WO2006041365A1 - Resorbable ceramic compositions - Google Patents
Resorbable ceramic compositions Download PDFInfo
- Publication number
- WO2006041365A1 WO2006041365A1 PCT/SE2005/001304 SE2005001304W WO2006041365A1 WO 2006041365 A1 WO2006041365 A1 WO 2006041365A1 SE 2005001304 W SE2005001304 W SE 2005001304W WO 2006041365 A1 WO2006041365 A1 WO 2006041365A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cured
- precursor composition
- less
- weight
- ceramic material
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 51
- 239000000919 ceramic Substances 0.000 title claims abstract description 22
- 239000000463 material Substances 0.000 claims abstract description 50
- 239000012700 ceramic precursor Substances 0.000 claims abstract description 34
- 210000000988 bone and bone Anatomy 0.000 claims abstract description 21
- 239000012620 biological material Substances 0.000 claims abstract description 17
- 239000007943 implant Substances 0.000 claims abstract description 11
- 239000007788 liquid Substances 0.000 claims abstract description 11
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims abstract description 6
- 150000001768 cations Chemical class 0.000 claims abstract description 6
- 229910010293 ceramic material Inorganic materials 0.000 claims description 30
- 229910019142 PO4 Inorganic materials 0.000 claims description 13
- 239000000654 additive Substances 0.000 claims description 10
- 239000011575 calcium Substances 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- 239000011521 glass Substances 0.000 claims description 9
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 9
- 239000011707 mineral Substances 0.000 claims description 9
- 235000021317 phosphate Nutrition 0.000 claims description 8
- 150000003467 sulfuric acid derivatives Chemical class 0.000 claims description 8
- 229910052791 calcium Inorganic materials 0.000 claims description 6
- 239000010452 phosphate Substances 0.000 claims description 6
- 150000003013 phosphoric acid derivatives Chemical class 0.000 claims description 6
- 239000002245 particle Substances 0.000 claims description 5
- 239000000843 powder Substances 0.000 claims description 5
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 4
- 229910052586 apatite Inorganic materials 0.000 claims description 4
- 150000004649 carbonic acid derivatives Chemical class 0.000 claims description 4
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 claims description 4
- 239000012876 carrier material Substances 0.000 claims description 3
- 238000012377 drug delivery Methods 0.000 claims description 3
- 150000004677 hydrates Chemical class 0.000 claims description 3
- 239000005368 silicate glass Substances 0.000 claims description 3
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 3
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 2
- 230000002787 reinforcement Effects 0.000 claims description 2
- 239000000758 substrate Substances 0.000 claims description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 2
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 claims 1
- 230000000399 orthopedic effect Effects 0.000 claims 1
- 210000001519 tissue Anatomy 0.000 abstract description 7
- 239000004568 cement Substances 0.000 abstract description 6
- 230000003993 interaction Effects 0.000 abstract description 3
- 239000000126 substance Substances 0.000 abstract description 3
- 239000002131 composite material Substances 0.000 abstract description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000000945 filler Substances 0.000 description 6
- 238000009472 formulation Methods 0.000 description 6
- 235000012241 calcium silicate Nutrition 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 239000002253 acid Substances 0.000 description 4
- -1 calcium aluminates Chemical class 0.000 description 4
- 229910052918 calcium silicate Inorganic materials 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 239000011800 void material Substances 0.000 description 4
- 239000000378 calcium silicate Substances 0.000 description 3
- 229960003340 calcium silicate Drugs 0.000 description 3
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 3
- 229910052681 coesite Inorganic materials 0.000 description 3
- 229910052906 cristobalite Inorganic materials 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 229910052682 stishovite Inorganic materials 0.000 description 3
- 229910052905 tridymite Inorganic materials 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 230000000975 bioactive effect Effects 0.000 description 2
- 239000000560 biocompatible material Substances 0.000 description 2
- 239000002639 bone cement Substances 0.000 description 2
- ARHMMDOXGIIARL-UHFFFAOYSA-N calcium;dihydroxy(dioxido)silane Chemical compound [Ca+2].O[Si](O)([O-])[O-] ARHMMDOXGIIARL-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 241000283707 Capra Species 0.000 description 1
- 235000019739 Dicalciumphosphate Nutrition 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000011398 Portland cement Substances 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229910052925 anhydrite Inorganic materials 0.000 description 1
- 239000005391 art glass Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000002146 bilateral effect Effects 0.000 description 1
- 239000005312 bioglass Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000316 bone substitute Substances 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- JHLNERQLKQQLRZ-UHFFFAOYSA-N calcium silicate Chemical compound [Ca+2].[Ca+2].[O-][Si]([O-])([O-])[O-] JHLNERQLKQQLRZ-UHFFFAOYSA-N 0.000 description 1
- XFWJKVMFIVXPKK-UHFFFAOYSA-N calcium;oxido(oxo)alumane Chemical compound [Ca+2].[O-][Al]=O.[O-][Al]=O XFWJKVMFIVXPKK-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000001054 cortical effect Effects 0.000 description 1
- NEFBYIFKOOEVPA-UHFFFAOYSA-K dicalcium phosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])([O-])=O NEFBYIFKOOEVPA-UHFFFAOYSA-K 0.000 description 1
- 229940038472 dicalcium phosphate Drugs 0.000 description 1
- 229910000390 dicalcium phosphate Inorganic materials 0.000 description 1
- BCAARMUWIRURQS-UHFFFAOYSA-N dicalcium;oxocalcium;silicate Chemical compound [Ca+2].[Ca+2].[Ca]=O.[O-][Si]([O-])([O-])[O-] BCAARMUWIRURQS-UHFFFAOYSA-N 0.000 description 1
- 229910052587 fluorapatite Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229920000554 ionomer Polymers 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 230000001009 osteoporotic effect Effects 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 239000012254 powdered material Substances 0.000 description 1
- 239000012890 simulated body fluid Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910021653 sulphate ion Inorganic materials 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 229910021534 tricalcium silicate Inorganic materials 0.000 description 1
- 235000019976 tricalcium silicate Nutrition 0.000 description 1
- 210000000689 upper leg Anatomy 0.000 description 1
- 239000010456 wollastonite Substances 0.000 description 1
- 229910052882 wollastonite Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/80—Preparations for artificial teeth, for filling teeth or for capping teeth
- A61K6/849—Preparations for artificial teeth, for filling teeth or for capping teeth comprising inorganic cements
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
- C04B28/06—Aluminous cements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/02—Inorganic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/70—Preparations for dentistry comprising inorganic additives
- A61K6/71—Fillers
- A61K6/74—Fillers comprising phosphorus-containing compounds
- A61K6/75—Apatite
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/70—Preparations for dentistry comprising inorganic additives
- A61K6/71—Fillers
- A61K6/77—Glass
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/80—Preparations for artificial teeth, for filling teeth or for capping teeth
- A61K6/802—Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics
- A61K6/818—Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics comprising zirconium oxide
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/80—Preparations for artificial teeth, for filling teeth or for capping teeth
- A61K6/849—Preparations for artificial teeth, for filling teeth or for capping teeth comprising inorganic cements
- A61K6/853—Silicates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/80—Preparations for artificial teeth, for filling teeth or for capping teeth
- A61K6/849—Preparations for artificial teeth, for filling teeth or for capping teeth comprising inorganic cements
- A61K6/876—Calcium oxide
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/80—Preparations for artificial teeth, for filling teeth or for capping teeth
- A61K6/849—Preparations for artificial teeth, for filling teeth or for capping teeth comprising inorganic cements
- A61K6/878—Zirconium oxide
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
- A61L24/0047—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
- A61L24/0052—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material with an inorganic matrix
- A61L24/0068—Inorganic materials not covered by groups A61L24/0057 or A61L24/0063
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
- A61L24/02—Surgical adhesives or cements; Adhesives for colostomy devices containing inorganic materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/02—Inorganic materials
- A61L27/10—Ceramics or glasses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/02—Inorganic materials
- A61L27/12—Phosphorus-containing materials, e.g. apatite
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/40—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
- A61L27/42—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having an inorganic matrix
- A61L27/425—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having an inorganic matrix of phosphorus containing material, e.g. apatite
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/40—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
- A61L27/42—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having an inorganic matrix
- A61L27/427—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having an inorganic matrix of other specific inorganic materials not covered by A61L27/422 or A61L27/425
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/58—Materials at least partially resorbable by the body
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
- C04B28/025—Belite cements
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/14—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
- C04B28/145—Calcium sulfate hemi-hydrate with a specific crystal form
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/34—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing cold phosphate binders
- C04B28/344—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing cold phosphate binders the phosphate binder being present in the starting composition solely as one or more phosphates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00474—Uses not provided for elsewhere in C04B2111/00
- C04B2111/00836—Uses not provided for elsewhere in C04B2111/00 for medical or dental applications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/10—Production of cement, e.g. improving or optimising the production methods; Cement grinding
Definitions
- the present invention relates to ceramic precursor compositions and chemically bonded ceramic (CBC) materials, especially Ca-based, and a composite biomaterial suitable for orthopaedic applications.
- the CBC-system includes a binding phase (chemical cement) and additional phases with specified chemistry imparting to the biomaterial the ability of initial strength followed by interaction with the body tissue including body liquid, to form a resorbable or partly resorbable biomaterial.
- the invention also relates to a cured ceramic material, implants and surface coated de ⁇ vices.
- biomaterials For materials to be used as bone void fillers, which have to interact with human tissue, it is advantageous to make the biomaterials as biocompatible and bioactive as possible. This can be achieved principally by at least two routes - developing stable biocompatible materials or resorbable materials allowing new bone tissue to substitute the biomaterial.
- the first route to make more stable materials e.g. PMMA-based materials or Ca-aluminate-based materials, is especially suitable for osteoporotic clinical situations.
- a resorbable material e.g. soluble glasses and phosphate-based materials, may be the most attractive route, where interaction with living tissue is more pronounced. It is well known that calcium aluminates and calcium silicates can have a considerably higher compres ⁇ sive strength than those of the present resorbable materials (in the order of 100 MPa).
- the traditional resorbable phases contain oxides of Ca and P (or S) .
- Ca-phosphates and or Ca-sulphates and glass containing CaO, P2O5, Si ⁇ 2 and Na2 ⁇ are typical representatives for this low-mechanical strength category of bioelements.
- the present invention provides ceramic precur ⁇ sor compositions and cured products exhibiting the above-mentioned features.
- the object of the present invention is to provide ceramic precursor compositions based on chemically bonded ceramics as main phase(s), which when cured, pro ⁇ vides a sufficiently high-strength (compressive strength 100-150 MPa) ceramic product. Said strength is achieved shortly after application of a slurry, paste or semi-hardened mixture of the ceramic precursor composition in a defective site.
- the initial high strength makes load-bearing possible for the defective site during the resorption stage, where new bone tissue takes over the load-bearing capacity.
- the binding phase(s) according to the present invention consumes or takes up a great deal of water, whereby the cured ceramic product exhibits a low residual porosity, which contributes to the high strength.
- a ceramic precursor composition com ⁇ prising at least one particulate Ca-silicate, and possibly other particulate Ca- compounds selected from phosphates, carbonates, sulphates and combinations thereof, having calcium as the major cation. Said compound(s) will form the main binding phase(s) in the cured material.
- the ceramic precursor composition is de ⁇ fined in claim 1.
- said ceramic precursor compositions also include a second binding phase (e.g. high-strength Ca-aluminates) contributing to the high compres ⁇ sive strength, both initially and later on.
- the constituents of the ceramic precursor composition are particulate matter, unless stated otherwise.
- the percentages given for the precursor composition, as well as for the cured ceramic material, represent weight-%, unless stated otherwise.
- a cured ceramic material which is obtained by mixing the precursor composition and a curing liquid, i.e. water.
- the cured ceramic material is defined in claim 11.
- a medical implant which comprises the non-cured ceramic precursor composition and/ or the cure ceramic material accord- ing to the invention.
- the medical implant is defined in claim 27.
- Said medical im ⁇ plant may be used as a carrier material for drug delivery. Said use is defined in claim 28.
- a surface coated device selected from the group consisting of an artificial orthopaedic device, a spinal implant, a joint im ⁇ plant, an attachment element, a bone nail, a bone screw, and a bone reinforcement plate, which device or substrate is coated with the non-cured ceramic precursor and/ or the cured ceramic material according to the invention.
- the coated device or surface is defined in claim 29.
- the major advantages of the present invention precursor composition, cured mate ⁇ rial and product, when inserted or injected into a body, is that they have a high re- sorbability, such that a high in-growth rate of a bone is achieved.
- the resorption rate is less or equal to that of the bone in-growth rate. This is important to keep the loading capacity during the whole healing period.
- the compressive strength level obtained with the cured material according to the present invention is within the interval 100-150 MPa - to be compared with that of other resorbable biomaterials with a compressive strength in the interval 20-60 MPa.
- the strength level for biomaterials according to the present invention is at least equal to that of stable biomaterials for bone void filler applications, such as PMMA - based materials, which do not exhibit the same degree of resorbability.
- the ceramic material according to the invention have the advantages compared to prior art systems /materials, such as bioglasses, glass ionon ⁇ er cements and pure Ca- ⁇ hosphate-based systems or monomer-based filling materials, that it maintains its bioactivity, that it has improved initial strength and that it is dimensionally sta- ble - i.e. exhibits a limited expansion instead of shrinking like known resorbable materials, which benefits the contact with the tissue.
- the ceramic materials according to the invention have been especially developed for biomaterials used as bone void filler materials for orthopaedic applications, but can also be used as resorbable filler materials- within odontology, including endodontics.
- the present invention deals with bioactive ceramics based on resorbable ceramics. However, in addition to this, the present invention also deals in detail with the time aspects of strength development and the level of strength obtained. Accordingly, the present invention aims at providing materials, preferably biomaterials, having early and maintained strength, which with time dissolves and interacts with the body system to yield new tissue.
- the ceramic precursor composition according to the invention com ⁇ prises main binding phase(s) of chemically bonded ceramics, preferably Ca-silicates, with Ca as the main cation.
- the main binding phase(s) of the ceramic precursor composition comprises more than 50 weight-% of at least one Ca-silicate.
- the main binding phase comprises 3CaOxSiO 2 .
- the main binding phase(s) of the cured ceramic material comprises hydrates of 3CaOxSiO 2 .
- Said main binding phase(s) may also comprise phosphates, carbonates, sulphates of calcium, and combinations thereof.
- the remainder, if any, is constituted by additives such as inert phase and/or additives that make a material radiopaque.
- soluble chemically bonded ceramic based on 3CaOxSiCb is preferred, since it offers both resorbability, and a high initial consumption or up-take of water that reduces the porosity, whereby a high strength is achieved early after the appli ⁇ cation of the ceramic precursor composition mixed with a curing liquid.
- the ceramic precursor composition may further com- prise a Ca-compound based on phosphate and/ or sulphates in an amount of less than 20 weight-% of the main binding phase(s), preferably an amount of 5-10 weight-%.
- Said second binding phase may comprise a soluble glass, e.g. a phospho ⁇ rous-containing glass, apatite-based materials, preferably a soluble CaH-phosphate.
- the ceramic precursor composition may comprise additives conferring high radio- pacity, e.g. sulphates such as Ba-sulphate, and other very slowly dissolving inor ⁇ ganic or inert mineral phases.
- sulphates such as Ba-sulphate
- highly radio-opaque oxides such as zirconium oxide
- These inert phases preferably comprises a Ca-silicate-based mineral or Ca-silicate glass.
- These glasses can preferably contain fluorine and phosphorus to yield fluoride and phosphate ions, which contribute to fluoroapatite formation.
- Said additives can be included in the composition in the form of glass particles, fi ⁇ bres, whiskers and/or platelets, in concentrations below 20 weight-% of the total composition, more preferably 5-15 weight-%, and most preferably 8-12 weight-%.
- the ceramic precursor composition may further comprise particles of hydrated chemically bonded ceramics of the same or similar composition as that of the main binding phase(s) in an amount less than 40 weight-%, preferably 10-30 weight-%. This improves the homogeneity of the microstructure and enhances the binding be ⁇ tween reacting chemically bonded ceramics and the filler material in the early stage of curing.
- additives may be included which improve initial closure of pores in the ceramic material by pure water up ⁇ take, e.g. from the semi-hydrate CaSO 4 Xl /2H2O to gypsum (CaS ⁇ 4x2H2 ⁇ ).
- CaS ⁇ 4x2H2 ⁇ semi-hydrate CaSO 4 Xl /2H2O to gypsum
- a combination of phosphoric acid and zinc oxide-forming Zn-phosphate is added. These phases will not contribute to the me ⁇ dium time or long-term properties, only enhance the initial pore closure and initial strength.
- the initial strength up to a few hours after initialisation of the curing reaction may be further increased by addition of a polyacrylic (PA) -based material.
- PA polyacrylic
- one major con ⁇ cern is the low pH and the low chemical stability of secondary phases.
- pure PA acid is used only in a low concentration, less than 8 weight-%, preferably less than 5 weight-% and more preferably 2-3 weight-%, and thus the acid works as an agent reducing the pH in early stages from a pH higher than 11-12 for the initially highly basic silicate and aluminate compounds, to a pH less than 10 within 60 minutes, preferably within 30 minutes in the mixture of the ceramic precursor composition and water.
- high-strength stable addi ⁇ tives based on other chemically bonded ceramics preferably Ca-aluminates, form ⁇ ing hydrates in the cured material, are included in the ceramic precursor composi- tion in an amount less than 40 weight-%, preferably 5-30 weight-%.
- the viscosity of the ceramic material prior to curing can be controlled within a wide range, upon initial mixing of the powdered material and the hydration liquid, from moist granules to an injectable slurry. However it is preferable to decrease the wa- ter-to-cement (w/c) ratio as much as possible in order to obtain the appropriate vis ⁇ cosity for any given application.
- the w/c ratio should be less than 0.55, more pref ⁇ erably within the interval of 0.35-0.45.
- the use of a somewhat higher w/c ratio than that of dental filling materials is possible and de ⁇ sirable to ensure an easily injectable biomaterial.
- the materials also show slow disintegration rate in water and body liquid when in ⁇ serted into a body, i.e. that > 95% of the inserted mass is intact after a setting time of 5 minutes, more preferably after a setting time of 10 minutes. This is beneficial since it is important to allow the material to have time for setting without being too much mixed with the surrounding liquid.
- the setting time is in the interval of 5-12 minutes.
- the time for defined partial and complete disintegration can be varied within the interval of some months up to a few years.
- the cured ceramic material exhibits a compressive strength exceeding 100 MPa. It has a compressive strength within 24 hours of at least 40 MPa, preferably more than 50 MPa within 1 h and more than 90 MPa within 24 h. The compressive strength exceeds 120 MPa after more than 7 days.
- the cured ceramic material After more than 7 days after curing, the cured ceramic material exhibits a Kjc-value exceeding 0.5 preferably exceeding 0.7 MPam 1 / 2 , and more preferably ex ⁇ ceeding 1.0 MPam!/2.
- the dimensional change of the material during curing is less than 0.3 linear %, and/ or exhibits an expansion pressure of less than 5 MPa, preferably less than 3 MPa.
- the cured ceramic product according to the present invention when inserted into a body, has a resorption rate that is less or equal to that of the bone in-growth rate. More than 60 weight-% of the material is dissolved within 3 years, preferably more than 50 weight-% within 2 years, and more preferably more than 40 weight-% within 12 months.
- bioelement means all types of ceramic or coated objects intended for insertion into a body, such as medical implants including carrier mate- rial for drug delivery, and particularly orthopaedic implants.
- the ceramic precursor composition according to the invention, mixed with a curing liquid, may also be in ⁇ serted as a slurry, paste or putty, which after curing, forms said biolement.
- Example An animal model was used to study the resorption rate for bone cement formula ⁇ tions containing calcium silicate as main binding phase (s).
- the raw materials used were: tricalciumsilicate(C3S), dicalciumsilicate (C2S), monocalciumsilicate (CS) (Nycominerals), mono-calcium aluminate (CA), calcium- sulphate-semi-hydrate (Merck), tricalcmmphosphate (Merck), dicalciumphosphate (Merck), apatite (Merck) and Norian (Syntes Stratec).
- C3S, C2S and CA powders were synthesised in-house.
- the powder formulations were mixed with water and a hardening accelerator (30 wt.% CaCb) to a calciumsilicate /water ratio of 0.4 using a mixing machine (Rotomix 3MESPE) and plastic jars. Mixing the water and powder yielded an injectable paste.
- the pastes were evaluated with respect to pH change and strength development (measured as compressive strength) over time.
- the samples submitted to compres ⁇ sive strength testing were stored in simulated body fluid (changed every third day) and subsequently measured after Ih, 24h, 7days, 30 days, 3 months and 1-2 months.
- the samples submitted to pH testing were stored in simulated body liquid for 5 minutes, 30 minutes, 24 h, 7 days and 30 days.
- the samples were dehy ⁇ drated, embedded in methyl methacrylate, sectioned in the coronal plane and ground to 20 micrometer thickness. Histomorphometry was conducted to measure bone-to-defect area, graft-to-defect ratio, and bone-to-graft ratio.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Medicinal Chemistry (AREA)
- Transplantation (AREA)
- Dermatology (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Structural Engineering (AREA)
- Plastic & Reconstructive Surgery (AREA)
- Composite Materials (AREA)
- Surgery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Cardiology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Materials For Medical Uses (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002577535A CA2577535A1 (en) | 2004-09-10 | 2005-09-09 | Resorbable ceramic compositions |
EP05779214A EP1796749A4 (en) | 2004-09-10 | 2005-09-09 | Resorbable ceramic compositions |
AU2005294835A AU2005294835A1 (en) | 2004-09-10 | 2005-09-09 | Resorbable ceramic compositions |
JP2007531128A JP2008512176A (en) | 2004-09-10 | 2005-09-09 | Absorbent ceramic composition |
BRPI0514636-4A BRPI0514636A2 (en) | 2004-09-10 | 2005-09-09 | resorbable ceramic compositions |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE0402196-0 | 2004-09-10 | ||
SE0402196A SE528360C2 (en) | 2004-09-10 | 2004-09-10 | Resorbable ceramic compositions intended for medical implants |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006041365A1 true WO2006041365A1 (en) | 2006-04-20 |
Family
ID=33157523
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/SE2005/001304 WO2006041365A1 (en) | 2004-09-10 | 2005-09-09 | Resorbable ceramic compositions |
Country Status (11)
Country | Link |
---|---|
US (2) | US7531035B2 (en) |
EP (1) | EP1796749A4 (en) |
JP (1) | JP2008512176A (en) |
KR (1) | KR20070095864A (en) |
CN (1) | CN101014376A (en) |
AU (1) | AU2005294835A1 (en) |
BR (1) | BRPI0514636A2 (en) |
CA (1) | CA2577535A1 (en) |
RU (1) | RU2379061C2 (en) |
SE (1) | SE528360C2 (en) |
WO (1) | WO2006041365A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1861341A1 (en) * | 2005-03-25 | 2007-12-05 | Innovative Bioceramix, Inc. | Hydraulic cement compositions and methods of making and using the same |
WO2009038191A1 (en) * | 2007-09-20 | 2009-03-26 | Kyushu University, National University Corporation | Curable composition |
US7935121B2 (en) | 2003-11-11 | 2011-05-03 | Bone Support Ab | Device for providing spongy bone with bone substitute and/or bone reinforcing material, bone substitute and/or bone reinforcing material and method |
US7938572B2 (en) | 2004-06-22 | 2011-05-10 | Bone Support Ab | Device for producing a hardenable mass |
US7972630B2 (en) | 2000-04-11 | 2011-07-05 | Bone Support Ab | Injectable bone mineral substitute material |
US8420127B2 (en) | 2003-03-05 | 2013-04-16 | Bone Support Ab | Bone substitute composition |
US9180137B2 (en) | 2010-02-09 | 2015-11-10 | Bone Support Ab | Preparation of bone cement compositions |
US10294107B2 (en) | 2013-02-20 | 2019-05-21 | Bone Support Ab | Setting of hardenable bone substitute |
US11964072B2 (en) | 2016-09-27 | 2024-04-23 | Biomimetic Innovations Limited | Soft tissue adhesive composition of α-TCP and phosphorylated amino acid |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE528360C2 (en) * | 2004-09-10 | 2006-10-24 | Doxa Ab | Resorbable ceramic compositions intended for medical implants |
US7553362B2 (en) * | 2005-10-31 | 2009-06-30 | Innovative Bioceramix, Inc. | High strength biological cement composition and using the same |
US9327056B2 (en) | 2006-02-14 | 2016-05-03 | Washington State University | Bone replacement materials |
US8916198B2 (en) * | 2006-04-25 | 2014-12-23 | Washington State University | Mesoporous calcium silicate compositions and methods for synthesis of mesoporous calcium silicate for controlled release of bioactive agents |
US9028871B2 (en) | 2006-04-25 | 2015-05-12 | Washington State University | Resorbable ceramics with controlled strength loss rates |
GB2442000A (en) | 2006-06-07 | 2008-03-26 | Apatech Ltd | Biomedical materials containing gadolinium |
CN100406072C (en) * | 2006-07-18 | 2008-07-30 | 中国科学院上海硅酸盐研究所 | Bio-activity tricalcium silicate/semi water calcium sulphate composite self-solidification material, preparation and application |
EP2073855A4 (en) * | 2006-10-18 | 2012-11-21 | Doxa Ab | Injectable resorbable ceramic compositions |
US20080210125A1 (en) * | 2007-03-01 | 2008-09-04 | Doxa Ab | Stable cement composition for orthopaedic and dental use |
WO2008105737A1 (en) * | 2007-03-01 | 2008-09-04 | Doxa Ab | Stable cement composition for orthopaedic and dental use |
WO2010094813A1 (en) * | 2009-02-10 | 2010-08-26 | Azurebio, S. L. | Osseous regeneration material from combinations of monetite with other bioactive calcium compounds |
US20140050765A1 (en) * | 2012-08-14 | 2014-02-20 | Bio2 Technologies, Inc. | Devices and Methods for Tissue Engineering |
WO2016005822A1 (en) | 2014-07-07 | 2016-01-14 | Aduro Material Ab | Cement systems, hardened cements and implants |
US10485897B2 (en) * | 2015-10-12 | 2019-11-26 | Erik Erbe | Osteogenic and angiogenic implant material |
SE1651271A1 (en) * | 2016-09-27 | 2018-03-28 | Gpbio Ltd | Composition of alfa-tcp, silicate and phosphorylated amino acid |
ES2697691B2 (en) * | 2017-07-24 | 2019-10-11 | Fundacion Univ San Antonio | Procedure for obtaining a material for bone regeneration and material thus obtained |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5840336A (en) * | 1992-10-05 | 1998-11-24 | Cygnus, Inc. | Two-phase matrix for sustained release drug delivery device |
DE19923956A1 (en) * | 1999-05-25 | 2000-11-30 | Univ Albert Ludwigs Freiburg | New ceramic material and its use for dental fillings and dentures |
FR2843748A1 (en) * | 2002-08-23 | 2004-02-27 | Septodont Ou Specialites Septo | Material for restoring mineralized material, especially in dental restoration work, obtained by mixing aqueous liquid, solid tri- and/or dicalcium silicate, calcium chloride and water reducing agent |
US20040043053A1 (en) * | 2002-09-02 | 2004-03-04 | Yu Hyun Seung | Biodegradable and bioactive glass-ceramics, and method for fabricating the same |
US20040117030A1 (en) * | 2002-09-30 | 2004-06-17 | Niklas Axen | Heat generating biocompatible ceramic materials |
WO2004058194A1 (en) * | 2002-12-31 | 2004-07-15 | Doxa Aktiebolag | Chemically bonded biomaterial with tailored properties |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03109077A (en) * | 1989-09-21 | 1991-05-09 | Lion Corp | Biomaterial |
US5415547A (en) * | 1993-04-23 | 1995-05-16 | Loma Linda University | Tooth filling material and method of use |
JP2808410B2 (en) * | 1994-04-26 | 1998-10-08 | 邦夫 石川 | Curable composition and treating agent therefor |
TW527332B (en) * | 2000-05-19 | 2003-04-11 | Akzo Nobel Nv | Composition and method to prepare a concrete composition |
US20020045678A1 (en) * | 2000-08-22 | 2002-04-18 | Lopez Larry A. | Dental restorative compositions and method of use thereof |
US20030144384A1 (en) * | 2001-10-09 | 2003-07-31 | Fu Chen | Superplasticizer for concrete and self-leveling compounds |
EP1494990A4 (en) * | 2002-03-13 | 2010-05-26 | Grace W R & Co | Beneficiated water reducing compositions |
JP2005537832A (en) * | 2002-06-20 | 2005-12-15 | ドクサ アクティボラグ | Teeth filling material or implant material system and method for achieving powder material, hydration water, implant material and bonding |
CN1208281C (en) | 2003-03-21 | 2005-06-29 | 中国科学院上海硅酸盐研究所 | Preparation of porous calsium silicate/beta-tricalsium phosphate composite bio-ceramic materials |
SE528360C2 (en) * | 2004-09-10 | 2006-10-24 | Doxa Ab | Resorbable ceramic compositions intended for medical implants |
-
2004
- 2004-09-10 SE SE0402196A patent/SE528360C2/en not_active IP Right Cessation
-
2005
- 2005-09-09 BR BRPI0514636-4A patent/BRPI0514636A2/en not_active Application Discontinuation
- 2005-09-09 WO PCT/SE2005/001304 patent/WO2006041365A1/en active Application Filing
- 2005-09-09 CA CA002577535A patent/CA2577535A1/en not_active Abandoned
- 2005-09-09 JP JP2007531128A patent/JP2008512176A/en active Pending
- 2005-09-09 EP EP05779214A patent/EP1796749A4/en not_active Withdrawn
- 2005-09-09 KR KR1020077007779A patent/KR20070095864A/en not_active Application Discontinuation
- 2005-09-09 AU AU2005294835A patent/AU2005294835A1/en not_active Abandoned
- 2005-09-09 CN CNA2005800303639A patent/CN101014376A/en active Pending
- 2005-09-09 RU RU2007112478/15A patent/RU2379061C2/en not_active IP Right Cessation
- 2005-09-12 US US11/222,821 patent/US7531035B2/en not_active Expired - Fee Related
-
2009
- 2009-04-03 US US12/418,043 patent/US7972434B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5840336A (en) * | 1992-10-05 | 1998-11-24 | Cygnus, Inc. | Two-phase matrix for sustained release drug delivery device |
DE19923956A1 (en) * | 1999-05-25 | 2000-11-30 | Univ Albert Ludwigs Freiburg | New ceramic material and its use for dental fillings and dentures |
FR2843748A1 (en) * | 2002-08-23 | 2004-02-27 | Septodont Ou Specialites Septo | Material for restoring mineralized material, especially in dental restoration work, obtained by mixing aqueous liquid, solid tri- and/or dicalcium silicate, calcium chloride and water reducing agent |
US20040043053A1 (en) * | 2002-09-02 | 2004-03-04 | Yu Hyun Seung | Biodegradable and bioactive glass-ceramics, and method for fabricating the same |
US20040117030A1 (en) * | 2002-09-30 | 2004-06-17 | Niklas Axen | Heat generating biocompatible ceramic materials |
WO2004058194A1 (en) * | 2002-12-31 | 2004-07-15 | Doxa Aktiebolag | Chemically bonded biomaterial with tailored properties |
Non-Patent Citations (1)
Title |
---|
See also references of EP1796749A4 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7972630B2 (en) | 2000-04-11 | 2011-07-05 | Bone Support Ab | Injectable bone mineral substitute material |
US8420127B2 (en) | 2003-03-05 | 2013-04-16 | Bone Support Ab | Bone substitute composition |
US7935121B2 (en) | 2003-11-11 | 2011-05-03 | Bone Support Ab | Device for providing spongy bone with bone substitute and/or bone reinforcing material, bone substitute and/or bone reinforcing material and method |
US8297831B2 (en) | 2004-06-22 | 2012-10-30 | Bone Support Ab | Device for producing a hardenable mass |
US7938572B2 (en) | 2004-06-22 | 2011-05-10 | Bone Support Ab | Device for producing a hardenable mass |
EP1861341A4 (en) * | 2005-03-25 | 2011-12-21 | Innovative Bioceramix Inc | Hydraulic cement compositions and methods of making and using the same |
EP1861341A1 (en) * | 2005-03-25 | 2007-12-05 | Innovative Bioceramix, Inc. | Hydraulic cement compositions and methods of making and using the same |
WO2009038191A1 (en) * | 2007-09-20 | 2009-03-26 | Kyushu University, National University Corporation | Curable composition |
JP5404407B2 (en) * | 2007-09-20 | 2014-01-29 | 国立大学法人九州大学 | Curable composition |
US9180137B2 (en) | 2010-02-09 | 2015-11-10 | Bone Support Ab | Preparation of bone cement compositions |
US10294107B2 (en) | 2013-02-20 | 2019-05-21 | Bone Support Ab | Setting of hardenable bone substitute |
US10994998B2 (en) | 2013-02-20 | 2021-05-04 | Bone Support Ab | Setting of hardenable bone substitute |
US11964072B2 (en) | 2016-09-27 | 2024-04-23 | Biomimetic Innovations Limited | Soft tissue adhesive composition of α-TCP and phosphorylated amino acid |
Also Published As
Publication number | Publication date |
---|---|
RU2007112478A (en) | 2008-10-27 |
CA2577535A1 (en) | 2006-04-20 |
SE0402196L (en) | 2006-03-11 |
KR20070095864A (en) | 2007-10-01 |
US20090192513A1 (en) | 2009-07-30 |
BRPI0514636A2 (en) | 2011-05-10 |
JP2008512176A (en) | 2008-04-24 |
EP1796749A4 (en) | 2011-08-17 |
US7531035B2 (en) | 2009-05-12 |
SE528360C2 (en) | 2006-10-24 |
US7972434B2 (en) | 2011-07-05 |
CN101014376A (en) | 2007-08-08 |
US20060078590A1 (en) | 2006-04-13 |
SE0402196D0 (en) | 2004-09-10 |
AU2005294835A1 (en) | 2006-04-20 |
RU2379061C2 (en) | 2010-01-20 |
EP1796749A1 (en) | 2007-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7531035B2 (en) | Resorbable ceramic compositions | |
Bohner | Design of ceramic-based cements and putties for bone graft substitution | |
US8343271B1 (en) | Hydraulic cement compositions and methods of making and using the same | |
JP3110762B2 (en) | Absorbable bioactive phosphate-containing cement | |
US5296026A (en) | Phosphate glass cement | |
Han et al. | β-TCP/MCPM-based premixed calcium phosphate cements | |
AU2005338323B2 (en) | Bone repair material | |
CA2438742C (en) | A new calcium phosphate cement composition and a method for the preparation thereof | |
JPH07206489A (en) | Calcium phosphate cement composition, its preparation and its method of application | |
JPH0222113A (en) | Production of calcium phosphate mineral | |
Haque et al. | In vitro and in vivo research advancements on the magnesium phosphate cement biomaterials: A review | |
US20080058442A1 (en) | Two-Step System For Improved Initial And Final Characteristics Of A Biomaterial | |
ES2542990T3 (en) | Dental material that forms hydroxylapatite with bioactive action | |
US20060096504A1 (en) | Adhesive bone cement | |
Suzuki et al. | Development of a novel fluorapatite-forming calcium phosphate cement with calcium silicate: in vitro and in vivo characteristics | |
JP5518745B2 (en) | Formulation for magnesium ammonium phosphate cement | |
CA2325740A1 (en) | Bio-cements having improved properties | |
Artilia et al. | Setting time, handling property and mechanical strength evaluation of SCPC50 and apatite cement mixture in various combinations | |
WO2008048182A1 (en) | Injectable resorbable ceramic compositions | |
US9056097B2 (en) | Composite of amorphous calcium phosphate/calcium sulfate hemihydrate (CSH/ACP) for bone implantation and process for producing the same | |
Zaki et al. | In Vitro Bioactivity of Binary Nepheline‐Fluorapatite Glass/Polymethyl‐Methacrylate Composite | |
Luchini | Development of high strength dicalcium phosphate anhydrous cement with nanosilica sol | |
JPH03131263A (en) | Cement for living body | |
Piñera et al. | About Calcium Phosphate Cements (CPC) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2007531128 Country of ref document: JP Ref document number: 2577535 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200580030363.9 Country of ref document: CN Ref document number: 2005294835 Country of ref document: AU |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005779214 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2005294835 Country of ref document: AU Date of ref document: 20050909 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020077007779 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2005294835 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007112478 Country of ref document: RU Ref document number: 1452/CHENP/2007 Country of ref document: IN |
|
WWP | Wipo information: published in national office |
Ref document number: 2005779214 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: PI0514636 Country of ref document: BR Kind code of ref document: A2 Effective date: 20070226 |