 源符号化データに含まれる、固定べ外ルに対する調整用ゲインを乗じ、加算器 507 へ出力する。
[0089] 加算器 507は、乗算器 506— 1から出力された予測駆動音源信号と、乗算器 506 _ 3から出力された適応符号帳ベクトルと、乗算器 506— 5から出力された固定符号 帳ベクトルとを加算し、加算後の音源ベクトルを駆動音源として合成フィルタ 508に出 力する。
[0090] 合成フイノレタ 508は、加算器 507から出力される音源ベクトルを駆動音源として LP C合成フィルタによる合成を行う。
[0091] 以上の音声符号ィ匕装置 600の動作フローをまとめると図 13に示すようになる。すな わち、第 lch音声信号と第 2ch音声信号とからモノラル信号を生成し(ST1301)、モ ノラル信号に対しコアレイヤの CELP符号化を行い(ST1302)、次いで、第 lchの C ELP符号化および第 2chの CELP符号化を行う(ST1303、 1304)。
[0092] また、第 lch、第 2chCELP符号化部 132、 133の動作フローをまとめると図 14に 示すようになる。すなわち、まず、第 Nchの LPC分析と LPCパラメータの量子化を行 い(ST1401)、次いで、第 Nchの LPC予測残差信号を生成する(ST1402)。次い で、第 Nchの予測フィルタの分析を行い(ST1403)、第 Nchの駆動音源信号を予測 する(ST1404)。そして、最後に、第 Nchの駆動音源の探索とゲインの探索を行う( ST1405)。
[0093] なお、第 lch、第 2chCELP符号ィ匕部 132、 133においては、 CELP符号化におけ る音源探索による音源符号化に先立ち、第 Nch予測フィルタ分析部 403によって予 測フィルタパラメータを求めていたが、予測フィルタパラメータに対する符号帳を別途 設け、 CELP音源探索において、適応音源探索等の探索と共に、歪み最小化による 閉ループ型の探索によって最適な予測フィルタパラメータをその符号帳に基づいて 求めるような構成としてもよい。または、第 Nch予測フィルタ分析部 403において予測 フィルタパラメータの候補を複数求めておき、 CELP音源探索における歪み最小化 による閉ループ型の探索によって、それら複数の候補の中から最適な予測フィルタ パラメータを選択するような構成としてもよい。このような構成を採ることにより、より最 適なフィルタパラメータを算出することができ、予測性能の向上 (すなわち、復号音声 品質の向上)を図ることができる。
[0094] また、第 lch、第 2chCELP符号化部 132、 133での CELP符号化における音源探 索による音源符号化において、第 Nch音声信号に対応する予測駆動音源信号、ゲ イン乗算後の適応ベクトルおよびゲイン乗算後の固定ベクトル、の 3種類の信号間の ゲインを調整するための各ゲインをそれぞれの信号に乗ずる構成としたが、そのよう な調整用のゲインを用いない構成、または、調整用のゲインとして第 Nch音声信号に 対応する予測駆動音源信号に対してのみゲインを乗ずる構成としてもよい。
[0095] また、 CELP音源探索時に、モノラル信号の CELP符号化で得られたモノラル信号 符号化データを利用し、そのモノラル信号符号化データに対する差分成分 (補正成 分)を符号化する構成としてもよい。例えば、適応音源ラグや各音源のゲインの符号 化時に、モノラル信号の CELP符号化で得られる適応音源ラグからの差分値、適応 音源ゲイン'固定音源ゲインに対する相対比などを符号化対象として符号ィ匕する。こ れにより、各チャネルの CELP音源に対する符号化の効率を向上させることができる
[0096] また、音声符号化装置 600 (図 9)の拡張レイヤ符号化部 120の構成を、実施の形 態 2 (図 7)と同様に、第 lchに関する構成だけとしてもよい。すなわち、拡張レイヤ符 号化部 120では、第 lch音声信号に対してのみモノラル駆動音源信号を用いた駆動 音源信号の予測および予測残差成分に対する CELP符号化を行う。この場合、音声 復号装置 700 (図 11)の拡張レイヤ復号部 320では、実施の形態 2 (図 8)と同様に、 第 2ch信号の復号を行うために、モノラル復号信号 sdjnono(n)および第 lch復号信 号 sd_chl(n)を用いて、式(1)に示す関係に基づき、式(5)に従って第 2ch復号信号 s d_ch2(n)を合成する。
[0097] また、第 lch、第 2chCELP符号化部 132、 133および第 lch、第 2chCELP復号 部 342、 343においては、音源探索における音源構成として、適応音源および固定 音源のうち、いずれか一方だけを用いる構成としてもよい。
[0098] また、第 Nch予測フィルタ分析部 403において、第 Nch音声信号を LPC予測残差 信号の代わりに、モノラル信号生成部 111で生成されたモノラル信号 s_mono(n)をモノ ラル駆動音源信号の代わりに用いて、第 Nch予測フィルタパラメータを求めるようにし てもよレ、。この場合の音声符号ィ匕装置 750の構成を図 15に、第 IchCELP符号ィ匕部 141および第 2chCELP符号化部 142の構成を図 16に示す。図 15に示すように、モ ノラル信号生成部 111で生成されたモノラル信号 s_mono(n)が、第 1 chCELP符号ィ匕 部 141および第 2chCELP符号化部 142に入力される。そして、図 16に示す第 lch CELP符号ィ匕部 141および第 2chCELP符号化部 142の第 Nch予測フィルタ分析 部 403において、第 Nch音声信号およびモノラル信号 s_mono(n)を用いて、第 Nch予 測フィルタパラメータを求める。このような構成にすることによって、第 Nch量子化 LP Cパラメータを用いて第 Nch音声信号力も LPC予測残差信号を算出する処理が不 要となる。また、モノラル駆動音源信号の代わりにモノラル信号 s_mon0(n)を用いること で、モノラル駆動音源信号を用いる場合よりも時間的に後 (未来)の信号を用いて第 Nch予測フィルタパラメータを求めることができる。なお、第 Nch予測フィルタ分析部 403では、モノラル信号生成部 111で生成されたモノラル信号 s_mono(n)を用いる代 わりに、モノラル信号 CELP符号化部 114での符号ィ匕で得られるモノラル復号信号を 用いるようにしてもよい。
[0099] また、第 Nch適応符号帳 405の内部バッファに、合成フィルタ 409への駆動音源の 音源ベクトルの代わりに、乗算器 407— 3でのゲイン乗算後の適応ベクトルと乗算器 407— 5でのゲイン乗算後の固定ベクトルのみを加算した信号ベクトルとを記憶する ようにしてもよい。この場合は、復号側の第 Nch適応符号帳でも同様な構成とする必 要がある。
[0100] また、第 lch、第 2chCELP符号化部 132、 133で行われる各チャネルの予測駆動 音源信号に対する残差成分の音源信号の符号化では、 CELP符号化による時間領 域での音源探索を行う代わりに、残差成分の音源信号を周波数領域へ変換し、周波 数領域での残差成分の音源信号の符号化を行うようにしてもよい。 [0101] このように、本実施の形態によれば、音声符号化に適した CELP符号化を用いるた め、さらに効率的な符号化を行うことができる。
[0102] (実施の形態 4)
図 17に本実施の形態に係る音声符号化装置 800の構成を示す。音声符号化装置
800は、コアレイヤ符号ィ匕部 110および拡張レイヤ符号ィ匕部 120を備える。なお、コ ァレイヤ符号化部 110の構成は実施の形態 1 (図 1)と同一であるため説明を省略す る。
[0103] 拡張レイヤ符号化部 120は、モノラル信号 LPC分析部 134、モノラル LPC残差信 号生成部 135、第 IchCELP符号化部 136および第 2chCELP符号化部 137を備 る。
[0104] モノラル信号 LPC分析部 134は、モノラル復号信号に対する LPCパラメータを算出 して、このモノラル信号 LPCパラメータをモノラル LPC残差信号生成部 135、第 lch CELP符号ィ匕部 136および第 2chCELP符号化部 137へ出力する。
[0105] モノラル LPC残差信号生成部 135は、 LPCパラメータを用いて、モノラル復号信号 に対する LPC残差信号 (モノラル LPC残差信号)を生成して、第 IchCELP符号ィ匕 部 136および第 2chCELP符号化部 137へ出力する。
[0106] 第 IchCELP符号化部 136および第 2chCELP符号化部 137は、モノラル復号信 号に対する LPCパラメータおよび LPC残差信号を用いて、各チャネルの音声信号に 対する CELP符号化を行い、各チャネルの符号化データを出力する。
[0107] 次いで、第 IchCELP符号化部 136および第 2chCELP符号化部 137の詳細につ いて説明する。第 IchCELP符号ィ匕部 136および第 2chCELP符号ィ匕部 137の構 成を図 18に示す。なお、図 18において実施の形態 3 (図 10)と同一の構成には同一 符号を付し、説明を省略する。
[0108] 第^^111^〇分析部413は、第 Nch音声信号に対する LPC分析を行い、得られた L PCパラメータを量子化して第 NchLPC予測残差信号生成部 402および合成フィノレ タ 409に出力するとともに、第 NchLPC量子化符号を出力する。第 NchLPC分析部 413では、 LPCパラメータの量子化に際し、モノラル信号に対する LPCパラメータと 第 Nch音声信号から得られる LPCパラメータ(第 NchLPCパラメータ)との相関が大 きレ、ことを利用して、モノラル信号 LPCパラメータに対する NchLPCパラメータの差 分成分を量子化することにより効率的な量子化を行う。
[0109] 第 Nch予測フィルタ分析部 414は、第 NchLPC予測残差信号生成部 402から出 力される LPC予測残差信号およびモノラル LPC残差信号生成部 135から出力され るモノラル LPC残差信号から第 Nch予測フィルタパラメータを求めて量子化し、第 N ch予測フィルタ量子化パラメータを第 Nch駆動音源信号合成部 415に出力するとと もに、第 Nch予測フィルタ量子化符号を出力する。
[0110] 第 Nch駆動音源信号合成部 415は、モノラル LPC残差信号および第 Nch予測フィ ルタ量子化パラメータを用いて、第 Nch音声信号に対応する予測駆動音源信号を合 成して乗算器 407— 1へ出力する。
[0111] なお、音声符号化装置 800に対する音声復号装置では、音声符号化装置 800と 同様にして、モノラル復号信号に対する LPCパラメータおよび LPC残差信号を算出 して、各チャネルの CELP復号部での各チャネルの駆動音源信号の合成に用いる。
[0112] また、第 Nch予測フィルタ分析部 414において、第 NchLPC予測残差信号生成部 402から出力される LPC予測残差信号およびモノラル LPC残差信号生成部 135か ら出力されるモノラル LPC残差信号の代わりに、第 Nch音声信号およびモノラル信 号生成部 111で生成されたモノラル信号 s_mono(n)を用いて、第 Nch予測フィルタパ ラメータを求めるようにしてもよい。さらに、モノラル信号生成部 111で生成されたモノ ラル信号 s_mono(n)を用いる代わりに、モノラル復号信号を用いるようにしてもよい。
[0113] このように、本実施の形態によれば、モノラル信号 LPC分析部 134およびモノラル L PC残差信号生成部 135を備えるため、コアレイヤにおいて任意の符号化方式でモノ ラル信号が符号化される場合でも、拡張レイヤにおいて CELP符号ィ匕を用レ、ることが できる。
[0114] なお、上記各実施の形態に係る音声符号化装置、音声復号装置を、移動体通信 システムにおいて使用される無線通信移動局装置や無線通信基地局装置等の無線 通信装置に搭載することも可能である。
[0115] また、上記各実施の形態では、本発明をハードウェアで構成する場合を例にとって 説明したが、本発明はソフトウェアで実現することも可能である。 [0116] また、上記各実施の形態の説明に用いた各機能ブロックは、典型的には集積回路 である LSIとして実現される。これらは個別に 1チップィ匕されてもよいし、一部又は全 てを含むように 1チップ化されてもよい。
[0117] ここでは、 LSIとした力 集積度の違いにより、 IC、システム LSI、スーパー LSI、ゥ ノレトラ LSIと呼称されることもある。
[0118] また、集積回路化の手法は LSIに限るものではなぐ専用回路又は汎用プロセッサ で実現してもよい。 LSI製造後に、プログラムすることが可能な FPGA (Field Program mable Gate Array)や、 LSI内部の回路セルの接続や設定を再構成可能なリコンフィ ギユラブル'プロセッサーを利用してもょレ、。
[0119] さらには、半導体技術の進歩又は派生する別技術により LSIに置き換わる集積回 路化の技術が登場すれば、当然、その技術を用レ、て機能ブロックの集積化を行って もよレ、。バイオ技術の適応等が可能性としてありえる。
[0120] 本明糸田書 ίま、 2004年 12月 27曰出願の特願 2004— 377965および 2005年 8月 1
8日出願の特願 2005— 237716に基づくものである。これらの内容はすべてここに 含めておく。
産業上の利用可能性
[0121] 本発明は、移動体通信システムやインターネットプロトコルを用いたパケット通信シ ステム等における通信装置の用途に適用できる。

Claims

請求の範囲
[1] コアレイヤのモノラル信号を用レ、た符号化を行う第 1符号化手段と、
拡張レイヤのステレオ信号を用いた符号ィヒを行う第 2符号ィヒ手段と、を具備し、 前記第 1符号化手段は、第 1チャネル信号および第 2チャネル信号を含むステレオ 信号を入力信号として、前記第 1チャネル信号および前記第 2チャネル信号からモノ ラル信号を生成する生成手段を具備し、
前記第 2符号化手段は、前記モノラル信号から得られる信号に基づいて、前記第 1 チャネル信号または前記第 2チャネル信号の予測信号を合成する合成手段を具備 する、
音声符号化装置。
[2] 前記合成手段は、前記モノラル信号に対する前記第 1チャネル信号または前記第 2チャネル信号の遅延差および振幅比を用いて、前記予測信号を合成する、 請求項 1記載の音声符号化装置。
[3] 前記第 2符号化手段は、前記予測信号と前記第 1チャネル信号または前記第 2チ ャネル信号との残差信号を符号化する、
請求項 1記載の音声符号化装置。
[4] 前記合成手段は、前記モノラル信号を CELP符号化して得られるモノラル駆動音 源信号に基づいて、前記予測信号を合成する、
請求項 1記載の音声符号化装置。
[5] 前記第 2符号化手段は、前記第 1チャネル信号または前記第 2チャネル信号から第 1チャネル LPC残差信号または第 2チャネル LPC残差信号を算出する算出手段、を さらに具備し、
前記合成手段は、前記モノラル駆動音源信号に対する前記第 1チャネル LPC残差 信号または前記第 2チャネル LPC残差信号の遅延差および振幅比を用いて、前記 予測信号を合成する、
請求項 4記載の音声符号化装置。
[6] 前記合成手段は、前記モノラル駆動音源信号と、前記第 1チャネル LPC残差信号 または前記第 2チャネル LPC残差信号とから算出される前記遅延差および前記振幅 比を用いて、前記予測信号を合成する、
請求項 5記載の音声符号化装置。
[7] 前記合成手段は、前記モノラル信号に対する前記第 1チャネル信号または前記第 2チャネル信号の遅延差および振幅比を用いて、前記予測信号を合成する、 請求項 4記載の音声符号化装置。
[8] 前記合成手段は、前記モノラル信号と、前記第 1チャネル信号または前記第 2チヤ ネル信号とから算出される前記遅延差および前記振幅比を用いて、前記予測信号を 合成する、
請求項 7記載の音声符号化装置。
[9] 請求項 1記載の音声符号化装置を具備する無線通信移動局装置。
[10] 請求項 1記載の音声符号化装置を具備する無線通信基地局装置。
[11] コアレイヤにおいてモノラル信号を用いた符号化を行レ、、拡張レイヤにおいてステ レオ信号を用いた符号化を行う音声符号化方法であって、
前記コアレイヤにおいて、第 1チャネル信号および第 2チャネル信号を含むステレ ォ信号を入力信号として、前記第 1チャネル信号および前記第 2チャネル信号からモ ノラル信号を生成する生成工程を具備し、
前記拡張レイヤにおいて、前記モノラル信号から得られる信号に基づいて、前記第 1チャネル信号または前記第 2チャネル信号の予測信号を合成する合成工程を具備 する、
音声符号化方法。
PCT/JP2005/023802 2004-12-27 2005-12-26 音声符号化装置および音声符号化方法 WO2006070751A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US11/722,737 US7945447B2 (en) 2004-12-27 2005-12-26 Sound coding device and sound coding method
BRPI0516376-5A BRPI0516376A (pt) 2004-12-27 2005-12-26 dispositivo de codificação de som e método de codificação de som
JP2006550764A JP5046652B2 (ja) 2004-12-27 2005-12-26 音声符号化装置および音声符号化方法
EP05820404A EP1818911B1 (en) 2004-12-27 2005-12-26 Sound coding device and sound coding method
AT05820404T ATE545131T1 (de) 2004-12-27 2005-12-26 Tonkodierungsvorrichtung und tonkodierungsmethode
CN2005800450695A CN101091208B (zh) 2004-12-27 2005-12-26 语音编码装置和语音编码方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-377965 2004-12-27
JP2004377965 2004-12-27
JP2005-237716 2005-08-18
JP2005237716 2005-08-18

Publications (1)

Publication Number Publication Date
WO2006070751A1 true WO2006070751A1 (ja) 2006-07-06

Family

ID=36614868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023802 WO2006070751A1 (ja) 2004-12-27 2005-12-26 音声符号化装置および音声符号化方法

Country Status (8)

Country Link
US (1) US7945447B2 (ja)
EP (1) EP1818911B1 (ja)
JP (1) JP5046652B2 (ja)
KR (1) KR20070092240A (ja)
CN (1) CN101091208B (ja)
AT (1) ATE545131T1 (ja)
BR (1) BRPI0516376A (ja)
WO (1) WO2006070751A1 (ja)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008016098A1 (fr) * 2006-08-04 2008-02-07 Panasonic Corporation dispositif de codage audio stéréo, dispositif de décodage audio stéréo et procédé de ceux-ci
JP2010540985A (ja) * 2007-09-19 2010-12-24 テレフオンアクチーボラゲット エル エム エリクソン(パブル) マルチチャネル・オーディオのジョイント強化
US8150702B2 (en) 2006-08-04 2012-04-03 Panasonic Corporation Stereo audio encoding device, stereo audio decoding device, and method thereof
KR101274802B1 (ko) 2008-12-29 2013-06-13 모토로라 모빌리티 엘엘씨 오디오 신호를 인코딩하기 위한 장치 및 방법
KR101274827B1 (ko) 2008-12-29 2013-06-13 모토로라 모빌리티 엘엘씨 다수 채널 오디오 신호를 디코딩하기 위한 장치 및 방법, 및 다수 채널 오디오 신호를 코딩하기 위한 방법
KR101275892B1 (ko) 2008-12-29 2013-06-17 모토로라 모빌리티 엘엘씨 오디오 신호를 인코딩하고 디코딩하기 위한 방법 및 장치
US9330671B2 (en) 2008-10-10 2016-05-03 Telefonaktiebolaget L M Ericsson (Publ) Energy conservative multi-channel audio coding
JP2018511825A (ja) * 2015-03-09 2018-04-26 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ マルチチャンネル信号を符号化するためのオーディオエンコーダおよび符号化されたオーディオ信号を復号化するためのオーディオデコーダ
WO2020250470A1 (ja) * 2019-06-13 2020-12-17 日本電信電話株式会社 音信号受信復号方法、音信号復号方法、音信号受信側装置、復号装置、プログラム及び記録媒体
WO2020250370A1 (ja) * 2019-06-13 2020-12-17 日本電信電話株式会社 音信号受信復号方法、音信号復号方法、音信号受信側装置、復号装置、プログラム及び記録媒体
WO2020250472A1 (ja) * 2019-06-13 2020-12-17 日本電信電話株式会社 音信号受信復号方法、音信号符号化送信方法、音信号復号方法、音信号符号化方法、音信号受信側装置、音信号送信側装置、復号装置、符号化装置、プログラム及び記録媒体
WO2022097242A1 (ja) * 2020-11-05 2022-05-12 日本電信電話株式会社 音信号高域補償方法、音信号後処理方法、音信号復号方法、これらの装置、プログラム、および記録媒体
WO2022097238A1 (ja) * 2020-11-05 2022-05-12 日本電信電話株式会社 音信号精製方法、音信号復号方法、これらの装置、プログラム及び記録媒体
WO2022097240A1 (ja) * 2020-11-05 2022-05-12 日本電信電話株式会社 音信号高域補償方法、音信号後処理方法、音信号復号方法、これらの装置、プログラム、および記録媒体
WO2022097241A1 (ja) * 2020-11-05 2022-05-12 日本電信電話株式会社 音信号高域補償方法、音信号後処理方法、音信号復号方法、これらの装置、プログラム、および記録媒体
WO2022097243A1 (ja) * 2020-11-05 2022-05-12 日本電信電話株式会社 音信号高域補償方法、音信号後処理方法、音信号復号方法、これらの装置、プログラム、および記録媒体
WO2022097237A1 (ja) * 2020-11-05 2022-05-12 日本電信電話株式会社 音信号精製方法、音信号復号方法、これらの装置、プログラム及び記録媒体
WO2022097239A1 (ja) * 2020-11-05 2022-05-12 日本電信電話株式会社 音信号精製方法、音信号復号方法、これらの装置、プログラム及び記録媒体
WO2022097244A1 (ja) * 2020-11-05 2022-05-12 日本電信電話株式会社 音信号高域補償方法、音信号後処理方法、音信号復号方法、これらの装置、プログラム、および記録媒体
WO2023032065A1 (ja) 2021-09-01 2023-03-09 日本電信電話株式会社 音信号ダウンミックス方法、音信号符号化方法、音信号ダウンミックス装置、音信号符号化装置、プログラム
US12100403B2 (en) 2020-03-09 2024-09-24 Nippon Telegraph And Telephone Corporation Sound signal downmixing method, sound signal coding method, sound signal downmixing apparatus, sound signal coding apparatus, program and recording medium
US12136427B2 (en) 2020-03-09 2024-11-05 Nippon Telegraph And Telephone Corporation Sound signal downmixing method, sound signal coding method, sound signal downmixing apparatus, sound signal coding apparatus, program and recording medium

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4939933B2 (ja) * 2004-05-19 2012-05-30 パナソニック株式会社 オーディオ信号符号化装置及びオーディオ信号復号化装置
US8036390B2 (en) * 2005-02-01 2011-10-11 Panasonic Corporation Scalable encoding device and scalable encoding method
CN1889172A (zh) * 2005-06-28 2007-01-03 松下电器产业株式会社 可增加和修正声音类别的声音分类系统及方法
JPWO2007037359A1 (ja) * 2005-09-30 2009-04-16 パナソニック株式会社 音声符号化装置および音声符号化方法
WO2007052612A1 (ja) * 2005-10-31 2007-05-10 Matsushita Electric Industrial Co., Ltd. ステレオ符号化装置およびステレオ信号予測方法
WO2007105586A1 (ja) 2006-03-10 2007-09-20 Matsushita Electric Industrial Co., Ltd. 符号化装置および符号化方法
JP5190363B2 (ja) 2006-07-12 2013-04-24 パナソニック株式会社 音声復号装置、音声符号化装置、および消失フレーム補償方法
US7461106B2 (en) 2006-09-12 2008-12-02 Motorola, Inc. Apparatus and method for low complexity combinatorial coding of signals
FR2911031B1 (fr) * 2006-12-28 2009-04-10 Actimagine Soc Par Actions Sim Procede et dispositif de codage audio
FR2911020B1 (fr) * 2006-12-28 2009-05-01 Actimagine Soc Par Actions Sim Procede et dispositif de codage audio
US20100241434A1 (en) * 2007-02-20 2010-09-23 Kojiro Ono Multi-channel decoding device, multi-channel decoding method, program, and semiconductor integrated circuit
US8576096B2 (en) 2007-10-11 2013-11-05 Motorola Mobility Llc Apparatus and method for low complexity combinatorial coding of signals
US8209190B2 (en) * 2007-10-25 2012-06-26 Motorola Mobility, Inc. Method and apparatus for generating an enhancement layer within an audio coding system
US7889103B2 (en) 2008-03-13 2011-02-15 Motorola Mobility, Inc. Method and apparatus for low complexity combinatorial coding of signals
US8639519B2 (en) 2008-04-09 2014-01-28 Motorola Mobility Llc Method and apparatus for selective signal coding based on core encoder performance
KR101428487B1 (ko) * 2008-07-11 2014-08-08 삼성전자주식회사 멀티 채널 부호화 및 복호화 방법 및 장치
CN101635145B (zh) * 2008-07-24 2012-06-06 华为技术有限公司 编解码方法、装置和系统
US8175888B2 (en) 2008-12-29 2012-05-08 Motorola Mobility, Inc. Enhanced layered gain factor balancing within a multiple-channel audio coding system
CN102804262A (zh) * 2009-06-05 2012-11-28 皇家飞利浦电子股份有限公司 音频信号的上混合
US8423355B2 (en) 2010-03-05 2013-04-16 Motorola Mobility Llc Encoder for audio signal including generic audio and speech frames
US9514757B2 (en) 2010-11-17 2016-12-06 Panasonic Intellectual Property Corporation Of America Stereo signal encoding device, stereo signal decoding device, stereo signal encoding method, and stereo signal decoding method
US9129600B2 (en) 2012-09-26 2015-09-08 Google Technology Holdings LLC Method and apparatus for encoding an audio signal
EP2919232A1 (en) 2014-03-14 2015-09-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Encoder, decoder and method for encoding and decoding
CN110709925B (zh) * 2017-04-10 2023-09-29 诺基亚技术有限公司 用于音频编码或解码的方法及装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US543948A (en) * 1895-08-06 Registering mechanism for cyclometers
US5434948A (en) 1989-06-15 1995-07-18 British Telecommunications Public Limited Company Polyphonic coding
DE4320990B4 (de) * 1993-06-05 2004-04-29 Robert Bosch Gmbh Verfahren zur Redundanzreduktion
DE19742655C2 (de) 1997-09-26 1999-08-05 Fraunhofer Ges Forschung Verfahren und Vorrichtung zum Codieren eines zeitdiskreten Stereosignals
KR100335609B1 (ko) * 1997-11-20 2002-10-04 삼성전자 주식회사 비트율조절이가능한오디오부호화/복호화방법및장치
US6446037B1 (en) * 1999-08-09 2002-09-03 Dolby Laboratories Licensing Corporation Scalable coding method for high quality audio
SE519985C2 (sv) * 2000-09-15 2003-05-06 Ericsson Telefon Ab L M Kodning och avkodning av signaler från flera kanaler
DE10102159C2 (de) * 2001-01-18 2002-12-12 Fraunhofer Ges Forschung Verfahren und Vorrichtung zum Erzeugen bzw. Decodieren eines skalierbaren Datenstroms unter Berücksichtigung einer Bitsparkasse, Codierer und skalierbarer Codierer
SE0202159D0 (sv) * 2001-07-10 2002-07-09 Coding Technologies Sweden Ab Efficientand scalable parametric stereo coding for low bitrate applications
ES2268340T3 (es) * 2002-04-22 2007-03-16 Koninklijke Philips Electronics N.V. Representacion de audio parametrico de multiples canales.
WO2004072956A1 (en) * 2003-02-11 2004-08-26 Koninklijke Philips Electronics N.V. Audio coding
US7725324B2 (en) * 2003-12-19 2010-05-25 Telefonaktiebolaget Lm Ericsson (Publ) Constrained filter encoding of polyphonic signals
DE602005016130D1 (de) 2004-09-30 2009-10-01 Panasonic Corp Einrichtung für skalierbare codierung, einrichtung für skalierbare decodierung und verfahren dafür
SE0402650D0 (sv) * 2004-11-02 2004-11-02 Coding Tech Ab Improved parametric stereo compatible coding of spatial audio

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BAUMGARTE F. AND FALLER C.: "Binaural Cue Coding-Part I: Psychoacoustic Fundamentals and Design Principles", IEEE TRANS. ON SPEEC AND AUDIO PROCESSING, vol. 11, no. 6, 2003, pages 509 - 519, XP002996341 *
GOTO M. ET AL.: "Onsei Tsushin'yo Stereo Onsei Fugoka Hoho no Kento.(A Study of Stereo Speech Coding Methods for Speech Communications.)", 2004 NEN THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS ENGINEERING SCIENCES SOCIETY TAIKAI KOEN RONBUNSHU, vol. A-6-6, 8 September 2004 (2004-09-08), pages 119, XP002996344 *
KAMAMOTO Y. ET AL.: "Channel-Kan Sokan o Mochiita Ta-Channel Shingo no Kagyaku Asshuku Fugoka.(Lossless Compression of Multi-Channel Signals Using Inter-Channel Correlation.)", FIT2004 (DAI 3 KAI FORUM ON INFORMATION TECHNOLOGY) KOEN RONBUNSHU, vol. M-016, 20 August 2004 (2004-08-20), pages 123 - 124, XP002996343 *
KATAOKA A. ET AL.: "G.729 o Kosei Yoso Toshite Mochiiru Scalable Kotaiiki Onsei Fugoka.(Scalable Wideband Speech Coding Using G.729 as a Component.)", THE TRANSACTIONS OF THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS, D-II, vol. J86-D-II, no. 3, 1 March 2003 (2003-03-01), pages 379 - 387, XP002996342 *
YOSHIDA K. ET AL.: "Scalable Stereo Onsei Fugoka no channel-Kan Yosoku ni Kansuru Yobi Kento.(A Preliminary Study of Inter-Channel Prediction for Scalable Stereo Speech Coding.)", 2005 NEN THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS SOGO TAIKAI KOEN RONBUNSHU, vol. D-14-1, 7 March 2005 (2005-03-07), pages 118, XP002996345 *

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8150702B2 (en) 2006-08-04 2012-04-03 Panasonic Corporation Stereo audio encoding device, stereo audio decoding device, and method thereof
WO2008016098A1 (fr) * 2006-08-04 2008-02-07 Panasonic Corporation dispositif de codage audio stéréo, dispositif de décodage audio stéréo et procédé de ceux-ci
JP2010540985A (ja) * 2007-09-19 2010-12-24 テレフオンアクチーボラゲット エル エム エリクソン(パブル) マルチチャネル・オーディオのジョイント強化
US9330671B2 (en) 2008-10-10 2016-05-03 Telefonaktiebolaget L M Ericsson (Publ) Energy conservative multi-channel audio coding
KR101274827B1 (ko) 2008-12-29 2013-06-13 모토로라 모빌리티 엘엘씨 다수 채널 오디오 신호를 디코딩하기 위한 장치 및 방법, 및 다수 채널 오디오 신호를 코딩하기 위한 방법
KR101275892B1 (ko) 2008-12-29 2013-06-17 모토로라 모빌리티 엘엘씨 오디오 신호를 인코딩하고 디코딩하기 위한 방법 및 장치
KR101274802B1 (ko) 2008-12-29 2013-06-13 모토로라 모빌리티 엘엘씨 오디오 신호를 인코딩하기 위한 장치 및 방법
US11107483B2 (en) 2015-03-09 2021-08-31 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Audio encoder for encoding a multichannel signal and audio decoder for decoding an encoded audio signal
JP2018511825A (ja) * 2015-03-09 2018-04-26 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ マルチチャンネル信号を符号化するためのオーディオエンコーダおよび符号化されたオーディオ信号を復号化するためのオーディオデコーダ
US10388287B2 (en) 2015-03-09 2019-08-20 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Audio encoder for encoding a multichannel signal and audio decoder for decoding an encoded audio signal
US10395661B2 (en) 2015-03-09 2019-08-27 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Audio encoder for encoding a multichannel signal and audio decoder for decoding an encoded audio signal
US10777208B2 (en) 2015-03-09 2020-09-15 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Audio encoder for encoding a multichannel signal and audio decoder for decoding an encoded audio signal
US11881225B2 (en) 2015-03-09 2024-01-23 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Audio encoder for encoding a multichannel signal and audio decoder for decoding an encoded audio signal
US11741973B2 (en) 2015-03-09 2023-08-29 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Audio encoder for encoding a multichannel signal and audio decoder for decoding an encoded audio signal
JP2023029849A (ja) * 2015-03-09 2023-03-07 フラウンホッファー-ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ マルチチャンネル信号を符号化するためのオーディオエンコーダおよび符号化されたオーディオ信号を復号化するためのオーディオデコーダ
US11238874B2 (en) 2015-03-09 2022-02-01 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Audio encoder for encoding a multichannel signal and audio decoder for decoding an encoded audio signal
JPWO2020250470A1 (ja) * 2019-06-13 2020-12-17
WO2020250470A1 (ja) * 2019-06-13 2020-12-17 日本電信電話株式会社 音信号受信復号方法、音信号復号方法、音信号受信側装置、復号装置、プログラム及び記録媒体
WO2020250471A1 (ja) * 2019-06-13 2020-12-17 日本電信電話株式会社 音信号受信復号方法、音信号復号方法、音信号受信側装置、復号装置、プログラム及び記録媒体
WO2020250371A1 (ja) * 2019-06-13 2020-12-17 日本電信電話株式会社 音信号符号化送信方法、音信号符号化方法、音信号送信側装置、符号化装置、プログラム及び記録媒体
WO2020250472A1 (ja) * 2019-06-13 2020-12-17 日本電信電話株式会社 音信号受信復号方法、音信号符号化送信方法、音信号復号方法、音信号符号化方法、音信号受信側装置、音信号送信側装置、復号装置、符号化装置、プログラム及び記録媒体
WO2020250369A1 (ja) * 2019-06-13 2020-12-17 日本電信電話株式会社 音信号受信復号方法、音信号復号方法、音信号受信側装置、復号装置、プログラム及び記録媒体
JP7192986B2 (ja) 2019-06-13 2022-12-20 日本電信電話株式会社 音信号受信復号方法、音信号復号方法、音信号受信側装置、復号装置、プログラム及び記録媒体
JP7205626B2 (ja) 2019-06-13 2023-01-17 日本電信電話株式会社 音信号受信復号方法、音信号符号化送信方法、音信号復号方法、音信号符号化方法、音信号受信側装置、音信号送信側装置、復号装置、符号化装置、プログラム及び記録媒体
JPWO2020250472A1 (ja) * 2019-06-13 2020-12-17
JPWO2020250471A1 (ja) * 2019-06-13 2020-12-17
JP7192987B2 (ja) 2019-06-13 2022-12-20 日本電信電話株式会社 音信号受信復号方法、音信号復号方法、音信号受信側装置、復号装置、プログラム及び記録媒体
WO2020250370A1 (ja) * 2019-06-13 2020-12-17 日本電信電話株式会社 音信号受信復号方法、音信号復号方法、音信号受信側装置、復号装置、プログラム及び記録媒体
US12100403B2 (en) 2020-03-09 2024-09-24 Nippon Telegraph And Telephone Corporation Sound signal downmixing method, sound signal coding method, sound signal downmixing apparatus, sound signal coding apparatus, program and recording medium
US12119009B2 (en) 2020-03-09 2024-10-15 Nippon Telegraph And Telephone Corporation Sound signal downmixing method, sound signal coding method, sound signal downmixing apparatus, sound signal coding apparatus, program and recording medium
US12136427B2 (en) 2020-03-09 2024-11-05 Nippon Telegraph And Telephone Corporation Sound signal downmixing method, sound signal coding method, sound signal downmixing apparatus, sound signal coding apparatus, program and recording medium
WO2022097240A1 (ja) * 2020-11-05 2022-05-12 日本電信電話株式会社 音信号高域補償方法、音信号後処理方法、音信号復号方法、これらの装置、プログラム、および記録媒体
JP7517461B2 (ja) 2020-11-05 2024-07-17 日本電信電話株式会社 音信号高域補償方法、音信号後処理方法、音信号復号方法、これらの装置、プログラム、および記録媒体
WO2022097239A1 (ja) * 2020-11-05 2022-05-12 日本電信電話株式会社 音信号精製方法、音信号復号方法、これらの装置、プログラム及び記録媒体
WO2022097242A1 (ja) * 2020-11-05 2022-05-12 日本電信電話株式会社 音信号高域補償方法、音信号後処理方法、音信号復号方法、これらの装置、プログラム、および記録媒体
WO2022097237A1 (ja) * 2020-11-05 2022-05-12 日本電信電話株式会社 音信号精製方法、音信号復号方法、これらの装置、プログラム及び記録媒体
WO2022097243A1 (ja) * 2020-11-05 2022-05-12 日本電信電話株式会社 音信号高域補償方法、音信号後処理方法、音信号復号方法、これらの装置、プログラム、および記録媒体
JP7491393B2 (ja) 2020-11-05 2024-05-28 日本電信電話株式会社 音信号精製方法、音信号復号方法、これらの装置、プログラム及び記録媒体
JP7491394B2 (ja) 2020-11-05 2024-05-28 日本電信電話株式会社 音信号精製方法、音信号復号方法、これらの装置、プログラム及び記録媒体
JP7491395B2 (ja) 2020-11-05 2024-05-28 日本電信電話株式会社 音信号精製方法、音信号復号方法、これらの装置、プログラム及び記録媒体
WO2022097244A1 (ja) * 2020-11-05 2022-05-12 日本電信電話株式会社 音信号高域補償方法、音信号後処理方法、音信号復号方法、これらの装置、プログラム、および記録媒体
JP7517458B2 (ja) 2020-11-05 2024-07-17 日本電信電話株式会社 音信号高域補償方法、音信号後処理方法、音信号復号方法、これらの装置、プログラム、および記録媒体
JP7517460B2 (ja) 2020-11-05 2024-07-17 日本電信電話株式会社 音信号高域補償方法、音信号後処理方法、音信号復号方法、これらの装置、プログラム、および記録媒体
JP7517459B2 (ja) 2020-11-05 2024-07-17 日本電信電話株式会社 音信号高域補償方法、音信号後処理方法、音信号復号方法、これらの装置、プログラム、および記録媒体
JP7544139B2 (ja) 2020-11-05 2024-09-03 日本電信電話株式会社 音信号高域補償方法、音信号後処理方法、音信号復号方法、これらの装置、プログラム、および記録媒体
WO2022097241A1 (ja) * 2020-11-05 2022-05-12 日本電信電話株式会社 音信号高域補償方法、音信号後処理方法、音信号復号方法、これらの装置、プログラム、および記録媒体
WO2022097238A1 (ja) * 2020-11-05 2022-05-12 日本電信電話株式会社 音信号精製方法、音信号復号方法、これらの装置、プログラム及び記録媒体
WO2023032065A1 (ja) 2021-09-01 2023-03-09 日本電信電話株式会社 音信号ダウンミックス方法、音信号符号化方法、音信号ダウンミックス装置、音信号符号化装置、プログラム

Also Published As

Publication number Publication date
US20080010072A1 (en) 2008-01-10
CN101091208B (zh) 2011-07-13
EP1818911A4 (en) 2008-03-19
CN101091208A (zh) 2007-12-19
EP1818911B1 (en) 2012-02-08
KR20070092240A (ko) 2007-09-12
JPWO2006070751A1 (ja) 2008-06-12
BRPI0516376A (pt) 2008-09-02
ATE545131T1 (de) 2012-02-15
EP1818911A1 (en) 2007-08-15
JP5046652B2 (ja) 2012-10-10
US7945447B2 (en) 2011-05-17

Similar Documents

Publication Publication Date Title
JP5046652B2 (ja) 音声符号化装置および音声符号化方法
JP4850827B2 (ja) 音声符号化装置および音声符号化方法
JP5046653B2 (ja) 音声符号化装置および音声符号化方法
JP4907522B2 (ja) 音声符号化装置および音声符号化方法
JP5413839B2 (ja) 符号化装置および復号装置
JP4555299B2 (ja) スケーラブル符号化装置およびスケーラブル符号化方法
US7904292B2 (en) Scalable encoding device, scalable decoding device, and method thereof
CN101023470A (zh) 语音编码装置、语音解码装置、通信装置及语音编码方法
US8271275B2 (en) Scalable encoding device, and scalable encoding method
JP4937746B2 (ja) 音声符号化装置および音声符号化方法
JP2006072269A (ja) 音声符号化装置、通信端末装置、基地局装置および音声符号化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006550764

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11722737

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005820404

Country of ref document: EP

Ref document number: 1020077014562

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580045069.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005820404

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11722737

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0516376

Country of ref document: BR