WO2006048969A1 - 送信装置 - Google Patents

送信装置 Download PDF

Info

Publication number
WO2006048969A1
WO2006048969A1 PCT/JP2005/016006 JP2005016006W WO2006048969A1 WO 2006048969 A1 WO2006048969 A1 WO 2006048969A1 JP 2005016006 W JP2005016006 W JP 2005016006W WO 2006048969 A1 WO2006048969 A1 WO 2006048969A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
packet
priority
transmitted
timing
Prior art date
Application number
PCT/JP2005/016006
Other languages
English (en)
French (fr)
Inventor
Masaaki Higashida
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2006048969A1 publication Critical patent/WO2006048969A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present invention relates to a transmission apparatus that transmits data via a transmission network.
  • a transmission apparatus that distributes video data, audio data (hereinafter referred to as AV data) and the like via a transmission network (hereinafter also referred to as a network) has been put into practical use.
  • AV data audio data
  • a transmission network hereinafter also referred to as a network
  • wireless networks are often used because of the labor-saving wiring and the ability to use the network anywhere without worrying about the location.
  • a transmitting device has been developed that wirelessly transmits a program such as a video movie to a receiving device of each user in a closed space such as a moving body such as an aircraft.
  • the transmitting device and the receiving device are collectively referred to as a wireless device.
  • An AV data distribution system including a conventional transmission device includes a video server, a wireless access point (also referred to as AP) which is a conventional transmission device, and a reception device (also referred to as an AV terminal) for viewing a plurality of AV data.
  • a wireless access point also referred to as AP
  • a reception device also referred to as an AV terminal
  • AV data output from the video server is distributed wirelessly from the AP to each AV terminal.
  • IEEE802.11 As an example of a network used in an AV data distribution system, there is a network defined in IEEE802.11 that is used for a wireless LAN. Details of the IEEE802.11 specifications are disclosed in, for example, “802.11 High-Speed Wireless LAN Textbook”, pages 66-75 (issued by IDG Japan).
  • CSMAZCA Carrier Sense Multiple Access with Collision Avoidance
  • the transmission unit below the data link layer which is the second layer of the OSI (Open Systems Interconnect! On) reference model
  • the transmission unit below the data link layer which is the second layer of the OSI (Open Systems Interconnect! On) reference model
  • a frame and more than the network layer, which is the third layer.
  • This transmission unit is called a packet.
  • the transmission unit is collectively referred to as a packet.
  • FIG. 10 is a timing chart for explaining the operation of radio access by the CSMAZCA method based on the IEEE802.11 standard in an AV data distribution system including a conventional transmitting apparatus.
  • FIG. 11 is a diagram showing parameters related to the packet transmission interval used in wireless access by the CSMAZCA method, and shows the case of the IEEE802.11a standard and the IEEE802.ib standard.
  • a waiting time before each wireless device transmits a wireless bucket is specified.
  • a separate value is defined for the waiting time depending on the type of wireless packet to be transmitted. This waiting time is the transmission interval between packets.
  • the IEEE 802.11 standard does not distinguish between AV data and general data.
  • the waiting time when a conventional transmission device transmits data is a fixed waiting time DIFS (Distributed Inter Frame Space) with a random waiting time back-off (hereinafter referred to as Back off). It is a frightened thing.
  • the random value Backoff prevents a situation in which a wireless packet collides due to the simultaneous transmission of a plurality of transmitters after a certain period of time after the last packet transmission is completed.
  • the transmitting apparatus can transmit the data packet 901 after the time calculated by adding DIFS 911 and Backoff 912 from the timing 920 at which the wireless carrier 900 detected in the wireless transmission network ends.
  • DIFS is the time you have to wait when sending a general data packet as described above! /.
  • Backoff is an integer multiple of a fixed slot time and is a random value. This random value is generated within the contention window (also referred to as CW).
  • the transmission waiting time is obtained by multiplying the slot time by a random value.
  • the value of CW increases from the first transmission as the number of retransmissions increases. Since Backoff is determined by a random number, A The transmission device that first acquires the transmission right in the V data distribution system, that is, the transmission device with the shortest Backoff can transmit the packet. In other words, each transmission device can obtain a fair transmission opportunity.
  • the DIFS time, slot time and CW size in IEEE802.11a and IEEE802.l ib are shown in Figure 11! /
  • Confirmation that transmission data is actually transmitted correctly to the receiving device is determined by whether or not an ACK (Acknowledge) signal of the receiving device arrives. If the ACK signal is not S, the transmitter determines that there is a communication failure and retransmits the data. In other words, the transmitting device transmits a data packet to the receiving device and receives an ACK from the receiving device to complete a series of data communication. If ACK is not received within a certain period of time, retransmission is performed a predetermined number of times until ACK is received.
  • ACK Acknowledge
  • ACK 902 for transmission confirmation is transmitted after 913 intervals from a short interframe space (hereinafter referred to as SIFS) from timing 921 of the end of transmission of data packet 901.
  • SIFS short interframe space
  • This SIFS is a fixed value and is the shortest transmission waiting time (minimum packet transmission interval) in the IEEE802.11 standard. This is because ACK is confirmation of transmission, so it is necessary to notify the sending side with priority over other packets.
  • the CSMAZCA IEEE802.11 standard has a mechanism to transmit data by eliminating the collision of radio waves as much as possible by specifying the waiting time until wireless packet transmission.
  • these wireless devices such as personal computers can be devices that interfere with the AV data distribution system.
  • the wireless communication capability of the personal computer brought in by the passenger may interfere with the AV data distribution system.
  • Japanese Patent Application Laid-Open No. 11-220497 performs priority control and line control higher than ACK using a frame interval shorter than ACK. If a large amount of data is input as transmission data from the circuit-switched service and the packet-switched service such as wireless cannot be transmitted in one transmission, that is, if a fragment occurs, the remaining fragment Next packet.
  • terminal 3 transmits data. That is, terminal 3 has acquired the transmission right. Since the first packet until the fragment occurs waits for a random period in DIFS, the transmission priority of the first packet is not necessarily included even when the fragment does not occur. In other words, each terminal basically has a transmission priority right, and there is a possibility that the influence of the disturbing terminal cannot be eliminated.
  • the method disclosed in Japanese Patent Laid-Open No. 11-220497 is a method of returning an ACK after all the fragmented packets arrive instead of returning an ACK for the first packet of the fragment.
  • ACK is not returned for each packet in the CSMAZCA environment. For example, even if there is an error in the middle of a fragment packet, the remaining packets are transmitted. Since there is no power at the end and no error has occurred, the transmission can be inefficient.
  • the transmission device of the present invention is a transmission device that is used in a transmission network according to a first communication protocol that has a first minimum packet transmission interval and transmits a priority packet that requires priority transmission.
  • the transmission device includes a packet generation unit, a packet transmission unit, and a packet transmission control unit.
  • the packet generator also generates packets with input data power.
  • the packet transmitter transmits the packet to the transmission network according to the first communication protocol.
  • the packet transmission control unit performs transmission control of the packet transmission unit so as to transmit packets at the first minimum packet transmission interval.
  • the first minimum packet transmission interval is set to the first minimum packet transmission interval. Shorter than the minimum packet transmission interval of 2.
  • the transmission apparatus can always transmit priority packets such as AV packets with priority, and can provide a transmission apparatus that guarantees a band for AV data transmission.
  • the transmission device of the present invention further includes a carrier sensing unit that senses a carrier of the transmission network, and the packet transmission control unit can detect the empty state of the transmission network according to the carrier of the transmission network sensed by the carrier sensing unit.
  • ascertain may be sufficient. According to this, the packet transmission interval can be controlled with higher accuracy.
  • the transmission apparatus of the present invention may allow the packet transmission control unit to perform transmission control of the packet transmission unit so as to continuously transmit priority packets. According to this, it is possible to more reliably transmit a priority packet that requires real-time performance.
  • the packet transmission control unit further controls to transmit a fake carrier that can be detected by the carrier sensing unit when there is no priority packet to be transmitted to the packet transmission unit. It is good also as composition to do. This further ensures that the transmitting device always secures the right to transmit, and can send priority packets at any time.
  • the sham carrier may be a sham packet. According to this, the transmitting apparatus can always secure the transmission right and can transmit the priority packet whenever necessary.
  • the transmitting apparatus of the present invention may be used in a closed transmission network in which the first communication protocol is determined in advance. According to this, the first communication protocol can be set flexibly according to the priority level of the priority transmission.
  • the second communication protocol may be a communication protocol that conforms to the IEEE 802.11 standard. This makes it possible to easily use inexpensive and high-quality parts due to the mass production effect even if the transmitter conforms to the first communication standard.
  • the second minimum packet transmission interval may be a value defined as SIFS. According to this, even when a device that conforms to the IEEE802.11 standard exists in the transmission network, the priority packet can be reliably transmitted.
  • FIG. 1 is a block diagram showing a configuration of a transmission apparatus in a first embodiment of the present invention.
  • FIG. 2 shows the transmission of the priority packet by the transmitting device in the embodiment.
  • FIG. 3 is a timing chart in the case where the transmission apparatus according to the second embodiment of the present invention performs transmission of normal packets while giving priority to transmission of priority packets.
  • FIG. 4 is a timing chart in the case of transmitting a dummy packet while giving priority to the transmission of the priority packet in the transmission apparatus in the third embodiment of the present invention.
  • FIG. 5 is a timing chart when a priority packet is transmitted by multicast in the transmission apparatus in the fourth embodiment of the present invention.
  • FIG. 6 is a timing chart in the case of transmitting a normal packet while giving priority to the transmission of the priority packet in the transmitting apparatus in the fifth embodiment of the present invention.
  • FIG. 7 is a timing chart when the transmitting apparatus in the sixth embodiment of the present invention transmits the priority bucket and the dummy packet by multicast.
  • FIG. 8 is a schematic diagram of a packet format in the MAC layer of the transmitting apparatus in the first embodiment of the present invention.
  • FIG. 9 is a schematic diagram of an AV data distribution system including a transmitting apparatus according to the first embodiment of the present invention.
  • FIG. 10 is a timing diagram illustrating wireless access in a conventional transmission apparatus.
  • FIG. 11 is a diagram showing parameters relating to a packet transmission interval used in wireless access in a conventional transmission apparatus.
  • the second communication protocol conforms to the IEEE802.11a standard as the data link layer transmission method
  • the first communication protocol is a wireless transmission network conforming to the IEEE802.11a standard.
  • the difference between the second communication protocol and the first communication protocol is that the minimum packet interval is the second communication protocol> the first communication protocol.
  • any priority packet may be transmitted, but as an example, data such as video and audio (AV data) that requires real-time transmission is assumed.
  • AV data video and audio
  • AV packet a packet composed of AV data
  • the AV packet must guarantee the transmission bandwidth and maintain real-time performance. Therefore, it is a normal data packet that does not require priority transmission. It is called a priority packet to distinguish it from a normal packet.
  • a priority packet is transmitted from access point 1101 which is a transmission device to each terminal 1102 to: L 109.
  • access point 1101 which is a transmission device to each terminal 1102 to: L 109.
  • a wireless infrastructure mode for delivering AV data will be described.
  • FIG. 1 is a block diagram showing a configuration of a transmission apparatus according to the first embodiment of the present invention.
  • the transmitting device 100 is the API 101 in FIG.
  • the transmission device 100 includes a packet generation unit 101, a packet transmission unit 102, a packet transmission control unit 103, and a carrier sensing unit 104. Further, a transmission / reception antenna 105 is added to the transmission device 100.
  • FIG. 8 is a schematic diagram of a packet format of a priority packet transmitted by the transmission apparatus in the present embodiment, and corresponds to a MAC (Media Access Control) layer that is a data link layer of the IEEE802.11a standard.
  • a MAC packet 800 includes a MAC header 8001, a packet body 802, and an FCS (Frame Check Sequence) 803.
  • the MAC header 801 is 30 octets. However, in infrastructure mode, part of the MAC address definition is not used, so it is 24 octets.
  • the packet body 802 is called a frame and is a place for storing data to be transmitted.
  • AV data is stored in the packet body 802. FCS803 frame This is a check sequence and stores a code that checks whether there is an error in the transmitted wireless packet.
  • a MAC layer radio packet shown in FIG. 8 is added with a necessary header such as a physical layer preamble (not shown in FIG. 8) and transmitted in the physical layer.
  • the packet generator 101 As the AV data 110, the packet generator 101 generates a MAC packet 800.
  • a series of AV data is divided into data as appropriate and stored in the packet body 802 of each packet.
  • MAC header 801 and FSC803 are attached.
  • the packet transmission unit 102 inputs the MAC packet at the output 111 of the packet generation unit 101, performs wireless physical layer processing such as preamble addition and modulation, and outputs the wireless transmission packet 112 to be transmitted from the antenna 105. To do.
  • the packet transmission control unit 103 controls the transmission timing of the packet transmission unit 102 with the control signal 115. Also, the packet transmission control unit 103 is notified from the packet transmission unit 102 by a notification signal 116 whether or not the packet to be transmitted is ready.
  • the carrier sensing unit 104 receives the radio reception signal 113 from the antenna 105 and constantly monitors the current radio wave (carrier) status. That is, the carrier sensing unit 104 grasps the packet transmission status by sensing the carrier in the wireless transmission network. This radio wave (carrier) status is transmitted to the packet transmission control unit 103 by a signal 114.
  • a feature of the present embodiment is a packet transmission control algorithm of the packet transmission control unit 103.
  • the transmitting device 100 preferentially transmits with a waiting time shorter than the minimum transmission waiting time according to the second communication protocol stipulated in the IEEE802.11a standard according to the first communication protocol conforming to the IEEE802.11a standard.
  • the priority packet which is a power packet is transmitted. Thereby, the transmission device 100 can transmit the priority packet at an intended timing, and can secure the transmission band of the priority packet.
  • FIG. 2 is a timing diagram when a priority packet is transmitted by multicast in the transmission apparatus in the first embodiment of the present invention.
  • the carrier sensing unit 104 detects a radio carrier, and the packet transmission control unit 103 is connected to the packet transmission unit 102. To wait for packet transmission.
  • the carrier detection unit 104 When the carrier detection unit 104 does not detect the wireless carrier of the packet 200 at the timing 220, the carrier detection unit 104 can transmit the next packet. However, in order to compare with the feature of the present invention, the carrier detection unit 104 is not applied first. Explain what happens in the case.
  • the carrier In communication based on the IEEE802.11a standard, as already described with reference to FIG. 10, when there is a packet to be transmitted to the AP and all the wireless terminals, the carrier is not detected for a certain period of time. After confirming the above, the packet can be transmitted.
  • the waiting time at this time is the timing 922 at which DIFS 911 and Backoff 912 have elapsed from the end timing 920 of the wireless carrier 900 in FIG.
  • DIFS is 34 S
  • Backoff is the time obtained by multiplying the slot time 9 S by the CW size randomly determined for each transmission by each transmitter.
  • ACK which is a confirmation of communication
  • the “hidden terminal problem” is a condition in which carrier detection does not function due to the influence of obstacles that do not allow radio waves to pass between terminals or when the distance between terminals is greater than the radio wave reach. This is a problem caused by the problem.
  • FIG. 9 is a schematic diagram of an AV data distribution system including a transmission device according to the first embodiment of the present invention.
  • the AV data distribution system according to the present embodiment includes a video server 1100, a wireless access point (also referred to as ⁇ ) 1101, which is a transmission device according to the present embodiment, and a reception device (also referred to as an AV terminal) that views a plurality of AV data. 1102 to 1109.
  • the AV data output from the video server 1100 is distributed to the respective AV terminals 1102 to L109 by API 101 power radio.
  • the API 101 tries to transmit an AV packet to the AV terminal 1102 to: L 109, if it is performed in the same time as the conventional waiting time, the transmission timing is obtained fairly. Therefore, for example, when a large amount of data is transmitted from the interfering terminal 1110 to the interfering terminal 1111 in the ad hoc mode, the interfering terminal 1110 acquires a transmission right and consumes a large transmission band. As a result, the bandwidth in which the API 101 can transmit AV packets is reduced, and real-time performance of AV data transmission to the AV terminals 1102 to 1109 cannot be guaranteed.
  • the packet transmission control unit 103 transmits a priority packet (also referred to as a priority data packet) 201 at an interval (hereinafter referred to as VSIFS) that is shorter than SIFS from timing 220.
  • VSIFS may be set to 15 ⁇ S shorter than 16 ⁇ S of SIFS.
  • the packet transmission control unit 103 detects the timing 220 based on the signal 114 from the carrier sensing unit 104, waits for a time of only VSIFS 210 from the timing 220, and then sends the priority data packet to the bucket transmission unit 102. 201 is transmitted.
  • the priority data packet 201 is transmitted to one AV terminal.
  • the case where the data is transmitted to the AV terminal 1102 is taken as an example.
  • the AV terminal 1102 returns an A CK that confirms reception to the API 101.
  • SSIF S The waiting time from timing 221 (hereinafter referred to as SSIF S), which is the waiting time of ACK 202, which should be transmitted with priority over all data packets including the priority data packet is referred to as SSIFS211. Therefore, SSIFS211 may be set to 14 S for the shorter period than VSIFS212, which is 15 S for the present f-row. That is, “SSIFS ⁇ VSIFS ⁇ SIFS”.
  • the ACK for the priority data packet 201 is not returned except for the AV terminal 1102.
  • the packet transmission control unit 103 continues to wait for ACK after the priority data packet 201 regardless of whether the carrier detection unit 104 detects a carrier. If the “hidden terminal problem” does not occur, SSIFS is not necessarily shorter than VSIFS. SSIFS may be the same as SIFS or VSIF.
  • packet transmission control section 103 After transmission end timing 222 of ACK 202, packet transmission control section 103 similarly transmits priority data socket 203 after VS IFS 212, and ACK 204 is transmitted after SSIFS 213 at timing 223.
  • the packet transmission unit 102 can continuously transmit priority data packets, the interfering terminals 1110 and 1111 do not consume the radio band by acquiring the packet transmission right.
  • the AP 1101 transmits a packet to secure the radio band first. As a result, the packet is not transmitted to the disturbing terminal 1110 or the disturbing terminal 1111. As a result, the jamming terminal 1110 or the jamming terminal 1111 does not consume the radio transmission band.
  • the transmitting device of the AV data distribution system can secure the band required for the priority data packet.
  • the present invention can be realized without necessarily mounting the carrier sensing unit 104 in FIG.
  • normal packets hereinafter also referred to as normal data packets
  • priority packets are prioritized by multicast.
  • a priority data packet is transmitted and an ACK is returned from the receiving device, a case where normal data packet transmission is permitted when there is no priority data packet to be transmitted next will be described.
  • the configuration of the transmission apparatus is the same as that of FIG. 1 described in the first embodiment, and the control method in the packet transmission control unit 103 is different.
  • FIG. 3 is a timing chart when the normal data packet is also transmitted while giving priority to the transmission of the priority data packet by the cast in the transmitting apparatus in the present embodiment.
  • the priority data packet 301 corresponds to the priority data packet 201.
  • SSIFS311 is SSI FS211.
  • the packet transmission unit 102 When the priority data packet to be transmitted exists in the packet transmission unit 102 at the timing 322, the packet is transmitted with priority. But for example, send with IEEE802.11a
  • the data rate of the AV data 110 is lower than the possible data rate, a case where a priority packet to be transmitted to the packet transmission unit 102 is not generated may occur. In such a case, it is possible to send normal data packets, not priority data packets such as ⁇ , API 101! / ⁇ ⁇ AV terminal 1102: L 109, jamming terminals 1110, 1111!
  • ad hoc communication that is direct communication from the disturbing terminal 1110 to the disturbing terminal 1111 is permitted will be described.
  • the normal data packet 303 is transmitted from the timing 322 after waiting for the period of DIFS 312 and Backoff 313 according to the transmission protocol of 802.11a according to the conventional method described in FIG. At this time, if a priority data packet to be transmitted to the packet transmission unit 102 is prepared in the period 330, the priority data packet is transmitted first. In FIG. 3, the priority data packet is prepared in this period. Show the status.
  • the carrier sensing unit 104 detects a wireless carrier, and therefore the priority data packet cannot be transmitted from the packet transmission unit 102 during this period. If a priority data packet to be transmitted to the packet transmission unit 102 is generated during transmission of the normal data packet 303, the packet is sent after waiting for the VSIFS 314 period from the timing of 323 after transmission of the normal data packet 303 is completed. A priority data packet 304 is transmitted from the transmitter 102. The packet transmission control at this time is performed by the packet transmission control unit 103. After that, after waiting for the SSIFS 315 period, the ACK 305 is transmitted from the AV terminal that has received the priority data packet 304.
  • general data communication is exemplified by communication between disturbing terminals.
  • the present invention is not limited to this, and any of the powers of AV terminal 1102 to L 109 can be changed to API 101.
  • the AV terminal 1102 to: L 109 can notify the video server 1100 of the AV data channel desired to be transmitted. You can also send normal data packets from API 101 to AV terminal 1 102 ⁇ : L 109! /.
  • priority is given to the transmission of the priority data packet in the multicast, and the transmission is performed. Even when there is no priority data packet to be described, a case where a transmission right is always secured without giving a transmission opportunity to another transmitting apparatus will be described. Specifically, when a priority data packet is transmitted and an ACK is returned from the receiving device, it can be transmitted as soon as possible when a priority data packet with the next priority data packet to be transmitted is prepared. A transmitting apparatus to be described will be described. The configuration of the transmission apparatus in the present embodiment is the same as that of FIG. 1 described in the first embodiment.
  • FIG. 4 shows a dummy device that is a fake packet in the case where there is no priority data packet to be transmitted while priority is given to transmission of the priority data packet by multicasting in the transmission apparatus of this embodiment. It is a timing diagram in the case of transmitting a packet.
  • the sham packet is a form of sham carrier that can be detected by the carrier detector.
  • the packet transmission control unit 103 performs the transmission control shown in FIG. In FIG. 4, the timing up to timing 422 is the same as the timing explained in FIG.
  • the knot 400 corresponds to the knot 200.
  • VSIFS410 is equivalent to VSIFS210.
  • the priority data packet 401 corresponds to the priority data packet 201.
  • the packet is transmitted with priority. However, as described in the second embodiment, it should be transmitted to the packet transmission unit 102. There is a case where a priority data packet is not generated. At this time, in the method described in the second embodiment, transmission of normal data packets is permitted, but in this embodiment, transmission of dummy packets from the transmission device 100 allows transmission opportunities to other wireless devices. Always keep the transmission right.
  • packet transmission control unit 103 transmits dummy packet 403 from packet transmission unit 102.
  • the dummy packet 403 is shown in FIG. 8, in this case, a MAC header 801 of 24 octets and a packet body of 0 octets 8
  • FCS803 with 02 and 4 octets
  • a wireless bucket that can be transmitted in the shortest time can be used.
  • the transmission destination of the dummy packet may be transmitted to a receiving apparatus that does not exist in the system of FIG. As a result, other wireless devices do not perform reception processing, and so do not put a load on the devices that make up the system.
  • FIG. 4 illustrates the timing in the following cases.
  • a dummy packet 404 including a priority data packet is transmitted at timing 425 after VSIFS413. From the timing 426 which is the transmission end time of the dummy packet 404, the priority data packet to be transmitted is generated in the packet transmitting unit 102 at the timing 427 after waiting for the VSIFS 414 interval. Therefore, the priority data packet 405 is transmitted, and after that, the AV terminal that has transmitted the priority data packet 405 waits for SSIFS 415 and then transmits ACK 406.
  • VSIFS (VSIFS 412 and 413 in FIG. 4) used as a waiting time until dummy data is transmitted is described as the same value as the waiting time until a priority data packet is transmitted. Although it went, it is not necessarily limited to this.
  • the waiting time until the dummy data is transmitted may be any length as long as it is shorter than the transmission waiting time of other devices.
  • the transmission device 100 does not allow transmission of other transmission devices and continues to transmit priority data packets or dummy packets, and therefore it is not always necessary to detect a wireless carrier. Therefore, in FIG. 1, the transmission apparatus can be realized without necessarily mounting the carrier sensing unit 104. [0077] (Fourth embodiment)
  • Multicast is a transmission method in which a sending device sends a packet to one or more receiving devices. An ACK for confirmation of reception is not returned from each receiving device.
  • the API 101 that is a transmitting device can transmit AV packets to a plurality of AV terminals of the AV terminals 1102 to L 109 all at once.
  • the combination of multiple AV terminals that receive a single multi-cast packet is free, and it is natural that multicast may be sent to one AV terminal.
  • FIG. 5 is a timing chart when the transmitting apparatus in the present embodiment transmits the priority data packet by multicast. Also in multicast, the transmission waiting time is set to VSIFS shorter than SIFS, so that packets are transmitted with priority over other transmitting devices such as interfering terminals 1110 and 1111 as in the other embodiments.
  • the packet transmission control unit 103 performs the transmission control shown in FIG.
  • the packet transmission unit 102 transmits a priority data packet 501 after waiting for transmission from the timing 520, which is the transmission completion timing of the packet 500, by VSIFS 510. Next, it waits for VSIFS 511 from the transmission completion timing 521 of the priority data packet 501 and transmits the priority data packet 502. The transmission completion timing is timing 522. Thereafter, the priority data packet 503 is similarly transmitted after waiting for the VSIFS 512, and this transmission completion timing is timing 523. Further, a priority data packet 504 is transmitted after waiting for VSIFS 513. By repeating these operations, the packet transmission with the disturbing terminal power is blocked and the priority data packet transmission is given priority.
  • the transmission apparatus of the present invention can be realized without mounting the carrier sensing unit 104.
  • FIG. 6 is a timing diagram when the transmission apparatus of the present embodiment performs transmission of normal data packets while giving priority to transmission of priority data packets in multicast.
  • the process up to timing 621 is the same as that described in FIG. In other words, packet 6 ⁇ or knot 500 is worth.
  • the timing is 620 ⁇ until timing 520.
  • VSIFS6 10 corresponds to VSIFS510.
  • the priority data packet 601 corresponds to the priority data packet 501.
  • the packet is preferentially transmitted.
  • a priority packet to be transmitted to the packet transmission unit 102 is not generated.
  • transmission of a normal data packet is permitted, not a priority data packet from any force of the API 101, the AV terminal 1102 to: L 109, and the disturbing terminals 1110 and 1111.
  • the case where ad hoc communication from the disturbing terminal 1110 to the disturbing terminal 1111 is permitted will be described.
  • the normal data packet 602 is transmitted after waiting for the period of DIFS 611 and Backoff 612 according to the transmission procedure of IEE E802.11a in the conventional method described in FIG. At this time, if a priority data packet to be transmitted to the packet transmission unit 102 is prepared in the period 630, the priority data packet is transmitted first. In FIG. 6, the priority data packet is prepared in this period. ,,, Show the status.
  • the carrier sensing unit 104 detects a wireless carrier, so that the priority data packet cannot be transmitted during this period. But normal data
  • the priority data packet 603 generated by the packet transmission unit 102 during the period 631 during transmission of the packet 602 and during the period of VSIFS 613 waits for the period of VSIFS 613 from the timing 623 after transmission of the normal data packet 602, Sent from the packet transmitter 102.
  • the packet transmission control unit 103 performs transmission control of the priority data packet from the packet transmission unit 102.
  • ACK615 is transmitted after SIFS614, which is the normal waiting time for ACK in IEEE802.11a from timing 624!
  • SIFS614 is the normal waiting time for ACK in IEEE802.11a from timing 624!
  • This ACK 615 normally corresponds to the data packet 6002, and is transmitted from the disturbing terminal 1111 to the disturbing terminal 1110 for confirmation of reception.
  • the priority data packet has been generated in the packet transmission unit 102 by the timing after VSIFS (not shown, but before timing 625), the priority data packet has priority. Sent from API 101.
  • general data communication is not limited to the power described in the case of communication between disturbing terminals 1110 and 1111, and communication to any AV terminal power API 101 may be used.
  • the AV channel to be requested to the AV terminal power video server 1100 can be selected.
  • a normal data packet may be transmitted from the API 101 to the AV terminal.
  • the present invention is effective even when the normal data packet is a multicast packet. In this case, ACK615 for normal data packet is not returned.
  • priority is given to transmission of a priority data packet by multicast, and even when there is no priority data packet to be transmitted, a transmission right is always secured without giving a transmission opportunity to other wireless devices. I do.
  • the configuration of the transmission apparatus in this embodiment is the same as that of FIG. 1 described in the first embodiment. In this embodiment, after sending a priority data packet and waiting for VSIFS, there is no priority data packet to be sent next. Next, a description will be given of a transmission apparatus that enables transmission as soon as possible when a priority data packet is ready.
  • FIG. 7 shows that the transmitting apparatus of this embodiment prioritizes transmission of priority data packets in multicast, and transmits a dummy packet that is a fake packet when there is no priority data packet to be transmitted.
  • FIG. The sham packet is a form of sham carrier that can be detected by the carrier detector.
  • the timing up to timing 721 is the same as described in FIG. That is, packet 700 corresponds to packet 500. Timing 720 ⁇ until timing 520. Equivalent to VSIFS710i or VSIFS510.
  • the priority data packet 701 corresponds to the priority data packet 501. That is, until timing 721, the control timing from the packet transmission control unit 103 to the packet transmission unit 102 is the same as the processing up to timing 521 in FIG.
  • a dummy packet 702 is transmitted.
  • the dummy packet 702 is, for example, the MAC packet shown in FIG. 8 as described in the third embodiment.
  • the MAC header is 24 octets
  • the packet body is 0 octets
  • the FCS is 4 octets.
  • transmission may be made to a receiving apparatus that does not exist in the system of FIG. Similarly, after the dummy packet transmission is completed, the VSIFS interval is waited. If there is no priority data packet to be transmitted at that time, a dummy packet is transmitted.
  • Figure 7 shows the following cases. After the VSIFS 712 from the timing 723, the dummy packet 703 including the priority data packet to be transmitted is also transmitted at the timing 724. After the end of transmission 725 and further after VSIFS 713, the dummy packet 704 including the priority data packet to be transmitted is also transmitted at the timing 726.
  • a priority data packet 705 to be transmitted is generated in the packet transmission unit 102 and transmitted from the packet transmission unit 102. If there is a priority data packet to be transmitted at timing 730 after VSIFS 715 from 729 of the completion of transmission of the priority data packet, transmission is performed, but in FIG. 7, there is no priority data packet to be transmitted, and dummy packet 706 is transmitted. The transmission end timing in this case is timing 731. During this time, transmission control of the priority data packet from the packet transmission unit 102 is performed by the packet transmission control unit 103.
  • the transmitting apparatus 100 performs transmission with priority over the disturbing terminal.
  • transmission of a VSIF S and a minimum length dummy packet prevents the disturbing terminal from transmitting the packet.
  • the next priority data packet is generated, it can be transmitted as soon as possible.
  • the priority of the priority data packet can be further increased. And even when the data rate of AV data is low, high-quality transmission with a transmission band secured is possible.
  • the VSIFS (VSIFS711, 712, 713 in Fig. 7) used as the waiting time until dummy data is transmitted has the same value as the waiting time until the priority data packet is transmitted.
  • the present invention is not limited to this. Any length is acceptable as long as the interval is shorter than the transmission waiting time of the disturbing terminal.
  • the transmission apparatus of the present invention can be realized without necessarily mounting the carrier sensing unit 104 in FIG.
  • the power described with IEEE802.11a as an example is not limited to IEEE802.11a, but may be IEEE802.lib and IEEE802.lg. Also, it is effective for all transmission methods that determine the packet transmission priority by using the difference in waiting time until packet transmission only by the IEEE802.11 standard. Also wirelessly The present invention is not limited to wired communication. Therefore, even in such a case, the range power of the present invention is not excluded.
  • the transmission device of the present invention can be applied to an ad hoc mode in which devices directly communicate with each other, and even when applied to the ad hoc mode, the scope of the present invention is not excluded.
  • the generation of the priority data packet is completed even when the normal data packet is transmitted between the transmissions of the priority data packet at the timing when the priority data packet can be transmitted.
  • the present invention is not limited to this, and it is possible to create a normal data packet transmission opportunity to the extent that it does not hinder the bandwidth guarantee of the priority data packet, such as creating a normal data packet transmission opportunity once in several times.
  • SIFS Short Interframe Space
  • DIFS Direct Interframe Space
  • the power described in the case where the SSIFS is 15 S is taken as an example.
  • the present invention is not limited to this value. The shorter the SSIFS value, the wider the transmission band can be secured. is there. Therefore, even in such a case, the range power of the present invention is not excluded.
  • Embodiments 1 to 6 of the present invention particularly in wireless communication, etc., such as hidden terminal problems, access point and terminal arrangements, or wireless communication of each system
  • the reach and detection range of various packets change due to various factors, such as channel selection, or a combination of multicast and multicast. Therefore, the waiting time for preferential transmission of priority data packets can be changed according to the situation of the system.
  • the invention is not excluded from the scope of the present invention as long as it has the feature of the present invention that the priority data packet is transmitted with a short waiting time.
  • ACK is an acknowledgment, it may be specified depending on the situation where the system is placed, considering that a packet to be acknowledged is not received and an ACK is not transmitted! Even when the priority data packet is transmitted with the same value as the minimum transmission interval of the bucket, the present invention may be realized.
  • AV packets (AV data) can be preferentially transmitted, and the transmission band of the AV service radio packet is guaranteed.
  • This makes it possible to provide a high-quality AV transmission service that guarantees real-time performance of video data and audio data.
  • the above effect is effective regardless of the data rate of AV data.
  • the waiting time for sending priority packets is short, the overall usable bandwidth is improved, and the transmission bandwidth of the transmission network can be used effectively.
  • wireless ACK is not transmitted in units of fragments. Since packets are returned in units of packets, retransmission is performed in units of packets with errors even when packet errors are retransmitted, so it is possible to provide a system with high transmission efficiency without retransmitting normally received packets. .
  • the priority packet is preferentially transmitted when a fragment is generated as in the conventional example. In any case, priority packet transmission is prioritized and is unique to the present invention. An effect can be obtained.
  • the transmission apparatus of the present invention can be easily modified in various ways by changing the control conditions in the packet transmission control unit, and can guarantee the transmission band of the priority data packet with a simple configuration. It is possible to build
  • the transmission device allows the first minimum packet according to the first communication protocol even when another transmission device using the second communication protocol enters the same transmission network.
  • AV packets (AV data) can be preferentially transmitted at the transmission interval, and the transmission band of AV service wireless packets is guaranteed. Therefore, the transmission band for video and audio is guaranteed using the transmission network. This is useful when transmitting data that must be performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Communication Control (AREA)

Abstract

 妨害端末がシステム内に入り込んだ場合でも、パケットを優先的に伝送可能な送信装置が開示されている。この送信装置は、第1の最小パケット送信間隔で優先パケットを伝送する第1の通信規約による伝送網で用いられる。この送信装置は、パケット送信部と、パケット送信制御部と、を備える。パケット送信部は、第1の通信規約による伝送網にパケットを送信する。パケット送信制御部は、第1の最小パケット送信間隔でパケットを送信するようにパケット送信部の送信制御を行う。伝送網に、第2の最小パケット送信間隔で通常パケットを伝送する第2の通信規約を用いる妨害端末が存在しうる場合に、第1の最小パケット送信間隔を第2の最小パケット送信間隔より短くする。

Description

明 細 書
送信装置
技術分野
[0001] 本発明は、伝送網を介してデータを送信する送信装置に関する。
背景技術
[0002] 従来より、映像データや音声データ(以下、 AVデータと記す)等を伝送網(以下、 ネットワークとも記す)を介して配信する送信装置が実用化されている。特に近年は、 配線の省力化や、場所を気にせずにどこでもネットワークが使用できるとのことから、 ネットワークに無線を用いることが多い。具体的な例として、航空機などの移動体ゃホ ールなどの閉空間において、ビデオ映画等の番組を各ユーザーの受信装置に無線 伝送する送信装置が開発されている。上記送信装置と受信装置とを総称して無線装 置と呼ぶ。
[0003] 従来の送信装置を含む AVデータ配信システムは、ビデオサーバと、従来の送信 装置である無線アクセスポイント (APとも記す)と、複数の AVデータを視聴する受信 装置 (AV端末とも記す)とを備える。ビデオサーノくから出力された AVデータは、 AP から無線により、それぞれの AV端末に配信される。
[0004] AVデータ配信システムで使用されるネットワークとしては、一例として無線 LANに 用いられる、 IEEE802. 11で規定されているネットワークがある。 IEEE802. 11の 仕様の詳細は、例えば、「802. 11高速無線 LAN教科書」 66〜75ページ (株式会 社 IDGジャパン発行)に開示されている。
[0005] IEEE802. 11規格においては、各送信装置力もの無線送信パケットの衝突を避け るために、搬送波感知多重アクセス Z衝突回避方式: Carrier Sense Multiple Access with Collision Avoidance (以下、 CSMAZCAと記す)が採用されて いる。各送信装置は、伝送網が一定時間以上継続して使用されないことを確認して からパケット送信、すなわちアクセス、する。
[0006] つまり、あら力じめ規定されているパケットの送信間隔以上をあけてパケットの送信 を行う。ネットワークが一定時間以上継続して使用されて ヽな ヽことの確認方法として は、各送信装置は常に無線の電波、すなわちキャリア、を監視する。無線キャリアが 検出されなければ当該チャンネルの無線が使用されていないと判断する。
[0007] 一般的に、無線伝送において、慣習的に OSI (Open Systems Interconnect! on)参照モデルの第 2層であるデータリンク層以下の伝送単位をフレームと称し、第 3 層であるネットワーク層以上の伝送単位をパケットと称する。しかし、本願では、説明 を簡略ィ匕するために、伝送単位はパケットに統一して称する。
[0008] 図 10は、従来の送信装置を含む AVデータ配信システムにおける IEEE802. 11 規格に基づく CSMAZCA方式による無線アクセスの動作を説明するタイミング図で ある。また、図 11は、同 CSMAZCA方式による無線アクセスで使用されるパケット 送信間隔に関するパラメータを示す図であり、 IEEE802. 11a規格及び IEEE802. l ib規格の場合を示している。同 CSMAZCA方式では、各無線装置が無線バケツ トを送信する前の待ち時間が規定されて 、る。待ち時間は送信する無線パケットの種 別によつて個別の値が定義されている。この待ち時間がパケット間の送信間隔である
[0009] IEEE802. 11規格は、 AVデータと一般のデータとを区別しない。従来の送信装 置がデータを伝送する場合の待ち時間は、固定の待ち時間である DIFS (Distribut ed Inter Frame Space)にランダムな長さの待ち時間のバックオフ(以下、 Back offと記す)をカ卩えたものである。ランダム値である Backoffにより、直前のパケット伝 送が終了して力 一定時間後に複数の送信装置が同時にパケットを送信して無線パ ケットが衝突する事態を防止して 、る。
[0010] 送信装置は、無線伝送網中に検出される無線キャリア 900が終了するタイミング 92 0力ら、 DIFS 911と Backoff 912とをカ卩算した時間後にデータパケット 901を送信す ることができる。ここで、 DIFSは、上記のように一般のデータパケットを送る際に待た なければならな!/、時間である。 Backoffは一定時間であるスロットタイムの整数倍で あり、乱数値である。この乱数値はコンテンションウィンドウ(CWとも記す)の範囲内で 発生するものである。
[0011] つまり、スロットタイムに乱数値を乗じたものが送信待ち時間である。 CWは、初送信 から、再送回数が増える毎に値が増えていく。 Backoffが乱数で決まることにより、 A Vデータ配信システム内で最初に送信権を獲得した送信装置、すなわち Backoffが 一番短い送信装置、がパケットを送信することができる。つまり、各送信装置は、公平 な送信機会を得られる。 IEEE802. 11a及び IEEE802. l ibにおける DIFS時間、 スロットタイム及び CWサイズは図 11に示されて!/、る。
[0012] 実際に送信データが受信装置に正しく送信されたことの確認は、受信装置力 の A CK (Acknowledge)信号が到着するかどうかで判定する。送信装置は、 ACK信号 力 Sなければ通信障害があつたと判断して、データの再送信を行なう。つまり、送信装 置は、受信装置に対してデータパケットを送信し、受信装置力 の ACKを受信するこ とで一連のデータ通信を完了する。一定時間の間に ACKが受信できない場合は A CKが受信されるまで所定回数の再送を行う。
[0013] 送信確認の ACK902は、データパケット 901の送信終了のタイミング 921から、ショ ート.インターフレーム.スペース(Short Interframe Space :以下、 SIFSと記す) 913間隔後に送信する。この SIFSは固定値であり、 IEEE802. 11の規格では最短 の送信待ち時間(最小パケット送信間隔)である。これは、 ACKが送信確認であるた め、他のパケットに優先して送信側に通知する必要があるためである。
[0014] 以上、説明したように、送信装置力 同時に送信パケットが送信されて、無線電波と して衝突することにより無線の受信波形が乱れ、結果的にパケット廃棄される危険性 がある。 CSMAZCA方式の IEEE802. 11規格では、無線パケット送信までの待ち 時間を規定することにより、無線電波の衝突を極力排除して、データを送信する仕組 みを有している。
[0015] ここで、 IEEE802. 11規格による送信装置で AVデータ配信システムを実現する 場合に発生しうる問題点について説明する。上述のように、各送信装置には公平な 送信機会が与えられるため、パソコン等の無線装置が AVデータ配信システムと同じ 伝送網内に持ち込まれた場合にも公平なパケット送信機会が与えられる。このため、 リアルタイム性を要求される AVデータ配信システムにとっては、システムに必要な送 信タイミングでパケットを優先送信することができない場合があり得る。
[0016] よって、これらのパソコン等の無線装置は、 AVデータ配信システムに妨害を与える 装置となり得る。具体的に例を挙げると、航空機内で、 AVデータ配線システムにより AV端末にビデオ配信されて 、るところに、乗客の持ち込んだパソコンの無線通信機 能力 AVデータ配信システムに妨害を及ぼす場合があり得る。
[0017] 例えば、パソコンが APにアクセスして AP経由で他のパソコンにデータ伝送を行つ たり、 1台のパソコン力 他のパソコンに直接、アドホックモードでデータ転送を行う場 合等、ネットワークの無線帯域を消費するので、 AVデータ配信システムが使用可能 な無線帯域が圧迫される。 AVデータの伝送にはリアルタイム性が要求されるため、 AVデータの送信が必要なタイミングで伝送できない場合はリアルタイム性が確保で きず、映像'音声等の品質が劣化する。以下、 AVデータ配信システムにとって妨害と なる、パソコン等の無線装置を妨害端末と称す。
[0018] 上記の状態は、データパケットを伝送するときに DIFSとランダム Backoffで公平に 送信機会が与えられていることに起因する。パケット送信までの待ち時間を変えること で、パケットの優先順位を変える構成が、例えば、特開平 11— 220497号に開示さ れている。
[0019] 特開平 11— 220497号の構成は、 ACKよりも短いフレーム間隔を用いて ACKより も高 、優先度制御および回線制御を行う。回線交換型サービスから大きなデータが 送信データとして入力され、無線等のパケット交換型サービスのアクセス可能時間に おいて、一度の送信で送信できなかった場合、つまりフラグメントが発生した場合に、 フラグメントの残りのパケットを隣接送信する。
[0020] し力しながら、特開平 11― 220497号の構成では、端末 2からパケット Aが送信され た直後に、端末 3がデータを送信している。すなわち、端末 3が送信権を獲得してい る。フラグメントが発生するまでの最初のパケットは DIFSにカ卩えてランダム期間待つ ので、フラグメントが起こらない場合も含めて、最初のパケットの送信優先権があるわ けではない。つまり、各端末は基本的には公平に送信優先権を有しており、妨害端 末の影響を排除できな 、場合があり得る。
[0021] また、特開平 11— 220497号の方法は、フラグメントの最初のパケットに対する AC Kを返すのではなぐフラグメントされた全てのパケットが到着してから ACKを返す方 法である。つまり CSMAZCA環境でのパケット毎に ACKが返すものではない。例え ば、フラグメントのパケットの途中でエラーであったとしても、残りのパケットを送信が 終了して力もでなければ、エラーが発生したことがわ力もないので、伝送が非効率で あり得る。
[0022] 伝送が非効率であることについて、具体的に説明を行う。例えば、回線交換型サー ビス力も Pというデータが入力され、パケット交換型サービスにおいてフラグメントされ 、 PI, P2, P3のパケットで伝送されるとする。この時、 P1あるいは P2のパケットが、正 常に送受信が行われずにエラーとなったとしても、 PI, P2に対しての ACKが返送さ れるわけではな 、。送信端末は P3の送信まで続けて行う。
[0023] その後 PI, P2, P3の全てに対する ACKを返送して、その時点で初めてエラーが わかるので、再送が行われる。し力も、再送は PI, P2, P3の全て、つまり Pの全てを 再送しなければならないため、その分、伝送帯域を消費するため非効率な伝送となり 得る。これは ACKがパケット交換サービスにおいて、 PI, P2, P3の個々のパケット 単位に対して行われるものではな 、ことに起因して 、る。
[0024] 特開平 11— 220497号に開示の構成は、本来の ACKの送信待ち時間である SIF Sをフラグメントパケット用に使用し、本来の ACKには 2SIFSを使用するため、 ACK の送信待ち時間を伸ばしているだけである。従って、 ACK送信までの時間がかかる ため、全体としての使用可能帯域が小さくなり得る。
発明の開示
[0025] 本発明の送信装置は、第 1の最小パケット送信間隔を備え、優先送信を要求される 優先パケットを伝送する第 1の通信規約による伝送網で用いられる送信装置である。 この送信装置は、パケット生成部と、パケット送信部と、パケット送信制御部と、を備え る。パケット生成部は、入力データ力もパケットを生成する。パケット送信部は、第 1の 通信規約による伝送網にパケットを送信する。
[0026] パケット送信制御部は、第 1の最小パケット送信間隔でパケットを送信するようにパ ケット送信部の送信制御を行う。伝送網に、第 2の最小パケット送信間隔で優先送信 を要求されない通常パケットを伝送する第 2の通信規約を用いる他の送信装置が存 在しうる場合に、第 1の最小パケット送信間隔を第 2の最小パケット送信間隔より短く する。
[0027] これにより、伝送網内に、第 2の通信規約を用いる他の送信装置が存在しても、送 信装置は AVパケット等の優先パケットを常に優先的に送信することができ、 AVデー タ伝送のための帯域を保証する送信装置を提供可能となる。
[0028] また、本発明の送信装置は、伝送網のキャリアを感知するキャリア感知部をさらに備 え、パケット送信制御部力 キャリア感知部で感知した伝送網のキャリアにより、伝送 網の空状況を把握する構成であってもよい。これによれば、さらにパケット送信間隔を 精度良く制御できる。
[0029] また、本発明の送信装置は、パケット送信制御部が、優先パケットを連続して送信 するようにパケット送信部の送信制御を行うことを可能としてもよい。これによれば、さ らにリアルタイム性を要求される優先パケットをより確実に送信できる。
[0030] また、本発明の送信装置は、パケット送信制御部が、パケット送信部に送信すべき 優先パケットがな 、場合に、キャリア感知部が感知可能な見せ掛けのキャリアを送信 するようにさらに制御する構成としてもよい。これによれば、さらに送信装置は常に送 信権利を確保し、 V、つでも必要な時点で優先パケットを送信できる。
[0031] また、本発明の送信装置は、見せ掛けのキャリアが、見せ掛けのパケットであっても よい。これによれば、さらに送信装置は常に送信権利を確保し、いつでも必要な時点 で優先パケットを送信できる。
[0032] また、本発明の送信装置は、第 1の通信規約が、あら力じめ定められた閉じた伝送 網で使用されるものであってもよい。これによれば、さらに優先送信の優先度合いに 応じて柔軟に第 1の通信規約を設定できる。
[0033] また、本発明の送信装置は、第 2の通信規約が、 IEEE802. 11規格に適合の通 信規約であってもよい。これによれば、さらに第 1の通信規格に適合する送信装置に ぉ ヽても、量産効果により安価で高品質な部品を容易に利用できる。
[0034] さらに、本発明の送信装置は、第 2の最小パケット送信間隔が、 SIFSとして規定さ れる値であってもよい。これによれば、さらに IEEE802. 11規格に適合する装置が 伝送網内に存在しても、優先パケットを確実に送信できる。
図面の簡単な説明
[0035] [図 1]図 1は本発明の第 1実施例における送信装置の構成を示すブロック図である。
[図 2]図 2は同実施例における送信装置で優先パケットをュ-キャストにより送信する 場合のタイミング図である。
圆 3]図 3は本発明の第 2実施例における送信装置で優先パケットの伝送を優先させ つつ、通常パケットの伝送も行う場合のタイミング図である。
圆 4]図 4は本発明の第 3実施例における送信装置で優先パケットの伝送を優先させ つつ、ダミーパケットを送信する場合のタイミング図である。
圆 5]図 5は本発明の第 4実施例における送信装置で優先パケットをマルチキャストに より送信する場合のタイミング図である。
圆 6]図 6は本発明の第 5実施例における送信装置で優先パケットの伝送を優先させ つつ、通常パケットの伝送も行う場合のタイミング図である。
圆 7]図 7は本発明の第 6実施例における送信装置でマルチキャストにより優先バケツ トとダミーパケットとを送信する場合のタイミング図である。
[図 8]図 8は本発明の第 1実施例における送信装置の MACレイヤにおけるパケットフ ォーマットの模式図である。
圆 9]図 9は本発明の第 1実施例における送信装置を含む AVデータ配信システムの 模式図である。
[図 10]図 10は従来の送信装置における無線アクセスを説明するタイミング図である。
[図 11]図 11は従来の送信装置における無線アクセスで使用されるパケット送信間隔 に関するパラメータを示す図である。
符号の説明
101 パケット生成部
102 パケット送信部
103 パケット送信制御部
104 キャリア感知部
1100 ビデオサーバ
1101 AP (無線アクセスポイント)
1102〜: L 109 AV端末
1110, 1111 妨害端末
発明を実施するための最良の形態 [0037] 以下、本発明の実施例について、図面を用いて説明する。
[0038] 本発明の実施例では、データリンク層の伝送方式として第 2の通信規約が IEEE80 2. 11a規格に適合し、第 1の通信規約は IEEE802. 11a規格に準じた無線による伝 送網を例として説明する。第 2の通信規約と第 1の通信規約との違いは、後述するよ うに、最小パケット間隔が、第 2の通信規約〉第 1の通信規約となる関係である。また 、伝送される優先パケットはどのようなものでもよいが、一例として、伝送のリアルタイ ム性が要求される、映像や音声等のデータ (AVデータ)とする。また、 AVデータから 構成されたパケットを AVパケットと称し、 AVパケットは伝送帯域を保証してリアルタイ ム性を維持しなければならな 、ので、優先送信を要求されな 、通常のデータパケット である通常パケットと区別して優先パケットと称する。
[0039] また、本発明の各実施例では、図 9に示すように、 AVデータ配信システムの一例と して、送信装置であるアクセスポイント 1101から各端末 1102〜: L 109へ優先パケット である AVデータの配信を行う無線のインフラストラクチャモードについて説明を行う。
[0040] (第 1実施例)
本発明の第 1実施例では、優先パケットをュ-キャストで送信する場合について説 明する。ュ-キャストとは、送信装置から 1つの受信装置への 1対 1の通信である。図 1は、本発明の第 1実施例における送信装置の構成を示すブロック図である。図 1に おいて、送信装置 100は、図 9の API 101である。送信装置 100は、パケット生成部 101と、パケット送信部 102と、パケット送信制御部 103と、キャリア感知部 104と、を 備える。さらに、送信装置 100には、送受信用アンテナ 105が付加されている。
[0041] 図 8は、本実施例における送信装置が送信する優先パケットのパケットフォーマット の模式図であり、 IEEE802. 11a規格のデータリンク層である MAC (Media Acce ss Control)レイヤに相当する。図 8において、 MACパケット 800は、 MACヘッダ 8 01と、パケット本体 802と、 FCS (Frame Check Sequence) 803とを備える。 MA Cヘッダ 801は、 30オクテットである。ただし、インフラストラクチャモードでは、 MAC アドレスの定義の一部が使用されないため 24オクテットとなる。
[0042] パケット本体 802は、フレームと呼ばれ、伝送すべきデータを格納する場所である。
本実施例では、 AVデータはパケット本体 802に格納される。 FCS803は、フレーム チェックシーケンスであり、伝送された無線パケットにエラーがあるかどうかを検査する コードが格納される。 IEEE802. 11a規格では、物理層において図 8に示した MAC レイヤの無線パケットに物理レイヤのプリアンブル等の必要なヘッダ等(図 8には図示 せず)が付加されて伝送される。以下、図 1と図 8を用いて本実施例の送信装置 100 の動作を詳細に説明する。
[0043] AVデータ 110はパケット生成部 101により、 MACパケット 800が生成される。ここ で、一連の AVデータはデータを適宜分割され、各パケットのパケット本体 802に格 納される。さらに MACヘッダ 801と FSC803が付カ卩される。パケット送信部 102はパ ケット生成部 101の出力 111で MACパケットを入力し、プリアンブル付加や変調等 の無線の物理層の処理を行って、無線送信パケット 112としてアンテナ 105から送信 されるように出力する。
[0044] パケット送信制御部 103は、制御信号 115によりパケット送信部 102の送信タイミン グを制御する。また、パケット送信制御部 103は、パケット送信部 102から、送信すベ きパケットが準備できている力否かを通知信号 116により通知される。キャリア感知部 104は、アンテナ 105からの無線受信信号 113を受け、現在の無線電波(キャリア) 状況を常に監視している。つまりキャリア感知部 104が無線伝送網でのキャリアを感 知することによりパケット伝送状況を把握する。この無線電波(キャリア)状況は、信号 114によりパケット送信制御部 103に伝達される。
[0045] 本実施例の特徴は、パケット送信制御部 103のパケット送信制御アルゴリズムにあ る。送信装置 100は、 IEEE802. 11a規格に準じた第 1の通信規約により、 IEEE80 2. 11a規格で規定されている第 2の通信規約による最小送信待ち時間より短い待ち 時間で、優先的に送信すべきパケットである優先パケットを送信する。これにより、送 信装置 100は、意図するタイミングで優先パケットを送信でき、優先パケットの伝送帯 域を確保できる。
[0046] 以下、さらに図面を用いて詳細に説明する。
[0047] 図 2は、本発明の第 1実施例における送信装置で優先パケットをュ-キャストにより 送信する場合のタイミング図である。パケット 200の伝送時には、キャリア感知部 104 は無線キャリアを検出しており、パケット送信制御部 103は、パケット送信部 102に対 してパケット送信を待たせる。
[0048] キャリア感知部 104は、タイミング 220において、パケット 200の無線キャリアを検知 しなくなると、次のパケットを送信可能となるが、本願発明の特徴と比較するために、 まず本願発明を適応しない場合にどのようになるかを説明する。
[0049] IEEE802. 11a規格に基づく通信では、図 10を用いて既に説明したように、 AP及 び全ての無線端末にぉ 、て、送信すべきパケットがある場合は一定時間キャリアが 検出されないことを確認してから、パケットを送信可能である。 IEEE802. 11a規格 においてこの時の待ち時間は、図 10の無線キャリア 900の終了タイミング 920力ら、 DIFS 911及び Backoff 912が経過したタイミング 922である。
[0050] 図 11に示すように DIFSは 34 Sであり、 Backoffはスロットタイムの 9 Sに各送 信装置で送信毎にランダムに決定される CWサイズを掛けた時間である。また、無線 伝送において、「隠れ端末問題」と称される現象により、通信の確認である ACKのみ 力 他の端末力も検出される場合がある。「隠れ端末問題」とは、端末間に電波を通 しにくい障害物がある場合や、端末間の距離が電波到達距離以上に離れている場 合などの影響により、互いにキャリア検出が機能しない状態により発生する問題のこと である。
[0051] この場合の待ち時間は、 SIFSの 16 μ Sである。この SIFSは無線パケットを送信す るための最小待ち時間である。図 9は、本発明の第 1実施例における送信装置を含 む AVデータ配信システムの模式図である。本実施例の AVデータ配信システムは、 ビデオサーバ 1100と、本実施例の送信装置である無線アクセスポイント (ΑΡとも記 す) 1101と、複数の AVデータを視聴する受信装置 (AV端末とも記す) 1102〜110 9とを備える。
[0052] ビデオサーバ 1100から出力された AVデータは、 API 101力 無線により、それぞ れの AV端末 1102〜: L 109に配信される。図 9の環境下では、妨害端末 1110, 111 1が存在する。 API 101が AVパケットを AV端末 1102〜: L 109へ伝送しょうとすると 、従来の待ち時間と同じ時間で行うと、公平に送信タイミングを取得することになる。 そこで、例えば、妨害端末 1110から妨害端末 1111にアドホックモードで大量のデ ータを伝送すると、妨害端末 1110が送信権を獲得し、多くの伝送帯域を消費する。 その結果、 API 101が AVパケットを伝送できる帯域が小さくなり、 AV端末 1102〜1 109への AVデータ伝送のリアルタイム性が保証できなくなる。
[0053] これに対して本願発明では、パケット送信制御部 103は、タイミング 220から SIFS より短 、間隔(以下、 VSIFSと記す)で優先パケット (優先データパケットとも記す) 20 1を送信する。 VSIFSは、例えば SIFSの 16 μ Sより短い 15 μ Sとすればよい。図 1の 構成において、パケット送信制御部 103は、キャリア感知部 104からの信号 114によ りタイミング 220を検知し、タイミング 220から VSIFS210だけの時間を待って、バケツ ト送信部 102に優先データパケット 201を送信させる。
[0054] 本実施例では、ュ-キャストで伝送を行う場合を例として 、るので、優先データパケ ット 201は、ひとつの AV端末に対して送信される。本実施例では AV端末 1102に伝 送される場合を例とする。 API 101から AV端末 1102に優先データパケット 201の 送信が終了すると、 AV端末 1102は API 101に対して、受信されたことを確認する A CKを返送する。
[0055] 優先データパケットを含む全てのデータパケットに対して優先して送信されなけれ ばならない、 ACK202の待ち時間であるタイミング 221からの待ち時間(以下、 SSIF Sと記す)を、 SSIFS211とする。よって、 SSIFS211は、本実施 f列では 15 Sである VSIFS212より短い期間、 ί列えば 14 Sとすればよい。つまり、「SSIFS< VSIFS< SIFS」である。
[0056] 本実施例では、ュ-キャストによる通信なので、優先データパケット 201に対しての ACKは、 AV端末 1102以外は返送しない。パケット送信制御部 103は、優先データ パケット 201の次にキャリア感知部 104でのキャリアの検出の有無にかかわらず、 AC Kを待ち続ける。「隠れ端末問題」が発生しなければ、必ずしも SSIFSは VSIFSより も短い必要はなぐ SSIFSは、 SIFSと同じ、あるいは VSIFと同じとしてもよい。
[0057] ACK202の送信終了タイミング 222の後は、パケット送信制御部 103は同様に VS IFS212後に優先データノケッ卜 203を送信し、タイミング 223力ら SSIFS213後に A CK204が送信される。本実施例において、パケット送信部 102は連続的に優先デ ータパケットを送信できるので、妨害端末 1110, 1111がパケット送信権を獲得して 無線帯域を消費することはな 、。 [0058] 以上のように、 IEEE802. 1 la規格に準拠した妨害端末 1110あるいは妨害端末 1 111が送信可能状態となる前に、 AP1101がパケットを送信することで無線帯域を先 に確保する。結果として妨害端末 1110あるいは妨害端末 1111にパケットを送信さ せなくする。これにより、妨害端末 1110あるいは妨害端末 1111が無線伝送帯域を 消費することは無ぐ AVデータ配信システムの送信装置は、優先データパケットが必 要とする帯域を確保することが可能となる。
[0059] なお、本実施例にお!、て、 VSIFSの待ち時間で、優先データパケットを送信し続け るので、必ずしも無線のキャリアを検出する必要はない。したがって、図 1において、 必ずしもキャリア感知部 104を実装しなくても、本発明は実現可能である。
[0060] (第 2実施例)
本発明の第 2実施例においては、ュ-キャストにより優先パケットの伝送を優先させ つつ、通常パケット(以下、通常データパケットとも記す)の伝送も行う場合について 説明を行う。具体的には、優先データパケットを送信して受信装置から ACKが返つ てきたときに、次に送信すべき優先データパケットがない場合に通常のデータバケツ トの送信を許可する場合について説明を行う。送信装置の構成は第 1実施例で説明 を行った図 1と同じであり、パケット送信制御部 103での制御方法が異なる。
[0061] 図 3は、本実施例における送信装置においてュ-キャストで優先データパケットの 伝送を優先させつつ、通常データパケットの伝送も行う場合のタイミング図である。図 3に示したパケットの送信制御はパケット送信制御部 103によって行われる。図 3にお いて、タイミング 322までは図 2で説明したのと同じである。すなわち、パケット 300は ノケット 200にネ目当する。 VSIFS310iま VSIFS210にネ目当する。
[0062] 優先データパケット 301は優先データパケット 201に相当する。 SSIFS311は SSI FS211【こネ目当する。 ACK302iま ACK202【こネ目当する。すなわち、タイミング 322ま では、パケット送信制御部 103からパケット送信部 102への制御タイミングは、図 2の タイミング 222までの処理と同様である。すなわち、タイミング 220とタイミング 320は 同じであり、タイミング 221はタイミング 321と同じである。
[0063] タイミング 322において、送信すべき優先データパケットがパケット送信部 102にあ る場合は、当該パケットを優先して送信する。しかし例えば、 IEEE802. 11aで送信 可能なデータレートよりも AVデータ 110のデータレートが低い場合、パケット送信部 102に送信すべき優先パケットが生成されていない場合が発生する。このような場合 ίま、 API 101ある!/ヽ ίま AV端末 1102〜: L 109、妨害端末 1110, 1111の!ヽずれ力力 らの優先データパケットではな 、通常データパケットの送信が許可される。本実施例 では、妨害端末 1110から妨害端末 1111への直接通信であるアドホック通信を許可 する場合で説明する。
[0064] 通常データパケット 303は、タイミング 322から、図 10で説明した従来の方法で ΙΕΕ Ε802. 11aの送信規約に従って、 DIFS312及び Backoff313の期間を待った後に 送信される。この時、期間 330にパケット送信部 102に送信すべき優先データバケツ トが準備されると、優先データパケットの送信が先に行われるが、図 3ではこの期間に 優先データパケットが準備されて 、な 、状態を示して 、る。
[0065] 通常データパケット 303の通信中は、キャリア感知部 104において、無線キャリアが 検出されるため、パケット送信部 102から優先データパケットはこの期間は送信でき ない。通常データパケット 303の伝送中に、パケット送信部 102に送信すべき優先デ ータパケットが生成された場合は、通常データパケット 303の送信終了後の 323のタ イミングから、 VSIFS314の期間を待った後に、パケット送信部 102から優先データ パケット 304が送信される。この時のパケット送信の制御はパケット送信制御部 103に よって行われる。その後、 SSIFS315の期間を待った後に優先データパケット 304を 受信した AV端末から ACK305が送信される。
[0066] 本実施例にお!、て、優先データパケットの送信を優先することで、優先パケットの帯 域を確保すると同時に、空いた時間で一般のデータ通信も行うことも可能となる。
[0067] なお、本実施例において、一般のデータ通信を妨害端末同士の通信を例としたが 、本発明はこれに限定されず、 AV端末 1102〜: L 109のいずれ力から API 101への 通信でもよい、この場合、例えば AV端末 1102〜: L 109はビデオサーバ 1100へ配 信を希望する AVデータのチャンネル等を通知できる。また、 API 101から AV端末 1 102〜: L 109の!、ずれかへ通常データパケットを伝送してもよ!/、。
[0068] (第 3実施例)
本実施例では、ュ-キャストにおいて、優先データパケットの伝送を優先させ、送信 すべき優先データパケットがない場合にも、他の送信装置に送信機会を与えずに、 つねに送信権利を確保する場合について説明を行う。具体的には、優先データパケ ットを送信して受信装置から ACKが返ってきたときに、次に送信すべき優先データパ ケットがなぐ優先データパケットが準備できた段階でできるだけ早く送信可能となる ようにする送信装置について説明を行う。本実施例における送信装置の構成は、第 1 実施例で説明を行った図 1と同じである。
[0069] 図 4は、本実施例の送信装置にお!、て、ュ-キャストで優先データパケットの伝送 を優先させつつ、送信すべき優先データパケットがな 、場合に見せ掛けのパケットで あるダミーパケットを送信する場合のタイミング図である。見せ掛けのパケットはキヤリ ァ感知部で感知できる見せ掛けのキャリアの一形態である。図 4に示した送信制御は 、パケット送信制御部 103が行う。図 4において、タイミング 422までは図 2で説明した タイミングと同じである。
[0070] すなわち、ノ ケット 400はノケット 200に相当する。 VSIFS410は VSIFS210に相 当する。優先データパケット 401は優先データパケット 201に相当する。 SSIFS411 ίま SSIFS211にネ目当する。 ACK402iま ACK202にネ目当する。つまり、タイミング 42 2までは、パケット送信制御部 103からパケット送信部 102への制御タイミングは、図 2 のタイミング 222までの処理と同様である。すなわち、タイミング 220はタイミング 420 とおなじで、タイミング 221はタイミング 421と同じである。
[0071] タイミング 422において送信すべき優先データパケットがパケット送信部 102にある 場合は、当該パケットを優先して送信するが、第 2実施例で説明したように、パケット 送信部 102に送信すべき優先データパケットが生成されていない場合が発生する。 このとき、第 2実施例で説明を行った方法では、通常データパケットの送信を許可し たが、本実施例では、送信装置 100からダミーパケットを送信することで、他の無線 装置に送信機会を与えず、常に送信権利を確保しておく。
[0072] タイミング 422力ら VSIFS412の後のタイミング 423で、優先データパケットをバケツ ト送信部 102が準備できていなければ、パケット送信制御部 103はパケット送信部 10 2からダミーパケット 403を送信するように制御する。ダミーパケット 403は例えば、図 8に示す、この場合は 24オクテットの MACヘッダ 801と、 0オクテットのパケット本体 8 02と、 4オクテットの FCS803とすることで、最短の時間で送信が完了する無線バケツ トとすればよい。ダミーパケットの送信の宛先としては、図 9のシステム中に存在しない 受信装置に対して送信するなどとすればよい。これにより、他の無線装置が受信処理 を行うことはな 、ので、システムを構成する機器に負荷をかけることはな 、。
[0073] タイミング 424以降は、同様にダミーパケット送信終了後に VSIFS間隔待ち、その 時点で送信すべき優先データパケットがパケット送信部 102になければダミーバケツ トを送信する。図 4では以下の場合の各タイミングを例示している。 VSIFS413後の タイミング 425に優先データパケットがなぐダミーパケット 404を送信する。ダミーパ ケット 404の送信終了時間であるタイミング 426から、 VSIFS414間隔待ったタイミン グ 427では、送信すべき優先データパケットがパケット送信部 102に生成されている 。そこで、優先データパケット 405を送信し、以降優先データパケット 405を送信され た AV端末が SSIFS415待った後に ACK406を送信する。
[0074] 本実施例の方法によれば、送信すべき優先データパケットがあれば、他の装置より 優先して送信を行う。送信すべき優先データパケットがない場合は、待ち時間 VSIF Sと極力短いダミーパケットの送信により、他の装置がパケットを送信するのを防ぐ。そ して、次の優先データパケットが生成された時点で、できるだけ早く送信可能となるよ うにすることで、優先データパケットの優先度を高めることが可能となる。これにより、 AVデータのデータレートが低 、場合でも伝送帯域を確保した、高品質な伝送が可 能となる。
[0075] なお、ダミーデータを送信するまでの待ち時間として使用している VSIFS (図 4にお いては、 VSIFS412, 413)は、優先データパケットを送信するまでの待ち時間と同じ 値として説明を行ったが、必ずしもこれに限定されない。ダミーデータを送信するまで の待ち時間は、他の装置の送信待ち時間より短い間隔であれば、どのような長さでも よい。
[0076] なお、本実施例の場合、送信装置 100が他の送信装置の送信を許さず、優先デー タパケットあるいはダミーパケットを送信し続けるので、必ずしも無線のキャリアを検出 する必要はない。したがって、図 1において、送信装置は必ずしもキャリア感知部 104 を実装しなくても実現可能である。 [0077] (第 4実施例)
本実施例において、優先データパケットをマルチキャストで送信する場合を説明す る。本実施例における送信装置の構成は第 1実施例で説明を行った図 1と同じである 。マルチキャストは、送信装置がひとつあるいは複数の受信装置宛にパケットの送信 を行う伝送方法であり、個々の受信装置から、受信確認のための ACKは返送されな い。
[0078] マルチキャストでは、多数の AV端末に対して一斉に AVパケットを送信することが 可能である。図 9の例では、送信装置である API 101は、 AV端末 1102〜: L 109の 複数の AV端末宛に一斉に AVパケットを送信することができる。ひとつのマルチキヤ ストのパケットを受信する複数の AV端末の組み合わせは自由であり、当然のことな 力 Sらひとつの AV端末に対してマルチキャストを送信してもよい。
[0079] 図 5は、本実施例における送信装置が優先データパケットをマルチキャストにより送 信する場合のタイミング図である。マルチキャストにおいても、送信待ち時間を SIFS より短い VSIFSとすることにより、妨害端末 1110, 1111などの他の送信装置より優 先してパケットを送信することは他の実施例と同じである。パケット送信制御部 103が 、図 5に示した送信制御を行う。
[0080] パケット 500の送信完了のタイミングであるタイミング 520から VSIFS510だけ送信 を待ち、パケット送信部 102は優先データパケット 501を送信する。次に優先データ パケット 501の送信完了タイミングの 521から VSIFS511待ち、優先データパケット 5 02を送信する。送信完了タイミングはタイミング 522である。以降、同様に VSIFS51 2を待って優先データパケット 503を送信する、この送信完了タイミングはタイミング 5 23である。さらに VSIFS513を待って優先データパケット 504を送信する。これらの 動作を繰り返すことにより、妨害端末力ものパケット送信を阻止して、優先データパケ ットの送信を優先する。
[0081] 本実施例において、パケット送信部 102が連続的に優先データパケットを送信する ので、妨害端末がパケット送信権を獲得して無線帯域を消費することはない。なお、 この場合、送信装置 100は、待ち時間 VSIFSをおいて、優先データパケットを送信し 続けるので、必ずしも無線のキャリアを検出する必要はない。したがって、図 1におい て、本発明の送信装置はキャリア感知部 104を実装しなくても実現可能である。
[0082] (第 5実施例)
本実施例において、マルチキャストにより優先データパケットの伝送を優先させつ つ、通常データパケットの伝送も行う場合について説明を行う。本実施例における送 信装置の構成は第 1実施例で説明を行った図 1と同じであり、パケット送信制御部 10 3の制御方法が異なる。本実施例において、優先データパケットを送信した後、 VSI FS期間送信を待っても、次に送信すべき優先データパケットが生成されていない場 合に、通常のデータパケットの送信を許可する場合について説明を行う。
[0083] 図 6は、本実施例の送信装置が、マルチキャストにおいて、優先データパケットの伝 送を優先させつつ、通常データパケットの伝送も行う場合のタイミング図である。図 6 において、タイミング 621までは図 5で説明したのと同様である。すなわち、パケット 6 ΟΟίまノケット 500にネ目当する。タイミング 620ίまタイミング 520にネ目当する。 VSIFS6 10は VSIFS510に相当する。優先データパケット 601は優先データパケット 501に 相当する。
[0084] タイミング 621において、送信すべき優先データパケットがパケット送信部 102にあ る場合は、当該パケットを優先して送信する。しかし、第 2実施例で説明したように、 パケット送信部 102に送信すべき優先パケットが生成されていない場合が発生する。 このような場合は、 API 101、 AV端末 1102〜: L 109、妨害端末 1110, 1111のい ずれ力からの優先データパケットではな 、通常データパケットの送信を許可する。本 実施例では、妨害端末 1110から妨害端末 1111へのアドホック通信を許可する場合 で説明する。
[0085] 通常データパケット 602は、タイミング 621力 、図 10で説明した従来の方法で IEE E802. 11aの送信手順に従って、 DIFS611及び Backoff 612の期間を待った後に 送信される。この時、期間 630にパケット送信部 102に送信すべき優先データバケツ トが準備されると、当該優先データパケットの送信が先に行われるが、図 6ではこの期 間に優先データパケットが準備されて 、な 、状態を示して 、る。
[0086] 通常データパケット 602の通信中は、キャリア感知部 104において、無線キャリアが 検出されるため、優先データパケットはこの期間は送信できない。しかし、通常データ パケット 602の送信中である期間 631と VSIFS613の期間中にパケット送信部 102 で生成された優先データパケット 603は、通常データパケット 602の送信終了後のタ イミング 623から、 VSIFS613の期間を待った後に、パケット送信部 102から送信さ れる。パケット送信制御部 103が、パケット送信部 102からの優先データパケットの送 信制御を行う。
[0087] 図 6では、タイミング 624力ら IEEE802. 11aにおいて ACKの通常の待ち時間であ る SIFS614後に ACK615が送信されて!、る。この ACK615は通常データパケット 6 02に対応するものであり、妨害端末 1111から妨害端末 1110へ受信確認のために 送信されるものである。なお、タイミング 624力も VSIFS後のタイミング(図示していな いが、タイミング 625より前のタイミング)までに優先データパケットがパケット送信部 1 02に生成されている場合は、当該優先データパケットが優先して API 101から送信 される。
[0088] 以上のように、本発明は、優先パケットの帯域を確保すると同時に、空いた時間で 一般のデータ通信も行うことも可能である。
[0089] なお、本実施例において、一般のデータ通信は妨害端末 1110, 1111同士の通 信の場合で説明した力 これに限定されず、いずれかの AV端末力 API 101への 通信でもよい。この場合、例えば AV端末力 ビデオサーバ 1100への要求すべき A Vのチャンネル選択等を行うことができる。また、 API 101から AV端末へ通常データ パケットを伝送してもよい。
[0090] また、通常データパケットはュ-キャストで伝送される場合を例とした力 通常デー タパケットがマルチキャストパケットでも本願発明が有効である。なお、その場合は通 常データパケットに対する ACK615は返送されな 、。
[0091] (第 6実施例)
本実施例において、マルチキャストにより優先データパケットの伝送を優先させ、送 信すべき優先データパケットがない場合にも、他の無線装置に送信機会を与えずに 、つねに送信権利を確保する場合について説明を行う。本実施例における送信装置 の構成は第 1実施例で説明を行った図 1と同じである。本実施例においては、優先デ ータパケットを送信して VSIFS待った後にも、次に送信すべき優先データパケットが なぐ優先データパケットが準備できた段階でできるだけ早く送信可能となるようにす る送信装置について説明を行う。
[0092] 図 7は、本実施例の送信装置が、マルチキャストにおいて、優先データパケットの伝 送を優先させつつ、送信すべき優先データパケットがな ヽ場合に見せ掛けのパケット であるダミーパケットを送信する場合のタイミング図である。見せ掛けのパケットはキヤ リア感知部で感知できる見せ掛けのキャリアの一形態である。図 7において、タイミン グ 721までは図 5で説明したのと同じである。すなわち、パケット 700はパケット 500に ネ目当する。タイミング 720ίまタイミング 520にネ目当する。 VSIFS710iま VSIFS510に 相当する。優先データパケット 701は優先データパケット 501に相当する。つまり、タ イミング 721までは、パケット送信制御部 103からパケット送信部 102への制御タイミ ングは、図 5のタイミング 521までの処理と同様である。
[0093] タイミング 721において、第 2実施例で説明したように、パケット送信部 102に送信 すべき優先パケットが生成されていない場合が発生する。このとき、第 5実施例で説 明を行った方法では、通常データパケットの送信を許可したが、この方法では通常デ ータパケット送信中あるいは直後に、優先データパケットが生成された場合に、通常 データパケット通信直後に優先データパケットを送信可能である。本実施例では、通 常データパケットの送信を許可することなぐ極力優先データパケットを早く送信でき る送信装置を提供する。
[0094] タイミング 721から VSIFS711後のタイミング 722で優先データパケットが準備でき ていなければ、ダミーパケット 702を送信する。ダミーパケット 702は例えば、第 3実施 例で説明したように、図 8に示す MACパケットで、この場合は 24オクテットの MACへ ッダと、 0オクテットのパケット本体と、 4オクテットの FCSとすることで、最短の時間で 送信が完了する無線パケットとなる。
[0095] 送信の宛先としては、図 9のシステム中に存在しない受信装置に対して送信するな どとすればよい。以下、同様にダミーパケット送信終了後に VSIFS間隔を待ち、その 時点で送信すべき優先データパケットがなければダミーパケットを送信する。図 7で は、以下の状態の場合を示している。タイミング 723から VSIFS712後、タイミング 72 4の時点にも送信すべき優先データパケットがなぐダミーパケット 703を送信する。 送信終了 725後さらに VSIFS713後、タイミング 726の時点にも送信すべき優先デ ータパケットがなぐダミーパケット 704を送信する。
[0096] タイミング 727力ら VSIFS714後のタイミング 728では、送信すべき優先データパケ ット 705がパケット送信部 102に生成されており、パケット送信部 102から送信される 。優先データパケット送信終了の 729から VSIFS715後のタイミング 730で送信すベ き優先データパケットがあれば送信を行うが、図 7では、送信すべき優先データパケ ットがなくダミーパケット 706を送信する。この場合の送信終了タイミングは、タイミング 731である。この間のパケット送信部 102からの優先データパケットの送信制御は、 パケット送信制御部 103によって行われる。
[0097] 本実施例によれば、送信装置 100は、送信すべき優先データパケットがあれば、妨 害端末より優先して送信を行う。送信すべき優先データパケットがない場合は、 VSIF Sと最小の長さのダミーパケットの送信により、妨害端末がパケットを送信するのを防 ぐ。そして、次の優先データパケットが生成された時点でできるだけ早く送信可能とな るようにする。これにより、優先データパケットの優先度をさらに高めることが可能とな る。そして、 AVデータのデータレートが低い場合でも伝送帯域を確保した、高品質な 伝送が可能となる。
[0098] なお、ダミーデータを送信するまでの待ち時間として使用している VSIFS (図 7にお いては、 VSIFS711, 712, 713)は、優先データパケットを送信するまでの待ち時間 と同じ値として説明を行ったが、本発明はこれに限定しない。妨害端末の送信待ち時 間より短 、間隔であれば、どのような長さでもよ 、。
[0099] なお、本実施例の場合、優先データパケットあるいはダミーパケットを送信装置から 送信し続けるので、必ずしも無線のキャリアを検出する必要はない。したがって、本発 明の送信装置は、図 1において、必ずしもキャリア感知部 104を実装しなくても実現 可能である。
[0100] なお、本発明の実施例では第 2の通信規約の例として、 IEEE802. 11aを例として 説明を行った力 IEEE802. 11aに限らず、 IEEE802. l ib, IEEE802. l lgでも よい。また、 IEEE802. 11規格だけでなぐパケット送信までの待ち時間の差を利用 して、パケットの送信優先度を決定する全ての伝送方式に有効である。また、無線に 限らず、有線でも本願発明が有効である。したがって、そのような場合でも本願発明 の範囲力も排除するものではな 、。
[0101] また、本発明の実施例で、図 1の構成はハードウェアで実現しても、部分的にある Vヽはすべてをコンピュータによってソフトウェアを用 、て構成しても本願発明の範囲 力 排除するものではない。
[0102] また、本発明の実施例ではアクセスポイントをセンタとして AV端末へ伝送するイン フラストラクチャモードを例として説明を行ったが、本発明はこれに限定しない。本発 明の送信装置は、機器同士が直接通信を行うアドホックモードにも適応可能であり、 アドホックモードに適応した場合でも本願発明の範囲力 排除するものではない。
[0103] また、本発明の実施例では、アクセスポイントから AV端末に AVパケットを送信する 場合を例として説明を行ったので、図 1の構成の送信装置力も優先データパケット及 び通常データパケットが伝送される場合の説明を行った。 ACKを返送する受信装置 も、図 1の構成で実現可能である。
[0104] また、本発明の実施例では、優先データパケットの送信の合間に通常データバケツ トを送信させる条件を、優先データパケットを送信可能なタイミングになっても優先デ ータパケットの生成が完了していない場合を例として説明を行った。本発明は、これ に限らず、何回かに 1回通常データパケットの送信機会をつくるなど、優先データパ ケットの帯域保証の障害にならない程度に、通常データパケットの送信機会を作って ちょい。
[0105] また、本発明の実施例では!ヽろ ヽろな伝送モードの場合を説明を行ったが、システ ムの構成により、これらの実施例で説明した方法をもとに、種々の変形あるいは組み 合わせが可能である。本発明は、そのような場合でも本願発明の範囲から排除するも のではない。
[0106] また、本発明の実施例では、送信待ち時間の例として、 SIFS、 DIFS、 Backoffを 例として説明を行った。しかし、 IEEE802. 11では PIFS (Point Interframe Spa ce)等、他の待ち時間も定義されている。他の待ち時間より短い時間で優先データパ ケットを伝送するという、本願発明の要旨に従っていれば、本願発明の効果を得るこ とができる。したがって、優先データパケットを伝送するまでの待ち時間は、種々の変 形が可能であり、そのような場合でも本願発明の範囲力も排除するものではない。こ のことは、 IEEE802. 11以外のプロトコルでも同じである。
[0107] また、本発明の実施例では、通常データパケットは妨害端末が伝送する場合を例と したが、アクセスポイントが通常データパケットを伝送する場合でも、本願発明の範囲 力 排除するものではない。
[0108] また、本発明の実施例では SSIFSが 15 Sの場合を例として説明を行った力 本 発明はこの値に限定するものではなぐ SSIFSの値が短いほど伝送帯域を広く確保 できるものである。したがって、そのような場合でも本願発明の範囲力も排除するもの ではない。
[0109] また、本発明の実施例 1乃至 6で具体的に例を挙げて説明を行った力 特に無線 通信等において、隠れ端末問題等、アクセスポイントや端末の配置、あるいは各シス テムの無線のチャンネル選択等、ある 、はマルチキャストとュ-キャストの組合せなど 、様々な要因で各種のパケットの到達範囲や検出範囲が変化する。従って、システム のおかれている状況に応じて、優先データパケットを優先的に伝送する待ち時間を 変更可能である。
[0110] したがって、優先データパケットを短い待ち時間で伝送するという本願発明の特徴 を有するものであれば、本願発明の範囲から排除するものではない。なお、 ACKは 受信確認であるので、システムの置かれている状況によっては、受信確認をすべきパ ケットが受信されな 、と ACKは送信されな 、ことを考慮すると、規定されて!、るバケツ トの最小送信間隔と同じ値で優先データパケットを送信する場合でも本願発明を実 現可能な場合もある。
[0111] 本発明の送信装置によれば、妨害端末がシステム内に入り込んだ場合でも、 AVパ ケット (AVデータ)を優先的に伝送可能となり、 AVサービスの無線パケットの伝送帯 域が保証されるので、映像データや音声データ等のリアルタイム性を保証した高品 質な AV伝送サービスを提供可能となる。また、上記効果は AVデータのデータレート にかかわらず有効である。また、優先パケット送信時の待ち時間が短いので、全体的 な使用可能帯域が向上し、伝送網の伝送帯域を有効に活用可能である。
[0112] また、ュ-キャスト時の ACKが、フラグメント単位で伝送されるのではなぐ無線の パケット単位で返送されるので、パケットエラーの再送時にもエラーとなったパケット 単位で再送が行われるので、正常に受信されたパケットを再送することがなく伝送効 率の高いシステムを提供可能である。また、本発明の送信装置では、優先パケットが 優先的に伝送されるのは、従来例の様にフラグメント発生時に限定されず、どのよう な場合でも優先パケットの送信が優先され、本発明特有の効果を得ることが可能であ る。
[0113] また、本発明の送信装置は、パケット送信制御部での制御条件変更により、様々な 変形が容易に可能であり、簡易な構成で優先データパケットの伝送帯域を保証した 、種々のシステムを構築することが可能である。
産業上の利用可能性
[0114] 以上のように、本発明にかかる送信装置は、第 2の通信規約を用いる他の送信装 置が同じ伝送網内に入り込んだ場合でも、第 1の通信規約による第 1の最小パケット 送信間隔で AVパケット (AVデータ)を優先的に伝送可能となり、 AVサービスの無線 パケットの伝送帯域が保証されるので、当該伝送網を用いて映像や音声等の伝送帯 域を保証して伝送しなければならないデータを伝送する場合等に有用である。

Claims

請求の範囲
[1] 第 1の最小パケット送信間隔を備え、優先送信を要求される優先パケットを伝送する 第 1の通信規約による伝送網で用いられる送信装置であって、
入力データ力 パケットを生成するパケット生成部と、
前記第 1の通信規約による伝送網に前記パケットを送信するパケット送信部と、 前記第 1の最小パケット送信間隔で前記パケットを送信するように前記パケット送信 部の送信制御を行うパケット送信制御部と、
を備え、
前記伝送網に、第 2の最小パケット送信間隔で、優先送信を要求されない通常パケ ットを伝送する第 2の通信規約を用いる他の送信装置が存在しうる場合に、前記第 1 の最小パケット送信間隔を前記第 2の最小パケット送信間隔より短くする送信装置。
[2] 前記伝送網のキャリアを感知するキャリア感知部をさらに備え、前記パケット送信制 御部は、前記キャリア感知部が感知する前記伝送網のキャリアにより、前記伝送網の 空状況を把握する請求項 1に記載の送信装置。
[3] 前記パケット送信制御部は、前記優先パケットを連続して送信するように前記パケット 送信部の送信制御を行うことを可能とする請求項 1に記載の送信装置。
[4] 前記パケット送信制御部は、前記パケット送信部に送信すべき前記優先パケットがな
V、場合に、前記キャリア感知部が感知可能な見せ掛けのキャリアを送信するように制 御する請求項 1に記載の送信装置。
[5] 前記見せ掛けのキャリアは、見せ掛けのパケットである請求項 4に記載の送信装置。
[6] 前記第 1の通信規約は、あら力じめ定められた閉じた伝送網で使用される請求項 1に 記載の送信装置。
[7] 前記第 2の最小パケット送信間隔は、ショート 'インターフレーム 'スペースとして規定 される時間である請求項 1に記載の送信装置。
PCT/JP2005/016006 2004-11-02 2005-09-01 送信装置 WO2006048969A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-318960 2004-11-02
JP2004318960A JP2008028430A (ja) 2004-11-02 2004-11-02 送信装置

Publications (1)

Publication Number Publication Date
WO2006048969A1 true WO2006048969A1 (ja) 2006-05-11

Family

ID=36318986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016006 WO2006048969A1 (ja) 2004-11-02 2005-09-01 送信装置

Country Status (2)

Country Link
JP (1) JP2008028430A (ja)
WO (1) WO2006048969A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008206024A (ja) * 2007-02-22 2008-09-04 Nippon Telegr & Teleph Corp <Ntt> 無線lanデータパケット衝突回避制御方法およびその装置
JP2009081563A (ja) * 2007-09-25 2009-04-16 Oki Electric Ind Co Ltd 車両通信システム及び車両関連通信装置
JP2018170594A (ja) * 2017-03-29 2018-11-01 サイレックス・テクノロジー株式会社 無線基地局装置及び通信制御方法
JP2022536536A (ja) * 2019-06-18 2022-08-17 ソニーグループ株式会社 リアルタイムアプリケーションのための即時再送スキーム

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101024268B1 (ko) * 2010-07-20 2011-03-29 엘아이지넥스원 주식회사 애드 혹 네트워크에서의 데이터 처리 장치 및 그 방법
JP5720332B2 (ja) * 2011-03-15 2015-05-20 ヤマハ株式会社 無線オーディオ伝送方法
CN103262639B (zh) * 2010-12-20 2016-08-10 雅马哈株式会社 无线音频传输方法
JP5707926B2 (ja) * 2010-12-20 2015-04-30 ヤマハ株式会社 無線オーディオ伝送方法
JP5786379B2 (ja) * 2011-03-10 2015-09-30 ヤマハ株式会社 無線オーディオ伝送方法
JP5807714B2 (ja) * 2014-11-13 2015-11-10 ヤマハ株式会社 無線トランスミッタ
JP5900768B2 (ja) * 2015-04-16 2016-04-06 ヤマハ株式会社 無線データ伝送方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697943A (ja) * 1992-09-10 1994-04-08 Matsushita Electric Ind Co Ltd Csma/ca方式の連続送信方法およびその装置
JP2004194237A (ja) * 2002-12-13 2004-07-08 Sony Corp 無線通信装置及び通信制御方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697943A (ja) * 1992-09-10 1994-04-08 Matsushita Electric Ind Co Ltd Csma/ca方式の連続送信方法およびその装置
JP2004194237A (ja) * 2002-12-13 2004-07-08 Sony Corp 無線通信装置及び通信制御方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008206024A (ja) * 2007-02-22 2008-09-04 Nippon Telegr & Teleph Corp <Ntt> 無線lanデータパケット衝突回避制御方法およびその装置
JP2009081563A (ja) * 2007-09-25 2009-04-16 Oki Electric Ind Co Ltd 車両通信システム及び車両関連通信装置
JP2018170594A (ja) * 2017-03-29 2018-11-01 サイレックス・テクノロジー株式会社 無線基地局装置及び通信制御方法
JP2022536536A (ja) * 2019-06-18 2022-08-17 ソニーグループ株式会社 リアルタイムアプリケーションのための即時再送スキーム
JP7334804B2 (ja) 2019-06-18 2023-08-29 ソニーグループ株式会社 リアルタイムアプリケーションのための即時再送スキーム

Also Published As

Publication number Publication date
JP2008028430A (ja) 2008-02-07

Similar Documents

Publication Publication Date Title
WO2006048969A1 (ja) 送信装置
JP4407126B2 (ja) 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
US9826492B2 (en) Wireless communication apparatus
EP1735932B1 (en) Multiple receiver aggregation
US9749091B2 (en) Method and device for data communication in a communication network
Leung et al. Outdoor IEEE 802.11 cellular networks: MAC protocol design and performance
US10959128B2 (en) Bluetooth low energy connected isochronous stream acknowledgement and flush algorithm and implementation
US7269152B2 (en) Method and apparatus for transmitting information within a communication system
EP2923514B1 (en) Method and system for improving wireless link efficiency
JP3762422B2 (ja) 通信システム
KR20080063749A (ko) 매체 액세스 제어 아키텍처
EP1690352A2 (en) Wireless communication system, wireless communication device and wireless communication method, and computer program
JP2008054347A (ja) 通信装置、通信システム、通信方法、および通信制御プログラム
JPH10173663A (ja) 通信システム
EP2139165A1 (en) Access point device, communication device and method for access to communication media
WO2007066588A1 (ja) 無線lan通信システム
KR20070087725A (ko) 무선 네트워크를 통하여 데이터를 효율적으로 송/수신하는방법 및 그 방법을 이용한 무선 디바이스
JP2002261866A (ja) 無線伝送装置及び無線伝送方法
CN110278196B (zh) 多目的地突发协议
JP4422148B2 (ja) 情報通信装置、情報通信方法及びプログラム
GB2414637A (en) Data transmission method using a transmission time threshold
WO2022014368A1 (ja) 通信装置、及び通信方法
JP2004179887A (ja) 通信システム、通信制御装置及び通信端末装置
Kanjanavapastit et al. Enhancements of the modified PCF in IEEE 802.11 WLANs
JP2014127956A (ja) 無線通信装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05781554

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP