WO2006059641A1 - Magnetic memory - Google Patents

Magnetic memory Download PDF

Info

Publication number
WO2006059641A1
WO2006059641A1 PCT/JP2005/021985 JP2005021985W WO2006059641A1 WO 2006059641 A1 WO2006059641 A1 WO 2006059641A1 JP 2005021985 W JP2005021985 W JP 2005021985W WO 2006059641 A1 WO2006059641 A1 WO 2006059641A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
magnetic
layer
electrically connected
storage areas
Prior art date
Application number
PCT/JP2005/021985
Other languages
French (fr)
Japanese (ja)
Inventor
Keiji Koga
Original Assignee
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk Corporation filed Critical Tdk Corporation
Publication of WO2006059641A1 publication Critical patent/WO2006059641A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/14Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements
    • G11C11/15Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements using multiple magnetic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type

Definitions

  • the present invention relates to a magnetic memory that stores data in a magnetoresistive effect element.
  • MRAM Magnetic Random Access Memory
  • DRAM Dynamic Random Access Memory
  • SRAM Static RAM
  • An example of such an MRAM is a magnetic memory described in Patent Document 1, for example.
  • This magnetic memory is connected to a tunnel magnetoresistive (TMR) element, a wiring (cell bit line) for passing a write current to the TMR element, and a cell bit line for each storage area (memory cell). And a transistor.
  • the TMR element includes a first magnetic layer (magnetic layer) whose magnetization direction is changed by an external magnetic field, a second magnetic layer whose magnetization direction is fixed, a first magnetic layer, and a second magnetic layer. And a non-magnetic insulating layer sandwiched between them, and the binary magnetic data is obtained by controlling the magnetic field direction of the first magnetic layer in parallel or anti-parallel to the magnetic field direction of the second magnetic layer. It is an element to memorize.
  • TMR elements are arranged along the wiring (cell bit line) branched from the bit line to each storage area in order to prevent erroneous writing to the storage area that is not the target of writing.
  • a write current is selectively supplied to the cell bit line. This configuration eliminates the so-called half selection state of the TMR element and prevents erroneous writing to a non-selected storage area. Also, by arranging the TMR element so that one end of the TMR element is in contact with the cell bit line, a read current is supplied to the TMR element through the cell bit line.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-153182
  • the magnetic memory disclosed in Patent Document 1 has two write selection transistors: a write selection transistor for controlling the write current flowing through the cell bit line, and a read selection transistor for controlling the read current flowing through the TMR element.
  • a transistor is provided for each storage area. As described above, if two transistors for reading selection and writing selection are arranged for each storage area, a large space is required for each storage area, which is one factor that hinders the miniaturization of the MRAM.
  • Patent Document 1 describes a configuration for selectively supplying a read current to a TMR element as a wiring in the column direction (bit line) and a wiring in the row direction (word line) passing through the selected storage area.
  • a so-called cross-point configuration is also disclosed in which a read current is passed between the two.
  • a transistor for selecting a bit line and a transistor for selecting a word line are required for each column and each row, respectively. This will hinder downsizing.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide a magnetic memory that can prevent erroneous writing and can be miniaturized.
  • a magnetic memory includes a plurality of storage areas, and each of the plurality of storage areas includes a magnetosensitive layer whose magnetization direction is changed by an external magnetic field. It has an effect element and a wiring portion extending along the magnetosensitive layer. In-region wiring that provides an external magnetic field to the magnetosensitive layer by a write current that is electrically connected to one end of the intra-region wiring and one end of the magnetoresistive effect element. And switch means for controlling the conduction of the read current to the magnetoresistive element.
  • the switching means of the storage area when data is written to a certain storage area, the switching means of the storage area is preferably turned on, and a write current is supplied so as to flow between both ends of the wiring in the area.
  • a write current flows through a wiring portion extending along the magnetosensitive layer of the magnetoresistive element, and an external magnetic field is provided to the magnetosensitive layer to write data.
  • the magnetoresistive effect element since the magnetoresistive effect element has a higher resistance than the in-region wiring, the write current does not branch to the magnetoresistive effect element.
  • the switch means of the storage area is turned on, for example, the other end side of the wiring in the area is put in a high resistance state, and the current is supplied from the switch means. It is preferable to supply the read current to the magnetoresistive element. Data can be read by detecting the magnitude of the read current or the voltage across the magnetoresistive element.
  • the write current and the read current are controlled by one switch means, a conventional MRAM that requires two transistors in one storage area, or each column and Compared to a cross-point MRAM that requires a read transistor for each row, the storage area can be made smaller. Therefore, the MRAM can be further downsized.
  • intra-area wiring is provided for each storage area, and the write current flowing through the intra-area wiring can be controlled by the switch means provided in each storage area.
  • the effect element has no half-selected state and can prevent erroneous writing to a storage area that is not a write target.
  • the in-region wiring is electrically connected to one end of the magnetoresistive effect element at the wiring portion, and the read current is supplied to the magnetoresistive effect element from the switch means.
  • a plurality of storage areas are arranged in a two-dimensional shape with m rows and n columns (m and n are integers of 2 or more) force, and correspond to each column of the plurality of storage areas.
  • each of the storage areas a first wiring electrically connected to one end of the in-area wiring and one end of the magnetoresistive effect element via the switch means, and each column of the plurality of storage areas A second wiring electrically connected to the other end of the in-area wiring and a corresponding storage area in each of the storage areas of the corresponding column;
  • a third wiring connected to the control terminal of the switch means is provided corresponding to each row of the plurality of storage areas, and the other end of the magnetoresistive effect element is electrically connected to each storage area of the corresponding row.
  • a fourth wiring connected to the terminal.
  • a write current is supplied between the first wiring and the second wiring corresponding to the column including the storage area to be written, and the line including the storage area is connected to the row.
  • a control voltage for controlling the switch means to the conductive state By applying a control voltage for controlling the switch means to the conductive state to the corresponding third wiring, a write current can be suitably applied to the internal wiring in the storage area.
  • a read current is supplied between the first wiring corresponding to the column including the storage area to be read and the fourth wiring corresponding to the row including the storage area, and the row including the storage area is included.
  • a control voltage for controlling the switch means can be suitably passed to the magnetoresistive effect element in the storage area.
  • the magnetic memory is preferably electrically connected to the first and fourth wirings, and preferably further includes a read current supply means for supplying a read current to the magnetoresistive element.
  • the magnetic memory preferably further includes a write current supply unit that is electrically connected to the first and second wirings and supplies a write current to the in-region wiring.
  • the magnetic memory further includes a magnetic yoke provided so that each of the plurality of storage areas continuously surrounds the wiring portion of the intra-area wiring, and the magnetosensitive layer of the magnetoresistive effect element includes
  • the magnetic yoke may be constituted by a part of the magnetic yoke.
  • the wiring portion along the magnetosensitive layer is surrounded by the magnetic yoke, so that the magnetic field emitted in the direction in which the magnetosensitive layer force is deviated can be reduced.
  • the magnetosensitive layer is constituted by a part of the magnetic yoke surrounding the wiring portion, an external magnetic field can be efficiently provided to the magnetosensitive layer.
  • an external magnetic field due to a write current can be efficiently provided to the magnetosensitive layer of the magnetoresistive element, so that the magnetic direction of the magnetosensitive layer can be reversed with a small write current.
  • each of the plurality of storage areas includes at least a pair of open end portions facing each other through a gap of a predetermined length and surrounds a wiring portion of the intra-area wiring.
  • the magnetoresistive effect element may be arranged such that the pair of side surfaces of the magnetoresistive effect element are opposed to or in contact with the pair of open ends of the magnetic yoke, respectively.
  • the magnetic yoke has a pair of open ends facing or in contact with each of the pair of side surfaces of the magnetoresistive element, so that a magnetic field (magnetic An external magnetic field as viewed from the resistive element can be efficiently provided to the magnetosensitive layer of the magnetoresistive element.
  • a magnetic field magnetic An external magnetic field as viewed from the resistive element
  • the external magnetic field caused by the write current can be efficiently provided to the magnetosensitive layer of the magnetoresistive effect element, so that the magnetic field direction of the magnetosensitive layer is reversed with a small write current. be able to.
  • FIG. 1 is a conceptual diagram showing an overall configuration of a magnetic memory according to an embodiment.
  • FIG. 2 is an enlarged cross-sectional view showing a cross-sectional configuration when the storage section is cut along the row direction.
  • FIG. 3 is an enlarged cross-sectional view of the storage section taken along line II in FIG.
  • FIG. 4 is an enlarged cross-sectional view of the storage section taken along line II-II in FIG.
  • FIG. 5 is an enlarged cross-sectional view of a TMR element.
  • FIG. 6 is an enlarged sectional view of the magnetic yoke.
  • FIG. 7 shows the operation around the TMR element in the storage area.
  • Fig. 7 (a) shows the state during writing
  • Fig. 7 (b) shows the state during reading.
  • FIG. [Fig. 8] Fig. 8 shows the operation around the TMR element in the storage area.
  • Fig. 8- (a) shows the state during writing
  • Fig. 8- (b) shows the state during reading.
  • FIG. 9 is a diagram showing the manufacturing process of the TMR element and its peripheral structure
  • FIG. 9A is a plan view showing a part of the manufacturing process of the magnetic memory 1
  • FIG. b) is a side cross-sectional view along line III-III shown in Fig. 9- (a).
  • FIG. 10 is a diagram showing the manufacturing process of the TMR element and its peripheral structure
  • FIG. 10- (a) is a plan view showing a part of the manufacturing process of the magnetic memory 1
  • FIG. b) is a side cross-sectional view along the IV-IV line shown in Figure 10- (a).
  • FIG. 11 is a diagram showing the manufacturing process of the TMR element and its peripheral structure
  • FIG. 11 (a) is a plan view showing a part of the manufacturing process of the magnetic memory 1
  • FIG. b) is a side cross-sectional view along the line V-V shown in Fig. 11 (a).
  • FIG. 12 is a diagram showing the manufacturing process of the TMR element and its peripheral structure
  • FIG. 12- (a) is a plan view showing a part of the manufacturing process of the magnetic memory 1
  • FIG. b) is a side cross-sectional view along the VI-VI line shown in Figure 12- (a).
  • FIG. 13 is a diagram showing a manufacturing process of a TMR element and its peripheral structure.
  • FIG. 14 is a diagram showing a manufacturing process of a TMR element and its peripheral structure.
  • FIG. 15 is a diagram showing the manufacturing process of the TMR element and its peripheral structure
  • FIG. 15- (a) is a plan view showing a part of the manufacturing process of the magnetic memory 1
  • FIG. b) is a side cross-sectional view along the line VII-VII shown in Figure 15- (a).
  • FIG. 16 is a diagram showing a manufacturing process of a TMR element and its peripheral structure.
  • FIG. 17 is a view showing the shape of a magnetic yoke according to a modification.
  • FIG. 18 is a view showing the shape of a magnetic yoke according to a modification.
  • FIG. 1 is a conceptual diagram showing the overall configuration of the magnetic memory 1 according to the present embodiment.
  • the magnetic memory 1 includes a storage unit 2, a bit selection circuit 11, a word selection circuit 12, bit lines 13 and 14, and word lines 15 and 19.
  • the storage unit 2 includes a plurality of storage areas 3.
  • the plurality of storage areas 3 are arranged in a two-dimensional form having m rows and n columns (m and n are integers of 2 or more).
  • Each of the plurality of storage areas 3 includes a TMR element 4, an intra-area wiring 31, a read / write transistor 32, and a read wiring 35.
  • the TMR element 4, the in-region wiring 31, and the readout wiring 35 are formed in the magnetic material layer 8 (described later) of the storage unit 2.
  • the TMR element 4 is a magnetoresistive effect element including a magnetosensitive layer whose magnetic field direction is changed by an external magnetic field.
  • the TMR element 4 includes a first magnetic layer which is a magnetosensitive layer, a second magnetic layer whose magnetization direction is fixed, and a nonmagnetic insulating layer sandwiched between the first magnetic layer and the second magnetic layer. Consists of and.
  • the TMR element 4 is arranged along one wiring portion of the in-region wiring 31 so that the magnetization direction of the first magnetic layer is changed by receiving an external magnetic field generated by a write current flowing through the in-region wiring 31.
  • the first magnetic layer and the second magnetic layer are in accordance with the relationship between the magnetic direction of the first magnetic layer and the magnetic direction of the second magnetic layer.
  • the resistance value between the magnetic layer changes. In this way, binary data is written to the TMR element 4.
  • one end of the TMR element 4 on the first magnetic layer side or the second magnetic layer side is electrically connected to one wiring portion of the in-region wiring 31, thereby electrically connecting to the read / write transistor 32. It is connected.
  • the read current is supplied from the bit wiring 13 described later to the TMR element 4 via the read / write transistor 32 and the intra-region wiring 31, the resistance value between the first magnetic layer and the second magnetic layer is increased.
  • the voltage value or current value across the TMR element 4 changes. By measuring the voltage value or current value between both ends, binary data written in the TMR element 4 is read.
  • the first magnetic layer side of the TMR element 4 (The second magnetic layer side) means either the first magnetic layer side or the second magnetic layer side with respect to the nonmagnetic insulating layer, and another layer on the first magnetic layer (second magnetic layer). This includes the case where there is intervening.
  • the intra-region wiring 31 is a wiring that provides an external magnetic field to the first magnetic layer of the TMR element 4 by a write current flowing through the intra-region wiring 31 and supplies a read current to the TMR element 4.
  • One end of the intra-region wiring 31 is electrically connected to the bit wiring 13 via the read / write transistor 32.
  • the other end of the intra-region wiring 31 is electrically connected to the bit wiring 14.
  • the read / write transistor 32 is switch means for controlling the conduction of the write current and the read current in the in-region wiring 31.
  • one of the drain and the source is electrically connected to the intra-region wiring 31 and one end of the TMR element 4, and the other is electrically connected to the bit wiring 13.
  • the gate of the read / write transistor 32 is electrically connected to the word line 15.
  • the read wiring 35 is a wiring that connects the TMR element 4 and the word wiring 19 in order to supply a read current to the TMR element 4. Specifically, one end of the read wiring 35 is electrically connected to the other end of the TMR element 4, and the other end of the read wiring 35 is electrically connected to the word wiring 19.
  • the bit wirings 13 and 14 are arranged corresponding to each column of the storage area 3.
  • the bit wiring 13 is the first wiring in this embodiment. That is, the bit wiring 13 is electrically connected to one end of the intra-area wiring 31 included in each storage area 3 in the corresponding column via the read / write transistor 32.
  • the bit wiring 13 supplies a positive write current to the intra-region wiring 31 and supplies a read current to the TMR element 4 via the intra-region wiring 31.
  • the bit wiring 14 is a second wiring in the present embodiment.
  • the bit wiring 14 is electrically connected to the other end of the in-area wiring 31 included in each storage area 3 of the corresponding column.
  • the bit wiring 14 supplies a negative write current to the in-region wiring 31.
  • the word wiring 15 is a third wiring in the present embodiment.
  • the word wiring 15 is disposed corresponding to each row of the storage area 3 and is electrically connected to a gate which is a control terminal of the read / write transistor 32 included in each storage area 3 of the corresponding row.
  • the word wiring 19 is the fourth wiring in the present embodiment. Word wiring 19 Is arranged corresponding to each row of the storage area 3, and is electrically connected to the other end of the TMR element 4 included in each storage area 3 of the corresponding row via a read wiring 35. .
  • the write current supply means in the present embodiment is configured by the bit selection circuit 11. That is, the bit selection circuit 11 has a function of providing a positive or negative write current to the in-area wiring 31 of each storage area 3. Specifically, the bit selection circuit 11 is electrically connected to the bit wirings 13 and 14, and corresponds to the address according to the address instructed at the time of data writing from the inside or the outside of the magnetic memory 1. An address decoder circuit for selecting a column and a current drive circuit for supplying a positive or negative write current between the bit line 13 and the bit line 14 corresponding to the selected column are configured.
  • the read current supply means in the present embodiment is constituted by a bit selection circuit 11 and a word selection circuit 12. That is, the bit selection circuit 11 and the word selection circuit 12 have a function of providing a read current to the TMR element 4 in each storage region 3 via the intra-region wiring 31.
  • the bit selection circuit 11 is configured to include an address decoder circuit that selects a column corresponding to the address in accordance with an address instructed when data is read from the internal or external power data of the magnetic memory 1.
  • the word selection circuit 12 is configured to include an address decoder circuit that is electrically connected to the word line 19 and selects a row corresponding to the address according to the designated address. At least one of the bit selection circuit 11 and the word selection circuit 12 is supplied with a read current between the bit wiring 13 corresponding to the selected column and the word wiring 19 corresponding to the selected row.
  • a current drive circuit is included.
  • the word selection circuit 12 is electrically connected to the word wiring 15.
  • the word selection circuit 12 applies a control voltage for turning on the read / write transistor 32 to the word line 15 corresponding to the selected row at the time of data writing or data reading.
  • the magnetic memory 1 having the above configuration operates as follows. That is, when an address (i row j column Zl ⁇ i ⁇ m, l ⁇ j ⁇ n) for writing data from the inside or outside of the magnetic memory 1 is specified, the bit selection circuit 11 and the word selection circuit 12 are respectively Applicable j column and i Select a row. In the read / write shared transistor 32 of the storage area 3 included in the i row selected by the word selection circuit 12, a control voltage is applied to the gate via the word wiring 15, and the write current becomes conductive. Further, in the storage area 3 included in the j column selected by the bit selection circuit 11, a positive or negative voltage corresponding to data is applied between the bit wiring 13 and the bit wiring 14.
  • a write current is generated in the internal wiring 31 via the read / write transistor 32.
  • the magnetization direction of the first magnetic layer of the TMR element 4 is reversed by the magnetic field generated by the write current. In this way, binary data is written into the storage area 3 of the designated address (i row j column).
  • the bit selection circuit 11 and the word selection circuit 12 select the corresponding one column and k row, respectively.
  • a control voltage is applied to the gate via the word wiring 15, and the read current becomes conductive.
  • the bit selection circuit 11 or the word Read current is supplied from the selection circuit 12.
  • a read current flows through the TMR element 4 in the storage region 3 included in both the one column selected by the bit selection circuit 11 and the k row selected by the word selection circuit 12 . Then, for example, by determining the voltage drop amount in the TMR element 4, the binary data stored in the storage area 3 of the instructed address (k rows and 1 column) is read out.
  • FIG. 2 is an enlarged cross-sectional view showing a cross-sectional configuration when the storage unit 2 is cut along the column direction.
  • FIG. 3 is an enlarged cross-sectional view of the storage unit 2 taken along the line II in FIG.
  • FIG. 4 is an enlarged cross-sectional view of the storage unit 2 taken along line II-II in FIG.
  • the storage unit 2 includes a semiconductor layer 6, a wiring layer 7, and a magnetic material layer 8.
  • the semiconductor layer 6 is a layer in which a semiconductor device such as a transistor is formed while maintaining the mechanical strength of the entire storage unit 2 including the semiconductor substrate 21.
  • Magnetic material layer 8 is T This is a layer on which a component made of a magnetic material such as the MR element 4 and the magnetic yoke 5 for efficiently applying a magnetic field to the TMR element 4 is formed.
  • the wiring layer 7 is provided between the semiconductor layer 6 and the magnetic material layer 8.
  • the wiring layer 7 includes a magnetic device such as a TMR element 4 formed in the magnetic material layer 8, a semiconductor device such as a transistor formed in the semiconductor layer 6, a bit wiring 13 and 14, and a word wiring 15 and 19. This is a layer in which wirings for electrically connecting the wirings penetrating each storage area 3 to each other V are formed.
  • the semiconductor layer 6 includes a semiconductor substrate 21, an insulating region 22, and a read / write transistor 32.
  • the semiconductor substrate 21 is made of, for example, a Si substrate and is doped with p-type or n-type impurities.
  • the insulating region 22 is formed in a region other than the read / write transistor 32 on the semiconductor substrate 21 and electrically isolates the read / write transistor 32 of each storage region 3 from each other.
  • the insulating region 22 is made of an insulating material such as SiO.
  • the read / write transistor 32 includes a drain region 32 a and a source region 32 c having a conductivity type opposite to that of the semiconductor substrate 21, a gate electrode 32 b serving as a control terminal, and a part of the semiconductor substrate 21.
  • the drain region 32a and the source region 32c are formed, for example, by doping an impurity having a conductivity type opposite to that of the semiconductor substrate 21 in the vicinity of the surface of the Si substrate.
  • a semiconductor substrate 21 is interposed between the drain region 32a and the source region 32c, and a gate electrode 32b is disposed on the semiconductor substrate 21.
  • the magnetic material layer 8 includes a TMR element 4, a magnetic yoke 5, an insulating region 24, an in-region wiring 31, and a readout wiring 35.
  • TMR element 4 magnetic yoke 5, in-region wiring 31, and readout wiring 35
  • FIG. 5 is an enlarged cross-sectional view of the TMR element 4.
  • FIG. 5 shows a cross section of the storage area 3 along the row direction.
  • the TMR element 4 includes a first magnetic layer 41, a nonmagnetic insulating layer 42, a second magnetic layer 43, and an antiferromagnetic layer 44 that are stacked in this order.
  • the first magnetic layer 41 is a magnetosensitive layer in this embodiment, and an external magnetic field from the in-region wiring 31. The magnetic field direction changes depending on the field, and binary data can be recorded.
  • the first magnetic layer 41 is constituted by a part of a magnetic yoke 5 (beam yoke 5b) described later.
  • a ferromagnetic material such as Co, CoFe, NiFe, NiFeCo, and CoPt can be used.
  • the magnetic field direction is fixed by the antiferromagnetic layer 44.
  • the magnetic field direction of the second magnetic layer 43 is stabilized by exchange coupling at the joint surface between the antiferromagnetic layer 44 and the second magnetic layer 43.
  • the magnetic axis easy axis direction of the second magnetic layer 43 is set along the magnetic axis easy axis direction of the first magnetic layer 41.
  • a ferromagnetic material such as Co, CoFe, NiFe, NiFeCo, CoPt can be used.
  • IrMn, PtMn, FeMn, PtPdMn, NiO, or any combination of these materials can be used.
  • the nonmagnetic insulating layer 42 is a layer made of a nonmagnetic and insulating material. Since the nonmagnetic insulating layer 42 is interposed between the first magnetic layer 41 and the second magnetic layer 43, a tunnel magnetoresistive effect (TMR) is generated between the first magnetic layer 41 and the second magnetic layer 43. Occurs. That is, between the first magnetic layer 41 and the second magnetic layer 43, the relative relationship between the magnetic field direction of the first magnetic layer 41 and the magnetic field direction of the second magnetic layer 43 (parallel or antiparallel). An electrical resistance corresponding to is generated.
  • the material of the nonmagnetic insulating layer 42 is preferably a metal oxide or nitride such as Al, Zn, or Mg.
  • a third layer is provided via a nonmagnetic metal layer or a synthetic AF (antiferromagnetic) layer instead of the antiferromagnetic layer 44.
  • a magnetic layer may be provided.
  • the third magnetic layer forms antiferromagnetic coupling with the second magnetic layer 43, so that the magnetic field direction of the second magnetic layer 43 can be further stabilized.
  • the influence of the static magnetic field from the second magnetic layer 43 to the first magnetic layer 41 can be prevented, the magnetic reversal of the first magnetic layer 41 can be facilitated.
  • the material of the third magnetic layer is not particularly limited, but it is preferable to use a ferromagnetic material such as Co, CoFe, NiFe, NiFeCo, CoPt alone or in combination. Further, as the material of the nonmagnetic metal layer provided between the second magnetic layer 43 and the third magnetic layer, Ru, Rh, Ir, Cu, Ag and the like are suitable. The thickness of the nonmagnetic metal layer is 2n in order to obtain strong antiferromagnetic coupling between the second magnetic layer 43 and the third magnetic layer. U, which is preferably less than m.
  • the in-region wiring 31 also has a conductive metal force and extends in the column direction of the storage region 3.
  • One end of the in-region wiring 31 is electrically connected to the electrode 17a through the vertical wiring 16a (see FIG. 2). Further, the other end of the in-region wiring 31 is electrically connected to the bit wiring 14 (see FIGS. 3 and 4) by a wiring (not shown).
  • a wiring portion 31 a of the intra-region wiring 31 extends along the first magnetic layer 41 of the TMR element 4. Then, when a write current flows through the intra-region wiring 31, an external magnetic field is provided from the wiring portion 3 la to the first magnetic layer 41 of the TMR element 4.
  • the magnetic axis easy axis direction of the first magnetic layer 41 of the TMR element 4 is set to be along the direction intersecting with the longitudinal direction of the in-region wiring 31 (that is, the direction intersecting with the write current direction).
  • the first magnetic layer 41 of the TMR element 4 is provided on the read wiring 35.
  • the read wiring 35 is made of a conductive metal and extends in the column direction of the storage area 3. One end of the read wiring 35 is electrically connected to the first magnetic layer 41. The other end of the read wiring 35 is electrically connected to the word wiring 19 (see FIG. 2) via a wiring (described later) inside the wiring layer 7. Further, the antiferromagnetic layer 44 of the TMR element 4 is electrically connected to the wiring portion 31a of the in-region wiring 31. With this configuration, it is possible to allow the read current to flow suitably from the in-region wiring 31 to the TMR element 4 (or from the read wiring 35 to the TMR element 4).
  • the magnetic yoke 5 is a ferromagnetic member that covers the periphery of the in-region wiring 31 and efficiently provides a magnetic field generated by a write current to the TMR element 4.
  • FIG. 6 is an enlarged cross-sectional view of the magnetic yoke 5.
  • FIG. 6 is a cross section along the row direction of the storage area 3.
  • the magnetic yoke 5 includes a first beam yoke 5b, a pair of pillar yokes 5c, and a second beam yoke 5d.
  • the first beam yoke 5 b is disposed between the read wiring 35 and the nonmagnetic insulating layer 42 so as to serve also as the first magnetic layer 41 of the TMR element 4.
  • the first beam yoke 5b is connected to one of the pair of pillar yokes 5c, and the other end of the first beam yoke 5b is connected to the other of the pair of pillar yokes 5c.
  • the second beam yoke 5d is provided along the surface of the in-region wiring 31 opposite to the TMR element 4.
  • the pair of pillar yokes 5c are provided along the side surface of the in-region wiring 31, and both ends of the first beam yoke 5b and the second beam yoke are provided. Connecting both ends of the 5d.
  • the first beam yoke 5b, the pair of pillar yokes 5c, and the second beam yoke 5d are arranged in part of the extension direction of the in-region wiring 31 (wiring portion 3 la on the TMR element 4).
  • the outer periphery of the intra-region wiring 31 is completely (continuously) surrounded.
  • the first magnetic layer 41 of the TMR element 4 is constituted by a part of the magnetic yoke 5 (first beam yoke 5b).
  • the magnetic yoke 5 As a material constituting the magnetic yoke 5, for example, a metal containing at least one element among Ni, Fe, and Co is preferable.
  • the magnetic yoke 5 is preferably formed so that its easy axis direction is along the easy axis direction of the first magnetic layer 41 of the TMR element 4.
  • the material of the insulating region 24 is SiO, like the insulating region 22 of the semiconductor layer 6.
  • Two insulating materials can be used.
  • the wiring layer 7 includes an insulating region 23, bit wirings 13 and 14, word wirings 15 and 19, and a plurality of vertical wirings and horizontal wirings. Note that, in the wiring layer 7, all regions other than each wiring are occupied by the insulating region 23.
  • the material of the insulating region 23 is SiO, like the insulating region 22 of the semiconductor layer 6.
  • Insulating materials can be used.
  • w can be used as the material for the vertical wiring
  • A1 can be used as the material for the horizontal wiring.
  • the electrode 17a to which one end of the in-region wiring 31 of the magnetic material layer 8 is connected is electrically connected to the vertical wirings 16b to 16d and the horizontal wirings 18a and 18b.
  • the vertical wiring 16d is in ohmic contact with the drain region 32a of the read / write transistor 32.
  • the horizontal wiring 18c is electrically connected to the vertical wiring 16e, and the vertical wiring 16e is in ohmic contact with the source region 32c of the read / write transistor 32.
  • the horizontal wiring 18c is electrically connected to the bit wiring 13 through the vertical wiring 16h.
  • the readout wiring 35 of the magnetic material layer 8 is electrically connected to the vertical wirings 16f and 16g and the horizontal wiring 18d of the wiring layer 7, and the vertical wiring 16g is electrically connected to the word wiring 19! Speak.
  • the bit wiring 14 is electrically connected to the end of the in-region wiring 31 opposite to the side where the electrode 17a is provided by a wiring (not shown).
  • the gate electrode 32b is configured by a part of the word line 15 extending in the row direction of the storage region 3. With this configuration, the word line 15 is connected to the read / write transistor 3. 2 is electrically connected to the control terminal (gate electrode 32b).
  • Fig. 7 (a) when a negative write current I flows in the intra-region wiring 31, the wl of the wiring portion 31a is placed around the wiring portion 31a of the intra-region wiring 31.
  • Magnetic field ⁇ is generated in the circumferential direction.
  • the magnetic field ⁇ forms a closed path that goes around the inside of the magnetic yoke 5 provided around the wiring portion 3 la.
  • the magnetic field ⁇ is generated around the wiring portion 3 la
  • the magnetic field ⁇ (external magnetic field) is applied to the first magnetic layer 41 (first beam yoke 5b) of the TMR element 4 by the magnetic field confinement action of the magnetic yoke 5. ) Is provided efficiently. Due to this magnetic field ⁇ , the magnetic field direction A of the first magnetic layer 41 is directed in the same circumferential direction as the magnetic field ⁇ .
  • the magnetic field direction B of the second magnetic layer 43 is oriented in the same circumferential direction as the magnetic field ⁇ in advance by exchange coupling with the antiferromagnetic layer 44, the magnetic field of the first magnetic layer 41 is The direction A and the magnetic direction B of the second magnetic layer 43 are in the same direction, that is, in a parallel state.
  • one of the binary data (for example, 0) is written into the TMR element 4.
  • a read current I is passed between the wiring portion 31a and the read wiring 35, and the current value Change or change in potential difference between the wiring portion 31a and the readout wiring 35 is detected.
  • the force at which the TMR element 4 records any binary data that is, the magnetic field direction A of the first magnetic layer 41 is parallel to the magnetic field direction B of the second magnetic layer 43.
  • the first magnetic layer 41 is not affected by the tunnel magnetoresistance effect (TMR) in the nonmagnetic insulating layer 42.
  • TMR tunnel magnetoresistance effect
  • the resistance value between the layer 41 and the second magnetic layer 43 is relatively small. Therefore, for example, when the read current I is constant, the potential difference between the wiring portion 31a and the read wiring 35 becomes relatively small, and therefore 0 may be written to the TMR element 4 as binary data. Wow.
  • a magnetic field ⁇ that is opposite to the magnetic field ⁇ is generated around the wiring part 31a of the internal wiring 31.
  • the magnetic field ⁇ forms a closed path that goes around the inside of the magnetic yoke 5.
  • the magnetic field ⁇ (external magnetic field) is effective on the first magnetic layer 41 (first beam yoke 5b) of the TMR element 4. Provided well. Due to this magnetic field ⁇ , the magnetic field direction A of the first magnetic layer 41 is the same as the magnetic field ⁇ .
  • the magnetic field direction B of the second magnetic layer 43 is directed in the circumferential direction opposite to the magnetic field ⁇ .
  • the magnetic field direction A of the first magnetic layer 41 and the magnetic field direction B of the second magnetic layer 43 are opposite to each other, that is, in an antiparallel state.
  • the other binary data (for example, 1) is written in the TMR element 4.
  • the first magnetic layer 41 causes the first magnetoresistance effect (TMR) in the nonmagnetic insulating layer 42 to
  • TMR first magnetoresistance effect
  • the resistance value between the magnetic layer 41 and the second magnetic layer 43 becomes relatively large. Therefore, for example, as shown in FIG. 8 (b), when a constant read current I is passed between the wiring portion 31a and the readout wiring 35, the potential difference between the wiring portion 31a and the readout wiring 35 becomes relatively large. . From this, it can be seen that 1 is written in the TMR element 4 as binary data.
  • the write currents I and 1 and the read current I are controlled by one switch means (read / write transistor 32).
  • the transistor for controlling the read current and the space required to define the size of the storage area is required. Therefore, in a conventional magnetic memory that requires two transistors per storage area, or in a cross-point type magnetic memory that requires a reading transistor for each column and each row, the storage section becomes large. , Favorable force.
  • a read / write transistor 32 that can control both the write currents I and 1 and the read current I is provided.
  • the magnetic memory 1 (storage unit 2) can be downsized.
  • the intra-area wiring 31 is provided for each storage area 3, and the write current flowing through the intra-area wiring 31 by the read / write transistor 32 provided in each storage area 3 Since I and I can be controlled, there is no half-selected state of TMR element 4 wl w2
  • the storage area to be written is stored.
  • a write current I, I wl w2 is supplied between the bit wiring 13 corresponding to the column including the area 3 and the bit wiring 14, and the word wiring 15 corresponding to the row including the storage area 3 is read / written.
  • the write current I, 1 can be suitably supplied to the internal wiring 31 of the storage area 3 wl w2
  • a read current I is supplied between the bit wiring 13 corresponding to the column including the storage area 3 to be read and the word wiring 19 corresponding to the row including the storage area 3, and the storage area 3 is By applying a control voltage for controlling the read / write transistor 32 to the conductive state to the word line 15 corresponding to the included row, it is possible to allow a read current to flow through the TMR element 4 in the storage region 3 appropriately.
  • the magnetic memory 1 is electrically connected to the word wirings 15 and 19, and is read current supply means (bit selection circuit 11) for supplying the read current I to the TMR element 4. And a word selection circuit 12).
  • the read current I can be suitably supplied to the TMR element 4 in the storage area 3 to be read.
  • the magnetic memory 1 is electrically connected to the bit wirings 13 and 14, and write current supply means (wl w2
  • a bit selection circuit 11 is preferably provided. Thereby, the write currents I and 1 can be suitably supplied to the in-area wiring 31 of the storage area 3 to be written.
  • each of the plurality of storage areas 3 preferably has a magnetic yoke 5 provided so as to continuously surround the wiring portion 31a of the in-area wiring 31.
  • the first magnetic layer 41 of the TMR element 4 is preferably constituted by a part of the magnetic yoke 5 (first beam yoke 5b).
  • first beam yoke 5b the magnetic yoke 5
  • the external magnetic fields ⁇ and ⁇ by the write currents I and I wl can be efficiently provided to the first magnetic layer 41 of the TMR element 4, so that w2 1 2
  • each storage region 3 has such a magnetic yoke 5
  • the magnetization direction A of the first magnetic layer 41 can be reversed with small write currents I and I, so that the write current I
  • the read / write transistor 32 that controls the conduction of I can be made small. Therefore, each memory w2
  • the magnetic memory 1 (storage unit 2) can be further reduced in size.
  • FIG. 9- (a) is a plan view showing a part of the manufacturing process of the magnetic memory 1, and FIG. 9- (b) is taken along the line III-III shown in FIG. 9- (a). It is side surface sectional drawing.
  • the readout wiring 35 is formed on the wiring layer 7.
  • the readout wiring 35 is formed so that one end of the readout wiring 35 is in contact with the vertical wiring 16 f of the wiring layer 7.
  • the vertical wiring 16i shown in the figure is a vertical wiring electrically connected to the bit wiring 14 (see FIGS. 3 and 4) in the wiring layer 7.
  • Fig. 10 (a) is a plan view showing a part of the manufacturing process of the magnetic memory 1
  • Fig. 10 (b) is a side cross-sectional view along the IV-IV line shown in Fig. 10 (a). It is.
  • a layer 61 having a Ta layer underlayer, a NiFe layer, and a CoFe layer force is formed by a high vacuum (UHV) DC sputtering device.
  • This layer 61 is a layer to be a first beam yoke (first magnetic layer).
  • the A1 layer is formed on the layer 61, and the A1 layer is oxidized by oxygen plasma to form a tunnel insulating layer 62 that becomes a nonmagnetic insulating layer. Then, a CoFe layer 63 serving as a second magnetic layer, an IrMn layer 64 serving as an antiferromagnetic layer, and a Ta protective layer (not shown) are sequentially formed on the tunnel insulating layer 62.
  • FIG. 11— (a) is a plan view showing a part of the manufacturing process of the magnetic memory 1, and FIG. 11— (b) is taken along the line V—V shown in FIG. 11— (a). It is side surface sectional drawing.
  • the layer 61, the tunnel insulating layer 62, the CoFe layer 63, and the IrMn layer 64 are formed by ion milling.
  • the first beam yoke 5b (first magnetic layer 41) is formed.
  • the tunnel insulating layer 62, the CoFe layer 63, and the IrMn layer 64 are ion milled.
  • the TMR element 4 including the nonmagnetic insulating layer 42, the second magnetic layer 43, and the antiferromagnetic layer 44 is formed by molding.
  • the TMR element 4 is formed by using, for example, Si (OC H) using a CVD apparatus.
  • a SiO insulating layer 24a is formed in the entire region except the top. Thereafter, the second resist mask is removed.
  • Fig. 12 (a) is a plan view showing a part of the manufacturing process of magnetic memory 1
  • Fig. 12 (b) is a side cross-sectional view along the VI-VI line shown in Fig. 12 (a).
  • a third resist mask is formed so as to be continuous over the wiring 16b, the TMR element 4, and the vertical wiring 16i. Then, after depositing T and Cu layers sequentially by sputtering, the third resist mask is removed. Thus, the intra-region wiring 31 is formed on the TMR element 4.
  • the intra-region wiring 31 has one end connected to the vertical wiring 16b and the other end connected to the vertical wiring 16i.
  • a SiO insulating layer 24b is formed so as to cover it. At this time, for example, Si (OC
  • the SiO insulating layer 24b may be formed by H).
  • a fourth resist mask (not shown) is formed on the SiO 2 insulating layer 24b formed on the in-region wiring 31. And SiO
  • the part (that is, the part excluding the periphery of the in-region wiring 31) is removed by, for example, CF gas.
  • FIG. 15- (a) is a plan view showing a part of the manufacturing process of the magnetic memory 1
  • FIG. 15- (b) is a side sectional view taken along line VII-VII shown in FIG. 15- (a). It is.
  • a fifth resist mask (not shown) having an opening corresponding to the planar shape of the magnetic yoke 5 is formed. At this time, the opening of the fifth resist mask is exposed to the SiO insulating layer 24b and the first beam yoke 5b.
  • NiFe layer is formed by sputtering. At this time, NiFe layer The NiFe layer is formed so as to completely cover the SiO insulating layer 24b. And the fifth resister
  • the magnetic yoke 5 having the first beam yoke 5b, the pair of pillar yokes 5c, and the second beam yoke 5d and surrounding the in-region wiring 31 is formed.
  • the SiO insulating layer 24 c made of the material
  • the insulating region 24 composed of the SiO insulating layers 24a to 24c is formed.
  • 17 and 18 are cross-sectional views showing the shapes of the magnetic yokes 51 and 52 according to this modification, respectively.
  • the magnetic yoke 51 has a substantially annular physical force having at least a pair of open ends opposed to each other through a gap having a predetermined length, so that one wiring portion of the in-region wiring 31 It is arranged so as to surround the outer periphery of 31a.
  • the magnetic yoke 51 of this modification is configured by a pair of opposing yokes 51b, a pair of pillar yokes 51c, and a beam yoke 51d.
  • the pair of opposing yokes 51b has a pair of end surfaces 51a as a pair of open ends.
  • the pair of end faces 51a are opposed to each other via a gap having a predetermined length along the magnetic axis easy axis direction of the first magnetic layer 45 of the TMR element 4a.
  • the first magnetic layer 45 does not also serve as a part of the magnetic yoke 51, and other layers (nonmagnetic insulating layer 46).
  • the second magnetic layer 47 and the antiferromagnetic layer 48) are formed in the same planar shape.
  • the TMR element 4a is implemented as described above so that the first magnetic layer 45 is electrically connected to the wiring portion 31a of the in-region wiring 31, and the antiferromagnetic layer 48 is electrically connected to the readout wiring 35.
  • the TMR element 4 is formed upside down.
  • the TMR element 4a and the magnetic yoke 51 are arranged so that the pair of side surfaces 4b of the TMR element 4a face the pair of end faces 51a of the magnetic yoke 51, respectively, and the easy magnetization axis of the first magnetic layer 45 They are arranged so that the directions are along the direction in which the pair of end faces 51a are arranged. Also magnetic The beam yoke 51d of the yoke 51 is provided along the surface of the in-region wiring 31 opposite to the TMR element 4a.
  • the pair of pillar yokes 51c is provided along the side surface of the in-region wiring 31, and connects one end of each of the pair of opposed yokes 51b on the side different from the end surface 51a and both ends of the beam yoke 5Id.
  • the opposing yoke 51b, the pillar yoke 51c, and the beam yoke 51d surround the outer periphery of a portion (wiring portion 31a) of the intra-region wiring 31 along the TMR element 4a.
  • the magnetic yoke 51 may have a shape having a pair of end surfaces 5 la facing each of the pair of side surfaces 4b of the TMR element 4a. Thereby, a path closed in the outer peripheral direction of the wiring portion 31a of the magnetic field force internal wiring 31 inside the magnetic yoke 51 generated by the write current can be configured. Then, an external magnetic field can be efficiently provided to the first magnetic layer 45 of the TMR element 4a disposed between the pair of end faces 51a.
  • the area of the cross section perpendicular to the circumferential direction of the magnetic yoke 51 is preferably the smallest on the pair of end faces 51a. Thereby, the magnetic field inside the magnetic yoke 51 can be more efficiently applied to the first magnetic layer 45 of the TMR element 4a.
  • the magnetic yoke 52 includes a pair of opposing yokes 52b, a pair of pillar yokes 52c, and a beam yoke 52d.
  • the configuration and shape of the pair of pillar yokes 52c and beam yoke 52d are the same as the configuration and shape of the pair of pillar yokes 51c and beam yoke 51d of the magnetic yoke 51 described above (see FIG. 17).
  • the end faces 52a of the pair of opposing yokes 52b are in contact with the side surfaces of the first magnetic layer 45 among the side surfaces 4b of the TMR element 4a.
  • the magnetic field generated in the magnetic yoke 52 by the write current can be provided to the first magnetic layer 45 more efficiently.
  • a read current flowing between the first magnetic layer 45 and the second magnetic layer 47 is suitably passed through the nonmagnetic insulating layer 46. Therefore, the pair of end faces 52a of the magnetic yoke 52 should be in contact with the second magnetic layer 47, which is preferably in contact with the nonmagnetic insulating layer 46.
  • the magnetic memory according to the present invention is not limited to the above-described embodiments, but various other types. Deformation is possible.
  • the TMR element is used as the magnetoresistive effect element in the above embodiment, a GMR element using a giant magneto-resistive (GMR) effect may be used.
  • the GMR effect is a phenomenon in which the resistance value of the ferromagnetic layer in the direction perpendicular to the stacking direction changes depending on the angle formed by the magnetization directions of the two ferromagnetic layers sandwiching the nonmagnetic layer.
  • the TMR element and GMR element have a pseudo spin valve type that writes and reads Z using the difference in coercive force of the two ferromagnetic layers, and the magnetic field direction of one ferromagnetic layer is strong. There is a spin valve type that is fixed by exchange coupling with the magnetic layer.
  • Data reading in the GMR element is performed by detecting a change in the resistance value of the ferromagnetic layer in a direction orthogonal to the stacking direction.
  • Data writing in the GMR element is performed by reversing the magnetic field direction of one ferromagnetic layer by a magnetic field generated by a write current.
  • a transistor read / write transistor
  • the current is interrupted as necessary.
  • Various means having a function of conducting can be applied.
  • the switch means and the magnetoresistive effect element are electrically connected to each other by connecting the wiring portion of the in-region wiring and one end of the magnetoresistive effect element.
  • the switch means and the magnetoresistive element may be connected to each other by, for example, a wiring different from the in-region wiring.
  • the present invention can be used in a magnetic memory that stores data in a magnetoresistive element.

Abstract

A magnetic memory (1) includes a plurality of storage areas (3), each of which has: a TMR element (4) containing a first magnetic layer (41) whose magnetization direction (A) is changed by external fields Φ1, Φ2; an in-area wiring (31) having a wiring portion (31a) extending along the first magnetic layer (41) providing the external magnetic fields Φ1, Φ2 to the first magnetic layer (41) by write-in currents Iw1, Iw2 flowing in the wiring portion (31a) which is electrically connected to one end of the TMR element (4) and from which read-out current Ir flows into the TMR element (4); and a reader/writer transistor (32) electrically connected to one end of the in-area wiring (31) and controlling the electrical connection of write-in currents Iw1, Iw2 and a read-out current Ir in the in-area wiring (31).

Description

明 細 書  Specification
磁気メモリ  Magnetic memory
技術分野  Technical field
[0001] 本発明は、磁気抵抗効果素子にデータを記憶する磁気メモリに関するものである。  The present invention relates to a magnetic memory that stores data in a magnetoresistive effect element.
背景技術  Background art
[0002] 近年、コンピュータや通信機器等の情報処理装置に用いられる記憶デバイスとして 、 MRAM (Magnetic Random Access Memory)が注目されている。 MRAM は、磁気によってデータを記憶するので、揮発性メモリである DRAM (Dynamic Ra ndom Access Memory)や SRAM (Static RAM)のように電源断によって情報 が失われるといった不都合がない。また、従来のフラッシュ EEPROMやハードデイス ク装置のような不揮発性記憶手段と比較して、アクセス速度、信頼性、消費電力等に おいて非常に優れている。従って、 MRAMは、 DRAMや SRAMなどの揮発性メモ リの機能、及びフラッシュ EEPROMゃノ、ードディスク装置などの不揮発性記憶手段 の機能をすベて代替できる可能性を有している。現在、いつ、どこにいても情報処理 を行うことができる、 Vヽゎゆるュビキタスコンピューティングを目指した情報機器の開 発が急速に進められている力 MRAMは、このような情報機器におけるキーデバイ スとしての役割が期待されて 、る。  In recent years, MRAM (Magnetic Random Access Memory) has attracted attention as a storage device used in information processing apparatuses such as computers and communication devices. Since MRAM stores data by magnetism, there is no inconvenience that information is lost when power is turned off, such as DRAM (Dynamic Random Access Memory) and SRAM (Static RAM), which are volatile memories. In addition, it is very superior in access speed, reliability, power consumption, etc., compared to non-volatile storage means such as conventional flash EEPROMs and hard disk devices. Therefore, MRAM has the potential to replace all the functions of volatile memory such as DRAM and SRAM and the functions of non-volatile storage means such as flash EEPROMs and disk drives. Currently, the ability to develop information devices that can perform information processing anywhere and anytime, with the aim of V-ubiquitous computing, is rapidly developing MRAM is a key device in such information devices. The role is expected.
[0003] このような MRAMの一例として、例えば特許文献 1に記載された磁気メモリがある。  An example of such an MRAM is a magnetic memory described in Patent Document 1, for example.
この磁気メモリは、各記憶領域 (メモリセル)毎に、トンネル磁気抵抗効果 (TMR:Tu nneling Magneto—Resistive)素子と、 TMR素子に書き込み電流を流す配線( セルビット線)と、セルビット線に接続されたトランジスタとを備える。ここで、 TMR素子 とは、外部磁界によって磁化方向が変化する第 1磁性層 (感磁層)と、磁化方向が固 定された第 2磁性層と、第 1磁性層と第 2磁性層との間に挟まれた非磁性絶縁層とを 備え、第 1磁性層の磁ィ匕方向が第 2磁性層の磁ィ匕方向に対して平行または反平行に 制御されることにより二値データを記憶する素子である。特許文献 1に記載された磁 気メモリでは、書き込み対象ではない記憶領域への誤書き込みを防ぐために、ビット 線から各記憶領域毎に枝分かれした配線 (セルビット線)に沿って TMR素子を配置 し、このセルビット線に書き込み電流を選択的に流す構成としている。そして、この構 成により、 TMR素子のいわゆる半選択 (half selection)状態を無くし、選択されて いない記憶領域への誤書き込みを防止している。また、 TMR素子の一端がセルビッ ト線に接するように TMR素子を配置することにより、セルビット線を介して TMR素子 に読み出し電流を供給して 、る。 This magnetic memory is connected to a tunnel magnetoresistive (TMR) element, a wiring (cell bit line) for passing a write current to the TMR element, and a cell bit line for each storage area (memory cell). And a transistor. Here, the TMR element includes a first magnetic layer (magnetic layer) whose magnetization direction is changed by an external magnetic field, a second magnetic layer whose magnetization direction is fixed, a first magnetic layer, and a second magnetic layer. And a non-magnetic insulating layer sandwiched between them, and the binary magnetic data is obtained by controlling the magnetic field direction of the first magnetic layer in parallel or anti-parallel to the magnetic field direction of the second magnetic layer. It is an element to memorize. In the magnetic memory described in Patent Document 1, TMR elements are arranged along the wiring (cell bit line) branched from the bit line to each storage area in order to prevent erroneous writing to the storage area that is not the target of writing. In addition, a write current is selectively supplied to the cell bit line. This configuration eliminates the so-called half selection state of the TMR element and prevents erroneous writing to a non-selected storage area. Also, by arranging the TMR element so that one end of the TMR element is in contact with the cell bit line, a read current is supplied to the TMR element through the cell bit line.
特許文献 1 :特開 2004— 153182号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2004-153182
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 近年、情報処理装置における処理量の増大や情報処理装置の小型化に伴!、、メ モリ等の記憶手段にはより一層の高集積ィ匕が求められている。し力しながら、特許文 献 1に開示された磁気メモリは、セルビット線を流れる書き込み電流を制御するため の書き込み選択トランジスタ、及び TMR素子を流れる読み出し電流を制御するため の読み出し選択トランジスタという 2つのトランジスタを各記憶領域毎に備えている。こ のように、各記憶領域毎に読み出し選択用及び書き込み選択用といった 2つのトラン ジスタを配置すると、各記憶領域に広いスペースが必要となり、 MRAMの小型化を 妨げる一因となる。 [0004] In recent years, as the amount of processing in an information processing apparatus increases and the information processing apparatus is downsized, more highly integrated storage is required for storage means such as a memory. However, the magnetic memory disclosed in Patent Document 1 has two write selection transistors: a write selection transistor for controlling the write current flowing through the cell bit line, and a read selection transistor for controlling the read current flowing through the TMR element. A transistor is provided for each storage area. As described above, if two transistors for reading selection and writing selection are arranged for each storage area, a large space is required for each storage area, which is one factor that hinders the miniaturization of the MRAM.
[0005] また、特許文献 1には、 TMR素子に読み出し電流を選択的に流すための構成とし て、選択された記憶領域を通る列方向の配線 (ビット線)と行方向の配線 (ワード線)と の間に読み出し電流を流す、いわゆるクロスポイント型の構成も開示されている。しか しながら、このようなクロスポイント型の構成であっても、ビット線を選択するためのトラ ンジスタ、及びワード線を選択するためのトランジスタがそれぞれ各列毎及び各行毎 に必要となり、 MRAMの小型化を妨げることとなる。  [0005] Further, Patent Document 1 describes a configuration for selectively supplying a read current to a TMR element as a wiring in the column direction (bit line) and a wiring in the row direction (word line) passing through the selected storage area. A so-called cross-point configuration is also disclosed in which a read current is passed between the two. However, even with such a cross-point type configuration, a transistor for selecting a bit line and a transistor for selecting a word line are required for each column and each row, respectively. This will hinder downsizing.
[0006] 本発明は、上記した問題点を鑑みてなされたものであり、誤書き込みを防止し、且 つ小型化が可能な磁気メモリを提供することを目的とする。  The present invention has been made in view of the above-described problems, and an object thereof is to provide a magnetic memory that can prevent erroneous writing and can be miniaturized.
課題を解決するための手段  Means for solving the problem
[0007] 上記した課題を解決するために、本発明による磁気メモリは、複数の記憶領域を備 え、複数の記憶領域のそれぞれは、外部磁界によって磁化方向が変化する感磁層 を含む磁気抵抗効果素子と、感磁層に沿って延びる配線部分を有し、配線部分を流 れる書き込み電流によって感磁層に外部磁界を提供する領域内配線と、領域内配 線の一端及び磁気抵抗効果素子の一端に電気的に接続されており、領域内配線に おける書き込み電流の導通、及び磁気抵抗効果素子への読み出し電流の導通を制 御するスィッチ手段とを有することを特徴とする。 In order to solve the above-described problems, a magnetic memory according to the present invention includes a plurality of storage areas, and each of the plurality of storage areas includes a magnetosensitive layer whose magnetization direction is changed by an external magnetic field. It has an effect element and a wiring portion extending along the magnetosensitive layer. In-region wiring that provides an external magnetic field to the magnetosensitive layer by a write current that is electrically connected to one end of the intra-region wiring and one end of the magnetoresistive effect element. And switch means for controlling the conduction of the read current to the magnetoresistive element.
[0008] 上記した磁気メモリにおいて、或る記憶領域にデータを書き込む際には、当該記憶 領域のスィッチ手段を導通状態とし、領域内配線の両端間を流れるように書き込み 電流を供給するとよい。これにより、磁気抵抗効果素子の感磁層に沿って延びる配 線部分に書き込み電流が流れ、感磁層に外部磁界が提供されてデータが書き込ま れる。このとき、磁気抵抗効果素子が領域内配線よりも高抵抗であるので、書き込み 電流は磁気抵抗効果素子へは分岐しない。また、或る記憶領域からデータを読み出 す際には、当該記憶領域のスィッチ手段を導通状態とし、例えば領域内配線の他端 側を高抵抗状態とするなどして、電流がスィッチ手段から磁気抵抗効果素子へ流れ るようにし、読み出し電流を供給するとよい。そして、読み出し電流の大きさ又は磁気 抵抗効果素子の両端間電圧を検出することにより、データを読み出すことができる。  In the above-described magnetic memory, when data is written to a certain storage area, the switching means of the storage area is preferably turned on, and a write current is supplied so as to flow between both ends of the wiring in the area. As a result, a write current flows through a wiring portion extending along the magnetosensitive layer of the magnetoresistive element, and an external magnetic field is provided to the magnetosensitive layer to write data. At this time, since the magnetoresistive effect element has a higher resistance than the in-region wiring, the write current does not branch to the magnetoresistive effect element. Further, when data is read from a certain storage area, the switch means of the storage area is turned on, for example, the other end side of the wiring in the area is put in a high resistance state, and the current is supplied from the switch means. It is preferable to supply the read current to the magnetoresistive element. Data can be read by detecting the magnitude of the read current or the voltage across the magnetoresistive element.
[0009] 上記した磁気メモリによれば、 1つのスィッチ手段によって書き込み電流及び読み 出し電流を制御しているので、 1つの記憶領域に 2つのトランジスタが必要な従来の MRAMや、或いは各列毎及び各行毎に読み出し用のトランジスタが必要なクロスポ イント型の MRAMと比較して、記憶領域のスペースをより小さくすることができる。従 つて、 MRAMの更なる小型化が可能となる。  [0009] According to the magnetic memory described above, since the write current and the read current are controlled by one switch means, a conventional MRAM that requires two transistors in one storage area, or each column and Compared to a cross-point MRAM that requires a read transistor for each row, the storage area can be made smaller. Therefore, the MRAM can be further downsized.
[0010] また、上記した磁気メモリでは、各記憶領域毎に領域内配線が設けられ、各記憶領 域に設けられたスィッチ手段によって該領域内配線を流れる書き込み電流を制御で きるので、磁気抵抗効果素子には半選択状態が無ぐ書き込み対象ではない記憶領 域への誤書き込みを防ぐことができる。  [0010] Further, in the above-described magnetic memory, intra-area wiring is provided for each storage area, and the write current flowing through the intra-area wiring can be controlled by the switch means provided in each storage area. The effect element has no half-selected state and can prevent erroneous writing to a storage area that is not a write target.
[0011] また、磁気メモリは、領域内配線が、配線部分において磁気抵抗効果素子の一端 と電気的に接続されており、読み出し電流をスィッチ手段カゝら磁気抵抗効果素子へ 流すことが好ましい。  [0011] In the magnetic memory, it is preferable that the in-region wiring is electrically connected to one end of the magnetoresistive effect element at the wiring portion, and the read current is supplied to the magnetoresistive effect element from the switch means.
[0012] また、磁気メモリは、複数の記憶領域が、 m行 n列 (m、 nは 2以上の整数)力らなる 2 次元状に配列されており、複数の記憶領域の各列に対応して設けられ、対応する列 の記憶領域それぞれにお 、て、スィッチ手段を介して領域内配線の一端及び磁気 抵抗効果素子の一端に電気的に接続された第 1の配線と、複数の記憶領域の各列 に対応して設けられ、対応する列の記憶領域それぞれにおいて、領域内配線の他 端に電気的に接続された第 2の配線と、複数の記憶領域の各行に対応して設けられ 、対応する行の記憶領域それぞれにおいて、スィッチ手段の制御端子に接続された 第 3の配線と、複数の記憶領域の各行に対応して設けられ、対応する行の記憶領域 それぞれにおいて、磁気抵抗効果素子の他端と電気的に接続された第 4の配線とを さらに備えることを特徴としてもょ 、。 [0012] In addition, in the magnetic memory, a plurality of storage areas are arranged in a two-dimensional shape with m rows and n columns (m and n are integers of 2 or more) force, and correspond to each column of the plurality of storage areas. And corresponding columns In each of the storage areas, a first wiring electrically connected to one end of the in-area wiring and one end of the magnetoresistive effect element via the switch means, and each column of the plurality of storage areas A second wiring electrically connected to the other end of the in-area wiring and a corresponding storage area in each of the storage areas of the corresponding column; In each, a third wiring connected to the control terminal of the switch means is provided corresponding to each row of the plurality of storage areas, and the other end of the magnetoresistive effect element is electrically connected to each storage area of the corresponding row. And a fourth wiring connected to the terminal.
[0013] 上記した磁気メモリでは、書き込み対象の記憶領域を含む列に対応する第 1の配 線と第 2の配線との間に書き込み電流を供給し、且つ、当該記憶領域を含む行に対 応する第 3の配線に対し、スィッチ手段を導通状態に制御するための制御電圧を印 加することにより、当該記憶領域の領域内配線に書き込み電流を好適に流すことが できる。また、読み出し対象の記憶領域を含む列に対応する第 1の配線と当該記憶 領域を含む行に対応する第 4の配線との間に読み出し電流を供給し、且つ、当該記 憶領域を含む行に対応する第 3の配線に対し、スィッチ手段を導通状態に制御する ための制御電圧を印加することにより、当該記憶領域の磁気抵抗効果素子に読み出 し電流を好適に流すことができる。  In the magnetic memory described above, a write current is supplied between the first wiring and the second wiring corresponding to the column including the storage area to be written, and the line including the storage area is connected to the row. By applying a control voltage for controlling the switch means to the conductive state to the corresponding third wiring, a write current can be suitably applied to the internal wiring in the storage area. A read current is supplied between the first wiring corresponding to the column including the storage area to be read and the fourth wiring corresponding to the row including the storage area, and the row including the storage area is included. By applying a control voltage for controlling the switch means to the conductive state with respect to the third wiring corresponding to, a read current can be suitably passed to the magnetoresistive effect element in the storage area.
[0014] また、磁気メモリは、第 1及び第 4の配線に電気的に接続されており、磁気抵抗効果 素子へ読み出し電流を供給する読み出し電流供給手段をさらに備えることが好まし い。  [0014] Further, the magnetic memory is preferably electrically connected to the first and fourth wirings, and preferably further includes a read current supply means for supplying a read current to the magnetoresistive element.
[0015] また、磁気メモリは、第 1及び第 2の配線に電気的に接続されており、領域内配線へ 書き込み電流を供給する書き込み電流供給手段をさらに備えることが好ましい。  [0015] The magnetic memory preferably further includes a write current supply unit that is electrically connected to the first and second wirings and supplies a write current to the in-region wiring.
[0016] また、磁気メモリは、複数の記憶領域のそれぞれが、領域内配線の配線部分を連 続して囲むように設けられた磁気ヨークを更に有し、磁気抵抗効果素子の感磁層は、 磁気ヨークの一部によって構成されていることを特徴としてもよい。このように、感磁層 に沿った配線部分が磁気ヨークに囲まれることによって、感磁層力 逸れた方向へ放 出される磁界を低減できる。また、配線部分を囲む磁気ヨークの一部によって感磁層 が構成されるので、外部磁界を感磁層へ効率よく提供できる。このように、上記した磁 気メモリによれば、書き込み電流による外部磁界を磁気抵抗効果素子の感磁層へ効 率よく提供できるので、感磁層の磁ィヒ方向を小さな書き込み電流でもって反転させる ことができる。 [0016] In addition, the magnetic memory further includes a magnetic yoke provided so that each of the plurality of storage areas continuously surrounds the wiring portion of the intra-area wiring, and the magnetosensitive layer of the magnetoresistive effect element includes The magnetic yoke may be constituted by a part of the magnetic yoke. As described above, the wiring portion along the magnetosensitive layer is surrounded by the magnetic yoke, so that the magnetic field emitted in the direction in which the magnetosensitive layer force is deviated can be reduced. In addition, since the magnetosensitive layer is constituted by a part of the magnetic yoke surrounding the wiring portion, an external magnetic field can be efficiently provided to the magnetosensitive layer. Thus, the above-mentioned magnetism According to the memory, an external magnetic field due to a write current can be efficiently provided to the magnetosensitive layer of the magnetoresistive element, so that the magnetic direction of the magnetosensitive layer can be reversed with a small write current.
[0017] また、磁気メモリは、複数の記憶領域のそれぞれは、所定の長さの空隙を介して対 向する少なくとも一対の開放端部を含み領域内配線の配線部分を囲むように設けら れた磁気ヨークを更に有し、磁気抵抗効果素子は、該磁気抵抗効果素子の一対の 側面が磁気ヨークの一対の開放端部とそれぞれ対向または接するように配置されて いることを特徴としてもよい。このように、感磁層に沿った配線部分が磁気ヨークに囲 まれることによって、感磁層から逸れた方向へ放出される磁界を低減することができる 。また、磁気抵抗効果素子の一対の側面のそれぞれに対向または接する一対の開 放端部を磁気ヨークが有することによって、配線部分の外周方向に閉じた経路を構 成する磁気ヨーク内部の磁界 (磁気抵抗効果素子からみれば外部磁界)を、磁気抵 抗効果素子の感磁層へ効率よく提供することができる。このように、上記した磁気メモ リによれば、書き込み電流による外部磁界を磁気抵抗効果素子の感磁層へ効率よく 提供できるので、感磁層の磁ィ匕方向を小さな書き込み電流でもって反転させることが できる。  [0017] Further, the magnetic memory is provided so that each of the plurality of storage areas includes at least a pair of open end portions facing each other through a gap of a predetermined length and surrounds a wiring portion of the intra-area wiring. The magnetoresistive effect element may be arranged such that the pair of side surfaces of the magnetoresistive effect element are opposed to or in contact with the pair of open ends of the magnetic yoke, respectively. As described above, since the wiring portion along the magnetosensitive layer is surrounded by the magnetic yoke, the magnetic field emitted in the direction deviating from the magnetosensitive layer can be reduced. In addition, the magnetic yoke has a pair of open ends facing or in contact with each of the pair of side surfaces of the magnetoresistive element, so that a magnetic field (magnetic An external magnetic field as viewed from the resistive element can be efficiently provided to the magnetosensitive layer of the magnetoresistive element. As described above, according to the above-described magnetic memory, the external magnetic field caused by the write current can be efficiently provided to the magnetosensitive layer of the magnetoresistive effect element, so that the magnetic field direction of the magnetosensitive layer is reversed with a small write current. be able to.
発明の効果  The invention's effect
[0018] 本発明による磁気メモリによれば、誤書き込みを防止し、且つ小型化が可能となる。  [0018] According to the magnetic memory of the present invention, erroneous writing can be prevented and the size can be reduced.
図面の簡単な説明  Brief Description of Drawings
[0019] [図 1]図 1は実施形態による磁気メモリの全体構成を示す概念図である。 FIG. 1 is a conceptual diagram showing an overall configuration of a magnetic memory according to an embodiment.
[図 2]図 2は記憶部を行方向に沿って切断したときの断面構成を示す拡大断面図で ある。  FIG. 2 is an enlarged cross-sectional view showing a cross-sectional configuration when the storage section is cut along the row direction.
[図 3]図 3は記憶部を図 2における I-I線で切断したときの拡大断面図である。  FIG. 3 is an enlarged cross-sectional view of the storage section taken along line II in FIG.
[図 4]図 4は記憶部を図 2における II II線で切断したときの拡大断面図である。  [FIG. 4] FIG. 4 is an enlarged cross-sectional view of the storage section taken along line II-II in FIG.
[図 5]図 5は TMR素子の拡大断面図である。  FIG. 5 is an enlarged cross-sectional view of a TMR element.
[図 6]図 6は磁気ヨークの拡大断面図である。  FIG. 6 is an enlarged sectional view of the magnetic yoke.
[図 7]図 7は記憶領域における TMR素子周辺の動作を示す図であり、図 7— (a)は書 き込み時の様子を示す図、図 7— (b)は読み出し時の様子を示す図である。 [図 8]図 8は記憶領域における TMR素子周辺の動作を示す図であり、図 8— (a)は書 き込み時の様子を示す図、図 8— (b)は読み出し時の様子を示す図である。 [Fig. 7] Fig. 7 shows the operation around the TMR element in the storage area. Fig. 7 (a) shows the state during writing, and Fig. 7 (b) shows the state during reading. FIG. [Fig. 8] Fig. 8 shows the operation around the TMR element in the storage area. Fig. 8- (a) shows the state during writing, and Fig. 8- (b) shows the state during reading. FIG.
[図 9]図 9は TMR素子及びその周辺構造の製造過程を示す図であり、図 9一(a)は、 磁気メモリ 1の製造工程の一部を示す平面図であり、図 9— (b)は、図 9— (a)に示す III III線に沿った側面断面図である。 [FIG. 9] FIG. 9 is a diagram showing the manufacturing process of the TMR element and its peripheral structure, and FIG. 9A is a plan view showing a part of the manufacturing process of the magnetic memory 1, and FIG. b) is a side cross-sectional view along line III-III shown in Fig. 9- (a).
[図 10]図 10は TMR素子及びその周辺構造の製造過程を示す図であり、図 10— (a) は、磁気メモリ 1の製造工程の一部を示す平面図であり、図 10— (b)は、図 10— (a) に示す IV— IV線に沿った側面断面図である。  [FIG. 10] FIG. 10 is a diagram showing the manufacturing process of the TMR element and its peripheral structure, and FIG. 10- (a) is a plan view showing a part of the manufacturing process of the magnetic memory 1, and FIG. b) is a side cross-sectional view along the IV-IV line shown in Figure 10- (a).
[図 11]図 11は TMR素子及びその周辺構造の製造過程を示す図であり、図 11一(a) は、磁気メモリ 1の製造工程の一部を示す平面図であり、図 11— (b)は、図 11— (a) に示す V—V線に沿った側面断面図である。  [FIG. 11] FIG. 11 is a diagram showing the manufacturing process of the TMR element and its peripheral structure, and FIG. 11 (a) is a plan view showing a part of the manufacturing process of the magnetic memory 1, and FIG. b) is a side cross-sectional view along the line V-V shown in Fig. 11 (a).
[図 12]図 12は TMR素子及びその周辺構造の製造過程を示す図であり、図 12—(a) は、磁気メモリ 1の製造工程の一部を示す平面図であり、図 12— (b)は、図 12— (a) に示す VI— VI線に沿った側面断面図である。  [FIG. 12] FIG. 12 is a diagram showing the manufacturing process of the TMR element and its peripheral structure, and FIG. 12- (a) is a plan view showing a part of the manufacturing process of the magnetic memory 1, and FIG. b) is a side cross-sectional view along the VI-VI line shown in Figure 12- (a).
[図 13]図 13は TMR素子及びその周辺構造の製造過程を示す図である。  FIG. 13 is a diagram showing a manufacturing process of a TMR element and its peripheral structure.
[図 14]図 14は TMR素子及びその周辺構造の製造過程を示す図である。  FIG. 14 is a diagram showing a manufacturing process of a TMR element and its peripheral structure.
[図 15]図 15は TMR素子及びその周辺構造の製造過程を示す図であり、図 15— (a) は、磁気メモリ 1の製造工程の一部を示す平面図であり、図 15— (b)は、図 15— (a) に示す VII— VII線に沿つた側面断面図である。  [FIG. 15] FIG. 15 is a diagram showing the manufacturing process of the TMR element and its peripheral structure, and FIG. 15- (a) is a plan view showing a part of the manufacturing process of the magnetic memory 1, and FIG. b) is a side cross-sectional view along the line VII-VII shown in Figure 15- (a).
[図 16]図 16は TMR素子及びその周辺構造の製造過程を示す図である。  FIG. 16 is a diagram showing a manufacturing process of a TMR element and its peripheral structure.
[図 17]図 17は変形例に係る磁気ヨークの形状を示す図である。 FIG. 17 is a view showing the shape of a magnetic yoke according to a modification.
[図 18]図 18は変形例に係る磁気ヨークの形状を示す図である。 FIG. 18 is a view showing the shape of a magnetic yoke according to a modification.
符号の説明 Explanation of symbols
1 磁気メモリ 1 Magnetic memory
3 記憶領域 3 Storage area
4 TMR素子 4 TMR element
5 磁気ヨーク b 第 1のビームヨークc ピラーヨーク5 Magnetic yoke b 1st beam yoke c Pillar yoke
d 第 2のビームヨーク 半導体層 d Second beam yoke Semiconductor layer
配線層  Wiring layer
磁性材料層 Magnetic material layer
1 ビット選択回路1-bit selection circuit
2 ワード選択回路2 Word selection circuit
3 ビット配線3-bit wiring
4 ビット配線4-bit wiring
5 ワード配線5 word wiring
6a〜16i 垂直目線6a ~ 16i Vertical line of sight
7a 電極7a electrode
8a〜18d 水平配線9 ワード配線8a ~ 18d Horizontal wiring 9 Word wiring
1 半導体基板1 Semiconductor substrate
2, 23, 24 絶縁領域1 領域内配線2, 23, 24 Insulation area 1 Wiring in the area
1a 配線部分1a Wiring part
2 読み書き兼用トランジスタ2a ドレイン領域2 Read / write transistor 2a Drain region
b ゲート電極 b Gate electrode
c ソース領域  c Source area
読み出し配線 Read wiring
1 第 1磁性層 1 First magnetic layer
非磁性絶縁層 第 2磁性層  Nonmagnetic insulating layer Second magnetic layer
反強磁性層 発明を実施するための最良の形態 Antiferromagnetic layer BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 以下、添付図面を参照しながら本発明による磁気メモリの実施の形態を詳細に説 明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説 明を省略する。  Hereinafter, embodiments of a magnetic memory according to the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.
[0022] まず、本発明による磁気メモリの一実施形態の構成について説明する。図 1は、本 実施形態による磁気メモリ 1の全体構成を示す概念図である。磁気メモリ 1は、記憶部 2、ビット選択回路 11、ワード選択回路 12、ビット配線 13及び 14、並びにワード配線 15及び 19を備える。記憶部 2は、複数の記憶領域 3からなる。複数の記憶領域 3は、 m行 n列 (m、 nは 2以上の整数)からなる二次元状に配列されている。複数の記憶領 域 3のそれぞれは、 TMR素子 4、領域内配線 31、読み書き兼用トランジスタ 32、及 び読み出し配線 35を有する。これらのうち、 TMR素子 4、領域内配線 31、及び読み 出し配線 35は、記憶部 2の磁性材料層 8 (後述)に形成されている。  First, the configuration of an embodiment of a magnetic memory according to the present invention will be described. FIG. 1 is a conceptual diagram showing the overall configuration of the magnetic memory 1 according to the present embodiment. The magnetic memory 1 includes a storage unit 2, a bit selection circuit 11, a word selection circuit 12, bit lines 13 and 14, and word lines 15 and 19. The storage unit 2 includes a plurality of storage areas 3. The plurality of storage areas 3 are arranged in a two-dimensional form having m rows and n columns (m and n are integers of 2 or more). Each of the plurality of storage areas 3 includes a TMR element 4, an intra-area wiring 31, a read / write transistor 32, and a read wiring 35. Among these, the TMR element 4, the in-region wiring 31, and the readout wiring 35 are formed in the magnetic material layer 8 (described later) of the storage unit 2.
[0023] TMR素子 4は、外部磁界によって磁ィ匕方向が変化する感磁層を含む磁気抵抗効 果素子である。具体的には、 TMR素子 4は、感磁層である第 1磁性層と、磁化方向 が固定された第 2磁性層と、第 1磁性層及び第 2磁性層に挟まれた非磁性絶縁層と を含んで構成される。 TMR素子 4は、領域内配線 31を流れる書き込み電流により発 生する外部磁界を受けて第 1磁性層の磁化方向が変化するように、領域内配線 31 の一配線部分に沿って配置される。そして、書き込み電流によって第 1磁性層の磁 化方向が変化すると、第 1磁性層の磁ィヒ方向と第 2磁性層の磁ィヒ方向との関係に応 じて第 1磁性層と第 2磁性層との間の抵抗値が変化する。こうして、 TMR素子 4に二 値データが書き込まれる。  [0023] The TMR element 4 is a magnetoresistive effect element including a magnetosensitive layer whose magnetic field direction is changed by an external magnetic field. Specifically, the TMR element 4 includes a first magnetic layer which is a magnetosensitive layer, a second magnetic layer whose magnetization direction is fixed, and a nonmagnetic insulating layer sandwiched between the first magnetic layer and the second magnetic layer. Consists of and. The TMR element 4 is arranged along one wiring portion of the in-region wiring 31 so that the magnetization direction of the first magnetic layer is changed by receiving an external magnetic field generated by a write current flowing through the in-region wiring 31. When the magnetization direction of the first magnetic layer changes due to the write current, the first magnetic layer and the second magnetic layer are in accordance with the relationship between the magnetic direction of the first magnetic layer and the magnetic direction of the second magnetic layer. The resistance value between the magnetic layer changes. In this way, binary data is written to the TMR element 4.
[0024] また、 TMR素子 4の第 1磁性層側或いは第 2磁性層側の一端は、領域内配線 31 の一配線部分と電気的に接続されることにより、読み書き兼用トランジスタ 32と電気 的に接続されている。そして、読み出し電流が、後述するビット配線 13から読み書き 兼用トランジスタ 32及び領域内配線 31を介して TMR素子 4に供給されると、第 1磁 性層と第 2磁性層との間の抵抗値に応じて TMR素子 4の両端間の電圧値或いは電 流値が変化する。この両端間電圧値または電流値が測定されることにより、 TMR素 子 4に書き込まれた二値データが読み出される。なお、 TMR素子 4の第 1磁性層側( 第 2磁性層側)とは、非磁性絶縁層に対して第 1磁性層の側か或いは第 2磁性層の 側かを意味し、第 1磁性層(第 2磁性層)上に別の層が介在する場合を含む意味であ る。 Further, one end of the TMR element 4 on the first magnetic layer side or the second magnetic layer side is electrically connected to one wiring portion of the in-region wiring 31, thereby electrically connecting to the read / write transistor 32. It is connected. When the read current is supplied from the bit wiring 13 described later to the TMR element 4 via the read / write transistor 32 and the intra-region wiring 31, the resistance value between the first magnetic layer and the second magnetic layer is increased. Correspondingly, the voltage value or current value across the TMR element 4 changes. By measuring the voltage value or current value between both ends, binary data written in the TMR element 4 is read. The first magnetic layer side of the TMR element 4 ( (The second magnetic layer side) means either the first magnetic layer side or the second magnetic layer side with respect to the nonmagnetic insulating layer, and another layer on the first magnetic layer (second magnetic layer). This includes the case where there is intervening.
[0025] 領域内配線 31は、該領域内配線 31を流れる書き込み電流によって TMR素子 4の 第 1磁性層に外部磁界を提供するとともに、 TMR素子 4に読み出し電流を供給する 配線である。領域内配線 31の一端は、読み書き兼用トランジスタ 32を介してビット配 線 13に電気的に接続されている。領域内配線 31の他端は、ビット配線 14に電気的 に接続されている。読み書き兼用トランジスタ 32は、領域内配線 31における書き込 み電流及び読み出し電流の導通を制御するためのスィッチ手段である。読み書き兼 用トランジスタ 32は、ドレイン及びソースの一方が領域内配線 31及び TMR素子 4の 一端に電気的に接続されており、他方がビット配線 13に電気的に接続されて!ヽる。 読み書き兼用トランジスタ 32のゲートは、ワード配線 15に電気的に接続されている。  The intra-region wiring 31 is a wiring that provides an external magnetic field to the first magnetic layer of the TMR element 4 by a write current flowing through the intra-region wiring 31 and supplies a read current to the TMR element 4. One end of the intra-region wiring 31 is electrically connected to the bit wiring 13 via the read / write transistor 32. The other end of the intra-region wiring 31 is electrically connected to the bit wiring 14. The read / write transistor 32 is switch means for controlling the conduction of the write current and the read current in the in-region wiring 31. In the read / write transistor 32, one of the drain and the source is electrically connected to the intra-region wiring 31 and one end of the TMR element 4, and the other is electrically connected to the bit wiring 13. The gate of the read / write transistor 32 is electrically connected to the word line 15.
[0026] 読み出し配線 35は、 TMR素子 4に読み出し電流を供給するために、 TMR素子 4 とワード配線 19とを接続する配線である。具体的には、読み出し配線 35の一端は T MR素子 4の他端に電気的に接続されており、読み出し配線 35の他端はワード配線 19に電気的に接続されて!、る。  The read wiring 35 is a wiring that connects the TMR element 4 and the word wiring 19 in order to supply a read current to the TMR element 4. Specifically, one end of the read wiring 35 is electrically connected to the other end of the TMR element 4, and the other end of the read wiring 35 is electrically connected to the word wiring 19.
[0027] ビット配線 13及び 14は、記憶領域 3の各列に対応して配設されて 、る。ビット配線 13は、本実施形態における第 1の配線である。すなわち、ビット配線 13は、対応する 列の記憶領域 3それぞれが有する領域内配線 31の一端に、読み書き兼用トランジス タ 32を介して電気的に接続されている。ビット配線 13は、領域内配線 31へ正の書き 込み電流を供給するとともに、領域内配線 31を介して TMR素子 4へ読み出し電流を 供給する。また、ビット配線 14は、本実施形態における第 2の配線である。ビット配線 14は、対応する列の記憶領域 3それぞれが有する領域内配線 31の他端に電気的に 接続されている。ビット配線 14は、領域内配線 31に負の書き込み電流を供給する。  The bit wirings 13 and 14 are arranged corresponding to each column of the storage area 3. The bit wiring 13 is the first wiring in this embodiment. That is, the bit wiring 13 is electrically connected to one end of the intra-area wiring 31 included in each storage area 3 in the corresponding column via the read / write transistor 32. The bit wiring 13 supplies a positive write current to the intra-region wiring 31 and supplies a read current to the TMR element 4 via the intra-region wiring 31. Further, the bit wiring 14 is a second wiring in the present embodiment. The bit wiring 14 is electrically connected to the other end of the in-area wiring 31 included in each storage area 3 of the corresponding column. The bit wiring 14 supplies a negative write current to the in-region wiring 31.
[0028] また、ワード配線 15は、本実施形態における第 3の配線である。ワード配線 15は、 記憶領域 3の各行に対応して配設されており、対応する行の記憶領域 3それぞれが 有する読み書き兼用トランジスタ 32の制御端子であるゲートに電気的に接続されて いる。また、ワード配線 19は、本実施形態における第 4の配線である。ワード配線 19 は、記憶領域 3の各行に対応して配設されており、対応する行の記憶領域 3それぞ れが有する TMR素子 4の他端に、読み出し配線 35を介して電気的に接続されてい る。 In addition, the word wiring 15 is a third wiring in the present embodiment. The word wiring 15 is disposed corresponding to each row of the storage area 3 and is electrically connected to a gate which is a control terminal of the read / write transistor 32 included in each storage area 3 of the corresponding row. The word wiring 19 is the fourth wiring in the present embodiment. Word wiring 19 Is arranged corresponding to each row of the storage area 3, and is electrically connected to the other end of the TMR element 4 included in each storage area 3 of the corresponding row via a read wiring 35. .
[0029] 本実施形態における書き込み電流供給手段は、ビット選択回路 11によって構成さ れる。すなわち、ビット選択回路 11は、各記憶領域 3の領域内配線 31に正または負 の書き込み電流を提供する機能を備える。具体的には、ビット選択回路 11は、ビット 配線 13及び 14と電気的に接続されており、磁気メモリ 1の内部または外部からデー タ書込時に指示されたアドレスに応じて該アドレスに該当する列を選択するアドレス デコーダ回路と、選択した列に対応するビット配線 13とビット配線 14との間に正また は負の書き込み電流を供給するカレントドライブ回路とを含んで構成されている。  The write current supply means in the present embodiment is configured by the bit selection circuit 11. That is, the bit selection circuit 11 has a function of providing a positive or negative write current to the in-area wiring 31 of each storage area 3. Specifically, the bit selection circuit 11 is electrically connected to the bit wirings 13 and 14, and corresponds to the address according to the address instructed at the time of data writing from the inside or the outside of the magnetic memory 1. An address decoder circuit for selecting a column and a current drive circuit for supplying a positive or negative write current between the bit line 13 and the bit line 14 corresponding to the selected column are configured.
[0030] 本実施形態における読み出し電流供給手段は、ビット選択回路 11及びワード選択 回路 12によって構成されている。すなわち、ビット選択回路 11及びワード選択回路 1 2は、各記憶領域 3の TMR素子 4に領域内配線 31を介して読み出し電流を提供す る機能を備える。具体的には、ビット選択回路 11は、磁気メモリ 1の内部または外部 力 データ読出時に指示されたアドレスに応じて、該アドレスに該当する列を選択す るアドレスデコーダ回路を含んで構成されている。また、ワード選択回路 12は、ワード 配線 19と電気的に接続されるとともに、指示されたアドレスに応じて該アドレスに該当 する行を選択するアドレスデコーダ回路を含んで構成されている。そして、ビット選択 回路 11及びワード選択回路 12のうち少なくとも一方には、選択した列に対応するビ ット配線 13と、選択した行に対応するワード配線 19との間に、読み出し電流を供給 するカレントドライブ回路が含まれて 、る。  The read current supply means in the present embodiment is constituted by a bit selection circuit 11 and a word selection circuit 12. That is, the bit selection circuit 11 and the word selection circuit 12 have a function of providing a read current to the TMR element 4 in each storage region 3 via the intra-region wiring 31. Specifically, the bit selection circuit 11 is configured to include an address decoder circuit that selects a column corresponding to the address in accordance with an address instructed when data is read from the internal or external power data of the magnetic memory 1. . The word selection circuit 12 is configured to include an address decoder circuit that is electrically connected to the word line 19 and selects a row corresponding to the address according to the designated address. At least one of the bit selection circuit 11 and the word selection circuit 12 is supplied with a read current between the bit wiring 13 corresponding to the selected column and the word wiring 19 corresponding to the selected row. A current drive circuit is included.
[0031] また、ワード選択回路 12は、ワード配線 15と電気的に接続されている。ワード選択 回路 12は、データ書込時或いはデータ読出時において、選択した行に対応するヮ ード配線 15に対し、読み書き兼用トランジスタ 32を導通状態にするための制御電圧 を印加する。  Further, the word selection circuit 12 is electrically connected to the word wiring 15. The word selection circuit 12 applies a control voltage for turning on the read / write transistor 32 to the word line 15 corresponding to the selected row at the time of data writing or data reading.
[0032] 以上の構成を備える磁気メモリ 1は、次のように動作する。すなわち、磁気メモリ 1の 内部または外部からデータ書込みを行うアドレス (i行 j列 Zl≤i≤m、 l≤j≤n)が指 定されると、ビット選択回路 11及びワード選択回路 12がそれぞれ該当する j列及び i 行を選択する。ワード選択回路 12に選択された i行に含まれる記憶領域 3の読み書き 兼用トランジスタ 32においては、ワード配線 15を介して制御電圧がゲートに印加され 、書き込み電流が導通可能な状態となる。また、ビット選択回路 11に選択された j列 に含まれる記憶領域 3においては、ビット配線 13とビット配線 14との間に、データに 応じた正または負の電圧が印加される。そして、ビット選択回路 11に選択された j列 及びワード選択回路 12に選択された i行の双方に含まれる記憶領域 3においては、 読み書き兼用トランジスタ 32を介して領域内配線 31に書き込み電流が生じ、この書 き込み電流による磁界によって TMR素子 4の第 1磁性層の磁化方向が反転する。こ うして、指示されたアドレス (i行 j列)の記憶領域 3に二値データが書き込まれる。 The magnetic memory 1 having the above configuration operates as follows. That is, when an address (i row j column Zl≤i≤m, l≤j≤n) for writing data from the inside or outside of the magnetic memory 1 is specified, the bit selection circuit 11 and the word selection circuit 12 are respectively Applicable j column and i Select a row. In the read / write shared transistor 32 of the storage area 3 included in the i row selected by the word selection circuit 12, a control voltage is applied to the gate via the word wiring 15, and the write current becomes conductive. Further, in the storage area 3 included in the j column selected by the bit selection circuit 11, a positive or negative voltage corresponding to data is applied between the bit wiring 13 and the bit wiring 14. In the storage area 3 included in both the j column selected by the bit selection circuit 11 and the i row selected by the word selection circuit 12, a write current is generated in the internal wiring 31 via the read / write transistor 32. The magnetization direction of the first magnetic layer of the TMR element 4 is reversed by the magnetic field generated by the write current. In this way, binary data is written into the storage area 3 of the designated address (i row j column).
[0033] また、磁気メモリ 1の内部または外部力もデータ読み出しを行うアドレス (k行 1列 Z1  [0033] In addition, an address (k row 1 column Z1) at which data is read also by the internal or external force of the magnetic memory 1
≤k≤m、 l≤l≤n)が指定されると、ビット選択回路 11及びワード選択回路 12がそ れぞれ該当する 1列及び k行を選択する。ワード選択回路 12に選択された k行に含ま れる記憶領域 3の読み書き兼用トランジスタ 32においては、ワード配線 15を介して制 御電圧がゲートに印加され、読み出し電流が導通可能な状態となる。また、ビット選 択回路 11に選択された 1列に対応するビット配線 13と、ワード選択回路 12に選択さ れた k行に対応するワード配線 19との間には、ビット選択回路 11またはワード選択回 路 12から読み出し電流が供給される。そして、ビット選択回路 11に選択された 1列及 びワード選択回路 12に選択された k行の双方に含まれる記憶領域 3においては、読 み出し電流が TMR素子 4を流れる。そして、例えば TMR素子 4における電圧降下 量が判別されることにより、指示されたアドレス (k行 1列)の記憶領域 3に記憶された二 値データが読み出される。 When ≤k≤m, l≤l≤n) is specified, the bit selection circuit 11 and the word selection circuit 12 select the corresponding one column and k row, respectively. In the read / write transistor 32 in the storage area 3 included in the k row selected by the word selection circuit 12, a control voltage is applied to the gate via the word wiring 15, and the read current becomes conductive. Further, between the bit wiring 13 corresponding to one column selected by the bit selection circuit 11 and the word wiring 19 corresponding to k rows selected by the word selection circuit 12, the bit selection circuit 11 or the word Read current is supplied from the selection circuit 12. A read current flows through the TMR element 4 in the storage region 3 included in both the one column selected by the bit selection circuit 11 and the k row selected by the word selection circuit 12 . Then, for example, by determining the voltage drop amount in the TMR element 4, the binary data stored in the storage area 3 of the instructed address (k rows and 1 column) is read out.
[0034] ここで、本実施形態における記憶部 2の具体的な構成について詳細に説明する。  Here, a specific configuration of the storage unit 2 in the present embodiment will be described in detail.
図 2は、記憶部 2を列方向に沿って切断したときの断面構成を示す拡大断面図であ る。図 3は、記憶部 2を図 2における I—I線で切断したときの拡大断面図である。図 4 は、記憶部 2を図 2における II II線で切断したときの拡大断面図である。  FIG. 2 is an enlarged cross-sectional view showing a cross-sectional configuration when the storage unit 2 is cut along the column direction. FIG. 3 is an enlarged cross-sectional view of the storage unit 2 taken along the line II in FIG. FIG. 4 is an enlarged cross-sectional view of the storage unit 2 taken along line II-II in FIG.
[0035] 図 2〜図 4を参照すると、記憶部 2は、半導体層 6、配線層 7、及び磁性材料層 8を 備える。半導体層 6は、半導体基板 21を含み記憶部 2全体の機械的強度を維持する とともに、トランジスタ等の半導体デバイスが形成される層である。磁性材料層 8は、 T MR素子 4や、 TMR素子 4に磁界を効率的に与えるための磁気ヨーク 5といった磁性 材料による構成物が形成される層である。配線層 7は、半導体層 6と磁性材料層 8と の間に設けられる。配線層 7は、磁性材料層 8に形成された TMR素子 4などの磁性 体デバイスと、半導体層 6に形成されたトランジスタなどの半導体デバイスと、ビット配 線 13及び 14並びにワード配線 15及び 19といった各記憶領域 3を貫く配線とを、互 V、に電気的に接続するための配線が形成される層である。 Referring to FIGS. 2 to 4, the storage unit 2 includes a semiconductor layer 6, a wiring layer 7, and a magnetic material layer 8. The semiconductor layer 6 is a layer in which a semiconductor device such as a transistor is formed while maintaining the mechanical strength of the entire storage unit 2 including the semiconductor substrate 21. Magnetic material layer 8 is T This is a layer on which a component made of a magnetic material such as the MR element 4 and the magnetic yoke 5 for efficiently applying a magnetic field to the TMR element 4 is formed. The wiring layer 7 is provided between the semiconductor layer 6 and the magnetic material layer 8. The wiring layer 7 includes a magnetic device such as a TMR element 4 formed in the magnetic material layer 8, a semiconductor device such as a transistor formed in the semiconductor layer 6, a bit wiring 13 and 14, and a word wiring 15 and 19. This is a layer in which wirings for electrically connecting the wirings penetrating each storage area 3 to each other V are formed.
[0036] まず、半導体層 6について説明する。半導体層 6は、半導体基板 21と、絶縁領域 2 2と、読み書き兼用トランジスタ 32とを有する。半導体基板 21は、例えば Si基板から なり、 p型または n型の不純物がドープされている。絶縁領域 22は、半導体基板 21上 において読み書き兼用トランジスタ 32以外の領域に形成されており、各記憶領域 3 の読み書き兼用トランジスタ 32を互いに電気的に分離している。絶縁領域 22は、例 えば SiOといった絶縁性材料カゝらなる。 First, the semiconductor layer 6 will be described. The semiconductor layer 6 includes a semiconductor substrate 21, an insulating region 22, and a read / write transistor 32. The semiconductor substrate 21 is made of, for example, a Si substrate and is doped with p-type or n-type impurities. The insulating region 22 is formed in a region other than the read / write transistor 32 on the semiconductor substrate 21 and electrically isolates the read / write transistor 32 of each storage region 3 from each other. The insulating region 22 is made of an insulating material such as SiO.
2  2
[0037] 図 2を参照すると、読み書き兼用トランジスタ 32は、半導体基板 21とは反対導電型 のドレイン領域 32a及びソース領域 32c、制御端子であるゲート電極 32b、並びに半 導体基板 21の一部によって構成されている。ドレイン領域 32a及びソース領域 32c は、例えば Si基板の表面近傍に、半導体基板 21とは反対導電型の不純物がドープ されて形成されている。ドレイン領域 32aとソース領域 32cとの間には半導体基板 21 が介在しており、その半導体基板 21上にゲート電極 32bが配置されている。このよう な構成により、読み書き兼用トランジスタ 32では、ゲート電極 32bに電圧が印加され ると、ドレイン領域 32a及びソース領域 32cが互いに導通する。  Referring to FIG. 2, the read / write transistor 32 includes a drain region 32 a and a source region 32 c having a conductivity type opposite to that of the semiconductor substrate 21, a gate electrode 32 b serving as a control terminal, and a part of the semiconductor substrate 21. Has been. The drain region 32a and the source region 32c are formed, for example, by doping an impurity having a conductivity type opposite to that of the semiconductor substrate 21 in the vicinity of the surface of the Si substrate. A semiconductor substrate 21 is interposed between the drain region 32a and the source region 32c, and a gate electrode 32b is disposed on the semiconductor substrate 21. With such a configuration, in the read / write transistor 32, when a voltage is applied to the gate electrode 32b, the drain region 32a and the source region 32c become conductive.
[0038] 次に、磁性材料層 8について説明する。磁性材料層 8は、 TMR素子 4と、磁気ョー ク 5と、絶縁領域 24と、領域内配線 31と、読み出し配線 35とを有する。なお、磁性材 料層 8においては、以下に説明する構成 (TMR素子 4、磁気ヨーク 5、領域内配線 3 1、及び読み出し配線 35)及び他の配線以外の領域は、絶縁領域 24によって占めら れている。ここで、図 5は、 TMR素子 4の拡大断面図である。なお、図 5は、記憶領域 3の行方向に沿った断面を示している。図 5を参照すると、 TMR素子 4は、第 1磁性 層 41、非磁性絶縁層 42、第 2磁性層 43、及び反強磁性層 44が順に積層されてなる 。第 1磁性層 41は本実施形態における感磁層であり、領域内配線 31からの外部磁 界によって磁ィ匕方向が変化し、二値データを記録することができる。本実施形態ではNext, the magnetic material layer 8 will be described. The magnetic material layer 8 includes a TMR element 4, a magnetic yoke 5, an insulating region 24, an in-region wiring 31, and a readout wiring 35. In the magnetic material layer 8, the region described below (TMR element 4, magnetic yoke 5, in-region wiring 31, and readout wiring 35) and other regions are occupied by the insulating region 24. It is. Here, FIG. 5 is an enlarged cross-sectional view of the TMR element 4. FIG. 5 shows a cross section of the storage area 3 along the row direction. Referring to FIG. 5, the TMR element 4 includes a first magnetic layer 41, a nonmagnetic insulating layer 42, a second magnetic layer 43, and an antiferromagnetic layer 44 that are stacked in this order. The first magnetic layer 41 is a magnetosensitive layer in this embodiment, and an external magnetic field from the in-region wiring 31. The magnetic field direction changes depending on the field, and binary data can be recorded. In this embodiment
、第 1磁性層 41は後述する磁気ヨーク 5の一部(ビームヨーク 5b)によって構成されて いる。第 1磁性層 41の材料としては、例えば Co、 CoFe、 NiFe、 NiFeCo、 CoPtなど の強磁性材料を用いることができる。 The first magnetic layer 41 is constituted by a part of a magnetic yoke 5 (beam yoke 5b) described later. As the material of the first magnetic layer 41, for example, a ferromagnetic material such as Co, CoFe, NiFe, NiFeCo, and CoPt can be used.
[0039] また、第 2磁性層 43では、反強磁性層 44によって磁ィ匕方向が固定されている。す なわち、反強磁性層 44と第 2磁性層 43との接合面における交換結合によって、第 2 磁性層 43の磁ィ匕方向が安定化されている。第 2磁性層 43の磁ィ匕容易軸方向は、第 1磁性層 41の磁ィ匕容易軸方向に沿うように設定される。第 2磁性層 43の材料として は、例えば Co、 CoFe、 NiFe、 NiFeCo、 CoPtなどの強磁性材料を用いることがで きる。また、反強磁性層 44の材料としては、 IrMn、 PtMn、 FeMn、 PtPdMn、 NiO 、またはこれらのうち任意の組み合わせの材料を用いることができる。  In the second magnetic layer 43, the magnetic field direction is fixed by the antiferromagnetic layer 44. In other words, the magnetic field direction of the second magnetic layer 43 is stabilized by exchange coupling at the joint surface between the antiferromagnetic layer 44 and the second magnetic layer 43. The magnetic axis easy axis direction of the second magnetic layer 43 is set along the magnetic axis easy axis direction of the first magnetic layer 41. As the material of the second magnetic layer 43, for example, a ferromagnetic material such as Co, CoFe, NiFe, NiFeCo, CoPt can be used. Further, as the material of the antiferromagnetic layer 44, IrMn, PtMn, FeMn, PtPdMn, NiO, or any combination of these materials can be used.
[0040] 非磁性絶縁層 42は、非磁性且つ絶縁性の材料カゝらなる層である。第 1磁性層 41と 第 2磁性層 43との間に非磁性絶縁層 42が介在することにより、第 1磁性層 41と第 2 磁性層 43との間には、トンネル磁気抵抗効果 (TMR)が生じる。すなわち、第 1磁性 層 41と第 2磁性層 43との間には、第 1磁性層 41の磁ィ匕方向と第 2磁性層 43の磁ィ匕 方向との相対関係 (平行または反平行)に応じた電気抵抗が生じる。非磁性絶縁層 4 2の材料としては、例えば Al、 Zn、 Mgといった金属の酸ィ匕物または窒化物が好適で ある。  The nonmagnetic insulating layer 42 is a layer made of a nonmagnetic and insulating material. Since the nonmagnetic insulating layer 42 is interposed between the first magnetic layer 41 and the second magnetic layer 43, a tunnel magnetoresistive effect (TMR) is generated between the first magnetic layer 41 and the second magnetic layer 43. Occurs. That is, between the first magnetic layer 41 and the second magnetic layer 43, the relative relationship between the magnetic field direction of the first magnetic layer 41 and the magnetic field direction of the second magnetic layer 43 (parallel or antiparallel). An electrical resistance corresponding to is generated. The material of the nonmagnetic insulating layer 42 is preferably a metal oxide or nitride such as Al, Zn, or Mg.
[0041] なお、第 2磁性層 43の磁ィ匕方向を安定ィ匕させる層として、反強磁性層 44に代えて 、非磁性金属層またはシンセティック AF (反強磁性)層を介して第 3磁性層を設けて も良い。この第 3磁性層が第 2磁性層 43と反強磁性結合を形成することにより、第 2 磁性層 43の磁ィ匕方向をさらに安定化させることができる。また、第 2磁性層 43から第 1磁性層 41への静磁界の影響を防止できるので、第 1磁性層 41の磁ィ匕反転を容易 にすることができる。このような第 3磁性層の材料としては特に制限はないが、例えば Co、 CoFe、 NiFe、 NiFeCo、 CoPtなどの強磁性材料を単独で、或いは複合させて 用いることが好ましい。また、第 2磁性層 43と第 3磁性層との間に設けられる非磁性 金属層の材料としては、 Ru、 Rh、 Ir、 Cu、 Agなどが好適である。なお、非磁性金属 層の厚さは、第 2磁性層 43と第 3磁性層との間に強い反強磁性結合を得るために 2n m以下であることが好ま U、。 [0041] It should be noted that as a layer for stabilizing the magnetic direction of the second magnetic layer 43, a third layer is provided via a nonmagnetic metal layer or a synthetic AF (antiferromagnetic) layer instead of the antiferromagnetic layer 44. A magnetic layer may be provided. The third magnetic layer forms antiferromagnetic coupling with the second magnetic layer 43, so that the magnetic field direction of the second magnetic layer 43 can be further stabilized. In addition, since the influence of the static magnetic field from the second magnetic layer 43 to the first magnetic layer 41 can be prevented, the magnetic reversal of the first magnetic layer 41 can be facilitated. The material of the third magnetic layer is not particularly limited, but it is preferable to use a ferromagnetic material such as Co, CoFe, NiFe, NiFeCo, CoPt alone or in combination. Further, as the material of the nonmagnetic metal layer provided between the second magnetic layer 43 and the third magnetic layer, Ru, Rh, Ir, Cu, Ag and the like are suitable. The thickness of the nonmagnetic metal layer is 2n in order to obtain strong antiferromagnetic coupling between the second magnetic layer 43 and the third magnetic layer. U, which is preferably less than m.
[0042] 再び図 2〜図 4を参照すると、領域内配線 31は導電性の金属力もなり、記憶領域 3 の列方向に延びている。領域内配線 31の一端は、垂直配線 16aを介して電極 17a に電気的に接続されている(図 2参照)。また、領域内配線 31の他端は、図示しない 配線によってビット配線 14 (図 3、図 4参照)に電気的に接続されている。領域内配線 31の配線部分 31aは、 TMR素子 4の第 1磁性層 41に沿って延びている。そして、領 域内配線 31に書き込み電流が流れることにより、配線部分 3 laから TMR素子 4の第 1磁性層 41へ外部磁界が提供される。なお、 TMR素子 4の第 1磁性層 41の磁ィ匕容 易軸方向は、領域内配線 31の長手方向と交差する方向(すなわち、書き込み電流 の方向と交差する方向)に沿うように設定される。  Referring to FIGS. 2 to 4 again, the in-region wiring 31 also has a conductive metal force and extends in the column direction of the storage region 3. One end of the in-region wiring 31 is electrically connected to the electrode 17a through the vertical wiring 16a (see FIG. 2). Further, the other end of the in-region wiring 31 is electrically connected to the bit wiring 14 (see FIGS. 3 and 4) by a wiring (not shown). A wiring portion 31 a of the intra-region wiring 31 extends along the first magnetic layer 41 of the TMR element 4. Then, when a write current flows through the intra-region wiring 31, an external magnetic field is provided from the wiring portion 3 la to the first magnetic layer 41 of the TMR element 4. The magnetic axis easy axis direction of the first magnetic layer 41 of the TMR element 4 is set to be along the direction intersecting with the longitudinal direction of the in-region wiring 31 (that is, the direction intersecting with the write current direction). The
[0043] TMR素子 4の第 1磁性層 41は、読み出し配線 35上に設けられている。読み出し配 線 35は導電性の金属からなり、記憶領域 3の列方向に延びている。読み出し配線 35 の一端は、第 1磁性層 41に電気的に接続されている。読み出し配線 35の他端は、 配線層 7内部の配線 (後述)を介してワード配線 19 (図 2参照)に電気的に接続され ている。また、 TMR素子 4の反強磁性層 44は、領域内配線 31の配線部分 31aと電 気的に接続されている。この構成により、読み出し電流を領域内配線 31から TMR素 子 4へ (或いは読み出し配線 35から TMR素子 4へ)好適に流すことができる。  The first magnetic layer 41 of the TMR element 4 is provided on the read wiring 35. The read wiring 35 is made of a conductive metal and extends in the column direction of the storage area 3. One end of the read wiring 35 is electrically connected to the first magnetic layer 41. The other end of the read wiring 35 is electrically connected to the word wiring 19 (see FIG. 2) via a wiring (described later) inside the wiring layer 7. Further, the antiferromagnetic layer 44 of the TMR element 4 is electrically connected to the wiring portion 31a of the in-region wiring 31. With this configuration, it is possible to allow the read current to flow suitably from the in-region wiring 31 to the TMR element 4 (or from the read wiring 35 to the TMR element 4).
[0044] 磁気ヨーク 5は、領域内配線 31の周囲を覆い、書き込み電流によって発生する磁 界を効率よく TMR素子 4へ提供するための強磁性部材である。ここで、図 6は、磁気 ヨーク 5の拡大断面図である。なお、図 6は、記憶領域 3の行方向に沿った断面であ る。図 6を参照すると、磁気ヨーク 5は、第 1のビームヨーク 5b、一対のピラーヨーク 5c 、及び第 2のビームヨーク 5dを含んで構成されている。このうち、第 1のビームヨーク 5 bは、 TMR素子 4の第 1磁性層 41を兼ねるように読み出し配線 35と非磁性絶縁層 4 2との間に配置されている。そして、第 1のビームヨーク 5bの一端は一対のピラーョー ク 5cの一方と繋がっており、第 1のビームヨーク 5bの他端は一対のピラーヨーク 5cの 他方と繋がっている。また、第 2のビームヨーク 5dは、領域内配線 31における TMR 素子 4とは反対側の面に沿って設けられている。一対のピラーヨーク 5cは、領域内配 線 31の側面に沿って設けられており、第 1のビームヨーク 5bの両端と第 2のビームョ ーク 5dの両端とを繋いでいる。以上の構成によって、第 1のビームヨーク 5b、一対の ピラーヨーク 5c、及び第 2のビームヨーク 5dは、領域内配線 31の延在方向の一部 (T MR素子 4上の配線部分 3 la)において領域内配線 31の外周を完全に (連続して) 囲んでいる。また、 TMR素子 4の第 1磁性層 41は、磁気ヨーク 5の一部(第 1のビー ムヨーク 5b)によって構成されることとなる。 The magnetic yoke 5 is a ferromagnetic member that covers the periphery of the in-region wiring 31 and efficiently provides a magnetic field generated by a write current to the TMR element 4. Here, FIG. 6 is an enlarged cross-sectional view of the magnetic yoke 5. FIG. 6 is a cross section along the row direction of the storage area 3. Referring to FIG. 6, the magnetic yoke 5 includes a first beam yoke 5b, a pair of pillar yokes 5c, and a second beam yoke 5d. Among these, the first beam yoke 5 b is disposed between the read wiring 35 and the nonmagnetic insulating layer 42 so as to serve also as the first magnetic layer 41 of the TMR element 4. One end of the first beam yoke 5b is connected to one of the pair of pillar yokes 5c, and the other end of the first beam yoke 5b is connected to the other of the pair of pillar yokes 5c. The second beam yoke 5d is provided along the surface of the in-region wiring 31 opposite to the TMR element 4. The pair of pillar yokes 5c are provided along the side surface of the in-region wiring 31, and both ends of the first beam yoke 5b and the second beam yoke are provided. Connecting both ends of the 5d. With the above configuration, the first beam yoke 5b, the pair of pillar yokes 5c, and the second beam yoke 5d are arranged in part of the extension direction of the in-region wiring 31 (wiring portion 3 la on the TMR element 4). The outer periphery of the intra-region wiring 31 is completely (continuously) surrounded. The first magnetic layer 41 of the TMR element 4 is constituted by a part of the magnetic yoke 5 (first beam yoke 5b).
[0045] 磁気ヨーク 5を構成する材料としては、例えば Ni、 Fe、 Coのうち少なくとも一つの元 素を含む金属が好適である。また、磁気ヨーク 5は、その磁化容易軸方向が TMR素 子 4の第 1磁性層 41の磁ィ匕容易軸方向に沿うように形成されることが好ましい。  [0045] As a material constituting the magnetic yoke 5, for example, a metal containing at least one element among Ni, Fe, and Co is preferable. The magnetic yoke 5 is preferably formed so that its easy axis direction is along the easy axis direction of the first magnetic layer 41 of the TMR element 4.
[0046] なお、絶縁領域 24の材料としては、半導体層 6の絶縁領域 22と同様に、 SiOとい  [0046] The material of the insulating region 24 is SiO, like the insulating region 22 of the semiconductor layer 6.
2 つた絶縁性材料を用いることができる。  Two insulating materials can be used.
[0047] 次に、配線層 7について説明する。配線層 7は、絶縁領域 23と、ビット配線 13及び 14と、ワード配線 15及び 19と、複数の垂直配線及び水平配線とを有する。なお、配 線層 7においては、各配線以外の領域は、すべて絶縁領域 23によって占められてい る。絶縁領域 23の材料としては、半導体層 6の絶縁領域 22と同様に、 SiOといった [0047] Next, the wiring layer 7 will be described. The wiring layer 7 includes an insulating region 23, bit wirings 13 and 14, word wirings 15 and 19, and a plurality of vertical wirings and horizontal wirings. Note that, in the wiring layer 7, all regions other than each wiring are occupied by the insulating region 23. The material of the insulating region 23 is SiO, like the insulating region 22 of the semiconductor layer 6.
2 絶縁性材料を用いることができる。また、垂直配線の材料としては例えば wを、水平 配線の材料としては例えば A1を、それぞれ用いることができる。  2 Insulating materials can be used. For example, w can be used as the material for the vertical wiring, and A1 can be used as the material for the horizontal wiring.
[0048] 図 2〜図 4を参照すると、磁性材料層 8の領域内配線 31の一端が接続された電極 1 7aは、垂直配線 16b〜16d及び水平配線 18a、 18bに電気的に接続されており、垂 直配線 16dは読み書き兼用トランジスタ 32のドレイン領域 32aとォーミック接合されて いる。また、水平配線 18cは垂直配線 16eに電気的に接続されており、垂直配線 16e は読み書き兼用トランジスタ 32のソース領域 32cとォーミック接合されて 、る。水平配 線 18cは、垂直配線 16hを介してビット配線 13に電気的に接続されている。磁性材 料層 8の読み出し配線 35は、配線層 7の垂直配線 16f、 16g、及び水平配線 18d〖こ 電気的に接続されており、垂直配線 16gはワード配線 19に電気的に接続されて!ヽる 。なお、ビット配線 14は、領域内配線 31における電極 17aが設けられた側とは反対 側の端部に、図示しない配線によって電気的に接続されている。 [0048] Referring to FIGS. 2 to 4, the electrode 17a to which one end of the in-region wiring 31 of the magnetic material layer 8 is connected is electrically connected to the vertical wirings 16b to 16d and the horizontal wirings 18a and 18b. The vertical wiring 16d is in ohmic contact with the drain region 32a of the read / write transistor 32. The horizontal wiring 18c is electrically connected to the vertical wiring 16e, and the vertical wiring 16e is in ohmic contact with the source region 32c of the read / write transistor 32. The horizontal wiring 18c is electrically connected to the bit wiring 13 through the vertical wiring 16h. The readout wiring 35 of the magnetic material layer 8 is electrically connected to the vertical wirings 16f and 16g and the horizontal wiring 18d of the wiring layer 7, and the vertical wiring 16g is electrically connected to the word wiring 19! Speak. The bit wiring 14 is electrically connected to the end of the in-region wiring 31 opposite to the side where the electrode 17a is provided by a wiring (not shown).
[0049] ゲート電極 32bは、記憶領域 3の行方向に延びるワード配線 15の一部によって構 成されている。このような構成によって、ワード配線 15は、読み書き兼用トランジスタ 3 2の制御端子 (ゲート電極 32b)に電気的に接続されている。 [0049] The gate electrode 32b is configured by a part of the word line 15 extending in the row direction of the storage region 3. With this configuration, the word line 15 is connected to the read / write transistor 3. 2 is electrically connected to the control terminal (gate electrode 32b).
[0050] ここで、図 7及び図 8を参照して、本実施形態の記憶領域 3における TMR素子 4周 辺の動作について説明する。図 7— (a)に示すように、領域内配線 31に負の書き込 み電流 I が流れると、領域内配線 31の配線部分 31aの周囲には該配線部分 31aの wl Here, with reference to FIG. 7 and FIG. 8, the operation around the four TMR elements in the storage region 3 of the present embodiment will be described. As shown in Fig. 7 (a), when a negative write current I flows in the intra-region wiring 31, the wl of the wiring portion 31a is placed around the wiring portion 31a of the intra-region wiring 31.
周方向に磁界 Φが発生する。磁界 Φ は、配線部分 3 laの周囲に設けられた磁気ョ ーク 5の内部を周回する閉じた経路を形成する。  Magnetic field Φ is generated in the circumferential direction. The magnetic field Φ forms a closed path that goes around the inside of the magnetic yoke 5 provided around the wiring portion 3 la.
[0051] 配線部分 3 laの周囲に磁界 Φが生じると、磁気ヨーク 5の磁界閉じ込め作用によつ て TMR素子 4の第 1磁性層 41 (第 1のビームヨーク 5b)に磁界 Φ (外部磁界)が効 率よく提供される。この磁界 Φ によって、第 1磁性層 41の磁ィ匕方向 Aは磁界 Φと同 じ周方向を向く。ここで、第 2磁性層 43の磁ィ匕方向 Bが、反強磁性層 44との交換結 合によって予め磁界 Φと同じ周方向を向いている場合には、第 1磁性層 41の磁ィ匕 方向 Aと第 2磁性層 43の磁ィ匕方向 Bとが互いに同じ向き、すなわち平行状態となる。 こうして、 TMR素子 4に二値データの一方(例えば 0)が書き込まれる。  [0051] When the magnetic field Φ is generated around the wiring portion 3 la, the magnetic field Φ (external magnetic field) is applied to the first magnetic layer 41 (first beam yoke 5b) of the TMR element 4 by the magnetic field confinement action of the magnetic yoke 5. ) Is provided efficiently. Due to this magnetic field Φ, the magnetic field direction A of the first magnetic layer 41 is directed in the same circumferential direction as the magnetic field Φ. Here, when the magnetic field direction B of the second magnetic layer 43 is oriented in the same circumferential direction as the magnetic field Φ in advance by exchange coupling with the antiferromagnetic layer 44, the magnetic field of the first magnetic layer 41 is The direction A and the magnetic direction B of the second magnetic layer 43 are in the same direction, that is, in a parallel state. Thus, one of the binary data (for example, 0) is written into the TMR element 4.
[0052] TMR素子 4に書き込まれた二値データを読み出す際には、図 7 (b)に示すように、 配線部分 31aと読み出し配線 35との間に読み出し電流 Iを流し、その電流値の変化 または配線部分 31aと読み出し配線 35との間の電位差の変化を検出する。これによ り、 TMR素子 4が二値データのうちいずれを記録している力 (すなわち、第 1磁性層 4 1の磁ィ匕方向 Aが第 2磁性層 43の磁ィ匕方向 Bと平行カゝ反平行か)が判別できる。例 えば、第 1磁性層 41の磁ィ匕方向 Aが第 2磁性層 43の磁ィ匕方向 Bと平行である場合、 非磁性絶縁層 42におけるトンネル磁気抵抗効果 (TMR)によって、第 1磁性層 41と 第 2磁性層 43との間の抵抗値が比較的小さくなる。従って、例えば読み出し電流 Iを 一定とした場合には配線部分 31aと読み出し配線 35との間の電位差が比較的小さく なることから、 TMR素子 4に二値データとして 0が書き込まれて 、ることがわ力る。  When reading the binary data written in the TMR element 4, as shown in FIG. 7B, a read current I is passed between the wiring portion 31a and the read wiring 35, and the current value Change or change in potential difference between the wiring portion 31a and the readout wiring 35 is detected. As a result, the force at which the TMR element 4 records any binary data (that is, the magnetic field direction A of the first magnetic layer 41 is parallel to the magnetic field direction B of the second magnetic layer 43). Can be discriminated. For example, when the magnetic field direction A of the first magnetic layer 41 is parallel to the magnetic field direction B of the second magnetic layer 43, the first magnetic layer 41 is not affected by the tunnel magnetoresistance effect (TMR) in the nonmagnetic insulating layer 42. The resistance value between the layer 41 and the second magnetic layer 43 is relatively small. Therefore, for example, when the read current I is constant, the potential difference between the wiring portion 31a and the read wiring 35 becomes relatively small, and therefore 0 may be written to the TMR element 4 as binary data. Wow.
[0053] また、図 8—(a)に示すように、領域内配線 31に正の書き込み電流 I が流れると、 w2  [0053] As shown in FIG. 8 (a), when a positive write current I flows through the in-region wiring 31, w2
領域内配線 31の配線部分 31aの周囲には磁界 Φとは逆回りの磁界 Φが発生する  A magnetic field Φ that is opposite to the magnetic field Φ is generated around the wiring part 31a of the internal wiring 31.
1 2  1 2
。磁界 Φ は、磁気ヨーク 5の内部を周回する閉じた経路を形成する。  . The magnetic field Φ forms a closed path that goes around the inside of the magnetic yoke 5.
2  2
[0054] 配線部分 3 laの周囲に磁界 Φが生じると、磁気ヨーク 5の磁界閉じ込め作用によつ  [0054] When a magnetic field Φ is generated around the wiring portion 3 la, the magnetic confinement action of the magnetic yoke 5
2  2
て TMR素子 4の第 1磁性層 41 (第 1のビームヨーク 5b)に磁界 Φ (外部磁界)が効 率よく提供される。この磁界 Φ によって、第 1磁性層 41の磁ィ匕方向 Aは磁界 Φと同 The magnetic field Φ (external magnetic field) is effective on the first magnetic layer 41 (first beam yoke 5b) of the TMR element 4. Provided well. Due to this magnetic field Φ, the magnetic field direction A of the first magnetic layer 41 is the same as the magnetic field Φ.
2 2 じ周方向を向く。ここで、第 2磁性層 43の磁ィ匕方向 Bが磁界 Φとは逆の周方向を向  2 2 Face in the circumferential direction. Here, the magnetic field direction B of the second magnetic layer 43 is directed in the circumferential direction opposite to the magnetic field Φ.
2  2
いている場合には、第 1磁性層 41の磁ィ匕方向 Aと第 2磁性層 43の磁ィ匕方向 Bとが互 いに逆向き、すなわち反平行状態となる。こうして、 TMR素子 4に二値データの他方 (例えば 1)が書き込まれる。  In this case, the magnetic field direction A of the first magnetic layer 41 and the magnetic field direction B of the second magnetic layer 43 are opposite to each other, that is, in an antiparallel state. Thus, the other binary data (for example, 1) is written in the TMR element 4.
[0055] 第 1磁性層 41の磁ィ匕方向 Aが第 2磁性層 43の磁ィ匕方向 Bと反平行である場合、非 磁性絶縁層 42におけるトンネル磁気抵抗効果 (TMR)によって、第 1磁性層 41と第 2磁性層 43との間の抵抗値が比較的大きくなる。従って、例えば図 8— (b)に示すよ うに配線部分 31aと読み出し配線 35との間に一定の読み出し電流 Iを流すと、配線 部分 31aと読み出し配線 35との間の電位差が比較的大きくなる。このことから、 TMR 素子 4に二値データとして 1が書き込まれていることがわかる。  [0055] When the magnetic field direction A of the first magnetic layer 41 is anti-parallel to the magnetic field direction B of the second magnetic layer 43, the first magnetic layer 41 causes the first magnetoresistance effect (TMR) in the nonmagnetic insulating layer 42 to The resistance value between the magnetic layer 41 and the second magnetic layer 43 becomes relatively large. Therefore, for example, as shown in FIG. 8 (b), when a constant read current I is passed between the wiring portion 31a and the readout wiring 35, the potential difference between the wiring portion 31a and the readout wiring 35 becomes relatively large. . From this, it can be seen that 1 is written in the TMR element 4 as binary data.
[0056] 以上に説明した、本実施形態による磁気メモリ 1が有する効果について説明する。  The effects of the magnetic memory 1 according to the present embodiment described above will be described.
本実施形態による磁気メモリ 1では、 1つのスィッチ手段 (読み書き兼用トランジスタ 3 2)によって書き込み電流 I 、1 及び読み出し電流 Iを制御している。書き込み電流 wl w2 r  In the magnetic memory 1 according to the present embodiment, the write currents I and 1 and the read current I are controlled by one switch means (read / write transistor 32). Write current wl w2 r
や読み出し電流を制御するためのトランジスタは、図 2〜4に示したとおり、記憶領域 の大きさを規定する程のスペースが必要となる。従って、 1つの記憶領域につき 2つ のトランジスタが必要な従来の磁気メモリや、或いは各列毎及び各行毎に読み出し 用トランジスタが必要なクロスポイント型の磁気メモリでは、記憶部が大型化してしま い、好ましくな力つた。これに対し、本実施形態による磁気メモリ 1では、書き込み電 流 I 、1 及び読み出し電流 Iの双方を制御できる読み書き兼用トランジスタ 32を設 w丄 w2 r  As shown in Figs. 2-4, the transistor for controlling the read current and the space required to define the size of the storage area is required. Therefore, in a conventional magnetic memory that requires two transistors per storage area, or in a cross-point type magnetic memory that requires a reading transistor for each column and each row, the storage section becomes large. , Favorable force. On the other hand, in the magnetic memory 1 according to the present embodiment, a read / write transistor 32 that can control both the write currents I and 1 and the read current I is provided.
けることによって、各記憶領域 3に 1つのトランジスタを設けるだけで済み、記憶領域 3 のスペースをより小さくすることができる。従って、磁気メモリ 1 (記憶部 2)の小型化が 可能となる。  Therefore, only one transistor is required for each storage area 3, and the space of the storage area 3 can be further reduced. Therefore, the magnetic memory 1 (storage unit 2) can be downsized.
[0057] また、本実施形態による磁気メモリ 1では、各記憶領域 3毎に領域内配線 31が設け られ、各記憶領域 3に設けられた読み書き兼用トランジスタ 32によって領域内配線 3 1を流れる書き込み電流 I 、 I を制御できるので、 TMR素子 4の半選択状態を無く wl w2  Further, in the magnetic memory 1 according to the present embodiment, the intra-area wiring 31 is provided for each storage area 3, and the write current flowing through the intra-area wiring 31 by the read / write transistor 32 provided in each storage area 3 Since I and I can be controlled, there is no half-selected state of TMR element 4 wl w2
し、書き込み対象ではな 、記憶領域 3への誤書き込みを防ぐことができる。  However, it is possible to prevent erroneous writing to the storage area 3 that is not a write target.
[0058] また、本実施形態による磁気メモリ 1では、前述したように、書き込み対象の記憶領 域 3を含む列に対応するビット配線 13とビット配線 14との間に書き込み電流 I 、 I wl w2 を供給し、且つ、当該記憶領域 3を含む行に対応するワード配線 15に対し、読み書 き兼用トランジスタ 32を導通状態に制御するための制御電圧を印加することにより、 当該記憶領域 3の領域内配線 31に書き込み電流 I 、1 を好適に流すことができる wl w2 Further, as described above, in the magnetic memory 1 according to the present embodiment, the storage area to be written is stored. A write current I, I wl w2 is supplied between the bit wiring 13 corresponding to the column including the area 3 and the bit wiring 14, and the word wiring 15 corresponding to the row including the storage area 3 is read / written. By applying a control voltage for controlling the dual-purpose transistor 32 to be in a conductive state, the write current I, 1 can be suitably supplied to the internal wiring 31 of the storage area 3 wl w2
。また、読み出し対象の記憶領域 3を含む列に対応するビット配線 13と当該記憶領 域 3を含む行に対応するワード配線 19との間に読み出し電流 Iを供給し、且つ、当該 記憶領域 3を含む行に対応するワード配線 15に対し、読み書き兼用トランジスタ 32 を導通状態に制御するための制御電圧を印加することにより、当該記憶領域 3の TM R素子 4に読み出し電流を好適に流すことができる。  . Further, a read current I is supplied between the bit wiring 13 corresponding to the column including the storage area 3 to be read and the word wiring 19 corresponding to the row including the storage area 3, and the storage area 3 is By applying a control voltage for controlling the read / write transistor 32 to the conductive state to the word line 15 corresponding to the included row, it is possible to allow a read current to flow through the TMR element 4 in the storage region 3 appropriately. .
[0059] また、本実施形態のように、磁気メモリ 1は、ワード配線 15及び 19に電気的に接続 されており TMR素子 4へ読み出し電流 Iを供給する読み出し電流供給手段 (ビット選 択回路 11及びワード選択回路 12)を備えることが好ましい。これにより、読み出し対 象である記憶領域 3の TMR素子 4へ読み出し電流 Iを好適に供給できる。  Further, as in the present embodiment, the magnetic memory 1 is electrically connected to the word wirings 15 and 19, and is read current supply means (bit selection circuit 11) for supplying the read current I to the TMR element 4. And a word selection circuit 12). As a result, the read current I can be suitably supplied to the TMR element 4 in the storage area 3 to be read.
[0060] また、本実施形態のように、磁気メモリ 1は、ビット配線 13及び 14に電気的に接続さ れており領域内配線 31へ書き込み電流 I 、1 を供給する書き込み電流供給手段( wl w2  In addition, as in the present embodiment, the magnetic memory 1 is electrically connected to the bit wirings 13 and 14, and write current supply means (wl w2
ビット選択回路 11)を備えることが好ましい。これにより、書き込み対象である記憶領 域 3の領域内配線 31へ書き込み電流 I 、1 を好適に供給できる。  A bit selection circuit 11) is preferably provided. Thereby, the write currents I and 1 can be suitably supplied to the in-area wiring 31 of the storage area 3 to be written.
wl w2  wl w2
[0061] また、本実施形態のように、複数の記憶領域 3のそれぞれは、領域内配線 31の配 線部分 31aを連続して囲むように設けられた磁気ヨーク 5を有することが好ましい。そ して、 TMR素子 4の第 1磁性層 41は、磁気ヨーク 5の一部(第 1のビームヨーク 5b)に よって構成されていることが好ましい。このように、第 1磁性層 41に沿った配線部分 3 laが磁気ヨーク 5に囲まれることによって、第 1磁性層 41から逸れた方向へ放出され る磁界を低減できる。また、配線部分 31aを囲む磁気ヨーク 5の一部(第 1のビームョ ーク 5b)によって第 1磁性層 41が構成されるので、外部磁界 Φ 、 Φを第 1磁性層 41  Further, as in the present embodiment, each of the plurality of storage areas 3 preferably has a magnetic yoke 5 provided so as to continuously surround the wiring portion 31a of the in-area wiring 31. The first magnetic layer 41 of the TMR element 4 is preferably constituted by a part of the magnetic yoke 5 (first beam yoke 5b). As described above, since the wiring portion 3 la along the first magnetic layer 41 is surrounded by the magnetic yoke 5, the magnetic field emitted in the direction deviating from the first magnetic layer 41 can be reduced. Further, since the first magnetic layer 41 is constituted by a part of the magnetic yoke 5 (the first beam yoke 5b) surrounding the wiring portion 31a, the external magnetic fields Φ and Φ are converted into the first magnetic layer 41.
1 2  1 2
へ効率よく提供できる。このように、本実施形態の構成によれば、書き込み電流 I 、 I wl による外部磁界 Φ 、 Φを TMR素子 4の第 1磁性層 41へ効率よく提供できるので w2 1 2  Can be provided efficiently. As described above, according to the configuration of the present embodiment, the external magnetic fields Φ and Φ by the write currents I and I wl can be efficiently provided to the first magnetic layer 41 of the TMR element 4, so that w2 1 2
、第 1磁性層 41の磁ィ匕方向 Aを小さな書き込み電流 I 、 I でもって反転させること wl w2  Invert the magnetic field direction A of the first magnetic layer 41 with small write currents I and I wl w2
ができる。 [0062] また、各記憶領域 3がこのような磁気ヨーク 5を有することによって、第 1磁性層 41の 磁化方向 Aを小さな書き込み電流 I 、 I でもって反転できるので、書き込み電流 I Can do. [0062] Since each storage region 3 has such a magnetic yoke 5, the magnetization direction A of the first magnetic layer 41 can be reversed with small write currents I and I, so that the write current I
wl w2 wl wl w2 wl
、 I の導通を制御する読み書き兼用トランジスタ 32を小さくできる。従って、各記憶 w2 The read / write transistor 32 that controls the conduction of I can be made small. Therefore, each memory w2
領域 3の大きさを更に小さくできるので、磁気メモリ 1 (記憶部 2)を更に小型化できる。  Since the size of the region 3 can be further reduced, the magnetic memory 1 (storage unit 2) can be further reduced in size.
[0063] ここで、本実施形態による磁気メモリ 1の製造方法のうち、磁性材料層 8の製造方法 について図 9〜図 16を参照しながら説明する。  Here, of the method for manufacturing the magnetic memory 1 according to the present embodiment, the method for manufacturing the magnetic material layer 8 will be described with reference to FIGS.
[0064] 図 9— (a)は、磁気メモリ 1の製造工程の一部を示す平面図であり、図 9— (b)は、 図 9— (a)に示す ΠΙ— III線に沿った側面断面図である。まず、図 9— (a)及び図 9— (b)に示すように、配線層 7上に読み出し配線 35を形成する。このとき、読み出し配 線 35の一端が配線層 7の垂直配線 16fと接するように読み出し配線 35を形成する。 なお、図中に示された垂直配線 16iは、配線層 7においてビット配線 14 (図 3及び図 4 参照)に電気的に接続された垂直配線である。  [0064] FIG. 9- (a) is a plan view showing a part of the manufacturing process of the magnetic memory 1, and FIG. 9- (b) is taken along the line III-III shown in FIG. 9- (a). It is side surface sectional drawing. First, as shown in FIGS. 9A and 9B, the readout wiring 35 is formed on the wiring layer 7. At this time, the readout wiring 35 is formed so that one end of the readout wiring 35 is in contact with the vertical wiring 16 f of the wiring layer 7. The vertical wiring 16i shown in the figure is a vertical wiring electrically connected to the bit wiring 14 (see FIGS. 3 and 4) in the wiring layer 7.
[0065] 続いて、 TMR素子 4を形成する。図 10— (a)は、磁気メモリ 1の製造工程の一部を 示す平面図であり、図 10— (b)は、図 10— (a)に示す IV— IV線に沿った側面断面 図である。図 10— (a)及び図 10— (b)に示すように、まず、高真空 (UHV) DCスパッ タ装置により、 Ta層下地層、 NiFe層、及び CoFe層力もなる層 61を成膜する。この 層 61は、第 1のビームヨーク (第 1磁性層)となる層である。次に、層 61上に A1層を成 膜し、酸素プラズマにより A1層の酸ィ匕を行い、非磁性絶縁層となるトンネル絶縁層 62 を形成する。そして、トンネル絶縁層 62上に、第 2磁性層となる CoFe層 63、反強磁 性層となる IrMn層 64、及び Ta保護層(不図示)を順次成膜する。  Subsequently, the TMR element 4 is formed. Fig. 10 (a) is a plan view showing a part of the manufacturing process of the magnetic memory 1, and Fig. 10 (b) is a side cross-sectional view along the IV-IV line shown in Fig. 10 (a). It is. As shown in Fig. 10- (a) and Fig. 10- (b), first, a layer 61 having a Ta layer underlayer, a NiFe layer, and a CoFe layer force is formed by a high vacuum (UHV) DC sputtering device. . This layer 61 is a layer to be a first beam yoke (first magnetic layer). Next, the A1 layer is formed on the layer 61, and the A1 layer is oxidized by oxygen plasma to form a tunnel insulating layer 62 that becomes a nonmagnetic insulating layer. Then, a CoFe layer 63 serving as a second magnetic layer, an IrMn layer 64 serving as an antiferromagnetic layer, and a Ta protective layer (not shown) are sequentially formed on the tunnel insulating layer 62.
[0066] 図 11— (a)は、磁気メモリ 1の製造工程の一部を示す平面図であり、図 11— (b)は 、図 11— (a)に示す V—V線に沿った側面断面図である。続いて、第 1のビームョー クの平面形状を有する第 1のレジストマスクを Ta保護層上に形成した後、層 61、トン ネル絶縁層 62、 CoFe層 63、及び IrMn層 64をイオンミリングにより成形し、第 1のビ ームヨーク 5b (第 1磁性層 41)を形成する。そして、 TMR素子の平面形状を有する 第 2のレジストマスクを第 1のビームヨーク 5bの略中心部分の上に形成した後、トンネ ル絶縁層 62、 CoFe層 63、及び IrMn層 64をイオンミリングにより成形し、非磁性絶 縁層 42、第 2磁性層 43、及び反強磁性層 44を含む TMR素子 4を形成する。 TMR 素子 4を形成した後、 CVD装置を用いて、例えば Si (OC H ) により、 TMR素子 4 FIG. 11— (a) is a plan view showing a part of the manufacturing process of the magnetic memory 1, and FIG. 11— (b) is taken along the line V—V shown in FIG. 11— (a). It is side surface sectional drawing. Subsequently, after forming a first resist mask having a planar shape of the first beam on the Ta protective layer, the layer 61, the tunnel insulating layer 62, the CoFe layer 63, and the IrMn layer 64 are formed by ion milling. Then, the first beam yoke 5b (first magnetic layer 41) is formed. Then, after forming a second resist mask having a planar shape of the TMR element on the substantially central portion of the first beam yoke 5b, the tunnel insulating layer 62, the CoFe layer 63, and the IrMn layer 64 are ion milled. The TMR element 4 including the nonmagnetic insulating layer 42, the second magnetic layer 43, and the antiferromagnetic layer 44 is formed by molding. TMR After forming the element 4, the TMR element 4 is formed by using, for example, Si (OC H) using a CVD apparatus.
2 5 4  2 5 4
上を除く全域に SiO絶縁層 24aを形成する。この後、第 2のレジストマスクを除去する  A SiO insulating layer 24a is formed in the entire region except the top. Thereafter, the second resist mask is removed.
2  2
[0067] 続いて、領域内配線 31を形成する。図 12— (a)は、磁気メモリ 1の製造工程の一部 を示す平面図であり、図 12— (b)は、図 12— (a)に示す VI— VI線に沿った側面断 面図である。まず、領域内配線 31の平面形状に応じた開口を有する第 3のレジストマ スクを SiO絶縁層 24a上に形成する。このとき、第 3のレジストマスクの開口が、垂直 Subsequently, the intra-region wiring 31 is formed. Fig. 12 (a) is a plan view showing a part of the manufacturing process of magnetic memory 1, and Fig. 12 (b) is a side cross-sectional view along the VI-VI line shown in Fig. 12 (a). FIG. First, a third resist mask having an opening corresponding to the planar shape of the in-region wiring 31 is formed on the SiO insulating layer 24a. At this time, the opening of the third resist mask is vertical.
2  2
配線 16b、 TMR素子 4、及び垂直配線 16iにわたつて連続するように第 3のレジスト マスクを形成する。そして、スパッタにより T遷、 Cu層を順次成膜した後、第 3のレジ ストマスクを除去する。こうして、領域内配線 31が TMR素子 4上に形成される。また、 この領域内配線 31は、その一端が垂直配線 16bに、他端が垂直配線 16iに、それぞ れ接続される。  A third resist mask is formed so as to be continuous over the wiring 16b, the TMR element 4, and the vertical wiring 16i. Then, after depositing T and Cu layers sequentially by sputtering, the third resist mask is removed. Thus, the intra-region wiring 31 is formed on the TMR element 4. The intra-region wiring 31 has one end connected to the vertical wiring 16b and the other end connected to the vertical wiring 16i.
[0068] 続いて、図 13に示すように、領域内配線 31を覆う SiO絶縁層 24bを形成する。す  Subsequently, as shown in FIG. 13, a SiO insulating layer 24b covering the in-region wiring 31 is formed. You
2  2
なわち、領域内配線 31の上面及び側面、並びに既に形成した SiO絶縁層 24a上を  In other words, the upper and side surfaces of the internal wiring 31 and the already formed SiO insulating layer 24a
2  2
覆うように SiO絶縁層 24bを形成する。このとき、 CVD装置を用いて、例えば Si (OC  A SiO insulating layer 24b is formed so as to cover it. At this time, for example, Si (OC
2  2
H ) により SiO絶縁層 24bを形成するとよい。  The SiO insulating layer 24b may be formed by H).
2 5 4 2  2 5 4 2
[0069] 続いて、図 14に示すように、 SiO絶縁層 24a及び 24bのうち不要な部分を除去し、  Subsequently, as shown in FIG. 14, unnecessary portions of the SiO insulating layers 24a and 24b are removed,
2  2
第 1のビームヨーク 5bの両端を露出させる。まず、領域内配線 31上に形成された Si O絶縁層 24bの上に、図示しない第 4のレジストマスクを形成する。そして、 SiO絶 Both ends of the first beam yoke 5b are exposed. First, a fourth resist mask (not shown) is formed on the SiO 2 insulating layer 24b formed on the in-region wiring 31. And SiO
2 2 縁層 24a及び 24bのうち第 4のレジストマスクで覆われて!/ヽな 、部分(すなわち、領域 内配線 31の周囲を除く部分)を、反応性イオンエッチング装置により例えば C Fガス 2 2 Of the edge layers 24a and 24b, covered with the fourth resist mask! / ヽ, the part (that is, the part excluding the periphery of the in-region wiring 31) is removed by, for example, CF gas.
4 8 を用いて除去する。  Remove using 4 8.
[0070] 続いて、磁気ヨーク 5のうち残りのピラーヨーク 5c及び第 2のビームヨーク 5dを形成 する。図 15— (a)は、磁気メモリ 1の製造工程の一部を示す平面図であり、図 15— (b )は、図 15— (a)に示す VII— VII線に沿った側面断面図である。まず、磁気ヨーク 5 の平面形状に応じた開口を有する図示しない第 5のレジストマスクを形成する。このと き、第 5のレジストマスクの開口を、 SiO絶縁層 24b及び第 1のビームヨーク 5bが露  Subsequently, the remaining pillar yoke 5c and second beam yoke 5d of the magnetic yoke 5 are formed. FIG. 15- (a) is a plan view showing a part of the manufacturing process of the magnetic memory 1, and FIG. 15- (b) is a side sectional view taken along line VII-VII shown in FIG. 15- (a). It is. First, a fifth resist mask (not shown) having an opening corresponding to the planar shape of the magnetic yoke 5 is formed. At this time, the opening of the fifth resist mask is exposed to the SiO insulating layer 24b and the first beam yoke 5b.
2  2
出するように形成する。そして、スパッタにより NiFe層を形成する。このとき、 NiFe層 が SiO絶縁層 24bを完全に覆うように NiFe層を形成する。そして、第 5のレジストマForm so that it comes out. Then, a NiFe layer is formed by sputtering. At this time, NiFe layer The NiFe layer is formed so as to completely cover the SiO insulating layer 24b. And the fifth resister
2 2
スクを除去する。こうして、第 1のビームヨーク 5b、一対のピラーヨーク 5c、及び第 2の ビームヨーク 5dを有し、領域内配線 31を囲む磁気ヨーク 5が形成される。  Remove the disc. Thus, the magnetic yoke 5 having the first beam yoke 5b, the pair of pillar yokes 5c, and the second beam yoke 5d and surrounding the in-region wiring 31 is formed.
[0071] 最後に、第 5のレジストマスクを除去し、図 16に示すように、 SiO絶縁層 24aと同じ [0071] Finally, the fifth resist mask is removed, and as shown in FIG. 16, the same as the SiO insulating layer 24a
2  2
材料カゝらなる SiO絶縁層 24cを、磁気ヨーク 5上を含む配線層 7上の全面にわたって  Over the entire surface of the wiring layer 7 including the magnetic yoke 5, the SiO insulating layer 24 c made of the material
2  2
CVD法により形成する。こうして、 SiO絶縁層 24a〜24cからなる絶縁領域 24が形  It is formed by the CVD method. Thus, the insulating region 24 composed of the SiO insulating layers 24a to 24c is formed.
2  2
成され、磁性材料層 8が完成する。  As a result, the magnetic material layer 8 is completed.
[0072] (変形例) [Modification]
[0073] ここで、本実施形態による磁気メモリ 1の変形例について説明する。図 17及び図 18 は、それぞれ本変形例に係る磁気ヨーク 51及び 52の形状を示す断面図である。上 記実施形態の磁気ヨーク 5に代えて本変形例に係る磁気ヨーク 51または 52を設ける ことによって、上記実施形態の磁気メモリ 1と同等の効果を得ることができる。  Here, a modification of the magnetic memory 1 according to the present embodiment will be described. 17 and 18 are cross-sectional views showing the shapes of the magnetic yokes 51 and 52 according to this modification, respectively. By providing the magnetic yoke 51 or 52 according to this modification instead of the magnetic yoke 5 of the above embodiment, the same effect as the magnetic memory 1 of the above embodiment can be obtained.
[0074] まず、図 17を参照すると、磁気ヨーク 51は、所定の長さの空隙を介して対向する少 なくとも一対の開放端部を有する略環状体力 なり、領域内配線 31の一配線部分 31 aの外周を囲むように配設されている。具体的には、本変形例の磁気ヨーク 51は、一 対の対向ヨーク 51bと、一対のピラーヨーク 51cと、ビームヨーク 51dとによって構成さ れている。このうち、一対の対向ヨーク 51bは、一対の開放端部として一対の端面 51 aを有する。この一対の端面 51aは、 TMR素子 4aの第 1磁性層 45の磁ィ匕容易軸方 向に沿って、所定の長さの空隙を介して互いに対向して 、る。  First, referring to FIG. 17, the magnetic yoke 51 has a substantially annular physical force having at least a pair of open ends opposed to each other through a gap having a predetermined length, so that one wiring portion of the in-region wiring 31 It is arranged so as to surround the outer periphery of 31a. Specifically, the magnetic yoke 51 of this modification is configured by a pair of opposing yokes 51b, a pair of pillar yokes 51c, and a beam yoke 51d. Among these, the pair of opposing yokes 51b has a pair of end surfaces 51a as a pair of open ends. The pair of end faces 51a are opposed to each other via a gap having a predetermined length along the magnetic axis easy axis direction of the first magnetic layer 45 of the TMR element 4a.
[0075] 本変形例の TMR素子 4aは、上記実施形態の TMR素子 4とは異なり、第 1磁性層 45が磁気ヨーク 51の一部を兼ねてはおらず、他の層(非磁性絶縁層 46、第 2磁性 層 47、及び反強磁性層 48)と同様の平面形状に形成されている。そして、 TMR素 子 4aは、第 1磁性層 45が領域内配線 31の配線部分 31aと電気的に接続され、反強 磁性層 48が読み出し配線 35と電気的に接続されるように、上記実施形態の TMR素 子 4とは上下逆に形成されている。  In the TMR element 4a of this modification, unlike the TMR element 4 of the above embodiment, the first magnetic layer 45 does not also serve as a part of the magnetic yoke 51, and other layers (nonmagnetic insulating layer 46). The second magnetic layer 47 and the antiferromagnetic layer 48) are formed in the same planar shape. The TMR element 4a is implemented as described above so that the first magnetic layer 45 is electrically connected to the wiring portion 31a of the in-region wiring 31, and the antiferromagnetic layer 48 is electrically connected to the readout wiring 35. The TMR element 4 is formed upside down.
[0076] また、 TMR素子 4a及び磁気ヨーク 51は、 TMR素子 4aの一対の側面 4bがそれぞ れ磁気ヨーク 51の一対の端面 51aに対向するように、且つ第 1磁性層 45の磁化容易 軸方向が一対の端面 51aの並ぶ方向に沿うように、それぞれ配置される。また、磁気 ヨーク 51のビームヨーク 51dは、領域内配線 31における TMR素子 4aとは反対側の 面に沿って設けられている。一対のピラーヨーク 51cは、領域内配線 31の側面に沿 つて設けられており、一対の対向ヨーク 51bそれぞれにおける端面 51aとは異なる側 の一端と、ビームヨーク 5 Idの両端とを繋いでいる。 [0076] Further, the TMR element 4a and the magnetic yoke 51 are arranged so that the pair of side surfaces 4b of the TMR element 4a face the pair of end faces 51a of the magnetic yoke 51, respectively, and the easy magnetization axis of the first magnetic layer 45 They are arranged so that the directions are along the direction in which the pair of end faces 51a are arranged. Also magnetic The beam yoke 51d of the yoke 51 is provided along the surface of the in-region wiring 31 opposite to the TMR element 4a. The pair of pillar yokes 51c is provided along the side surface of the in-region wiring 31, and connects one end of each of the pair of opposed yokes 51b on the side different from the end surface 51a and both ends of the beam yoke 5Id.
[0077] 以上の構成によって、対向ヨーク 51b、ピラーヨーク 51c、及びビームヨーク 51dは、 領域内配線 31のうち TMR素子 4aに沿つた一部分 (配線部分 31 a)の外周を囲んで いる。 With the above configuration, the opposing yoke 51b, the pillar yoke 51c, and the beam yoke 51d surround the outer periphery of a portion (wiring portion 31a) of the intra-region wiring 31 along the TMR element 4a.
[0078] このように、磁気ヨーク 51は、 TMR素子 4aの一対の側面 4bのそれぞれに対向する 一対の端面 5 laを有するような形状でもよい。これにより、書き込み電流により生じる 磁気ヨーク 51内部の磁界力 領域内配線 31の配線部分 31aの外周方向に閉じた経 路を構成できる。そして、一対の端面 51aの間に配置された TMR素子 4aの第 1磁性 層 45へ効率よく外部磁界を提供することができる。  As described above, the magnetic yoke 51 may have a shape having a pair of end surfaces 5 la facing each of the pair of side surfaces 4b of the TMR element 4a. Thereby, a path closed in the outer peripheral direction of the wiring portion 31a of the magnetic field force internal wiring 31 inside the magnetic yoke 51 generated by the write current can be configured. Then, an external magnetic field can be efficiently provided to the first magnetic layer 45 of the TMR element 4a disposed between the pair of end faces 51a.
[0079] なお、本変形例において、磁気ヨーク 51における周方向と直交する断面の面積は 、一対の端面 51aにおいて最も小さいことが好ましい。これにより、磁気ヨーク 51内部 の磁界を、 TMR素子 4aの第 1磁性層 45へ更に効率よく与えることができる。  In this modification, the area of the cross section perpendicular to the circumferential direction of the magnetic yoke 51 is preferably the smallest on the pair of end faces 51a. Thereby, the magnetic field inside the magnetic yoke 51 can be more efficiently applied to the first magnetic layer 45 of the TMR element 4a.
[0080] 次に、図 18を参照すると、本変形例による磁気ヨーク 52は、一対の対向ヨーク 52b 、一対のピラーヨーク 52c、及びビームヨーク 52dを含んで構成されている。このうち、 一対のピラーヨーク 52c及びビームヨーク 52dの構成及び形状は、既述した磁気ョー ク 51の一対のピラーヨーク 51c及びビームヨーク 51dの構成及び形状(図 17参照)と 同様である。一対の対向ヨーク 52bは、その端面 52aが TMR素子 4aの側面 4bのうち 第 1磁性層 45の側面と接している。磁気ヨーク 52はこのような形状であってもよぐ書 き込み電流によって磁気ヨーク 52内部に生成される磁界を第 1磁性層 45へ更に効 率よく提供することができる。なお、この変形例において、磁気ヨーク 52が導電性を 有する場合には、第 1磁性層 45と第 2磁性層 47との間に流れる読み出し電流を非磁 性絶縁層 46を介して好適に流すために、磁気ヨーク 52の一対の端面 52aは非磁性 絶縁層 46には接して ヽな ヽことが好ましぐ第 2磁性層 47には接して ヽてはならな ヽ  Next, referring to FIG. 18, the magnetic yoke 52 according to this modification includes a pair of opposing yokes 52b, a pair of pillar yokes 52c, and a beam yoke 52d. Among these, the configuration and shape of the pair of pillar yokes 52c and beam yoke 52d are the same as the configuration and shape of the pair of pillar yokes 51c and beam yoke 51d of the magnetic yoke 51 described above (see FIG. 17). The end faces 52a of the pair of opposing yokes 52b are in contact with the side surfaces of the first magnetic layer 45 among the side surfaces 4b of the TMR element 4a. Even if the magnetic yoke 52 has such a shape, the magnetic field generated in the magnetic yoke 52 by the write current can be provided to the first magnetic layer 45 more efficiently. In this modified example, when the magnetic yoke 52 has conductivity, a read current flowing between the first magnetic layer 45 and the second magnetic layer 47 is suitably passed through the nonmagnetic insulating layer 46. Therefore, the pair of end faces 52a of the magnetic yoke 52 should be in contact with the second magnetic layer 47, which is preferably in contact with the nonmagnetic insulating layer 46.
[0081] 本発明による磁気メモリは、上記した実施形態に限られるものではなぐ他に様々な 変形が可能である。例えば、上記実施形態では磁気抵抗効果素子として TMR素子 を用いているが、巨大磁気抵抗(GMR: Giant magneto— Resistive)効果を利用 した GMR素子を用いてもよい。 GMR効果とは、非磁性層を挟んだ 2つの強磁性層 の磁化方向のなす角度により、積層方向と直交する方向における強磁性層の抵抗値 が変化する現象である。すなわち、 GMR素子においては、 2つの強磁性層の磁ィ匕方 向が互いに平行である場合に強磁性層の抵抗値が最小となり、 2つの強磁性層の磁 化方向が互いに反平行である場合に強磁性層の抵抗値が最大となる。なお、 TMR 素子や GMR素子には、 2つの強磁性層の保磁力の差を利用して書き込み Z読み出 しを行う疑似スピンバルブ型と、一方の強磁性層の磁ィ匕方向を反強磁性層との交換 結合により固定するスピンバルブ型とがある。また、 GMR素子におけるデータ読み出 しは、積層方向と直交する方向における強磁性層の抵抗値の変化を検出することに より行われる。また、 GMR素子におけるデータ書き込みは、書き込み電流により生じ る磁界によって一方の強磁性層の磁ィ匕方向を反転させることにより行われる。 [0081] The magnetic memory according to the present invention is not limited to the above-described embodiments, but various other types. Deformation is possible. For example, although the TMR element is used as the magnetoresistive effect element in the above embodiment, a GMR element using a giant magneto-resistive (GMR) effect may be used. The GMR effect is a phenomenon in which the resistance value of the ferromagnetic layer in the direction perpendicular to the stacking direction changes depending on the angle formed by the magnetization directions of the two ferromagnetic layers sandwiching the nonmagnetic layer. That is, in the GMR element, when the magnetic directions of the two ferromagnetic layers are parallel to each other, the resistance value of the ferromagnetic layer is minimized, and the magnetization directions of the two ferromagnetic layers are antiparallel to each other. In this case, the resistance value of the ferromagnetic layer is maximized. The TMR element and GMR element have a pseudo spin valve type that writes and reads Z using the difference in coercive force of the two ferromagnetic layers, and the magnetic field direction of one ferromagnetic layer is strong. There is a spin valve type that is fixed by exchange coupling with the magnetic layer. Data reading in the GMR element is performed by detecting a change in the resistance value of the ferromagnetic layer in a direction orthogonal to the stacking direction. Data writing in the GMR element is performed by reversing the magnetic field direction of one ferromagnetic layer by a magnetic field generated by a write current.
[0082] また、上記実施形態では、書き込み電流及び読み出し電流を制御するためのスィ ツチ手段としてトランジスタ (読み書き兼用トランジスタ)を用いているが、このスィッチ 手段としては、必要に応じて電流を遮断 Z導通させる機能を有する様々な手段を適 用することができる。 In the above embodiment, a transistor (read / write transistor) is used as a switch means for controlling the write current and the read current. However, as this switch means, the current is interrupted as necessary. Various means having a function of conducting can be applied.
[0083] また、上記実施形態では、領域内配線の配線部分と磁気抵抗効果素子の一端とが 接続されることにより、スィッチ手段と磁気抵抗効果素子とが互いに電気的に接続さ れている。スィッチ手段と磁気抵抗効果素子とは、これ以外にも、例えば領域内配線 とは別の配線によって互いに接続されて 、てもよ 、。  Further, in the above embodiment, the switch means and the magnetoresistive effect element are electrically connected to each other by connecting the wiring portion of the in-region wiring and one end of the magnetoresistive effect element. In addition to this, the switch means and the magnetoresistive element may be connected to each other by, for example, a wiring different from the in-region wiring.
産業上の利用可能性  Industrial applicability
[0084] 本発明は、磁気抵抗効果素子にデータを記憶する磁気メモリに利用できる。 The present invention can be used in a magnetic memory that stores data in a magnetoresistive element.

Claims

請求の範囲 The scope of the claims
[1] 複数の記憶領域を備え、  [1] with multiple storage areas,
前記複数の記憶領域のそれぞれは、  Each of the plurality of storage areas is
外部磁界によって磁化方向が変化する感磁層を含む磁気抵抗効果素子と、 前記感磁層に沿って延びる配線部分を有し、前記配線部分を流れる書き込み電流 によって前記感磁層に前記外部磁界を提供する領域内配線と、  A magnetoresistive effect element including a magnetosensitive layer whose magnetization direction is changed by an external magnetic field; and a wiring portion extending along the magnetosensitive layer. The external magnetic field is applied to the magnetosensitive layer by a write current flowing through the wiring portion. In-area wiring to provide,
前記領域内配線の一端及び前記磁気抵抗効果素子の一端に電気的に接続され ており、前記領域内配線における前記書き込み電流の導通、及び前記磁気抵抗効 果素子への読み出し電流の導通を制御するスィッチ手段と、  It is electrically connected to one end of the intra-region wiring and one end of the magnetoresistive effect element, and controls conduction of the write current in the intra-region wiring and conduction of a read current to the magnetoresistive effect element. Switch means,
を有することを特徴とする、磁気メモリ。  A magnetic memory comprising:
[2] 前記領域内配線が、前記配線部分において前記磁気抵抗効果素子の前記一端と 電気的に接続されており、前記読み出し電流を前記スィッチ手段から前記磁気抵抗 効果素子へ流すことを特徴とする、請求項 1に記載の磁気メモリ。  [2] The in-region wiring is electrically connected to the one end of the magnetoresistive effect element in the wiring portion, and the read current flows from the switch means to the magnetoresistive effect element. The magnetic memory according to claim 1.
[3] 前記複数の記憶領域が、 m行 n列 (m、 nは 2以上の整数)力 なる 2次元状に配列 されており、  [3] The plurality of storage areas are arranged in a two-dimensional shape having a power of m rows and n columns (m and n are integers of 2 or more),
前記複数の記憶領域の各列に対応して設けられ、対応する列の前記記憶領域そ れぞれにお 1ヽて、前記スィッチ手段を介して前記領域内配線の前記一端及び前記 磁気抵抗効果素子の前記一端に電気的に接続された第 1の配線と、  Provided in correspondence with each column of the plurality of storage areas, and each of the storage areas of the corresponding column, the one end of the in-area wiring and the magnetoresistive effect via the switch means A first wiring electrically connected to the one end of the element;
前記複数の記憶領域の各列に対応して設けられ、対応する列の前記記憶領域そ れぞれにおいて、前記領域内配線の他端に電気的に接続された第 2の配線と、 前記複数の記憶領域の各行に対応して設けられ、対応する行の前記記憶領域そ れぞれにお 1ヽて、前記スィッチ手段の制御端子に接続された第 3の配線と、  A second wiring provided corresponding to each column of the plurality of storage areas and electrically connected to the other end of the intra-area wiring in each of the storage areas of the corresponding column; A third wiring provided corresponding to each row of the storage area and connected to the control terminal of the switch means for each of the storage areas of the corresponding row;
前記複数の記憶領域の各行に対応して設けられ、対応する行の前記記憶領域そ れぞれにおいて、前記磁気抵抗効果素子の他端と電気的に接続された第 4の配線と をさらに備えることを特徴とする、請求項 1に記載の磁気メモリ。  A fourth wiring provided corresponding to each row of the plurality of storage areas, and each of the storage areas in the corresponding row electrically connected to the other end of the magnetoresistive effect element; The magnetic memory according to claim 1, wherein:
[4] 前記第 1及び第 4の配線に電気的に接続されており、前記磁気抵抗効果素子へ前 記読み出し電流を供給する読み出し電流供給手段をさらに備えることを特徴とする、 請求項 3に記載の磁気メモリ。 [4] The method according to claim 3, further comprising read current supply means that is electrically connected to the first and fourth wirings and supplies the read current to the magnetoresistive element. The magnetic memory described.
[5] 前記第 1及び第 2の配線に電気的に接続されており、前記領域内配線へ前記書き 込み電流を供給する書き込み電流供給手段をさらに備えることを特徴とする、請求項 3に記載の磁気メモリ。 [5] The method of claim 3, further comprising a write current supply unit that is electrically connected to the first and second wirings and supplies the write current to the in-region wiring. Magnetic memory.
[6] 前記複数の記憶領域のそれぞれは、前記領域内配線の前記配線部分を連続して 囲むように設けられた磁気ヨークを更に有し、  [6] Each of the plurality of storage areas further includes a magnetic yoke provided so as to continuously surround the wiring portion of the wiring in the area.
前記磁気抵抗効果素子の前記感磁層は、前記磁気ヨークの一部によって構成され て 、ることを特徴とする、請求項 1に記載の磁気メモリ。  2. The magnetic memory according to claim 1, wherein the magnetosensitive layer of the magnetoresistive element is constituted by a part of the magnetic yoke.
[7] 前記複数の記憶領域のそれぞれは、所定の長さの空隙を介して対向する少なくと も一対の開放端部を含み前記領域内配線の前記配線部分を囲むように設けられた 磁気ヨークを更に有し、 [7] Each of the plurality of storage areas includes at least a pair of open ends facing each other through a gap having a predetermined length, and is provided so as to surround the wiring portion of the in-area wiring. Further comprising
前記磁気抵抗効果素子は、該磁気抵抗効果素子の一対の側面が前記磁気ヨーク の前記一対の開放端部とそれぞれ対向または接するように配置されていることを特 徴とする、請求項 1に記載の磁気メモリ。  2. The magnetoresistive effect element according to claim 1, wherein the magnetoresistive effect element is disposed such that a pair of side surfaces of the magnetoresistive effect element are opposed to or in contact with the pair of open ends of the magnetic yoke, respectively. Magnetic memory.
[8] 複数の記憶領域を備えた磁気メモリにおいて、 [8] In a magnetic memory having a plurality of storage areas,
前記複数の記憶領域のそれぞれは、  Each of the plurality of storage areas is
磁気抵抗効果素子と、  A magnetoresistive element;
前記磁気抵抗効果素子に電気的に接続された領域内配線と、  In-region wiring electrically connected to the magnetoresistive element;
前記領域内配線の一端とビット配線間に電気的に接続された読み書き兼用トランジ スタと、  A read / write transistor electrically connected between one end of the internal wiring and the bit wiring;
を有することを特徴とする、磁気メモリ。  A magnetic memory comprising:
[9] 前記読み書き兼用トランジスタのゲート電極に電気的に接続されたワード選択回路 を更に備えることを特徴とする請求項 8に記載の磁気メモリ。 9. The magnetic memory according to claim 8, further comprising a word selection circuit electrically connected to a gate electrode of the read / write transistor.
PCT/JP2005/021985 2004-12-01 2005-11-30 Magnetic memory WO2006059641A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004348799A JP2006156893A (en) 2004-12-01 2004-12-01 Magnetic memory
JP2004-348799 2004-12-01

Publications (1)

Publication Number Publication Date
WO2006059641A1 true WO2006059641A1 (en) 2006-06-08

Family

ID=36565075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021985 WO2006059641A1 (en) 2004-12-01 2005-11-30 Magnetic memory

Country Status (2)

Country Link
JP (1) JP2006156893A (en)
WO (1) WO2006059641A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5092384B2 (en) * 2006-12-15 2012-12-05 Tdk株式会社 Magnetic storage device and magnetic storage method
US8174800B2 (en) 2007-05-07 2012-05-08 Canon Anelva Corporation Magnetoresistive element, method of manufacturing the same, and magnetic multilayered film manufacturing apparatus
JP2008306169A (en) * 2007-05-07 2008-12-18 Canon Anelva Corp Magnetoresistive element, its manufacturing method, and magnetic multilayer film manufacturing apparatus
CN107091996B (en) * 2017-04-28 2023-06-06 黑龙江大学 Composite magnetic field sensor and manufacturing process thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006729A (en) * 2002-03-29 2004-01-08 Toshiba Corp Method for manufacturing magnetic storage device
WO2004021357A1 (en) * 2002-08-27 2004-03-11 Freescale Semiconductor, Inc. Magnetic random access memory having a vertical write line
JP2004128430A (en) * 2002-07-30 2004-04-22 Toshiba Corp Magnetic storage device and its manufacturing method
JP2004153070A (en) * 2002-10-31 2004-05-27 Nec Corp Magnetic random access memory and its manufacturing method
US20040100835A1 (en) * 2002-11-27 2004-05-27 Nec Corporation Magnetic memory cell and magnetic random access memory using the same
JP2004281599A (en) * 2003-03-14 2004-10-07 Tdk Corp Magnetoresistive effect element and magnetic memory device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006729A (en) * 2002-03-29 2004-01-08 Toshiba Corp Method for manufacturing magnetic storage device
JP2004128430A (en) * 2002-07-30 2004-04-22 Toshiba Corp Magnetic storage device and its manufacturing method
WO2004021357A1 (en) * 2002-08-27 2004-03-11 Freescale Semiconductor, Inc. Magnetic random access memory having a vertical write line
JP2004153070A (en) * 2002-10-31 2004-05-27 Nec Corp Magnetic random access memory and its manufacturing method
US20040100835A1 (en) * 2002-11-27 2004-05-27 Nec Corporation Magnetic memory cell and magnetic random access memory using the same
JP2004281599A (en) * 2003-03-14 2004-10-07 Tdk Corp Magnetoresistive effect element and magnetic memory device

Also Published As

Publication number Publication date
JP2006156893A (en) 2006-06-15

Similar Documents

Publication Publication Date Title
US7266011B2 (en) Magneto-resistance effect element and magnetic memory
JP2007266498A (en) Magnetic recording element and magnetic memory
US20100193890A1 (en) Magnetic domain wall random access memory
KR20030074469A (en) Magneto resistive storage device having a double tunnel junction
JP2006294191A (en) Method for reading data from magnetic random access memory
WO2007119446A1 (en) Mram and mram data reading/writing method
EP1398789B1 (en) Magnetic random access memory with soft magnetic reference layers
JP5076387B2 (en) Magnetic storage
JP5146846B2 (en) Magnetic memory cell and magnetic random access memory
WO2006059641A1 (en) Magnetic memory
JP2006196687A (en) Magnetic memory
JP4729836B2 (en) Magnetic storage cell, magnetic memory device, and method of manufacturing magnetic memory device
US7470964B2 (en) Magnetic memory and manufacturing method thereof
US7683446B2 (en) Magnetic memory using spin injection flux reversal
JP5951401B2 (en) Magnetic recording element and magnetic memory
US7257019B2 (en) Systems and methods for a magnetic memory device that includes a single word line transistor
JP5445029B2 (en) Magnetoresistive element and domain wall random access memory
JP2015038998A (en) Magnetic recording element and magnetic memory
JP5050318B2 (en) Magnetic memory
KR100678471B1 (en) Method of operating a magnetic random access memory device
WO2006046610A1 (en) Magnetic memory
JP4544396B2 (en) Magnetic storage cell and magnetic memory device
JP2009146995A (en) Magnetic memory device
JP2007123512A (en) Magnetic storage device
WO2006035943A1 (en) Magnetic memory

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05811563

Country of ref document: EP

Kind code of ref document: A1