WO2006044463A1 - Method for preparing hydrophilic polyethersulfone membrane - Google Patents

Method for preparing hydrophilic polyethersulfone membrane Download PDF

Info

Publication number
WO2006044463A1
WO2006044463A1 PCT/US2005/036683 US2005036683W WO2006044463A1 WO 2006044463 A1 WO2006044463 A1 WO 2006044463A1 US 2005036683 W US2005036683 W US 2005036683W WO 2006044463 A1 WO2006044463 A1 WO 2006044463A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
pes
sufficient
act
resultant
Prior art date
Application number
PCT/US2005/036683
Other languages
French (fr)
Inventor
Michael S. Mezhirov
Eshan B. Yeh
Richard Sale
Original Assignee
3M Innovative Properties Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Company filed Critical 3M Innovative Properties Company
Priority to BRPI0515961-0A priority Critical patent/BRPI0515961A/en
Priority to CN2005800350127A priority patent/CN101068612B/en
Priority to JP2007536841A priority patent/JP4778518B2/en
Priority to AU2005295777A priority patent/AU2005295777A1/en
Priority to EP05810468.8A priority patent/EP1804961B1/en
Publication of WO2006044463A1 publication Critical patent/WO2006044463A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • B01D67/00931Chemical modification by introduction of specific groups after membrane formation, e.g. by grafting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones

Definitions

  • the present disclosure relates to an improved efficient and effective method of manufacturing hydrophilic polyethersulfone (PES) membrane suitable for commercial applications and the resultant hydrophilic polyethersulfone (PES) membrane suitable for commercial applications produced thereby.
  • PES hydrophilic polyethersulfone
  • the hydrophobic membrane was prewetted with alcohol, and then soaked in aqueous solution that contained a hydrophilic monomer, a polyfunctional monomer (cross-linker) and an initiator of polymerization.
  • the monomer and cross-linker were then polymerized using thermal or UV initiated polymerization, which formed a coating of cross- linked hydrophilic polymer on the membrane surface.
  • U.S. Patent Nos. 6,193,077 Bl and 6,495,050 B2 proposed coating the PES membrane by soaking the membrane in an aqueous solution of hydrophilic polymer (polyalkylene oxide) and at least one polyfunctional monomer (cross- linker), then polymerizing a monomer. As described, a non-extractable hydrophilic coating was the resultant.
  • hydrophilic polymer polyalkylene oxide
  • cross- linker polyfunctional monomer
  • U.S. Patent No. 4,943,374 proposed to blend PES in a solution with hydrophilic polymers (polyethylene glycol, PVA, polyacrylic acid, polyvinilpirrolidone, etc.). According to the patent, the resultant membranes obtained from the blended solutions were hydrophilic.
  • U.S. Patent No. 6,071,406 disclosed the production of hydrophilic
  • PES membranes by blending PES in a solution with a wetting agent (a block copolymer having hydrophilic and hydrophobic units).
  • a wetting agent a block copolymer having hydrophilic and hydrophobic units.
  • the hydrophobic units of the block copolymer were permanently attached to the hydrophobic matrix (PES) leaving the hydrophilic units on the membrane surface. Since, according to this patent, the wetting agent was permanently attached to the membrane and could not be leached, the resultant membrane possessed permanent hydrophilicity.
  • U.S. Patent No. 5,178,765 disclosed the hydrophilization of PES membrane by blending PES with hydrophilic poly-2-oxazoline resin and polyvinylpyrrolidone resin. According to this patent, the membrane obtained thereby exhibited long-term water wettability.
  • U.S. Patent No. 6,495,043 Bl disclosed a method for PES membrane hydrophilization by blending PES with hydrophilic ethylene oxide/propylene oxide copolymer. According to this patent, the resultant hydrophilic membrane had a reduced tendency toward fouling. As is known to those skilled in the art, the term "fouling" means clogging the membrane pores during the filtration process.
  • U.S. Patent No. 6,039,872 disclosed a method of producing hydrophilic PES membrane by blending the PES with a hydrophilic monomer and an initiator for thermal polymerization. After blending, the polymer solution was heated to a temperature sufficient to start a polymerization of the blended monomer. The resultant polymer solution reportedly contained a blend of PES with hydrophilic polymer. The membrane produced from this resultant solution was reportedly hydrophilic.
  • U.S. Patent No. 4,964,990 disclosed a method, which included a combination of blending PES in a solution with a hydrophilic additive, followed by a hydrophilic coating of the membrane.
  • the PES was mixed in a solution with a hydrophilic polymer (polyethylene glycol or polyvinylpyrrolidone), and then the membrane was cast, quenched and dried. The dried membrane was post treated with an aqueous solution of polyvinyl alcohol and then cross-linked.
  • the patent claimed that the resultant membrane possessed permanent wettability and stability after exposure to prolonged treatment in isopropanol or extended heat treatment.
  • the hydrophilization of PES membrane was accomplished by treatment with low temperature plasmas. The following publications describe the application of plasma reactions for PES membrane hydrophilization:
  • FIG. 1 One representative typical scheme for membrane coating is illustrated in Figure 1.
  • the hydrophobic PES membrane 10 is prewetted in an alcohol solution 12, then washed with water 13, and soaked 14 in aqueous solution containing a hydrophilic monomer, cross-linker (polyfunctional monomer) and the initiator of polymerization. Then, the thus treated membrane is sandwiched between films 16 (usually Mylar films) and proceeds to the polymerization area 15.
  • the polymerization process can be initiated by heat, UV radiation or ⁇ -radiation.
  • the membrane In case of thermal polymerization, the membrane typically traverses along the surface of a hot plate 15, and the polymerization reaction is initiated at the temperature of about 8O 0 C to about 9O 0 C. In cases where the reaction is initiated by UV radiation or ⁇ -radiation, the sources of UV or ⁇ -radiation are installed instead of a hot plate 15, as would be appreciated by those skilled in the art. After polymerization, the membrane is washed with water at 17 and dried by conventional means at 18.
  • U.S. Patent No. 5,178,765 shows that the amount of hydrophilic polymer poly-2-oxazoline resin blended with PES in solution is from 24 to 47% of the PES weight.
  • U.S. Patent No. 6,071,406 shows that the amount of hydrophilic block-copolymer, blended with PES, is from 250 to 350% of the PES weight.
  • U.S. Patent No. 6,495,043 Bl shows that the amount of hydrophilic additive (ethylene oxide/propylene oxide copolymer) is 80% of the PES weight.
  • U.S. Patent No. 4,943,373 describes and claims a hydrophilic membrane formed from polyvinylidene fluoride (PVDF) wherein hydrophilic properties were imparted to the membrane by oxidation through the chemical treatment. Oxidation was performed through the treatment of PVDF membrane with a strong alkali solution (10 to 60 % NaOH) containing an oxidizing agent (potassium permanganate). According to the process description, under the action of strong alkali, conjugated double bonds are formed on the polyvinylidene fluoride as the consequence of the removal of hydrofluoric acid from the PVDF molecule, such formed double bounds are instantaneously oxidized producing hydrophilic polar groups.
  • PVDF polyvinylidene fluoride
  • the treatment included: a) heating the membrane at 60 to 300 0 C, b) Irradiating the membrane with a UV radiation source in the presence of oxygen for a time sufficient to surface oxidize the membrane.
  • the treated membranes exhibited enhanced selectivity in gas separation and no information about changes of the membrane's hydrophilic properties was presented therein.
  • Japanese Patent No. 137,487/83 discloses a process of regeneration of spent membranes from different polymers (including PES) with the aqueous solution containing a surfactant and an oxidizing agent (hypochlorite ion or hydrogen peroxide) in order to speed up the membrane regeneration process.
  • the degree of a regeneration of spent membranes in the presence of an oxidizer was more complete (93.3%) than in the case when no oxidizer was used (66.7%); however, no information about changes of the membrane's hydrophilic properties was presented therein.
  • One aspect of the present disclosure includes an improved method of manufacturing hydrophilic polyethersulfone (PES) membrane of the present disclosure comprising the acts of providing hydrophobic PES membrane; ⁇ rewetting the hydrophobic PES membrane in a sufficient amount of a liquid having a sufficiently low surface tension; exposing the wet PES membrane to a sufficient amount of aqueous solution of oxidizer; and after the exposing act, heating the hydrophobic PES membrane for a sufficient time at a sufficient temperature.
  • PES polyethersulfone
  • Another aspect of the present disclosure includes a method of manufacturing hydrophilic polyethersulfone (PES) membrane comprising the acts of: providing hydrophobic PES membrane; prewetting the membrane in alcohol; washing the membrane with DI water; immersing the washed membrane in an aqueous solution of about 2 to about 9 % ammonium persulfate; heating the solution with the immersed membrane from ambient temperature to about 80 to about 95 0 C and then maintaining the resultant membrane at about 8O 0 C to about 95 0 C for about 15 minutes; washing the membrane in water and then drying the resultant membrane.
  • PES polyethersulfone
  • Yet another aspect of the present disclosure includes a method of manufacturing hydrophilic polyethersulfone (PES) membrane comprising the acts of: providing hydrophobic PES membrane; prewetting the hydrophobic PES membrane in IPA; washing the resultant membrane with DI water; and immersing the resultant membrane in about a 12% aqueous solution of sodium hypochlorite for about 3 minutes at about 9O 0 C to about 95 0 C.
  • PES polyethersulfone
  • Still another aspect of the present disclosure includes a method of manufacturing hydrophilic PES membrane comprising the acts of: providing hydrophobic PES membrane; prewetting the hydrophobic PES membrane with about a 50% aqueous solution of methanol; washing the resultant membrane with DI water; immersing the resultant membrane in about a 20% solution of hydrogen peroxide (H 2 O 2 ); heating the hydrogen peroxide (H 2 O 2 ) solution at about 5O 0 C to about 7O 0 C for about 30 minutes; raising the temperature of the hydrogen peroxide (H 2 O 2 ) solution to about 98 0 C; maintaining the temperature of the hydrogen peroxide (H 2 O 2 ) solution at about 98 0 C temperatures for about 40 minutes.
  • Another aspect of the present disclosure includes removing the membrane from the hydrogen peroxide (H 2 O 2 ) solution; washing the resultant membrane with DI water for about 10 minutes at a temperature of about 40 0 C; and drying the resultant membrane at about 6O 0 C for about 40 minutes.
  • H 2 O 2 hydrogen peroxide
  • Yet another aspect of the present disclosure includes during the immersing act, using an aqueous solution containing about 71% DI water, about 15% hydrogen peroxide and about 4% APS.
  • Still another aspect of the present disclosure includes heating the membrane in the above aqueous solution at a temperature of about 50 0 C to about 7O 0 C for about 30 minutes; uniformly raising the temperature of the aqueous solution to about 92 0 C for about 20 minutes; and thereafter, maintaining the temperature of the aqueous solution at about 92 0 C for about 20 minutes.
  • Another aspect of the present disclosure includes removing the resultant membrane from the above aqueous solution; washing the resultant membrane with DI water for about 15 minutes at a temperature of about 4O 0 C; and drying the resultant membrane at about 65 0 C for about 35 minutes.
  • Another aspect of the present disclosure includes the use of gel membrane which has gone through phase inversion and washing but has not been dried. Such "gel” membrane will be treated in a similar way as described in this section
  • Another aspect of the present disclosure includes a method of manufacturing hydrophilic polyethersulfone (PES) membrane comprising the acts of: providing gel PES membrane; exposing the gel PES membrane to a sufficient amount of an aqueous solution of oxidizer; and after the exposing act, heating the hydrophobic PES membrane for a sufficient time at a sufficient temperature.
  • PES polyethersulfone
  • Still another aspect of the present disclosure includes after the exposing act in the solution of oxidizer, operatively positioning the membrane between two films so that the membrane is sandwiched therebetween; and continuously moving the sandwiched membrane through at lest one heating zone.
  • Yet another aspect of the present disclosure includes during the heating act, operatively positioning the membrane in a saturated water steam medium; and continuously moving the membrane through the saturated water steam medium.
  • Figure 1 is a schematic representation of a typical representative prior art system for PES membrane coating to produce a hydrophilic PES membrane
  • Figure 2 is a schematic representation of a representative dry membrane batch process system for the hydrophilization process of PES membrane according to the present disclosure
  • Figure 3 is a schematic representation of a laboratory system for membrane oxidation using a sandwich method
  • Figure 4A is a schematic representation of a representative method of heating uncovered, unsupported membrane in a steam medium
  • Figure 4B is a schematic representation of a representative method of heating uncovered membrane on a transporting belt in a steam medium
  • Figure 4C is a schematic representation of a representative method of heating uncovered membrane on a rotating drum in a steam medium
  • Figure 5 is a schematic representation of a representative method of oxidizing uncovered "gel" membrane
  • FIG. 6 illustrates protein binding results for various membranes
  • Figure 7 is a schematic representation of a representative method of a representative two-cycle process of PES membrane oxidation.
  • the present disclosure is directed to a new effective and economical method for the hydrophilization of PES membrane, which can successfully compete with all previously known methods and, quite possibly, exceed them.
  • Ammonium persulfate is known to be a strong water soluble oxidizer: its standard oxidation potential is 2.01 volts. According to this potential APS is placed near the top of the oxidizers list.
  • Example 1 illustrates the batch method of one process of the present disclosure.
  • the first step involves the: preparation of hydrophobic PES membrane.
  • the membrane was cast on the glass plate using the dope of following formulation: PES polymer (Radel polymer from Solvay) - 14%; l-Methyl-2-pyrrolidone (solvent) - 21%; Polyethylene glycol 400 (poroformer) - 65%.
  • the cast membrane was air quenched inside a humidity chamber at a temperature of about 23 0 C and having an air humidity from about 65 to about 68% for about 25 minutes.
  • the thus quenched membrane was then washed with DI water for about 30 minutes and then dried at about 80 0 C for about 15 minutes.
  • hydrophobic PES membrane obtained as described above, was first used in the present Example and was also used in other Examples (Examples 2-5 below).
  • a sample of hydrophobic PES membrane (about 10 cm x about 10 cm) was prewetted in isopropyl alcohol (IPA), washed with DI water and immersed in an aqueous solution of oxidizer (ammonium persulfate).
  • oxidizer ammonium persulfate
  • concentration of ammonium persulfate (APS) was about 3%.
  • the solution was heated from ambient to about 9O 0 C - 95 0 C and maintained at about 9O 0 C - 95°C for about 15 minutes.
  • the resultant membrane was cooled to ambient temperature, washed with water for about 10 to about 20 minutes in order to remove the remains of oxidizer and then dried at about 7O 0 C for about 40 minutes.
  • Example 2 demonstrates the membrane hydrophilization process utilizing another oxidizer - Sodium Hypochlorite.
  • a sample of hydrophobic PES membrane (about 8 cm x 40 cm) was prewetted in IPA, washed with DI water and immersed in about 12% aqueous solution of sodium hypochlorite for about 3 minutes. Then the membrane was taken out of the solution and wound into a roll with diameter of about 3 cm. The rolled membrane was again immersed in 12% aqueous solution of sodium hypochlorite, and the solution temperature was raised to about 97 0 C. The membrane was kept in the solution at this temperature for about 1 hour. Then the membrane roll was taken out of the solution, the membrane was unwound, washed with DI water for about 30 minutes and dried at about 70 0 C for about 30 min. The resultant membrane was hydrophilic: it was wetted in water instantaneously.
  • hydrophilization process of the PES membrane performed as shown in examples 1 and 2, in accordance with the present disclosure, is simple, and can be applied in manufacturing conditions for the batch process of membrane treatment in the rolls, as shown in Figure 2.
  • the hydrophobic PES membrane 30 is prewetted in alcohol solution 32, then washed in water 33, and soaked in aqueous solution of oxidizer at 34 and wound on the roll 35.
  • the roll 35 is heated in the oven 36 (other heating methods are also possible, for example, microwave heating and other known processes) to the temperature of oxidation reaction for a sufficient time and is then the oxidized membrane 37 is processed through the washing 38 and drying 39 steps.
  • the membrane continuously travels through the bath with alcohol for prewetting, then passes the water bath for washing, then passes the bath with APS solution and, after soaking in APS solution, the membrane is sandwiched between the films (preferably Mylar films).
  • the heat treatment of the membrane is performed continuously between the Mylar films ⁇ for example by moving the "sandwich" along the surface of the hot plate, preheated to about 95-105 0 C. After the oxidation reaction is completed, the membrane is going out of Mylar films and then is washed and dried.
  • a sample of hydrophobic PES membrane (about 8cm x about 24 cm) was prewetted with IPA, washed with DI water for about 5 minutes and soaked in about 3% APS solution for about 2 minutes.
  • the membrane sample 45 after soaking in APS solution, was sandwiched between two bars of Mylar film 46. One end of the sandwich was connected to the roller 49, which pulled the sandwich at a speed of about 30 cm/min along the surface of a hot plate 47.
  • the hot plate had a temperature regulation +/- I 0 C and was preheated to about 102 0 C.
  • a piece of sponge 48 was placed on the sandwich surface to uniformly press the sandwich to the hot plate and also to prevent the membrane from cooling.
  • the hot plate length was about 60 cm, and the speed of sandwich movement (about 30 cm/min) provided membrane heating on the hot plate for about 2 minutes. After heating, the membrane was taken out of the sandwich, washed in water for about 10 minutes, and dried at about 80 0 C for about 30 minutes.
  • test A the treated membrane was instantaneously wetted in water and in NaCl solution having a concentration of about 20%.
  • the membrane retained hydrophilicity after heating in water in an autoclave at about 124°C for about 1 hour. Because of the short oxidation time (about 2 minutes), the "sandwich" method can potentially be conveniently arranged as a continuous process for the large-scale manufacturing of hydrophilic PES membrane.
  • the gel membrane is a membrane precursor, which was gone through the stages of casting, quenching and washing, but has not been dried.
  • Oxidization of the membrane in the gel state is very interesting because the use of membrane in the gel state significantly shortened the manufacturing process of hydrophilic PES membrane suitable for commercial scale processing.
  • the use of the membrane in the gel state approach eliminated the step of membrane drying (after the phase inversion and washing steps) as well as the steps of membrane prewetting with IPA and washing IPA off the membrane resulting in the efficient and effective method of manufacturing hydrophilic PES membrane suitable for commercial scale processing.
  • the oxidation of the membrane in a gel state can have an additional advantage in that utilization of the gel membrane can significantly increase the efficiency of the oxidation process.
  • membrane in the gel state has much higher porosity than a dried membrane.
  • the membrane shrinks and, because of this shrinkage, it is believed that the number and the diameter of pores in the membrane can be significantly reduced. Due to a developed system of pores, the gel membrane is therefore believed to be more penetratable for different dissolved substances than for a dried membrane.
  • the oxidizers utilized with the present disclosure can penetrate into the structure of gel membrane much faster and deeper, significantly increased degree of oxidation and hydrophilicity can be achieved by oxidation of the membrane in a gel state as compared to the oxidation of the previously dried membrane.
  • the presently preferred manufacturing process for PES membrane in a "gel" state is described below in the Example 4.
  • the resultant membranes produced using both type of samples, previously dried membranes and the membranes in the gel form showed high hydrophilicity.
  • the resultant membranes were subjected to treatment in an autoclave at about 124 0 C.
  • the hydrophilicity of all samples tested was not noticeably changed.
  • the process of hydrophilization of "gel" membrane is significantly shorter since it does not include the operations of drying membrane after quenching and washing and the operations of membrane prewetting and washing before oxidation.
  • the saturated water steam has the highest possible humidity at the certain temperature and cannot accept any additional amount of water. Because of this at the conditions of our experiment, the saturated steam medium reliably prevents the membrane from drying.
  • the relatively low temperature of the oxidation process (below 100 0 C) facilitates the application of a steam treatment process without pressure.
  • the process is safe and the required equipment is relatively simple and inexpensive, as compared to some prior art processes.
  • Example 5 illustrates the hydrophilization of uncovered membrane (without Mylar films being utilized in the process):
  • a sample of hydrophobic previously dried PES membrane about 5 cm x about 8 cm was prewetted in IPA, washed with water for about 10 minutes and soaked in about 6% APS solution for about 5 minutes.
  • a sample of hydrophobic "never dried" PES membrane about 5 cm x about 8 cm was soaked in about 6% APS solution (without previous prewetting and washing). Both samples were placed on a piece on metallic net (about 10 cm x about 10 cm).
  • a 2 L beaker was filled with water to about 1 A of its volume, and water was brought to boiling. The net with membrane samples was fixed inside the beaker approximately at about 10 cm above the water level.
  • sample C in Table 3 below the hydrophobic, previously dried, PES membrane was prewetted, washed and soaked in APS solution the same way as it is described in the Process for the sample A and sample D of gel membrane was soaked in APS solution the same way as it is described in the Process for the sample B. Both samples (C and D) were placed without being placed between films on the surface of the metallic plate preheated to about 95°C and then were heated on this plate at about 95 0 C for about 6 minutes. Then the samples were washed and dried the same way as it was described in the Process 1.
  • Table 3 below shows the hydrophilicity of the samples A, B, C and D obtained in Example 5 below.
  • Figure 5 illustrates the presently preferred manufacturing method for hydrophilization of "gel” (never dried) membrane with application of the steam medium. As illustrated in Figure 5, this method is significantly shorter and simpler than the previous traditional process of membrane coating, as illustrated in Figure 1.
  • FIG. 5 shows a roll of "gel" membrane at 80.
  • the membrane 80 is connected to a rewind system (not shown). As the membrane 80 unwinds, it traverses through the first station 82 where the membrane soaks in aqueous solution of APS.
  • the APS concentration in the solution can be, for example, about 3% to about 6% by Wt., the temperature about 20-30°C, soaking time about 2-4 minutes.
  • the thus treated membrane 80 traverses a second station 83 (steam chamber) wherein the membrane is heated with saturated water steam in accordance with the diagram of Figure 4 A or Figure 4 B, or Figure C.
  • the steam temperature can be about 9O 0 C to about 98 0 C and the time of membrane heating in the steam chamber can be about 2 to about 4 minutes.
  • the treated membrane continues traversing to the third station at 84 (washing chamber) wherein the remains of oxidizer, which, possibly, can remain inside the membrane after the oxidation reaction is completed, are washed off with water.
  • the membrane continues to the fourth Station 85 (drier) wherein the membrane is dried at the temperature, for example, about 70 to about 8O 0 C for about 5 to about 30 minutes. After drying at the station 85, the hydrophilization process is accomplished and the hydrophilic PES membrane according to the present disclosure is obtained.
  • the membranes produced using the proposed method have low protein binding.
  • the protein binding test was performed using fluorescein tagged
  • Goat IgG protein (manufactured by Cedarlane Laboratories).
  • the aqueous solution of protein (with a protein concentration of about 10 ⁇ g /ml) was pumped with a syringe pump through a disk of tested membrane with a diameter of about 13 mm at the flow rate of about 1 ml/min.
  • a concentration of protein in the influent and effluent was measured using a Perkin - Elmer luminescence spectrophotometer.
  • the amount of protein adsorbed by the membrane was calculated by multiplying a volume of the protein solution, pumped through the membrane, by the difference between the protein concentrations in the influent and effluent.
  • Several membranes were tested for comparison including the oxidized membranes obtained in the Example 1 and several commercial membranes with different protein binding.
  • FIG. 6 illustrates the protein binding results are presented in wherein the Protein binding of different membranes are prepared according to the following:
  • Figure 6 illustrates that the protein adsorption of the oxidized PES membrane was close to the protein adsorption of the commercial membranes with low protein binding (Millipore 's PVDF membrane, Membrana PES; Millipore Express; Sartorius Sartopore) and was much lower than the protein adsorption of the membrane with high protein binding (nylon membrane).
  • the obtained results show that the membrane, produced by the proposed hydrophilization method of the present disclosure, closely approximated the performance the group of those membranes known to exhibit low protein binding characteristics.
  • a sample of hydrophobic PES membrane (about 5 cm x about 10 cm) is prewetted into about a 50% aqueous solution of methanol, washed with DI water and immersed in about a 20% solution of hydrogen peroxide (H 2 O 2 ).
  • the membrane is heated in the hydrogen peroxide (H 2 O 2 ) solution at a temperature of about 50 0 C to about 70 0 C for about 30 minutes, then the temperature of the hydrogen peroxide (H 2 O 2 ) solution is raised to about 98 0 C and is maintained at about 98 0 C temperature for about 40 minutes.
  • the membrane is washed with DI water for about 10 minutes at a temperature of about 40 0 C and dried at about 6O 0 C for about 40 minutes.
  • the membrane oxidation process occurred at those conditions as follows: after the first membrane heating (at about 5O 0 C to about 7O 0 C) step, the membrane oxidation process is believed to be mostly completed and the hydrogen peroxide concentration in the solution is depleted. It is believed that the additional step of membrane heating at the elevated temperature (at about 98°C) is performed in order to fully complete the oxidation and to decompose the remaining H 2 O 2 . Since the products of H2O2 decomposition at the high temperature are water and oxygen, the resultant membrane, should not contain any hazardous substances.
  • a sample of hydrophobic PES membrane (about 5 cm x about 10 cm) is prewetted and washed the same way as it is described in example 6 above.
  • the sample is immersed in an aqueous solution containing the following ingredients: about 71% DI water, about 15% hydrogen peroxide (the first oxidizer) and about 4% APS (the second oxidizer).
  • the membrane is heated in the above aqueous solution at a temperature of about 5O 0 C to about 7O 0 C for about 30 minutes. Then, the temperature of the aqueous solution is presently preferably uniformly raised to about 92 0 C for about 20 minutes, after which, the temperature of the aqueous solution containing the membrane is maintained at about 92 0 C for about 20 minutes.
  • the membrane is washed with DI water for about 15 minutes at a temperature of about 4O 0 C and dried at about 65 0 C for about 35 minutes.
  • H 2 O 2 functions as the only membrane oxidizer. APS does not appear to participate in the oxidation reaction since its working temperature is much higher
  • a sample of hydrophobic PES membrane (about 8 cm x about 24 cm) is prewetted with IPA, washed with DI water for about 5 minutes, and soaked in about a 20% solution of hydrogen peroxide. Then the sample is sandwiched between two bars of Mylar film. The obtained sandwich is moved along the surface of hot plates.
  • the scheme of this process is similar to the process shown in Figure 3; the only difference is that instead of one hot plate (as it is shown in Figure 3), two hot plates are used.
  • the two hot plates have different temperatures with the first hot plate being preheated to a temperature of about 55 0 C to about 75 0 C, the second plate having a temperature of about 102 0 C.
  • the length of each hot plate is about 60 cm; the speed of the sandwiched movement is about 30 cm/min.
  • the membrane is heated on each hot plate for about 2 minutes.
  • a sample of hydrophobic PES membrane (about 5 cm x 50 cm) is prewetted and washed the same way as described in the Example 6 above. This sample is placed on the bar of the Mylar film with the width about 7 cm. and the length about 4 meters. The ends of the sample are attached with the staples to the supporting Mylar film.
  • the scheme of the laboratory system 90 which simulates a continuous hydrophilization process, is presented on the Figure 7.
  • the Mylar film 91 with attached membrane sample 92 is pulled by the roller 93 and is going through the bath 94, containing a solution of the first oxidizer, then along the steam chamber 95, then through a bath 96 with a solution of the second oxidizer, then along the steam chamber 97, and finally is wound on the roller 92.
  • the conditions of the oxidation process are as follows: ' The solution of the first oxidizer: aqueous solution of bleach (HClO) with a concentration of about 12%; the solution of the second oxidizer: aqueous solution of APS with a concentration of about 6%.
  • the speed of the Mylar film movement is about 20 cm/minute; the length of the steam chambers is about 50 cm.
  • the membrane sample After the membrane sample reaches the roller 92, it is detached from the Mylar film, washed in water at about 4O 0 C to about 5O 0 C and dried at about 65°C for about 30 minutes.
  • the membrane oxidation experiment is performed the same way as it described in the Example 9, but the solution in the bath 94 is about 3% APS, and the solution in the bath 96 is about 6 % APS. It is presently believed that the resultant membrane, obtained after two oxidation cycles, will have a higher oxidation degree and higher hydrophilicity, compared to the membrane obtained after a single oxidation cycle.
  • a sample of hydrophobic PES membrane (about 6 cm x about 6 cm) is prewetted into 50% aqueous solution of methanol and washed with DI water and immersed in aqueous solution, which contains about 95.8% water, about 4% APS, and about 0.2% of water soluble complex of Cu(II) (oxidation catalyst).
  • complexes of transition metals including, but not limited to copper, zinc, iron etc. are water soluble substances, can be employed as catalysts for oxidation reactions and can significantly intensify the activity of oxidizers. Such complexes of transition metals are believed to lower the actuation energy barrier.
  • the membrane is heated in the above described solution at a temperature of about 70 0 C for about 10 minutes, and then the membrane is removed from the solution, is washed with DI water for about 15 minutes at a temperature of about 40 0 C, and dried at about 70 0 C for about 40 minutes.
  • a method of PES membrane hydrophilization by oxidation wherein a dried membrane (the membrane has completed all the stages of the manufacturing process, including, but not limited to: casting, phase inversion, washing and drying) is oxidized.
  • a method of PES membrane hydrophilization by oxidation wherein, in order to make a hydrophilization process significantly simpler and shorter, a never dried gel membrane (the membrane after the stages of casting, phase inversion and washing, but prior to drying) is oxidized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Transplantation (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

The present disclosure relates to improved efficient and effective systems and methods of manufacturing hydrophilic polyethersulfone (PES) membrane suitable for commercial applications and the resultant hydrophilic polyethersulfone (PES) membrane suitable for commercial applications produced thereby and includes methods of manufacturing hydrophilic polyethersulfone (PES) membrane comprising the acts of : providing hydrophobic PES membrane; prewetting the hydrophobic PES membrane in a sufficient amount of a liquid having a sufficiently low surface tension; exposing the wet hydrophobic PES membrane to a sufficient amount of an aqueous solution of oxidizer; and after the exposing act, heating the hydrophobic PES membrane for a sufficient time at a sufficient temperature and methods of manufacturing hydrophilic polyethersulfone (PES) membrane to a sufficient amount of an aqueous solution of oxidizer; and after the exposing act, heating the hydrophobic PES membrane for a sufficient time at a sufficient temperature and the resulting products.

Description

METHOD FOR PREPARING HYDROPHILIC POLYETHERSULFONE MEMBRANE
Related Applications
This application is a continuation-in-part of US Provisional Application No. 60/618,522, of Mezhirov et al., filed on October 13, 2004, the disclosure of which is herein incorporated by reference to the extent not inconsistent with the present disclosure.
Background of the Disclosure
The present disclosure relates to an improved efficient and effective method of manufacturing hydrophilic polyethersulfone (PES) membrane suitable for commercial applications and the resultant hydrophilic polyethersulfone (PES) membrane suitable for commercial applications produced thereby.
As is known, PES membranes are naturally hydrophobic. Most membrane applications require the use of hydrophilic membranes. Several different methods are known to transform hydrophobic PES membranes into hydrophilic PES membranes (to perform membrane hydrophilization). Some of these methods are complicated and expensive, while others fail to provide high purity membrane (for example, the membranes could contain the remains of hazardous monomers, used for hydrophilic coating).
Several different prior known methods of PES membrane hydrophilization are presented in the patent and scientific literature. In one known prior method, the hydrophilization of PES membrane was accomplished by coating the hydrophobic membrane with a hydrophilic polymer. In order to provide the desirable permanent attachment of the hydrophilic polymer to the membrane, a hydrophilic coating layer was usually subjected to a cross-linking reaction or a coating polymer was grafted to the surface of the hydrophobic PES membrane. The preceding approach has been disclosed in the following patents and publications: U.S. Patent No. 4,618,533 disclosed a method of PES membrane hydrophilization by direct membrane coating. As described, the hydrophobic membrane was prewetted with alcohol, and then soaked in aqueous solution that contained a hydrophilic monomer, a polyfunctional monomer (cross-linker) and an initiator of polymerization. The monomer and cross-linker were then polymerized using thermal or UV initiated polymerization, which formed a coating of cross- linked hydrophilic polymer on the membrane surface.
U.S. Patent Nos. 6,193,077 Bl and 6,495,050 B2 proposed coating the PES membrane by soaking the membrane in an aqueous solution of hydrophilic polymer (polyalkylene oxide) and at least one polyfunctional monomer (cross- linker), then polymerizing a monomer. As described, a non-extractable hydrophilic coating was the resultant.
The article "Surface modification of Poly(ether sulfone) Ultrafiltraton Membranes by Low-Temperature Plasma-Induced Graft Polymerization (Journal of Applied Polymer Science, Vol. 72, 1699-1711 (1999)) describes the hydrophilization of PES membrane by a grafting reaction. In this process as described therein, hydrophilic PES membrane was submitted to low- temperature helium plasma treatment followed by the grafting of hydrophilic monomer N vinyl-2-pyrrolidone onto the membrane surface. In another known prior method, the hydrophilization of PES membrane was accomplished by dissolving hydrophobic PES polymer in a solvent and blending it with a hydrophilic additive, which was soluble in the same solvent. The obtained blended solution was used for casting a hydrophilic membrane.
The following patents disclose representative prior methods of PES membrane hydrophilization by blending PES polymer with hydrophilic additives.
U.S. Patent No. 4,943,374 proposed to blend PES in a solution with hydrophilic polymers (polyethylene glycol, PVA, polyacrylic acid, polyvinilpirrolidone, etc.). According to the patent, the resultant membranes obtained from the blended solutions were hydrophilic. U.S. Patent No. 6,071,406 disclosed the production of hydrophilic
PES membranes by blending PES in a solution with a wetting agent (a block copolymer having hydrophilic and hydrophobic units). In the resultant membrane, the hydrophobic units of the block copolymer were permanently attached to the hydrophobic matrix (PES) leaving the hydrophilic units on the membrane surface. Since, according to this patent, the wetting agent was permanently attached to the membrane and could not be leached, the resultant membrane possessed permanent hydrophilicity.
U.S. Patent No. 5,178,765 disclosed the hydrophilization of PES membrane by blending PES with hydrophilic poly-2-oxazoline resin and polyvinylpyrrolidone resin. According to this patent, the membrane obtained thereby exhibited long-term water wettability.
U.S. Patent No. 6,495,043 Bl disclosed a method for PES membrane hydrophilization by blending PES with hydrophilic ethylene oxide/propylene oxide copolymer. According to this patent, the resultant hydrophilic membrane had a reduced tendency toward fouling. As is known to those skilled in the art, the term "fouling" means clogging the membrane pores during the filtration process.
U.S. Patent No. 6,039,872 disclosed a method of producing hydrophilic PES membrane by blending the PES with a hydrophilic monomer and an initiator for thermal polymerization. After blending, the polymer solution was heated to a temperature sufficient to start a polymerization of the blended monomer. The resultant polymer solution reportedly contained a blend of PES with hydrophilic polymer. The membrane produced from this resultant solution was reportedly hydrophilic.
U.S. Patent No. 4,964,990 disclosed a method, which included a combination of blending PES in a solution with a hydrophilic additive, followed by a hydrophilic coating of the membrane. In the method described in this patent, the PES was mixed in a solution with a hydrophilic polymer (polyethylene glycol or polyvinylpyrrolidone), and then the membrane was cast, quenched and dried. The dried membrane was post treated with an aqueous solution of polyvinyl alcohol and then cross-linked. The patent claimed that the resultant membrane possessed permanent wettability and stability after exposure to prolonged treatment in isopropanol or extended heat treatment. In yet another known prior method, the hydrophilization of PES membrane was accomplished by treatment with low temperature plasmas. The following publications describe the application of plasma reactions for PES membrane hydrophilization:
The dissertation "Surface modification of porous polymeric materials using low-temperature plasmas" (Michelle L. Steen, Colorado State University, 1994) described a surface modification of several membranes from different polymers, including PES. To impart permanent hydrophilic properties to these membranes, the membranes were treated with low-temperature plasma. It was reported that the plasma treatment initiated formation of hydroxyl radicals (OH radicals). OH radicals were the primary reactive species involved in - A -
membrane modification. Because of the influence of OH radicals, the oxidation reaction occurred, and hydrophilic groups containing oxygen appeared on the membrane surface. It was reported that the presence of these polar groups made the membrane hydrophilic. The article "Modification of porous Poly(ether sulfone) Membranes by Low-Temperature CO2 Plasma Treatment" (Journal of Polymer Physics, Vol. 40, 2473-2488 (2002)) described the hydrophilic modification of PES membrane by treatment with low temperature CO2 -plasma. The article claims the formation of hydrophilic functionalities on the membrane primarily during a plasma treatment, with some incorporation of atmospheric oxygen and nitrogen on the membrane surface immediately upon exposure the membrane to air.
Shortcomings of the above described prior methods are presented below. The coating methods of PES membrane hydrophilization
One shortcoming of the above described membrane coating processes is their degree of complexity. One representative typical scheme for membrane coating is illustrated in Figure 1. As shown, the hydrophobic PES membrane 10 is prewetted in an alcohol solution 12, then washed with water 13, and soaked 14 in aqueous solution containing a hydrophilic monomer, cross-linker (polyfunctional monomer) and the initiator of polymerization. Then, the thus treated membrane is sandwiched between films 16 (usually Mylar films) and proceeds to the polymerization area 15. As is known, the polymerization process can be initiated by heat, UV radiation or γ-radiation. In case of thermal polymerization, the membrane typically traverses along the surface of a hot plate 15, and the polymerization reaction is initiated at the temperature of about 8O0C to about 9O0C. In cases where the reaction is initiated by UV radiation or γ-radiation, the sources of UV or γ-radiation are installed instead of a hot plate 15, as would be appreciated by those skilled in the art. After polymerization, the membrane is washed with water at 17 and dried by conventional means at 18.
The above representative scheme shows that the coating process requires significant amounts of the equipment and consumes a considerable amount of Mylar film. At the same time, the monomers and the cross-linkers applied in the representative coating polymerization process are regarded to be hazardous substances. The possibility that small amounts of these substances remain in the membrane could be a concern for the membrane applications in the fields, which require highly pure end products. Thus, it is clear that there is a need to significantly reduce the complexity and the cost of the membrane hydrophilization process, as well as the possibility of hazardous substances remaining in the end membrane product.
Blending PES with hvdrophilic additives methods of PES membrane hydrophilization
The main disadvantage of this approach is that in order to achieve the desired hydrophilization effect, the amount of applied hydrophilic additive is usually very significant.
The following patents illustrate the amounts of hydrophilic additives required to effectively practice this method. Specifically, U.S. Patent No. 5,178,765 shows that the amount of hydrophilic polymer poly-2-oxazoline resin blended with PES in solution is from 24 to 47% of the PES weight. U.S. Patent No. 6,071,406 shows that the amount of hydrophilic block-copolymer, blended with PES, is from 250 to 350% of the PES weight. U.S. Patent No. 6,495,043 Bl shows that the amount of hydrophilic additive (ethylene oxide/propylene oxide copolymer) is 80% of the PES weight. The presence of large amounts of the additive in the membrane (and, correspondingly, reduced amount of PES) can reduce the valuable properties of PES membranes (such as a high stability in acidic and basic media, mechanical strength, thermal stability etc.) Treatment of PES membrane with low-temperature plasma
The study of the treatment of PES membranes with low temperature plasma was performed, primarily, using small laboratory reactors, as would be understood by those skilled in the art. In the scale-up of the laboratory process, the plasma treatment of the membranes may cause some problems: the process uniformity and membrane quality produced by large reactors have not always proven to be sufficient; sometimes plasma can damage the membrane due to the etching from ion bombardment. In many cases, such plasma treatment processes require a reduced pressure environment. These process control problems are especially important when membrane manufacturing is performed as a continuous process. Generally, although the continuous hydrophilization of PES membranes by treatment with low-temperature plasma looks promising, currently the technology and the equipment for this process are in the research and development stage. Additional study will be required to reach a more definite conclusion about the practical application of the low temperature plasma approach in PES membrane manufacturing.
Additional Membrane Oxidation Prior Art
U.S. Patent No. 4,943,373 describes and claims a hydrophilic membrane formed from polyvinylidene fluoride (PVDF) wherein hydrophilic properties were imparted to the membrane by oxidation through the chemical treatment. Oxidation was performed through the treatment of PVDF membrane with a strong alkali solution (10 to 60 % NaOH) containing an oxidizing agent (potassium permanganate). According to the process description, under the action of strong alkali, conjugated double bonds are formed on the polyvinylidene fluoride as the consequence of the removal of hydrofluoric acid from the PVDF molecule, such formed double bounds are instantaneously oxidized producing hydrophilic polar groups. The double bond formation under the action of strong alkali is specific for PVDF molecules. This patent describes and claims only hydrophilic oxidized membrane that can be reacted in alkali condition to form conjugated double bonds, such as PVDF. It does not include the oxidation of any membrane that cannot form conjugated double bonds in alkali condition, such as PES membrane. Several patents and publications describe the modification of PES membranes by oxidation but for purposes other than hydrophilization. The goals of the oxidation treatments described therein did not relate to membrane hydrophilization, and no information about change of the membrane's hydrophilic properties was presented therein. U.S. Patent No. 5,409,524 discloses a method for treatment of gas separation membranes made from different polymers (including PES). The treatment included: a) heating the membrane at 60 to 3000C, b) Irradiating the membrane with a UV radiation source in the presence of oxygen for a time sufficient to surface oxidize the membrane. The treated membranes exhibited enhanced selectivity in gas separation and no information about changes of the membrane's hydrophilic properties was presented therein.
Japanese Patent No. 137,487/83 discloses a process of regeneration of spent membranes from different polymers (including PES) with the aqueous solution containing a surfactant and an oxidizing agent (hypochlorite ion or hydrogen peroxide) in order to speed up the membrane regeneration process. The degree of a regeneration of spent membranes in the presence of an oxidizer was more complete (93.3%) than in the case when no oxidizer was used (66.7%); however, no information about changes of the membrane's hydrophilic properties was presented therein.
The dissertation "Microfϊltration of Apple Juice: Membrane Structure and Foulant Morphology Effects on Flux Resistance" ((Kenneth M. Riedl, University of Guelph (Canada), 1996)) describes the study of membrane fouling during the process of apple juice filtration. Several membranes from different polymers (including PES membrane) were studied. It was shown, according to the dissertation, that resistance of a fouling layer, formed on the membrane during a juice filtration, could be reduced by a treatment of the membrane with the oxidizing agent and no information about changes of the membrane's hydrophilic properties was presented therein. Thus, there remains a need to develop a relatively simple, cost effective and reliable method for the preparation of hydrophilic PES membrane.
SUMMARY OF THE DISCLOSURE
One aspect of the present disclosure includes an improved method of manufacturing hydrophilic polyethersulfone (PES) membrane of the present disclosure comprising the acts of providing hydrophobic PES membrane; υrewetting the hydrophobic PES membrane in a sufficient amount of a liquid having a sufficiently low surface tension; exposing the wet PES membrane to a sufficient amount of aqueous solution of oxidizer; and after the exposing act, heating the hydrophobic PES membrane for a sufficient time at a sufficient temperature. Another aspect of the present disclosure includes a method of manufacturing hydrophilic polyethersulfone (PES) membrane comprising the acts of: providing hydrophobic PES membrane; prewetting the membrane in alcohol; washing the membrane with DI water; immersing the washed membrane in an aqueous solution of about 2 to about 9 % ammonium persulfate; heating the solution with the immersed membrane from ambient temperature to about 80 to about 95 0C and then maintaining the resultant membrane at about 8O0C to about 950C for about 15 minutes; washing the membrane in water and then drying the resultant membrane.
Yet another aspect of the present disclosure includes a method of manufacturing hydrophilic polyethersulfone (PES) membrane comprising the acts of: providing hydrophobic PES membrane; prewetting the hydrophobic PES membrane in IPA; washing the resultant membrane with DI water; and immersing the resultant membrane in about a 12% aqueous solution of sodium hypochlorite for about 3 minutes at about 9O0C to about 950C.
Still another aspect of the present disclosure includes a method of manufacturing hydrophilic PES membrane comprising the acts of: providing hydrophobic PES membrane; prewetting the hydrophobic PES membrane with about a 50% aqueous solution of methanol; washing the resultant membrane with DI water; immersing the resultant membrane in about a 20% solution of hydrogen peroxide (H2O2); heating the hydrogen peroxide (H2O2) solution at about 5O0C to about 7O0C for about 30 minutes; raising the temperature of the hydrogen peroxide (H2O2) solution to about 980C; maintaining the temperature of the hydrogen peroxide (H2O2) solution at about 98 0 C temperatures for about 40 minutes.
Another aspect of the present disclosure includes removing the membrane from the hydrogen peroxide (H2O2) solution; washing the resultant membrane with DI water for about 10 minutes at a temperature of about 400C; and drying the resultant membrane at about 6O0C for about 40 minutes.
Yet another aspect of the present disclosure includes during the immersing act, using an aqueous solution containing about 71% DI water, about 15% hydrogen peroxide and about 4% APS.
Still another aspect of the present disclosure includes heating the membrane in the above aqueous solution at a temperature of about 500C to about 7O0C for about 30 minutes; uniformly raising the temperature of the aqueous solution to about 920C for about 20 minutes; and thereafter, maintaining the temperature of the aqueous solution at about 920C for about 20 minutes.
Another aspect of the present disclosure includes removing the resultant membrane from the above aqueous solution; washing the resultant membrane with DI water for about 15 minutes at a temperature of about 4O0C; and drying the resultant membrane at about 650C for about 35 minutes.
Another aspect of the present disclosure includes the use of gel membrane which has gone through phase inversion and washing but has not been dried. Such "gel" membrane will be treated in a similar way as described in this section
Another aspect of the present disclosure includes a method of manufacturing hydrophilic polyethersulfone (PES) membrane comprising the acts of: providing gel PES membrane; exposing the gel PES membrane to a sufficient amount of an aqueous solution of oxidizer; and after the exposing act, heating the hydrophobic PES membrane for a sufficient time at a sufficient temperature.
Still another aspect of the present disclosure includes after the exposing act in the solution of oxidizer, operatively positioning the membrane between two films so that the membrane is sandwiched therebetween; and continuously moving the sandwiched membrane through at lest one heating zone.
Yet another aspect of the present disclosure includes during the heating act, operatively positioning the membrane in a saturated water steam medium; and continuously moving the membrane through the saturated water steam medium. Other objects and advantages of the disclosure will be apparent from the following description, the accompanying drawings and the appended claims.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a schematic representation of a typical representative prior art system for PES membrane coating to produce a hydrophilic PES membrane;
Figure 2 is a schematic representation of a representative dry membrane batch process system for the hydrophilization process of PES membrane according to the present disclosure; Figure 3 is a schematic representation of a laboratory system for membrane oxidation using a sandwich method; Figure 4A is a schematic representation of a representative method of heating uncovered, unsupported membrane in a steam medium;
Figure 4B is a schematic representation of a representative method of heating uncovered membrane on a transporting belt in a steam medium; Figure 4C is a schematic representation of a representative method of heating uncovered membrane on a rotating drum in a steam medium;
Figure 5 is a schematic representation of a representative method of oxidizing uncovered "gel" membrane;
Figure 6 illustrates protein binding results for various membranes; and
Figure 7 is a schematic representation of a representative method of a representative two-cycle process of PES membrane oxidation.
DETAILED DESCRIPTION OF REPRESENTATIVE EMBODIMENTS
The present disclosure is directed to a new effective and economical method for the hydrophilization of PES membrane, which can successfully compete with all previously known methods and, quite possibly, exceed them.
We found that PES membrane hydrophilization was effectively and economically performed by utilizing a chemical oxidation process without utilization of complicated equipment, such as, for example, plasma treatment reactors and we believe this chemical oxidation process can be successfully applied in industrial conditions for commercial membrane manufacturing including continuous manufacturing processes.
The following examples describe the hydrophilization of PES membrane using oxidation with ammonium persulfate, and other representative oxidation agents according to the present disclosure. Unless otherwise indicated, all numbers expressing quantities of ingredients, properties such as molecular weight, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term "about." Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present disclosure. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.
Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contain certain errors necessarily resulting from the standard deviation found in their respective testing measurements.
We performed the PES membrane oxidation to achieve PES membrane hydrophilization by treating the hydrophobic PES membrane in an ^ aqueous solution of an oxidizer.
One representative oxidizer, Ammonium persulfate (NEU)2S2Os, was chosen as the oxidizer for initial use in this process. .
Ammonium persulfate (APS) is known to be a strong water soluble oxidizer: its standard oxidation potential is 2.01 volts. According to this potential APS is placed near the top of the oxidizers list.
In the following table, the standard oxidation potentials for the several popular oxidizers are presented:
Oxidizer E7V APS 2.01
Hydrogen peroxide (H2O2) 1.78
Bleach (HClO) 1.61
Permanganate (MnO4 *) 1.5
Ozone (O3) 1.24 Dichromate (Cr2O8 "2 ) 1.23
(The data are taken from the Handbook of Chemistry and Physics, CRC Press, 2003, page 8-28)
It is presently believed that, in an acid environment of pH < 7.0, the increase concentration of hydrogen ions (H+) may react with the oxidizing agent to generate a greater oxidation potential than in a neutral or base environment. Example 1
Example 1 illustrates the batch method of one process of the present disclosure.
The first step involves the: preparation of hydrophobic PES membrane. First, the membrane was cast on the glass plate using the dope of following formulation: PES polymer (Radel polymer from Solvay) - 14%; l-Methyl-2-pyrrolidone (solvent) - 21%; Polyethylene glycol 400 (poroformer) - 65%.
Next, the cast membrane was air quenched inside a humidity chamber at a temperature of about 230C and having an air humidity from about 65 to about 68% for about 25 minutes. The thus quenched membrane was then washed with DI water for about 30 minutes and then dried at about 800C for about 15 minutes.
The hydrophobic PES membrane, obtained as described above, was first used in the present Example and was also used in other Examples (Examples 2-5 below).
Once the hydrophobic PES membrane was obtained, it was hydrophilized as follows:
A sample of hydrophobic PES membrane (about 10 cm x about 10 cm) was prewetted in isopropyl alcohol (IPA), washed with DI water and immersed in an aqueous solution of oxidizer (ammonium persulfate). The concentration of ammonium persulfate (APS) was about 3%. The solution was heated from ambient to about 9O0C - 950C and maintained at about 9O0C - 95°C for about 15 minutes.
After undergoing the above described treatment, the resultant membrane was cooled to ambient temperature, washed with water for about 10 to about 20 minutes in order to remove the remains of oxidizer and then dried at about 7O0C for about 40 minutes.
The hydrophilic properties of membrane resulting from the above process are shown in the Table 1.
Table 1. Hydrophilic properties of membrane oxidized using a batch method.
Figure imgf000013_0001
* The term "Instantaneously" means that the wetting time was less than the time that could be measured using a stop-watch (normally less than 0.5 sec).
As evident from the above, the resultant membrane readily demonstrated hydrophilicity and retained hydrophilicity upon exposure to boiling water and IPA.
Example 2 demonstrates the membrane hydrophilization process utilizing another oxidizer - Sodium Hypochlorite.
Example 2
A sample of hydrophobic PES membrane (about 8 cm x 40 cm) was prewetted in IPA, washed with DI water and immersed in about 12% aqueous solution of sodium hypochlorite for about 3 minutes. Then the membrane was taken out of the solution and wound into a roll with diameter of about 3 cm. The rolled membrane was again immersed in 12% aqueous solution of sodium hypochlorite, and the solution temperature was raised to about 970C. The membrane was kept in the solution at this temperature for about 1 hour. Then the membrane roll was taken out of the solution, the membrane was unwound, washed with DI water for about 30 minutes and dried at about 700C for about 30 min. The resultant membrane was hydrophilic: it was wetted in water instantaneously.
Thus, the hydrophilization process of the PES membrane, performed as shown in examples 1 and 2, in accordance with the present disclosure, is simple, and can be applied in manufacturing conditions for the batch process of membrane treatment in the rolls, as shown in Figure 2.
As shown in Figure 2, the hydrophobic PES membrane 30 is prewetted in alcohol solution 32, then washed in water 33, and soaked in aqueous solution of oxidizer at 34 and wound on the roll 35. The roll 35 is heated in the oven 36 (other heating methods are also possible, for example, microwave heating and other known processes) to the temperature of oxidation reaction for a sufficient time and is then the oxidized membrane 37 is processed through the washing 38 and drying 39 steps.
It is known that the continuous methods of membrane treatment are preferable for manufacturing conditions because, as a rule, the continuous methods of membrane treatment are more economical and provide better uniformity of produced membrane than batch methods.
Building on the success of the above examples 1 and 2, we further developed a continuous method of manufacturing for PES membrane hydrophilization production. In this particular representative method, a "sandwich" method of membrane treatment was used similar to that utilized in the membrane coating manufacturing process of Figure 1.
In this presently preferred manufacturing process, the membrane continuously travels through the bath with alcohol for prewetting, then passes the water bath for washing, then passes the bath with APS solution and, after soaking in APS solution, the membrane is sandwiched between the films (preferably Mylar films). The heat treatment of the membrane is performed continuously between the Mylar films^ for example by moving the "sandwich" along the surface of the hot plate, preheated to about 95-1050C. After the oxidation reaction is completed, the membrane is going out of Mylar films and then is washed and dried.
The specific process developed utilizing one possible "sandwich" method for membrane oxidation is described in the following Example, which describes the presently preferred continuous manufacturing process for PES membrane hydrophilization production.
Example 3
A sample of hydrophobic PES membrane (about 8cm x about 24 cm) was prewetted with IPA, washed with DI water for about 5 minutes and soaked in about 3% APS solution for about 2 minutes. Next, the sample was treated in the device, shown in the Figure 3. The membrane sample 45, after soaking in APS solution, was sandwiched between two bars of Mylar film 46. One end of the sandwich was connected to the roller 49, which pulled the sandwich at a speed of about 30 cm/min along the surface of a hot plate 47. The hot plate had a temperature regulation +/- I0C and was preheated to about 1020C. A piece of sponge 48 was placed on the sandwich surface to uniformly press the sandwich to the hot plate and also to prevent the membrane from cooling. The hot plate length was about 60 cm, and the speed of sandwich movement (about 30 cm/min) provided membrane heating on the hot plate for about 2 minutes. After heating, the membrane was taken out of the sandwich, washed in water for about 10 minutes, and dried at about 800C for about 30 minutes.
As shown in Table 2, test A, the treated membrane was instantaneously wetted in water and in NaCl solution having a concentration of about 20%. The membrane retained hydrophilicity after heating in water in an autoclave at about 124°C for about 1 hour. Because of the short oxidation time (about 2 minutes), the "sandwich" method can potentially be conveniently arranged as a continuous process for the large-scale manufacturing of hydrophilic PES membrane.
During our study, we surprisingly found that we could successfully hydrophilize membrane in the gel state using the oxidation process of the present disclosure. The gel membrane is a membrane precursor, which was gone through the stages of casting, quenching and washing, but has not been dried.
Oxidization of the membrane in the gel state is very interesting because the use of membrane in the gel state significantly shortened the manufacturing process of hydrophilic PES membrane suitable for commercial scale processing. The use of the membrane in the gel state approach eliminated the step of membrane drying (after the phase inversion and washing steps) as well as the steps of membrane prewetting with IPA and washing IPA off the membrane resulting in the efficient and effective method of manufacturing hydrophilic PES membrane suitable for commercial scale processing.
The oxidation of the membrane in a gel state can have an additional advantage in that utilization of the gel membrane can significantly increase the efficiency of the oxidation process.
As known by those skilled in the art, membrane in the gel state has much higher porosity than a dried membrane. During the drying process, the membrane shrinks and, because of this shrinkage, it is believed that the number and the diameter of pores in the membrane can be significantly reduced. Due to a developed system of pores, the gel membrane is therefore believed to be more penetratable for different dissolved substances than for a dried membrane. We presently believe that since the oxidizers utilized with the present disclosure can penetrate into the structure of gel membrane much faster and deeper, significantly increased degree of oxidation and hydrophilicity can be achieved by oxidation of the membrane in a gel state as compared to the oxidation of the previously dried membrane. The presently preferred manufacturing process for PES membrane in a "gel" state is described below in the Example 4.
Example 4
A sample of gel or "never dried" PES membrane (about 8 cm x about 20 cm) was soaked in APS solution, and treated the same way as described in the example 2. The only difference was that because a "never dried" membrane was utilized, the step of membrane prewetting in alcohol and the step of washing off the alcohol were excluded. The hydrophilicity of the resulting membrane is shown in the Table 2, Test B.
As can be seen, the resultant membranes produced using both type of samples, previously dried membranes and the membranes in the gel form, showed high hydrophilicity. In an effort to simulate the membrane sterilization process, the resultant membranes were subjected to treatment in an autoclave at about 1240C. In the end, the hydrophilicity of all samples tested was not noticeably changed. At the same time, the process of hydrophilization of "gel" membrane is significantly shorter since it does not include the operations of drying membrane after quenching and washing and the operations of membrane prewetting and washing before oxidation.
Table 2. Wetting time of PES membranes after oxidation using a sandwich method.
Figure imgf000017_0001
One possible economical disadvantage of utilizing the "sandwich" scheme in the production process is the significant consumption of Mylar films. However, the application of liquid impermeable films, such as Mylar, in the production process is necessary in order to prevent the PES membrane from drying out while being treated at high temperature, such as, for example, 80-950C. Without a film cover, the membrane dries very fast on the hot plate and thus, the oxidization reaction is insufficient to produce hydrophilic membrane since APS can react with a membrane only when the APS is in the dissolved state. In our continuing efforts to simplify and economize the hydrophilic PES membrane manufacturing process, we discovered a method of continuous membrane hydrophilization that did not require the use of the Mylar films for membrane oxidation processing and is believed simpler than a "sandwich" method. To prevent drying of uncovered membrane during the oxidation reaction, we found that heating the membrane in the medium of saturated steam was sufficient to obtain and maintain the conditions necessary for the oxidation process to be completed without film application.
It is known that the saturated water steam has the highest possible humidity at the certain temperature and cannot accept any additional amount of water. Because of this at the conditions of our experiment, the saturated steam medium reliably prevents the membrane from drying.
The relatively low temperature of the oxidation process (below 1000C) facilitates the application of a steam treatment process without pressure. At the above conditions, the process is safe and the required equipment is relatively simple and inexpensive, as compared to some prior art processes.
The following example illustrates the hydrophilization of uncovered membrane (without Mylar films being utilized in the process): Example 5:
A sample of hydrophobic previously dried PES membrane about 5 cm x about 8 cm (sample A) was prewetted in IPA, washed with water for about 10 minutes and soaked in about 6% APS solution for about 5 minutes. A sample of hydrophobic "never dried" PES membrane about 5 cm x about 8 cm (sample B) was soaked in about 6% APS solution (without previous prewetting and washing). Both samples were placed on a piece on metallic net (about 10 cm x about 10 cm). A 2 L beaker was filled with water to about 1A of its volume, and water was brought to boiling. The net with membrane samples was fixed inside the beaker approximately at about 10 cm above the water level. The beaker was covered, and after about 6 minutes of exposure to the medium of saturated steam, the samples were taken out, washed with water for about 10 minutes and dried at about 7O0C. Both samples (obtained from a previously dried membrane and from a "gel" membrane) demonstrated high hydrophilicity, as shown in the Table 3. As should be evident, both samples were instantaneously wetted in water and in about 20% NaCl solution At this point, a control process was undertaken which comprised the treatment of the membrane samples without the application of the steam medium. As shown in sample C in Table 3 below, the hydrophobic, previously dried, PES membrane was prewetted, washed and soaked in APS solution the same way as it is described in the Process for the sample A and sample D of gel membrane was soaked in APS solution the same way as it is described in the Process for the sample B. Both samples (C and D) were placed without being placed between films on the surface of the metallic plate preheated to about 95°C and then were heated on this plate at about 950C for about 6 minutes. Then the samples were washed and dried the same way as it was described in the Process 1.
Table 3 below shows the hydrophilicity of the samples A, B, C and D obtained in Example 5 below.
Table 3. Hydrophilicity of the samples, heated without films in the steam medium and without the steam medium.
Figure imgf000019_0001
The results presented in the table 3 show that both types of membranes (previously dried and gel membranes), after hydrophilization in a steam medium obtained high and stable hydrophilicity. At the same time, the membranes, which were treated the same way but without application of the steam medium, were hydrophobic. It is believed that such membranes failed to wet because the heating process allowed them to dry prior to completion of the oxidation reaction. These results clearly show the effectiveness of the proposed method of oxidation of uncovered membrane in the steam medium, according to the present disclosure. Possible representative schemes for continuous membrane transportation through the steam chamber are shown in Figures 4A-G, The uncovered membrane 62 can pass the steam chamber 60 without support, as illustrated in Figure 4A, or can be supported with a transporting belt 64, as illustrated in Figure 4B. It is presently believed that the most reliable way to transport the uncovered membrane through the steam chamber is on the surface of a hot rotating drum 68, as illustrated in Figure 4C or on the surface of several successive drums.
Figure 5 illustrates the presently preferred manufacturing method for hydrophilization of "gel" (never dried) membrane with application of the steam medium. As illustrated in Figure 5, this method is significantly shorter and simpler than the previous traditional process of membrane coating, as illustrated in Figure 1.
Figure 5 shows a roll of "gel" membrane at 80. The membrane 80 is connected to a rewind system (not shown). As the membrane 80 unwinds, it traverses through the first station 82 where the membrane soaks in aqueous solution of APS. The APS concentration in the solution can be, for example, about 3% to about 6% by Wt., the temperature about 20-30°C, soaking time about 2-4 minutes. After leaving station 82, the thus treated membrane 80 traverses a second station 83 (steam chamber) wherein the membrane is heated with saturated water steam in accordance with the diagram of Figure 4 A or Figure 4 B, or Figure C. The steam temperature can be about 9O0C to about 980C and the time of membrane heating in the steam chamber can be about 2 to about 4 minutes. After undergoing treatment at the second station 83, the treated membrane continues traversing to the third station at 84 (washing chamber) wherein the remains of oxidizer, which, possibly, can remain inside the membrane after the oxidation reaction is completed, are washed off with water. After completing treatment at the third station 84, the membrane continues to the fourth Station 85 (drier) wherein the membrane is dried at the temperature, for example, about 70 to about 8O0C for about 5 to about 30 minutes. After drying at the station 85, the hydrophilization process is accomplished and the hydrophilic PES membrane according to the present disclosure is obtained.
In addition to the enhanced hydrophilic properties, the membranes produced using the proposed method have low protein binding. The protein binding test was performed using fluorescein tagged
Goat IgG protein (manufactured by Cedarlane Laboratories). The aqueous solution of protein (with a protein concentration of about 10 μg /ml) was pumped with a syringe pump through a disk of tested membrane with a diameter of about 13 mm at the flow rate of about 1 ml/min. A concentration of protein in the influent and effluent was measured using a Perkin - Elmer luminescence spectrophotometer. The amount of protein adsorbed by the membrane was calculated by multiplying a volume of the protein solution, pumped through the membrane, by the difference between the protein concentrations in the influent and effluent. Several membranes were tested for comparison including the oxidized membranes obtained in the Example 1 and several commercial membranes with different protein binding.
Figure 6 illustrates the protein binding results are presented in wherein the Protein binding of different membranes are prepared according to the following:
1 - Millipore Durapore PVDF;
2 - Membrana PES;
3 - Millipore Express;
4 - Sartorius Sartopore; 5 - PES oxidized membrane;
6 - Nylon SterASSURE.
Figure 6 illustrates that the protein adsorption of the oxidized PES membrane was close to the protein adsorption of the commercial membranes with low protein binding (Millipore 's PVDF membrane, Membrana PES; Millipore Express; Sartorius Sartopore) and was much lower than the protein adsorption of the membrane with high protein binding (nylon membrane). The obtained results show that the membrane, produced by the proposed hydrophilization method of the present disclosure, closely approximated the performance the group of those membranes known to exhibit low protein binding characteristics.
It is believed that the protein binding properties of oxidized PES can be further improved with further optimization of the above described process. Prophetic Examples
Example 6
A sample of hydrophobic PES membrane (about 5 cm x about 10 cm) is prewetted into about a 50% aqueous solution of methanol, washed with DI water and immersed in about a 20% solution of hydrogen peroxide (H2O2). The membrane is heated in the hydrogen peroxide (H2O2) solution at a temperature of about 500C to about 700C for about 30 minutes, then the temperature of the hydrogen peroxide (H2O2) solution is raised to about 980C and is maintained at about 980C temperature for about 40 minutes. Then, after the membrane is removed from the hydrogen peroxide (H2O2) solution, the membrane is washed with DI water for about 10 minutes at a temperature of about 400C and dried at about 6O0C for about 40 minutes.
While not wanting to be bound to any theory, it is presently believed that the membrane oxidation process occurred at those conditions as follows: after the first membrane heating (at about 5O0C to about 7O0C) step, the membrane oxidation process is believed to be mostly completed and the hydrogen peroxide concentration in the solution is depleted. It is believed that the additional step of membrane heating at the elevated temperature (at about 98°C) is performed in order to fully complete the oxidation and to decompose the remaining H2O2. Since the products of H2O2 decomposition at the high temperature are water and oxygen, the resultant membrane, should not contain any hazardous substances.
Example 7
A sample of hydrophobic PES membrane (about 5 cm x about 10 cm) is prewetted and washed the same way as it is described in example 6 above. The sample is immersed in an aqueous solution containing the following ingredients: about 71% DI water, about 15% hydrogen peroxide (the first oxidizer) and about 4% APS (the second oxidizer). The membrane is heated in the above aqueous solution at a temperature of about 5O0C to about 7O0C for about 30 minutes. Then, the temperature of the aqueous solution is presently preferably uniformly raised to about 920C for about 20 minutes, after which, the temperature of the aqueous solution containing the membrane is maintained at about 920C for about 20 minutes. After removal from the above aqueous solution, the membrane is washed with DI water for about 15 minutes at a temperature of about 4O0C and dried at about 650C for about 35 minutes.
While not wanting to be bound to any theory, it is presently believed that the membrane oxidation process at those conditions appears to proceed as follows: during the first step of the process (at about 5O0C to about
7O0C) H2O2 functions as the only membrane oxidizer. APS does not appear to participate in the oxidation reaction since its working temperature is much higher
(above 8O0C). After this first step of the oxidizing process is completed, the temperature is raised to about 920C and the second step of oxidation process is started, with APS being included in the membrane oxidation.
It is presently believed that because of the multiple oxidation processes, the oxidation degree is believed higher, and the hydrophilic properties of the oxidized membrane (including protein binding properties) are believed improved.
Example 8
A sample of hydrophobic PES membrane (about 8 cm x about 24 cm) is prewetted with IPA, washed with DI water for about 5 minutes, and soaked in about a 20% solution of hydrogen peroxide. Then the sample is sandwiched between two bars of Mylar film. The obtained sandwich is moved along the surface of hot plates. The scheme of this process is similar to the process shown in Figure 3; the only difference is that instead of one hot plate (as it is shown in Figure 3), two hot plates are used. The two hot plates have different temperatures with the first hot plate being preheated to a temperature of about 550C to about 750C, the second plate having a temperature of about 1020C. The length of each hot plate is about 60 cm; the speed of the sandwiched movement is about 30 cm/min. The membrane is heated on each hot plate for about 2 minutes.
It is believed that the membrane treatment described above according to this scheme is approximately equal to the membrane treatment, as described in the example 6, and the same explanation of the process advantages applies.
During the heating of the first plate at about 5O0C to about 7O0C, the hydrogen peroxide concentration in the solution is depleted. During the second cycle of heating (heating on the second plate at the high temperature), all the remaining Of H2O2 is decomposed. Since the products Of H2O2 decomposition are water and oxygen, the resultant membrane is not expected to contain any hazardous substances.
Example 9
A sample of hydrophobic PES membrane (about 5 cm x 50 cm) is prewetted and washed the same way as described in the Example 6 above. This sample is placed on the bar of the Mylar film with the width about 7 cm. and the length about 4 meters. The ends of the sample are attached with the staples to the supporting Mylar film.
The scheme of the laboratory system 90, which simulates a continuous hydrophilization process, is presented on the Figure 7. The Mylar film 91 with attached membrane sample 92 is pulled by the roller 93 and is going through the bath 94, containing a solution of the first oxidizer, then along the steam chamber 95, then through a bath 96 with a solution of the second oxidizer, then along the steam chamber 97, and finally is wound on the roller 92.
The conditions of the oxidation process are as follows: ' The solution of the first oxidizer: aqueous solution of bleach (HClO) with a concentration of about 12%; the solution of the second oxidizer: aqueous solution of APS with a concentration of about 6%. The speed of the Mylar film movement is about 20 cm/minute; the length of the steam chambers is about 50 cm.
After the membrane sample reaches the roller 92, it is detached from the Mylar film, washed in water at about 4O0C to about 5O0C and dried at about 65°C for about 30 minutes.
It is presently believed that the first cycle of membrane oxidation utilizing the oxidizer with lower oxidation potential (bleach), works as a "pretreatment" for the final oxidation cycle with an application of the oxidizer with high oxidation potential (APS).
Example 10
The membrane oxidation experiment is performed the same way as it described in the Example 9, but the solution in the bath 94 is about 3% APS, and the solution in the bath 96 is about 6 % APS. It is presently believed that the resultant membrane, obtained after two oxidation cycles, will have a higher oxidation degree and higher hydrophilicity, compared to the membrane obtained after a single oxidation cycle.
Example 11
A sample of hydrophobic PES membrane (about 6 cm x about 6 cm) is prewetted into 50% aqueous solution of methanol and washed with DI water and immersed in aqueous solution, which contains about 95.8% water, about 4% APS, and about 0.2% of water soluble complex of Cu(II) (oxidation catalyst). As is known according to available data in published literature, complexes of transition metals, including, but not limited to copper, zinc, iron etc. are water soluble substances, can be employed as catalysts for oxidation reactions and can significantly intensify the activity of oxidizers. Such complexes of transition metals are believed to lower the actuation energy barrier. The membrane is heated in the above described solution at a temperature of about 700C for about 10 minutes, and then the membrane is removed from the solution, is washed with DI water for about 15 minutes at a temperature of about 40 0C, and dried at about 700C for about 40 minutes.
It is believed that the membrane oxidation process, performed in the presence of the above described catalyst and any other catalyst having similar properties, will provide the membrane with enhanced hydrophilic properties, and reduced protein binding.
In view of the foregoing and in summary, there appear to be many possible potential process variations as specifically described above and include but are not limited to:
1. A method of PES membrane hydrophilization by oxidation wherein a dried membrane (the membrane has completed all the stages of the manufacturing process, including, but not limited to: casting, phase inversion, washing and drying) is oxidized. 2. A method of PES membrane hydrophilization by oxidation wherein, in order to make a hydrophilization process significantly simpler and shorter, a never dried gel membrane (the membrane after the stages of casting, phase inversion and washing, but prior to drying) is oxidized.
3. PES membrane hydrophilization by oxidation using rolls of the membrane in a batch process method of production. 4. PES membrane hydrophilization by oxidation using a continuous process wherein the membrane is sandwiched between Mylar films.
5. PES membrane hydrophilization by oxidation using a continuous process without the films application wherein uncovered membrane after soaking in the solution of the oxidizer is heated in a saturated steam environment in order to prevent membrane drying.
6. The method of PES membrane hydrophilization by oxidation described in 4 above wherein the uncovered membrane traverses the steam chamber without support, or the uncovered membrane can be supported with a transporting belt, or the uncovered membrane can be transported on the surface of the rotating drum or several successive drums.
7. The methods of PES membrane hydrophilization by oxidation described in 1-5 above wherein the temperature of the membrane treatment is changed during the oxidation process. This method is illustrated above by prophetic Example 6. 8. The methods of PES membrane hydrophilization by oxidation described in 1-6 wherein a mixture of two or more different oxidizers is utilized. The oxidizers can have different working temperatures and can be assorted such that the temperature elevation provides desirable sequential processes in the membrane oxidation process of the present disclosure. This method is illustrated by prophetic Example 7 above.
9 The methods of PES membrane hydrophilization by oxidation described in 6-7 wherein not one but several oxidization cycles are utilized. These oxidization cycles may be performed at different temperatures, different oxidizers, different concentrations of oxidizers. Prophetic example 8 above illustrates the utilization of two oxidation cycles performed at different temperatures; prophetic example 9 above illustrates the utilization of two oxidation cycles performed with different oxidizers; prophetic example 10 above illustrates the utilization of two oxidation cycles performed at different concentrations of oxidizer.
10. The methods of PES membrane hydrophilization as described in 1-9 above wherein the membrane oxidization is performed in the presence of the catalysts of the oxidation process, such as, for example, oxides or complexes of the transition metals, including, but not limited to, iron, copper, zinc, etc. The method is illustrated above by prophetic example 11.
While the articles, apparatus and methods for making the articles contained herein constitute presently preferred embodiments of the invention, it is to be understood that the disclosure is not limited to these precise articles, apparatus and methods, and that changes may be made therein without departing from the scope of the disclosure, which is defined in the appended claims.

Claims

What is claimed is:
1. A method of manufacturing hydrophilic polyethersulfone (PES) membrane comprising the acts of: providing hydrophobic PES membrane; prewetting the hydrophobic PES membrane in a sufficient amount of a liquid having a sufficiently low surface tension; exposing the wet hydrophobic PES membrane to a sufficient amount of an aqueous solution of oxidizer; and after the exposing act, heating the hydrophobic PES membrane for a sufficient time at a sufficient temperature.
2. The method of claim 1 further comprising the act of: after the prewetting act, washing the resultant membrane with water for a sufficient time.
3. The method of claim 2 further comprising the act of: after the heating act, drying the resultant membrane at a sufficient temperature for a sufficient time.
4. The method of claim 1 wherein the oxidizer is selected from the group comprising:
Ammonium persulfate (NXLO2S2Og, Hydrogen peroxide (H2O2), Bleach (HClO), Permanganate (MnO4 "), Ozone (O3) or Dichromate (Cr2 O8 "2 ) and combinations thereof.
5. The method of claim 2 wherein, during the heating act the hydrophobic PES membrane is heated at about 9O0C to about 950C for about 15 minutes .
6. The method of claim 1 wherein, during the heating act, the PES membrane is contained in a sufficient aqueous solution of sufficient oxidizer.
7. The method of claim 1 further comprising the act of: after the heating act, washing the resultant membrane with water for a sufficient time in order to sufficiently remove the remains of the oxidizer therefrom.
8. The method of claim 1 wherein, the oxidizer comprises: Ammonium persulfate (NH4)2S2O8.
9. The method of claim 3 wherein, during the drying act, the resultant membrane is exposed to heat of about 7O0C to about 95°C.
10. The method of claim 1 further comprising the acts of: during the heating act, operatively positioning the membrane in a saturated water steam medium; and continuously moving the membrane through the saturated water steam medium.
11. The method of claim 3 wherein the washing act is partly performed before the membrane oxidation act.
12. A method of manufacturing hydrophilic polyethersulfone (PES) membrane comprising the acts of: providing gel PES membrane; exposing the gel PES membrane to a sufficient amount of an aqueous solution of oxidizer; and after the exposing act, heating the hydrophobic PES membrane for a sufficient time at a sufficient temperature.
13. The method of claim 12 wherein the oxidizer is selected from the group comprising:
Ammonium persulfate (NHU)2S2O8, Hydrogen peroxide (H2O2), Bleach (HClO), Permanganate (MnO4 "), Ozone (O3 ) or Dichromate (Cr2 O8 "2 ) and combinations thereof.
14. A method of manufacturing hydrophilic polyethersulfone (PES) membrane comprising the acts of: providing hydrophobic PES membrane; prewetting the hydrophobic PES membrane in IPA; washing the resultant membrane with DI water; and immersing the resultant membrane in a sufficient aqueous solution of Ammonium persulfate (NH4)2S2O8 for a sufficient duration.
15. The method of claim 14 further comprising the acts of: removing the resultant membrane from the sufficient aqueous solution of Ammonium persulfate (NBU)2S2Os; and winding the resultant membrane into a roll.
16. The method of claim 15 further comprising the acts of: again immersing the roll of resultant membrane in a sufficient aqueous solution of Ammonium persulfate (NH4)2S2O8 ; heating the roll of resultant membrane to a sufficient temperature; and maintaining the membrane in the solution at a sufficient temperature for a sufficient duration.
17. The method of claim 16 further comprising the acts of: removing the membrane roll from the sufficient aqueous solution of
Ammonium persulfate (NELt)2S2O8; unwinding the resultant membrane; washing the unwound resultant membrane with DI water for a sufficient duration; and drying the resultant membrane at a sufficient temperature for a sufficient duration.
18. The method of claim 1 further comprising the acts of: after the exposing act in the solution of oxidizer, operatively positioning the membrane between two films so that the membrane is sandwiched therebetween; and continuously moving the sandwiched membrane through at lest one heating zone.
19. The method of claim 12 further comprising the acts of: after the exposing act in the solution of oxidizer, operatively positioning the membrane between two films so that the membrane is sandwiched therebetween; and continuously moving the sandwiched membrane through at lest one heating zone.
20. The method of claim 12 further comprising the acts of: during the heating act, operatively positioning the membrane in a saturated water steam medium; and continuously moving the membrane through the saturated water steam medium.
PCT/US2005/036683 2004-10-13 2005-10-13 Method for preparing hydrophilic polyethersulfone membrane WO2006044463A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BRPI0515961-0A BRPI0515961A (en) 2004-10-13 2005-10-13 hydrophilic polyethersulfone membrane manufacturing method
CN2005800350127A CN101068612B (en) 2004-10-13 2005-10-13 Method for preparing hydrophilic polyethersulfone membrane
JP2007536841A JP4778518B2 (en) 2004-10-13 2005-10-13 Preparation method of hydrophilic polyethersulfone membrane
AU2005295777A AU2005295777A1 (en) 2004-10-13 2005-10-13 Method for preparing hydrophilic polyethersulfone membrane
EP05810468.8A EP1804961B1 (en) 2004-10-13 2005-10-13 Method for preparing hydrophilic polyethersulfone membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US61852204P 2004-10-13 2004-10-13
US60/618,522 2004-10-13

Publications (1)

Publication Number Publication Date
WO2006044463A1 true WO2006044463A1 (en) 2006-04-27

Family

ID=35565872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/036683 WO2006044463A1 (en) 2004-10-13 2005-10-13 Method for preparing hydrophilic polyethersulfone membrane

Country Status (7)

Country Link
US (2) US7537718B2 (en)
EP (1) EP1804961B1 (en)
JP (1) JP4778518B2 (en)
CN (1) CN101068612B (en)
AU (1) AU2005295777A1 (en)
BR (1) BRPI0515961A (en)
WO (1) WO2006044463A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009036947A1 (en) 2009-08-11 2011-02-17 Leibniz-Institut für Oberflächenmodifizierung e.V. Modifying polymer membrane, preferably e.g. in waste water-purification, comprises immersing the membrane in an aqueous solution of low molecular compounds, and irradiating with ionizing radiation, so that it is covalently functionalized
DE102009056884A1 (en) 2009-12-03 2011-06-09 Novartis Ag Vaccine adjuvants and improved methods of making the same
WO2011067673A2 (en) 2009-12-03 2011-06-09 Novartis Ag Circulation of components during homogenization of emulsions
WO2011067672A2 (en) 2009-12-03 2011-06-09 Novartis Ag Arranging interaction and back pressure chambers for microfluidization
DE102009056883A1 (en) 2009-12-03 2011-06-09 Novartis Ag Vaccine adjuvants and improved methods of making the same
WO2011067669A2 (en) 2009-12-03 2011-06-09 Novartis Ag Hydrophilic filtration during manufacture of vaccine adjuvants
DE102009056871A1 (en) 2009-12-03 2011-06-22 Novartis AG, 4056 Vaccine adjuvants and improved methods of making the same
US8132676B2 (en) 2008-08-18 2012-03-13 Emd Millipore Corporation Hydrophilic, high protein binding, low fluorescence, western blotting membrane
WO2022003560A1 (en) 2020-06-30 2022-01-06 Seqirus UK Limited Cold filtration of oil-in-water emulsion adjuvants

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003903507A0 (en) 2003-07-08 2003-07-24 U. S. Filter Wastewater Group, Inc. Membrane post-treatment
CN1988949B (en) 2004-07-02 2012-08-22 西门子工业公司 Gas transfer membrane
EP1773477B1 (en) 2004-07-05 2011-09-07 Siemens Water Technologies Corp. Hydrophilic membranes
CN101068612B (en) * 2004-10-13 2010-12-15 3M创新有限公司 Method for preparing hydrophilic polyethersulfone membrane
MY141919A (en) 2004-12-03 2010-07-30 Siemens Water Tech Corp Membrane post treatment
NZ564968A (en) * 2005-07-14 2011-11-25 Siemens Water Tech Corp Monopersulfate treatment of membranes
CN100435920C (en) * 2006-12-21 2008-11-26 天津大学 Method for preparing ultrafiltration film of poly-ether-sulfone and anti-protein-contamination type
JP5698140B2 (en) 2008-11-21 2015-04-08 スリーエム イノベイティブ プロパティズ カンパニー Microporous membrane and formation method
WO2011040718A2 (en) * 2009-09-30 2011-04-07 주식회사 아모메디 Nanofiber membrane for western blot and preparation method thereof
FR2952464B1 (en) * 2009-11-09 2011-12-09 Essilor Int DEMONSTRATOR OF HYDROPHOBIC PROPERTY
DE102010049807A1 (en) * 2010-10-27 2012-05-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Immobilizing substance on carrier surface, comprises transferring flexible carrier from unwind roll to winding roll, applying substance to be immobilized on surface of carrier, between rollers, and immobilizing by chemically reacting
BR112013018801A2 (en) * 2011-01-24 2020-11-10 Membrane Distillation Desalination Ltd. Co. composite membranes for membrane distillation and the respective manufacturing methods
JP5742433B2 (en) * 2011-04-27 2015-07-01 三菱レイヨン株式会社 Porous membrane processing equipment
EP2559723B1 (en) 2011-08-17 2018-01-24 Gambro Lundia AB Method for preparing graft copolymers and a porous membrane
EP2561923A1 (en) 2011-08-23 2013-02-27 Gambro Lundia AB Graft copolymers
CN102527254A (en) * 2012-01-11 2012-07-04 杭州天创环境科技股份有限公司 High-flux composite reverse osmosis membrane
EP2641653B1 (en) 2012-03-23 2021-05-12 Agfa-Gevaert Nv Method for manufacturing solvent resistant polymeric membranes
CN102824860A (en) * 2012-09-10 2012-12-19 四川大学 Preparation method of high-corrosion-resistance polyarylene sulfide sulfone separation membrane
AU2013315547A1 (en) 2012-09-14 2015-02-26 Evoqua Water Technologies Llc A polymer blend for membranes
CN102961971A (en) * 2012-11-21 2013-03-13 上海斯纳普膜分离科技有限公司 Automatic anhydration processing system and method of MBR (Meane Biological Reactor) flat sheet filter membrane
US20150080537A1 (en) * 2013-09-13 2015-03-19 Samsung Sdi Co., Ltd. Method for Preparing Polyethersulfone
EP3141296A4 (en) * 2014-05-08 2018-01-03 Toray Industries, Inc. Hollow fiber membrane module and manufacturing method thereof
WO2016137467A1 (en) * 2015-02-26 2016-09-01 General Electric Company Apparatus and method for roll-to-roll membrane manufacture
CN104801199A (en) * 2015-04-02 2015-07-29 昆山艾可芬能源科技有限公司 Phase-inversion casting film solidification and drying device and phase-inversion casting film solidification and drying technology
CN106139922B (en) * 2015-04-14 2019-12-24 华东理工大学 Ultrahigh flux nanofiltration membrane and preparation method thereof
AU2016294153B2 (en) 2015-07-14 2022-01-20 Evoqua Water Technologies Llc Aeration device for filtration system
CN113351025B (en) * 2017-03-21 2022-09-23 亚美滤膜(南通)有限公司 Hydrophilic modified treatment fluid and related semi-permeable filter membrane and macromolecular plastic film thereof
CN108707245B (en) * 2018-05-18 2019-06-07 广东聚航新材料研究院有限公司 A kind of online hydrophily processing method on polyethylene sheets surface
CN108816053A (en) * 2018-05-25 2018-11-16 南京佳乐净膜科技有限公司 The preparation facilities and method of polymer film based on ultrasonic wave online processing technology
EP3586948A1 (en) * 2018-06-29 2020-01-01 3M Innovative Properties Company Low protein binding polyethersulfone microfiltration membranes
WO2020033668A1 (en) 2018-08-09 2020-02-13 Ut-Battelle, Llc Forward osmosis composite membranes for concentration of lithium containing solutions
CN109224876A (en) * 2018-11-26 2019-01-18 迈凯特殊材料(苏州工业园区)有限公司 A kind of hydrophilic polysulfone membrane preparation method and applications
CN110327796B (en) * 2019-06-28 2020-05-19 浙江大学 Preparation method of zwitterion-modified polypiperazine amide nanofiltration membrane
CN111001316A (en) * 2020-01-02 2020-04-14 李友来 Ultrafiltration membrane, preparation method thereof, super-hydrophilic treatment method thereof and water purification equipment
CN113441017A (en) * 2021-07-02 2021-09-28 北京碧水源分离膜科技有限公司 Process for preparing polyolefin-based reverse osmosis membrane
CN115066080A (en) * 2022-07-14 2022-09-16 佛山科学技术学院 Low-temperature normal-pressure plasma surface hydrophilic modification device and method based on carbon dioxide atmosphere

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992022376A1 (en) * 1991-06-12 1992-12-23 Permea, Inc. Membranes having enhanced selectivity and method of producing such membranes
US5254143A (en) * 1990-07-09 1993-10-19 Dainippon Ink And Chemical, Inc. Diaphragm for gas-liquid contact, gas-liquid contact apparatus and process for producing liquid containing gas dissolved therein
EP0615778A1 (en) * 1993-03-19 1994-09-21 GAMBRO DIALYSATOREN GMBH &amp; CO. KG Process for making hydrophilic membranes
WO2002004083A2 (en) * 2000-07-07 2002-01-17 Colorado State University Research Foundation Surface modified membranes and methods for producing the same

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1495043A (en) * 1923-12-21 1924-05-20 Herman C Priebe Bolt structure
US4530809A (en) * 1980-10-14 1985-07-23 Mitsubishi Rayon Co., Ltd. Process for making microporous polyethylene hollow fibers
JPS58137487A (en) 1982-02-06 1983-08-15 Nitto Electric Ind Co Ltd Treatment of pulp mill waste liquor
US4438875A (en) * 1983-04-22 1984-03-27 Fritsch William E Wheelchair carrier
US4618533A (en) * 1984-11-30 1986-10-21 Millipore Corporation Porous membrane having hydrophilic surface and process
JPH0621181B2 (en) * 1987-01-12 1994-03-23 テルモ株式会社 Method for producing hydrophilic polyvinylidene fluoride porous membrane
US4964990A (en) * 1987-05-20 1990-10-23 Gelman Sciences, Inc. Filtration membranes and method of making the same
JPH01107812A (en) * 1987-10-19 1989-04-25 Fuji Photo Film Co Ltd Method for making porous membrane hydrophilic
US4943374A (en) * 1988-04-21 1990-07-24 Gessner & Co., Gmbh Use of a microporous membrane constructed of polyether sulfon and hydrophilization agent for the filtration of beer
CA2029879A1 (en) * 1989-04-18 1990-10-19 Naoki Nakashima Process for preparing modified porous membrane
NL8901090A (en) * 1989-04-28 1990-11-16 X Flow Bv METHOD FOR MANUFACTURING A MICROPOROUS MEMBRANE AND SUCH MEMBRANE
JPH03195745A (en) * 1989-12-25 1991-08-27 Tosoh Corp Method for modifying surface of polymer structure
US5096585A (en) * 1991-01-28 1992-03-17 W. R. Grace & Co.-Conn. Process for preparing protein non-adsorptive microporous polysulfone membranes
US5215554A (en) * 1991-06-12 1993-06-01 Permea, Inc. Membranes having enhanced selectivity and method of producing such membranes
US5225495A (en) * 1991-07-10 1993-07-06 Richard C. Stewart, II Conductive polymer film formation using initiator pretreatment
US5178765A (en) * 1991-09-18 1993-01-12 Gelman Sciences Inc. Hydrophilic membranes prepared from polyethersulfone/poly-2-oxazoline/polyvinylpyrrolidone blend
DE4217335C2 (en) * 1992-05-26 1996-01-18 Seitz Filter Werke Hydrophilic membrane and process for its manufacture
US5232601A (en) * 1992-05-29 1993-08-03 W. R. Grace & Co.-Conn. High flux hollow fiber membrane
US5409524A (en) * 1992-12-01 1995-04-25 The Dow Chemical Company Membranes having improved selectivity and recovery, and process for making same
US5543465A (en) * 1993-03-19 1996-08-06 Gambro Dialysatoren Gmbh & Co. Process for the production of hydrophilic membranes
US5431817A (en) * 1993-09-13 1995-07-11 W. R. Grace & Co.-Conn. Bleach resistant polysulfone/polyurethane composite membranes
EP0946250B1 (en) * 1996-11-12 2004-06-30 Whatman Inc. Hydrophilic polymeric phase inversion membrane
ATE522926T1 (en) * 1997-02-14 2011-09-15 Imec METHOD FOR REMOVAL OF ORGANIC CONTAMINATION FROM A SEMICONDUCTOR SURFACE
US6039872A (en) * 1997-10-27 2000-03-21 Pall Corporation Hydrophilic membrane
WO1999050189A1 (en) * 1998-03-30 1999-10-07 Ebara Corporation Method and device for treating manganese-containing water
GB9808689D0 (en) 1998-04-23 1998-06-24 Kalsep Ltd Improved membrane
US6193077B1 (en) * 1999-02-08 2001-02-27 Osmonics, Inc. Non-cracking hydrophilic polyethersulfone membranes
US6780327B1 (en) * 1999-02-25 2004-08-24 Pall Corporation Positively charged membrane
US6982006B1 (en) * 1999-10-19 2006-01-03 Boyers David G Method and apparatus for treating a substrate with an ozone-solvent solution
KR100575113B1 (en) * 2000-06-21 2006-05-03 가부시키가이샤 구라레 Porous hollow fiber membranes and method of making the same
US7081202B2 (en) * 2001-03-19 2006-07-25 Nitto Denko Corporation Composite semipermeable membrane, production method thereof, and water treatment method using the same
US6696167B2 (en) * 2002-06-06 2004-02-24 Forintek Canada Corp. Manufacture of low density panels
RU2369429C2 (en) * 2004-08-10 2009-10-10 Нипро Корпорейшн Hollow fibre membrane module and method of making said module
EP1643128A3 (en) * 2004-09-30 2011-12-14 Sanyo Electric Co., Ltd. Compressor
CN101068612B (en) * 2004-10-13 2010-12-15 3M创新有限公司 Method for preparing hydrophilic polyethersulfone membrane
MY141919A (en) * 2004-12-03 2010-07-30 Siemens Water Tech Corp Membrane post treatment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5254143A (en) * 1990-07-09 1993-10-19 Dainippon Ink And Chemical, Inc. Diaphragm for gas-liquid contact, gas-liquid contact apparatus and process for producing liquid containing gas dissolved therein
WO1992022376A1 (en) * 1991-06-12 1992-12-23 Permea, Inc. Membranes having enhanced selectivity and method of producing such membranes
EP0615778A1 (en) * 1993-03-19 1994-09-21 GAMBRO DIALYSATOREN GMBH &amp; CO. KG Process for making hydrophilic membranes
WO2002004083A2 (en) * 2000-07-07 2002-01-17 Colorado State University Research Foundation Surface modified membranes and methods for producing the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8143067B2 (en) 2008-08-18 2012-03-27 Emd Millipore Corporation Hydrophilic, high protein binding, low fluorescence, western blotting membrane
US8132676B2 (en) 2008-08-18 2012-03-13 Emd Millipore Corporation Hydrophilic, high protein binding, low fluorescence, western blotting membrane
DE102009036947A1 (en) 2009-08-11 2011-02-17 Leibniz-Institut für Oberflächenmodifizierung e.V. Modifying polymer membrane, preferably e.g. in waste water-purification, comprises immersing the membrane in an aqueous solution of low molecular compounds, and irradiating with ionizing radiation, so that it is covalently functionalized
DE102009036947B4 (en) 2009-08-11 2018-05-03 Leibniz-Institut für Oberflächenmodifizierung e.V. Direct modification of polymer membranes with low molecular weight compounds and polymer membranes thus obtained and their use
EP2356983A1 (en) 2009-12-03 2011-08-17 Novartis AG Circulation of components during homogenization of emulsions
WO2011067669A2 (en) 2009-12-03 2011-06-09 Novartis Ag Hydrophilic filtration during manufacture of vaccine adjuvants
DE102009056871A1 (en) 2009-12-03 2011-06-22 Novartis AG, 4056 Vaccine adjuvants and improved methods of making the same
EP2343052A1 (en) 2009-12-03 2011-07-13 Novartis AG Hydrophilic filtration during manufacture of vaccine adjuvants
DE102009056883A1 (en) 2009-12-03 2011-06-09 Novartis Ag Vaccine adjuvants and improved methods of making the same
EP2380558A1 (en) 2009-12-03 2011-10-26 Novartis AG Arranging interaction and back pressure chambers for microfluidization
WO2011067672A2 (en) 2009-12-03 2011-06-09 Novartis Ag Arranging interaction and back pressure chambers for microfluidization
WO2011067673A2 (en) 2009-12-03 2011-06-09 Novartis Ag Circulation of components during homogenization of emulsions
EP2601933A1 (en) 2009-12-03 2013-06-12 Novartis AG Hydrophilic filtration during manufacture of vaccine adjuvants
EP2638895A2 (en) 2009-12-03 2013-09-18 Novartis AG Circulation of components during homogenization of emulsions
DE102009056884A1 (en) 2009-12-03 2011-06-09 Novartis Ag Vaccine adjuvants and improved methods of making the same
WO2022003560A1 (en) 2020-06-30 2022-01-06 Seqirus UK Limited Cold filtration of oil-in-water emulsion adjuvants

Also Published As

Publication number Publication date
CN101068612A (en) 2007-11-07
CN101068612B (en) 2010-12-15
JP4778518B2 (en) 2011-09-21
JP2008516075A (en) 2008-05-15
US20090223623A1 (en) 2009-09-10
US20060076288A1 (en) 2006-04-13
AU2005295777A1 (en) 2006-04-27
EP1804961A1 (en) 2007-07-11
US8425814B2 (en) 2013-04-23
EP1804961B1 (en) 2016-06-08
US7537718B2 (en) 2009-05-26
BRPI0515961A (en) 2008-08-12

Similar Documents

Publication Publication Date Title
US8425814B2 (en) Method for preparing hydrophilic polyethersulfone membrane
US7867417B2 (en) Membrane post treatment
US5547575A (en) Method for the surface modification of formed bodies and formed bodies produced thereby
CA2530805C (en) Membranes containing poly(vinyl methyl ether) and hydrophilisation of membranes using poly(vinyl methyl ether)
CN100430118C (en) Method for lasting hydrophilic modification of surface of polypropylene porous membrane
US20080214687A1 (en) Cross Linking Treatment of Polymer Membranes
CN100443151C (en) Hydrophilic modification method of amphiphilic molecules on surface of polypropylene porous membrane
EP2283914A1 (en) Membrane surface modification by radiation-induced polymerization
EP1807182A1 (en) A process for improving membranes
JP3741871B2 (en) Radiation graft polymerization method
AU2006261581B2 (en) Cross linking treatment of polymer membranes
AU2005312347B2 (en) Membrane post treatment
JP2006241618A (en) Continuous radiation graft polymerization method of organic polymer composite material
Vigo et al. Poly (vinyl chloride) ultrafiltration membranes modified by glow discharge grafting of poly (acrylic acid)
JP2004154613A (en) Manufacturing method of functional porous membrane
JP2004035582A (en) Method for producing surface-treated polymeric microporous membrane
JPS6086132A (en) Hydrophilic treatment of porous membrane
JPS59189913A (en) Preparation of ultrafiltration membrane
JPH046411B2 (en)
JPH02284632A (en) Gas permeating membrane
JPS6297611A (en) Method for making porous membrane of polyolefin hydrophilic
AU2004253197B2 (en) Membrane post treatment
JPH09187630A (en) Production of composite reverse osmosis membrane and device therefor
JPH10314559A (en) Hydrophilization process for polysulfone membrane
JPH07313852A (en) Production of semipermeable laminated membrane

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005295777

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2007536841

Country of ref document: JP

Ref document number: 200580035012.7

Country of ref document: CN

Ref document number: 2005810468

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005810468

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0515961

Country of ref document: BR