WO2006055434A2 - Macrocyclic tertiary amine beta-secretase inhibitors for the treatment of alzheimer's disease - Google Patents

Macrocyclic tertiary amine beta-secretase inhibitors for the treatment of alzheimer's disease Download PDF

Info

Publication number
WO2006055434A2
WO2006055434A2 PCT/US2005/040984 US2005040984W WO2006055434A2 WO 2006055434 A2 WO2006055434 A2 WO 2006055434A2 US 2005040984 W US2005040984 W US 2005040984W WO 2006055434 A2 WO2006055434 A2 WO 2006055434A2
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
group
aryl
cycloalkyl
mmol
Prior art date
Application number
PCT/US2005/040984
Other languages
French (fr)
Other versions
WO2006055434A3 (en
Inventor
Philippe G. Nantermet
Hemaka A. Rajapakse
Harold G. Selnick
Stacey Lindsley
Keith P. Moore
Shawn J. Stachel
Original Assignee
Merck & Co., Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck & Co., Inc. filed Critical Merck & Co., Inc.
Priority to EP05825640.5A priority Critical patent/EP1814537B1/en
Priority to US11/667,913 priority patent/US7678783B2/en
Priority to JP2007543137A priority patent/JP2008520670A/en
Priority to CA002587083A priority patent/CA2587083A1/en
Priority to AU2005306701A priority patent/AU2005306701A1/en
Publication of WO2006055434A2 publication Critical patent/WO2006055434A2/en
Publication of WO2006055434A3 publication Critical patent/WO2006055434A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D273/00Heterocyclic compounds containing rings having nitrogen and oxygen atoms as the only ring hetero atoms, not provided for by groups C07D261/00 - C07D271/00
    • C07D273/01Heterocyclic compounds containing rings having nitrogen and oxygen atoms as the only ring hetero atoms, not provided for by groups C07D261/00 - C07D271/00 having one nitrogen atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D267/00Heterocyclic compounds containing rings of more than six members having one nitrogen atom and one oxygen atom as the only ring hetero atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D313/00Heterocyclic compounds containing rings of more than six members having one oxygen atom as the only ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D321/00Heterocyclic compounds containing rings having two oxygen atoms as the only ring hetero atoms, not provided for by groups C07D317/00 - C07D319/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D323/00Heterocyclic compounds containing more than two oxygen atoms as the only ring hetero atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D498/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D498/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D498/08Bridged systems

Definitions

  • the invention is directed to the field of compounds which are inhibitors of the the activity of the ⁇ -secretase enzyme, and to the use of the compounds for the treatment of diseases in which the ⁇ - secretase enzyme is involved, such as Alzheimer's disease.
  • Alzheimer's disease is characterized by the abnormal deposition of amyloid in the brain in the form of extra-cellular plaques and intra-cellular neurofibrillary tangles.
  • the rate of amyloid accumulation is a combination of the rates of formation, aggregation and egress from the brain. It is generally accepted that the main constituent of amyloid plaques is the 4kD amyloid protein ( ⁇ A4, also referred to as A ⁇ , ⁇ -protein and ⁇ AP) which is a proteolytic product of a precursor protein of much larger size.
  • the amyloid precursor protein (APP or A ⁇ PP) has a receptor-like structure with a large ectodomain, a membrane spanning region and a short cytoplasmic tail.
  • the A ⁇ domain encompasses parts of both extra-cellular and transmembrane domains of APP, thus its release implies the existence of two distinct proteolytic events to generate its NH 2 - and COOH-termini. At least two secretory mechanisms exist which release APP from the membrane and generate soluble, COOH-truncated forms of APP (APP s ). Proteases that release APP and its fragments from the membrane are termed "secretases.” Most APP s is released by a putative ⁇ -secretase which cleaves within the A ⁇ protein to release ⁇ -APP s and precludes the release of intact A ⁇ .
  • ⁇ -secretase a ⁇ - secretase
  • CTFs COOH-terminal fragments
  • BACE amyloid precursor protein-cleaving enzyme
  • therapeutic agents that can inhibit ⁇ -secretase or BACE may be useful for the treatment of Alzheimer's disease.
  • the compounds of the present invention are useful for treating Alzheimer's disease by inhibiting the activity of ⁇ -secretase or BACE, thus preventing the formation of insoluble A ⁇ and arresting the production of A ⁇ .
  • the present invention is directed to novel macrocyclic tertiary amine compounds represented by general formula (I)
  • the invention is also directed to pharmaceutical compositions which include an effective amount of a compound of formula (I), or pharmaceutically acceptable salts thereof, and individual enantiomers and diastereomers thereof, and a pharmaceutically acceptable carrier.
  • the invention is also directed to methods of treating mammals for diseases in which the ⁇ -secretase enzyme is involved, such as Alzheimer's disease, and the use of the compounds and pharmaceutical compositions of the invention in the treatment of such diseases.
  • the present invention is directed to compounds of formula (I):
  • X and Y are selected from the group consisting of (1) hydrogen, (2) -C1-3 alkyl,
  • A is selected from the group consisting of
  • heteroaryl selected from the group consisting of pyrazinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, tetrazolyl, furanyl, imidazolyl, triazinyl, pyranyl, thiazolyl, thienyl, thiophenyl, triazolyl, oxazolyl, isoxazolyl, thiazolyl, oxadiazolyl, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl and benzoxazolyl,
  • aryl and heteroaryl groups are unsubstituted or substituted with one or more (i) halo
  • R1 is selected from the group consisting of (1) -C6-10 arylene, or
  • heteroarylene selected from the group consisting of divalent pyrazinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, tetrazolyl, furanyl, imidazolyl, triazinyl, pyranyl, thiazolyl, thienyl, thiophenyl, triazolyl, oxazolyl, isoxazolyl, thiazolyl, oxadiazolyl, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl and benzoxazolyl,
  • arylene or heteroarylene is unsubstituted or substituted with one or more
  • R2 is selected from the group consisting of: (1) (R5-SO2)N(R6)-, wherein R5 is selected from the group consisting of: (1) (R5-SO2)N(R6)-, wherein R5 is selected from the group consisting of: (1) (R5-SO2)N(R6)-, wherein R5 is selected from the group consisting of: (1) (R5-SO2)N(R6)-, wherein R5 is selected from the group consisting of: (1) (R5-SO2)N(R6)-, wherein R5 is
  • heteroaryl selected from the group consisting of pyrazinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, tetrazolyl, furanyl, imidazolyl, triazinyl, pyranyl, thiazolyl, thienyl, thiophenyl, triazolyl, oxazolyl, isoxazolyl, thiazolyl, oxadiazolyl, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl and benzoxazolyl,
  • alkyl, alkenyl, alkynyl, cycloalkyl, aryl and heteroaryl is unsubstituted or substituted with one or more (i) halo
  • heteroaryl selected from the group consisting of pyrazinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, tetrazolyl, furanyl, imidazolyl, triazinyl, pyranyl, thiazolyl, thienyl, thiophenyl, triazolyl, oxazolyl, isoxazolyl, thiazolyl, oxadiazolyl, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl and benzoxazolyl, and said aryl and heteroaryl is unsubstituted or substituted with one or more
  • R6 is selected from the group consisting of
  • heteroaryl selected from the group consisting of pyrazinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, tetrazolyl, furanyl, imidazolyl, triazinyl, pyranyl, thiazolyl, thienyl, thiophenyl, triazolyl, oxazolyl, isoxazolyl, thiazolyl, oxadiazolyl, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl and benzoxazolyl,
  • alkyl, alkenyl, alkynyl, aryl or heteroaryl is unsubstituted or substituted with one or more
  • heteroaryl selected from the group consisting of pyrazinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, tetrazolyl, furanyl, imidazolyl, triazinyl, pyranyl, thiazolyl, thienyl, thiophenyl, triazolyl, oxazolyl, isoxazolyl, thiazolyl, oxadiazolyl, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl and benzoxazolyl;
  • cycloalkyl, aryl or heteroaryl is unsubstituted or substituted with one or more
  • R5 and R6 may be linked to form a group -CH2(CH2)pCH2-;
  • heteroaryl selected from the group consisting of pyrazinyl, pyrazolyl,pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, tetrazolyl, furanyl, imidazolyl, triazinyl, pyranyl, thiazolyl, thienyl, thiophenyl, triazolyl, oxazolyl, isoxazolyl, thiazolyl, oxadiazolyl, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl and benzoxazolyl, wherein said heteroaryl is unsubstituted or substituted with one or more (i) halo, ( ⁇ ) -OH, (iii) -CN,
  • R3 is selected from the group consisting of
  • R x is selected from the group consisting of
  • RY is selected from the group consisting of (a) hydrogen, (b) -C1-10 alkyl, (c)-C2-10 alkenyl, (d) -C2-10 alkynyl,
  • heteroaryl is selected from the group consisting of pyrazinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, tetrazolyl, furanyl, imidazolyl, triazinyl, pyranyl, thiazolyl, thienyl, thiophenyl, triazolyl, oxazolyl, isoxazolyl, thiazolyl, oxadiazolyl, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl and benzoxazolyl,
  • RY alkyl, alkylene, alkenyl,alkynyl, cycloalkyl and heteroaryl groups are unsubstituted with one or more (i) halo,
  • (c) CH 2 wherein said alkyl, alkylene, cycloalkyl, aryl or heteroaryl Ry groups are unsubstituted or substituted with one or more (i) halo, (ii) -C1-10 alkyl, (iii) -OH, (iv) -CN, or (v) -O-C1-10 alkyl, or (vi) -C3-8 cycloalkyl;
  • Q3, Q4 and Q5 are selected from the group consisting of (a) -CH 2 - (b) -O-, and (c) -NH-;
  • R7 and R8 are selected from the group consisting of (I) -C1-10 alkyl, and
  • R9 is selected from the group consisting of (1) -C1-10 alkyl
  • R9 is NR7R8
  • n 0, 1 or 2
  • p is 1, 2, 3, 4 or 5
  • q is 2, 3, 4 or 5
  • r is 0, 1 or 2.
  • X and Y are both hydrogen.
  • R1 is unsubstituted or substituted -C6-10 arylene, preferably unsubstituted phenylene.
  • R4 is -(CH2)n-Q2 -(CH2)m, wherein Q2 is selected from the group consisting of
  • n and m are preferably each 1.
  • R3 is as depicted in paragraph (1) below:
  • R ⁇ is preferably hydrogen.
  • Ry is preferably selected from the group consisting of
  • heteroaryl is selected from the group consisting of pyrazinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, tetrazolyl, furanyl, imidazolyl, triazinyl, pyranyl, thiazolyl, thienyl, thiophenyl, triazolyl, oxazolyl, isoxazolyl, thiazolyl, oxadiazolyl, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl and benzoxazolyl, wherein said alkyl, alkylene, alkenyl, alkynyl, cycloalkyl, aryl or heteroaryl are unsubstituted or substituted with one or more (i) halo,
  • Q3 is preferably -O- or -CH2
  • m is preferably 1
  • n and r are each preferably O.
  • R x and Ry are not both hydrogen.
  • R3 is as depicted in paragraph (2) below:
  • RY is preferably selected from the group consisting of (a) -C1-10 alkyl,
  • heteroaryl is selected from the group consisting of pyrazinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, tetrazolyl, furanyl, imidazolyl, triazinyl, pyranyl, thiazolyl, thienyl, thiophenyl, triazolyl, oxazolyl, isoxazolyl, thiazolyl, oxadiazolyl, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl and benzoxazolyl, wherein said alkyl, alkenyl, alkynyl, cycloalkyl, aryl or heteroaryl are unsubstituted or substituted with one or
  • (b) CH-C0-6 alkylene-C6-10 aryl, wherein said alkyl, alkylene, aryl or heteroaryl groups are unsubstituted or substituted with one or more
  • Q4 is — O— or -CH2— and Q5 is — O— or -CH2-.
  • n and m are each 1 , and r is preferably 0.
  • A is selected from the group consisting of
  • heteroaryl selected from the group consisting of pyrazinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, tetrazolyl, furanyl, imidazolyl, triazinyl, pyranyl, thiazolyl, thienyl, thiophenyl, triazolyl, oxazolyl, isoxazolyl, thiazolyl, oxadiazolyl, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl and benzoxazolyl.
  • A is -C1 -10 alkyl
  • alkyl (preferably methyl), wherein said alkyl is unsubstituted or substituted with one or more halo (preferably fiuoro).
  • R2 is selected from the group consisting of (R5-SO2)N(R6)-, wherein R5 is -C1-6 alkyl, wherein said alkyl is unsubstituted or substituted with one or more
  • R6 is selected from the group consisting of
  • R5 and R6 are linked to form a group -CH2(CH2)pCH2-.
  • Another preferred R2 group is-C6-10 aryl, unsubstituted or substituted as described above.
  • Preferred aryl groups are phenyl groups, unsubstituted or substituted with cyano.
  • a preferred R2 substituent is shown below:
  • R2 substituent is heteroaryl, either unsubstituted or substituted as described above.
  • a preferred heteroaryl group is furanyl or oxazolyl, either unsubstituted or substituted as described above.
  • a preferred furanyl or oxazolyl substituent is depicted below:
  • Q1 is selected from the group consisting of
  • Another embodiment of the present invention is directed to compounds of formula (H):
  • X and Y are both hydrogen.
  • R4 is -(CH2)n-Q2 - (CH2)m- > wherein Q2 is selected from the group consisting of
  • n and m are preferably each 1.
  • R3 is as depicted in paragraph (1) below:
  • R ⁇ is preferably hydrogen.
  • RY is preferably selected from the group consisting of (a) -C1-10 alkyl, (b)-C2-10 alkenyl,
  • heteroaryl is selected from the group consisting of pyrazinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, tetrazolyl, furanyl, imidazolyl, triazinyl, pyranyl, thiazolyl, thienyl, thiophenyl, triazolyl, oxazolyl, isoxazolyl, thiazolyl, oxadiazolyl, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl and benzoxazolyl, wherein said alkyl, alkylene, alkenyl, alkynyl, cycloalkyl, aryl or heteroaryl are unsubstituted or substituted with one or more (i) halo,
  • RY is preferably selected from the group consisting of
  • R3 is as depicted in paragraph (2) below:
  • Ry is preferably selected from the group consisting of (a) -C1-10 alkyl,
  • heteroaryl is selected from the group consisting of pyrazinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, tetrazolyl, furanyl, imidazolyl, triazinyl, pyranyl, thiazolyl, thienyl, thiophenyl, triazolyl, oxazolyl, isoxazolyl, thiazolyl, oxadiazolyl, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl and benzoxazolyl, wherein said alkyl, alkylene, alkenyl, alkynyl, cycloalkyl, aryl or heteroaryl are unsubstituted
  • (b) CH-C0-6 alkylene-C6-10 aryl, wherein said alkyl, alkylene, aryl or heteroaryl groups are unsubstituted or substituted with one or more
  • Q4 is -O- or -CH2- and Q5 is -O- or — CH2 -.
  • n and m are each 1 and r is preferably 0.
  • A is selected from the group consisting of
  • heteroaryl selected from the group consisting of pyrazinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, tetrazolyl, furanyl, imidazolyl, triazinyl, pyranyl, thiazolyl, thienyl, thiophenyl, triazolyl, oxazolyl, isoxazolyl, thiazolyl, oxadiazolyl, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl and benzoxazolyl.
  • A is -C1-10 alkyl
  • alkyl (preferably methyl), wherein said alkyl is unsubstituted or substituted with one or more halo (preferably fluoro).
  • R2 is selected from the group consisting of (R5-SO2)N(R6)-, wherein R5 is -C1-6 alkyl, wherein said alkyl is unsubstituted or substituted with one or more
  • R6 is selected from the group consisting of
  • R5 and R6 may be linked to form a group -CH2(CH2) p CH2-.
  • Another preferred R2 group is— C6-10 aryl, unsubstituted or substituted as described above.
  • Preferred aryl groups are phenyl groups, unsubstituted or substituted with cyano.
  • a preferred R2 substituent is shown below:
  • R2 substituent is heteroaryl, either unsubstituted or substituted as described above.
  • Preferred heteroaryl groups include furanyl or oxazolyl, either unsubstituted or substituted as described above.
  • a preferred furanyl or oxazolyl substituent is depicted below:
  • Ql is selected from the group consisting of
  • Another embodiment of the present invention is directed to compounds of the formula (III)
  • A, X, Y, R1, R2, R4, R x , R y , R y' Q3, m, n and r are as defined above, and pharmaceutically acceptable salts thereof, and individual enantiomers and diastereomers thereof.
  • X and Y are both hydrogen.
  • R4 is -(CH2)n-Q2 -(CH2)m, wherein Q2 is selected from the group consisting of (I)-O-,
  • n and m are preferably each 1.
  • A is selected from the group consisting of
  • heteroaryl selected from the group consisting of pyrazinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, tetrazolyl, furanyl, imidazolyl, triazinyl, pyranyl, thiazolyl, thienyl, thiophenyl, triazolyl, oxazolyl, isoxazolyl, thiazolyl, oxadiazolyl, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl and benzoxazolyl.
  • A is -Ci_io alkyl
  • alkyl (preferably methyl), wherein said alkyl is unsubstituted or substituted with one or more halo (preferably fluoro).
  • R2 is selected from the group consisting of (R5-SO2)N(R6)-, wherein R5 is -C 1-6 alkyl, wherein said alkyl is unsubstituted or substituted with one or more
  • R6 is selected from the group consisting of (a) hydrogen,
  • R5 and R6 may be linked to form a group -CH2(CH2)pCH2-.
  • Another preferred R2 group is-C6-10 aryl, unsubstituted or substituted as described above.
  • Preferred aryl groups are phenyl groups, unsubstituted or substituted with cyano.
  • a preferred R2 substituent is shown below:
  • R2 substituent is ; wherein p is 1, 2 or 3.
  • R2 substituent is heteroaryl, either unsubstituted or substituted as described above.
  • Preferred heteroaryl groups include furanyl and oxazolyl, either unsubstituted or substituted as described above.
  • a preferred furanyl or oxazolyl substiturent is depicted below:
  • Q1 is selected from the group consisting of
  • Another embodiment of the present invention is directed to compounds of the formula (IV):
  • A, X,Y, R1, R 2 , R4, Ry, Ry' Q4, Q5, m, n and r are as defined above, and pharmaceutically acceptable salts thereof, and individual enantiomers and diastereomers thereof.
  • X and Y are both hydrogen.
  • R4 is -(CH2) n Q2 - (CH2)m, wherein Q2 is selected from the group consisting of (I)-O-,
  • n and m are preferably each 1.
  • A is selected from the group consisting of
  • A is — C1-10 alkyl (preferably methyl), wherein said alkyl is unsubstituted or substituted with one or more halo (preferably fluoro).
  • R2 is selected from the group consisting of (R5-SO2)N(R6)-, wherein R5 is -C1-6 alkyl, wherein said alkyl is unsubstituted or substituted with one or more (i) halo,
  • R6 is selected from the group consisting of (a) hydrogen, (b) -C1-6 alkyl, or
  • R 5 and R6 may be linked to form a group -CH2(CH2)pCH2 ⁇ .
  • R2 group is-C6-10 aryl, unsubstituted or substituted as described above.
  • Preferred aryl groups are phenyl groups, unsubstituted or substituted with cyano.
  • a preferred R2 substituent is shown below:
  • R2 substituent is heteroaryl, either unsubstituted or substituted as described above.
  • Preferred heteroaryl groups include furanyl or oxazolyl, either unsubstituted or substituted as described above.
  • a preferred furanyl or oxazolyl substituent is depicted below:
  • Ql is selected from the group consisting of (a) N, and
  • Another embodiment of the present invention includes a compound which is selected from the title compounds of the following Examples and pharmaceutically acceptable salts thereof.
  • alkyl by itself or as part of another substituent, means a saturated straight or branched chain hydrocarbon radical having the number of carbon atoms designated (e.g., C ⁇ . io alkyl means an alkyl group having from one to ten carbon atoms).
  • Preferred alkyl groups for use in the invention are C1-6 alkyl groups, having from one to six carbon atoms.
  • Exemplary alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, pentyl, hexyl, and the like.
  • alkylene by itself or as part of another substituent, means a saturated straight or branched chain divalent hydrocarbon radical having the number of carbon atoms designated.
  • Co alkylene means a bond.
  • cycloalkyl by itself or as part of another substituent, means a saturated cyclic hydrocarbon radical having the number of carbon atoms designated (e.g., C3.8 cycloalkyl means a cycloalkyl group having from three to eight carbon atoms).
  • exemplary cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like.
  • alkenyl by itself of as part of another substituent, means a straight or branched chain hydrocarbon radical having a single carbon-carbon double bond and having the number of carbon atoms designated (e.g., C2-10 alkenyl means an alkenyl group having from one to ten carbon atoms).
  • Preferred alkenyl groups for use in the invention are C2-6 alkenyl groups, having from two to six carbon atoms.
  • Exemplary alkenyl groups include ethenyl, n-propenyl, isopropenyl, butenyl, and the like.
  • alkynyl by itself or as part of another substituent, means a saturated straight or branched chain hydrocarbon radical having the number of carbon atoms designated (e.g., C2-10 alkynyl means an alkynyl group having from two to ten carbon atoms).
  • Preferred alkynyl groups for use in the invention are C2-6 alkynyl groups, having from two to six carbon atoms.
  • Exemplary alkynyl groups include ethynyl and propynyl.
  • aryl by itself or as part of another substituent, means an aromatic or cyclic radical having the number of carbon atoms designated (e.g., C6-10 aryl means an aryl group having from six to ten carbons atoms).
  • aryl includes multiple ring systems as well as single ring systems.
  • Preferred aryl groups for use in the invention include phenyl and naphthyl.
  • arylene by itself or as part of another substituent, means a divalent aromatic or cyclic radical, having the number of carbon atoms designated (e.g., C6-10 arylene means an arylene group having from six to ten carbons atoms).
  • arylene includes multiple ring systems as well as single ring systems.
  • Preferred arylene groups for use in the invention include phenylene and naphthylene.
  • heteroaryl by itself or as part of another substituent, means an aromatic cyclic radical having at least one ring heteroatom (O, N or S).
  • heteroaryl includes multiple ring systems as well as single ring systems.
  • heteroaryl groups for use in the invention include furyl, pyranyl, benzofuranyl, isobenzofuranyl, chromenyl, thienyl, benzothiophenyl, pyrrolyl, pyrazolyl, imidazolyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, indolyl, benzimidazolyl, quinolinyl, isoquinolinyl, tetrazolyl, indazolyl, napthyridinyl, triazolyl, oxazolyl, oxadiazolyl, thiazolyl, thiadiazolyl, isoxazolyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl and dihydroindolyl.
  • the substituent When a heteroaryl group as defined herein is substituted, the substituent may be bonded to a ring carbon atom of the heteroaryl group, or on a ring heteroatom ⁇ i.e., a nitrogen, oxygen or sulfur), which has a valence which permits substitution. Preferably, the substituent is bonded to a ring carbon atom.
  • the point of attachment may be at a ring carbon atom of the heteroaryl group, or on a ring heteroatom ⁇ i.e., a nitrogen, oxygen or sulfur), which has a valence which permits attachment.
  • the attachment is at a ring carbon atom.
  • heteroarylene by itself or as part of another substituent, means an aromatic cyclic divalent radical having at least one ring heteroatom (O, N or S).
  • halo or “halogen” includes fluoro, chloro, bromo and iodo.
  • the compounds of the instant invention have at least one asymmetric center. Additional asymmetric centers may be present depending upon the nature of the various substituents on the molecule.
  • racemic mixtures of the compounds may be separated so that the individual enantiomers are isolated.
  • the separation can be carried out by methods well known in the art, such as the coupling of a racemic mixture of compounds to an enantiomerically pure compound to form a diastereomeric mixture, followed by separation of the individual diastereomers by standard methods, such as fractional crystallization or chromatography.
  • the coupling reaction is often the formation of salts using an enantiomerically pure acid or base.
  • the diastereomeric derivatives may then be converted to the pure enantiomers by cleavage of the added chiral residue.
  • the racemic mixture of the compounds can also be separated directly by chromatographic methods utilizing chiral stationary phases, which methods are well known in the art.
  • any enantiomer of a compound may be obtained by stereoselective synthesis using optically pure starting materials or reagents of known configuration by methods well known in the art.
  • the carbon to which A and R4 are bonded is a chiral carbon.
  • the compounds of formulas (I)-(IV) may be present as racemates, or in the stereochemically pure (R) or (S) forms.
  • the present invention encompasses all such isomeric forms.
  • Scheme 1.1 describes the preparation of hydroxyl derivatives of type 1.1a, their triflate analogs 1.1b and 1.1c. Starting from glycine Schiff base, more elaborated bromides of type l.ld and l.le can be prepared.
  • Scheme 2.1 describes a sulfonylation, alkylation, monohydrolysis sequence leading to monoacids of type 2.1a. Reduction to hydroxymethyl derivatives 2.1b, bromination to bromomethyl derivatives 2.1c or protection with TBS (2.Id) is described as well. Acylhydrazide derivatives of type 2.1e are obtained from the corresponding acids.
  • Scheme 2.2 describes very similar preparation as in scheme 2.1 with the incorporation of a tert- butyl ester that can be removed under non-hydrolytic conditions. Alternate mode of alkylation/sulfonylation is also represented.
  • Scheme 2.3 is similar to schemes 2.1 and 2.2, with the incorporation of an aryl bromide useful to introduce various aryl groups, sulfonamides and heterocycles later in the syntheses or early on as described in the 2 nd part of the scheme.
  • Scheme 2.3 is similar to schemes 2.1 and 2.2, with the incorporation of an aryl bromide useful to introduce various aryl groups, sulfonamides and heterocycles later in the syntheses or early on as described in the 2 nd part of the scheme.
  • Scheme 2.4 describes the preparation of similar intermediates that display cyano-spirocyclic groups to replace the alkyl-sulfonamides described in schemes 2.1 and 2.2.
  • Scheme 2.5 describes the preparation of phenols of type 2.5b and 2.5d, along with their triflate derivatives of type 2.5c and 2.5e.
  • Scheme 3.1 and 3.2 illustrate the preparation of carboxylic acids of type 3.1-2a and alcohols of type 3.1- 2c.
  • Schemes 4.1-10 illustrate the assembly of various intermediates and their final elaboration to macrocycles.
  • substantially pure means that the isolated material is at least 90% pure, and preferably 95% pure, and even more preferably 99% pure as assayed by analytical techniques known in the art.
  • salts refers to salts prepared from pharmaceutically acceptable non-toxic bases or acids including inorganic or organic bases and inorganic or organic acids.
  • Salts derived from inorganic bases include aluminum, ammonium, calcium, copper, ferric, ferrous, lithium, magnesium, manganic salts, manganous, potassium, sodium, zinc, and the like. Particularly preferred are the ammonium, calcium, magnesium, potassium, and sodium salts. Salts in the solid form may exist in more than one crystal structure, and may also be in the form of hydrates.
  • Salts derived from pharmaceutically acceptable organic non-toxic bases include salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines, and basic ion exchange resins, such as arginine, betaine, caffeine, choline, N,N'-dibenzylethylene-diamine, diethylamine, 2-diethylaminoethanol, 2-dimethylaminoethanol, ethanolamine, ethylenediamine, N-ethyl- morpholine, N-ethylpiperidine, glucamine, glucosamine, histidine, hydrabamine, isopropylamine, lysine, methylglucamine, morpholine, piperazine, piperidine, polyamine resins, procaine, purines, theobromine, triethylamine, trimethylamine, tripropylamine, tromethamine, and the like.
  • basic ion exchange resins
  • salts may be prepared from pharmaceutically acceptable non-toxic acids, including inorganic and organic acids.
  • acids include acetic, benzenesulfonic, benzoic, camphorsulfonic, citric, ethanesulfonic, fumaric, gluconic, glutamic, hydrobromic, hydrochloric, isethionic, lactic, maleic, malic, mandelic, methanesulfonic, mucic, nitric, pamoic, pantothenic, phosphoric, succinic, sulfuric, tartaric, p-toluenesulfonic, triflouoroacetic acid and the like.
  • Particularly preferred are citric, hydrobromic, hydrochloric, maleic, phosphoric, sulfuric, fumaric, tartaric and trifluoroacetic acids.
  • the present invention is directed to the use of the compounds disclosed herein as inhibitors of ⁇ - secretase enzyme activity or ⁇ -site amyloid precursor protein-cleaving enzyme ("BACE") activity, in a patient or subject such as a mammal in need of such inhibition, comprising the administration of an effective amount of the compound.
  • BACE ⁇ -secretase enzyme
  • ⁇ -site amyloid precursor protein- cleaving enzyme and “BACE” are used interchangeably in this specification.
  • ⁇ -secretase enzyme ⁇ -site amyloid precursor protein- cleaving enzyme
  • BACE ⁇ -site amyloid precursor protein-cleaving enzyme
  • the present invention is further directed to a method for the manufacture of a medicament or a composition for inhibiting ⁇ -secretase enzyme activity in humans and animals comprising combining a compound of the present invention with a pharmaceutical carrier or diluent.
  • the compounds of the present invention have utility in treating Alzheimer's disease.
  • the compounds may be useful for the prevention of dementia of the Alzheimer's type, as well as for the treatment of early stage, intermediate stage or late stage dementia of the Alzheimer's type.
  • the compounds may also be useful in treating diseases mediated by abnormal cleavage of amyloid precursor protein (also referred to as APP), and other conditions that may be treated or prevented by inhibition of ⁇ -secretase.
  • APP amyloid precursor protein
  • Such conditions include mild cognitive impairment, Trisomy 21 (Down Syndrome), cerebral amyloid angiopathy, degenerative dementia, Hereditary Cerebral Hemorrhage with Amyloidosis of the Dutch-Type (HCHWA-D), Creutzfeld- Jakob disease, prion disorders, amyotrophic lateral sclerosis, progressive supranuclear palsy, head trauma, stroke, Down syndrome, pancreatitis, inclusion body myositis, other peripheral amyloidoses, diabetes and atherosclerosis.
  • the subject or patient to whom the compounds of the present invention is administered is generally a human being, male or female, in whom inhibition of ⁇ -secretase enzyme activity is desired, but may also encompass other mammals, such as dogs, cats, mice, rats, cattle, horses, sheep, rabbits, monkeys, chimpanzees or other apes or primates, for which inhibition of ⁇ -secretase enzyme activity or treatment of the above noted disorders is desired.
  • the compounds of the present invention may be used in combination with one or more other drugs in the treatment of diseases or conditions for which the compounds of the present invention have utility, where the combination of the drugs together are safer or more effective than either drug alone. Additionally, the compounds of the present invention may be used in combination with one or more other drugs that treat, prevent, control, ameliorate, or reduce the risk of side effects or toxicity of the compounds of the present invention. Such other drugs may be administered, by a route and in an amount commonly used therefor, contemporaneously or sequentially with the compounds of the present invention. Accordingly, the pharmaceutical compositions of the present invention include those that contain one or more other active ingredients, in addition to the compounds of the present invention. The combinations may be administered as part of a unit dosage form combination product, or as a kit or treatment protocol wherein one or more additional drugs are administered in separate dosage forms as part of a treatment regimen.
  • combinations of the compounds of the present invention with other drugs in either unit dose or kit form include combinations with anti-Alzheimer's agents, for example other beta- secretase inhibitors or gamma-secretase inhibitors; tau phosphorylation inhibitors; Ml receptor positive allosteric modulators; blockers of A/3 oligomer formation; 5-HT modulators, such as PRX-03140, GSK 742467, SGS-518, FK-962, SL-65.0155, SRA-333 and xaliproden; p25/CDK5 inhibitors; NK1/NK3 receptor antagonists; COX-2 inhibitors; HMG-CoA reductase inhibitors; NSAIDs including ibuprofen; vitamin E; anti-amyloid antibodies, including anti-amyloid humanized monoclonal antibodies; anti ⁇ inflammatory compounds such as (R)-flurbiprofen, nitroflurbiprofen, rosiglitazone, ND- 1251, VP-
  • MARK MARK
  • P-450 inhibitors such as ritonavir
  • P-450 inhibitors such as ritonavir
  • other drugs that affect receptors or enzymes that either increase the efficacy, safety, convenience, or reduce unwanted side effects or toxicity of the compounds of the present invention.
  • composition as used herein is intended to encompass a product comprising specified ingredients in predetermined amounts or proportions, as well as any product which results, directly or indirectly, from combination of the specified ingredients in the specified amounts.
  • This term in relation to pharmaceutical compositions is intended to encompass a product comprising one or more active ingredients, and an optional carrier comprising inert ingredients, as well as any product which results, directly or indirectly, from combination, complexation or aggregation of any two or more of the ingredients, or from dissociation of one or more of the ingredients, or from other types of reactions or interactions of one or more of the ingredients.
  • compositions are prepared by uniformly and intimately bringing the active ingredient into association with a liquid carrier or a finely divided solid carrier or both, and then, if necessary, shaping the product into the desired formulation.
  • the active object compound is included in an amount sufficient to produce the desired effect upon the process or condition of diseases.
  • the pharmaceutical compositions of the present invention encompass any composition made by admixing a compound of the present invention and a pharmaceutically acceptable carrier.
  • compositions intended for oral use may be prepared according to any method known to the art for the manufacture of pharmaceutical compositions and such compositions may contain one or more agents selected from the group consisting of sweetening agents, flavoring agents, coloring agents and preserving agents in order to provide pharmaceutically elegant and palatable preparations.
  • Tablets may contain the active ingredient in admixture with non-toxic pharmaceutically acceptable excipients which are suitable for the manufacture of tablets.
  • excipients may be, for example, inert diluents, such as calcium carbonate, sodium carbonate, lactose, calcium phosphate or sodium phosphate; granulating and disintegrating agents, for example, corn starch, or alginic acid; binding agents, for example starch, gelatin or acacia, and lubricating agents, for example magnesium stearate, stearic acid or talc.
  • the tablets may be uncoated or they may be coated by known techniques to delay disintegration and absorption in the gastrointestinal tract and thereby provide a sustained action over a longer period.
  • compositions for oral use may also be presented as hard gelatin capsules wherein the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules wherein the active ingredient is mixed with water or an oil medium, for example peanut oil, liquid paraffin, or olive oil.
  • an inert solid diluent for example, calcium carbonate, calcium phosphate or kaolin
  • water or an oil medium for example peanut oil, liquid paraffin, or olive oil.
  • compositions include aqueous suspensions, which contain the active materials in admixture with excipients suitable for the manufacture of aqueous suspensions.
  • oily suspensions may be formulated by suspending the active ingredient in a vegetable oil, for example arachis oil, olive oil, sesame oil or coconut oil, or in a mineral oil such as liquid paraffin. Oily suspensions may also contain various excipients.
  • the pharmaceutical compositions of the invention may also be in the form of oil-in-water emulsions, which may also contain excipients such as sweetening and flavoring agents.
  • the pharmaceutical compositions may be in the form of a sterile injectable aqueous or oleaginous suspension, which may be formulated according to the known art, or may be administered in the form of suppositories for rectal administration of the drug.
  • the compounds of the present invention may also be administered by inhalation, by way of inhalation devices known to those skilled in the art, or by a transdermal patch.
  • pharmaceutically acceptable it is meant the carrier, diluent or excipient must be compatible with the other ingredients of the formulation and not deleterious to the recipient thereof.
  • administering a should be understood to mean providing a compound of the invention to the individual in need of treatment in a form that can be introduced into that individual's body in a therapeutically useful form and therapeutically useful amount, including, but not limited to: oral dosage forms, such as tablets, capsules, syrups, suspensions, and the like; injectable dosage forms, such as IV, IM, or IP, and the like; transdermal dosage forms, including creams, jellies, powders, or patches; buccal dosage forms; inhalation powders, sprays, suspensions, and the like; and rectal suppositories.
  • oral dosage forms such as tablets, capsules, syrups, suspensions, and the like
  • injectable dosage forms such as IV, IM, or IP, and the like
  • transdermal dosage forms including creams, jellies, powders, or patches
  • buccal dosage forms inhalation powders, sprays, suspensions, and the like
  • rectal suppositories rectal suppositories.
  • an effective amount or “therapeutically effective amount” means the amount of the subject compound that will elicit the biological or medical response of a tissue, system, animal or human that is being sought by the researcher, veterinarian, medical doctor or other clinician.
  • treatment refers to the treatment of the mentioned conditions, particularly in a patient who demonstrates symptoms of the disease or disorder.
  • compositions containing compounds of the present invention may conveniently be presented in unit dosage form and may be prepared by any of the methods well known in the art of pharmacy.
  • unit dosage form is taken to mean a single dose wherein all active and inactive ingredients are combined in a suitable system, such that the patient or person adminstering the drug to the patient can open a single container or package with the entire dose contained therein, and does not have to mix any components together from two or more containers or packages.
  • Typical examples of unit dosage forms are tablets or capsules for oral administration, single dose vials for injection, or suppositories for rectal administration. This list of unit dosage forms is not intended to be limiting in any way, but merely to represent typical examples of unit dosage forms.
  • compositions containing compounds of the present invention may conveniently be presented as a kit, whereby two or more components, which may be active or inactive ingredients, carriers, diluents, and the like, are provided with instructions for preparation of the actual dosage form by the patient or person adminstering the drug to the patient.
  • kits may be provided with all necessary materials and ingredients contained therein, or they may contain instructions for using or making materials or components that must be obtained independently by the patient or person administering the drug to the patient.
  • the compounds of the present invention are administered at a daily dosage of from about 0.1 mg to about 100 mg per kilogram of animal body weight, preferably given as a single daily dose or in divided doses two to six times a day, or in sustained release form.
  • the total daily dosage is from about 1.0 mg to about 2000 mg, preferably from about 0.1 mg to about 20 mg per kg of body weight. In the case of a 70 kg adult human, the total daily dose will generally be from about 7 mg to about 1 ,400 mg. This dosage regimen may be adjusted to provide the optimal therapeutic response.
  • the compounds may be administered on a regimen of 1 to 4 times per day, preferably once or twice per day.
  • Specific dosages of the compounds of the present invention, or pharmaceutically acceptable salts thereof, for administration include 1 mg, 5 mg, 10 mg, 30 mg, 80 mg, 100 mg, 150 mg, 300 mg and 500 mg.
  • Pharmaceutical compositions of the present invention may be provided in a formulation comprising about 0.5 mg to 1000 mg active ingredient; more preferably comprising about 0.5 mg to 500 mg active ingredient; or 0.5 mg to 250 mg active ingredient; or 1 mg to 100 mg active ingredient.
  • Specific pharmaceutical compositions useful for treatment may comprise about 1 mg, 5 mg, 10 mg, 30 mg, 80 mg, 100 mg, 150 mg, 300 mg and 500 mg of active ingredient.
  • FRET fluorescence resonance energy transfer
  • a homogeneous end point fluorescence resonance energy transfer (FRET) assay is employed with the substrate ([TAMRA-S-CO-EEISEVNLDAEF-NHQSY] QFRET), which is cleaved by BACE 1 to release the fluorescence from TAMRA.
  • the Km of the substrate is not determined due to the limit of solubility of the substrate.
  • a typical reaction contains approximately 30 nM enzyme, 1.25 ⁇ M of the substrate, and buffer (50 mM NaOAc, pH 4.5, 0.1 mg/ml BSA, 0.2% CHAPS, 15 mM EDTA and 1 mM deferoxamine) in a total reaction volume of 100 ⁇ l.
  • the reaction is proceeded for 30 min and the liberation of TAMRA fragment is measured in a 96-well plate LJL Analyst AD using an excitation wavelength of 530 nm and an emission wavelength of 580 nm. Under these conditions, less than 10% of substrate is processed by BACE 1.
  • the enzyme used in these studies is soluble (transmembrane domain and cytoplasmic extension excluded) human protein produced in a baculovirus expression system.
  • solutions of inhibitor in DMSO four concentrations of the inhibitors are prepared: ImM, 100 ⁇ M, 10 ⁇ M, 1 ⁇ M) are included in the reactions mixture (final DMSO concentration is 0.8%). All experiments are conducted at rt using the standard reaction conditions described above.
  • HPLC assay A homogeneous end point HPLC assay is used with the substrate (coumarin-CO-REVNFEVEFR), which is cleaved by BACE 1 to release the N-terminal fragment attached with coumarin.
  • the Km of the substrate is greater than 100 ⁇ M and can not be determined due to the limit of solubility of the substrate.
  • a typical reaction contains approximately 2 nM enzyme, 1.0 ⁇ M of the substrate, and buffer (50 mM NaOAc, pH 4.5, 0.1 mg/ml BSA, 0.2% CHAPS, 15 mM EDTA and 1 mM deferoxamine) in a total reaction volume of 100 ⁇ l.
  • the reaction is proceeded for 30 min and is stopped by the addition of 25 ⁇ L of 1 M Tris-HCl, pH 8.0.
  • the resulting reaction mixture is loaded on the HPLC and the product is separated from substrate with 5 min linear gradient. Under these conditions, less than 10% of substrate is processed by BACE 1.
  • the enzyme used in these studies is soluble (transmembrane domain and cytoplasmic extension excluded) human protein produced in a baculovirus expression system.
  • solutions of inhibitor in DMSO (12 concentrations of the inhibitors are prepared and the concentration rage is dependent on the potency predicted by FRET) are included in the reaction mixture (final DMSO concentration is 10 %). All experiments are conducted at rt using the standard reaction conditions described above.
  • To determine the IC50 of the compound four parameters equation is used for curve fitting. The errors in reproducing the dissociation constants are typically less than two-fold.
  • the compounds of the following examples had activity in inhibiting the beta- secretase enzyme in one or both of the aforementioned assays, generally with an IC50 from about 1 nM to 100 ⁇ M. Such a result is indicative of the intrinsic activity of the compounds in use as inhibitors of the beta-secretase enzyme activity.
  • HMDS hexamethyldisilazane
  • TMAD N,N,N',N'-Tetramethylazocarboxamide
  • DIAD Diisopropylazodicarboxylate
  • HOAt l-hydroxy-7-azabenzotriazole
  • EDC 1 -Ethyl-3 -(3 -dimemylaminopropyl)-carbodiimide
  • DPPA diphenylphosphorylazide
  • TPAP tetrapropylammonium perruthenate
  • BSA bovine serum albumin
  • CHAPS 3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-l-propanesulfonate
  • rt room temperature
  • HPLC high performance liquid chromatography
  • Step A l-((3-(Bromomethyl)phenoxy)methyl)benzene
  • Step B 2-Amino-3-(3-benzyloxy)phenyl)-2-(fluoromethyl)propanenitrile
  • Step C 2-Amino-2-(fluoromethyl)-3-(3-hydroxyphenyl)propanoic acid
  • aqueous HCl 6N, 60 mL
  • the reaction mixture was diluted with H 2 O and extracted with ether.
  • the pH of the aqueous phase was brought to 5.5 and solid impurities were filtered.
  • Step E Methyl 2-tert-butoxycarbonylamino-2-(fluoromethyl)-3-(3-hydroxyphenyl)propanoate
  • a suspension of methyl 2-amino-2-(fluoromethyl)-3-(3-hydroxyphenyl)propanoate (1 g, 3.8 mmol) in DMF/tert-butanol (1:1, 2.6 mL) was added a solution of di-tert-buty ⁇ dicarbonate (1.6 g, 7.6 mmol) in DMF/tert-butanol (0.9 mL) followed by sodium bicarbonate (1.1 g, 13.3 mmol).
  • Step F 3-(2-(Methoxycarbonyl)-2-tert-butoxycarbonylamino-3-fluoropropyl)phenyl trifluoromethanesulfonate
  • reaction mixture was allowed to warm to rt over 16h, quenched with aq NH 4 Cl and water, extracted with EtOAc, washed with aq LiCl (x3), dried over Na 2 SO 4 , concentrated in vacuo, and purified by flash chromatography (12Og silica, 0-15% EtOAc in hexanes) to provide methyl 3 -bromo-N-(diphenylmethylene)- ⁇ -methylphenylalaninate .
  • Step B Bromination To a solution of alcohol (0.710 g, 2.60 mmol) from Step A and carbon tetrabromide (1.12 g, 3.38 mmol) in 25 mL anhydrous CH 2 Cl 2 under an atmosphere of argon was added a solution of triphenylphosphine (0.818 g, 3.12 mmol) in 5 mL anhydrous CH 2 Cl 2 slowly via syringe. After 2 hr, additional carbon tetrabromide (0.224 g, 0.675 mmol) and triphenylphosphine (0.164 g, 0.623 mmol) were added. After an additional 1 hr, it was concentrated in vacuo.
  • Step A Coupling To a solution of intermediate H.l.a.l (0.520 g, 1.810 mmol) and Boc-hydrazine (0.359 g, 2.715 mmol) in 8 mL CH 2 Cl 2 was added Hunig's base (0.950 mL, 5.43 mmol) and BOP-reagent (0.881 g, 1.991 mmol). After 30 min, the reaction was poured onto a silica gel column and purified by normal phase chromatography (5->75% EtOAc/hexanes) to afford the desired product as a white foam.
  • Step A tBu ester Installment
  • StepD Nitro reduction A solution of methyl 2-chloro-3-nitro-5-vinylbenzoate (1.75 g, 7.2 mmol) and SnCl 2 (4.1 g, 18.1 mmol) in EtOH (50 mL) was stirred at 75 °C for 16 h. The reaction mixture was cooled to RT, diluted with water and EtOAc, stirred at RT for 10 min, and filtered on cellite.
  • StepE Mesylation As described in the preparation of intermediate K.l.a.1, step A.
  • step B As described in the preparation of intermediate H.l.a.l, step B.
  • step B As described in the preparation of intermediate II.2.C.2, step B.
  • step A to give ter/-butyl 2-chloro-3- [methyl(methylsulfonyl)amino]-5-vinylbenzoate.
  • Stepl Reductive ozonolysis Through a solution of tert-butyl 2-chloro-3-[methyl(methylsulfonyl)amino]-5-vinylbenzoate (700 mg, 2 mmol) in DCM (7 mL) and MeOH (3 mL) cooled to -78 °C was bubbled ozone until the solution remained blue. After 5 min stirring at -78 °C, MeOH (4 mL) and NaBH 4 (115 mg, 3 mmol) were added and the reaction mixture was allowed to warm to RT.
  • reaction mixture was diluted with EtOAc, washed with 10% KHSO 4 , brine, dried over sodium sulfate and concentrated in vacuo to provide tert- butyl 2-chloro-5-(hydroxymethyl)-3-[methyl(methylsulfonyl)amino]benzoate, used crude in the bromination step.
  • step B As described in the preparation of intermediate II.l.cl, step B, to provide tert-buty ⁇ 5-(bromomethyl)-2- chloro-3-[methyl(methylsulfonyl)amino]benzoate.
  • Step D Lithium borohydride reduction To a 0°C solution of tert-butyl 3-(hydroxymethyl)-5-[(methylsulfonyl)oxy]benzoate (0.330 g, 0.99 mmol) in THF (15 mL) was added 2 M lithium borohydride solution (0.524 mL, 1.05 mmol). After 1 hour, added 2 more equivalents LiBH 4 solution and warmed reaction to room temp over 18 h. Quenched reaction dropwise with MeOH and then concentrated reaction mixture in vacuo. The crude material was diluted with EtOAc and washed with sat.
  • Step A Bis Hydrolysis To a solution of dimethyl 5-bromoiso ⁇ hthalate (10 g, 36.6 mmol) in MeOH (200 mL) and THF (200 mL) was added IN NaOH (91.5 mL, 91.5 mmol) and the reaction mixture was stirred at rt for 5 h, quenched with IN HCl (92 mL), concentrated in vacuo to ca. 250 mL. The white solid was filtered, washed with water and dried over P 2 O 5 , under high vacuum, at 50 °C.
  • Step B Mono tBu Esterif ⁇ cation
  • reaction mixture was diluted with 10% KHSO 4 , filtered on celite, extracted with EtOAc, washed with aq LiCl (x3), dried over Na 2 SO 4 , and concentrated in vacuo to provide the corresponding mono tBu ester.
  • StepA Pd 0 coupling
  • StepB-F hydrolysis, tBu ester installation, Me ester hydrolysis, borane reduction, bromination, as described above.
  • StepA Pd coupling of aniline to fert-butyl methyl 5-hromoisophthalate
  • Step E Acid Reduction and Bromination
  • IM in THF 5.6 mL, 5.6 mmol
  • IM in THF 5.6 mL
  • 5.6 mmol borane-tetrahydrofuran complex
  • reaction mixture was diluted with water, the pH was adjusted to pH 7-8 with IN HCl, the resulting mixture was extracted with EtOAc, washed with aq LiCl (x3), dried over Na 2 S ⁇ 4 , and concentrated in vacuo to provide the corresponding benzyl ether
  • Step B Monohydrolysis Monohydrolysis of the previous diester with IN NaOH in MeOH/THF, according to preparation of intermediate II.l.a.l, step C, followed by purification by flash chromatography (30Og silica, 0-50% (0.5% HOAc in EtOAc) in hexanes) provided the corresponding monoacid.
  • Step C Curtius Rearrangement
  • the previous monoacid (5.98 g, 20.9 mmol), triethyl amine (16.1 mL, 31.3 mmol), and diphenyphosphoryl azide (8.62 g, 31.3 mmol) were dissolved in anhydrous tert-butyl alcohol (200 mL) and allowed to stir under reflux, 110°C, for 16 hours.
  • the crude reaction mixture is then concentrated in vacuo, then diluted with EtOAc and washed with deionized water (x3), brine (x3), dried over sodium sulfate, and concentrated in vacuo.
  • the crude mixture was then purified using flash chromatography (145g silica, 0-30% EtOAc in hexanes) to afford the corresponding ester carbamate.
  • Step D Alkylation and Debocing
  • the previous ester carbamate (7.3 g, 20.5 rnmol) was dissolved in DMF (40 mL) and cooled to 0°C, the 1.0 M solution of NaHMDS (22.5 mL, 22.5 rnmol) was then added dropwise via syringe. After stirring 0.5 h at 0°C, the MeI (1.53 mL, 24.5 rnmol) was added dropwise via syringe and the reaction was allowed to warm slowly to rt and stir for an additional 16 h. The crude reaction mixture was quenched with deionized water and diluted with DCM.
  • the biphasic system was washed with DI water (x3), brine (x3), dried over sodium sulfate, and concentrated in vacuo.
  • the crude mixture was then purified using flash chromatography (145g silica, 0-25% EtOAc in hexanes) to afford the corresponding N-methyl carbamate.
  • the N-methyl carbamate (6.5 g, 17.5 mmol) was then dissolved in a 4.0 M of HCl in 1,4- dioxane (43.8 mL, 175 mmol) and allowed to stir at rt for 16 h, the reaction was then concentrated in vacuo to afford to corresponding N-methyl amino ester.
  • Step G Hydrogenolysis of Bn Ether
  • the previous silyl ether (3.14 g, 7.2 mmol) was dissolved in 120 mL of degassed EtOAc and placed under argon and Pd/C (0.08 g, 0.73 mmol) was added in one portion.
  • Hydrogen 144 mmol was added via a three way adaptor and the system was purged under reduced pressure, then exposed to hydrogen. This process of purging and exposure to hydrogen was repeated three times. The reaction was allowed to stir at rt for 16 h. The crude reaction mixture was filtered over celite and washed with EtOAc, dried over sodium sulfate, and concentrated in vacuo.
  • Step A Alkylation To a solution of intermediate I.l.a.l (0.050 g, 0.162 mmol) and 2-bromoacetophenone (0.032 g, 0.162 mmol) in 1 mL anhydrous DMF under an atmosphere of argon was added Cs 2 CO 3 (0.029 g, 0.089 mmol). After 24 hr, the crude reaction mixture was purified by reverse phase preparative HPLC (5 -> 95% CH3CN/H2O, 0.1% added TFA, Cl 8 PRO YMC 20x150 mm) to afford methyl N-(fert-butoxycarbonyl)- alpha-methyl-3-(2-oxo-2-phenylethoxy)phenylalaninate as a pale yellow oil.
  • Step B Reductive Animation To a solution of methyl N-(f ⁇ rt-butoxycarbonyl)-alpha-methyl-3-(2-oxo-2-phenylethoxy)phenylalaninate (0.600 g, 1.40 mmol), 4A sieves (spatula tip), acetic acid (0.089 mL, 1.54 mmol), and benzylamine (0.184 mL, 1.68 mmol) in 10.0 mL dichloroethane was added sodium triacetoxyborohydride (0.357 g, 1.68 mmol).
  • Step C Hydrogenolysis To a degassed solution of methyl 3-[2-(benzylamino)-2-phenylethoxy]-N-(tert-butoxycarbonyl)-alpha- methylphenylalaninate (0.457 g, 0.881 mmol) in 10 mL EtOAc was added palladium hydroxide (0.198 g, 1.41 mmol). The resulting mixture was hydrogenated under 1 atm at rt. After 60 hr., the reaction mixture was filtered over celite and concentrated in vacuo to give the corresponding amine as a yellow foam.
  • Step A-D conversion of benzaldehyde to tert -butyl (l-phenylprop-2-en-l-yl)carbamate was performed using vinyl Grignard as described in D.A. Cogan et al. Tetrahedron 55 (1999) 8883-8904, followed by standard Boc installation.
  • Step E Hydroboration and Pd 0 Coupling
  • Solid tert-butyl (l-phenylprop-2-en-l-yl)carbamate (0.436 g, 1.87 mmol) was placed in an oven-dried flask under an atmosphere of argon and dissolved in 9-borabicyclo[3.3.1]nonane (3.91 mL, 1.95 mmol, 0.5M solution in THF) and heated to 70°C.
  • StepA Stille coupling to intermediate I.l.c.1
  • the organic layer was added water (100 ml) and KF (5g) and stirred for 1 hour.
  • the organic layer was dried, concentrated and purified by flash column chromatography (30% EtO Ac/Hex) affording 1.08 g desired product.
  • StepA Coupling of intermediates IL2.C.1 and i ⁇ .2.e.l
  • intermediate II.2.C.1 (0.100 g, 0.264 mmol) and intermediate IH.2.e.l (0.084 g, 0.264 mmol) in 1 mL DMF was added cesium carbonate (0.095 g, 0.291 mmol).
  • cesium carbonate 0.095 g, 0.291 mmol.
  • the reaction was diluted with LiCl (aq) (25 mL) and extracted with EtOAc (2 x 25 mL). The organic layers were combined, washed with LiCl (aq) and brine, dried over sodium sulfate, and concentrated in vacuo.
  • Ether formation with intermediates H.l.c.2 and III.l.c.1 was performed using a similar procedure as described in the preparation of intermediate IV.4.e.2 to give methyl 3- ⁇ [2-[(fert-butoxycarbonyl)amino]- 3-(3- ⁇ 2-[(ter/-butoxycarbonyl)amino]-2-phenylethoxy ⁇ phenyl)-2-methylpropoxy]methyl ⁇ -5- [(methylsulfonyl)(propyl)amino]benzoate as a colorless oil.
  • Step B Boc Removal, Hydrolysis.
  • the resulting deprotected material was taken up in 1.5 mL tetrahydrofuran, and IN LiOH (0.350 mL, 0.350 mmol) was added. After 6 hr., it was acidified to pH 4 with IN HCl (0.380 mL, 0.380 mmol) and concentrated under reduced pressure to give the resulting acid.
  • Step C BOP Cyclization To a solution of acid from step B (0.01Og, 0.018 mmol) in 5 mL DMF was added diisopropylethylamine (0.005 mL, 0.026 mmol) and benzotriazol-l-yloxytris(dimethylamino)-phosphonium hexafluorophosphate (0.009 g, 0.021 mmol). After 1 hr, the crude reaction mixture was purified by preparative HPLC (5 -> 95% CH3CN/H2O, 0.1% added TFA, C18 PRO YMC 20x150 mm) to afford
  • Example 1 as a white solid.
  • Step B Boc and tBu ester Removal
  • Step A Ester formation (intermediates II.3.C and IH.2.b.l.l), using a similar procedure as described in the preparation of Example 2.
  • Step B Boc and tfiu ester removal, macrolactamization, using a similar procedure as described in the preparation of Example 2.
  • Step D Pd 0 coupling of MeNMs
  • the aryl sulfonamide from Step D was treated with 4N HCl in dioxane (5 mL) for 1 h 45, concentrated in vacuo and purified by ion exchange chromatography (2 g SCX, MeOH then 2M NH 3 in MeOH) to provide Example 3 as a white solid.
  • Step D Pd 0 coupling of 2-CN-Ph-ZnI
  • 2-cyanophenylzinc bromide solution 0.5 M in THF, 2.50 mL, 1.251 mmol.
  • Pd(PPh 3 ) 4 0.072 g, 0.063 mmol was added.
  • the reaction mixture was purged with argon, it was microwaved at 75 °C for 50 min.
  • the reaction was diluted with EtOAc and water. The layers were separated, and the aqueous layer was extracted with EtOAc (2x).
  • Step A 9-BBN, Pd 0 coupling of intermediate IV.4.e.2 and tert ⁇ buty ⁇ l-ethylprop-2-enylcarbamate Solid tert-butyl l-ethylprop-2-enylcarbamate (0.028 g, 0.135 mmol, prepared from propionaldehyde and vinyl Grignard according to D.A. Cogan et al.
  • Tetrahedron 55 (1999) 8883-8904, followed by standard Boc installation) was placed in an oven-dried flask under an atmosphere of argon and dissolved in 9- borabicyclo[3.3.1]nonane (0.532 mL, 0.176 mmol, 0.5M solution in THF) and heated to 70°C.
  • Step B Boc and ⁇ Bu Ester Removal Deprotection of 3 tot-butyl 3- ⁇ [2-[(tert-butoxycarbonyl)amino]-3-(3- ⁇ 3-[(tert- butoxycarbonyl)ammo]pentyl ⁇ phenyl)-2-methylpropoxy]methyl ⁇ -5-
  • Step A Mitsunobu etherif ⁇ cation (intermediates II.5.d.l and DI.3.a.l) Intermediate m.3.a.l (0.22 g, 0.574 mmol), intermediate ⁇ .5.d.l (0.21 g, 0.603 mmol), and tri-n-butyl phosphine (0.22 mL, 0.862 mmol) were dissolved in 10 mL of anhydrous toluene and placed under argon atmosphere. TMAD (0.148 g, 0.862 mmol) was added in one portion and the reaction was allowed to stir at rt for 16 h. The reaction was then concentrated and purified using flash chromatography (4Og silica, 10-40% EtOAc in hexanes) to afford the corresponding phenolic ether.
  • Step B TBS removal and hydrolysis
  • TBAF 0.52 mL, 0.524 mmol
  • the reaction was allowed to stir at RT for 16h.
  • the reaction was then concentrated and purified using flash chromatography (40g silica, 10- 70% EtOAc in hexanes) to afford the corresponding benzylic alcohol.
  • the previous benzylic alcohol (0.193 g, 0.326 mmol) was dissolved in 5 mL of THF.
  • a 1.0 M solution of LiOH (3.26 mL, 3.26 mmol) was added in one portion and the reaction was allowed to stir at 50°C for 16 h.
  • Step A hydroboration, Pd 0 coupling (intermediates II.5.e.l and III.4.a.l.l) Intermediate IIL4.a.l.l (92 mg, 0.25 mmol) was placed in an oven dried round bottom flask and dissolved in 0.5 M solution of 9-BBN (0.59 mL, 0.29 mmol) and the reaction was allowed to stir at 75°C for 45 min.
  • Step B TBS removal and hydrolysis, as described in the preparation of Example 6.
  • Step C Macrolactonization, as described in the preparation of Example 6.
  • Step D Boc removal, as described in the preparation of Example 6 to provide Example 7.
  • Step A Phenol alkylation (intermediates I.l.a.l and IQ.5.a.l)
  • Step B TBS removal and hydrolysis, as described in the preparation of Example 6.
  • Step C Macrolactonization, as described in the preparation of example Example 6.
  • Step D Boc removal, as described in the preparation of Example 6 to provide Example 8.
  • Example 9 1 H NMR (two diastereomers)(400 MHz, CD 3 OD) ⁇ 7.21-1.17 (m, 2H), 7.06-6.98 (m, 4H), 6.86-6.79 (m, 4H), 6.73-6.69 (m, 2H), 6.44-6.29 (m, 2H), 5.36-5.21 (m, 2H), 5.19-5.05 (m, 2H), 4.58-4.24 (m, 3H), 4.25-4.15 (m, 3H), 4.10-3.85 (m, 3H), 3.26 (s, 3H), 3.24 (s, 3H), 3.03-2.97 (m, 2H), 2.82 (s, 3H), 2.80 (s, 3H), 2.75-2.70 (m, 2H), 2.51-2.49 (m, 2H), 2.42 (br s, 2H), 1.65 (s, 3H), 1.64 (s, 3H).
  • Step A Coupling of acylhydrazide Il.l.e.l and acid m.2.b.l.l (EDC, HOAt), followed by cyclodehydration (Burgess reagent, heat).
  • Step B Boc and Me ester Removal, as described for the preparation of Example 1.
  • Step C BOP Cyclization, as described for the preparation of Example 1. HRMS calculated for C 29 H 31 N 5 O 4 S: 546.2170, found: 546.2160.
  • StepA Reductive animation
  • StepB Boc and tBu ester removal, as described in example 2, stepB.
  • StepC BOP cychzation, as described m example 2, stepC.
  • MS M+l 550

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Heterocyclic Compounds That Contain Two Or More Ring Oxygen Atoms (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Pyrane Compounds (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)

Abstract

The present invention is directed to macrocyclic tertiary amine compounds represented by general formula (I), which are inhibitors of the beta-secretase enzyme and that are useful in the treatment of diseases in which the beta-secretase enzyme is involved, such as Alzheimer's disease. The invention is also directed to pharmaceutical compositions comprising these compounds and the use of these compounds and compositions in the treatment of such diseases in which the beta-secretase enzyme is involved.

Description

TITLE OF THE INVENTION
MACROCYCLIC TERTIARY AMINE BETA-SECRETASE INHIBITORS FOR THE TREATMENT
OF ALZHEIMER'S DISEASE
CROSS REFERENCE TO RELATED APPLICATIONS
This application claims priority under 35 U.S.C. § 119(e) of U.S. provisional application serial nos. 60/628,830, filed November 17, 2004 and U.S. provisional application serial no.60/653,036, filed February 15, 2005.
FIELD OF THE INVENTION
The invention is directed to the field of compounds which are inhibitors of the the activity of the β-secretase enzyme, and to the use of the compounds for the treatment of diseases in which the β- secretase enzyme is involved, such as Alzheimer's disease.
BACKGROUND OF THE INVENTION
Alzheimer's disease is characterized by the abnormal deposition of amyloid in the brain in the form of extra-cellular plaques and intra-cellular neurofibrillary tangles. The rate of amyloid accumulation is a combination of the rates of formation, aggregation and egress from the brain. It is generally accepted that the main constituent of amyloid plaques is the 4kD amyloid protein (βA4, also referred to as Aβ, β-protein and βAP) which is a proteolytic product of a precursor protein of much larger size. The amyloid precursor protein (APP or AβPP) has a receptor-like structure with a large ectodomain, a membrane spanning region and a short cytoplasmic tail. The Aβ domain encompasses parts of both extra-cellular and transmembrane domains of APP, thus its release implies the existence of two distinct proteolytic events to generate its NH2- and COOH-termini. At least two secretory mechanisms exist which release APP from the membrane and generate soluble, COOH-truncated forms of APP (APPs). Proteases that release APP and its fragments from the membrane are termed "secretases." Most APPs is released by a putative α-secretase which cleaves within the Aβ protein to release α-APPs and precludes the release of intact Aβ. A minor portion of APPs is released by a β- secretase ("β-secretase"), which cleaves near the NH2-terminus of APP and produces COOH-terminal fragments (CTFs) which contain the whole Aβ domain.
Thus, the activity of β-secretase or β-site amyloid precursor protein-cleaving enzyme ("BACE") leads to the abnormal cleavage of APP, production of Aβ, and accumulation of β amyloid plaques in the brain, which is characteristic of Alzheimer's disease (see R. N. Rosenberg, Arch. Neurol., vol. 59, Sep 2002, pp. 1367-1368; H. Fukumoto et al, Arch. Neurol., vol. 59, Sep 2002, pp. 1381-1389; J.T. Huse et al, J. Biol. Chem., vol 277, No. 18, issue of May 3, 2002, pp. 16278-16284; K.C. Chen and WJ. Howe, Biochem. Biophys. Res. Comm, vol. 292, pp 702-708, 2002). Therefore, therapeutic agents that can inhibit β-secretase or BACE may be useful for the treatment of Alzheimer's disease. The compounds of the present invention are useful for treating Alzheimer's disease by inhibiting the activity of β-secretase or BACE, thus preventing the formation of insoluble Aβ and arresting the production of Aβ.
SUMMARY OF THE INVENTION
The present invention is directed to novel macrocyclic tertiary amine compounds represented by general formula (I)
Figure imgf000003_0001
(I)
and pharmaceutically acceptable salts thereof, and individual enantiomers and diastereomers thereof, which are useful as inhibitors of the β-secretase enzyme.
The invention is also directed to pharmaceutical compositions which include an effective amount of a compound of formula (I), or pharmaceutically acceptable salts thereof, and individual enantiomers and diastereomers thereof, and a pharmaceutically acceptable carrier. The invention is also directed to methods of treating mammals for diseases in which the β-secretase enzyme is involved, such as Alzheimer's disease, and the use of the compounds and pharmaceutical compositions of the invention in the treatment of such diseases.
DETAILED DESCRIPTION OF THE INVENTION
The present invention is directed to compounds of formula (I):
Figure imgf000003_0002
(I) and pharmaceutically acceptable salts thereof, and individual enantiomers and diastereomers thereof, wherein:
X and Y are selected from the group consisting of (1) hydrogen, (2) -C1-3 alkyl,
(3) halogen, and
(4) cyano;
A is selected from the group consisting of
(1) hydrogen, (2) -C1-10 alkyl,
(3) -C2-10 alkenyl, and (4) -C2-10 alkynyl, wherein said alkyl, alkenyl or alkynyl is unsubstituted or substituted with one or more
(a) halo,
(b) -C3-8 cycloalkyl,
(c) -OH, (d) -CN,
(e) -O-C1-10 alkyl,
(f) -C6-10 aryl, or
(g) heteroaryl selected from the group consisting of pyrazinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, tetrazolyl, furanyl, imidazolyl, triazinyl, pyranyl, thiazolyl, thienyl, thiophenyl, triazolyl, oxazolyl, isoxazolyl, thiazolyl, oxadiazolyl, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl and benzoxazolyl,
and said aryl and heteroaryl groups are unsubstituted or substituted with one or more (i) halo,
(ϋ) -OH,
(iii) -CN,
(iv) -O-C 1-10 alkyl,
(v) -C1-10 alkyl, (vi) -C2- 10 alkenyl,
(vii) -C2-10 alkynyl, or
(viii) -C3.8 cycloalkyl;
R1 is selected from the group consisting of (1) -C6-10 arylene, or
(2) heteroarylene selected from the group consisting of divalent pyrazinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, tetrazolyl, furanyl, imidazolyl, triazinyl, pyranyl, thiazolyl, thienyl, thiophenyl, triazolyl, oxazolyl, isoxazolyl, thiazolyl, oxadiazolyl, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl and benzoxazolyl,
wherein said arylene or heteroarylene is unsubstituted or substituted with one or more
(a) halo,
(b) -C1-10 alkyl, (c) -C2-10 alkenyl,
(d) -C2-l0 alkynyl, (e) -OH,
(f) -CN,
(g) -O-C1-10 alkyl, or (h) -C3-8 cycloalkyl;
R2 is selected from the group consisting of: (1) (R5-SO2)N(R6)-, wherein R5 is
(a) -C1-10 alkyl,
(b) -C2-10 alkenyl,
(c) -C2-10 alkynyl, (d) -C3-8 cycloalkyl,
(e) -C6-10 aryl, or
(f) heteroaryl selected from the group consisting of pyrazinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, tetrazolyl, furanyl, imidazolyl, triazinyl, pyranyl, thiazolyl, thienyl, thiophenyl, triazolyl, oxazolyl, isoxazolyl, thiazolyl, oxadiazolyl, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl and benzoxazolyl,
(g) -NR7R8,
wherein said alkyl, alkenyl, alkynyl, cycloalkyl, aryl and heteroaryl is unsubstituted or substituted with one or more (i) halo,
(ϋ) -OH,
(iii) -CN,
(iv) -O-C 1-10 alkyl,
(V) -C1-10 alkyl, (vi) -C2-10 alkenyl,
(vii) -C2-10 alkynyl, (viii) -C3-8 cycloalkyl, (ix) -C6-10 aryl, or
(x) heteroaryl selected from the group consisting of pyrazinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, tetrazolyl, furanyl, imidazolyl, triazinyl, pyranyl, thiazolyl, thienyl, thiophenyl, triazolyl, oxazolyl, isoxazolyl, thiazolyl, oxadiazolyl, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl and benzoxazolyl, and said aryl and heteroaryl is unsubstituted or substituted with one or more
(A) halo, (B) -OH,
(C) -CN,
(D) -O-C1-10 alkyl, (E) -C3.8 cycloalkyl, (F) -C1-10 alkyl, (G) -C2-10 alkenyl, or
(H) -C2-10 alkynyl;
R6 is selected from the group consisting of
(a) hydrogen, (b) -C1-10 alkyl,
(c) -C2-10 alkenyl,
(d) -C2-10 alkynyl,
(e) -C6-10 aryl, or
(f) heteroaryl selected from the group consisting of pyrazinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, tetrazolyl, furanyl, imidazolyl, triazinyl, pyranyl, thiazolyl, thienyl, thiophenyl, triazolyl, oxazolyl, isoxazolyl, thiazolyl, oxadiazolyl, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl and benzoxazolyl,
wherein said alkyl, alkenyl, alkynyl, aryl or heteroaryl is unsubstituted or substituted with one or more
(i) halo,
(ii) -OH,
(iii) -CN,
(iv) -O-C1-10 alkyl, (v) -C3-8 cycloalkyl,
(vi) -C6-10 aryl, or
(vii) heteroaryl selected from the group consisting of pyrazinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, tetrazolyl, furanyl, imidazolyl, triazinyl, pyranyl, thiazolyl, thienyl, thiophenyl, triazolyl, oxazolyl, isoxazolyl, thiazolyl, oxadiazolyl, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl and benzoxazolyl;
wherein said cycloalkyl, aryl or heteroaryl is unsubstituted or substituted with one or more
(A) halo,
(B) -OH, (C) -CN,
(D) -O-C1-10 alkyl, (E) -C3-8 cycloalkyl, or (F) -C6-10 aryl,
or R5 and R6 may be linked to form a group -CH2(CH2)pCH2-;
(2) — C6-10 aryl, wherein said aryl is unsubstituted or substituted with one or more (i) halo, (ii) -OH, (iii) -CN,
(iv) -O-C1-10alkyl, (v) -C3-8 cycloalkyl, (vi) -C1-10 alkyl, (vi) -C6-10 aryl, or
(3)
Figure imgf000007_0001
(4) heteroaryl selected from the group consisting of pyrazinyl, pyrazolyl,pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, tetrazolyl, furanyl, imidazolyl, triazinyl, pyranyl, thiazolyl, thienyl, thiophenyl, triazolyl, oxazolyl, isoxazolyl, thiazolyl, oxadiazolyl, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl and benzoxazolyl, wherein said heteroaryl is unsubstituted or substituted with one or more (i) halo, (ϋ) -OH, (iii) -CN,
(iv) -O-C1-10 alkyl,
(v) -C3-8 cycloalkyl,
(vi) -C1-10 alkyl,
(VU) -C(O)-O-C1-10 alkyl,
(viii) -C(=O)-OH, and
(ix) -C(=O)-NRCRd
(x) -NRcRd, wherein Rc and Rd are selected from the group consisting of
(A) hydrogen, and
(B) -C1-10 alkyl;
(5) hydrogen;
(6) -CF3; and
(7) -O-SO2-R9;
R3 is selected from the group consisting of
Figure imgf000008_0001
wherein Rx is selected from the group consisting of
(a) hydrogen, (b) -C1-6 alkyl,
(c ) -C0-3 alkylene-C3-8 cycloalkyl, (d) -C0-3alkylene-C6-10 aryl and said Rχ alkyl, alkylene, cycloalkyl and aryl groups are unsubstituted or substituted with one or more (i) halo, (ii) -C1-10 alkyl, (iii) -OH, (iv) -CN, or (v) -O-C1-10 alkyl,
and if the dotted line leading to Ry is absent, then RY is selected from the group consisting of (a) hydrogen, (b) -C1-10 alkyl, (c)-C2-10 alkenyl, (d) -C2-10 alkynyl,
(e) -C3_8 cycloalkyl,
(f) -C0-6 alkylene-C6-10 aryl, or
(g) — C0-6 alkylene-heteroaryl, wherein said heteroaryl is selected from the group consisting of pyrazinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, tetrazolyl, furanyl, imidazolyl, triazinyl, pyranyl, thiazolyl, thienyl, thiophenyl, triazolyl, oxazolyl, isoxazolyl, thiazolyl, oxadiazolyl, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl and benzoxazolyl,
and said RY alkyl, alkylene, alkenyl,alkynyl, cycloalkyl and heteroaryl groups are unsubstituted with one or more (i) halo,
(U) -C1-10 alkyl,
(iii) -OH, (iv) -CN, or (v) -O-C1-10 alkyl,
and Ry' is selected from the group consisting of
(a) hydrogen, and
(b) -CH3,
and if the dotted line leading to Ry represents a bond, then Ry' is absent and RY is selected from the group consisting of
(a) =CH-C1-10 alkyl,
(b) =CH-C0-6 alkylene-C6-10 aryl, or
(c) =CH2 wherein said alkyl, alkylene, cycloalkyl, aryl or heteroaryl Ry groups are unsubstituted or substituted with one or more (i) halo, (ii) -C1-10 alkyl, (iii) -OH, (iv) -CN, or (v) -O-C1-10 alkyl, or (vi) -C3-8 cycloalkyl;
Q3, Q4 and Q5 are selected from the group consisting of (a) -CH2- (b) -O-, and (c) -NH-;
R4 is -(CH2)n-Q2 -(CH2)m, wherein Q2 is selected from the group consisting of (I)-O-, (2)-NH-, (3) -O-C(=O)-,
(4) -C(=O)-O-, (5) -NHCC=O)-,
(6) -CC=O)-NH-,
(7) -CH=CH-, (8) -C(=O)-,
(9) -(CH2)q -,
(10)
Figure imgf000010_0001
(H)
Figure imgf000010_0002
R7 and R8 are selected from the group consisting of (I) -C1-10 alkyl, and
(2) -C0-3 alkyene-C6-10 aryl, wherein said alkyl, alkylene and aryl is unsubstituted or substituted with one or more
(a) halo, (b) -C1-10 alkyl,
(c) -OH, Cd) -CN, (e) -O-C1-10 alkyl, or (f) -C3-8 cycloalkyl;
R9 is selected from the group consisting of (1) -C1-10 alkyl, and
(2) -C0-3 alkylene-C6-10 aryl, wherein said alkyl, alkylene and aryl is unsubstituted or substituted with one or more
(a) halo,
(b) -C1-10 alkyl, (c) -OH,
(d) -CN,
(e) -O-C1-10 alkyl, or (f) -C3-8 cycloalkyl, or
R9 is NR7R8;
m is 0, 1 or 2; n is 0, 1 or 2; p is 1, 2, 3, 4 or 5; q is 2, 3, 4 or 5; and r is 0, 1 or 2.
In a preferred embodiment of the compounds of formula (I), X and Y are both hydrogen.
In another preferred embodiment of the compounds of formula (I), R1 is unsubstituted or substituted -C6-10 arylene, preferably unsubstituted phenylene.
In another preferred embodiment of the compounds of formula (I), R4 is -(CH2)n-Q2 -(CH2)m, wherein Q2 is selected from the group consisting of
(I)-O-,
(2) -O-C(=O)-,
(3)
Figure imgf000011_0001
In this embodiment, n and m are preferably each 1.
In one embodiment of the compounds of formula (I), R3 is as depicted in paragraph (1) below:
Figure imgf000012_0001
In this embodiment, Rχ is preferably hydrogen. In this embodiment, if the dotted line leading to RY is absent, Ry is preferably selected from the group consisting of
(a) -C1-10 a]kyl, (b)-C2-10 alkenyl,
(c) -C2-10 alkynyl,
(d) -C3-8 cycloalkyl,
(e) -C0-6 alkylene-C6-10 aryl, or
(f) -C0-6 alkylene-heteroaryl, wherein said heteroaryl is selected from the group consisting of pyrazinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, tetrazolyl, furanyl, imidazolyl, triazinyl, pyranyl, thiazolyl, thienyl, thiophenyl, triazolyl, oxazolyl, isoxazolyl, thiazolyl, oxadiazolyl, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl and benzoxazolyl, wherein said alkyl, alkylene, alkenyl, alkynyl, cycloalkyl, aryl or heteroaryl are unsubstituted or substituted with one or more (i) halo,
(U) -C1-10 alkyl,
(iii) -OH,
(Iv) -CN,
(v) -O-C1-10 alkyl, or (vi) -C3-8 cycloalkyl; and Ry' is preferably hydrogen. In this embodiment, if the dotted line leading to RY represents a bond, then RY is preferably selected from the group consisting of
(a) =CH-C1-10 alkyl, or (b) =CH-C0-6 alkylene-C6-10 aryl, wherein said alkyl, alkylene, aryl or heteroaryl groups are unsubstituted or substituted with one or more (i) halo,
(ii) -C1-10 alkyl, (iii) -OH,
(iv) -CN, or (v) -O-C1-10 alkyl, or (vi) -C3-8 cycloalkyl. In this embodiment, Q3 is preferably -O- or -CH2, m is preferably 1, and n and r are each preferably O.
Preferably, Rx and Ry are not both hydrogen. In another embodiment of the compounds of formula (I), R3 is as depicted in paragraph (2) below:
Figure imgf000013_0001
In this embodiment, if the dotted line leading to RY is absent, RY is preferably selected from the group consisting of (a) -C1-10 alkyl,
(b)-C2-10 alkenyl,
(c) -C2-10 alkynyl,
(d) -C3-8 cycloalkyl,
(e) -C0-6 alkylene-C6-10 aryl, or (f) -C0-6 alkylene-heteroaryl, wherein said heteroaryl is selected from the group consisting of pyrazinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, tetrazolyl, furanyl, imidazolyl, triazinyl, pyranyl, thiazolyl, thienyl, thiophenyl, triazolyl, oxazolyl, isoxazolyl, thiazolyl, oxadiazolyl, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl and benzoxazolyl, wherein said alkyl, alkenyl, alkynyl, cycloalkyl, aryl or heteroaryl are unsubstituted or substituted with one or more
(i) halo,
(ii) -C1-10 alkyl, (iii) -OH, (iv) -CN, or (v) -O-C1-10 alkyl, or
(vi) -C3-8 cycloalkyl, and Ry' is hydrogen.
In this embodiment, if the dotted line leading to RY represents a bond, then RY is preferably selected from the group consisting of (a) =CH-C1-10 alkyl, or
(b) =CH-C0-6 alkylene-C6-10 aryl, wherein said alkyl, alkylene, aryl or heteroaryl groups are unsubstituted or substituted with one or more
(i) halo,
(ii) -C1-10 alkyl, (Ui) -OH,
(Iv) -CN,
(v) -O-C1-10 alkyl, or (vi) -C3-8 cycloalkyl.
In this embodiment, preferably Q4 is — O— or -CH2— and Q5 is — O— or -CH2-. Preferably, n and m are each 1 , and r is preferably 0.
In preferred embodiments of the compounds of formula (I), A is selected from the group consisting of
(1) hydrogen, and (2) -C1-10 alkyl, wherein said alkyl is unsubstituted or substituted with one or more
(a) halo,
(b) -C3-8 cycloalkyl,
(c) -CN (d) -O-C1-10 alkyl, (e) phenyl, or
(f) heteroaryl selected from the group consisting of pyrazinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, tetrazolyl, furanyl, imidazolyl, triazinyl, pyranyl, thiazolyl, thienyl, thiophenyl, triazolyl, oxazolyl, isoxazolyl, thiazolyl, oxadiazolyl, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl and benzoxazolyl. In a more preferred embodiment of the compounds of the formula (I), A is -C1 -10 alkyl
(preferably methyl), wherein said alkyl is unsubstituted or substituted with one or more halo (preferably fiuoro).
In a preferred embodiment of the compounds of formula (I), R2 is selected from the group consisting of (R5-SO2)N(R6)-, wherein R5 is -C1-6 alkyl, wherein said alkyl is unsubstituted or substituted with one or more
(i) halo,
(ii) -OH,
(iii) -CN,
Civ) -O-C 1-6 alkyl, or (v) -C1-6 alkyl,
R6 is selected from the group consisting of
(a) hydrogen, (b) -C1-6 alkyl, or
(c) -C6-10 aryl wherein said alkyl and aryl is unsubstituted or substituted with one or more
(i) halo, (ii) -OH,
(iii) -CN, (iv) -O-C1-6 alkyl, (v) -C1-6 alkyl, or R5 and R6 are linked to form a group -CH2(CH2)pCH2-. Another preferred R2 group is-C6-10 aryl, unsubstituted or substituted as described above.
Preferred aryl groups are phenyl groups, unsubstituted or substituted with cyano. A preferred R2 substituent is shown below:
Another preferred R2 substituent is
Figure imgf000015_0002
; wherein p is 1, 2 or 3.
Another preferred R2 substituent is heteroaryl, either unsubstituted or substituted as described above. A preferred heteroaryl group is furanyl or oxazolyl, either unsubstituted or substituted as described above. A preferred furanyl or oxazolyl substituent is depicted below:
Figure imgf000015_0003
wherein Q1 is selected from the group consisting of
(a) N, and
(b) C-Rb, wherein Rb is selected from the group consisting of (i) -CN, and
(ii) -C(=O)-O-C1-10 alkyl,
(iii) -C(O)-OH, and (iv) -C(O)-NRCRd (v) -NRCRd, wherein Rc and Rd are selected from the group consisting of
(A) hydrogen, and
(B) -C1-iO alkyl.
Another embodiment of the present invention is directed to compounds of formula (H):
Figure imgf000016_0001
(II) wherein A, X, Y, R2, R3 and R4 are as defined above, and pharmaceutically acceptable salts thereof, and individual enantiomers and diastereomers thereof.
In a preferred embodiment of the compounds of formula (II), X and Y are both hydrogen.
In another preferred embodiment of the compounds of formula (II), R4 is -(CH2)n-Q2 - (CH2)m-> wherein Q2 is selected from the group consisting of
(1) -O-,
(2) -O-C(=O) -,
Figure imgf000016_0002
In this embodiment, n and m are preferably each 1.
In one embodiment of the compounds of formula (II), R3 is as depicted in paragraph (1) below:
Figure imgf000017_0001
In this embodiment, Rχ is preferably hydrogen. In this embodiment, if the dotted line leading to RY is absent, RY is preferably selected from the group consisting of (a) -C1-10 alkyl, (b)-C2-10 alkenyl,
(c) -C2-10 alkynyl,
(d) -C3-8 cycloalkyl,
(e) -C0-6 alkylene-C6-lO aryl, or
(f) -C0-6 alkylene-heteroaryl, wherein said heteroaryl is selected from the group consisting of pyrazinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, tetrazolyl, furanyl, imidazolyl, triazinyl, pyranyl, thiazolyl, thienyl, thiophenyl, triazolyl, oxazolyl, isoxazolyl, thiazolyl, oxadiazolyl, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl and benzoxazolyl, wherein said alkyl, alkylene, alkenyl, alkynyl, cycloalkyl, aryl or heteroaryl are unsubstituted or substituted with one or more (i) halo,
(ii) -C1-10 alkyl,
(iii) -OH, (iv) -CN, or (v) -O-C1-10 alkyl, or (vi) -C3-8 cycloalkyl, and Ry' is preferably hydrogen.
In this embodiment, if the dotted line leading to RY represents a bond, then RY is preferably selected from the group consisting of
(a) =CH-C1-10 alkyl, or (b) =CH-C0-6 alkylene-C6-10 aryl, wherein said alkyl, alkylene, aryl or heteroaryl groups are unsubstituted or substituted with one or more
(i) halo,
(ii) -C1-10 alkyl, (iii) -OH, (iv) -CN,
(v) -O-C1-10 alkyl, or
(vi) -C3-8 cycloalkyl.
In this embodiment, Q3 is preferably -O- or -CH2-, m is preferably 1, and n and r are preferably each 0. In another embodiment of the compounds of formula (IT), R3 is as depicted in paragraph (2) below:
Figure imgf000018_0001
In this embodiment, if the dotted line leading to RY is absent, Ry is preferably selected from the group consisting of (a) -C1-10 alkyl,
(b)-C2-10 alkenyl, (c) -C2-10 alkynyl,
(d) -C3-8 cycloalkyl,
(e) -C0-6 alkylene-C6-io aryl, or (f) -C0-6 alkylene-heteroaryl, wherein said heteroaryl is selected from the group consisting of pyrazinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, tetrazolyl, furanyl, imidazolyl, triazinyl, pyranyl, thiazolyl, thienyl, thiophenyl, triazolyl, oxazolyl, isoxazolyl, thiazolyl, oxadiazolyl, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl and benzoxazolyl, wherein said alkyl, alkylene, alkenyl, alkynyl, cycloalkyl, aryl or heteroaryl are unsubstituted or substituted with one or more
(i) halo,
(U) -C1-10 alkyl, (iii) -OH, (Iv) -CN5 (v) -O-C1-10 alkyl, or
(vi) -C3-8 cycloalkyl, and Ry' is preferably hydrogen.
In this embodiment, if the dotted line leading to RY represents a bond, then RY is preferably selected from the group consisting of (a) =CH-C1-10 alkyl, or
(b) =CH-C0-6 alkylene-C6-10 aryl, wherein said alkyl, alkylene, aryl or heteroaryl groups are unsubstituted or substituted with one or more
(i) halo,
(ii) -C1-10 alkyl, (iii) -OH,
(iv) -CN, or (V) -O-C1-10 alkyl, or (vi) -C3-8 cycloalkyl.
In this embodiment, preferably Q4 is -O- or -CH2- and Q5 is -O- or — CH2 -. Preferably, n and m are each 1 and r is preferably 0.
In preferred embodiments of the compounds of formula (II), A is selected from the group consisting of
(1) hydrogen, and (2) -C1-10 alkyl, wherein said alkyl is unsubstituted or substituted with one or more
(a) halo,
(b) -C3-8 cycloalkyl,
(c) -CN (d) -O-C1-10 alkyl, (e) phenyl, or
(f) heteroaryl selected from the group consisting of pyrazinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, tetrazolyl, furanyl, imidazolyl, triazinyl, pyranyl, thiazolyl, thienyl, thiophenyl, triazolyl, oxazolyl, isoxazolyl, thiazolyl, oxadiazolyl, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl and benzoxazolyl. In a more preferred embodiment of the compounds of formula (H), A is -C1-10 alkyl
(preferably methyl), wherein said alkyl is unsubstituted or substituted with one or more halo (preferably fluoro).
In a preferred embodiment of the compounds of formula (I), R2 is selected from the group consisting of (R5-SO2)N(R6)-, wherein R5 is -C1-6 alkyl, wherein said alkyl is unsubstituted or substituted with one or more
(i) halo,
(ii) -OH,
(iii) -CN,
(iv) -O-C1-6 alkyl, or (v) -C1-6 alkyl,
R6 is selected from the group consisting of
(a) hydrogen, (b) -C1-6 alkyl, or
(c) -C6-10 aryl wherein said alkyl and aryl is unsubstituted or substituted with one or more
(i) halo, (ii) -OH,
(iii) -CN, (iv) -O-C1-6 alkyl, (v) -C1-6 alkyl, or R5 and R6 may be linked to form a group -CH2(CH2)pCH2-. Another preferred R2 group is— C6-10 aryl, unsubstituted or substituted as described above.
Preferred aryl groups are phenyl groups, unsubstituted or substituted with cyano. A preferred R2 substituent is shown below:
Figure imgf000020_0001
Another preferred R2 substituent is
Figure imgf000020_0002
wherein p is 1, 2 or 3.
Another preferred R2 substituent is heteroaryl, either unsubstituted or substituted as described above. Preferred heteroaryl groups include furanyl or oxazolyl, either unsubstituted or substituted as described above. A preferred furanyl or oxazolyl substituent is depicted below:
Figure imgf000020_0003
wherein Ql is selected from the group consisting of
(a) N, and (b) C-Rb, wherein Rb is selected from the group consisting of
(i) -CN, and (ii) -C(=O)-O-C1-10 alkyl,
(iii) -C(=O)-OH, and (iv) -C(=O)-NRCRd (v) -NRcRd, wherein Rc and Rd are selected from the group consisting of
(A) hydrogen, and
(B) -C1-10 alkyl.
Another embodiment of the present invention is directed to compounds of the formula (III)
Figure imgf000021_0001
(III)
wherein A, X, Y, R1, R2, R4, Rx, Ry, Ry' Q3, m, n and r are as defined above, and pharmaceutically acceptable salts thereof, and individual enantiomers and diastereomers thereof.
In a preferred embodiment of the compounds of formula (III), X and Y are both hydrogen. In another preferred embodiment of the compounds of formula (III), R4 is -(CH2)n-Q2 -(CH2)m, wherein Q2 is selected from the group consisting of (I)-O-,
(2) -O-C(=O)-,
Figure imgf000021_0002
In this embodiment, n and m are preferably each 1.
In preferred embodiments of the compounds of formula (III), A is selected from the group consisting of
(1) hydrogen, and
(2) -C1-10 alkyl, wherein said alkyl is unsubstituted or substituted with one or more
(a) halo, (b) -C3-8 cycloalkyl, (c) -CN, (d) -O-C1-10 alkyl,
(e) phenyl, or
(f) heteroaryl selected from the group consisting of pyrazinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, tetrazolyl, furanyl, imidazolyl, triazinyl, pyranyl, thiazolyl, thienyl, thiophenyl, triazolyl, oxazolyl, isoxazolyl, thiazolyl, oxadiazolyl, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl and benzoxazolyl. In a more preferred embodiment of the compounds of formula (HI), A is -Ci_io alkyl
(preferably methyl), wherein said alkyl is unsubstituted or substituted with one or more halo (preferably fluoro).
In a preferred embodiment of the compounds of formula (DI), R2 is selected from the group consisting of (R5-SO2)N(R6)-, wherein R5 is -C 1-6 alkyl, wherein said alkyl is unsubstituted or substituted with one or more
(i) halo, (ii) -OH,
(iii) -CN,
(iv) -O-C1-6 alkyl, or (v) -C1-6 alkyl,
R6 is selected from the group consisting of (a) hydrogen,
(b) -C 1-6 alkyl, or (c)-C6-10 aryl, or wherein said alkyl or aryl is unsubstituted or substituted with one or more
(i) halo, (ii) -OH,
(iii) -CN,
(iv) -O-C1-6 alkyl, (v) -C1-6 alkyl, or R5 and R6 may be linked to form a group -CH2(CH2)pCH2-. Another preferred R2 group is-C6-10 aryl, unsubstituted or substituted as described above.
Preferred aryl groups are phenyl groups, unsubstituted or substituted with cyano. A preferred R2 substituent is shown below:
Figure imgf000022_0001
Another preferred R2 substituent is
Figure imgf000023_0001
; wherein p is 1, 2 or 3.
Another preferred R2 substituent is heteroaryl, either unsubstituted or substituted as described above. Preferred heteroaryl groups include furanyl and oxazolyl, either unsubstituted or substituted as described above. A preferred furanyl or oxazolyl substiturent is depicted below:
Figure imgf000023_0002
wherein Q1 is selected from the group consisting of
(a) N5 and (b) C-Rb, wherein Rb is selected from the group consisting of
(i) -CN, and (ii) -C(=0)-OC1-10 alkyl,
(iii) -C(=O)-OH, and (iv) -C(=O)-NRCRd (v) -NRCRd3 wherein Re and Rd are selected from the group consisting of
(A) hydrogen, and
(B) -C1-10 alkyl.
Another embodiment of the present invention is directed to compounds of the formula (IV):
Figure imgf000023_0003
(IV)
wherein A, X,Y, R1, R2, R4, Ry, Ry' Q4, Q5, m, n and r are as defined above, and pharmaceutically acceptable salts thereof, and individual enantiomers and diastereomers thereof.
In a preferred embodiment of the compounds of formula (IV), X and Y are both hydrogen. In another preferred embodiment of the compounds of formula (FV), R4 is -(CH2)n Q2 - (CH2)m, wherein Q2 is selected from the group consisting of (I)-O-,
(2) -O-C(=0)-,
Figure imgf000024_0001
In this embodiment, n and m are preferably each 1. In preferred embodiments of the compounds of formula (IV), A is selected from the group consisting of
(1) hydrogen, and (2) -C1-10 alkyl, wherein said alkyl is unsubstituted or substituted with one or more (a) halo,
(b) -C3-8 cycloalkyl,
(c) -CN,
(d) -OC1-10 alkyl, (e) phenyl, or (f) heteroaryl selected from the group consisting of pyrazinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, tetrazolyl, furanyl, imidazolyl, triazinyl, pyranyl, thiazolyl, thienyl, thiophenyl, triazolyl, oxazolyl, isoxazolyl, thiazolyl, oxadiazolyl, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl and benzoxazolyl. m a more preferred embodiment of the compounds of formula (IV), A is — C1-10 alkyl (preferably methyl), wherein said alkyl is unsubstituted or substituted with one or more halo (preferably fluoro).
In a preferred embodiment of the compounds of formula (IV), R2 is selected from the group consisting of (R5-SO2)N(R6)-, wherein R5 is -C1-6 alkyl, wherein said alkyl is unsubstituted or substituted with one or more (i) halo,
(ii) -OH, (iii) -CN,
(iv) -O-C1-6 alkyl, or (v) -C1-6 alkyl, R6 is selected from the group consisting of (a) hydrogen, (b) -C1-6 alkyl, or
(c) -C6-10 aryl, wherein said alkyl and aryl is unsubstituted or substituted with one or more
(i) halo, (ii) -OH, (iii) -CN, (iv) -O-C1-6 alkyl, (v) -C1-6 alkyl, or R5 and R6 may be linked to form a group -CH2(CH2)pCH2~.
Another preferred R2 group is-C6-10 aryl, unsubstituted or substituted as described above. Preferred aryl groups are phenyl groups, unsubstituted or substituted with cyano. A preferred R2 substituent is shown below:
Figure imgf000025_0001
Another preferred R2 substituent is
Figure imgf000025_0002
wherein p is 1, 2 or 3.
Another preferred R2 substituent is heteroaryl, either unsubstituted or substituted as described above. Preferred heteroaryl groups include furanyl or oxazolyl, either unsubstituted or substituted as described above. A preferred furanyl or oxazolyl substituent is depicted below:
Figure imgf000025_0003
wherein Ql is selected from the group consisting of (a) N, and
(b) C-Rb, wherein Rb is selected from the group consisting of (i) -CN, and
(ii) -C(=0)-0-C1-10 alkyl, (iii) -C(=O)-OH, and (iv) -C(=O)-NRCRd
(v) -NR0Rd, wherein Rc and Rd are selected from the group consisting of
(A) hydrogen, and b (B) -C1-10 alkyl.
Another embodiment of the present invention includes a compound which is selected from the title compounds of the following Examples and pharmaceutically acceptable salts thereof.
As used herein, the term "alkyl," by itself or as part of another substituent, means a saturated straight or branched chain hydrocarbon radical having the number of carbon atoms designated (e.g., C\. io alkyl means an alkyl group having from one to ten carbon atoms). Preferred alkyl groups for use in the invention are C1-6 alkyl groups, having from one to six carbon atoms. Exemplary alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, pentyl, hexyl, and the like.
As used herein, the term "alkylene," by itself or as part of another substituent, means a saturated straight or branched chain divalent hydrocarbon radical having the number of carbon atoms designated. The term "Co alkylene" means a bond.
As used herein, the term "cycloalkyl," by itself or as part of another substituent, means a saturated cyclic hydrocarbon radical having the number of carbon atoms designated (e.g., C3.8 cycloalkyl means a cycloalkyl group having from three to eight carbon atoms). Exemplary cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like. As used herein, the term "alkenyl," by itself of as part of another substituent, means a straight or branched chain hydrocarbon radical having a single carbon-carbon double bond and having the number of carbon atoms designated (e.g., C2-10 alkenyl means an alkenyl group having from one to ten carbon atoms). Preferred alkenyl groups for use in the invention are C2-6 alkenyl groups, having from two to six carbon atoms. Exemplary alkenyl groups include ethenyl, n-propenyl, isopropenyl, butenyl, and the like. As used herein, the teπn "alkynyl", by itself or as part of another substituent, means a saturated straight or branched chain hydrocarbon radical having the number of carbon atoms designated (e.g., C2-10 alkynyl means an alkynyl group having from two to ten carbon atoms). Preferred alkynyl groups for use in the invention are C2-6 alkynyl groups, having from two to six carbon atoms. Exemplary alkynyl groups include ethynyl and propynyl. As used herein, the term "aryl," by itself or as part of another substituent, means an aromatic or cyclic radical having the number of carbon atoms designated (e.g., C6-10 aryl means an aryl group having from six to ten carbons atoms). The term "aryl" includes multiple ring systems as well as single ring systems. Preferred aryl groups for use in the invention include phenyl and naphthyl.
As used herein, the term "arylene," by itself or as part of another substituent, means a divalent aromatic or cyclic radical, having the number of carbon atoms designated (e.g., C6-10 arylene means an arylene group having from six to ten carbons atoms). The term "arylene" includes multiple ring systems as well as single ring systems. Preferred arylene groups for use in the invention include phenylene and naphthylene.
As used herein, the term "heteroaryl," by itself or as part of another substituent, means an aromatic cyclic radical having at least one ring heteroatom (O, N or S). The term "heteroaryl" includes multiple ring systems as well as single ring systems. Exemplary heteroaryl groups for use in the invention include furyl, pyranyl, benzofuranyl, isobenzofuranyl, chromenyl, thienyl, benzothiophenyl, pyrrolyl, pyrazolyl, imidazolyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, indolyl, benzimidazolyl, quinolinyl, isoquinolinyl, tetrazolyl, indazolyl, napthyridinyl, triazolyl, oxazolyl, oxadiazolyl, thiazolyl, thiadiazolyl, isoxazolyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl and dihydroindolyl. When a heteroaryl group as defined herein is substituted, the substituent may be bonded to a ring carbon atom of the heteroaryl group, or on a ring heteroatom {i.e., a nitrogen, oxygen or sulfur), which has a valence which permits substitution. Preferably, the substituent is bonded to a ring carbon atom. Similarly, when a heteroaryl group is defined as a substituent herein, the point of attachment may be at a ring carbon atom of the heteroaryl group, or on a ring heteroatom {i.e., a nitrogen, oxygen or sulfur), which has a valence which permits attachment. Preferably, the attachment is at a ring carbon atom.
As used herein, the term "heteroarylene," by itself or as part of another substituent, means an aromatic cyclic divalent radical having at least one ring heteroatom (O, N or S). The term "halo" or "halogen" includes fluoro, chloro, bromo and iodo. The compounds of the instant invention have at least one asymmetric center. Additional asymmetric centers may be present depending upon the nature of the various substituents on the molecule. Compounds with asymmetric centers give rise to enantiomers (optical isomers), diastereomers (configurational isomers) or both, and it is intended that all of the possible enantiomers and diastereomers in mixtures and as pure or partially purified compounds are included within the scope of this invention. The present invention is meant to encompass all such isomeric forms of these compounds.
The independent syntheses of the enantiomerically or diastereomerically enriched compounds, or their chromatographic separations, may be achieved as known in the art by appropriate modification of the methodology disclosed herein. Their absolute stereochemistry may be determined by the x-ray crystallography of crystalline products or crystalline intermediates that are derivatized, if necessary, with a reagent containing an asymmetric center of known absolute configuration.
If desired, racemic mixtures of the compounds may be separated so that the individual enantiomers are isolated. The separation can be carried out by methods well known in the art, such as the coupling of a racemic mixture of compounds to an enantiomerically pure compound to form a diastereomeric mixture, followed by separation of the individual diastereomers by standard methods, such as fractional crystallization or chromatography. The coupling reaction is often the formation of salts using an enantiomerically pure acid or base. The diastereomeric derivatives may then be converted to the pure enantiomers by cleavage of the added chiral residue. The racemic mixture of the compounds can also be separated directly by chromatographic methods utilizing chiral stationary phases, which methods are well known in the art.
Alternatively, any enantiomer of a compound may be obtained by stereoselective synthesis using optically pure starting materials or reagents of known configuration by methods well known in the art.
In the compounds of formulas (T) to (IV), the carbon to which A and R4 are bonded is a chiral carbon. As a result, the compounds of formulas (I)-(IV) may be present as racemates, or in the stereochemically pure (R) or (S) forms. The present invention encompasses all such isomeric forms.
The (R) and (S) configurations for compounds of formula (T) are depicted below:
or
Figure imgf000028_0001
The (R) configuration (as depicted ab is preferred.
In the compounds of formula (TTT) and (IV), and the compounds of (T) and (TT) when the dotted line leading to Ry is absent, the carbon to which Ry is bonded is chiral. As a result, the compounds of the invention may be present as racemates, or in the stereochemically pure (R) or (S) forms. The present invention encompasses all such isomeric forms.
The (R) and (S) configurations for compounds of formula (TTT) are depicted below:
Figure imgf000029_0001
As will be understood by persons of ordinary skill in the art, some of the compounds of the invention may be present as racemates, or as diastereomers (R,S), (R5R), (S,R), and (S,S).
The compounds of the present invention are prepared by the methods outlined in Schemes 1.1 to 4.10, below, and the intermediates and examples herein.
Scheme 1.1, describes the preparation of hydroxyl derivatives of type 1.1a, their triflate analogs 1.1b and 1.1c. Starting from glycine Schiff base, more elaborated bromides of type l.ld and l.le can be prepared.
Scheme 1.1
Figure imgf000030_0001
Scheme 2.1 describes a sulfonylation, alkylation, monohydrolysis sequence leading to monoacids of type 2.1a. Reduction to hydroxymethyl derivatives 2.1b, bromination to bromomethyl derivatives 2.1c or protection with TBS (2.Id) is described as well. Acylhydrazide derivatives of type 2.1e are obtained from the corresponding acids.
Scheme 2.1
Figure imgf000031_0001
Scheme 2.2 describes very similar preparation as in scheme 2.1 with the incorporation of a tert- butyl ester that can be removed under non-hydrolytic conditions. Alternate mode of alkylation/sulfonylation is also represented.
Scheme 2.2
Figure imgf000032_0001
Scheme 2.3 is similar to schemes 2.1 and 2.2, with the incorporation of an aryl bromide useful to introduce various aryl groups, sulfonamides and heterocycles later in the syntheses or early on as described in the 2nd part of the scheme. Scheme 2.3
Figure imgf000033_0001
Scheme 2.4 describes the preparation of similar intermediates that display cyano-spirocyclic groups to replace the alkyl-sulfonamides described in schemes 2.1 and 2.2.
Scheme 2.4
Figure imgf000034_0001
Scheme 2.5 describes the preparation of phenols of type 2.5b and 2.5d, along with their triflate derivatives of type 2.5c and 2.5e.
Scheme 2.5
Figure imgf000035_0001
Scheme 3.1 and 3.2 illustrate the preparation of carboxylic acids of type 3.1-2a and alcohols of type 3.1- 2c.
Scheme 3.1
Figure imgf000035_0002
Scheme 3.2
Figure imgf000036_0001
Schemes 3.3, 3.4, and 3.5 describe the preparation of esters of types 3.3-5a Scheme 3.3
Figure imgf000037_0001
Scheme 3.4
Figure imgf000037_0002
Scheme 3.5
Figure imgf000037_0003
Schemes 4.1-10 illustrate the assembly of various intermediates and their final elaboration to macrocycles. Scheme 4.1
Figure imgf000038_0001
Figure imgf000039_0001
Scheme 4.3
Figure imgf000040_0001
Scheme 4.4
Figure imgf000041_0001
Scheme 4.5
Figure imgf000042_0001
4.5a
Scheme 4.6
Figure imgf000042_0002
Scheme 4.7
Figure imgf000043_0001
Scheme 4.8
Figure imgf000043_0002
Scheme 4.9
Figure imgf000044_0001
Scheme 4.10
Figure imgf000045_0001
The term "substantially pure" means that the isolated material is at least 90% pure, and preferably 95% pure, and even more preferably 99% pure as assayed by analytical techniques known in the art.
The term "pharmaceutically acceptable salts" refers to salts prepared from pharmaceutically acceptable non-toxic bases or acids including inorganic or organic bases and inorganic or organic acids. Salts derived from inorganic bases include aluminum, ammonium, calcium, copper, ferric, ferrous, lithium, magnesium, manganic salts, manganous, potassium, sodium, zinc, and the like. Particularly preferred are the ammonium, calcium, magnesium, potassium, and sodium salts. Salts in the solid form may exist in more than one crystal structure, and may also be in the form of hydrates. Salts derived from pharmaceutically acceptable organic non-toxic bases include salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines, and basic ion exchange resins, such as arginine, betaine, caffeine, choline, N,N'-dibenzylethylene-diamine, diethylamine, 2-diethylaminoethanol, 2-dimethylaminoethanol, ethanolamine, ethylenediamine, N-ethyl- morpholine, N-ethylpiperidine, glucamine, glucosamine, histidine, hydrabamine, isopropylamine, lysine, methylglucamine, morpholine, piperazine, piperidine, polyamine resins, procaine, purines, theobromine, triethylamine, trimethylamine, tripropylamine, tromethamine, and the like. When the compound of the present invention is basic, salts may be prepared from pharmaceutically acceptable non-toxic acids, including inorganic and organic acids. Such acids include acetic, benzenesulfonic, benzoic, camphorsulfonic, citric, ethanesulfonic, fumaric, gluconic, glutamic, hydrobromic, hydrochloric, isethionic, lactic, maleic, malic, mandelic, methanesulfonic, mucic, nitric, pamoic, pantothenic, phosphoric, succinic, sulfuric, tartaric, p-toluenesulfonic, triflouoroacetic acid and the like. Particularly preferred are citric, hydrobromic, hydrochloric, maleic, phosphoric, sulfuric, fumaric, tartaric and trifluoroacetic acids.
The present invention is directed to the use of the compounds disclosed herein as inhibitors of β- secretase enzyme activity or β-site amyloid precursor protein-cleaving enzyme ("BACE") activity, in a patient or subject such as a mammal in need of such inhibition, comprising the administration of an effective amount of the compound. The terms "β-secretase enzyme," "β-site amyloid precursor protein- cleaving enzyme," and "BACE" are used interchangeably in this specification. In addition to humans, a variety of other mammals can be treated according to the method of the present invention.
The present invention is further directed to a method for the manufacture of a medicament or a composition for inhibiting β-secretase enzyme activity in humans and animals comprising combining a compound of the present invention with a pharmaceutical carrier or diluent.
The compounds of the present invention have utility in treating Alzheimer's disease. For example, the compounds may be useful for the prevention of dementia of the Alzheimer's type, as well as for the treatment of early stage, intermediate stage or late stage dementia of the Alzheimer's type. The compounds may also be useful in treating diseases mediated by abnormal cleavage of amyloid precursor protein (also referred to as APP), and other conditions that may be treated or prevented by inhibition of β-secretase. Such conditions include mild cognitive impairment, Trisomy 21 (Down Syndrome), cerebral amyloid angiopathy, degenerative dementia, Hereditary Cerebral Hemorrhage with Amyloidosis of the Dutch-Type (HCHWA-D), Creutzfeld- Jakob disease, prion disorders, amyotrophic lateral sclerosis, progressive supranuclear palsy, head trauma, stroke, Down syndrome, pancreatitis, inclusion body myositis, other peripheral amyloidoses, diabetes and atherosclerosis.
The subject or patient to whom the compounds of the present invention is administered is generally a human being, male or female, in whom inhibition of β-secretase enzyme activity is desired, but may also encompass other mammals, such as dogs, cats, mice, rats, cattle, horses, sheep, rabbits, monkeys, chimpanzees or other apes or primates, for which inhibition of β-secretase enzyme activity or treatment of the above noted disorders is desired.
The compounds of the present invention may be used in combination with one or more other drugs in the treatment of diseases or conditions for which the compounds of the present invention have utility, where the combination of the drugs together are safer or more effective than either drug alone. Additionally, the compounds of the present invention may be used in combination with one or more other drugs that treat, prevent, control, ameliorate, or reduce the risk of side effects or toxicity of the compounds of the present invention. Such other drugs may be administered, by a route and in an amount commonly used therefor, contemporaneously or sequentially with the compounds of the present invention. Accordingly, the pharmaceutical compositions of the present invention include those that contain one or more other active ingredients, in addition to the compounds of the present invention. The combinations may be administered as part of a unit dosage form combination product, or as a kit or treatment protocol wherein one or more additional drugs are administered in separate dosage forms as part of a treatment regimen.
Examples of combinations of the compounds of the present invention with other drugs in either unit dose or kit form include combinations with anti-Alzheimer's agents, for example other beta- secretase inhibitors or gamma-secretase inhibitors; tau phosphorylation inhibitors; Ml receptor positive allosteric modulators; blockers of A/3 oligomer formation; 5-HT modulators, such as PRX-03140, GSK 742467, SGS-518, FK-962, SL-65.0155, SRA-333 and xaliproden; p25/CDK5 inhibitors; NK1/NK3 receptor antagonists; COX-2 inhibitors; HMG-CoA reductase inhibitors; NSAIDs including ibuprofen; vitamin E; anti-amyloid antibodies, including anti-amyloid humanized monoclonal antibodies; anti¬ inflammatory compounds such as (R)-flurbiprofen, nitroflurbiprofen, rosiglitazone, ND- 1251, VP-025, HT-0712 and EHT-202; CB-I receptor antagonists or CB-I receptor inverse agonists; antibiotics such as doxycycline and rifampin; N-methyl-D-aspartate (NMDA) receptor antagonists, such as memantine and neramexane; cholinesterase inhibitors such as galantamine, rivastigmine, donepezil, tacrine, phenserine, ladostigil and ABT-089; growth hormone secretagogues such as ibutamoren, ibutamoren mesylate, and capromorelin; histamine H3 antagonists such as ABT-834, ABT 829 and GSK 189254; AMPA agonists or AMPA modulators, such as CX-717, LY 451395 and S-18986; PDE IV inhibitors; GABAA inverse agonists; neuronal nicotinic agonists; selective Ml agonists; microtobubule affinity regulating kinase
(MARK) ligands; P-450 inhibitors, such as ritonavir, or other drugs that affect receptors or enzymes that either increase the efficacy, safety, convenience, or reduce unwanted side effects or toxicity of the compounds of the present invention. The foregoing list of combinations is illustrative only and not intended to be limiting in any way.
The term "composition" as used herein is intended to encompass a product comprising specified ingredients in predetermined amounts or proportions, as well as any product which results, directly or indirectly, from combination of the specified ingredients in the specified amounts. This term in relation to pharmaceutical compositions is intended to encompass a product comprising one or more active ingredients, and an optional carrier comprising inert ingredients, as well as any product which results, directly or indirectly, from combination, complexation or aggregation of any two or more of the ingredients, or from dissociation of one or more of the ingredients, or from other types of reactions or interactions of one or more of the ingredients. In general, pharmaceutical compositions are prepared by uniformly and intimately bringing the active ingredient into association with a liquid carrier or a finely divided solid carrier or both, and then, if necessary, shaping the product into the desired formulation. In the pharmaceutical composition the active object compound is included in an amount sufficient to produce the desired effect upon the process or condition of diseases. Accordingly, the pharmaceutical compositions of the present invention encompass any composition made by admixing a compound of the present invention and a pharmaceutically acceptable carrier.
Pharmaceutical compositions intended for oral use may be prepared according to any method known to the art for the manufacture of pharmaceutical compositions and such compositions may contain one or more agents selected from the group consisting of sweetening agents, flavoring agents, coloring agents and preserving agents in order to provide pharmaceutically elegant and palatable preparations. Tablets may contain the active ingredient in admixture with non-toxic pharmaceutically acceptable excipients which are suitable for the manufacture of tablets. These excipients may be, for example, inert diluents, such as calcium carbonate, sodium carbonate, lactose, calcium phosphate or sodium phosphate; granulating and disintegrating agents, for example, corn starch, or alginic acid; binding agents, for example starch, gelatin or acacia, and lubricating agents, for example magnesium stearate, stearic acid or talc. The tablets may be uncoated or they may be coated by known techniques to delay disintegration and absorption in the gastrointestinal tract and thereby provide a sustained action over a longer period. Compositions for oral use may also be presented as hard gelatin capsules wherein the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules wherein the active ingredient is mixed with water or an oil medium, for example peanut oil, liquid paraffin, or olive oil.
Other pharmaceutical compositions include aqueous suspensions, which contain the active materials in admixture with excipients suitable for the manufacture of aqueous suspensions. In addition, oily suspensions may be formulated by suspending the active ingredient in a vegetable oil, for example arachis oil, olive oil, sesame oil or coconut oil, or in a mineral oil such as liquid paraffin. Oily suspensions may also contain various excipients. The pharmaceutical compositions of the invention may also be in the form of oil-in-water emulsions, which may also contain excipients such as sweetening and flavoring agents. The pharmaceutical compositions may be in the form of a sterile injectable aqueous or oleaginous suspension, which may be formulated according to the known art, or may be administered in the form of suppositories for rectal administration of the drug.
The compounds of the present invention may also be administered by inhalation, by way of inhalation devices known to those skilled in the art, or by a transdermal patch. By "pharmaceutically acceptable" it is meant the carrier, diluent or excipient must be compatible with the other ingredients of the formulation and not deleterious to the recipient thereof. The terms "administration of1 or "administering a" compound should be understood to mean providing a compound of the invention to the individual in need of treatment in a form that can be introduced into that individual's body in a therapeutically useful form and therapeutically useful amount, including, but not limited to: oral dosage forms, such as tablets, capsules, syrups, suspensions, and the like; injectable dosage forms, such as IV, IM, or IP, and the like; transdermal dosage forms, including creams, jellies, powders, or patches; buccal dosage forms; inhalation powders, sprays, suspensions, and the like; and rectal suppositories.
The terms "effective amount" or "therapeutically effective amount" means the amount of the subject compound that will elicit the biological or medical response of a tissue, system, animal or human that is being sought by the researcher, veterinarian, medical doctor or other clinician. As used herein, the term "treatment" refers to the treatment of the mentioned conditions, particularly in a patient who demonstrates symptoms of the disease or disorder.
The compositions containing compounds of the present invention may conveniently be presented in unit dosage form and may be prepared by any of the methods well known in the art of pharmacy. The term "unit dosage form" is taken to mean a single dose wherein all active and inactive ingredients are combined in a suitable system, such that the patient or person adminstering the drug to the patient can open a single container or package with the entire dose contained therein, and does not have to mix any components together from two or more containers or packages. Typical examples of unit dosage forms are tablets or capsules for oral administration, single dose vials for injection, or suppositories for rectal administration. This list of unit dosage forms is not intended to be limiting in any way, but merely to represent typical examples of unit dosage forms.
The compositions containing compounds of the present invention may conveniently be presented as a kit, whereby two or more components, which may be active or inactive ingredients, carriers, diluents, and the like, are provided with instructions for preparation of the actual dosage form by the patient or person adminstering the drug to the patient. Such kits may be provided with all necessary materials and ingredients contained therein, or they may contain instructions for using or making materials or components that must be obtained independently by the patient or person administering the drug to the patient.
When treating Alzheimer's disease or other diseases for which compounds of the present invention are indicated, generally satisfactory results are obtained when the compounds of the present invention are administered at a daily dosage of from about 0.1 mg to about 100 mg per kilogram of animal body weight, preferably given as a single daily dose or in divided doses two to six times a day, or in sustained release form. The total daily dosage is from about 1.0 mg to about 2000 mg, preferably from about 0.1 mg to about 20 mg per kg of body weight. In the case of a 70 kg adult human, the total daily dose will generally be from about 7 mg to about 1 ,400 mg. This dosage regimen may be adjusted to provide the optimal therapeutic response. The compounds may be administered on a regimen of 1 to 4 times per day, preferably once or twice per day. Specific dosages of the compounds of the present invention, or pharmaceutically acceptable salts thereof, for administration include 1 mg, 5 mg, 10 mg, 30 mg, 80 mg, 100 mg, 150 mg, 300 mg and 500 mg. Pharmaceutical compositions of the present invention may be provided in a formulation comprising about 0.5 mg to 1000 mg active ingredient; more preferably comprising about 0.5 mg to 500 mg active ingredient; or 0.5 mg to 250 mg active ingredient; or 1 mg to 100 mg active ingredient. Specific pharmaceutical compositions useful for treatment may comprise about 1 mg, 5 mg, 10 mg, 30 mg, 80 mg, 100 mg, 150 mg, 300 mg and 500 mg of active ingredient.
It will be understood, however, that the specific dose level and frequency of dosage for any particular patient may be varied and will depend upon a variety of factors including the activity of the specific compound employed, the metabolic stability and length of action of that compound, the age, body weight, general health, sex, diet, mode and time of administration, rate of excretion, drug combination, the severity of the particular condition, and the host undergoing therapy.
The utility of the compounds in accordance with the present invention as inhibitors of β- secretase enzyme activity may be demonstrated by methodology known in the art. Enzyme inhibition may be determined as follows.
FRET Assay: A homogeneous end point fluorescence resonance energy transfer (FRET) assay is employed with the substrate ([TAMRA-S-CO-EEISEVNLDAEF-NHQSY] QFRET), which is cleaved by BACE 1 to release the fluorescence from TAMRA. The Km of the substrate is not determined due to the limit of solubility of the substrate. A typical reaction contains approximately 30 nM enzyme, 1.25 μM of the substrate, and buffer (50 mM NaOAc, pH 4.5, 0.1 mg/ml BSA, 0.2% CHAPS, 15 mM EDTA and 1 mM deferoxamine) in a total reaction volume of 100 μl. The reaction is proceeded for 30 min and the liberation of TAMRA fragment is measured in a 96-well plate LJL Analyst AD using an excitation wavelength of 530 nm and an emission wavelength of 580 nm. Under these conditions, less than 10% of substrate is processed by BACE 1. The enzyme used in these studies is soluble (transmembrane domain and cytoplasmic extension excluded) human protein produced in a baculovirus expression system. To measure the inhibitory potency of compounds, solutions of inhibitor in DMSO (four concentrations of the inhibitors are prepared: ImM, 100 μM, 10 μM, 1 μM) are included in the reactions mixture (final DMSO concentration is 0.8%). All experiments are conducted at rt using the standard reaction conditions described above. To determine the IC50 of the compound, competitive equation V0/Vi = 1 + [I]/[IC50] is used to predict the inhibitory potency of the compounds. The errors in reproducing the dissociation constants are typically less than two-fold.
HPLC assay: A homogeneous end point HPLC assay is used with the substrate (coumarin-CO-REVNFEVEFR), which is cleaved by BACE 1 to release the N-terminal fragment attached with coumarin. The Km of the substrate is greater than 100 μM and can not be determined due to the limit of solubility of the substrate. A typical reaction contains approximately 2 nM enzyme, 1.0 μM of the substrate, and buffer (50 mM NaOAc, pH 4.5, 0.1 mg/ml BSA, 0.2% CHAPS, 15 mM EDTA and 1 mM deferoxamine) in a total reaction volume of 100 μl. The reaction is proceeded for 30 min and is stopped by the addition of 25 μL of 1 M Tris-HCl, pH 8.0. The resulting reaction mixture is loaded on the HPLC and the product is separated from substrate with 5 min linear gradient. Under these conditions, less than 10% of substrate is processed by BACE 1. The enzyme used in these studies is soluble (transmembrane domain and cytoplasmic extension excluded) human protein produced in a baculovirus expression system. To measure the inhibitory potency for compounds, solutions of inhibitor in DMSO (12 concentrations of the inhibitors are prepared and the concentration rage is dependent on the potency predicted by FRET) are included in the reaction mixture (final DMSO concentration is 10 %). All experiments are conducted at rt using the standard reaction conditions described above. To determine the IC50 of the compound, four parameters equation is used for curve fitting. The errors in reproducing the dissociation constants are typically less than two-fold.
In particular, the compounds of the following examples had activity in inhibiting the beta- secretase enzyme in one or both of the aforementioned assays, generally with an IC50 from about 1 nM to 100 μM. Such a result is indicative of the intrinsic activity of the compounds in use as inhibitors of the beta-secretase enzyme activity. Several methods for preparing the compounds of this invention are illustrated in the Schemes and
Examples herein. Starting materials are made according to procedures known in the art or as illustrated herein. The following examples are provided so that the invention might be more fully understood. These examples are illustrative only and should not be construed as limiting the invention in any way.
The following abbreviations are used throughout the text: Me: methyl
Et: ethyl
Bu: butyl t-Bu: tert-butyl
Ar: aryl Ph: phenyl
Ac: acetyl
Bn: benzyl
Boc: tert-butyloxy carbonyl
TFA: trifluoroacetic acid DCM: dichloromethane
DMF: N,N'-dimethyl formamide
TBAF: tetra-n-butylammonium fluoride
HMDS: hexamethyldisilazane
THF: tetrahydrofuran DMSO: dimethylsulfoxide
EDTA: ethylene diamine tetraacetic acid
BOP: Benzotriazol-l-yloxy-tris(dimethylamino)phosphonium hexafluorophosphate TMS: trimethylsilyl TBS: tert-butyl silyl
TMAD: N,N,N',N'-Tetramethylazocarboxamide DIAD: Diisopropylazodicarboxylate HOAt: l-hydroxy-7-azabenzotriazole
EDC : 1 -Ethyl-3 -(3 -dimemylaminopropyl)-carbodiimide DPPA: diphenylphosphorylazide TPAP: tetrapropylammonium perruthenate BSA: bovine serum albumin CHAPS: 3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-l-propanesulfonate rt: room temperature HPLC: high performance liquid chromatography
Intermediate I.l.a.l (Scheme 1.1)
Figure imgf000052_0001
To a suspension of alphamethyl m-tyrosine methyl ester hydrochloride monohydrate (10.4 g, 39.4 mmol) in THF (300 mL) was added diisopropylethyl amine (7.6 mL, 43.4 mmol) and ditertbutyldicarbonate (9.1 g, 41.4 mmol) and the reaction mixture was stirred at rt for 24 h. The reaction mixture was concentrated in vacuo to 1A volume, diluted with EtOAc and diethyl ether, washed with 10% aq KHSO4, and then alternatively with water and brine until aq pH = 7, dried over Na2SO4, concentrated in vacuo, and purified by flash chromatography (30Og silica, 0-60% EtOAc in hexanes) to provide intermediate I.l.a.l. lH NMR (400 MHz, CDCI3) δ 7.12 (app. t, J = 8 Hz, 1H), 6.72 (dd3 J = 8, 2.4 Hz, 1H), 6.63 (d, J = 8
Hz, 1H), 6.58 (dd, J = 2.5, 2.4 Hz5 1H), 5.35 (br s, 1H), 5.16 (br s, 1H), 3.75 (s, 3H), 3.28 (m, 1H), 3.15 (B ofAB, d, J = 13.3 Hz, 1H), 1.55 (br s, 3H), 1.47 (s, 9H).
Intermediate Ll.b.l (Scheme 1.1)
Figure imgf000052_0002
To a solution of intermediate I.l.a.l (6.62 g, 21.4 mmol) in DCM (50 mL) cooled to 0 °C was added 2,6- lutidine (2.9 mL, 24.6 mmol) and trifiic anhydride (4 mL, 23.5 mmol) dropwise. The reaction mixture was stirred at 0 °C for 10 min, diluted with water, extracted with DCM twice. The combined organic fraction was dried over Na2SO4, concentrated in vacuo, and purified by flash chromatography (30Og silica, 0-30% EtOAc in hexanes) to provide intermediate I.l.b.l. *H NMR (400 MHz, CDCI3) δ 7.35 (app. t, J = 8 Hz, 1H), 7.15 (dd, J = 8, 2.4 Hz, 1H), 7.11 (d, J = 8 Hz, 1H), 7.0 (dd, J = 2.5, 2.4 Hz, 1H), 5.19 (br s, 1H), 3.77 (s, 3H), 3.52 (A of AB, br d, J = 13.6 Hz, 1H), 3.27 (B of AB, d, J = 13.6 Hz, 1H), 1.56 (s, 3H), 1.48 (s, 9H).
Intermediate Ll. b.2 (Scheme 1.1)
Figure imgf000053_0001
Step A: l-((3-(Bromomethyl)phenoxy)methyl)benzene
To a solution of 3-benzyloxybenzyl alcohol (2 g, 9.3 mmol) and carbon tetrabromide (4 g, 12.1 mmol) in CH2Cl2 (70 mL), cooled to O°C, was added a solution of triphenylphosphine (2.9 g, 11.2 mmol) in CH2Cl2 (20 mL). The reaction was stirred at rt for 3 h and concentrated. Purification by flash chromatography (silica gel, 0-8% EtOAc/hexanes) gave l-((3-(bromomethyl)phenoxy)methyl)benzene. 1H NMR (400 MHz, CDCl3) δ 7.39 (m, 5H), 7.25 (m, 1H), 7.00 (m, 2H), 6.92 (m, 1H), 5.06 (s, 2H), 4.46 (s, 2H).
Step B: 2-Amino-3-(3-benzyloxy)phenyl)-2-(fluoromethyl)propanenitrile
To a suspension of magnesium (0.46 g, 0.019 mol) and iodine (cat amt) in THF (42 mL) was added a solution of l-((3-(bromomethyl)phenoxy)methyl)benzene (4.5 g, 0.016 mol) in THF (21 mL) dropwise over 45 min. The reaction was stirred at rt for 1.5 h, cooled to
-40 °C and a solution of fluoroacetonitrile (0.83 mL, 0.015 mol) in THF (5 mL) was added dropwise. The reaction mixture was stirred at -4O°C for 15 min and then added via cannula to a solution of sodium cyanide (1.6 g, 0.032 mol) and ammonium chloride (1.6 g, 0.029 mol) in H2O (32 mL). After stirring at rt for 1 h, sodium chloride (6.3 g) was added and the mixture was extracted with ether. Drying and solvent evaporation gave 2-amino-3-(3-benzyloxy)phenyl)-2-(fluoromethyl)propanenitrile. 1H NMR
(400 MHz, CDCl3) δ 7.43-7.28 (m, 6H), 6.95 (m, 3H), 5.07 (s, 2H), 4.38 (ABX, J = 46 Hz, J = 9 Hz, 2H), 2.99 (d, J = 14 Hz, 1H), 2.77 (d, J = 14 Hz, 1H).
Step C: 2-Amino-2-(fluoromethyl)-3-(3-hydroxyphenyl)propanoic acid A solution of 2-amino-3-(3-benzyloxy)phenyl)-2-(fluoromethyl)propanenitrile (4.5 g, 0.016 mol) in aqueous HCl (6N, 60 mL) was heated to 90 °C for 96 h. The reaction mixture was diluted with H2O and extracted with ether. The pH of the aqueous phase was brought to 5.5 and solid impurities were filtered.
Concentration of the aqueous layer gave 2-amino-2-(fluoromethyl)-3-(3-hydroxyphenyl)propanoic acid.
1H NMR (400 MHz, CD3OD) δ 7.15 (m, 2H), 6.74 (m, 2H), 4.69 (m, 2H), 3.19 (d, J = 14 Hz, 1H), 2.96 (d, J = 14 Hz, 1H). Step D: Methyl 2-amino-2-(fluoromethyl)-3-(3-hydroxyphenyl)propanoate
To a solution of 2-amino-2-(fluoromethyl)-3-(3-hydroxyphenyl)propanoic acid (1 g, 4.7 mmol) in MeOH (10 mL) was added thionyl chloride (3.9 niL, 54 mmol) dropwise and the reaction mixture was heated to 60 °C for 48 h. Additional thionyl chloride (2 mL) was added and the reaction continued for 48 h. Quenching with H2O, concentration and trituration from MeCN gave methyl 2-amino-2-(fluoromethyl)-3- (3-hydroxyphenyl)propanoate. 1H NMR (400 MHz, CDCl3) δ 7.20 (m, 2H), 6.66 (m, 2H), 4.83-4.37 (ABX, J = 46 Hz, J = 8.8 Hz, 2H), 3.76 (s, 3H), 3.04 (d, J = 13 Hz, 1H), 2.69 (d, J = 13 Hz, 1H).
Step E: Methyl 2-tert-butoxycarbonylamino-2-(fluoromethyl)-3-(3-hydroxyphenyl)propanoate To a suspension of methyl 2-amino-2-(fluoromethyl)-3-(3-hydroxyphenyl)propanoate (1 g, 3.8 mmol) in DMF/tert-butanol (1:1, 2.6 mL) was added a solution of di-tert-buty\ dicarbonate (1.6 g, 7.6 mmol) in DMF/tert-butanol (0.9 mL) followed by sodium bicarbonate (1.1 g, 13.3 mmol). The reaction was heated to 60 °C for 1.5 h, quenched with 10% citric acid solution and extracted with EtOAc. Drying, solvent evaporation and flash chromatography (silica gel, 0-25% EtOAc/hexanes) gave methyl 2-tert- butoxycarbonylamino-2-(fluoromethyl)-3-(3-hydroxyphenyl)propanoate. 1H NMR (400 MHz, CDCl3) δ 7.13 (t, J = 7.9 Hz, 1H), 6.72 (dd, J = 8 Hz, J = 2.2 Hz, 1H), 6.63 (d, J = 7.6 Hz, 1H), 6.58 (s, 1H), 5.36 (bs, 1H), 5.26 (bs, 1H), 5.07-4.64 (ABX, J = 47 Hz, J = 8 Hz, 2H), 3.78 (s, 3H), 3.36 (d, J = 13 Hz, 1H), 2.96 (d, J = 13 Hz, 1H), 1.46 (s, 9H).
Step F: 3-(2-(Methoxycarbonyl)-2-tert-butoxycarbonylamino-3-fluoropropyl)phenyl trifluoromethanesulfonate
To a solution of methyl 2-tert-butoxycarbonylamino-2-(fluoromethyl)-3-(3-hydroxyphenyl)propanoate (87 mg, 0.26 mmol) and DIEA (0.056 mL, 0.32 mmol) in MeCN (4.6 mL) was added N- phenyltrifluoromethanesulfonimide (114 mg, 0.32 mmol). The reaction was stirred at rt overnight, concentrated, diluted with EtOAc and washed with H2O and brine. Drying, solvent evaporation and flash chromatography (silica gel, 0-25% EtOAc/ hexanes) gave 3-(2-(methoxycarbonyl)-2-tert- butoxycarbonylamino-3-fluoropropyl)phenyl trifluoromethanesulfonate. 1H ΝMR (400 MHz, CDCl3) δ 7.39-7.03 (m, 4H), 5.45 (bs, 1H), 5.11-4.62 (ABX, J = 46 Hz, J = 8.7 Hz, 2H), 3.79 (s, 3H), 3.55 (d, J = 13 Hz, 1H), 3.04 (d, J = 13 Hz, 1H), 1.48 (s, 9H).
Intermediate I.l.c.l (Scheme 1.1)
Figure imgf000054_0001
To a solution of intermediate I.l.b.l (1.00 g, 2.27 mmol) in 20 mL anhydrous THF cooled to 0°C under an atmosphere of argon was added lithium borohydride (0.236 mL, 0.473 mmol, 2.0M solution in THF).
After warming to rt over 2 hr., the reaction was cooled back down to 0°C and quenched with MeOH. It was diluted with water (50 mL) and extracted with EtOAc (2 x 50 mL). The organic layers were combined, washed with brine (2 x 50 mL), dried over sodium sulfate, and concentrated in vacuo. Purification by flash chromatography (90 g silica, 0-45% EtOAc in hexanes) gave intermediate I.l.c.l as a white solid. 1H NMR (400 MHz, CDCl3) δ 7.38 (app t, J = 7.9 Hz, 1H), 7.23 (d, J = 7.9 Hz, 1H), 7.18 - 7.15 (m, 1H), 7.12 (s, 1H), 4.46 (s, 1H), 4.06 (br s, 1H), 3.72 (A of ABX, dd, JAB = 11.5 Hz, JAX = 3.9 Hz, 1H), 3.63 (B of ABX, dd, JAB = 11.5 Hz, JBX = 8.4 Hz, 1 H), 3.30 (A of AB, d, J = 13.5 Hz, 1 H), 2.89 (B ofAB, d, J = 13.5 Hz, 1 H), 1.48 (s, 9H), 1.03 (s, 3H).
Intermediate I.l.b.2 (Scheme 1.1)
Figure imgf000055_0001
Prepared from alphamethyl p-tyrosine methyl ester using a similar procedure as described for the preparation of intermediate I.l.b.l IK NMR (400 MHz, CDCI3) δ 7.08 (s, 4H), 5.17 (br s, 1H), 3.64 (s,
3H), 3.35 (A of AB, br d, J = 13.4 Hz, 1H), 3.20 (B of AB, d, J = 13.4 Hz, 1H), 1.43 (s, 3H), 1.38 (s, 9H).
Intermediate I.l.b.3 (Scheme 1.1)
Figure imgf000055_0002
Prepared from m-tyrosine methyl ester using a similar procedure as described for the preparation of intermediate I.l.b.l. lH NMR (400 MHz, CDCI3) δ 7.38 (app. t, J=8.0 Hz, 1H), 7.21-7.14 (m, 2H),
7.06 (s, 1H), 5.04 (d, J = 7.2 Hz, 1H), 4.62-4.54 (m, 1H), 4.23-4.10 (m, 2H), 3.19 (A of ABX, dd, JAB = 13.7 Hz, JAX = 5.8 Hz, 1H), 3.10 (B of ABX, dd, JAB = 13.7 Hz, JBX = 5.8 Hz, 1H), 1.43 (s, 9H), 1.24 (t, J= 7.1 Hz, 3H).
Intermediate Ll.c.l (Scheme 1.1)
Figure imgf000055_0003
To a solution of methyl N-(diphenylmethylene)alaninate (2.6 g, 9.7 rnmol) in DMF (20 mL) cooled to 0 °C was added ΝaHMDS (12.2 mL, 12.2 mmol, IM in THF) slowly via syringe and the reaction mixture was stirred at 0 °C for 15 min at which point 3-bromo-benzyl bromide (2.55 g, 10.2 mmol) in DMF (10 mL) was added slowly via syringe. The reaction mixture was allowed to warm to rt over 16h, quenched with aq NH4Cl and water, extracted with EtOAc, washed with aq LiCl (x3), dried over Na2SO4, concentrated in vacuo, and purified by flash chromatography (12Og silica, 0-15% EtOAc in hexanes) to provide methyl 3 -bromo-N-(diphenylmethylene)-α-methylphenylalaninate .
To a solution of methyl 3-bromo-N-(diphenylmethylene)-α-methylphenylalaninate (2.95 g, 6.76 mmol) in MeOH (25 mL) and THF (25 mL) was added 6Ν HCl (3.4 mL, 20.3 mmol) and the reaction mixture was stirred at RT for 5 min, concentrated in vacuo and purified by ion exchange chromatography (SCX, 25 g, then 50 g, MeOH then 2M NH3 in MeOH) to provide methyl 3-bromo-α-methylphenylalaninate.
To a solution of methyl 3-bromo-α-methylphenylalaninate (1.67 g, 6.1 mmol) in THF (30 mL) and MeOH (5 mL) was added ditertbutyldicarbonate (1.61 g, 7.4 mmol) and the reaction mixture was stirred at 50 °C for 6 h and at rt for 16 h, concentrated in vacuo, and purified by flash chromatography (9Og silica, 0-20% EtOAc in hexanes) to provide Intermediate I.l.c.1. lH NMR (400 MHz, CDCI3) δ 7.36
(d, J = 7.6 Hz, 1H), 7.24 (s, 1H), 7.13 (t, J = 7.6 Hz, 1H), 6.98 (d, J = 7.6 Hz, 1H), 5.16 (br s, 1H), 3.77 (s, 3H), 3.39 (A of AB, br d, J = 13.5 Hz, 1H), 3.19 (B of AB, d, J = 13.5 Hz, 1H), 1.56 (br s, 3H), 1.49 (s, 9H).
Intermediate I.1.C.2 (Scheme 1.1)
Figure imgf000056_0001
Prepared from methyl N-(diphenylmethylene)alaninate and 3-bromo-4-fluoro-benzyl bromide as described for the preparation of Intermediate I.l.c.1. MS M+l = 390.
Intermediate I.l.c.3 (Scheme 1.1)
Figure imgf000056_0002
Prepared from methyl N-(diphenylmethylene)alaninate and 3-bromo-5-fluoro-benzyl bromide as described for the preparation of Intermediate I.l.c.1. MS M+l = 390.
Intermediate I.l.c.4 (Scheme 1.1)
Figure imgf000057_0001
Prepared from methyl N-(diphenylmethylene)alaninate and 5-bromo-2-fluoro-benzyl bromide as described for the preparation of Intermediate I.l.c.1. MS M+l = 390.
Intermediate I.l.c.5 (Scheme 1.1)
Figure imgf000057_0002
Prepared from methyl N-(diphenylmethylene)alaninate and 3-bromo-2-fluoro-benzyl bromide as described for the preparation of Intermediate I.l.c.1. MS M+l = 390.
Intermediate II.l.a.l (Scheme 2.1)
Figure imgf000057_0003
Step A: Sulfonylation
To a stirred slurry of dimethyl 5-aminoisophthalate (5.0 g, 23.90 mmol) in 100 mL CH2CI2 / pyridine
(3:1) at 0°C was added methanesulfonyl chloride (1.85 mL, 23.90 mmol). The resulting mixture was stirred for 4 h at rt. The solvent was removed in vacuo and ethyl acetate (100 mL) was added resulting in precipitate formation. The product was collected by filtration to give the sulfonamide as a white solid. 1H ΝMR (400 MHz, DMSO d6) δ 8.15 (s, 1H), 8.02 (s, 2H), 3.89 (s, 6H), 3.02 (s, 3H) LCMS [M- OCH3]+ = 256.16.
Step B: Methylation
To a solution of sodium hydride (0.153 g, 3.83 mmol, 60 % oil dispersion) in 10 mL DMF was added sulfonamide (1.0 g, 3.48 mmol) from step A followed by methyl iodide (0.43 mL, 6.97 mmol). After 1 hr the reaction was quenched with H2O (100 mL) and extracted with EtOAc ( 3 x 50 mL). The organic extracts were dried over MgSO4 and evaporated to give the product. 1H ΝMR (400 MHz, DMSO d6) δ 8.40 (s, 1H), 8.19 (s, 2H), 3.91 (s, 6H), 3.34 (s, 3H), 3.01 (s, 3H). LCMS [M + H] = 302.15. Step C: Hydrolysis
Diester (1.03 g, 3.38 mmol) from step B was dissolved in 50 mL THFMeOH (1:1) and cooled to 0 °C. IN NaOH (3.38 mL, 3.38 mmol) was added and the reaction was allowed to warm to rt over 8 h. The solution was acidified with IN HCl (30 mL) and extracted with EtOAc (3 x 50 mL). The combined organic extracts were washed with brine and dried over MgSO4, filtered and concentrated in vacuo. Purification by silica gel chromatography (5% MeOH/CHCl3 containing 1% HOAc) gave the mono acid. 1H NMR (400 MHz, DMSO d6) δ 8.30 (s, 1H), 8.10 (s, 2H), 3.84 (s, 3H), 3.27 (s, 3H), 2.94 (s, 3H). LCMS (M+H) = 288.16.
Intermediate π.l.a.2 (Scheme 2.1)
Figure imgf000058_0001
Prepared as described for the preparation of intermediate H.l.a.l with the use of n-propyl iodide instead of methyl iodide in step B. 1H NMR (400 MHz , DMSO d6) δ 13.58 (s, 1H), 8.42 (s, 1H), 8.16-8.11 (m, 2H), 3.91 (s, 3H), 3.69 (t, J = 7.0 Hz, 2H), 3.02 (s, 3H), 1.40-1.30 (m, 2H), 0.83 (t, J = 7.3 Hz, 3H).
2.1)
Figure imgf000058_0002
Step A: Borane Reduction
To a solution of intermediate Il.l.a.l (1.00 g, 3.48 mmol) in 30 mL anhydrous THF cooled to O°C under an atmosphere of argon was added borane-tetrahydrofuran complex (17.40 mL, 17.40 mmol, 1.0M solution in THF) slowly via syringe. After warming to rt slowly over 15 hr, the reaction was cooled back down to O°C and quenched with MeOH. After warming to rt, it was concentrated to half its original volume, diluted with water, and extracted with EtOAc (2 x 50 mL). The organic extracts were combined, washed with bicarb and brine, dried over Na2SO4 and evaporated to give methyl 3-(hydroxymethyl)-5- [methyl(methylsulfonyl)amino]benzoate as a white solid.
Step B: Bromination To a solution of alcohol (0.710 g, 2.60 mmol) from Step A and carbon tetrabromide (1.12 g, 3.38 mmol) in 25 mL anhydrous CH2Cl2 under an atmosphere of argon was added a solution of triphenylphosphine (0.818 g, 3.12 mmol) in 5 mL anhydrous CH2Cl2 slowly via syringe. After 2 hr, additional carbon tetrabromide (0.224 g, 0.675 mmol) and triphenylphosphine (0.164 g, 0.623 mmol) were added. After an additional 1 hr, it was concentrated in vacuo. Purification by silica gel chromatography (9Og silica, 0- 45% EtOAc in hexanes) gave the bromide, Intermediate II.l.c.l, as a white solid. 1H NMR (400 MHz, CDCI3) δ 8.00 (s, 1H), 7.92 (s, 1H), 7.67 (s, 1H), 4.50 (s, 2H), 3.94 (s, 3H), 3.37 (s, 3H), 2.87 (s, 3H).
Intermediate π.l.c.2 (Scheme 2.1)
Figure imgf000059_0001
Prepared from intermediate II.l.a.2 using a similar procedure as described for the preparation of intermediate H.l.c.l. 1H NMR (400 MHz, CDCI3) δ 8.04 (s, 1H), 7.91 (s, 1H), 7.61 (s, 1H), 4.50 (s, 2H),
3.94 (s, 3H), 3.67 (t, J = 7.2 Hz, 2H), 2.90 (s, 3H), 1.56-1.46 (m, 2H), 0.92 (t, J= 7.3 Hz, 3H).
Intermediate II.1.C.3 (Scheme
Figure imgf000059_0002
Prepared as described for the preparation of intermediate Il.l.a.l with the use of isopropyl sulfonyl chloride instead of mesyl chloride in step A. 1H NMR (400 MHz5 CDCl3) δ 8.00-7.90 (m, 2H), 7.71 (t, J = 1.8 Hz, 1H), 4.50 (s, 2H), 3.94 (s, 3H), 3.41 (s, 3H), 3.38-3.26 (m, 1H), 1.37 (d, J = 6.8 Hz, 6H).
Intermediate π.l.e.l (Scheme 2.1)
Figure imgf000059_0003
Step A: Coupling To a solution of intermediate H.l.a.l (0.520 g, 1.810 mmol) and Boc-hydrazine (0.359 g, 2.715 mmol) in 8 mL CH2Cl2 was added Hunig's base (0.950 mL, 5.43 mmol) and BOP-reagent (0.881 g, 1.991 mmol). After 30 min, the reaction was poured onto a silica gel column and purified by normal phase chromatography (5->75% EtOAc/hexanes) to afford the desired product as a white foam.
Step B: Boc Deprotection
Gaseous HCl was bubbled through a solution of product from Step A in 20 mL CH2Cl2 at 0°C for 5 min. The reaction was warmed to rt for 20 min, then concentrated to afford intermediate ILl.e.l as a white solid. 1H NMR (100 MHz, CD3OD) δ 8.42 (m, 1H), 8.29 (m, 1H), 8.17 (m, 1H), 3.95 (s, 3H), 3.38 (s, 3H), 2.95 (s, 3H).
Intermediate II.2.C.1 (Scheme 2.2)
Figure imgf000060_0001
Prepared from intermediate ϋ.l.a.1 using a similar procedure as described for the preparation of intermediate H2.C.2. lH NMR (400 MHz, CDCI3) δ 7.91 (br s, 1H), 7.86 (br s, 1H), 7.64 (br s, 1H),
4.50 (s, 2H), 3.35 (s, 3H), 2.87 (s, 3H), 1.61 (s, 9H).
Intermediate H.2.C.2 (Scheme 2.2)
Figure imgf000060_0002
Step A: tBu ester Installment
To a solution of intermediate II.l.a.2 (3 g, 9.5 mmol) in DMF (50 mL) was added carbonyl diimidazole (1.78 g, 10.97 mmol) and the reaction mixture was stirred at 50 °C for 30 min. DBU (1.64 mL, 10.9 mmol) and tBuOH (2 mL, 20.9 mmol) were added and the reaction mixture was stirred at 50 °C for 5h30 and at RT for 16 h. The reaction mixture was diluted with EtOAc, washed with water, with 10% KHSO4, with aq NaHCO3 with aq LiCl (x3), dried over Na2SO4, and concentrated in vacuo to provide the Me-tBu diester. Step B: Me ester hydrolysis
To a solution of the previous Me-tBu diester (3.3 g, 8.9 mmol) in MeOH (40 mL) and THF (40 mL) was added IN NaOH (8.9 mL, 8.9 mmol) and the reaction mixture was stirred at RT for 16 h. IN HCl (9mL, 9 mmol) was added, the reaction mixture was extracted with DCM, dried over Na2SO4, concentrated in vacuo, and purified by flash chromatography (12Og silica, 50-100% (0.5% HOAc in EtOAc) in hexanes) to provide the corresponding tBu ester-carboxylic acid.
Step C: Borane Reduction
Performed as described in the preparation of intermediate II.l.c.1
Step D: Bromination
Performed as described in the preparation of intermediate π.l.c.1 to provide intermediate II.2.C.2. 1H
NMR (400 MHz, CDCI3) δ 7.95 (br s, 1H), 7.85 (br s, 1H), 7.56 (br s, 1H), 4.50 (s, 2H), 3.66 (t, J = 7.1
Hz, 2H), 2.90 (s, 3H), 1.61 (s, 9H), 1.58-1.44 (m, 2H), 0.92 (t, J = 7.3 Hz, 3H).
Intermediate IL2.C.3 (Scheme 2.2)
Figure imgf000061_0001
StepA: Cbz protection
To a solution of dimethylisopthalate (3.00 g, 14.3 mmol) in 75 mL 1,2-dichloroethane and 20 mL water was added K2CO3 (4.95 g, 35.9 mmol), followed by Cbz-Cl (2.69 g, 15.8 mmol). After 6h, the reaction was concentrated then diluted with EtOAc and water until the layers were homegeneous. The layers were separated, and the organics were washed with 0.5M KHSO4 (2x) and brine. Dried over Na2SO4, filtered and concentrated. Used product without further purification. LC/MS (M+H) = 344.
StepB: methylation
To a solution of product from Step A (2.71 g, 7.89 mmol) in 20 mL DMF was added Cs2CO3 (5.14 g, 15.78 mmol), followed by MeI (0.98 mL, 15.78 mmol). The reaction was allowed to proceed at room temperature for 16h, then diluted with EtOAc and 3M LiCl. The layers were separated, and the organics were washed with 3M LiCl (2x) and brine, dried over Na2SO4, filtered and concentrated. The residue was purified using normal phase silica gel chromatography (10->60% EtO Ac/hex) to afford the desired methylation product. LC/MS (M+H) = 358. StepC: monhydrolysis
Peformed using a procedure as described in Step C of Intermediate π.l.a.l synthesis. LC/MS (M+H) = 344
StepD: t-Bu ester installation
Peformed using a procedure as described in Step A of Intermediate H.2.C.2 synthesis. LC/MS (M-Z-Bu
+H) = 344
StepE: Cbz hydrogenolysis
To a solution of Cbz aniline (1.38 g, 3.45 mmol) in 15 mL EtOAc was added 10% Pd/C (0.368 g, 0.345 mmol). The vessel was evacuated/opened to H2 (3x), then stirred over an atmosphere of H2(from balloon) for 4.5h. The flask was evacuated/opened to Ar (3x), and the reaction was filtered through a pad of celite, rinsing with fresh EtOAc. The organics were concentrated, and used without further purification. LC/MS (M+CH3CN) = 307
StepF: sulfonylation
To a solution of aniline from Step E (0.360 g, 1.357 mmol) in 5 mL CH2Cl2 was added pyridine (0.55 mL, 6.78 mmol), followed by dimethylsulfamoyl chloride (0.290 mL, 2.71 mmol) The reaction was heated at 45 oC for 72h, then further aliquots of pyridine (0.55 mL, 6.78 mmol) and dimethylsulfamoyl chloride (0.290 mL, 2.71 mmol) were added, and the reaction was heated for a further 24h. The reaction was cooled to RT and quenched by the addition of satd. NaHCO3 and EtOAc. The layers were separated, and the organics were washed with 0.5M KHSO4 (2x) and brine, dried over Na2SO4, filtered and concentrated. The residue was purified by normal phase silica gel chromatography (5->45% EtOAc/hex) to afford the desired product. LC/MS (M+H) = 373.
StepG: lithium borohydride reduction
To a solution of material from Step F (0.235 g, 0.632 mmol) in 1.8 mL THF at RT was added 2.0M
LiBH4 (1.25 mL, 2.50 mmol), and the reaction was allowed to proceed overnight. The reaction was cooled to 0 °C, quenched with satd. NaHCO3 and dilute with EtOAc. The layers were separated, the organics were washed with brine, dried over Na2SO4, filtered and concentrated. The residue was purified by normal phase silica gel chromatography (20->85% EtOAc/hex) to afford the desired product. LC/MS (M+H) = 345.
StepH: bromination
Performed as described in the preparation of intermediate II.l.c.l to provide intermediate II.2.C.3. LC/MS (M+H) = 407, 409 (Br pattern) Intermediate H.2.C.4 (Scheme 2.2)
Figure imgf000063_0001
StepA: Sulfonylation
To a solution of dimethyl amino isophthalate (0.500 g, 2.39 mmol) in 12 mL CH2Cl2 at 0 °C was added diisopropylethylamine (2.1 mL, 11.95 mmol) and triflic anhydride (1.0 mL, 5.97 mmol). The reaction was allowed to warm to RT over 2Oh, then quenched by adding 0.5M KHSO4 and diluted with EtOAc. The layers were separated, the organics were washed with 0.5M KHSO4 and brine, dried over Na2SO4, filtered and concentrated. The residue was purified by preparative HPLC to afford the desired product. LC/MS (M+H) = 342.
StepB-StepH: methylation, monhydrolysis, t-Bu ester installation, lithium borohydride reduction, bromination : Performed as described in the synthesis of Intermediate II.2.C.3. LC/MS for title compound Intermediate II.2.C.4 (M+H) = 432, 434 (Br pattern).
Intermediate IL2.C.5 (Scheme 2.2)
Figure imgf000063_0002
Prepared from 2,2,2-trifluoroethanesulfonyl chloride and dimethyl aminoisophthalate using a similar procedure as described for the preparation of intermediate II.2.C.3 . LC/MS (M+H) = 446.
Intermediate IL2.C.6 (Scheme 2.2)
Figure imgf000064_0001
StepA: Iodination
To a solution of 2-chloro-3-nitro-benzoic acid (1Og , 49.6 mmol) in trifilic acid (45 mL) cooled to 0 °C was added N-iodosuccinimide (12.3 g, 54.6 mmol) by portions. The reaction mixture was stirred at 40 °C for 4 h, additional N-iodosuccinimide (1.2 g) was added and the reaction mixture was stirred at 40 °C for 16 h. Ice was slowly added to the reaction mixture and the resulting mixture was poured on ice and water. The precipitated solid was filtered, washed with water, taken in EtOAc, washed with aqueous NaHSO3 / KHSO4, with water, with brine, dried over sodium sulfate, and concentrated in vacuo to give a 1 :3 mixture of 2-chloro-3-nitro-5-iodo-benzoic acid and 2-chloro-3-nitro-benzoic acid.
StepB: esterification
The mixture from stepA was taken in HCl(g) saturated MeOH and stirred at 60 °C for 4 h. Concentration in vacuo and purification by flash chromatography (300 g silica gel, 0 to 25% EtOAc in hexane) yielded methyl 2-chloro-5-iodo-3-nitrobenzoate as a white solid. IR NMR (400 MHz, CDCI3) δ 8.24 (d, J = 2
Hz, 1H), 8.11 (d, J = 2 Hz, 1H), 3.98 (s, 3H).
StepC: AUylation
A solution of methyl 2-chloro-5-iodo-3-nitrobenzoate (3 g, 8.8 mmol) and vinyl tributyltin (3.6 g, 11.4 mmol) in DMF (50 mL) was degassed with argon. PdCl2/(PPh3)2 (308 mg, 0.44 mmol) was added, the reaction vessel was sealed under argon and the reaction mixture was stirred at 90 °C for 16 h. The reaction mixture was cooled to RT and treated with aqueous KF (1.5 g in 20 mL water) for 2 h30. The mixture was diluted with water and EtOAc filtered on cellite. The organic layer was separated, washed with aq LiCl (x3), dried over sodium sulfate, concentrated in vacuo and purified by flash chromatography (120 g silica gel, 0 to 20% EtOAc in hexane) to give methyl 2-chloro-3-nitro-5-vinylbenzoate as a pale yellow solid. lH NMR (400 MHz, CDCI3) δ 7.94 (d, J = 2 Hz, 1H), 7.83(4 J = 2 Hz, 1H), 6.69 (dd, J =
17.4 Hz, 10.8 Hz, 1H), 5.89 (d, J = 17.4 Hz, 1H), 5.52 (d, J = 10.8 Hz, 1H), 3.99 (s, 3H).
StepD: Nitro reduction A solution of methyl 2-chloro-3-nitro-5-vinylbenzoate (1.75 g, 7.2 mmol) and SnCl2 (4.1 g, 18.1 mmol) in EtOH (50 mL) was stirred at 75 °C for 16 h. The reaction mixture was cooled to RT, diluted with water and EtOAc, stirred at RT for 10 min, and filtered on cellite. The organic layer was separated, washed with brine, dried over sodium sulfate, concentrated in vacuo and purified by flash chromatography (120 g silica gel, 0 to 25% EtOAc in hexane) to give methyl 2-chloro-3-amino-5- vinylbenzoate as a yellow oil. MS M+l = 212.
StepE: Mesylation As described in the preparation of intermediate K.l.a.1, step A.
StepF: Methylation
As described in the preparation of intermediate H.l.a.l, step B.
StepG: Hydrolysis
As described in the preparation of intermediate II.2.C.2, step B.
StepH: tBu ester installation
As described in the preparation of intermediate II.2.C.2, step A, to give ter/-butyl 2-chloro-3- [methyl(methylsulfonyl)amino]-5-vinylbenzoate. lH NMR (400 MHz, CDCI3) δ 7.67 (d, J = 2 Hz, 1H),
7.60(d, J = 2 Hz, 1H), 6.65 (dd, J = 17.6 Hz, 10.9 Hz, 1H), 5.81 (d, J = 17.6 Hz, 1H), 5.39 (d, J = 10.9 Hz, 1H), 3.30 (s, 3H), 3.05 (s, 3H)1.62 (s, 9H).
Stepl: Reductive ozonolysis Through a solution of tert-butyl 2-chloro-3-[methyl(methylsulfonyl)amino]-5-vinylbenzoate (700 mg, 2 mmol) in DCM (7 mL) and MeOH (3 mL) cooled to -78 °C was bubbled ozone until the solution remained blue. After 5 min stirring at -78 °C, MeOH (4 mL) and NaBH4 (115 mg, 3 mmol) were added and the reaction mixture was allowed to warm to RT. The reaction mixture was diluted with EtOAc, washed with 10% KHSO4, brine, dried over sodium sulfate and concentrated in vacuo to provide tert- butyl 2-chloro-5-(hydroxymethyl)-3-[methyl(methylsulfonyl)amino]benzoate, used crude in the bromination step.
StepJ: Bromination
As described in the preparation of intermediate II.l.cl, step B, to provide tert-butyϊ 5-(bromomethyl)-2- chloro-3-[methyl(methylsulfonyl)amino]benzoate. lH NMR (400 MHz, CDCI3) δ 7.69 (d, J = 2 Hz, 1H), 7.61 (d, J = 2 Hz, 1H), 4.40 (s, 2H), 3.30 (s, 3H), 3.05 (s, 3H).
Intermediate II.2.g.l (Scheme 2.2) e
Figure imgf000066_0001
Step A: Sulfonylation
To a 0°C solution of dimethyl 5-hydroxyisophthalate (2.0 g, 9.5 mmol) in 3:1 dichloromethane : pyridine ( 100 mL) was added methanesulfonyl chloride (3.6 g, 31.4 mmol). The reaction warmed to room temperature over 18 h. The reaction mixture was concentrated in vacuo. The crude material was diluted with DCM and washed with IN HCl, H2O (2x), brine, dried with MgSO4, filtered, concentrated and purified by flash chromatography (4Og silica, 25-40% EtOAc/hexanes) to give 1.37 g (50%) of dimethyl 5-[(methylsulfonyl)oxy]isophthalate. 1H NMR (400 MHz, CDCl3) δ 8.66 (s, 1H), 8.12 (s, 2H), 3.97 (s, 6H), 3.23 (s, 3H).
Step B: Monohydrolysis
To a 0°C solution of dimethyl 5-[(methylsulfonyl)oxy]isophthalate (1.37g, 4.75 mmol) in THF (150 mL) was added 0.1 N NaOH solution (46.6 mL, 4.66 mmol) dropwise in an addition funnel. Reaction stirred at 0°C for 2 hours and then warmed to room temperature. Reaction was concentrated in vacuo. Crude material was acidified with IN HCl and extracted with EtOAc (3x). The combined organics were dried with MgSO4, filtered, concentrated and purified by flash chromatography (40 g silica, 0-5% MeOH/DCM/1% acetic acid) to give 0.74 g (57%) of 3-(methoxycarbonyl)-5- [(methylsulfonyl)oxy]benzoic acid. 1H NMR (400 MHz, CDCl3) δ 8.72 (m, 1H), 8.18 (m, 2H), 3.98 (s, 3H), 3.25 (s, 3H).
Step C: Tert-butyl installment
To a solution of 3-(methoxycarbonyl)-5-[(methylsulfonyl)oxy]benzoic acid (0.74 g, 2.7 mmol) in DCM
(25 mL) was added dimethylaminopyridine (0.165 g, 1.35 mmol) and tert-butanol (0.226 g, 3.05 mmol). The reaction mixture was cooled to O°C. To the reaction was added EDC (0.569 g, 2.97 mmol). The reaction stirred at 0°C for 2 h and then warmed to room temp over 16 h. The reaction mixture was washed with IN HCl, H2O, dried with MgSO4, filtered, concentrated and purified by flash chromatography (25 g silica, 10-30% EtOAc/hexanes) to give 0.74 g (83%) of tert-butyl methyl 5- [(methylsulfonyl)oxy]isophthalate. 1H NMR (400 MHz, CDCl3) δ 8.58 (m, 1H), 8.09 (m, 1H), 8.05 (m, 1H), 3.96 (s, 3H), 3.23 (s, 3H) 1.61 (s, 9H).
Step D: Lithium borohydride reduction To a 0°C solution of tert-butyl 3-(hydroxymethyl)-5-[(methylsulfonyl)oxy]benzoate (0.330 g, 0.99 mmol) in THF (15 mL) was added 2 M lithium borohydride solution (0.524 mL, 1.05 mmol). After 1 hour, added 2 more equivalents LiBH4 solution and warmed reaction to room temp over 18 h. Quenched reaction dropwise with MeOH and then concentrated reaction mixture in vacuo. The crude material was diluted with EtOAc and washed with sat. NaHCO3 solution (2x), H2O, dried with MgSO4, filtered, concentrated and purified by flash chromatography (25 g silica, 30-50% EtOAc/hexanes) to give 0.22 g (73%) of tert-butyl 3-(hydroxymethyl)-5-[(methylsulfonyl)oxy]benzoate. 1H NMR (400 MHz, CDCl3) δ 7.93 (s, 1H), 7.76 (s, 1H), 7.51 (s, 1H), 4.78 (s, 2H), 3.19 (s, 3H), 1.60 (s, 9H).
Step E: Bromination
To a solution of tert-butyl 3-(hydroxymethyl)-5-[(methylsulfonyl)oxy]benzoate (0.284 g, 0.939 mmol) in DCM (5 mL) was added triphenylphosphine (0.370 g, 1.41 mmol) and carbon tetrabromide (0.467 g, 1.41 mmol). After 2 hours, reaction mixture was concentrated in vacuo and purified by flash chromatography (25 g silica, 0-20% EtOAc/hexanes) to give 0.21 g (61%) of tert-butyl 3-(bromomethyl)-5- [(methylsulfonyl)oxy]benzoate. 1H NMR (400 MHz, CDCl3) δ 7.96 (s, 1H), 7.78 (s, 1H), 7.51 (s, 1H), 4.50 (s, 2H), 3.20 (s, 3H), 1.60 (s, 9H).
Intermediate IL2.g.2 (Scheme 2.2)
Figure imgf000067_0001
Prepared from dimethyl 5-hydroxyisophthalate and isopropylsulfonyl chloride as described in the preparation of intermediate II.2.g.l.
Intermediate π.2.g.3 (Scheme 2.2)
Figure imgf000068_0001
Prepared from dimethyl 5-hydroxyisophthalate and benzylsulfonyl chloride as described in the preparation of intermediate H.2.g.l.
Intermediate II.2.g.4 (Scheme 2.2)
Figure imgf000068_0002
Prepared from dimethyl 5-hydroxyisophthalate and dimethylsulfamoyl chloride as described in the preparation of intermediate II.2.g.l.
Intermediate II.3.C (Scheme 2.3)
Figure imgf000068_0003
Step A: Bis Hydrolysis To a solution of dimethyl 5-bromoisoρhthalate (10 g, 36.6 mmol) in MeOH (200 mL) and THF (200 mL) was added IN NaOH (91.5 mL, 91.5 mmol) and the reaction mixture was stirred at rt for 5 h, quenched with IN HCl (92 mL), concentrated in vacuo to ca. 250 mL. The white solid was filtered, washed with water and dried over P2O5, under high vacuum, at 50 °C. Step B: Mono tBu Esterifϊcation
To a solution of the previous diacid (3 g, 12.2 mmol) in DMF (100 mL) was added carbonyl diimidazole (1.98 g, 12.2 mmol) and the reaction mixture was stirred at 50 °C for 85 min. DBU (1.83 mL, 12.2 mmol) and tBuOH (2.3 mL, 24.5 mmol) were added and the reaction mixture was stirred at 50 °C for 16 h. Carbonyl diimidazole (2 g) and 4 A sieves were added and the reaction mixture was stirred at 50 °C for 30 min. DBU (2 mL) and tBuOH (10 mL) were added and the reaction mixture was stirred at 50 °C for 4.5 h. The reaction mixture was diluted with 10% KHSO4, filtered on celite, extracted with EtOAc, washed with aq LiCl (x3), dried over Na2SO4, and concentrated in vacuo to provide the corresponding mono tBu ester.
Step C: Borane Reduction
Performed as described in the preparation of intermediate II.l.c.1
Step D: Bromination
Performed as described in the preparation of intermediate II.l.c.1 to provide intermediate H.3.C. lH NMR (400 MHz, CDCI3) δ 8.03 (br s, 1H), 7.92 (br s, 1H), 7.70 (br s, 1H), 4.44 (s, 2H), 1.60 (s, 9H).
Intermediate H.3.f.l (Scheme 2.3)
Figure imgf000069_0001
StepA: Pd0 coupling
To a solution of dimethyl 5-bromo-isophthalate (5.75 g, 21.1 mmol) in THF (50 ml) was added 2- cyanophenylzinc bromide (50.5 ml, 25.3 mmol) followed by tetrakis(triphenylphosphine)palladium (0) (0.122 g, 0.105 mmol). The solution was stirred overnight at 50 °C. The next day the solution was cooled, filtered, and concentrated in vacuo. Purification by flash chromatography on silica gel (25% EtOAc in Hexanes) afforded 3.8g. lH NMR (400 MHz, CDCI3) δ 8.41 (d, J = 1.6 Hz, 1H), 7.85-7.80
(m, 1H), 7.74-7.68 (m, 2H), 7.59-7.48 (m, 3H). StepB-F: hydrolysis, tBu ester installation, Me ester hydrolysis, borane reduction, bromination, as described above. lH NMR (400 MHz, CDCI3) δ 8.07 (d, J = 1.6 Hz, 2H), 7.81-7.77 (m, 2H), 7.70-7.67
(m, 1H), 7.57-7.48 (m, 2H). Intermediate II.3.g.l (Scheme 2.3)
Figure imgf000070_0001
StepA: Pd coupling of aniline to fert-butyl methyl 5-hromoisophthalate
To a solution of tert-buty\ methyl 5-bromoisophthalate (0.200 g, 0.635 mmol) in 1.2 mL dimethylacetamide was added aniline (0.090 mL, 0.952 mmol) and K3PO4 (0.404 g, 1.90 mmol). The reaction was degassed, and Pd(t-Bu3P)2 (0.032 g, 0.063 mmol) was added. The reaction was heated at 100 °C for 16h, cooled to RT, quenched by adding H2O and 0.5M KHSO4 and diluted with EtOAc. The layers were separated, and the organics were washed with brine, dried over Na2SO4, filtered and concentrated. The residue was purified by normal phase silica gel chromatography (2->30% EtO Ac/hex) to affor the desired product. LC/MS (M+H) = 328.
StepB: NaHMDS and MsCl
To a solution of aniline (0.356 g, 1.87 mmol) from Step A in 6 mL DMF at 0 oC was added 1.0M NaHMDS (1.41 mL, 1.41 mmol). After 5 rain, MsCl (0.210 mL, 2.79 mmol) was added. After 20 min, the reaction was quenched by adding sat. NH4Cl and H2O, and diluted with EtOAc. The layers were separated, and the organics were washed with brine, dried over Na2SO4, filtered and concentrated. The residue was purified by normal phase silica gel chromatography (2->40% EtO Ac/hex) to afford the desired product. LC/MS (M+H) = 406.
Steps C and StepD: lithium borohydride reduction and bromination, as described in the preparation of intermediate II.2.g.l. LC/MS for title compound II.3.g.l (M+H) = 440, 442 (Br pattern).
Intermediate II.4.C.1 (Scheme 2.4)
Figure imgf000070_0002
Step A: Bromination
To a solution of diethyl 5-(hydroxymethyl)benzene-l,3-dioate (3.5 g, 0.014 mol) and carbon tetrabromide (5.0 g, 0.015 mol) in 30 mL CH2Cl2, cooled to O°C, was added drop-wise a solution of triphenylphosphine (3.9 g, 0.015 mol) in 20 mL CH2Cl2. The reaction was stirred at O°C for 1.5 h, diluted with CHCl3, and washed with water and brine. Drying, solvent evaporation and flash chromatography (silica gel, 0-30% EtOAc/hexanes) gave diethyl-5-(bromomethyl)benzene-l,3-dioate. 1H NMR (400 MHz, CDCl3) δ 8.61 (s, 1H), 8.25 (app d, J = 1.6 Hz, 2H), 4.55 (s, 2H), 4.42 (q, J = 7.1 Hz, 4H), 1.42 (t, J = 7.1 Hz, 6H).
Step B: Cyanation
To a solution of diethyl-5-(bromomethyl)benzene-l,3-dioate (1.9 g, 6.0 mmol) in 69 mL MeCN was added trimethylsilyl cyanide (1.2 mL, 9.0 mmol) and tetrabutylammonium fluoride (IM in THF, 9.0 mL, 9.0 mmol). The reaction was stirred for 0.5 h and concentrated. Flash chromatography (silica gel, 0-30% EtOAc/hexanes) gave diethyl 5-(cyanomethyl)benzene-l,3-dioate. 1H NMR (400 MHz, CDCl3) δ 8.65 (s, 1H), 8.20 (app t, J = 0.7 Hz, 2H), 4.43 (q, J = 7.1 Hz, 4H), 3.86 (s, 2H), 1.43 (t, J = 7.1 Hz, 6H).
Step C: Alkylation
To a solution of diethyl 5-(cyanomethyl)benzene-l,3-dioate (500 mg, 1.9 mmol) in 18.6 mL THF was added potassium bis(trimethylsilyl)amide (1.1 g, 5.7 mmol) and the reaction was stirred at rt for 5 min. 1 ,4-Dibromobutane (0.25 mL, 2.1 mmol) was added, the mixture was stirred for 45 min and then quenched with IN HCl. Ethyl acetate was added, the layers separated and the organic layer was washed with water and brine. Drying, solvent evaporation and flash chromatography (silica gel, 0-15% EtOAc/hexanes) gave diethyl 5-(l-cyanocyclopentyl)benzene-l,3-dioate. 1H NMR (400 MHz, CDCl3) δ 8.63 (m, 1H), 8.31 (m, 2H), 4.43 (q, J = 7.1 Hz, 4H), 2.56 (m, 2H), 2.14-1.99 (m, 6H), 1.43 (t, J = 7.1 Hz, 6H).
Step D: Ester Hydrolysis
A solution of diethyl 5-(l-cyanocyclopentyl)benzene-l,3-dioate (0.33 g, 1.05 mmol) and NaOH (IN in
H2O, 0.945 mL, 0.945 mmol) in 5 mL THF and 5 mL EtOH was stirred at rt overnight. The reaction mixture was concentrated, diluted with H2O and extracted with ether. The aqueous phase was made acidic with IN HCl, extracted with EtOAc and the combined organic layers were washed with brine.
Drying and solvent evaporation gave 3-(ethoxycarbonyl)-5-(l-cyanocyclopentyl)benzoic acid. 1H NMR
(400 MHz, CD3OD) δ 8.58 (m, 1H), 8.35 (m, 2H), 4.43 (q, J = 7.1 Hz, 2H), 2.51 (m, 2H), 2.18 (m, 2H),
2.05 (m, 4H), 1.42 (t, J = 7.1 Hz, 3H).
Step E: Acid Reduction and Bromination To a solution of 3-(ethoxycarbonyl)-5-(l-cyanocyclopentyl)benzoic acid (0.4 g, 1.4 mmol) in 14 mL THF, cooled to O°C, was added borane-tetrahydrofuran complex (IM in THF, 5.6 mL, 5.6 mmol) dropwise. The reaction was stirred at O°C for 1.5 h and then at rt for 3.5 h. The mixture was quenched with MeOH, concentrated, diluted with EtOAc and washed with water and brine. Drying and solvent evaporation gave ethyl 3-(l-(aminomethyl)cyclopentyl)-5-(hydroxymethyl)benzoate and ethyl 3-(l- cyanocyclopentyl)-5-(hydroxymethyl)benzoate. The crude mixture was dissolved in 6.6 mL CH2Cl2, cooled to O°C and treated with carbon tetrabromide (0.56 g, 1.7 mmol). A solution of triphenylphosphine (0.42 g, 1.6 mmol) in 6.6 mL CH2Cl2 was added and the reaction was stirred at O°C for 1 h. Concentration and flash chromatography (silica gel, 0-20% EtOAc/hexanes) gave ethyl 3-(bromomethyl)- 5-(l-cyanocyclopentyl)benzoate. 1H NMR (400 MHz, CDCl3) δ 8.02 (t, J = 1.9 Hz, 2H), 7.70 (t, J = 1.7 Hz, 1H), 4.52 (s, 2H), 4.41 (q, J = 7.1 Hz, 2H), 2.53 (m, 2H), 2.12-1.97 (m, 6H), 1.41 (t, J = 7.1 Hz, 3H).
Intermediate II.5.d.l (Scheme 2.5)
Figure imgf000072_0001
Step A: Bn Ether
To a solution of dimethyl 5-hydroxyisophthalate (20 g, 95.2 mmol) in DMF (200 mL) was added cesium carbonate (18.6 g, 57.1 mmol) and benzyl bromide (11.4 mL, 95.2 mmol) and the reaction mixture was stirred at rt for 24 h. Cesium carbonate (7.8 g) and benzyl bromide (4.6 mL) were added and the reaction mixture was stirred at rt for 24 h. The reaction mixture was diluted with water, the pH was adjusted to pH 7-8 with IN HCl, the resulting mixture was extracted with EtOAc, washed with aq LiCl (x3), dried over Na24, and concentrated in vacuo to provide the corresponding benzyl ether
Step B: Monohydrolysis Monohydrolysis of the previous diester with IN NaOH in MeOH/THF, according to preparation of intermediate II.l.a.l, step C, followed by purification by flash chromatography (30Og silica, 0-50% (0.5% HOAc in EtOAc) in hexanes) provided the corresponding monoacid.
Step C: Curtius Rearrangement The previous monoacid (5.98 g, 20.9 mmol), triethyl amine (16.1 mL, 31.3 mmol), and diphenyphosphoryl azide (8.62 g, 31.3 mmol) were dissolved in anhydrous tert-butyl alcohol (200 mL) and allowed to stir under reflux, 110°C, for 16 hours. The crude reaction mixture is then concentrated in vacuo, then diluted with EtOAc and washed with deionized water (x3), brine (x3), dried over sodium sulfate, and concentrated in vacuo. The crude mixture was then purified using flash chromatography (145g silica, 0-30% EtOAc in hexanes) to afford the corresponding ester carbamate.
Step D: Alkylation and Debocing The previous ester carbamate (7.3 g, 20.5 rnmol) was dissolved in DMF (40 mL) and cooled to 0°C, the 1.0 M solution of NaHMDS (22.5 mL, 22.5 rnmol) was then added dropwise via syringe. After stirring 0.5 h at 0°C, the MeI (1.53 mL, 24.5 rnmol) was added dropwise via syringe and the reaction was allowed to warm slowly to rt and stir for an additional 16 h. The crude reaction mixture was quenched with deionized water and diluted with DCM. The biphasic system was washed with DI water (x3), brine (x3), dried over sodium sulfate, and concentrated in vacuo. The crude mixture was then purified using flash chromatography (145g silica, 0-25% EtOAc in hexanes) to afford the corresponding N-methyl carbamate. The N-methyl carbamate (6.5 g, 17.5 mmol) was then dissolved in a 4.0 M of HCl in 1,4- dioxane (43.8 mL, 175 mmol) and allowed to stir at rt for 16 h, the reaction was then concentrated in vacuo to afford to corresponding N-methyl amino ester.
Step E: Sulfonylation
The previous N-methyl amino ester (4.7 g, 17.3 mmol) was dissolved in anhydrous DCM (40 mL) and Hunig's base (10.6 mL, 60.6 mmol) was added via syringe. Methanesulfonyl chloride (1.48 mL, 19.1 mmol) was then added via syringe and the reaction was allowed to stir at rt for 16 h. The crude reaction mixture was then concentrated in vacuo and purified using flash chromatography (145g silica, 0-35% EtOAc in hexanes) to afford the corresponding N-methyl-N-mesyl ester.
Step F: Ester Reduction and TBS Installation
The previous N-methyl-N-mesyl ester (3.45 g, 9.9 mmol) was place in an oven dried round bottom flask under argon and dissolved in 10 mL anhydrous THF. A 2.0 M solution of lithium borohydride (50.0 mL, 98.7 mmol) was added via syringe and the reaction was raised to 40°C. The reaction was allowed to stir at this temperature for 16 h. Upon completion the crude reaction mixture was quenched with 6 mL methanol, followed by a 10 mL solution 1 : 1 mixture of acetone and DI water. The mixture was then extracted with EtOAc (x3), dried over sodium sulfate, concentrated in vacuo and purified using flash chromatography (145g silica, 15-75% EtOAc in hexanes) to afford the corresponding N-methyl-N-mesyl alcohol. The alcohol was then dissolved in anhydrous DCM, followed by the addition of imidazole and tert-butyldimethylsilyl chloride. The reaction was allowed to stir at RT for 16 h. The crude reaction mixture was washed with KHSO4 (x3), NaHCO3 (x3), DI water (x3), brine (x3), concentrated in vacuo and purified using flash chromatography (12Og silica, 0-20% EtOAc in hexanes) to afford the corresponding silyl ether.
Step G: Hydrogenolysis of Bn Ether The previous silyl ether (3.14 g, 7.2 mmol) was dissolved in 120 mL of degassed EtOAc and placed under argon and Pd/C (0.08 g, 0.73 mmol) was added in one portion. Hydrogen (144 mmol) was added via a three way adaptor and the system was purged under reduced pressure, then exposed to hydrogen. This process of purging and exposure to hydrogen was repeated three times. The reaction was allowed to stir at rt for 16 h. The crude reaction mixture was filtered over celite and washed with EtOAc, dried over sodium sulfate, and concentrated in vacuo. The crude material was purified using flash chromatography (145g silica, 0-30% EtOAc in hexanes) to afford the corresponding phenol. 1H NMR (400 MHz, CDCl3) δ 7.03 (s, 1H), 6.76 (s, 1H), 6.66 (s, 1H), 4.57 (s, 2H), 3.15 (s, 3H), 2.75 (s, 3H), 0.83 (s, 9H), 0.01 (s, 6H).
Intermediate π.5.e.l (Scheme 2.5)
Figure imgf000074_0001
Prepared from intermediate II.5.d.l using a similar procedure as described in the preparation of intermediate I.l.b.l 1H NMR (400 MHz, CDCl3) δ 7.26 (s, 1H), 7.10 (s, 1H), 7.05 (s, 1H), 4.66 (s, 2H), 3.23 (s, 3H), 2.74 (s, 3H), 0.82 (s, 9H), 0.02 (s, 6H).
Intermediate IH.l.cl (Scheme 3.1)
Figure imgf000074_0002
Step A: Alkylation To a solution of intermediate I.l.a.l (0.050 g, 0.162 mmol) and 2-bromoacetophenone (0.032 g, 0.162 mmol) in 1 mL anhydrous DMF under an atmosphere of argon was added Cs2CO3 (0.029 g, 0.089 mmol). After 24 hr, the crude reaction mixture was purified by reverse phase preparative HPLC (5 -> 95% CH3CN/H2O, 0.1% added TFA, Cl 8 PRO YMC 20x150 mm) to afford methyl N-(fert-butoxycarbonyl)- alpha-methyl-3-(2-oxo-2-phenylethoxy)phenylalaninate as a pale yellow oil.
Step B: Reductive Animation To a solution of methyl N-(ført-butoxycarbonyl)-alpha-methyl-3-(2-oxo-2-phenylethoxy)phenylalaninate (0.600 g, 1.40 mmol), 4A sieves (spatula tip), acetic acid (0.089 mL, 1.54 mmol), and benzylamine (0.184 mL, 1.68 mmol) in 10.0 mL dichloroethane was added sodium triacetoxyborohydride (0.357 g, 1.68 mmol). After 16 hr, additional benzylamine (0.092 mL, 0.840 mmol), sodium triacetoxyborohydride (0.178 g, 0.840 mmol), and acetic acid (0.045 mL, 0.770 mmol) were added. After an additional 16 hr, the temperature was raised to 50°C for 30 hr., and additional amounts of 4A sieves, acetic acid, benzylamine, and sodium triacetoxyborohydride were added over 72 hr to achieve full conversion. The reaction was quenched with bicarb, and filtered, washing with water and EtOAc. The layers of the filtrate were separated, and the aqueous layer was back extracted with EtOAc. The organic layers were combined, washed with bicarb, and brine (x2), dried over sodium sulfate, and concentrated in vacuo. Purification by flash chromatography (90 g silica, 0-30% EtOAc in hexanes) gave methyl 3-[2- (benzylamino)-2-phenylethoxy]-N-(tert-butoxycarbonyl)-alpha-methylphenylalaninate as a yellow foam.
Step C: Hydrogenolysis To a degassed solution of methyl 3-[2-(benzylamino)-2-phenylethoxy]-N-(tert-butoxycarbonyl)-alpha- methylphenylalaninate (0.457 g, 0.881 mmol) in 10 mL EtOAc was added palladium hydroxide (0.198 g, 1.41 mmol). The resulting mixture was hydrogenated under 1 atm at rt. After 60 hr., the reaction mixture was filtered over celite and concentrated in vacuo to give the corresponding amine as a yellow foam.
Step D: Boc Protection
To a solution of amine (0.371 g, 0.866 mmol) from Step C in 5.0 mL tetrahydrofuran was added di(tert- butyl) dicarbonate (0.227 g, 1.04 mmol). After 16 hr, it was concentrated in vacuo and purified by flash chromatography (40 g silica, 0-25% EtOAc in hexanes) to afford methyl N-(tert-butoxycarbonyl)-3-{2- [(tert-butoxycarbonyl)amino]-2-phenylethoxy}-alpha-methylphenylalaninate as a peach foam.
Step E: Ester Reduction
To a solution of methyl N-(tert-butoxycarbonyl)-3-{2-[(tert-butoxycarbonyl)amino]-2-phenylethoxy}- alpha-methylphenylalaninate (0.050 g, 0.095 mmol) in 0.500 mL anhydrous tetrahydrofuran under an atmosphere of argon was added lithium borohydride (0.236 mL, 0.473 mmol, 2.0M solution in THF). After 3 hr., the reaction was quenched with MeOH and concentrated in vacuo. Purification by flash chromatography (20 g silica, 0-40% EtOAc in hexanes) gave intermediate ffl.l.cl as a colorless oil. 1H NMR (two diastereomers) (400 MHz, CDCl3) δ 7.40-7.32 (m, 8H), 7.31-7.24 (m, 2H), 7.19 (app. t, J = 7.8 Hz, 2H), 6.80-6.75 (m, 4H), 6.73 (s, 2H), 5.29 (br. s, 2H), 5.04 (br. s, 2H), 4.52 (s, 2H), 4.26-4.05 (m, 6H), 3.72-3.61 (m, 4H), 3.16 (A of AB, d, J = 13.4 Hz, 1 H), 3.14 (A of AB, d, J = 13.5 Hz, 1 H), 2.77 (B ofAB, d, J = 13.5 Hz, 1 H), 2.75 (B of AB, d, J = 13.4 Hz, 1 H), 1.44 (s, 18H), 1.43 (s, 18H), 1.06 (s, 3H), 1.05 (s, 3H). Intermediate m.2.b.l.l (Scheme 3.2)
Figure imgf000076_0001
Step A-D: conversion of benzaldehyde to tert -butyl (l-phenylprop-2-en-l-yl)carbamate was performed using vinyl Grignard as described in D.A. Cogan et al. Tetrahedron 55 (1999) 8883-8904, followed by standard Boc installation. Separation of the 2 diastereoisomers at the Grignard-sulfϊrnine product stage by flash chromatography on silica gel allowed the preparation of R- tert-butyl (l-phenylprop-2-en-l- yi)carbamate and S- tert-butyl (l-phenylprop-2-en-l-yl)carbamate separately, which could be carried seperatly in the following steps.
Step E: Hydroboration and Pd0 Coupling
Solid tert-butyl (l-phenylprop-2-en-l-yl)carbamate (0.436 g, 1.87 mmol) was placed in an oven-dried flask under an atmosphere of argon and dissolved in 9-borabicyclo[3.3.1]nonane (3.91 mL, 1.95 mmol, 0.5M solution in THF) and heated to 70°C. After 45 min, the reaction was allowed to cool to rt and was added in one portion via syringe to a separate oven dried flask containing intermediate I.l.b.l (0.785 g, 1.78 mmol), Pd(PPh3)4 (0.103 g, 0.089 mmol), 3.2N NaOH (0.834 mL, 2.67 mmol), and 3 mL degassed toluene. The resulting solution was allowed to stir at 85°C. After 16 hr, the crude reaction was diluted with water and filtered over celite, washing with EtOAc. The layers were separated, and the resulting organic layer was washed with brine, dried over sodium sulfate, and concentrated in vacuo. Purification by flash chromatography (40 g silica, 0-20% EtOAc in hexanes) gave methyl 2-[(tert- butoxycarbonyl)amino]-3-(3-{3-[(ter/-butoxycarbonyl)amino]-3-phenylpropyl}phenyl)-2- methylpropanoate as a light tan foam.
Step F: Ester Hydrolysis
To a solution of methyl 2-[(tert-butoxycarbonyl)amino]-3-(3-{3-[(tert-butoxycarbonyl)amino]-3- phenylpropyl}phenyl)-2-methylpropanoate (0.296 g, 0.562 mmol) in MeOH (8 mL) and THF (8 mL) was added IN LiOH (5.62 mL, 5.62 mmol). After stirring at rt for 16 hr., the reaction was heated to 45°C.
After 2 hr. at 45°C, IN HCl (5.7 mL, 5.7 mmol) was added. The reaction mixture was diluted with water and extracted with CHCl3 (x2), dried over sodium sulfate, and concentrated in vacuo to give intermediate m.2.b.l.l as a white foam. 1H NMR (400 MHz, CD3OD) δ 7.32-7.12 (m, 6H), 7.03 (d, J = 6.2 Hz, 1H), 6.99-6.94 (m, 2H), 4.51-4.44 (m, 1H), 3.26 (A of AB, d, J = 13.4 Hz, 1 H), 3.14 (B of AB,br d, J = 13.4
Hz, 1 H), 2.68-2.48 (m, 2H), 2.07-1.89 (m, 2H), 1.52-1.20 (m, 21H).
Intermediate III.2.C.1.1 (Scheme 3.2)
Figure imgf000077_0001
Prepared from LiBH4 reduction of ester obtained in intermediate HI.2.b.l.l, step E, using a similar procedure as described in intermediate HLl.c.1 preparation, step E. 1H NMR (two diastereomers) (400 MHz, CDCl3) δ 7.38-7.31 (m, 4H), 7.29-7.15 (m, 8H), 7.04-6.97 (m, 6H), 4.87-4.08 (m, 6H), 3.72-3.63 (m, 4H), 3.21 (A of AB, d, J = 13.6 Hz, 1 H), 3.14 (A of AB, d, J = 13.3 Hz, 1 H), 2.80 (B of AB, d, J = 13.3 Hz, 1 H), 2.73 (B of AB, d, J = 13.6 Hz, 1 H), 2.67-2.52 (m, 4H), 2.23-1.98 (m, 4H), 1.46 (s, 9H), 1.44 (s, 9H), 1.41 (br s, 18 H), 1.09 (s, 3H), 1.05 (s, 3H).
Intermediate IIL2.C.1.2 (Scheme 3.2)
Figure imgf000077_0002
Prepared from tert-buty\ (l-cyclopropylprop-2-en-l-yl)carbamate (prepared from cyclopropyl carboxaldehyde and vinyl Grignard) and intermediate I.l.b.l using a similar procedure as described for the preparation of intermediates III.2.b.l.l and HL2.C.1.1
Intermediate IIL2.b.l.3 (Scheme 3.2)
Figure imgf000077_0003
Prepared from tert-butyl (l-(4-fluorophenyl)-prop-2-en-l-yl)carbamate (prepared from 4- fluorobenzaldehyde and vinyl Grignard)and intermediate I.l.b.l using a similar procedure as described for the preparation of intermediates IH.2.b.l.l. MS M+l = 531.
Intermediate HI.2.C.1.3 (Scheme 3.2)
Figure imgf000078_0001
Prepared from intermediate IK.2.b.l.3 methyl ester precursor using a similar procedure as described for the preparation of intermediate IH.2.C.1.1. MS M+l = 517.
Intermediate III.2.b.l.4 (Scheme 3.2)
Figure imgf000078_0002
Prepared from tert-buty\ (1 -methyl- l-phenylprop-2-en-l-yl)carbamate (prepared from Boc protection of 2-phenylbut-3-en-2-amine, Synth. Comm 2000, 30(9), 1643-1650) and intermediate I.l.c.l using a similar procedure as described for the preparation of intermediates III.2.b.l.l. MS M+l = 527.
Intermediate III.2.b.2.1 (Scheme 3.2)
Figure imgf000078_0003
Prepared from fer/-butyl (l-phenyl)-prop-2-en-l-yl)carbamate (prepared from benzaldehyde and vinyl Grignard)and intermediate I.l.c.2 using a similar procedure as described for the preparation of intermediate III.2.b.l.l. MS M+l = 531.
Intermediate III.2.b.2.3 (Scheme 3.2)
Figure imgf000078_0004
Prepared from tert-butyl (l-(4-fluorophenyl)-prop-2-en-l-yl)carbamate (prepared from 4- fluorobenzaldehyde and vinyl Grignard) and intermediate I.l.c.2 using a similar procedure as described for the preparation of intermediate DI.2.b.l.l. MS M+l = 550.
Intermediate m.2.b.3.1 (Scheme 3.2)
Figure imgf000079_0001
Prepared from tert-butyl (l-phenyl)-prop-2-en-l-yl)carbamate (prepared from benzaldehyde and vinyl Grignard)and intermediate I.l.c.3 using a similar procedure as described for the preparation of intermediate III.2.b.l.l. MS M+l = 531.
Intermediate HI.2.b.3.3 (Scheme 3.2)
Figure imgf000079_0002
Prepared from tert-butyl (l-(4-fluorophenyl)-prop-2-en-l-yl)carbamate (prepared from 4- fluorobenzaldehyde and vinyl Grignard) and intermediate I.l.c.3 using a similar procedure as described for the preparation of intermediate IIL2.b.l.l. MS M+l = 550.
Intermediate III.2.b.4.1 (Scheme 3.2)
Figure imgf000079_0003
Prepared from tert-butyl (l-phenyl)-prop-2-en-l-yl)carbamate (prepared from benzaldehyde and vinyl Grignard)and intermediate I.l.c.4 using a similar procedure as described for the preparation of intermediate iπ.2.b.l.l. MS M+l = 531. Intermediate IIL2.b.4.3 (Scheme 3.2)
Figure imgf000080_0001
Prepared from tert-butyl (l-(4-fluorophenyl)-prop-2-en-l-yl)carbamate (prepared from 4- fluorobenzaldehyde and vinyl Grignard) and intermediate I.l.c.4 using a similar procedure as described for the preparation of intermediate HL2.b.l.l. MS M+l = 550.
Intermediate III.2.b.5.1 (Scheme 3.2)
Figure imgf000080_0002
Prepared from tert-buty\ (l-phenyl)-prop-2-en-l-yl)carbamate (prepared from benzaldehyde and vinyl Grignard)and intermediate I.l.c.5 using a similar procedure as described for the preparation of intermediate IIL2.b.l.l. MS M+l = 531.
Intermediate m.2.b.5.3 (Scheme 3.2)
Figure imgf000080_0003
Prepared from tert-butyl (l-(4-fluorophenyl)-prop-2-en-l-yl)carbarnate (prepared from 4- fluorobenzaldehyde and vinyl Grignard) and intermediate I.l.c.5 using a similar procedure as described for the preparation of intermediate HI.2.b.l.l. MS M+l = 550.
Intermediate DL2.C.1.1.F (Scheme 3.2)
Figure imgf000081_0001
Prepared from tert-butyl (l-phenylprop-2-en-l-yl)carbamate (prepared from benzaldehyde and vinyl Grignard) and intermediate I.l.b.2 using a similar procedure as described for the preparation of intermediates m.2.b.l.l and m.2.cl.l. 1H NMR (400 MHz, CDCl3) δ 7.34 (m, 2H), 7.25 (m, 4H), 7.05 (m, 3H), 4.86 (m, 2H), 4.57-4.28 (m, 3H), 3.88 (bs, 1H), 3.71 (m, 2H), 3.08 (m, 1H), 2.89 (t, J = 14 Hz, 1H), 2.59 (t, J = 5 Hz, 2H), 2.07 (m, 2H), 1.46 (s, 9H), 1.45 (s, 9H).
Intermediate IH.2.C.1.1.H (Scheme 3.2)
Figure imgf000081_0002
Prepared from tert -butyl (l-phenylprop-2-en-l-yl)carbamate (prepared from benzaldehyde and vinyl Grignard) and intermediate I.l.b.3 using a similar procedure as described for the preparation of intermediates iπ.2.b.l.l and IH.2.C.1.1. 1H NMR (400 MHz, CDCl3) δ 7.36-7.28 (m, 2H), 7.28-7.16 (m, 4H), 7.16-7.06 (m, 2H), 7.02-6.96 (m, 1H), 5.14-4.96 (m, 1H), 4.92-4.78 (m, 1H), 4.60-4.46 (m, 1H), 3.90-3.74 (m, 1H), 3.66-3.48 (m, 2H), 3.24-3.14 (m, 1H), 2.96-2.76 (m, 2H), 2.62 (app t, J = 7.2 Hz, 2H), 2.20-2.06 (m, 1H), 2.06-1.94 (m, 1H), 1.44 (s, 18H).
Intermediate III.2.C.1.4 (Scheme 3.2)
Figure imgf000081_0003
Prepared from tert-huty\ (l-phenylbut-3-en-l-yl)carbamate (prepared from benzaldehyde and allyl Grignard) and intermediate I.l.b.1 using a similar procedure as described for the preparation of intermediates HI.2.b.l.l and IIL2.C.1.1 1H NMR (400 MHz, CDCl3) δ 7.32-7.29 (m, 2H), 7.26-7.17 (m, 4H), 7.02-6.95 (m, 3H), 4.90-4.82 (br d, 1H), 4.60 (s, 1H), 4.57 (s, 1H), 4.25-4.20 (br d, 1H), 3.66-3.60 (m, 2H), 3.12 (A of AB, d, J = 13.1 Hz, 1H). 2.78 (B of AB, d, J = 13.1 Hz, 1H), 2.65-2.55 (m, 2H), 1.87- 1.57 (m, 4H), 1.75 (s, 3H), 1.46-1.42 (br s, 18H). Intermediate HI.2.C.1.5 (Scheme 3.2)
Figure imgf000082_0001
Prepared from tert-buty\ (l-phenylprop-2-en-l-yl)carbamate (prepared from benzaldehyde and vinyl Grignard) and intermediate I.l.b.2 using a similar procedure as described for the preparation of intermediates iπ.2.b.l.l and m.2.c.l.l 1H NMR (400 MHz, CDCl3) δ 7.34-7.22 (m, 5H), 7.08 (s, 4H), 4.98 (apparent d, 1H), 4.71-4.65 (br s, 1H), 4.61-4.58 (br s, 1H), 4.35-4.23 (br s, 1H), 3.69-3.59 (m, 2H), 3.12 (A of AB, d, J = 13.2 Hz, 1H). 2.75 (B of AB, d, J = 13.2 Hz, 1H), 2.68-2.61 (m, 1H), 2.58-2.51 (m, 1H), 2.15-2.0 (br s, 2H), 1.75 (s, 3H), 1.5-1.4 (br s, 18H), 1.05 (s, 3H).
Intermediate IH.2.C.1.6 (Scheme 3.2)
Figure imgf000082_0002
Prepared from fert-butyl ( 1 -phenylbut-3 -en- 1 -yl)carbamate (prepared from benzaldehyde and allyl Grignard) and intermediate I.l.b.2 using a similar procedure as described for the preparation of intermediates m.2.b.l.l and III.2.C.1.1 1H NMR (400 MHz, CDCl3) δ 7.30-7.25 (m, 2H), 7.24-7.18 (m, 3H), 7.07-7.02 (m, 4H), 4.92 (apparent d, 1H), 4.63-4.60 (br s, 1H), 4.58 (s, 1H), 4.33-4.21 (br s, 1H), 3.63-3.61 (m, 2H), 3.09 (A of AB, d, J = 13.1 Hz, 1H). 2.75 (B of AB, d, J = 13.1 Hz, 1H), 2.59-2.55 (m, 2H), 1.82-1.51 (br m, 4H), 1.4-1.3 (br s, 18H), 1.04 (s, 3H).
Intermediate IIL2.e.l (Scheme 3.2)
Figure imgf000082_0003
StepA: Stille coupling to intermediate I.l.c.1 To a solution of I.l.c.1 (1.5 g, 4.02 mmol) in toluene (10 ml) was added allyltributyltin (1.06 ml, 5.23 mmol) and tetrakis(triphenylphosphine)palladium (0) (0.465 g, 0.402 mmol). Degas and stir overnight at 90°C. Dilute with EtOAc and wash with water five times. The organic layer was added water (100 ml) and KF (5g) and stirred for 1 hour. The organic layer was dried, concentrated and purified by flash column chromatography (30% EtO Ac/Hex) affording 1.08 g desired product. 1H NMR (400 MHz, CDCl3) δ 7.19 (t, J = 7.5 Hz, 1H), 7.06 (d, J = 7.5 Hz , 1H), 6.91 (d, J = 8.6 Hz , 2H), 5.97-5.89 (m, 1H), 5.18-5.12 (br s, 1H), 5.07-5.02 (m, 2H), 3.75 (s, 3H), 3.34 (d, J = 6.6 Hz, 3H), 3.16 (d, J = 13.3 Hz, 1H), 1.46 (s, 9H). StepB: Hydrolysis
Performed as described in the preparation of intermediate m.2.b.l.l, step F. 1H NMR (400 MHz, CDCl3) δ 7.21 (d, J = 7.5 Hz, 1H), 7.09 (d, J = 7.3 Hz , 1H), 7.01-6.97 (m , 2H), 6.02-5.92 (m, 1H), 5.07- 5.03 (m, 2H), 4.93 (s, 1H), 3.37-3.32 (m, 3H), 3.20 (d, J = 13.3 Hz, 1H), 1.52 (s, 3H), 1.48 (s, 9H).
Intermediate IIL2.f.l (Scheme 3.2)
Figure imgf000083_0001
Prepared by lithium borohydride reduction of the methyl ester of intermediate III.2.e.l (Step A)as described in the preparation of intermediate I.l.c.1. MS M+l = 306.
Intermediate IIL3.a.l (Scheme 3.3)
Figure imgf000083_0002
Prepared from 2-methyl-3-buten-l-ol via O-benzylation, hydroboration, Pd0 coupling to intermediate I.l.b.l (using similar procedures as described in the preparation of intermediate III.2.b.l.l) and hydrogenolysis of the benzyl ether under standard conditions. 1H NMR (400 MHz, CDCl3) δ 7.16-7.12 (m, 1H), 7.04-7.02 (m, 1H), 6.87-6.84 (m, 2H), 5.20-5.15 (br, 1H), 3.72 (s, 3H), 3.49-3.45 (m, 1H), 3.42- 3.39 (m, 1H), 3.36-3.29 (br, 1H), 3.19-3.15 (m, 1H), 2.69-2.61 (m, 1H), 2.58-2.50 (m, 1H), 1.74-1.69 (m, 2H), 1.63-1.55 (m, 1H), 1.48 (s, 3H), 1.43 (s, 9H), 0.93 (d, J = 7 Hz, 1H).
Intermediate m.4.a.l.l (Scheme 3.4)
Figure imgf000084_0001
3 -Methyl- 1,4-pentadiene (1.39 g, 16.9 mmol) was placed in an oven dried round bottom flask and dissolved in 0.5 M solution of 9-BBN (5.43 mL, 2.78 mmol) and the reaction was allowed to stir at 75°C for 45 minutes. The reaction was then allowed to cool to rt and was added in one portion via syringe to another oven dried round bottom flask containing the intermediate I.l.b.l (1.0 g, 2.27 mmol), Pd(PPh3)4 (0.26 g, 0.23 mmol), 3.2 M NaOH (1.06 mL, 3.40 mmol), and 2 mL of degassed toluene. This solution was then allowed to stir at 85°C for 16 h. The crude reaction was filtered over celite using EtOAc to wash. The resulting organic layer was washed with DI water (x3), brine (x3), dried over sodium sulfate and concentrated in vacuo. The crude material was purified using flash chromatography (145g silica, 0- 20% EtOAc in hexanes) to afford the corresponding intermediate m.4.a.l.l. 1H NMR (400 MHz, CDCl3) δ 7.19-7.15 (m, 1H), 7.05 (app d, J = 7.5 Hz, 1H), 6.89 (s, 1H), 6.87 (s, 1H), 5.76-5.67 (m, 1H), 5.15-5.10 (br s, 1H), 5.00-4.95 (m, 2H), 3.75 (s, 3H), 3.38-3.28 (br s, 1H), 3.16 (B of AB, d, J = 13.3 Hz, 1H), 2.62-2.48 (m, 1H), 2.42-2.39 (m, 1H), 2.18-2.05 (m, 1H), 1.91-1.85 (m, 1H), 1.60-1.4 (m, 12H), 1.02 (d, J == 6.8 Hz, 3H).
Intermediate III.5.a.l (Scheme 3.5)
Figure imgf000084_0002
Intermediate I.l.a.l (0.5 g, 1.45 mmol) and 3-chloro-2-chloromethyl propene (0.84 mL, 7.24 mmol) were dissolved in 5 mL of anhydrous DMF. Cesium carbonate (0.52 g, 1.52 mmol) was added in one portion and the reaction was allowed to stir at rt for 24 h. The crude reaction was extracted with EtOAc (x3), washed with DI water (x3), saturated LiCl (x3), dried over sodium sulfate and concentrated in vacuo. The crude material was purified using flash chromatography (2Og silica, 0-30% EtOAc in hexanes) to afford intermediate III.5.a.l. 1H NMR (400 MHz, CDCl3) δ 6.83 (s, 1H), 6.76 (s, 2H), 5.29 (s, 1H), 5.26 (s, 1H), 4.60 (s, 2H), 4.53 (s, 2H), 4.08 (s, 2H), 3.19 (s, 3H), 2.73 (s, 3H), 0.84 (s, 9H), 0.00 (s, 6H).
Intermediate IV.4.e.2 (Scheme 4.4)
Figure imgf000085_0001
To a slurry of poly(2,6-di-fe7t-butyl-4-vinylpyridine (1.52 g, 2.73 mmol, loading = 1.8 mmol N/g) and 4A sieves (spatula tip) in 15 mL anhydrous dichloroethane at rt under an atmosphere of argon was added intermediate I.l.c.l (0.565 g, 1.37 mmol). After stirring for 15 min., a solution of intermediate II.2.C.2 (0.666 g, 1.64 mmol) in 7 mL anhydrous dichloroethane was added followed by silver trifluoromethanesulfonate (0.527 g, 2.05 mmol). After 16 hr., additional silver trifluoromethanesulfonate (0.527 g, 2.05 mmol) was added. After an additional 16 hr, it was filtered over celite, washing with dichloromethane and methane, and concentrated in vacuo. Purification by flash chromatography (12O g silica, 0-40% EtOAc in hexanes) gave intermediate IV.4.e.2 as a white foam. 1H NMR (400 MHz, CDCl3) δ 7.91 (s, 1H), 7.85 (s, 1H), 7.53 (s, 1H), 7.35 (app t, J = 7.9 Hz, 1H), 7.21 - 7.12 (m, 2H), 7.10 (s, 1H), 4.64 - 4.54 (m, 3H), 3.66 (t, J = 7.2 Hz, 2H), 3.49 (A of AB, d, J = 8.9 Hz, 1H), 3.45 (B of AB, d, J = 8.9 Hz, 1H), 3.24 (A of AB, d, J = 13.2 Hz, 1H), 3.02 (B of AB, d, J = 13.2 Hz, 1H), 2.89 (s, 3H), 1.60 (s, 9H), 1.55 - 1.45 (m, 2H), 1.46 (s, 9H), 1.26 (s, 3H), 0.91 (t, J = 7.3 Hz, 3H).
Intermediate IV.9.b.l (Scheme 4.9)
Figure imgf000085_0002
StepA: Coupling of intermediates IL2.C.1 and iπ.2.e.l To a solution of intermediate II.2.C.1 (0.100 g, 0.264 mmol) and intermediate IH.2.e.l (0.084 g, 0.264 mmol) in 1 mL DMF was added cesium carbonate (0.095 g, 0.291 mmol). After 1.5 hr., the reaction was diluted with LiCl (aq) (25 mL) and extracted with EtOAc (2 x 25 mL). The organic layers were combined, washed with LiCl (aq) and brine, dried over sodium sulfate, and concentrated in vacuo. Purification by flash chromatography (10% EtOAc in chloroform) gave 3-(tert-butoxycarbonyl)-5- [methyl(methylsulfonyl)amino]benzyl 3-allyl-N-(tert-butoxycarbonyl)-alpha-methylphenylalaninate. MS M+1 = 517 (- BOC).
StepB: Hydroboration
The olefin (0.122 g, 0.198 mmol) in THF (10 ml) was added borane THF (0.396 ml, 0.396 mmol). Stir at
RT for Ihr45 minute. The solution was carefully added water (8 ml) followed by sodium perborate
(0.091 g, 0.593 mmol). The solution stirred for 2 hours at room temperature. Extract 3X with EtOAc and wash with brine. The organics were dried and concentrated affording crude 3-(tert-butoxycarbonyl)-
5-[methyl(methylsulfonyl)amino]benzyl N-(tert-butoxycarbonyl)-3-(3-hydroxypropyl)-alpha- methylphenylalaninate. MS M+l = 535 (- BOC).
StepC: Oxidation
The alcohol (0.105 g, 0.165 mmol) in CH2C12 (2 ml) was added 4A (0.025 g) sieves and 4- methylmorpholine N-oxide (0.034 g, 0.248). Stir for 10 minutes then added tetrapropylammonium perruthenate (0.003, 0.008 mmol). After 1 hour the the solution was filtered, concentrated, and purified on silica gel (50% EtOAc/Hex). MS M+l = 533.3 (- BOC).
Intermediate IV.lO.b.l (Scheme 4.9)
Figure imgf000086_0001
Prepared from the silver triflate coupling of intermediates IL2.C.1 and III.2.f.l as described in the preparation of intermediate IV.4.e.2, followed by hydroboration and oxidation as described in the preparation of intermediate IV.9.b.l. MS M+l = 619.
Intermediate IV.9.b.2 (Scheme 4.9)
Figure imgf000087_0001
Prepared from intermediates π.3.f.l and ffl.2.e.l as described for the preparation of intermediate IV.6.b.l. MS M+1 = 627.
EXAMPLE 1 (Scheme 4.2)
Figure imgf000087_0002
Step A: Ether formation
Ether formation with intermediates H.l.c.2 and III.l.c.1 was performed using a similar procedure as described in the preparation of intermediate IV.4.e.2 to give methyl 3-{[2-[(fert-butoxycarbonyl)amino]- 3-(3-{2-[(ter/-butoxycarbonyl)amino]-2-phenylethoxy}phenyl)-2-methylpropoxy]methyl}-5- [(methylsulfonyl)(propyl)amino]benzoate as a colorless oil.
Step B: Boc Removal, Hydrolysis. Methyl 3 - { [2-[(tert-butoxycarbonyl)amino] -3 -(3 - {2-[(tert-butoxycarbonyl)amino]-2- phenylethoxy}phenyl)-2-methylpropoxy]methyl}-5-[(methylsulfonyl)(propyl)amino]benzoate (0.027 g, 0.034 mmol) from step A was taken up in 5.0 mL of an HCl saturated solution of dichloromethane. After 60 hr, the reaction was concentrated in vacuo. The resulting deprotected material was taken up in 1.5 mL tetrahydrofuran, and IN LiOH (0.350 mL, 0.350 mmol) was added. After 6 hr., it was acidified to pH 4 with IN HCl (0.380 mL, 0.380 mmol) and concentrated under reduced pressure to give the resulting acid.
Step C: BOP Cyclization To a solution of acid from step B (0.01Og, 0.018 mmol) in 5 mL DMF was added diisopropylethylamine (0.005 mL, 0.026 mmol) and benzotriazol-l-yloxytris(dimethylamino)-phosphonium hexafluorophosphate (0.009 g, 0.021 mmol). After 1 hr, the crude reaction mixture was purified by preparative HPLC (5 -> 95% CH3CN/H2O, 0.1% added TFA, C18 PRO YMC 20x150 mm) to afford
Example 1 as a white solid. 1H NMR (400 MHz, CD3OD) δ 8.82 (d, J = 8.4 Hz, 1H), 7.71 (s, 1H), 7.69 (s, 1H), 7.58 (s, 1H), 7.56 (s, 1H), 7.43 - 7.38 (m, 3H), 7.35 - 7.23 (m, 3H), 7.04 (, J = 8.2 Hz, 1H), 6.88 (d, J = 7.6 Hz, 1H), 5.61 - 5.55 (m, 1H), 5.04 (A of AB, d, J = 13.8 Hz, 1H), 4.58 - 4.51 (m, 3H), 3.72 - 3.60 (m, 2H), 3.37 (A of AB, d, J = 10.7 Hz, 1H), 5.17 (A of AB, d, J = 13.2 Hz, 1H), 3.04 (B of AB, d, J = 10.7 Hz, 1H), 2.92 (s, 3H), 2.85 (B of AB, d, J = 13.2 Hz, 1H), 1.48 (m, 2H), 1.26 (s, 3H), 0.88 (t, J = 7.4 Hz, 3H).
Separation of the corresponding 4 diastereoisomers (RS, RR, SS, SR) was performed by preparative chiral HPLC.
EXAMPLE 2 (Scheme 4.3)
Figure imgf000088_0001
Step A: Ester Formation
To a solution of intermediate II.2.C.2 (0.228 g, 0.562 mmol) and intermediate HL2.b.l.l (0.288 g, 0.562 mmol) in 3 mL DMF was added cesium carbonate (0.220 g, 0.674 mmol). After 1.5 hr., the reaction was diluted with LiCl (aq) (25 mL) and extracted with EtOAc (2 x 25 mL). The organic layers were combined, washed with LiCl (aq) and brine, dried over sodium sulfate, and concentrated in vacuo. Purification by flash chromatography (20 g silica, 0-40% EtOAc in hexanes) gave tert-butyl 3-({[2-[(tert- butoxycarbonyl)amino]-3-(3-{3-[(tert -butoxycarbonyl)amino]-3-phenylpropyl}phenyl)-2- methylpropanoyl]oxy}methyl)-5-[(methylsulfonyl)(propyl)amino]benzoate as a white foam.
Step B: Boc and tBu ester Removal
Tert-bυtyl 3-({[2-[(tert-butoxycarbonyl)amino]-3-(3-{3-[(tert-butoxycarbonyl)amino]-3- phenylpropyl}phenyl)-2-methylpropanoyl]oxy}methyl)-5-[(methylsulfonyl)(propyl)amino]benzoate
(0.386 g, 0.461 mmol) was taken up in 2.0 mL HCl in dioxane (2.00 mL, 8.01 mmol, 4.0M solution). After 16 hr., the reaction was concentrated in vacuo, taken up in dichloromethane, and concentrated again (x2) to give 3-[({2-amino-3-[3-(3-amino-3-phenylpropyl)phenyl]-2-methylpropanoyl}oxy)methyl]- 5-[(methylsulfonyl)(propyl)amino]benzoic acid dihydrochloride as a white solid.
Step C: BOP Cyclization
Cyclization of 3-[({2-amino-3-[3-(3-amino-3-phenylpropyl)phenyl]-2-methylpropanoyl}oxy)methyl]-5- [(methylsulfonyl)(propyl)amino]benzoic acid dihydrochloride was performed as described in the preparation of Example 1 to provide Example 2 as a white solid. 1H NMR (400 MHz, CD3OD) δ 7.53 (s, 1H), 7.37 - 7.34 (m, 3H), 7.33 - 7.27 (m, 3H), 7.23-7.18 (m, 1H), 7.07 (d, J = 7.4 Hz, 1H), 6.82 (t, J = 7.5 Hz, 1H), 6.76 (d, J = 7.7 Hz, 1H), 6.08 (s, 1H), 5.56 (A of AB, d, J = 14.4 Hz, 1H), 5.23 (d, J = 10.0 Hz, 1H), 4.77 (B of AB, d, J = 14.4 Hz, 1H), 3.64 - 3.56 (m, 2H), 3.16 - 3.07 (m, 2H), 2.88 (s, 3H), 2.86 - 2.78 (m, 2H), 2.50 - 2.38 (m, 1H), 2.28 - 2.20 (m, 1H), 1.62 (s, 3H), 1.47 - 1.33 (m, 2H), 0.87 (t, J = 7.4 Hz, 3H). Separation of the corresponding 4 diastereoisomers (RS, RR, SS, SR) was performed by preparative chiral HPLC.
EXAMPLE 3 (Scheme 4.3)
Figure imgf000089_0001
Step A: Ester formation (intermediates II.3.C and IH.2.b.l.l), using a similar procedure as described in the preparation of Example 2.
Step B: Boc and tfiu ester removal, macrolactamization, using a similar procedure as described in the preparation of Example 2.
Step C: Boc installation
To a solution of 5-amino-19-bromo-5-methyl-14-phenyl-3-oxa-15-azatricyclo[15.3.1.17>11]docosa- l(21),7(22),8,10,17,19-hexaene-4,16-dione from Step B (1.35 g, 2.66 mmol) in THF (10 mL) was added ditertbutyldicarbonate (700 mg, 3.19 mmol) and the reaction mixture was stirred at 50 °C for 2 h 30 min. Additional ditertbutyldicarbonate (100 mg) was added and the reaction mixture was stirred at 60 °C for 1 h 30 min. The reaction mixture was concentrated in vacuo and purified by flash chromatography (145 g silica, 0-35% EtOAc in hexanes) to provide the corresponding Boc derivative.
Separation of the diastereomeric pairs by flash chromatography were possible at this stage.
Step D: Pd0 coupling of MeNMs
A suspension of bromide from Step C (50 mg, 0.08 mmol), anhudrous potassium phosphate tribasic (24 mg, 0.12 mmol), 9,9-dimethyl-4,5-bis(diphenylphosphino)xanthene (7 mg, 0.01 mmol), Pd2dba3 (4 mg,
0.004 mmol) and N-methyl-methylsulfonamide (11 mg, 0.1 mmol) in dioxane (0.5 mL) was stirred at 125 °C for 2 h. The reaction mixture was allowed to cool to Rt, diluted with DCM, filtered and purified by flash chromatography (40 g silica, 20-60% EtOAc in hexanes) to provide the corresponding aryl sulfonamide.
Step E: Boc removal
The aryl sulfonamide from Step D was treated with 4N HCl in dioxane (5 mL) for 1 h 45, concentrated in vacuo and purified by ion exchange chromatography (2 g SCX, MeOH then 2M NH3 in MeOH) to provide Example 3 as a white solid. 1H NMR (400 MHz, CD3OD) δ 7.54 (s, 1H), 7.40 - 7.26 (m, 7H), 7.24-7.18 (m, 1H), 7.06 (d, J - 7.1 Hz, 1H), 6.82 (t, J = 7.4 Hz, 1H), 6.75 (d, J = 7.4 Hz, 1H), 6.03 (s, 1H), 5.56 (A ofAB, d, J = 14.3 Hz, 1H), 5.23 (d, J = 10.7 Hz, 1H), 4.77 (B of AB, d, J = 14.3 Hz, 1H), 3.25 (s, 3H), 3.16 - 3.06 (m, 2H), 2.86 (s, 3H), 2.84 - 2.76 (m, 2H), 2.50 - 2.36 (m, 1H), 2.28 - 2.18 (m, 1H), 1.62 (s, 3H).
Separation of the corresponding 4 diastereoisomers (RS, RR, SS, SR) was performed by preparative chiral HPLC.
EXAMPLE 4 (Scheme 4.3^
Figure imgf000090_0001
Steps A-C: as described in the preparation of Example 3.
Step D: Pd0 coupling of 2-CN-Ph-ZnI To a solution of bromide from Example 3, step C (0.19Og, 0.313 mmol) in 1 mL of degassed THF under argon was added 2-cyanophenylzinc bromide solution (0.5 M in THF, 2.50 mL, 1.251 mmol). The solution was degassed, and Pd(PPh3)4 (0.072 g, 0.063 mmol) was added. After the reaction mixture was purged with argon, it was microwaved at 75 °C for 50 min. The reaction was diluted with EtOAc and water. The layers were separated, and the aqueous layer was extracted with EtOAc (2x). The combined organics were washed with brine, dried over Na2SO4, filtered and concentrated. The residue was purified by normal phase chromatography (20->45% EtOAc/hexanes) to obtain the desired biaryl intermediate as a yellow solid. LCMS [M+H]+= 630.
Step E: Deprotection
A solution of biaryl intermediate from step D (0.102 g, 0.162 mmol) in 0.5 mL OfCH2Cl2 and 0.5 mL of TFA was stirred at rt for 2 hr. The reaction was concentrated, and purified by reverse phase preparative HPLC (5- 95% MeCN/H2O containing 0.1 % TFA, C18 PRO YMC 20x150 mm) to give the desired Example 4 as white solid. 1H NMR (400 MHz, CD3OD) δ 7.84-7.82 (m, 1H), 7.76-7.72 (m, 2H), 7.60- 7.54 (m, 3H), 7.36-7.22 (m, 8H), 7.05 (t, J = 7.6 Hz, 1H), 6.93 (d, J = 7.7 Hz, 1H), 6.10 (s, 1H), 5.74 (d, J = 13.9 Hz, 1H), 5.30-5.27 (m, 1H), 5.11 (d, J = 13.9 Hz, 1H), 3.41 (d, J = 14.3 Hz, 1H), 3.19-3.11 (m, 2H), 2.96-2.89 (m, 1H), 2.39-2.34 (m, 2H), 1.85 (s, 3H). HRMS exact mass calc for C34H3IN3O3 [M+H]+: 530.2438; observed: 530.2462. Separation of the corresponding 4 diastereoisomers (RS, RR, SS, SR) was performed by preparative chiral HPLC.
EXAMPLE 5 (Scheme 4.4)
Figure imgf000091_0001
Step A: 9-BBN, Pd0 coupling of intermediate IV.4.e.2 and tert~buty\ l-ethylprop-2-enylcarbamate Solid tert-butyl l-ethylprop-2-enylcarbamate (0.028 g, 0.135 mmol, prepared from propionaldehyde and vinyl Grignard according to D.A. Cogan et al. Tetrahedron 55 (1999) 8883-8904, followed by standard Boc installation)) was placed in an oven-dried flask under an atmosphere of argon and dissolved in 9- borabicyclo[3.3.1]nonane (0.532 mL, 0.176 mmol, 0.5M solution in THF) and heated to 70°C. After 1 hr, the reaction was allowed to cool to rt and was added in one portion via syringe to a separate oven dried flask containing intermediate IV.4.e.2 (0.100 g, 0.135 mmol), Pd(PPh3)4 (0.008 g, 0.007 mmol), 3.2N NaOH (0.063 mL, 0.203 mmol), and 0.400 mL degassed toluene. The resulting solution was allowed to stir at 85°C. After 16 hr., the crude reaction was diluted with water and filtered over celite, washing with EtOAc. The layers were separated, and the resulting organic layer was washed with brine, dried over sodium sulfate, and concentrated in vacuo. Purification by flash chromatography (20 g silica, 0-50% EtOAc in hexanes) gave tert-butyl 3-{[2-[(tert-butoxycarbonyl)amino]-3-(3-{3-[(tert- butoxycarbonyl)amino]pentyl}phenyl)-2-methylpropoxy]methyl}-5- [(methylsulfonyl)(propyl)amino]benzoate as a white foam.
Step B: Boc and ^Bu Ester Removal Deprotection of 3 tot-butyl 3-{[2-[(tert-butoxycarbonyl)amino]-3-(3-{3-[(tert- butoxycarbonyl)ammo]pentyl}phenyl)-2-methylpropoxy]methyl}-5-
[(methylsulfonyl)(propyl)amino]benzoate was performed as described in the preparation of Example 2 to provide 3 -( {2-amino-3 -[3 -(3 -aminopentyl)phenyl]-2-methylpropoxy } methyl)-5 - [(methylsulfonyl)(propyl)amino]benzoic acid dihydrochloride as a white solid.
Step C: Bop Cyclization
Cyclization of 3 -( {2-amino-3 -[3 -(3 -aminopentyl)phenyl]-2-methylpropoxy } methyl)-5- [(methylsulfonyl)(propyl)ammo]benzoic acid dihydrochloride was performed as described in the preparation of Example 1 to provide Example 5 as a white solid. 1H NMR (400 MHz, CD3OD) δ 7.74 (d, J = 9.16 Hz, 1H), 7.63 (s, 1H), 7.30 (s, 1H), 7.24 (s, 1H), 7.09-6.98 (m, 3H), 6.77 (s, 1H), 4.81 (A of AB, d, J = 13.7 Hz, 1H), 4.53 (B of AB, d, J = 13.7 Hz, 1H), 4.10 - 4.00 (m, 1H), 3.90 (A of AB, d, J = 10.3 Hz, 1H), 3.71 - 3.59 (m, 2H), 3.45 (B of AB, d, J = 10.3 Hz, 1H), 3.20 (A of AB, d, J = 13.8 Hz, 1H), 2.95 - 2.85 (m, 2H), 2.92 (s, 3H), 2.68 - 2.60 (m, 1H), 2.26 - 2.17 (m, 1H), 1.91 - 1.80 (m, 1H), 1.70 - 1.52 (m, 2H), 1.48 - 1.37 (m, 2H), 1.33 (s, 3H), 0.97 (t, J = 7.4 Hz, 3H), 0.89 (t, J = 7.4 Hz, 3H). Separation of the corresponding 4 diastereoisomers (RS, RR, SS, SR) was performed by preparative chiral HPLC.
EXAMPLE 6 (Scheme 4.51
Figure imgf000092_0001
Step A: Mitsunobu etherifϊcation (intermediates II.5.d.l and DI.3.a.l) Intermediate m.3.a.l (0.22 g, 0.574 mmol), intermediate π.5.d.l (0.21 g, 0.603 mmol), and tri-n-butyl phosphine (0.22 mL, 0.862 mmol) were dissolved in 10 mL of anhydrous toluene and placed under argon atmosphere. TMAD (0.148 g, 0.862 mmol) was added in one portion and the reaction was allowed to stir at rt for 16 h. The reaction was then concentrated and purified using flash chromatography (4Og silica, 10-40% EtOAc in hexanes) to afford the corresponding phenolic ether.
Step B: TBS removal and hydrolysis
The previous phenolic ether (0.247 g, 0.349 mmol) was dissolved in 5 mL of THF. A 1.0 M solution of
TBAF (0.52 mL, 0.524 mmol) was added dropwise via syringe. The reaction was allowed to stir at RT for 16h. The reaction was then concentrated and purified using flash chromatography (40g silica, 10- 70% EtOAc in hexanes) to afford the corresponding benzylic alcohol. The previous benzylic alcohol (0.193 g, 0.326 mmol) was dissolved in 5 mL of THF. A 1.0 M solution of LiOH (3.26 mL, 3.26 mmol) was added in one portion and the reaction was allowed to stir at 50°C for 16 h. The reaction was then acidified (pH = 4) and extracted with EtOAc (x3), dried over sodium sulfate, and the solvent was removed in vacuo to afford the corresponding acid.
Step C: Macrolactonization
The previous acid (0.188 g, 0.33 mmol) and triphenylphosphine (0.128 g, 0.49 mmol) were dissolved in 7 mL of anhydrous THF. DIAD (0.096 mL, 0.49 mmol) was added in one portion via syringe and the reaction was allowed to stir at rt for 5 h. The reaction was then concentrated and purified using flash chromatography (9Og silica, 0-45% EtOAc in hexanes) to afford the corresponding macrolactone.
Step D: Boc Removal
The previous macrolactone (0.205 g, 0.366 mmol) was dissolved in 4.0 M HCl solution in 1,4-dioxane (0.914 mL, 3.65 mmol) and the reaction was allowed to stir at rt for 16 h. The reaction was then concentrated to afford the corresponding macrolactone hydrogen chloride salt, Example 6. 1H NMR (two diastereomers) (400 MHz, CD3OD) δ 9.1-9.0 (br s, 2H), 7.16-6.85 (m, 4H), 6.52-6.36 (m, 3H), 5.07 (br s, 2H), 3.85-3.75 (m, 2H), 3.2 (s, 3H), 2.82 (s, 3H), 2.58-2.51 (m, 1H), 2.0-1.8 (m, 4H), 1.89 (s, 3H), 1.35-1.25 (m, 2H), 1.02-0.98 (m, 3H).
EXAMPLE 7 fScheme 4.6)
Figure imgf000094_0001
Step A: hydroboration, Pd0 coupling (intermediates II.5.e.l and III.4.a.l.l) Intermediate IIL4.a.l.l (92 mg, 0.25 mmol) was placed in an oven dried round bottom flask and dissolved in 0.5 M solution of 9-BBN (0.59 mL, 0.29 mmol) and the reaction was allowed to stir at 75°C for 45 min. The reaction was then allowed to cool to rt and was added in one portion via syringe to another oven dried round bottom flask containing intermediate IL5.e.l (117 mg, 0.25 mmol), Pd(PPh3)4 (28 mg, 0.02 mmol), 3.2 M NaOH (0.115 mL, 0.37 mmol), and 2 mL of degassed toluene. This solution was then allowed to stir at 85°C for 16 h. The crude reaction was filtered over celite using EtOAc to wash. The resulting organic layer was washed with DI water (x3), brine (x3), dried over sodium sulfate and concentrated in vacuo. The crude material was purified using flash chromatography (2Og silica, 0- 20% EtOAc in hexanes) to afford the corresponding silyl ether.
Step B: TBS removal and hydrolysis, as described in the preparation of Example 6.
Step C: Macrolactonization, as described in the preparation of Example 6.
Step D: Boc removal, as described in the preparation of Example 6 to provide Example 7. 1H NMR (two diastereomers)(400 MHz, CD3OD) δ 7.36-7.31 (m, 4H), 7.21-7.05 (m, 4H), 6.96 (d, J = 7 Hz, 1H), 6.90 (app triplet, J = 7 Hz, 2H), 6.79 (s, 1H), 6.41 (s, 1H), 6.24 (s, 1H), 5.31 (A of AB, d, J = 12.2 Hz, 1H). 5.21 (A of AB, d, J = 12.4 Hz, 1H), 5.13 (B of AB, d, J = 12.4 Hz, 1H), 5.03 (B of AB, d, J = 12.2 Hz, 1H), 3.67 (s, 6H), 3.23-3.17 (m, 2H), 3.05-2.99 (m, 2H), 2.91-2.84 (m, 1H), 2.79 (s, 3H), 2.75 (s, 3H), 2.67-2.60 (m, 2H), 2.52-2.45 (m, 1H), 2.40-2.24 (m, 3H), 1.60-1.35 (m, 10 H), 1.72 (s, 3H), 1.68 (s, 3H), 0.97 (app triplet, J = 6.7 Hz, 6H).
EXAMPLE 8 (Scheme 4.7)
Figure imgf000095_0001
Step A: Phenol alkylation (intermediates I.l.a.l and IQ.5.a.l)
Intermediate I.l.a.l (122 mg, 0.28 mmol) and intermediate πi.5.a.l (87 mg, 0.28 mmol) were dissolved in 5 mL of anhydrous DMF. Cesium carbonate (55 mg, 0.169 mmol) was added in one portion and the reaction was allowed to stir at rt for 24 h. The crude reaction was extracted with EtOAc (x3), washed with DI water (x3), saturated LiCl (x3), dried over sodium sulfate and concentrated in vacuo. The crude material was purified using flash chromatography (2Og silica, 0-25% EtOAc in hexanes) to afford the corresponding alkene.
Step B: TBS removal and hydrolysis, as described in the preparation of Example 6.
Step C: Macrolactonization, as described in the preparation of example Example 6.
Step D: Boc removal, as described in the preparation of Example 6 to provide Example 8. 1H NMR (400 MHz, CDCl3) δ 7.15 (apparent triplet, J = 8 Hz, 1H), 6.93 (s, 1H), 6.89 (s, 1H), 6.79-6.75 (m, 2H), 6.49 (s, 1H), 6.33 (s, 1H), 5.32 (s, 1H), 5.31 (s, 1H), 4.93 (A of AB, d, J = 11.9 Hz, 1H), 4.77-4.71 (m, 3H), 4.68 (s, 2H), 3.70 (s, 2H), 3.28 (s, 3H), 3.05 (A of AB, d, J = 13.2 Hz, 1H), 2.80 (s, 3H), 2.76 (B of AB, d, J = 13.2 Hz, 1H), 1.49 (s, 3H).
EXAMPLE 9 (Scheme 4.7)
Figure imgf000095_0002
Alkene from Example 8, Step C, (30 mg, 0.054 mmol) was placed in an oven dried round bottom flask and dissolved in anhydrous THF and cooled to 0°C. A 1.0 M solution OfBF3Et2O (0.064 mL, 0.064 mmol) was added dropwise to the solution which was allowed to stir for 1.5 hr at O°C. The reaction was quenched with a 1 mL solution of a 1:1:1:1 solution of EtOH:THF:H2O2:pH 7 buffer solution, which was added dropwise at 0°C. The mixture was allowed to stir at rt overnight. The crude reaction mixture was diluted with EtOAc and washed with sodium thiosulfate (x2), DI water (x2), brine (x2), dried over sodium sulfate. Concentration and purification by preparative HPLC (5 -> 95% CH3CN/H2O, 0.1% added TFA, Cl 8 PRO YMC 20x150 mm) afforded the corresponding alcohol.
Boc removal, as described in the preparation of Example 6 provided Example 9. 1H NMR (two diastereomers)(400 MHz, CD3OD) δ 7.21-1.17 (m, 2H), 7.06-6.98 (m, 4H), 6.86-6.79 (m, 4H), 6.73-6.69 (m, 2H), 6.44-6.29 (m, 2H), 5.36-5.21 (m, 2H), 5.19-5.05 (m, 2H), 4.58-4.24 (m, 3H), 4.25-4.15 (m, 3H), 4.10-3.85 (m, 3H), 3.26 (s, 3H), 3.24 (s, 3H), 3.03-2.97 (m, 2H), 2.82 (s, 3H), 2.80 (s, 3H), 2.75-2.70 (m, 2H), 2.51-2.49 (m, 2H), 2.42 (br s, 2H), 1.65 (s, 3H), 1.64 (s, 3H).
EXAMPLE 10 (Scheme 4.8)
Figure imgf000096_0001
Step A: Coupling of acylhydrazide Il.l.e.l and acid m.2.b.l.l (EDC, HOAt), followed by cyclodehydration (Burgess reagent, heat).
Step B: Boc and Me ester Removal, as described for the preparation of Example 1.
Step C: BOP Cyclization, as described for the preparation of Example 1. HRMS calculated for C29H31N5O4S: 546.2170, found: 546.2160.
Separation of the corresponding 4 diastereoisomers (RS, RR, SS, SR) was performed by preparative chiral HPLC. EXAMPLE 11 (Scheme 4.91
Figure imgf000097_0001
StepA: Reductive animation
To the aldehyde IV.9.b.l (0 017 g, 0.027 mmol) in MeOH (2ml) was added benzylamme (0.003 ml, 0.027 mmol) and acetic acid (0.008 ml, O 134 mmol). Stir for 30 minutes and added sodiumcyanoborohydπde (0.002 g, 0.027 mmol) Stir at room temperature overnight then concentrate, filter, and purify on reverse phase HPLC. MS M+l = 724
StepB: Boc and tBu ester removal, as described in example 2, stepB.
StepC: BOP cychzation, as described m example 2, stepC. MS M+l = 550
Additional examples of the compounds of the invention are depicted in Table 1 below.
Examples were synthesized, and mass spectrometry data is provided.
Tablel
Figure imgf000097_0002
Figure imgf000098_0001
Figure imgf000099_0001
Figure imgf000100_0001
Figure imgf000101_0001
Figure imgf000102_0001
Figure imgf000103_0001
Figure imgf000104_0001
Figure imgf000105_0001
Figure imgf000106_0001
Figure imgf000107_0001
Figure imgf000108_0001
Figure imgf000109_0001
Figure imgf000110_0001
Figure imgf000111_0001
While the invention has been descπbed and illustrated with reference to certain particular embodiments thereof, those skilled in the art will appreciate that vaπous adaptations, changes, modifications, substitutions, deletions, or additions of procedures and protocols may be made without departing from the spiπt and scope of the invention It is intended, therefore, that the invention be defined by the scope of the claims that follow and that such claims be interpreted as broadly as is reasonable

Claims

WHAT IS CLAIMED IS:
1. A compound of formula (I):
Figure imgf000112_0001
and pharmaceutically acceptable salts thereof, and individual enantiomers and diastereomers thereof, wherein:
X and Y are selected from the group consisting of (1) hydrogen,
(2) -C1-3 alkyl,
(3) halogen, and
(4) cyano;
A is selected from the group consisting of
(1) hydrogen, (2) -C1-10 alkyl,
(3) -C2-10 alkenyl, and (4) -C2-10 alkynyl, wherein said alkyl, alkenyl or alkynyl is unsubstituted or substituted with one or more
(a) halo,
(b) -C3_8 cycloalkyl,
(c) -OH, (d) -CN, (e) -O-C1-10 alkyl,
(f) -C6-10 aryl, or
(g) heteroaryl selected from the group consisting of pyrazinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, tetrazolyl, furanyl, imidazolyl, triazinyl, pyranyl, thiazolyl, thienyl, thiophenyl, triazolyl, oxazolyl, isoxazolyl, thiazolyl, oxadiazolyl, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl and benzoxazolyl, and said aryl and heteroaryl groups are unsubstituted or substituted with one or more (i) halo, (ii) -OH, (iii) -CN,
(iv) -O-C1-10 alkyl,
(V) -C1-10 alkyl, (vi) -C2-10 alkenyl, (vii) -C2-10 alkynyl, or (viii) -C3.8 cycloalkyl;
Rl is selected from the group consisting of
(1) -C6-10 arylene, or
(2) heteroarylene selected from the group consisting of divalent pyrazinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, tetrazolyl, furanyl, imidazolyl, triazinyl, pyranyl, thiazolyl, thienyl, thiophenyl, triazolyl, oxazolyl, isoxazolyl, thiazolyl, oxadiazolyl, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl and benzoxazolyl,
wherein said arylene or heteroarylene is unsubstituted or substituted with one or more (a) halo,
(b) -C1-10 alkyl,
(c) -C2-10 alkenyl,
(d) -C2-10 alkynyl,
(e) -OH, (f) -CN,
(g) -O-C1-10 alkyl, or
(h) -C3-8 cycloalkyl;
R2 is selected from the group consisting of: (1) (R5-SO2)N(R6)-, wherein R5 is
(a) -C1-10 alkyl,
(b) -C2-10 alkenyl,
(c) -C2-10 alkynyl,
(d) -C3-8 cycloalkyl, (e) -C6-10 aryl, or
(f) heteroaryl selected from the group consisting of pyrazinyl, pyrazolyl, pyridazinyl, pyridyl, pyriniidinyl, pyrrolyl, tetrazolyl, furanyl, imidazolyl, triazinyl, pyranyl, thiazolyl, thienyl, thiophenyl, triazolyl, oxazolyl, isoxazolyl, thiazolyl, oxadiazolyl, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl and benzoxazolyl, (g) -NR7R8,
wherein said alkyl, alkenyl, alkynyl, cycloalkyl, aryl and heteroaryl is unsubstituted or substituted with one or more (i) halo, (ii) -OH, (iii) -CN,
(iv) -O-C1-10 alkyl, (v) -C1-10 alkyl, (vi) -C2- 10 alkenyl, (vii) -C2-10 alkynyl, (viii) -C3 -8 cycloalkyl,
(ix) -C6-10 aryl, or
(x) heteroaryl selected from the group consisting of pyrazinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, tetrazolyl, furanyl, imidazolyl, triazinyl, pyranyl, thiazolyl, thienyl, thiophenyl, triazolyl, oxazolyl, isoxazolyl, thiazolyl, oxadiazolyl, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl and benzoxazolyl, and said aryl and heteroaryl is unsubstituted or substituted with one or more
(A) halo, (B) -OH,
(C) -CN,
(D) -O-C1-10 alkyl, (E) -C3-8 cycloalkyl, (F) -C1-10 alkyl, (G) -C2-10 alkenyl, or
(H) -C2-10 alkynyl;
R6 is selected from the group consisting of
(a) hydrogen, (b) -C1-10 alkyl,
(c) -C2- 10 alkenyl, (d) -C2- 10 alkynyl, (e) -C6-10 aryl, or
(f) heteroaryl selected from the group consisting of pyrazinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, tetrazolyl, furanyl, imidazolyl, triazinyl, pyranyl, thiazolyl, thienyl, thiophenyl, triazolyl, oxazolyl, isoxazolyl, thiazolyl, oxadiazolyl, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl and benzoxazolyl,
wherein said alkyl, alkenyl, alkynyl, aryl or heteroaryl is unsubstituted or substituted with one or more (i) halo, (ii) -OH,
(iii) -CN,
(Iv) -O-C1-10 alkyl, (v) -C3-8 cycloalkyl, (vi) -C6-10 aryl, or (vii) heteroaryl selected from the group consisting of pyrazinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, tetrazolyl, furanyl, imidazolyl, triazinyl, pyranyl, thiazolyl, thienyl, thiophenyl, triazolyl, oxazolyl, isoxazolyl, thiazolyl, oxadiazolyl, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl and benzoxazolyl;
wherein said cycloalkyl, aryl or heteroaryl is unsubstituted or substituted with one or more
(A) halo,
(B) -OH, (C) -CN,
(D) -O-C1-10 alkyl,
(E) -C3-8 cycloalkyl, or
(F) -C6-10 aryl,
or R5 and R.6 may be linked to form a group -CH2(CH2)pCH2~;
(2) -C6-10 aryl, wherein said aryl is unsubstituted or substituted with one or more (i) halo, (U) -OH, (iii) -CN,
(iv) -O-C1-10 alkyl, (v) -C3-8 cycloalkyl, (vi) -C1-10 alkyl, (vi) -C6-10 aryl, or
(3)
Figure imgf000116_0001
(4) heteroaryl selected from the group consisting of pyrazinyl, pyrazolyl,pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, tetrazolyl, furanyl, imidazolyl, triazinyl, pyranyl, thiazolyl, thienyl, thiophenyl, triazolyl, oxazolyl, isoxazolyl, thiazolyl, oxadiazolyl, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl and benzoxazolyl, wherein said heteroaryl is unsubstituted or substituted with one or more
(i) halo,
(U) -OH,
(iii) -CN,
(iv) -O-C1-10 alkyl,
(v) -C3-8 cycloalkyl,
(vi) -C1-10 alkyl,
(vii) -C(=O)-O-C1-10 alkyl,
(viii) -C(=O)-OH, and
(ix) -C(=O)-NRCRd
(x) -NRCRd, wherein Rc and Rd are selected from the group consisting of
(A) hydrogen, and (B) -C1-10 alkyl;
(5) hydrogen;
(6) -CF3; and
(7) -O-SO2-R9;
ected from the group consisting of
Figure imgf000117_0001
wherein Rx is selected from the group consisting of
(a) hydrogen,
(b) -C1-6 alkyl,
(c ) -C0-3 alkylene-C3-8 cycloalkyl, (d) -C0-3alkylene-C6-10 aryl and said Rχ alkyl, alkylene, cycloalkyl and aryl groups are unsubstituted or substituted with one or more (i) halo, (ii) -C1-10 alkyl,
(iii) -OH, (iv) -CN, or (V) -O-C1-10 alkyl,
and if the dotted line leading to Ry is absent, then RY is selected from the group consisting of (a) hydrogen, (b) -C1-10 alkyl,
(c)-C2-10 alkenyl,
(d) -C2-10 alkynyl,
(e) -C3-8 cycloalkyl,
(f) -C0-6 alkylene-C6-10 aryl, or
(g) -C0-6 alkylene-heteroaryl, wherein said heteroaryl is selected from the group consisting of pyrazinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, tetrazolyl, furanyl, imidazolyl, friazinyl, pyranyl, thiazolyl, thienyl, thiophenyl, triazolyl, oxazolyl, isoxazolyl, thiazolyl, oxadiazolyl, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl and benzoxazolyl,
and said RY alkyl, alkylene, alkenyl,alkynyl, cycloalkyl and heteroaryl groups are unsubstituted with one or more
(i) halo,
(ii) -C1-10 alkyl, (iii) -OH, (iv) -CN, or (V) -O-C1-10 alkyl,
and RY' is selected from the group consisting of
(c) hydrogen, and
(d) -CH3,
and if the dotted line leading to Ry represents a bond, then RY' is absent and Ry is selected from the group consisting of
(a) =CH-C1-10 alkyl,
(b) =CH-C0-6 alkylene-C6-10 aryl, or (C) =CH2 wherein said alkyl, alkylene, cycloalkyl, aryl or heteroaryl Ry groups are unsubstituted or substituted with one or more
(i) halo, (ii) -C1-10 alkyl,
(iii) -OH, (iv) -CN, or (v) -O-C1-10 alkyl, or
(vi) -C3-8 cycloalkyl;
Q3, Q4 and Q5 are selected from the group consisting of (a) -CH2- (b) -O- and
(c) -NH-;
R4 is -(CH2)n-Q2 -(CH2)m, wherein Q2 is selected from the group consisting of
(I)-O-, (2)-NH-,
(3) -O-C(=O)-,
(4) -C(=O)-O-,
(5) -NHC(=O),
(6) -C(=O)-NH-, (7) -CH=CH-,
(8) -C(=O)-,
(9) -(CH2)q -,
Figure imgf000119_0001
R7 and R8 are selected from the group consisting of (I) -C1-10 alkyl, and (2) -C0-3 alkyene-C6-10 aryl, wherein said alkyl, alkylene and aryl is unsubstituted or substituted with one or more (a) halo,
(b) -C1-10 alkyl,
(c) -OH, (d) -CN,
(e) -O-C1-10 alkyl, or (f) -C3-8 cycloalkyl;
R9 is selected from the group consisting of (1) -C1-10 alkyl, and
(2) -C0-3 alkylene-C6-10 aryl, wherein said alkyl, alkylene and aryl is unsubstituted or substituted with one or more
(a) halo,
Cb) -C1-10 alkyl,
(c) -OH,
Cd) -CN, (e) -O-C1-10 alkyl, or
(f) -C3-8 cycloalkyl, or R9 is NR7R8;
m is 0, 1 or 2; n is 0, 1 or 2; p is 1, 2, 3, 4 or 5; q is 2, 3, 4 or 5; and r is 0, 1 or 2.
2. A compound of Claim 1 wherein X and Y are both hydrogen.
3. A compound of Claim 1 wherein R1 is phenylene.
4. A compound of any of Claims 1 -3 wherein R.4 is -(CH2)-Q2-(CH2), wherein Q2 is selected from the group consisting of (I)-O-,
(2) -O-C(=O)-, (3,
Figure imgf000120_0001
5. A compound of Claim 1 wherein R3 is
Figure imgf000120_0002
6. A compound of Claim 5 wherein the dotted line leading to RY is absent and RY is selected from the group consisting of (a) -C1-10 alkyl, (b)-C2-10 alkenyl,
(c) -C2-10 alkynyl,
(d) -C3-8 cycloalkyl,
(e) -C0-6 alkylene-C6-10 aryl or
(f) — C0-6 alkylene-heteroaryl, wherein said heteroaryl is selected from the group consisting of pyrazinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, tetrazolyl, furanyl, imidazolyl, triazinyl, pyranyl, thiazolyl, thienyl, thiophenyl, triazolyl, oxazolyl, isoxazolyl, thiazolyl, oxadiazolyl, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl and benzoxazolyl wherein said alkyl, alkylene, alkenyl, alkynyl, cycloalkyl, aryl or heteroaryl are unsubstituted or substituted with one or more
(i) halo, (ii) -C1-10 alkyl
(iii) -OH,
(iv) -CN, (v) -O-C1-10 alkyl, or
(vi) -C3-8 cycloalkyl, and Ry' is hydrogen.
7. A compound of Claim 5 or 6 wherein Rx is hydrogen.
8. A compound of any of Claims 5 to 7 wherein Q3 is-O- or -CH2— , and m is 1 and n and r are each 0.
9. A compound of any of Claims 1 -4 wherein R3 is
Figure imgf000121_0001
10. A compound of Claim 9 wherein the dotted line leading to RY is absent and RY is selected from the group consisting of (a) -C1-10 alkyl, (b)-C2-10 alkenyl,
(c) -C2-10 alkynyl,
(d) -C3-8 cycloalkyl, (e) -C0-6 alkylene-C6-10 aryl, or
(f) -C0-6 alkylene-heteroaryl, wherein said heteroaryl is selected from the group consisting of pyrazinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, tetrazolyl, furanyl, imidazolyl, triazinyl, pyranyl, thiazolyl, thienyl, thiophenyl, triazolyl, oxazolyl, isoxazolyl, thiazolyl, oxadiazolyl, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl and benzoxazolyl, wherein said alkyl, alkylene, alkenyl, alkynyl, cycloalkyl, aryl and heteroaryl are unsubstituted or substituted with one or more (i) halo, (ii) -C1-10 alkyl,
(iii) -OH, (Iv) -CN, (v) -O-C1-10 alkyl, or
(vi) — C3-8 cycloalkyl. and Ry' is hydrogen.
11. A compound of Claim 9 or 10 wherein Q4 is -O- or -CH2- and Q5 is -O - or -CH2-, and n and m are 1 and r is 0.
12. A compound of any of Claims 1-11 wherein A is selected from the group consisting of (1) hydrogen, and
(2) -C1-10 alkyl, wherein said alkyl is unsubstituted or substituted with one or more
(a) halo,
(b) -C3.8 cycloalkyl,
(c) -CN (d) -O-C1-10 alkyl, (e) -C6-10 aryl, or
(f) heteroaryl selected from the group consisting of pyrazinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, tetrazolyl, furanyl, imidazolyl, triazinyl, pyranyl, thiazolyl, thienyl, thiophenyl, triazolyl, oxazolyl, isoxazolyl, thiazolyl, oxadiazolyl, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl and benzoxazolyl.
13. A compound of any of Claims 1-12 wherein R2 is (R5-SO2)N(R6)-, wherein R5 is -C 1 _6 alkyl, wherein said alkyl is unsubstituted or substituted with one or more (i) halo, (U) -OH, (iii) -CN,
(iv) -O-C1-6 alkyl, or (v) -C 1-6 alkyl, and R6 is selected from the group consisting of
(a) hydrogen, (b) -C1-6 alkyl,
(c) -C6-10 aryl, wherein said alkyl and aryl is unsubstituted or substituted with one or more (i) halo, (π) -OH,
(iii) -CN, (iv) -O-C1-6 alkyl or
(v) -C1-6 alkyl.
14. A compound of any of Claims 1-13 wherein R2 is phenyl, unsusbstituted or substituted with cyano.
15. A compound of Claim 1 which is a compound of formula (II):
Figure imgf000123_0001
and pharmaceutically acceptable salts thereof, and individual enantiomers and diastereomers thereof.
16. A compound of Claim 1 which is a compound of formula (HT):
Figure imgf000123_0002
and pharmaceutically acceptable salts thereof, and individual enantiomers and diastereomers thereof.
17. A compound of Claim 1 which is a compound of formula (IV):
Figure imgf000124_0001
(IV)
and pharmaceutically acceptable salts thereof, and individual enantiomers and diastereomers thereof.
18. A pharmaceutical composition comprising a therapeutically effective amount of a compound of Claim 1 and a pharmaceutically acceptable carrier.
19. A method for inhibition of β-secretase activity in a mammal in need thereof which comprises administering to the mammal a therapeutically effective amount of a compound of Claim 1.
20. A method for treating Alzheimer's disease in a patient in need thereof comprising administering to the patient a therapeutically effective amount of a compound of Claim 1.
PCT/US2005/040984 2004-11-17 2005-11-14 Macrocyclic tertiary amine beta-secretase inhibitors for the treatment of alzheimer's disease WO2006055434A2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP05825640.5A EP1814537B1 (en) 2004-11-17 2005-11-14 Macrocyclic tertiary amine beta-secretase inhibitors for the treatment of alzheimer's disease
US11/667,913 US7678783B2 (en) 2004-11-17 2005-11-14 Macrocyclic tertiary amine beta-secretase inhibitors for the treatment of alzheimer's disease
JP2007543137A JP2008520670A (en) 2004-11-17 2005-11-14 Macrocyclic tertiary amine beta-secretase inhibitors for the treatment of Alzheimer's disease
CA002587083A CA2587083A1 (en) 2004-11-17 2005-11-14 Macrocyclic tertiary amine beta-secretase inhibitors for the treatment of alzheimer's disease
AU2005306701A AU2005306701A1 (en) 2004-11-17 2005-11-14 Macrocyclic tertiary amine beta-secretase inhibitors for the treatment of Alzheimer's disease

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US62883004P 2004-11-17 2004-11-17
US60/628,830 2004-11-17
US65303605P 2005-02-15 2005-02-15
US60/653,036 2005-02-15

Publications (2)

Publication Number Publication Date
WO2006055434A2 true WO2006055434A2 (en) 2006-05-26
WO2006055434A3 WO2006055434A3 (en) 2007-07-05

Family

ID=36407657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/040984 WO2006055434A2 (en) 2004-11-17 2005-11-14 Macrocyclic tertiary amine beta-secretase inhibitors for the treatment of alzheimer's disease

Country Status (6)

Country Link
US (1) US7678783B2 (en)
EP (1) EP1814537B1 (en)
JP (1) JP2008520670A (en)
AU (1) AU2005306701A1 (en)
CA (1) CA2587083A1 (en)
WO (1) WO2006055434A2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008055945A1 (en) 2006-11-09 2008-05-15 Probiodrug Ag 3-hydr0xy-1,5-dihydr0-pyrr0l-2-one derivatives as inhibitors of glutaminyl cyclase for the treatment of ulcer, cancer and other diseases
WO2008065141A1 (en) 2006-11-30 2008-06-05 Probiodrug Ag Novel inhibitors of glutaminyl cyclase
WO2008104580A1 (en) 2007-03-01 2008-09-04 Probiodrug Ag New use of glutaminyl cyclase inhibitors
WO2011029920A1 (en) 2009-09-11 2011-03-17 Probiodrug Ag Heterocylcic derivatives as inhibitors of glutaminyl cyclase
US7951949B2 (en) 2004-11-23 2011-05-31 Merck, Sharp & Dohme, Corp. Macrocyclic aminopyridyl beta-secretase inhibitors for the treatment of Alzheimer's disease
WO2011107530A2 (en) 2010-03-03 2011-09-09 Probiodrug Ag Novel inhibitors
WO2011110613A1 (en) 2010-03-10 2011-09-15 Probiodrug Ag Heterocyclic inhibitors of glutaminyl cyclase (qc, ec 2.3.2.5)
WO2011131748A2 (en) 2010-04-21 2011-10-27 Probiodrug Ag Novel inhibitors
WO2012123563A1 (en) 2011-03-16 2012-09-20 Probiodrug Ag Benz imidazole derivatives as inhibitors of glutaminyl cyclase
EP2865670A1 (en) 2007-04-18 2015-04-29 Probiodrug AG Thiourea derivatives as glutaminyl cyclase inhibitors
EP3461819A1 (en) 2017-09-29 2019-04-03 Probiodrug AG Inhibitors of glutaminyl cyclase

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110107664A1 (en) * 2009-11-10 2011-05-12 Biovantage Resources, Inc. Nutrient System and Methods
SG11201704628VA (en) * 2015-02-05 2017-07-28 Merck Patent Gmbh Macrocyclic compounds as irak1/4 inhibitors and uses thereof

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001229320A1 (en) 2000-01-12 2001-07-24 Merck And Co., Inc. Inhibitors of prenyl-protein transferase
US6333410B1 (en) 2000-08-18 2001-12-25 Immunogen, Inc. Process for the preparation and purification of thiol-containing maytansinoids
CA2450167A1 (en) * 2001-06-12 2002-12-19 Elan Pharmaceuticals, Inc. Macrocycles useful in the treatment of alzheimer's disease
WO2003106405A1 (en) 2002-06-01 2003-12-24 Sunesis Pharmaceuticals, Inc. Aspartyl protease inhibitors
WO2004043916A1 (en) 2002-11-12 2004-05-27 Merck & Co., Inc. Phenylcarboxamide beta-secretase inhibitors for the treatment of alzheimer's disease
US7371853B2 (en) 2003-01-07 2008-05-13 Merck & Co., Inc. Macrocyclic β-secretase inhibitors for the treatment of Alzheimer's disease
EP1644322A1 (en) 2003-06-16 2006-04-12 Sunesis Pharmaceuticals, Inc. Aspartyl protease inhibitors
AU2004255183A1 (en) 2003-06-30 2005-01-20 Merck & Co., Inc. N-alkyl phenylcarboxamide beta-secretase inhibitors for the treatment of Alzheimer's disease
WO2005004803A2 (en) 2003-07-01 2005-01-20 Merck & Co., Inc. Phenylcarboxylate beta-secretase inhibitors for the treatment of alzheimer's disease
CN1835936A (en) 2003-08-14 2006-09-20 默克公司 Macrocyclic beta-secretase inhibitors for the treatment of alzheimer's disease
DE602004014170D1 (en) 2003-10-03 2008-07-10 Merck & Co Inc BENZYL ETHER AND BENZYLAMINO BETA SECRETASE INHIBITORS FOR THE TREATMENT OF ALZHEIMER DISEASE
ATE517861T1 (en) 2003-11-24 2011-08-15 Merck Sharp & Dohme BENZYL ETHER AND BENZYLAMIN COMPOUNDS AS INHIBITORS OF BETA-SECRETASE FOR THE TREATMENT OF ALZHEIMER'S DISEASE
EP1697308B1 (en) 2003-12-19 2014-03-19 Merck Sharp & Dohme Corp. Phenylamide and pyridylamide beta-secretase inhibitors for the treatment of alzheimer's disease
EP1740559B1 (en) 2004-04-20 2014-10-15 Merck Sharp & Dohme Corp. 1,3,5-substituted phenyl derivative compounds useful as beta-secretase inhibitors for the treatment of alzheimer's disease
JP4764418B2 (en) 2004-04-20 2011-09-07 メルク・シャープ・エンド・ドーム・コーポレイション 2,4,6-substituted pyridyl derivative compounds useful as β-secretase inhibitors for the treatment of Alzheimer's disease
US20070298029A1 (en) 2004-08-09 2007-12-27 Carsten Hopf Treatment of Neurodegenerative Diseases by the Use of Degs Inhibitors
US7951949B2 (en) * 2004-11-23 2011-05-31 Merck, Sharp & Dohme, Corp. Macrocyclic aminopyridyl beta-secretase inhibitors for the treatment of Alzheimer's disease

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
H. FUKUMOTO ET AL., ARCH. NEUROL., vol. 59, September 2002 (2002-09-01), pages 1381 - 1389
J.T. HUSE ET AL., J. BIOL. CHEM., vol. 277, no. 18, 3 May 2002 (2002-05-03), pages 16278 - 16284
K.C. CHEN; W.J. HOWE, BIOCHEM. BIOPHYS. RES. COMM, vol. 292, 2002, pages 702 - 708
R. N. ROSENBERG, ARCH. NEUROL., vol. 59, September 2002 (2002-09-01), pages 1367 - 1368
See also references of EP1814537A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7951949B2 (en) 2004-11-23 2011-05-31 Merck, Sharp & Dohme, Corp. Macrocyclic aminopyridyl beta-secretase inhibitors for the treatment of Alzheimer's disease
WO2008055945A1 (en) 2006-11-09 2008-05-15 Probiodrug Ag 3-hydr0xy-1,5-dihydr0-pyrr0l-2-one derivatives as inhibitors of glutaminyl cyclase for the treatment of ulcer, cancer and other diseases
WO2008065141A1 (en) 2006-11-30 2008-06-05 Probiodrug Ag Novel inhibitors of glutaminyl cyclase
WO2008104580A1 (en) 2007-03-01 2008-09-04 Probiodrug Ag New use of glutaminyl cyclase inhibitors
EP2481408A2 (en) 2007-03-01 2012-08-01 Probiodrug AG New use of glutaminyl cyclase inhibitors
EP2865670A1 (en) 2007-04-18 2015-04-29 Probiodrug AG Thiourea derivatives as glutaminyl cyclase inhibitors
WO2011029920A1 (en) 2009-09-11 2011-03-17 Probiodrug Ag Heterocylcic derivatives as inhibitors of glutaminyl cyclase
WO2011107530A2 (en) 2010-03-03 2011-09-09 Probiodrug Ag Novel inhibitors
WO2011110613A1 (en) 2010-03-10 2011-09-15 Probiodrug Ag Heterocyclic inhibitors of glutaminyl cyclase (qc, ec 2.3.2.5)
WO2011131748A2 (en) 2010-04-21 2011-10-27 Probiodrug Ag Novel inhibitors
WO2012123563A1 (en) 2011-03-16 2012-09-20 Probiodrug Ag Benz imidazole derivatives as inhibitors of glutaminyl cyclase
EP3461819A1 (en) 2017-09-29 2019-04-03 Probiodrug AG Inhibitors of glutaminyl cyclase

Also Published As

Publication number Publication date
US7678783B2 (en) 2010-03-16
WO2006055434A3 (en) 2007-07-05
CA2587083A1 (en) 2006-05-26
EP1814537A2 (en) 2007-08-08
US20080269302A1 (en) 2008-10-30
EP1814537B1 (en) 2014-11-12
EP1814537A4 (en) 2009-09-16
AU2005306701A1 (en) 2006-05-26
JP2008520670A (en) 2008-06-19

Similar Documents

Publication Publication Date Title
EP1814537B1 (en) Macrocyclic tertiary amine beta-secretase inhibitors for the treatment of alzheimer's disease
EP1817312B1 (en) Macrocyclic aminopyridyl beta-secretase inhibitors for the treatment of alzheimer's disease
EP1855679B1 (en) Aminomethyl beta-secretase inhibitors for the treatment of alzheimer's disease
EP1673078B1 (en) Benzylether and benzylamino beta-secretase inhibitors for the treatment of alzheimer's disease
JP5676379B2 (en) Fused ring compounds and uses thereof
JP2010510962A (en) Heteromonocyclic compounds and uses thereof
WO2006078577A1 (en) Tertiary carbinamines having substituted heterocycles, which are active as inhibitors of beta-secretase, for the treatment of alzheimer's disease
AU2005257904A1 (en) Pyrrolidin-3-yl compounds useful as beta-secretase inhibitors for the treatment of Alzheimer's disease
US20080132477A1 (en) Macrocyclic Compounds Useful as Bace Inhibitors
JP2024123202A (en) Macrocyclic compounds and uses thereof
WO2007019078A2 (en) Tricyclic beta-secretase inhibitors for the treatment of alzheimer's disease
EP4364737A2 (en) Triazolopyridinyl compounds as kinase inhibitors
WO2007019080A2 (en) Tricyclic beta-secretase inhibitors for the treatment of alzheimer's disease
WO2007019111A2 (en) Cyclic ketal beta-secretase inhibitors for the treatment of alzheimer's disease

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580039377.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1654/CHENP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2005306701

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2587083

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2005825640

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007543137

Country of ref document: JP

Ref document number: 11667913

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2005306701

Country of ref document: AU

Date of ref document: 20051114

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005825640

Country of ref document: EP