WO2006049417A1 - A method of transmitting a precoding matrix in a multi-input multi-output (mimo) system - Google Patents

A method of transmitting a precoding matrix in a multi-input multi-output (mimo) system Download PDF

Info

Publication number
WO2006049417A1
WO2006049417A1 PCT/KR2005/003649 KR2005003649W WO2006049417A1 WO 2006049417 A1 WO2006049417 A1 WO 2006049417A1 KR 2005003649 W KR2005003649 W KR 2005003649W WO 2006049417 A1 WO2006049417 A1 WO 2006049417A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix
sub
precoding matrix
codebook
feedback information
Prior art date
Application number
PCT/KR2005/003649
Other languages
French (fr)
Inventor
Bin Chul Ihm
Yong Suk Jin
Jin Young Chun
Original Assignee
Lg Electronics Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lg Electronics Inc. filed Critical Lg Electronics Inc.
Priority to CN2005800374583A priority Critical patent/CN101053193B/en
Priority to US11/718,092 priority patent/US8594218B2/en
Priority to EP05804497.5A priority patent/EP1807958B1/en
Publication of WO2006049417A1 publication Critical patent/WO2006049417A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0658Feedback reduction
    • H04B7/0663Feedback reduction using vector or matrix manipulations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03426Arrangements for removing intersymbol interference characterised by the type of transmission transmission using multiple-input and multiple-output channels

Definitions

  • MIMO MULTI-OUTPUT
  • the present invention relates to a method of transmitting a precoding matrix, and more particularly, to a method of transmitting a precoding matrix in a multi-input, multi- output (MIMO) system.
  • MIMO multi-input, multi- output
  • Figure 1 is an example illustrating a multi-input, multi-output (MIMO) system according to the related art.
  • the receiving end uses a channel matrix H to determine a precoding matrix W and transmits (or feeds back) the determined precoding matrix to the transmitting end.
  • the transmitting end and the receiving end both possesses a set of matrices, one of which matches or is most similar to the determined precoding matrix W.
  • the receiving end transmits (or feeds back) the index of the matrix which matches or is most analogous to the determined precoding matrix W.
  • the set of indexes corresponding to each of the analogous matrices are referred to as a codebook.
  • the W matrix is determined based on the number of transmitting and receiving antennas. Subsequently, if the number of transmitting and receiving antennas increases, the number of W, which comprises the codebook, increases exponentially. In other words, the value of W is not fed back to the transmitting end, and rather, it is the index of the W value most similar or analogous to the actual W value which is fed back. As such, even a small increase in the number of antennas relates to a large increase in the number of W values in the codebook. For example, if W matrix is a 2x2 matrix, the W matrix includes 4 elements.
  • the W matrix is a 4x4 matrix, there should be at least 64 matrices in the codebook to minimize performance drop.
  • the number of bits transmitted from the transmitting end not only changes according to the number of antennas, but also has to have a storage (memory) which should be able to store more than 64 matrices, making it inefficient.
  • the number of reserve W matrices increase exponentially with the increase of the transmitting and receiving antennas, it is difficult to prepare for subsequent increase in number of antennas.
  • the present invention is directed to a method of transmitting a precoding matrix in a multi-input, multi-output (MIMO) system that substantially obviates one or more problems due to limitations and disadvantages of the related art.
  • MIMO multi-input, multi-output
  • An object of the present invention is to provide a method of transmitting a precoding matrix more efficiently.
  • Another object of the present invention is to provide a method of transmitting a precoding matrix using less memory.
  • a further object of the present invention is to provide a method of receiving a precoding matrix in a MIMO system.
  • a method of transmitting a precoding matrix in a multi-input, multi-output (MIMO) system includes a receiving end which determines feedback information by calculating each diagonal sub-matrix of the precoding matrix.
  • the precoding matrix includes a plurality of sub-matrices arranged in a block diagonal format. Thereafter, the receiving end transmits the feedback information of the each calculated sub-matrix.
  • a transmitting end receives a precoding matrix in a multi-input, multi-output (MIMO) system. More specifically, the transmitting end requests feedback information of a precoding matrix and in return, receives receiving the feedback information of each diagonal sub-matrix of the precoding matrix.
  • the precoding matrix includes a plurality of sub-matrices arranged in a block diagonal format. Thereafter, the transmitting end transmits data using the precoding matrix along with a confirmation signal.
  • FIG. 1 is an example illustrating a multi-input, multi-output (MIMO) system according to the related art
  • FIG. 2 is an example illustrating a multi-input, multi-output (MIMO) system according to the present invention.
  • FIG. 3 illustrates an example of configuring a codebook by using characteristics of a and b.
  • FIG. 2 is an example illustrating a multi-input, multi-output (MIMO) system according to the present invention.
  • W matrix can be illustrated according to Equation 1. [Equation 1]
  • Equation 1 W 1 where a * is a conjugate of a .
  • the sub-matrix W is not limited to a 2x2 format, but can be different * sizes, such as 4x4, 8x8, and 16x16.
  • the receiving signal vector x of the receiving end can be expressed according to the following equation.
  • Equation 2 x is a receiving signal vector, H is a channel matrix, W is a precoding matrix, 5 is a transmission signal vector before precoding matrix is applied
  • Equation 3 In order to acquire the transmission vector s, W 1 H '1 is multiplied on both sides of Equation 2, which in turn can be expressed as shown in Equation 3.
  • Equation 4 the matrix corresponding to W 1 is
  • W 1 . Furthermore, a precoding matrix corresponding to W 1 can be expressed as b -a
  • Equation 5 the values of a and b, which satisfy Equations 6 and 7, can be acquired. Furthermore, a and b values can be determined based on a value which most closely satisfies the optimum signal-to-noise ratio (SNR) from the a x and b x values.
  • SNR signal-to-noise ratio
  • the codebook can be configured by two schemes by which the codebook can be configured. More specifically, the first scheme relates to a two-dimensional configuring scheme, and the second scheme relates to a one-dimensional configuring scheme.
  • the codebook is configured by combining the values of a and b, as is the case with ⁇ (a, b) ⁇ .
  • Equation 8 represents configuring a codebook by using either ⁇ value or b value.
  • Figure 3 illustrates an example of configuring a codebook by using characteristics of ⁇ and b.
  • Equation 8 can be derived by using the relationship of the values of ⁇ and b. That is, the values of ⁇ and b within a constellation are located on a unit circle having a radius of 1.
  • Figure 3 is an example of quantizing the values of a and b, and in
  • Tt particular, the values of a and b are quantized on the basis of —rad .
  • the codebook configuration can be simplified by using the quantized a and b values, and consequently, the memory used for storing the codebook can be minimized. Furthermore, a capability of a Bit Error Rate (BER) can be improved when selecting the values of a and b, since a and b values selected have a high or optimum SNR.
  • BER Bit Error Rate
  • a peak-to-average power ratio of the W matrix having a non-zero value, and not a zero value, only for two elements of each row is lower than the W matrix having all elements represented by non ⁇ zero values.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Radio Transmission System (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

A method of transmitting a precoding matrix in a multi-input, multi-output (MIMO) system is disclosed. In the system, a receiving end determines feedback information by calculating each diagonal sub-matrix of the precoding matrix. Here, the precoding matrix includes a plurality of sub-matrices arranged in a block diagonal format. Thereafter, the receiving end transmits he feedback information of the each calculated sub-matrix.

Description

[DESCRIPTION]
A METHOD OF TRANSMITTING A PRECODING MATRIX
IN A MULTI-INPUT MULTI-OUTPUT (MIMO) SYSTEM
Technical Field
The present invention relates to a method of transmitting a precoding matrix, and more particularly, to a method of transmitting a precoding matrix in a multi-input, multi- output (MIMO) system.
Background Art
Figure 1 is an example illustrating a multi-input, multi-output (MIMO) system according to the related art. As illustrated in Figure 1, in operation, the receiving end uses a channel matrix H to determine a precoding matrix W and transmits (or feeds back) the determined precoding matrix to the transmitting end. At the same time, the transmitting end and the receiving end both possesses a set of matrices, one of which matches or is most similar to the determined precoding matrix W. Thereafter, the receiving end transmits (or feeds back) the index of the matrix which matches or is most analogous to the determined precoding matrix W. Here, the set of indexes corresponding to each of the analogous matrices are referred to as a codebook. If the transmitting end and the receiving end use the shared codebook to feed back the index corresponding to the W matrix, the W matrix is determined based on the number of transmitting and receiving antennas. Subsequently, if the number of transmitting and receiving antennas increases, the number of W, which comprises the codebook, increases exponentially. In other words, the value of W is not fed back to the transmitting end, and rather, it is the index of the W value most similar or analogous to the actual W value which is fed back. As such, even a small increase in the number of antennas relates to a large increase in the number of W values in the codebook. For example, if W matrix is a 2x2 matrix, the W matrix includes 4 elements. Therefore, even if there are 8 matrices included in the codebook comprises of these combinations, it is not difficult to find a matrix most similar to the actual W matrix. Furthermore, the performance drop is not significant. In addition, if W matrix is a 4x4 matrix, for example, there are 16 elements in the
W matrix. If there are only 8 matrices, as is the case with the 2x2 matrix, and if the W matrix most analogous to the actual W matrix is selected, there would be much difference between the actual W matrix and the W matrix selected from the codebook. Furthermore, if the index of the W matrix is transmitted to the transmitting end, the transmitting end receives the W matrix which is much different from the actual W matrix. Consequently, the performance could suffer. Furthermore, if the W matrix is a 4x4 matrix, there should be at least 64 matrices in the codebook to minimize performance drop.
Here, the number of bits transmitted from the transmitting end not only changes according to the number of antennas, but also has to have a storage (memory) which should be able to store more than 64 matrices, making it inefficient. At the same time, because the number of reserve W matrices increase exponentially with the increase of the transmitting and receiving antennas, it is difficult to prepare for subsequent increase in number of antennas.
Disclosure of Invention
Accordingly, the present invention is directed to a method of transmitting a precoding matrix in a multi-input, multi-output (MIMO) system that substantially obviates one or more problems due to limitations and disadvantages of the related art.
An object of the present invention is to provide a method of transmitting a precoding matrix more efficiently.
Another object of the present invention is to provide a method of transmitting a precoding matrix using less memory. A further object of the present invention is to provide a method of receiving a precoding matrix in a MIMO system.
Additional advantages, objects, and features of the invention will be set forth in part in the description which follows and in part will become apparent to those having ordinary skill in the art upon examination of the following or may be learned from practice of the invention. The objectives and other advantages of the invention may be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
To achieve these objects and other advantages and in accordance with the purpose of the invention, as embodied and broadly described herein, a method of transmitting a precoding matrix in a multi-input, multi-output (MIMO) system includes a receiving end which determines feedback information by calculating each diagonal sub-matrix of the precoding matrix. Here, the precoding matrix includes a plurality of sub-matrices arranged in a block diagonal format. Thereafter, the receiving end transmits the feedback information of the each calculated sub-matrix.
In another aspect of the present invention, a transmitting end receives a precoding matrix in a multi-input, multi-output (MIMO) system. More specifically, the transmitting end requests feedback information of a precoding matrix and in return, receives receiving the feedback information of each diagonal sub-matrix of the precoding matrix. Here, the precoding matrix includes a plurality of sub-matrices arranged in a block diagonal format. Thereafter, the transmitting end transmits data using the precoding matrix along with a confirmation signal.
It is to be understood that both the foregoing general description and the following detailed description of the present invention are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
Brief Description of the Drawings The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this application, illustrate embodiment(s) of the invention and together with the description serve to explain the principle of the invention. In the drawings;
FIG. 1 is an example illustrating a multi-input, multi-output (MIMO) system according to the related art;
FIG. 2 is an example illustrating a multi-input, multi-output (MIMO) system according to the present invention; and
FIG. 3 illustrates an example of configuring a codebook by using characteristics of a and b.
Best Mode for Carrying Out Invention
Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
Figure 2 is an example illustrating a multi-input, multi-output (MIMO) system according to the present invention. As illustrated in Figure 2, W matrix can be illustrated according to Equation 1. [Equation 1]
Figure imgf000006_0001
In Equation 1, W1 where a* is a conjugate of a . Furthermore, the
Figure imgf000006_0002
sub-matrix W is not limited to a 2x2 format, but can be different* sizes, such as 4x4, 8x8, and 16x16. In addition, the receiving signal vector x of the receiving end can be expressed according to the following equation.
[Equation 2] x = HWs + v
In Equation 2, x is a receiving signal vector, H is a channel matrix, W is a precoding matrix, 5 is a transmission signal vector before precoding matrix is applied
a b 0 0 G1 b - a 0 0 G2 thereto, and v represents white noise u 0 υ 0 c C a d" G3 *
0 0 0 0 d d - —c c
In order to acquire the transmission vector s, W1H'1 is multiplied on both sides of Equation 2, which in turn can be expressed as shown in Equation 3.
[Equation 3]
W~l H~lx = s + W-lH~lv
If W~l and H~l of Equation 3 are expressed as WH and G , respectively, WlH~l can be expressed according to Equation 4. Here, G represents a pseudo inverse of H. Moreover, Equation 4 is a different expression of Equation 2 in that in Equation 4, M=4.
[Equation 4]
Figure imgf000007_0001
Referring to Equation 1, in Equation 4, the matrix corresponding to W1 is
a b
W1 = . Furthermore, a precoding matrix corresponding to W1 can be expressed as b -a
shown in Equation 5. [Equation 5]
Figure imgf000008_0001
By using Equation 5, the values of a and b, which satisfy Equations 6 and 7, can be acquired. Furthermore, a and b values can be determined based on a value which most closely satisfies the optimum signal-to-noise ratio (SNR) from the ax and bx values. [Equation 6] argmin^G,. (1) + b*G{ (2)f + tøσ, (1) - U1G1 (2)f ]
[Equation 7]
J1 G1 (1) + V1 G1 (2)| = |ό,.G. (1) - a,G, (2)|
In Equations 6 and 7, G1 (j) = 2 * (z — 1) + G signifies jth row of the matrix or jth
row of G.
There are two schemes by which the codebook can be configured. More specifically, the first scheme relates to a two-dimensional configuring scheme, and the second scheme relates to a one-dimensional configuring scheme. In the two-dimensional configuring scheme, the codebook is configured by combining the values of a and b, as is the case with {(a, b) } .
On the other hand, the values of a and b are used in Equation 8, and either value, α value or b value, can be used to determine the value of another. Furthermore, Equation 8 represents configuring a codebook by using either α value or b value.
[Equation 8]
Figure imgf000008_0002
Figure 3 illustrates an example of configuring a codebook by using characteristics of α and b. As illustrated in Equation 8, Equation 3 can be derived by using the relationship of the values of α and b. That is, the values of α and b within a constellation are located on a unit circle having a radius of 1. In addition, in order to provide limitations for specified values of α and b, which are used to configure a codebook, it may be necessary to uniformly quantize the values on the unit circle. Figure 3 is an example of quantizing the values of a and b, and in
Tt particular, the values of a and b are quantized on the basis of —rad .
As discussed above, the codebook configuration can be simplified by using the quantized a and b values, and consequently, the memory used for storing the codebook can be minimized. Furthermore, a capability of a Bit Error Rate (BER) can be improved when selecting the values of a and b, since a and b values selected have a high or optimum SNR. In addition, referring to the transmitting end, a peak-to-average power ratio of the W matrix having a non-zero value, and not a zero value, only for two elements of each row is lower than the W matrix having all elements represented by non¬ zero values. Industrial Applicability
It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the inventions. Thus, it is intended that the present invention covers the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.

Claims

rCLAIMSI
1. A method of transmitting a precoding matrix in a multi-input, multi-output (MIMO) system, the method comprising: determining feedback information by calculating each diagonal sub-matrix of the precoding matrix, wherein the precoding matrix includes a plurality of sub- matrices arranged in a block diagonal format; and transmitting the feedback information of the each calculated sub-matrix.
2. The method of claim 1 , wherein a characteristic of the diagonal sub-matrix is an unitary matrix.
3. The method of claim 1, wherein the sub-matrix of the precoding matrix is directly calculated or derived from a codebook by using determining criteria.
4. The method of claim 3, wherein the direct calculation includes quantizing each element of the sub-matrix or each sub-matrix.
5. The method of claim 4, wherein quantizing is performed in reference to a first codebook or a second codebook.
6. The method of claim 5, wherein the first codebook includes sampled values of complex number.
7. The method of claim 5, wherein the second codebook includes sampled matrices which further includes complex numbers as elements.
8. The method of claim 3, wherein the codebook is shared by a transmitting end and a receiving end.
9. The method of claim 3, wherein derived from a codebook includes inserting every matrices of a second codebook or element combinations of a first codebook to the determining criteria to determine an optimal matrix or element combination therefrom.
10. The method of claim 1, wherein the feedback information includes at least one index which corresponds to quantized elements of the sub-matrix or a quantized sub- matrix.
11. The method of claim 1, wherein the feedback information includes an index which corresponds to optimal elements of the sub-matrix of a first codebook or an optimal sub-matrix of a second codebook.
12. The method of claim 1, wherein the diagonal sub-matrix is a non-zero block.
13. A method of receiving a precoding matrix in a multi-input, multi-output
(MIMO) system, the method comprising: requesting feedback information of a precoding matrix; receiving the feedback information of each diagonal sub-matrix of the precoding matrix, wherein the precoding matrix includes a plurality of sub-matrices arranged in a block diagonal format; and transmitting data using the precoding matrix along with a confirmation signal.
14. A method of transmitting and receiving a precoding matrix in a multi- input, multi-output (MIMO) system, the method comprising: requesting feedback information of a precoding matrix; determining the feedback information by calculating each diagonal sub- matrix of the precoding matrix, wherein the precoding matrix includes a plurality of sub- matrices arranged in a block diagonal format; and transmitting the feedback information of the each calculated sub-matrix. Receiving the feedback information of each diagonal sub-matrix of the precoding matrix; and transmitting data using the precoding matrix along with a confirmation signal.
PCT/KR2005/003649 2004-11-01 2005-11-01 A method of transmitting a precoding matrix in a multi-input multi-output (mimo) system WO2006049417A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2005800374583A CN101053193B (en) 2004-11-01 2005-11-01 A method of transmitting a precoding matrix in a multi-input multi-output (MIMO) system
US11/718,092 US8594218B2 (en) 2004-11-01 2005-11-01 Method of transmitting a precoding matrix in a multi-input multi-output (MIMO) system
EP05804497.5A EP1807958B1 (en) 2004-11-01 2005-11-01 A method of transmitting a precoding matrix in a multi-input multi-output (mimo) system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2004-0087968 2004-11-01
KR1020040087968A KR20060038812A (en) 2004-11-01 2004-11-01 Method for transmitting precoding matrix and transmitting signal using the precoding matrix

Publications (1)

Publication Number Publication Date
WO2006049417A1 true WO2006049417A1 (en) 2006-05-11

Family

ID=36319391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2005/003649 WO2006049417A1 (en) 2004-11-01 2005-11-01 A method of transmitting a precoding matrix in a multi-input multi-output (mimo) system

Country Status (5)

Country Link
US (1) US8594218B2 (en)
EP (1) EP1807958B1 (en)
KR (1) KR20060038812A (en)
CN (1) CN101053193B (en)
WO (1) WO2006049417A1 (en)

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008035915A2 (en) * 2006-09-19 2008-03-27 Lg Electronics Inc. A method of transmitting using phase shift-based precoding and a device for implementing the same in a wireless communication system
WO2008085107A3 (en) * 2007-01-12 2008-08-28 Ericsson Telefon Ab L M Method for precoding using a block diagonal matrix
WO2008115036A1 (en) * 2007-03-21 2008-09-25 Lg Electronics Inc. Method of transmitting codebook index in wireless communication system
WO2008115585A2 (en) * 2007-03-21 2008-09-25 Interdigital Technology Corporation Method and apparatus for communicating precoding or beamforming information to users in mimo wireless communication systems
WO2008131352A1 (en) * 2007-04-20 2008-10-30 Interdigital Technology Corporation Method and apparatus for efficient precoding information validation for mimo communications
WO2008133582A2 (en) * 2007-04-30 2008-11-06 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for adapting a multi-antenna transmission
WO2008131593A1 (en) * 2007-04-29 2008-11-06 Huawei Technologies Co., Ltd. Method and system for managing control information
EP2036342A2 (en) * 2006-05-26 2009-03-18 LG Electronics Inc. Phase shift based precoding method and transceiver for supporting the same
WO2009091307A1 (en) * 2008-01-14 2009-07-23 Telefonaktiebolaget L M Ericsson (Publ) Open loop precoder cycling in mimo communications
WO2008035916A3 (en) * 2006-09-19 2009-09-03 Lg Electronics Inc. A method of performing phase shift-based precoding and an apparatus for supporting the same in a wireless communication system
WO2008030035A3 (en) * 2006-09-05 2009-09-17 Lg Electronics Inc. Method of transmitting feedback information for precoding and precoding method
EP2250848A1 (en) * 2008-05-01 2010-11-17 Huawei Technologies Co., Ltd. Progressive feedback for high resolution limited feedback wireless communication
US20110002410A1 (en) * 2004-04-02 2011-01-06 Antonio Forenza System and method for power control and antenna grouping in a distributed-input-distributed-output (DIDO) network
US7885349B2 (en) 2007-02-14 2011-02-08 Lg Electronics Inc. Data transmitting and receiving method using phase shift based precoding and transceiver supporting the same
US7961808B2 (en) 2007-09-19 2011-06-14 Lg Electronics Inc. Data transmitting and receiving method using phase shift based precoding and transceiver supporting the same
US8000401B2 (en) 2006-05-26 2011-08-16 Lg Electronics Inc. Signal generation using phase-shift based pre-coding
US8102931B2 (en) * 2006-09-29 2012-01-24 Apple Inc. Method and device for operating a precoded MIMO system
RU2467480C2 (en) * 2007-06-19 2012-11-20 Нтт Досомо, Инк. Base station, user terminal and communication control method in mobile communication system
CN101621306B (en) * 2008-06-30 2013-01-09 中兴通讯股份有限公司 Mapping method and device for multiple-input multiple-output system precoding matrix
US8638874B2 (en) 2008-05-01 2014-01-28 Futurewei Technologies, Inc. Progressive feedback for high resolution limited feedback wireless communication
KR101371140B1 (en) 2007-04-03 2014-03-07 연세대학교 산학협력단 Apparatus and method for precoding mylti carrier quantization in multi input multi output system
KR101382760B1 (en) * 2007-03-21 2014-04-08 엘지전자 주식회사 Method of Data Transmission in Communication System Using Multiple Antenna
KR101460657B1 (en) * 2007-02-06 2014-11-11 삼성전자주식회사 Codebook generating method for multi-polarized mimo system and device of enabling the method
US9264116B2 (en) 2006-08-07 2016-02-16 Interdigital Patent Holdings, Inc. Method, apparatus and system for implementing multi-user virtual multiple-input multiple-output
EP2309658A4 (en) * 2008-07-30 2016-04-20 Lg Electronics Inc Method for transmitting data in multiple antenna system
US9819403B2 (en) 2004-04-02 2017-11-14 Rearden, Llc System and method for managing handoff of a client between different distributed-input-distributed-output (DIDO) networks based on detected velocity of the client
US9826537B2 (en) 2004-04-02 2017-11-21 Rearden, Llc System and method for managing inter-cluster handoff of clients which traverse multiple DIDO clusters
US9923657B2 (en) 2013-03-12 2018-03-20 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US9973246B2 (en) 2013-03-12 2018-05-15 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US10164698B2 (en) 2013-03-12 2018-12-25 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US10194346B2 (en) 2012-11-26 2019-01-29 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US10200094B2 (en) 2004-04-02 2019-02-05 Rearden, Llc Interference management, handoff, power control and link adaptation in distributed-input distributed-output (DIDO) communication systems
US10243623B2 (en) 2004-07-30 2019-03-26 Rearden, Llc Systems and methods to enhance spatial diversity in distributed-input distributed-output wireless systems
US10277290B2 (en) 2004-04-02 2019-04-30 Rearden, Llc Systems and methods to exploit areas of coherence in wireless systems
US10320455B2 (en) 2004-04-02 2019-06-11 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US10333604B2 (en) 2004-04-02 2019-06-25 Rearden, Llc System and method for distributed antenna wireless communications
US10349417B2 (en) 2004-04-02 2019-07-09 Rearden, Llc System and methods to compensate for doppler effects in multi-user (MU) multiple antenna systems (MAS)
US10425134B2 (en) 2004-04-02 2019-09-24 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US10488535B2 (en) 2013-03-12 2019-11-26 Rearden, Llc Apparatus and method for capturing still images and video using diffraction coded imaging techniques
US10547358B2 (en) 2013-03-15 2020-01-28 Rearden, Llc Systems and methods for radio frequency calibration exploiting channel reciprocity in distributed input distributed output wireless communications
RU2728526C2 (en) * 2016-06-03 2020-07-30 Панасоник Интеллекчуал Проперти Корпорэйшн оф Америка Transmission device and transmission method
US10749582B2 (en) 2004-04-02 2020-08-18 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US10886979B2 (en) 2004-04-02 2021-01-05 Rearden, Llc System and method for link adaptation in DIDO multicarrier systems
US10985811B2 (en) 2004-04-02 2021-04-20 Rearden, Llc System and method for distributed antenna wireless communications
US11050468B2 (en) 2014-04-16 2021-06-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
US11190947B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for concurrent spectrum usage within actively used spectrum
US11189917B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for distributing radioheads
US11290162B2 (en) 2014-04-16 2022-03-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
US11309943B2 (en) 2004-04-02 2022-04-19 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US11394436B2 (en) 2004-04-02 2022-07-19 Rearden, Llc System and method for distributed antenna wireless communications
US11451275B2 (en) 2004-04-02 2022-09-20 Rearden, Llc System and method for distributed antenna wireless communications

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7917176B2 (en) * 2006-02-14 2011-03-29 Nec Laboratories America, Inc. Structured codebook and successive beamforming for multiple-antenna systems
US7839835B2 (en) 2006-08-22 2010-11-23 Nec Laboratories America, Inc. Quantized precoding over a set of parallel channels
KR101009814B1 (en) * 2007-01-02 2011-01-19 한국과학기술원 Apparatus and method for transmitting/receiving a signal in a multiple input multiple output mobile communication system
KR100912226B1 (en) 2008-06-27 2009-08-14 삼성전자주식회사 Codebook design method for multiple input multiple output system and method for using the codebook
KR20100013251A (en) 2008-07-30 2010-02-09 엘지전자 주식회사 Method for transmitting data in multiple antenna system
KR101435846B1 (en) * 2008-10-30 2014-08-29 엘지전자 주식회사 Method of controlling interference in a wireless communication system having multiple antennas
CN102217206B (en) * 2009-01-05 2014-10-08 马维尔国际贸易有限公司 Precoding codebooks for mimo communication systems
US8385441B2 (en) * 2009-01-06 2013-02-26 Marvell World Trade Ltd. Efficient MIMO transmission schemes
US8238483B2 (en) 2009-02-27 2012-08-07 Marvell World Trade Ltd. Signaling of dedicated reference signal (DRS) precoding granularity
WO2010105415A1 (en) * 2009-03-17 2010-09-23 Huawei Technologies Co., Ltd. Method for generating a codebook
CN102349313B (en) * 2009-04-06 2014-05-28 马维尔国际贸易有限公司 Improved feedback strategies for multi-user MIMO communication systems
WO2010122432A1 (en) * 2009-04-21 2010-10-28 Marvell World Trade Ltd Multi-point opportunistic beamforming with selective beam attenuation
KR20100133883A (en) * 2009-06-12 2010-12-22 엘지전자 주식회사 Methods of generating codebook and transmitting data in a multi input and multi output (mimo) system
CN101931511B (en) * 2009-06-19 2014-10-22 中兴通讯股份有限公司 Method and device for feeding direct channel information back
US9667378B2 (en) * 2009-10-01 2017-05-30 Telefonaktiebolaget Lm Ericsson (Publ) Multi-granular feedback reporting and feedback processing for precoding in telecommunications
US8675794B1 (en) 2009-10-13 2014-03-18 Marvell International Ltd. Efficient estimation of feedback for modulation and coding scheme (MCS) selection
US8917796B1 (en) 2009-10-19 2014-12-23 Marvell International Ltd. Transmission-mode-aware rate matching in MIMO signal generation
EP2499862B1 (en) 2009-11-09 2018-09-05 Marvell World Trade Ltd. Asymmetrical feedback for coordinated transmission systems
WO2011073876A2 (en) * 2009-12-17 2011-06-23 Marvell World Trade Ltd Mimo feedback schemes for cross-polarized antennas
CN102687456B (en) * 2010-01-07 2015-04-15 马维尔国际贸易有限公司 Signaling of dedicated reference signal (DRS) precoding granularity
JP5258002B2 (en) * 2010-02-10 2013-08-07 マーベル ワールド トレード リミテッド Device, mobile communication terminal, chipset, and method in MIMO communication system
US8687741B1 (en) 2010-03-29 2014-04-01 Marvell International Ltd. Scoring hypotheses in LTE cell search
EP2557700B1 (en) 2010-04-08 2019-09-04 Lg Electronics Inc. Signal transmission method and apparatus using codebook in wireless communication system supporting multiple antennas
JP2012100254A (en) 2010-10-06 2012-05-24 Marvell World Trade Ltd Codebook subsampling for pucch feedback
US8615052B2 (en) 2010-10-06 2013-12-24 Marvell World Trade Ltd. Enhanced channel feedback for multi-user MIMO
US9048970B1 (en) 2011-01-14 2015-06-02 Marvell International Ltd. Feedback for cooperative multipoint transmission systems
US8861391B1 (en) 2011-03-02 2014-10-14 Marvell International Ltd. Channel feedback for TDM scheduling in heterogeneous networks having multiple cell classes
WO2012131612A1 (en) 2011-03-31 2012-10-04 Marvell World Trade Ltd. Channel feedback for cooperative multipoint transmission
WO2013068916A1 (en) 2011-11-07 2013-05-16 Marvell World Trade Ltd. Codebook sub-sampling for frequency-selective precoding feedback
US9020058B2 (en) 2011-11-07 2015-04-28 Marvell World Trade Ltd. Precoding feedback for cross-polarized antennas based on signal-component magnitude difference
WO2013068974A1 (en) 2011-11-10 2013-05-16 Marvell World Trade Ltd. Differential cqi encoding for cooperative multipoint feedback
US9220087B1 (en) 2011-12-08 2015-12-22 Marvell International Ltd. Dynamic point selection with combined PUCCH/PUSCH feedback
US8902842B1 (en) 2012-01-11 2014-12-02 Marvell International Ltd Control signaling and resource mapping for coordinated transmission
KR20150009980A (en) 2012-04-27 2015-01-27 마벨 월드 트레이드 리미티드 Coordinated multipoint (comp) communication between base-stations and mobile communication terminals
CN103684657A (en) * 2012-09-03 2014-03-26 夏普株式会社 Methods for constructing precoding matrix array and feeding back index value and related communication equipment
CN105099604B (en) * 2014-05-07 2018-11-20 中兴通讯股份有限公司 channel state feedback information feedback method, terminal, base station and communication system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004064311A1 (en) 2002-12-16 2004-07-29 France Telecom Method and multiple-antenna device for signal transmission

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3140974B2 (en) 1996-03-31 2001-03-05 富士通株式会社 Judgment method and precoder device
US6792049B1 (en) * 2000-06-15 2004-09-14 Mitsubishi Electric Research Laboratories, Inc. Digital transceiver system with adaptive channel pre-coding in an asymmetrical communications network
US6804472B1 (en) 2002-11-18 2004-10-12 Stratalight Communications, Inc. Transmitter and method using half rate data streams for generating full rate modulation on an optical signal
US8705659B2 (en) * 2003-11-06 2014-04-22 Apple Inc. Communication channel optimization systems and methods in multi-user communication systems
US20060039489A1 (en) * 2004-08-17 2006-02-23 Texas Instruments Incorporated Method and apparatus for providing closed-loop transmit precoding

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004064311A1 (en) 2002-12-16 2004-07-29 France Telecom Method and multiple-antenna device for signal transmission

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KHAN M Z A ET AL: "Space-time block codes from coordinate interleaved orthogonal designs.", IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY., 30 June 2002 (2002-06-30) - 5 July 2002 (2002-07-05), pages 275, XP008118038 *
SAN- TIPACH W ET AL.: "Achievable Rates for MIMO Fading Channels with Limited Feed- back and Linear Receivers", SPREAD SPECTRUM TECHNIQUES AND APPLICATIONS, 2004 IEEE EIGHTH INTERNATIONAL SYMPOSIUM ON SYDNEY, AUSTRALIA, 30 August 2004 (2004-08-30)
See also references of EP1807958A4 *
ZAFAR MD ET AL.: "Space-time block codes from co-ordinate interleav- ed orthogonal designs", PROCEEDINGS 2002 IEEE INTERNATIONAL SYMPO- SIUM ON INFORMATION THEORY. ISIT 02. LAUSANNE, SWITZERLAND, 30 June 2002 (2002-06-30)

Cited By (135)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10333604B2 (en) 2004-04-02 2019-06-25 Rearden, Llc System and method for distributed antenna wireless communications
US10985811B2 (en) 2004-04-02 2021-04-20 Rearden, Llc System and method for distributed antenna wireless communications
US9826537B2 (en) 2004-04-02 2017-11-21 Rearden, Llc System and method for managing inter-cluster handoff of clients which traverse multiple DIDO clusters
US10187133B2 (en) * 2004-04-02 2019-01-22 Rearden, Llc System and method for power control and antenna grouping in a distributed-input-distributed-output (DIDO) network
US11923931B2 (en) 2004-04-02 2024-03-05 Rearden, Llc System and method for distributed antenna wireless communications
US10200094B2 (en) 2004-04-02 2019-02-05 Rearden, Llc Interference management, handoff, power control and link adaptation in distributed-input distributed-output (DIDO) communication systems
US11646773B2 (en) 2004-04-02 2023-05-09 Rearden, Llc System and method for distributed antenna wireless communications
US11451275B2 (en) 2004-04-02 2022-09-20 Rearden, Llc System and method for distributed antenna wireless communications
US11394436B2 (en) 2004-04-02 2022-07-19 Rearden, Llc System and method for distributed antenna wireless communications
US10277290B2 (en) 2004-04-02 2019-04-30 Rearden, Llc Systems and methods to exploit areas of coherence in wireless systems
US11070258B2 (en) 2004-04-02 2021-07-20 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US9819403B2 (en) 2004-04-02 2017-11-14 Rearden, Llc System and method for managing handoff of a client between different distributed-input-distributed-output (DIDO) networks based on detected velocity of the client
US10425134B2 (en) 2004-04-02 2019-09-24 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US10349417B2 (en) 2004-04-02 2019-07-09 Rearden, Llc System and methods to compensate for doppler effects in multi-user (MU) multiple antenna systems (MAS)
US11190246B2 (en) 2004-04-02 2021-11-30 Rearden, Llc System and method for distributed antenna wireless communications
US20110002410A1 (en) * 2004-04-02 2011-01-06 Antonio Forenza System and method for power control and antenna grouping in a distributed-input-distributed-output (DIDO) network
US10749582B2 (en) 2004-04-02 2020-08-18 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US11309943B2 (en) 2004-04-02 2022-04-19 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US10886979B2 (en) 2004-04-02 2021-01-05 Rearden, Llc System and method for link adaptation in DIDO multicarrier systems
US11196467B2 (en) 2004-04-02 2021-12-07 Rearden, Llc System and method for distributed antenna wireless communications
US11190247B2 (en) 2004-04-02 2021-11-30 Rearden, Llc System and method for distributed antenna wireless communications
US10320455B2 (en) 2004-04-02 2019-06-11 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US10727907B2 (en) 2004-07-30 2020-07-28 Rearden, Llc Systems and methods to enhance spatial diversity in distributed input distributed output wireless systems
US10243623B2 (en) 2004-07-30 2019-03-26 Rearden, Llc Systems and methods to enhance spatial diversity in distributed-input distributed-output wireless systems
US8284849B2 (en) 2006-05-26 2012-10-09 Lg Electronics Inc. Phase shift based precoding method and transceiver for supporting the same
US8331464B2 (en) 2006-05-26 2012-12-11 Lg Electronics Inc. Phase shift based precoding method and transceiver for supporting the same
EP2036342A2 (en) * 2006-05-26 2009-03-18 LG Electronics Inc. Phase shift based precoding method and transceiver for supporting the same
US8000401B2 (en) 2006-05-26 2011-08-16 Lg Electronics Inc. Signal generation using phase-shift based pre-coding
US8036286B2 (en) 2006-05-26 2011-10-11 Lg Electronics, Inc. Signal generation using phase-shift based pre-coding
EP2036342A4 (en) * 2006-05-26 2014-04-02 Lg Electronics Inc Phase shift based precoding method and transceiver for supporting the same
US9264116B2 (en) 2006-08-07 2016-02-16 Interdigital Patent Holdings, Inc. Method, apparatus and system for implementing multi-user virtual multiple-input multiple-output
WO2008030035A3 (en) * 2006-09-05 2009-09-17 Lg Electronics Inc. Method of transmitting feedback information for precoding and precoding method
WO2008035915A2 (en) * 2006-09-19 2008-03-27 Lg Electronics Inc. A method of transmitting using phase shift-based precoding and a device for implementing the same in a wireless communication system
US8135085B2 (en) 2006-09-19 2012-03-13 Lg Electroncis Inc. Method of transmitting using phase shift-based precoding and an apparatus for implementing the same in a wireless communication system
US8213530B2 (en) 2006-09-19 2012-07-03 Lg Electronics Inc. Method of transmitting using phase shift-based precoding and an apparatus for implementing the same in a wireless communication system
AU2007297958B2 (en) * 2006-09-19 2010-07-22 Lg Electronics Inc. A method of transmitting using phase shift-based precoding and a device for implementing the same in a wireless communication system
TWI427988B (en) * 2006-09-19 2014-02-21 Lg Electronics Inc A method of performing phase shift-based precoding and an apparatus for supporting the same in a wireless communication system
AU2007297959B2 (en) * 2006-09-19 2010-07-01 Lg Electronics Inc. A method of performing phase shift-based precoding and an apparatus for supporting the same in a wireless communication system
US7839944B2 (en) 2006-09-19 2010-11-23 Lg Electronics, Inc. Method of performing phase shift-based precoding and an apparatus for supporting the same in a wireless communication system
WO2008035916A3 (en) * 2006-09-19 2009-09-03 Lg Electronics Inc. A method of performing phase shift-based precoding and an apparatus for supporting the same in a wireless communication system
WO2008035915A3 (en) * 2006-09-19 2009-09-17 Lg Electronics Inc. A method of transmitting using phase shift-based precoding and a device for implementing the same in a wireless communication system
US7881395B2 (en) 2006-09-19 2011-02-01 Lg Electronics, Inc. Method of transmitting using phase shift-based precoding and an apparatus for implementing the same in a wireless communication system
US8102931B2 (en) * 2006-09-29 2012-01-24 Apple Inc. Method and device for operating a precoded MIMO system
US9596013B2 (en) 2006-09-29 2017-03-14 Apple Inc. Method and device for operating a precoded MIMO system
CN106850011B (en) * 2007-01-12 2019-03-26 Lm爱立信电话有限公司 Multiple antennas is set to send adaptive method and node
CN107070512A (en) * 2007-01-12 2017-08-18 Lm爱立信电话有限公司 The method that precoding is carried out using block diagonal matrix
JP2010516170A (en) * 2007-01-12 2010-05-13 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Method and apparatus in a wireless communication system
US10735058B2 (en) 2007-01-12 2020-08-04 Telefonaktiebolaget Lm Ericsson (Publ) Method for precoding using a block diagonal matrix
KR101631784B1 (en) * 2007-01-12 2016-06-17 텔레폰악티에볼라겟엘엠에릭슨(펍) Method and arrangement in a wireless communication system
US8644415B2 (en) 2007-01-12 2014-02-04 Telefonaktiebolaget Lm Ericsson (Publ) Method for precoding using a block diagonal matrix
US20160164584A1 (en) * 2007-01-12 2016-06-09 Telefonaktiebolaget Lm Ericsson (Publ) Method for Precoding Using a Block Diagonal Matrix
EP3174221A1 (en) * 2007-01-12 2017-05-31 Telefonaktiebolaget LM Ericsson (publ) Method and arrangement in a wireless communications system
CN106850011A (en) * 2007-01-12 2017-06-13 Lm爱立信电话有限公司 The method that precoding is carried out using block diagonal matrix
CN107104713B (en) * 2007-01-12 2021-02-19 Lm爱立信电话有限公司 Method for precoding using block diagonal matrix
US9300379B2 (en) 2007-01-12 2016-03-29 Telefonaktiebolaget L M Ericsson (Publ) Method for precoding using a block diagonal matrix
JP2014099900A (en) * 2007-01-12 2014-05-29 Telefon Ab L M Ericsson Method and device in radio communication system
KR101752184B1 (en) * 2007-01-12 2017-07-11 텔레폰악티에볼라겟엘엠에릭슨(펍) Method and arrangement in a wireless communication system
EP3444967A1 (en) * 2007-01-12 2019-02-20 Telefonaktiebolaget LM Ericsson (publ) Method and arrangement in a wireless communications system
US11838077B2 (en) 2007-01-12 2023-12-05 Telefonaktiebolaget Lm Ericsson (Publ) Method for precoding using a block diagonal matrix
KR20140130482A (en) * 2007-01-12 2014-11-10 텔레폰악티에볼라겟엘엠에릭슨(펍) Method and arrangement in a wireless communication system
KR101571903B1 (en) * 2007-01-12 2015-11-25 텔레폰악티에볼라겟엘엠에릭슨(펍) Method and arrangement in a wireless communication system
US20100046650A1 (en) * 2007-01-12 2010-02-25 Joengren George Method for Precoding Using a Block Diagonal Matrix
CN107070512B (en) * 2007-01-12 2021-02-19 Lm爱立信电话有限公司 Method for precoding using block diagonal matrix
WO2008085107A3 (en) * 2007-01-12 2008-08-28 Ericsson Telefon Ab L M Method for precoding using a block diagonal matrix
CN107104713A (en) * 2007-01-12 2017-08-29 Lm爱立信电话有限公司 The method that precoding is carried out using block diagonal matrix
JP2015164304A (en) * 2007-02-06 2015-09-10 サムスン エレクトロニクス カンパニー リミテッド Communication device and communication method for multiplex polarization multiplex input/output system
KR101460657B1 (en) * 2007-02-06 2014-11-11 삼성전자주식회사 Codebook generating method for multi-polarized mimo system and device of enabling the method
US7885349B2 (en) 2007-02-14 2011-02-08 Lg Electronics Inc. Data transmitting and receiving method using phase shift based precoding and transceiver supporting the same
US8284865B2 (en) 2007-02-14 2012-10-09 Lg Electronics Inc. Data transmitting and receiving method using phase shift based precoding and transceiver supporting the same
US7899132B2 (en) 2007-02-14 2011-03-01 Lg Electronics Inc. Data transmitting and receiving method using phase shift based precoding and transceiver supporting the same
WO2008115036A1 (en) * 2007-03-21 2008-09-25 Lg Electronics Inc. Method of transmitting codebook index in wireless communication system
WO2008115585A2 (en) * 2007-03-21 2008-09-25 Interdigital Technology Corporation Method and apparatus for communicating precoding or beamforming information to users in mimo wireless communication systems
US8781012B2 (en) 2007-03-21 2014-07-15 Lg Electronics Inc. Method of transmitting codebook index in wireless communication system
KR101382760B1 (en) * 2007-03-21 2014-04-08 엘지전자 주식회사 Method of Data Transmission in Communication System Using Multiple Antenna
WO2008115585A3 (en) * 2007-03-21 2008-12-24 Interdigital Tech Corp Method and apparatus for communicating precoding or beamforming information to users in mimo wireless communication systems
KR101371140B1 (en) 2007-04-03 2014-03-07 연세대학교 산학협력단 Apparatus and method for precoding mylti carrier quantization in multi input multi output system
TWI475822B (en) * 2007-04-20 2015-03-01 Interdigital Tech Corp Method and apparatus for efficient precoding information validation for mimo communications
EP2797250A3 (en) * 2007-04-20 2014-11-12 InterDigital Technology Corporation Method and apparatus for efficient precoding information validation for mimo communications
CN105634573A (en) * 2007-04-20 2016-06-01 交互数字技术公司 eNode B, WTRU and network entity
WO2008131352A1 (en) * 2007-04-20 2008-10-30 Interdigital Technology Corporation Method and apparatus for efficient precoding information validation for mimo communications
CN101689962B (en) * 2007-04-20 2016-03-16 交互数字技术公司 For the method and apparatus of the efficient precoding information validation of MIMO communication
US9716604B2 (en) 2007-04-20 2017-07-25 Interdigital Technology Corporation Method and apparatus for efficient precoding information validation for MIMO communications
CN105634573B (en) * 2007-04-20 2019-08-20 交互数字技术公司 E node B, WTRU and network entity
KR101494731B1 (en) * 2007-04-20 2015-02-25 인터디지탈 테크날러지 코포레이션 Method and apparatus for efficient precoding information validation for mimo communications
KR101496106B1 (en) * 2007-04-20 2015-02-25 인터디지탈 테크날러지 코포레이션 Method and apparatus for efficient precoding information validation for mimo communications
EP2568640A3 (en) * 2007-04-20 2013-05-01 InterDigital Technology Corporation Method and apparatus for efficient precoding information validation for MIMI communications
US10284265B2 (en) 2007-04-20 2019-05-07 Interdigital Technology Corporation Method and apparatus for efficient precoding information validation for MIMO communications
JP2014132764A (en) * 2007-04-20 2014-07-17 Interdigital Technology Corp Method and device for inspecting efficient precoding information adequacy of mimo communication
JP2010525684A (en) * 2007-04-20 2010-07-22 インターデイジタル テクノロジー コーポレーション Method and apparatus for efficient precoding information validation in MIMO communication
US8238225B2 (en) 2007-04-29 2012-08-07 Huawei Technologies Co., Ltd. Method and system of managing control information
WO2008131593A1 (en) * 2007-04-29 2008-11-06 Huawei Technologies Co., Ltd. Method and system for managing control information
WO2008133582A3 (en) * 2007-04-30 2008-12-18 Ericsson Telefon Ab L M Method and arrangement for adapting a multi-antenna transmission
US10051492B2 (en) 2007-04-30 2018-08-14 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement for adapting a multi-antenna transmission
US8787481B2 (en) 2007-04-30 2014-07-22 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for adapting a multi-antenna transmission
JP2010526476A (en) * 2007-04-30 2010-07-29 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Method and arrangement for adapting multi-antenna transmission
JP2012231523A (en) * 2007-04-30 2012-11-22 Telefon Ab L M Ericsson Method and arrangement for adapting multi-antenna transmission
US8306140B2 (en) 2007-04-30 2012-11-06 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement for adapting a multi-antenna transmission
WO2008133582A2 (en) * 2007-04-30 2008-11-06 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for adapting a multi-antenna transmission
US9419695B2 (en) 2007-04-30 2016-08-16 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement for adapting a multi-antenna transmission
KR101478379B1 (en) * 2007-04-30 2014-12-31 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) Method and arrangement for adapting a multi-antenna transmission
US10609577B2 (en) 2007-04-30 2020-03-31 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement for adapting a multi-antenna transmission
US9077401B2 (en) 2007-04-30 2015-07-07 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for adapting a multi-antenna transmission
RU2467480C2 (en) * 2007-06-19 2012-11-20 Нтт Досомо, Инк. Base station, user terminal and communication control method in mobile communication system
RU2501163C1 (en) * 2007-06-19 2013-12-10 Нтт Досомо, Инк. Base station (versions), transmission method (versions) and mobile communication system
US8208576B2 (en) 2007-09-19 2012-06-26 Lg Electronics Inc. Data transmitting and receiving method using phase shift based precoding and transceiver supporting the same
US7961808B2 (en) 2007-09-19 2011-06-14 Lg Electronics Inc. Data transmitting and receiving method using phase shift based precoding and transceiver supporting the same
US7970074B2 (en) 2007-09-19 2011-06-28 Lg Electronics Inc. Data transmitting and receiving method using phase shift based precoding and transceiver supporting the same
US8670500B2 (en) 2007-09-19 2014-03-11 Lg Electronics Inc. Data transmitting and receiving method using phase shift based precoding and transceiver supporting the same
RU2446574C2 (en) * 2007-09-19 2012-03-27 ЭлДжи ЭЛЕКТРОНИКС ИНК. Method for data transmission and receive using based on phase shift of precoding and transceiver to support same
US8537924B2 (en) 2008-01-14 2013-09-17 Telefonaktiebolaget Lm Ericsson (Publ) Open loop precoder cycling in MIMO communications
WO2009091307A1 (en) * 2008-01-14 2009-07-23 Telefonaktiebolaget L M Ericsson (Publ) Open loop precoder cycling in mimo communications
US8638874B2 (en) 2008-05-01 2014-01-28 Futurewei Technologies, Inc. Progressive feedback for high resolution limited feedback wireless communication
US8306146B2 (en) 2008-05-01 2012-11-06 Futurewei Technologies, Inc. Progressive feedback for high resolution limited feedback wireless communication
EP2250848A1 (en) * 2008-05-01 2010-11-17 Huawei Technologies Co., Ltd. Progressive feedback for high resolution limited feedback wireless communication
EP2250848A4 (en) * 2008-05-01 2011-03-23 Huawei Tech Co Ltd Progressive feedback for high resolution limited feedback wireless communication
CN101621306B (en) * 2008-06-30 2013-01-09 中兴通讯股份有限公司 Mapping method and device for multiple-input multiple-output system precoding matrix
EP2309658A4 (en) * 2008-07-30 2016-04-20 Lg Electronics Inc Method for transmitting data in multiple antenna system
US11818604B2 (en) 2012-11-26 2023-11-14 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US10194346B2 (en) 2012-11-26 2019-01-29 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US11451281B2 (en) 2013-03-12 2022-09-20 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US10848225B2 (en) 2013-03-12 2020-11-24 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US11901992B2 (en) 2013-03-12 2024-02-13 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US9923657B2 (en) 2013-03-12 2018-03-20 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US9973246B2 (en) 2013-03-12 2018-05-15 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US10164698B2 (en) 2013-03-12 2018-12-25 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US10488535B2 (en) 2013-03-12 2019-11-26 Rearden, Llc Apparatus and method for capturing still images and video using diffraction coded imaging techniques
US11581924B2 (en) 2013-03-15 2023-02-14 Rearden, Llc Systems and methods for radio frequency calibration exploiting channel reciprocity in distributed input distributed output wireless communications
US11146313B2 (en) 2013-03-15 2021-10-12 Rearden, Llc Systems and methods for radio frequency calibration exploiting channel reciprocity in distributed input distributed output wireless communications
US10547358B2 (en) 2013-03-15 2020-01-28 Rearden, Llc Systems and methods for radio frequency calibration exploiting channel reciprocity in distributed input distributed output wireless communications
US11050468B2 (en) 2014-04-16 2021-06-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
US11189917B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for distributing radioheads
US11290162B2 (en) 2014-04-16 2022-03-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
US11190947B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for concurrent spectrum usage within actively used spectrum
RU2769962C2 (en) * 2016-06-03 2022-04-11 Панасоник Интеллекчуал Проперти Корпорэйшн оф Америка Transmission device and transmission method
RU2728526C2 (en) * 2016-06-03 2020-07-30 Панасоник Интеллекчуал Проперти Корпорэйшн оф Америка Transmission device and transmission method

Also Published As

Publication number Publication date
EP1807958A4 (en) 2012-12-12
KR20060038812A (en) 2006-05-04
US8594218B2 (en) 2013-11-26
CN101053193B (en) 2010-07-07
EP1807958B1 (en) 2015-08-26
EP1807958A1 (en) 2007-07-18
US20090296844A1 (en) 2009-12-03
CN101053193A (en) 2007-10-10

Similar Documents

Publication Publication Date Title
EP1807958A1 (en) A method of transmitting a precoding matrix in a multi-input multi-output (mimo) system
KR100659725B1 (en) Apparatus and method for transmitting and apparatus and method for receiving of multiple antenna system
KR101631784B1 (en) Method and arrangement in a wireless communication system
KR100913940B1 (en) Multiple antenna communication system including adaptive updating and changing of codebooks
JP5438829B2 (en) Precoding method, channel information feedback method, transmitter, receiver, and precoding codebook structure method
KR101363969B1 (en) Multi-antenna system, method and apparatus for transmitting and receiving information in multi-antenna system
KR100938835B1 (en) Improved hochwald construction of unitary matrix codebooks via eigen coordinate transformations
EP1207645A1 (en) Feedback technique for wireless systems with multiple transmit and receive antennas
KR101373808B1 (en) Apparatus and method for deciding channel quality indicator using beamforming in multiple antenna system
US20110211628A1 (en) Channel-assisted iterative precoder selection
EP2357768B1 (en) Multiple-input multiple-output systems and methods for wireless communication thereof for reducing the quantization effect of precoding operations utilizing a finite codebook
JP5422837B2 (en) Dynamic feedback channel information transmitting apparatus and method in MIMO system
JP2009542052A (en) Method for reducing overhead of feedback information in a precoded MIMO-OFDM system
KR20120033336A (en) Techniques for mimo beamforming for frequency selective channels in wireless communication systems
JP5517719B2 (en) Multi-user scheduling method and apparatus in multi-input multi-output system
JP5479615B2 (en) Information transmission / reception method and apparatus for closed-loop multi-antenna system
JP2011507364A (en) Method, system, and apparatus for improving the throughput performance of a space division multiple access system
WO2020173627A1 (en) Channel estimation in mimo systems
WO2009109080A1 (en) Precoding/predecoding method and corresponding codebook design method of multi-input multi-output system
KR101359808B1 (en) Appratus and method for generating differential code-book in a multiple transmit and receive antenna system therefor transceive appratus and method
KR100880000B1 (en) Method and apparatus for generating codebook considering antenna correlation, and multi-antenna communication system
KR101593828B1 (en) Open-loop precoding apparatus and method in multiple input multiple output spatial multiplexing system
KR100864509B1 (en) Method and apparatus for processing a signal in multi-antenna system
KR101327486B1 (en) Apparatus and method for seleting codebook for maximum likelihood detecting in multiple input multiple output wireless communication system
CN102035624A (en) Pre-coding method and device based on dual-space time transmit diversity (STTD) system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005804497

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580037458.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005804497

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11718092

Country of ref document: US