WO2006063563A1 - Flash tube mirror arrangement - Google Patents

Flash tube mirror arrangement Download PDF

Info

Publication number
WO2006063563A1
WO2006063563A1 PCT/DE2005/002215 DE2005002215W WO2006063563A1 WO 2006063563 A1 WO2006063563 A1 WO 2006063563A1 DE 2005002215 W DE2005002215 W DE 2005002215W WO 2006063563 A1 WO2006063563 A1 WO 2006063563A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
flash
flashlamp
substrates
assembly according
Prior art date
Application number
PCT/DE2005/002215
Other languages
German (de)
French (fr)
Inventor
Matthias Voelskow
Wolfgang Anwand
Wolfgang Skorupa
Original Assignee
Forschungszentrum Rossendorf E.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Rossendorf E.V. filed Critical Forschungszentrum Rossendorf E.V.
Priority to DE112005003465T priority Critical patent/DE112005003465A5/en
Publication of WO2006063563A1 publication Critical patent/WO2006063563A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation

Definitions

  • the invention relates to a flashlamp mirror assembly as part of a radiation heating arrangement for the short-term heating of preferably disc-shaped semiconductor substrates by means of rod-shaped flashlamps.
  • irradiation inhomogeneities result in extreme thermal stresses within the discs, which in turn can lead to permanent bending or even rupture thereof. But even a slight bending can lead to the fact that subsequent photolithographic process steps in the device manufacturing are no longer feasible.
  • the increase in the homogeneity of the light irradiation in flash lamp systems thus serves to a high degree to increase the yield in the component manufacturing.
  • the increase in the homogeneity in the flash lamp irradiation is achieved by a large distance of the lamps to the discs to be irradiated and by a correspondingly extended lamp field (multiple of the disc diameter).
  • the necessarily associated necessary enlargement of the irradiation chamber and the lamp field and thus also the capacitor bank, as an energy source for the flash lamps but leads to an extraordinary increase in investment costs.
  • the invention has for its object to propose a flashlamp mirror assembly that allows a homogeneous and rapid heating of semiconductor substrates at immaterial increased system costs.
  • each individual cylindrical lamp is arranged with its axis adjustable in the focal point of a parabolic cylindrical mirror and also each mirror / lamp unit is arranged parallel to the adjacent, wherein the individual
  • Alignment are freely adjustable. This creates the possibility of positioning the individual light bundles generated by the parabolic mirrors, which are homogeneous in their intensity, by adjusting the individual mirrors so that a uniform, uniformly illuminated surface results.
  • the light of all flash lamps is bundled.
  • the substrate surface is irradiated with a high energy density.
  • the area modified with a flash is small.
  • the light of the flash lamps is projected parallel to the substrate.
  • the energy densities achievable in this arrangement are lower, but the surface irradiated at the same time can be increased almost arbitrarily.
  • the main advantage of the flash lamp mirror assembly described compared to Conventional arrangements with a single mirror consist in the elimination of the intensity drop to the edge of the disk to be irradiated, as it is inevitably observed in an array of exposed parallel lamps.
  • the lamp length should be at least twice the diameter of the disks to be irradiated, so that the homogeneity of the irradiation in the direction of the lamp axes is ensured.
  • Another advantage is that the total energy of the light pulse need not or hardly be increased.
  • each flash lamp 5 is individually and adjustably located in the focal line of a water-cooled parabolic mirror.
  • each lamp-mirror arrangement produces a rectangular, homogeneous strip of parallel light beams.
  • Each individual mirror-lamp construction is also pivotally mounted in an axis parallel to the mirror axis, whereby the rectangular strips of light can be adjusted side by side on the substrate 4 so that a closed and illuminated with uniform intensity surface.
  • the sample holder 1 in the interior of which the substrate 4 is thermally insulated mounted on quartz tubes, except the quartz window 3 for transmitting the flash lamp light, a second, opposite quartz window 2 for transmitting the light of halogen lamps 6, which serve to pre-heat the samples from lightning.
  • the quartz window 3 for transmitting the flash lamp light
  • a second, opposite quartz window 2 for transmitting the light of halogen lamps 6, which serve to pre-heat the samples from lightning.
  • two or more light stripes can be positioned one above the other on the substrate 4 by pivoting the mirrors. 2 shows the constructionally least expensive case of the closely juxtaposed mirrors with parallel light emission, wherein the maximum energy density on the substrate 4 is limited by the dimensions of the mirrors and the lamp parameters.
  • the sample holder 1 is designed as shown in FIG.
  • the flash lamps 5 are electrically powered by high-power capacitors, which emit their energy in a pulsed manner by a combination with inductors.
  • the light pulse times can be adjusted between 500 ⁇ s and 20 ms.
  • the energy input by the flash lamps 5 into the substrates 4 is typically in the range of 100 joules / cm 2 .
  • the substrate 4 can be preheated in the range of a few hundred degrees to 1100 0 C.
  • the substrate diameters are usually between 100 mm and 200 mm.
  • the temperature of the substrate surface at the end of the light pulse is typically 1400 C.

Abstract

The invention relates to a flash tube mirror arrangement as part of a radiation heating arrangement for temporarily heating preferably disk-shaped semiconductor substrates by means of rod-shaped flash tubes. The aim of the invention is to provide a flash tube mirror arrangement which enables semiconductor substrates to be heated homogeneously and rapidly with only slightly increased installation costs. To this end, a plurality of flash tubes are arranged at least over the entire substrate surface in such a way that they can be individually adjusted in respectively one hollow cylindrical mirror having a parabolic cross-section, and the individual mirrors are arranged at an angle to each other in such a way that the height thereof can be adjusted in relation to the substrate. The flash tubes are arranged parallel to each other in relation to the longitudinal axis thereof and to the substrates.

Description

Blitzlampenspiegelanordnung Flash lamp mirror arrangement
Die Erfindung betrifft eine Blitzlampenspiegelanordnung als Teil einer Strahlungsbeheizungsanordnung zur kurzzeitigen Erwärmung von vorzugsweise scheibenförmigen Halbleitersubstraten mittels stabförmiger Blitzlampen.The invention relates to a flashlamp mirror assembly as part of a radiation heating arrangement for the short-term heating of preferably disc-shaped semiconductor substrates by means of rod-shaped flashlamps.
Bei der Herstellung von Halbleiterbauelementen werden zunehmend sogenannte RTP- Prozessschritte (rapid thermal processing) anstelle der konventionellen Ofentemperung eingesetzt. Innerhalb dieser Methoden besitzt die rapide Erhitzung von Halbleitersubstraten mit Hilfe von intensiver optischer Strahlung, beispielsweise der von Blitzlampen, gegenüber der weit verbreiteten Kurzzeitausheilung in Halogenlampenanlagen eine Reihe gravierender Vorteile (Panknin, D.; Stoemenos, J.; Eickhoff, M.; Heera, V.; Voelskow, M.; Skorupa, W., The beneficial role of flash lamp annealing on the epitaxial growth of the 3C-SiC on Si, Appl. Surf. Sc. 184 (2001) 377- 382). Zum ersten erfolgt hierbei, aufgrund der kurzzeitig verfügbaren, extrem hohen Leistung derartiger Lampen bis in den Megawattbereich, verglichen mit der Leistung von Halogenlampen im Kilowattbereich, eine ultraschnelle Aufheizung der Substrate. Zum zweiten besitzen derartige Lampen keine Trägheit wie Glühlampen, d.h., sobald die Entladung erlischt, kühlt sich die Probe aufgrund von Wärmestrahlung sehr schnell ab. Ein Problem, welches sich bei der Blitzlampenbestrahlung, wie auch bei allen anderen, auf einer Anordnung von mehreren Lampen basierenden Strahlungsheizungen, gegenüber der Temperung in konventionellen Rohröfen ergibt, ist die Erzielung einer einheitlichen Temperatur (Temperaturhomogenität ) über die gesamte Halbleiteroberfläche bei maximaler Ausnutzung der Lichtenergie. Insbesondere jedoch bei der Blitzlampenbestrahlung, mit Prozesszeiten im Bereich von Millisekunden, und dem aufgrund der kurzen Zeit nicht stattfindenden lateralen Temperaturausgleich während der Bestrahlung, führen Bestrahlungsinhomogenitäten zu extremen thermischen Spannungen innerhalb der Scheiben, was wiederum zu bleibender Verbiegung oder sogar zum Bersten derselben führen kann. Aber schon eine geringe Verbiegung kann dazu führen, dass nachfolgende photolithographische Prozessschritte bei der Bauelementeherstellung nicht mehr durchführbar sind. Die Erhöhung der Homogenität der Lichteinstrahlung bei Blitzlampenanlagen dient somit in hohem Maße der Erhöhung der Ausbeute in der Bauelementeherstellung. Üblicherweise wird die Erhöhung der Homogenität bei der Blitzlampenbestrahlung durch einen großen Abstand der Lampen zu den zu bestrahlenden Scheiben und durch ein entsprechend ausgedehntes Lampenfeld (Mehrfaches des Scheibendurchmessers ) erreicht. Die damit zwangsläufig verbundene notwendige Vergrößerung der Bestrahlungskammer und des Lampenfeldes und damit auch der Kondensatorbatterie, als Energiequelle für die Blitzlampen, führt jedoch zu einer außerordentlichen Steigerung der Anlagekosten.In the manufacture of semiconductor devices, increasingly so-called RTP process steps (rapid thermal processing) are used instead of the conventional furnace annealing. Within these methods, the rapid heating of semiconductor substrates by means of intense optical radiation, such as flash lamps, has a number of serious advantages over the widespread short-term annealing in halogen lamp systems (Panknin, D., Stoemenos, J., Eickhoff, M. Heera, V. Voelskow, M., Skorupa, W., The beneficial role of flash lamp annealing on the epitaxial growth of the 3C-SiC on Si, Appl. Surf. Sc., 184 (2001) 377-382). Firstly, due to the short-term available, extremely high performance of such lamps up to the megawatt range, compared to the power of halogen lamps in the kilowatt range, an ultrafast heating of the substrates takes place. Secondly, such lamps have no inertia such as incandescent lamps, that is, as soon as the discharge extinguished, the sample cools very quickly due to thermal radiation. A problem which arises in the flash lamp irradiation, as in all other, on an array of multiple lamp-based radiant heaters, compared to the annealing in conventional tube furnaces, is the achievement of a uniform temperature (temperature homogeneity) over the entire semiconductor surface with maximum utilization of light energy , However, particularly in flash lamp irradiation, with millisecond processing times, and the lack of lateral temperature compensation during irradiation due to the short time, irradiation inhomogeneities result in extreme thermal stresses within the discs, which in turn can lead to permanent bending or even rupture thereof. But even a slight bending can lead to the fact that subsequent photolithographic process steps in the device manufacturing are no longer feasible. The increase in the homogeneity of the light irradiation in flash lamp systems thus serves to a high degree to increase the yield in the component manufacturing. Usually, the increase in the homogeneity in the flash lamp irradiation is achieved by a large distance of the lamps to the discs to be irradiated and by a correspondingly extended lamp field (multiple of the disc diameter). However, the necessarily associated necessary enlargement of the irradiation chamber and the lamp field and thus also the capacitor bank, as an energy source for the flash lamps, but leads to an extraordinary increase in investment costs.
Der Erfindung liegt die Aufgabe zugrunde, eine Blitzlampenspiegelanordnung vorzuschlagen, die eine homogene und schnelle Erwärmung von Halbleitersubstraten bei unwesentlich erhöhten Anlagenkosten ermöglicht.The invention has for its object to propose a flashlamp mirror assembly that allows a homogeneous and rapid heating of semiconductor substrates at immaterial increased system costs.
Erfindungsgemäß wird die Aufgabe mit den in den Patentansprüchen dargelegtenAccording to the invention, the object with the set forth in the claims
Merkmalen gelöst.Characteristics solved.
Dabei ist wesentlich, dass jede einzelne zylinderförmige Lampe mit ihrer Achse justierbar im Brennpunktes eines parabelförmigen Zylinderspiegels angeordnet ist und außerdem jede Spiegel/Lampe-Einheit parallel zur benachbarten angeordnet ist, wobei die einzelnenIt is essential that each individual cylindrical lamp is arranged with its axis adjustable in the focal point of a parabolic cylindrical mirror and also each mirror / lamp unit is arranged parallel to the adjacent, wherein the individual
Einheiten in ihrem Abstand zueinander und in ihrem Abstand zur Probe und der axialenUnits in their distance from each other and in their distance from the sample and the axial
Ausrichtung frei justierbar sind. Dadurch wird die Möglichkeit geschaffen, die durch die parabelförmigen Spiegel erzeugten, in ihrer Intensität homogenen einzelnen Lichtbündel durch Justierung der einzelnen Spiegel so auf die Probe zu positionieren, dass sich eine einheitliche, gleichmäßig beleuchtete Fläche ergibt.Alignment are freely adjustable. This creates the possibility of positioning the individual light bundles generated by the parabolic mirrors, which are homogeneous in their intensity, by adjusting the individual mirrors so that a uniform, uniformly illuminated surface results.
Bei der Projektion des Lichtes auf das Substrat werden zwei Fälle unterschieden:At the projection of light on a substrate two cases are distinguished:
- Das Licht aller Blitzlampen wird gebündelt. Damit wird die Substratoberfläche mit einer hohen Energiedichte bestrahlt. Die mit einem Blitz modifizierte Fläche ist klein.- The light of all flash lamps is bundled. Thus, the substrate surface is irradiated with a high energy density. The area modified with a flash is small.
- Das Licht der Blitzlampen wird parallel auf das Substrat projiziert. Die in dieser Anordnung erreichbaren Energiedichten sind geringer, jedoch kann die gleichzeitig bestrahlte Fläche nahezu beliebig vergrößert werden.- The light of the flash lamps is projected parallel to the substrate. The energy densities achievable in this arrangement are lower, but the surface irradiated at the same time can be increased almost arbitrarily.
Der wesentliche Vorteil der beschriebenen Blitzlampenspiegelanordnung gegenüber den herkömmlichen Anordnungen mit einem einzigen Spiegel besteht in der Eliminierung des Intensitätsabfalles zum Rand der zu bestrahlenden Scheibe hin, wie er bei einem Feld aus freiliegenden parallelen Lampen zwangsläufig zu beobachten ist. Die Lampenlänge sollte dabei mindestens das Doppelte des Durchmessers der zu bestrahlenden Scheiben betragen, damit auch die Homogenität der Bestrahlung in Richtung der Lampenachsen gewährleistet ist.The main advantage of the flash lamp mirror assembly described compared to Conventional arrangements with a single mirror consist in the elimination of the intensity drop to the edge of the disk to be irradiated, as it is inevitably observed in an array of exposed parallel lamps. The lamp length should be at least twice the diameter of the disks to be irradiated, so that the homogeneity of the irradiation in the direction of the lamp axes is ensured.
Ein weiterer Vorteil ist, dass die Gesamtenergie des Lichtimpulses nicht oder kaum erhöht werden muss.Another advantage is that the total energy of the light pulse need not or hardly be increased.
Nachstehend wird die Erfindung an einem Ausführungsbeispiel näher erläutert.The invention will be explained in more detail using an exemplary embodiment.
In der zugehörigen Zeichnung zeigenIn the accompanying drawing show
Fig. 1 die Anordnung der Spiegel in einem Winkel zueinander undFig. 1, the arrangement of the mirror at an angle to each other and
Fig. 2 die Anordnung der Spiegel eng nebeneinander.Fig. 2, the arrangement of the mirror close together.
Über einem massiven Probenhalter 1 , im wesentlichen bestehend aus einer wassergekühlten, geschlossenen und im Inneren mit Schutzgas durchströmten Aluminiumkonstruktion, sind in einem Halbrund stabförmige Blitzlampen 5 angeordnet, wobei sich jede Blitzlampe 5 einzeln und justierbar in der Brennlinie jeweils eines wassergekühlten Parabolspiegel befindet. Dadurch erzeugt jede Lampe-Spiegel- Anordnung einen rechteckförmigen, homogen Streifen paralleler Lichtstrahlen. Jede einzelne Spiegel-Lampe-Konstruktion ist außerdem schwenkbar in einer Achse parallel zur Spiegelachse angebracht, wodurch sich die rechteckförmigen Lichtstreifen so nebeneinander auf dem Substrat 4 justieren lassen, dass sich eine geschlossene und mit gleichmäßiger Intensität ausgeleuchtete Fläche ergibt.About a solid sample holder 1, consisting essentially of a water-cooled, closed and traversed inside with inert gas aluminum construction, rod-shaped flash lamps 5 are arranged in a semicircle, each flash lamp 5 is individually and adjustably located in the focal line of a water-cooled parabolic mirror. As a result, each lamp-mirror arrangement produces a rectangular, homogeneous strip of parallel light beams. Each individual mirror-lamp construction is also pivotally mounted in an axis parallel to the mirror axis, whereby the rectangular strips of light can be adjusted side by side on the substrate 4 so that a closed and illuminated with uniform intensity surface.
Der Probenhalter 1 , in dessen Inneren das Substrat 4 wärmeisoliert auf Quarzröhrchen gelagert ist, besitzt außer dem Quarzfenster 3 zur Transmission des Blitzlampenlichtes ein zweites, gegenüberliegendes Quarzfenster 2 zur Transmission des Lichtes von Halogenlampen 6, welche zur Vorheizung der Proben vor dem Blitz dienen. Es lassen sich aber auch in dieser Spiegelanordnung zwecks Erhöhung der Energiedichte auf bestimmten Substratbereichen oder zur intensiven Bestrahlung kleinerer Substrate 4 durch Schwenken der Spiegel zwei oder mehrere Lichtstreifen übereinander auf dem Substrat 4 positionieren. Fig. 2 zeigt den konstruktiv am wenigsten aufwendigen Fall der dicht nebeneinander angebrachten Spiegel mit parallelem Lichtaustritt, wobei die maximale Energiedichte auf dem Substrat 4 durch die Ausmaße der Spiegel und der Lampenparameter begrenzt ist Der Probenhalter 1 ist wie in Figur 1 ausgeführt gestaltet.The sample holder 1, in the interior of which the substrate 4 is thermally insulated mounted on quartz tubes, except the quartz window 3 for transmitting the flash lamp light, a second, opposite quartz window 2 for transmitting the light of halogen lamps 6, which serve to pre-heat the samples from lightning. However, in this mirror arrangement, in order to increase the energy density on certain substrate areas or to intensively irradiate smaller substrates 4, two or more light stripes can be positioned one above the other on the substrate 4 by pivoting the mirrors. 2 shows the constructionally least expensive case of the closely juxtaposed mirrors with parallel light emission, wherein the maximum energy density on the substrate 4 is limited by the dimensions of the mirrors and the lamp parameters. The sample holder 1 is designed as shown in FIG.
Die Blitzlampen 5 werden elektrisch gespeist von Hochleistungskondensatoren, welche ihre Energie durch eine Kombination mit Induktivitäten impulsförmig abgeben. Die Lichtimpulszeiten können dabei zwischen 500 μs und 20 ms gezielt eingestellt werden. Der Energieeintrag durch die Blitzlampen 5 in die Substrate 4 liegt typischerweise im Bereich von 100 Joule/cm2. Mit Hilfe der Halogenheizung kann das Substrat 4 im Bereich von einigen Hundert Grad bis 1100 0C vorgeheizt werden. Die Substratdurchmesser betragen üblicherweise zwischen 100 mm und 200 mm. Die Temperatur der Substratoberfläche am Ende des Lichtimpulses beträgt typischerweise 1400 C. The flash lamps 5 are electrically powered by high-power capacitors, which emit their energy in a pulsed manner by a combination with inductors. The light pulse times can be adjusted between 500 μs and 20 ms. The energy input by the flash lamps 5 into the substrates 4 is typically in the range of 100 joules / cm 2 . With the help of the halogen heater, the substrate 4 can be preheated in the range of a few hundred degrees to 1100 0 C. The substrate diameters are usually between 100 mm and 200 mm. The temperature of the substrate surface at the end of the light pulse is typically 1400 C.

Claims

BlitzlampenspiegelanordnungPatentansprüche Flash lamp mirror arrangement patent claims
1. Blitzlampenspiegelanordnung, zur Wärmebehandlung von Substraten (4) mittels stabförmiger Blitzlampen (5) vor einem Spiegel, dadurch gekennzeichnet, dass mindestens über die gesamte Substratoberfläche mehrere Blitzlampen (5) einzeln justierbar in jeweils einem hohlzylinderförmigen Spiegel parabelförmigen Querschnitts angeordnet sind und dass die einzelnen Spiegel im Winkel zueinander und ihrer Höhe zum Substrat (4) justierbar angeordnet sind, wobei die Lage der Blitzlampen (5) parallel zueinander bezogen auf ihre Längsachse und zu den Substraten (4) ist.1. flashlamp mirror assembly, for heat treatment of substrates (4) by means of rod-shaped flash lamps (5) in front of a mirror, characterized in that at least over the entire substrate surface a plurality of flash lamps (5) individually adjustable in each case a hollow cylindrical mirror parabolic cross-section are arranged and that the individual Mirror at an angle to each other and their height to the substrate (4) are arranged adjustable, wherein the position of the flash lamps (5) is parallel to each other with respect to their longitudinal axis and to the substrates (4).
2. Blitzlampenspiegelanordnung nach Anspruch 1 , dadurch gekennzeichnet, dass die Spiegel aus Metall mit polierter Oberfläche bestehen.2. flashlamp mirror assembly according to claim 1, characterized in that the mirrors consist of metal with a polished surface.
3. Blitzlampenspiegelanordnung nach Anspruch 1 , dadurch gekennzeichnet, dass die Spiegel mit einer Kühlungseinrichtung versehen ist.3. flashlamp mirror assembly according to claim 1, characterized in that the mirror is provided with a cooling device.
4. Blitzlampenspiegelanordnung nach Anspruch 3, dadurch gekennzeichnet, dass die Kühlungseinrichtung aus Kühlrippen für die Luftkühlung besteht.4. flashlamp mirror assembly according to claim 3, characterized in that the cooling device consists of cooling fins for the air cooling.
5. Blitzlampenspiegelanordnung nach Anspruch 3, dadurch gekennzeichnet, dass die Kühlungseinrichtung als Kühlrohr innerhalb des Spiegels ausgebildet ist. 5. flashlamp mirror assembly according to claim 3, characterized in that the cooling device is designed as a cooling tube within the mirror.
PCT/DE2005/002215 2004-12-16 2005-12-09 Flash tube mirror arrangement WO2006063563A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112005003465T DE112005003465A5 (en) 2004-12-16 2005-12-09 Flash lamp mirror arrangement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200410060557 DE102004060557A1 (en) 2004-12-16 2004-12-16 Flash lamp mirror arrangement
DE102004060557.2 2004-12-16

Publications (1)

Publication Number Publication Date
WO2006063563A1 true WO2006063563A1 (en) 2006-06-22

Family

ID=35717591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2005/002215 WO2006063563A1 (en) 2004-12-16 2005-12-09 Flash tube mirror arrangement

Country Status (2)

Country Link
DE (2) DE102004060557A1 (en)
WO (1) WO2006063563A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020179589A1 (en) * 2000-02-08 2002-12-05 Yukihiro Morita Lamp annealing device and substrate for a display element
US20020195437A1 (en) * 2001-06-20 2002-12-26 Tatsufumi Kusuda Heat treating apparatus and method
US6717158B1 (en) * 1999-01-06 2004-04-06 Mattson Technology, Inc. Heating device for heating semiconductor wafers in thermal processing chambers

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6600138B2 (en) * 2001-04-17 2003-07-29 Mattson Technology, Inc. Rapid thermal processing system for integrated circuits
DE10132974A1 (en) * 2001-07-06 2003-01-30 Trilux Lenze Gmbh & Co Kg Optics for room lights
DE10136501C1 (en) * 2001-07-27 2002-11-07 Gunther Ackermann Substrate heating device using electromagnetic radiation has cooling medium feed with integrated flow channel directing cooling medium onto substrate outside heated area

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6717158B1 (en) * 1999-01-06 2004-04-06 Mattson Technology, Inc. Heating device for heating semiconductor wafers in thermal processing chambers
US20020179589A1 (en) * 2000-02-08 2002-12-05 Yukihiro Morita Lamp annealing device and substrate for a display element
US20020195437A1 (en) * 2001-06-20 2002-12-26 Tatsufumi Kusuda Heat treating apparatus and method

Also Published As

Publication number Publication date
DE112005003465A5 (en) 2007-11-22
DE102004060557A1 (en) 2006-06-29

Similar Documents

Publication Publication Date Title
EP0505928B1 (en) Process for the rapid thermal annealing of a semiconductor wafer using irradiation
DE3136105C2 (en)
EP0345443B1 (en) Process for the rapid thermal annealing of a semiconductor wafer using irradiation
DE102012200665B4 (en) Process for producing a low-emitting layer system
EP1393354A1 (en) Method and device for the thermal treatment of substrates
JPS60258928A (en) Device and method for heating semiconductor wafer
DE10297368T5 (en) A system and method for heating semiconductor wafers by optimizing the absorption of electromagnetic energy
DE10297622T5 (en) Temperature measurement as well as methods and systems for heat treatment
DE19938807A1 (en) Uniform short wave IR heating equipment for glass and/or glass-ceramic, e.g. for ceramicizing or heating prior to shaping, includes an arrangement for indirect incidence of most of the IR radiation
WO2011095560A2 (en) Method and device for heat treating the disk-shaped base material of a solar cell, in particular of a crystalline or polycrystalline silicon solar cell
DE10024709B4 (en) Device for the thermal treatment of substrates
DE4306398A1 (en) Device for heating a substrate
EP0554538B1 (en) Process and device for the heating of a material
DE10197002B3 (en) Method and system for heat treatment
DE102012106667B3 (en) Device for irradiating a substrate
DE10163087B4 (en) Infrared radiator for the thermal treatment of goods
WO2006063563A1 (en) Flash tube mirror arrangement
WO2002033735A2 (en) Device for thermally treating substrates
WO2013143633A1 (en) Device for irradiating a substrate
DE3139712A1 (en) Annealing device
DE4142466C2 (en) Process for rapid cooling during short-term tempering of a semiconductor wafer
DE10156915B4 (en) Apparatus for homogeneous heating of substrates or surfaces and their use
DE3139711A1 (en) Annealing device
WO2022002570A1 (en) Heating system and method for heating large-surface substrates
WO2017220272A1 (en) Substrate support element for a support rack

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1120050034658

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05817393

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5817393

Country of ref document: EP