WO2006040704A1 - Electroluminescent light source - Google Patents

Electroluminescent light source Download PDF

Info

Publication number
WO2006040704A1
WO2006040704A1 PCT/IB2005/053213 IB2005053213W WO2006040704A1 WO 2006040704 A1 WO2006040704 A1 WO 2006040704A1 IB 2005053213 W IB2005053213 W IB 2005053213W WO 2006040704 A1 WO2006040704 A1 WO 2006040704A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
light source
sublayer structure
electroluminescent
Prior art date
Application number
PCT/IB2005/053213
Other languages
French (fr)
Inventor
Hans-Helmut Bechtel
Wolfgang Busselt
Original Assignee
Philips Intellectual Property & Standards Gmbh
Koninklijke Philips Electronics N.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Intellectual Property & Standards Gmbh, Koninklijke Philips Electronics N.V. filed Critical Philips Intellectual Property & Standards Gmbh
Priority to DE602005023891T priority Critical patent/DE602005023891D1/en
Priority to AT05785099T priority patent/ATE483257T1/en
Priority to US11/576,901 priority patent/US8471456B2/en
Priority to EP05785099A priority patent/EP1803175B1/en
Priority to JP2007536299A priority patent/JP2008516405A/en
Priority to CN200580034870XA priority patent/CN101040397B/en
Publication of WO2006040704A1 publication Critical patent/WO2006040704A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/852Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]

Definitions

  • the invention relates to electroluminescent light sources with a microcavity arrangement.
  • Fig. 5 shows a schematic diagram of a microcavity with two modes of a standing wave.
  • the improved lumen output is achieved by a light emission which is optimized by a microcavity arrangement.
  • the microcavity length 8 can be set in an optimal manner for an EL layer 5 with just one emission wavelength. The light losses due to total reflections are thus minimized for such an EL light source.
  • the disruptive angle-dependence of the emission is avoided by the scattering of the non-absorbed fraction of the light at the particles 10.
  • the light which is missing in order to produce homogeneous white light is produced by absorption of the short-wave component of the emitted blue light and- subsequent isotropic re-emission in the yellow spectral region.
  • Electron transport layer consisting of 8-hydroxyquinoline (AIq)
  • Emission layer consisting of AIq, e.g. doped with pyrylene (blue)
  • Hole transport layer consisting of amines, e.g. TPD 120 nm
  • Transparent anode consisting of ITO 143 nm SiO 2
  • the particle layer thickness and the mixture of red- and green-emitting particles are to be set such that, together with the emitted light of the organic EL layer, it sets the desired white color point.
  • the SiO 2 ATiO 2 layer structure forms the second mirror of the microcavity arrangement and is referred to as the second sublayer structure in this document.
  • Electron transport layer consisting of 8-hydroxyquinoline (AIq)

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

An electroluminescent light source comprising a substrate (1) with an applied layer structure, said layer structure comprising a first sublayer structure comprising at least one electrode as anode (3), one electrode as cathode (7) and an electroluminescent layer (5) located therebetween for emitting light, wherein one of the two electrodes is provided for reflecting the light and the respective other electrode is provided for transmitting the light, a second sublayer structure (2) which adjoins the electrode provided for transmission, said second sublayer structure consisting of at least one semitransparent layer for partially reflecting the light, and a third sublayer structure which, as seen in the emission direction of the light, is arranged behind the second sublayer structure, said third sublayer structure comprising at least one layer (9) having particles (10) for absorbing some of the light at wavelengths below a threshold wavelength, for emitting light at wavelengths above the threshold wavelength, and for scattering the non-absorbed light. As a result, the angle-­dependence of the emission in the case of microcavity arrangements is compensated and the shift in the emission towards shorter wavelengths by means of absorption and re-emission at longer wavelengths is used to improve the color rendering.

Description

Electroluminescent light source
The invention relates to electroluminescent light sources with a microcavity arrangement.
Light sources comprising electroluminescent thin layers (EL light sources) all have the problem that some of the light produced isotropically in the luminescent layer cannot be emitted towards the outside on account of total reflection at the interfaces from an optically denser medium (refractive index nl) to an optically thinner medium (refractive index n2 < nl). By virtue of an optical resonator, a so-called microcavity arrangement, the percentage of light subjected to total reflection can be reduced and thus the efficiency of the light source can be increased. In this case, the microcavity arrangement consists of two mirrors, between which an electroluminescent layer (EL layer) is arranged for emitting light with a maximum intensity at a wavelength L. If the distance between the two mirrors (= microcavity length) corresponds approximately to the wavelength L of the emitted light, the light is no longer emitted isotropically but rather in the direction of the mirror preferably at angles of incidence smaller than the angle of total reflection.
Document US 5405710 describes a microcavity arrangement for an electroluminescent light source for use in flat screens or LED printers. In this case, the layer arrangement is structured in such a way that spatially separate regions are provided for producing different colors, and in which the microcavity length is locally adapted to the respective wavelength. One serious disadvantage of these microcavity arrangements is the known angle-dependent intensity of the emission (Fabry-Perot effect).
Document EP 0683623 describes a microcavity arrangement for a non- structured, multicolor-emitting, organic electroluminescent layer for simultaneously increasing the efficiency of different wavelengths. In this case, the microcavity length does not correspond to an individual wavelength but rather to a compromise which has to be adapted very precisely to the wavelengths of the emitted radiation in order to be able to achieve an improvement in the lumen output. Since the microcavity length cannot be optimal for all emission wavelengths, the improvement obtained in the lumen output is smaller the greater the number of different wavelength ranges to be emitted. The disadvantage of the angle-dependent intensity of the emission is at least considerably reduced in document EP 0683623 by a scattering layer consisting of particles of foamed quartz glass embedded in a transparent substrate or consisting of a transparent substrate with a rough surface. In respect of the technical details regarding microcavity arrangements, reference should be made to document EP 0683623, which is hereby incorporated in this application. However, another serious disadvantage of a microcavity arrangement - the shift in the emission lines towards short wavelengths and the associated worsening of the color rendering - still exists in such a microcavity arrangement. The conversion of light, that is to say the absorption of light of one wavelength and the subsequent re-emission of light with a longer wavelength, by means of particles foπns part of the prior art; in fluorescent lamps, for example, particle layers are used to convert light from the ultraviolet spectral region into light in the visible spectral region.
It is therefore an object of the invention to provide an efficient electroluminescent light source with a microcavity arrangement for emitting white light with improved color rendering while at the same time avoiding the disadvantageous microcavity effects, said light source being cost-effective to produce. This object is achieved by an electroluminescent light source comprising a layer structure applied to a substrate (1), said layer structure comprising (a) a first sublayer structure comprising at least one electrode as anode (3), one electrode as cathode (7) and an electroluminescent layer (5) located therebetween for emitting light, wherein one of the two electrodes is provided for reflecting the light and the respective other electrode is provided for transmitting the light, (b) a second sublayer structure (2) which adjoins the electrode provided for transmission, said second sublayer structure consisting of at least one semitransparent layer for partially reflecting the light, and (c) a third sublayer structure which, as seen in the emission direction of the light, is arranged behind the second sublayer structure, said third sublayer structure comprising at least one layer (9) having particles (10) for absorbing some of the light at wavelengths below a threshold wavelength, for emitting light at wavelengths above the threshold wavelength, and for scattering the non-absorbed light. The third sublayer structure combines in one layer the compensation of the angle- dependent intensity and color distribution of an EL light source with microcavity arrangement by means of a uniform distribution of the non-absorbed light by light scattering with an improvement in the emission properties such as color rendering, color point and brightness by absorbing some of the light and then re-emitting light at longer wavelengths which can be set by the choice of particle materials according to the desired properties.
In this case, the first and second sublayer structures together form the microcavity arrangement. Here, the electroluminescent layer may consist of an organic or inorganic material and be composed of one or more individual layers. The direction in which the microcavity arrangement emits the light is referred to as the emission direction of the light.
Hereinbelow, the wavelength at which 20% of the absorption strength in the absorption band used is reached will be referred to as the threshold wavelength for the absorption. The term "absorption band" is based on the energy band model for solids and refers to the energy band in which the electrons are excited by light absorption.
It is advantageous if the third sublayer structure, as seen in the emission direction of the light, is applied to the rear side of the substrate. In this case, the third sublayer structure does not have to be optically decoupled from the substrate in order to retain the positive effect of the microcavity arrangement, and this has advantages in terms of the production and stability of the third sublayer structure.
It is advantageous if the third sublayer structure, in particular the volume percent of the particles, the minimum diameter of the particles and the thickness of the third sublayer structure, is configured in such a way that the light exits the layer in a non-directional manner. Only in this way can the effect of angle-dependent emission in microcavity arrangements be effectively compensated.
To this end, it is advantageous if the volume percent of the particles of the third sublayer structure is between 5% and 60%, in order to ensure sufficient scattering. It is furthermore advantageous if the particles in the third sublayer structure have a diameter greater than 0.5 μm. In the case of smaller particles, the ratio of absorption to back-scattering is too unfavorable.
It is even more advantageous if the third sublayer structure is configured in such a way that the path length of the non-absorbed light on average corresponds to twice the layer thickness. A suitably long path length guarantees on average at least one occurring scattering event per light ray and thus sufficient scattering of the light in order to compensate for the angle-dependent emission in microcavity arrangements. However, the layer thickness here is a function of the particle size and the volume fraction. The minimum layer thickness decreases for example as the volume fraction of the particles on the third sublayer structure increases, since the path length is extended on account of the increased scattering per layer volume.
It is moreover advantageous if the electroluminescent layer emits light with a respective maximum intensity at a first and/or second wavelength, wherein the first wavelength is shorter than the second wavelength. By way of example, the spectral components which are missing in order to produce white light can be added by suitable particle emission. In this respect, it is not necessary for the electroluminescent layer to emit in three or more spectral regions. The length of a multicolor microcavity arrangement can thus be selected in a more optimal manner in this case than in the case of an emitter which has more than two emission regions.
It is even more advantageous if the electroluminescent layer emits in the blue and red spectral regions. The microcavity effect of the shift in the emission wavelengths towards shorter-wave regions remains in the red spectral region on account of the lack of absorption in the third sublayer structure. In this way, the brightness (luminance) increases in accordance with the eye sensitivity curve. Emission in the blue spectral region allows light absorption in the shortest-wave visible spectral region, and this allows the production of any visible components of the spectrum by the particles.
Particularly advantageously, a threshold wavelength of the particles is shorter than the first wavelength, the shortest-wave emission of the electroluminescent layer, since the filtering-out of the short-wave spectral region by absorption and re-emission which can be set by the choice of material of the third sublayer structure leads to an improvement in the color rendering, in particular if the first wavelength lies in the blue spectral region.
It is even more advantageous if the third sublayer structure contains at least first particles and second particles which respectively emit at least in a first spectral region and in a second spectral region which is not the same as the first spectral region. By way of example, the production of white light can be achieved by absorption in the short-wave blue spectral region and re-emission in the yellow spectral region or in the green and red spectral region. By means of a suitable choice and mixing ratio of the first and second particles, the emission properties such as color rendering, color point and brightness can be adapted to the requirements of the electroluminescent light source.
The invention will be further described with reference to examples of embodiments shown in the drawings to which, however, the invention is not restricted. Fig. 1 shows the power, emitted into the glass substrate, of an electroluminescent light source without a microcavity arrangement, as a function of the wavelength and of the emission angle relative to the vertical on the glass substrate.
Fig. 2 shows the layer system of an electroluminescent light source with a microcavity arrangement.
Fig. 3 shows the power, emitted into the glass substrate, as a function of the wavelength and of the emission angle relative to the vertical on the glass substrate, in respect of an electroluminescent light source with a microcavity arrangement.
Fig. 4 shows a layer system according to the invention of an electroluminescent light source with a microcavity arrangement and a third sublayer structure.
Fig. 5 shows a schematic diagram of a microcavity with two modes of a standing wave.
An electroluminescent light source usually consists of a layer structure applied to a flat transparent substrate 1 (glass or polymer), said layer structure consisting of an organic or inorganic electroluminescent layer 5 (EL layer) which is arranged between an anode 3 and a cathode 7. The EL layer may also be composed of a number of sublayers. An electron injection layer 6 made of a material with a low work function may additionally be arranged between the cathode and the EL layer. A hole transport layer 4 may additionally be arranged between the anode and the EL layer. Depending on the direction in which the emitted light is coupled out (bottom emitter: emission through the substrate, top emitter: emission away from the substrate, in this case through the cathode 7), either the cathode 7 or the anode 3 is made of a reflective material. The reflective electrode may either be reflective itself or else additionally have a reflective layer structure. Accordingly, the respective other electrode is made of a transparent material. The layers 3 to 7 are referred to in this document as the first sublayer structure.
Fig. 1 shows a typical emission characteristic of such an electroluminescent light source (bottom emitter) without a microcavity arrangement, as a function of the wavelength and the emission angle. The lines shown in each case represent lines of equal power. As can be seen in Fig. 1, a significant amount of power is emitted at an angle > 41° (= angle of total reflection in glass) relative to the vertical of the glass substrate. This power cannot be coupled out of the EL light source on account of the total reflection which takes place.
Fig. 2 shows the layer structure of an EL light source with a microcavity arrangement. In such a light source, the electroluminescent layer 5 is arranged between a reflective electrode 7 (first mirror) and a partially reflective layer 2 (second mirror). A microcavity arrangement forms an optical resonator, as a result of which the light emitted by the electroluminescent layer is mainly emitted at small angles relative to the vertical of the substrate. In order to obtain a resonator which is as optimal as possible, the distance 8 between the first and second mirrors (microcavity length) corresponds to the wavelength of the maximum intensity of the light emitted by the EL layer. In the case of emission through the substrate, the semitransparent second mirror may be arranged between the transparent electrode and the EL layer or between the transparent electrode and the substrate (bottom emitter) or on the cathode (top emitter). The first and second mirrors may be composed of one layer or of a layer package with alternating refractive indices. Fig. 3 shows the emission characteristic of an EL light source (bottom emitter) with a microcavity arrangement. Here, the power emitted into the glass substrate is shown as a function of the wavelength and of the emission angle. The lines shown in each case represent lines of equal power. The light emitted by the EL layer is no longer emitted isotropically but rather is preferably emitted in the direction of the mirror. As can be seen from Fig. 3, almost no power is emitted at an angle > 41° (= angle of total reflection in glass) relative to the vertical of the glass substrate. Although a microcavity has a very advantageous effect on the efficiency of the light source, Fig. 3 clearly shows the disadvantages of a microcavity arrangement, (a) the considerable angle-dependence of the intensity of the emission and (b) the shift in the intensity towards shorter wavelengths. Although optical/passive scattering layers have a positive effect on the angle- dependence of the intensity of the emission of an EL light source with a microcavity arrangement, there is no change in the effect of the shift in the emission towards shorter wavelengths. Whereas such a shift in emission intensity is rather desirable in the red spectral region, the same effect in EL light sources for emitting white light leads to a worsening of the color rendering on account of the shift in wavelengths which likewise takes place in the blue spectral region. The desire for a shift in the intensity of emission in the red spectral range is given by the eye sensitivity curve (V(λ) curve, cf. DIN 5031). Since the eye sensitivity considerably decreases above 600 nm towards long wavelengths, the brightness perceived by humans can be considerably improved by shifting the red emission characteristic towards shorter wavelengths without reducing the red color intensity of a light source. However, with the shift in wavelengths, only some of the power is shifted towards shorter wavelengths, as can be seen from Fig. 3.
Fig. 4 shows a layer structure according to the invention of an EL light source with a microcavity arrangement and with the third sublayer structure 9 according to the invention, which third sublayer structure, seen in the emission direction of the light, is applied to the rear side of the substrate. The third sublayer structure contains particles 10 for absorbing the emitted light at wavelengths above a threshold wavelength and for scattering the light below the threshold wavelength. In this case, the phosphorus particles 10 are embedded in a matrix made of passive carrier material (binder). The volume percent of particles on the layer is preferably between 5% and 30%. By virtue of this volume percent, sufficient absorption of the light is achieved while having a practical layer thickness. The particle diameter cannot be less than 500 run, since otherwise the ratio between absorption and back-scattering becomes too unfavorable. The absorbed light is then emitted isotropically at a longer wavelength which depends on the type of particles 10 (emission process). The light which is subsequently emitted by the particle layer 9 is ideally distributed in a cosine manner (Lambert's). The preferred layer thickness of the third layer also depends on the scattering behavior of the individual particles 10 and on the volume fraction thereof and on the path length of the scattered light in the layer 9 which is thus determined. The path length of a scattered ray should on average correspond to at least twice the layer thickness in order that the microcavity effect of the angle-dependence of the emission is compensated. Typical thicknesses of such a third sublayer structure lie in the range of a few tens of μm. By virtue of this third sublayer structure, on the one hand the considerable angle-dependence of the intensity of the emission when using microcavity arrangements (cf. Fig. 3) is still prevented by scattering and isotropic re-emission. On the other hand, the emission spectrum (for example of a white EL light source) is additionally changed, by absorption of the shortest- wave component of the spectrum and re-emission of a desired longer wavelength, in such a way that the emission properties of the EL light source, such as color rendering, efficiency and/or the production conditions thereof, can additionally be improved/simplified. In another embodiment, the third sublayer structure may also be arranged between the substrate and the semitransparent second mirror 2. In this case, the optical coupling of the third sublayer structure to the substrate can only be very low in order that the effect of the improved light emission by virtue of the microcavity arrangement is retained. A very low optical coupling is achieved by a porous particle layer without a carrier material which surrounds the particles, wherein in this case it is advantageous to additionally apply a smoothing and adhesion-promoting intermediate layer at the interface between third scattering layer and electrode. The volume percent of the particles in such porous layers may be up to 60%. In one preferred embodiment, an efficient homogeneous white EL light source can be produced by means of an EL layer 5 which emits in the blue spectral region. The improved lumen output is achieved by a light emission which is optimized by a microcavity arrangement. The microcavity length 8 can be set in an optimal manner for an EL layer 5 with just one emission wavelength. The light losses due to total reflections are thus minimized for such an EL light source. At the same time, the disruptive angle-dependence of the emission is avoided by the scattering of the non-absorbed fraction of the light at the particles 10. The light which is missing in order to produce homogeneous white light is produced by absorption of the short-wave component of the emitted blue light and- subsequent isotropic re-emission in the yellow spectral region. In a further preferred embodiment, the third sublayer structure may additionally have a second class of particles with the same absorption wavelength but different re-emission wavelength, in order to further improve the color rendering. Given the same particle size and distribution, the scattering properties remain unaffected thereby. White light can be produced for example with a blue emission of the EL layer and first and second particles with emissions in the green and red spectral region.
In another preferred embodiment, a multicolor microcavity arrangement according to document EP 0683623 can according to the invention be produced for providing an efficient white EL light source with improved color rendering and improved efficiency, by means of an EL light source which emits in the blue or in the blue and red spectral region (for example with an appropriately doped organic EL layer), cf. Fig. 5. The color rendering and color point can be appropriately set by suitably selecting the particles 10. By virtue of the reduction in the number of emitted spectral regions which is made possible by the particles, the microcavity length 8 has to be optimized in a simultaneous manner for just one or two wavelengths (modes of standing waves 51 and 52 for example for the blue and red spectral regions). This leads to a better compromise in terms of the microcavity length 8 than in the case of three different wavelengths for example, and thus to an increased light emission by means of a better microcavity effect.
In order to produce the electrode materials, the second layer structure and inorganic EL layers, use is usually made of vacuum methods such as coating, sputtering and/or chemical methods such as CVD (Chemical Vapor Deposition). For organic EL layers, use is made of coating or wet-chemical methods such as spraying the structure to be coated with liquid organic solutions and then baking out the solvent. In the case of distribution of the material by rotation of the, substrate, the term spin-coating is used. The third sublayer structure 9 is usually applied with a binder which fully or partially fills the spaces between the particles 10. By way of example, acrylates, polysiloxanes, silicones or sol-gel materials may be used as binder. It is advantageous if the refractive index of the binder is greater than or equal to the refractive index of the substrate. The suspension of particles 10 and binder material can be applied by various methods such as printing, spraying, knife-coating or spin-coating. Depending on the deposition method, a suspension having the required properties is produced. By way of example, in respect of a screen printing paste, 12 g of particle powder are mixed into a paste consisting of 100 g of terpineol with 5% by weight of ethylcellulose NlOO with 2.6 g of Modaflow thixotropic agent. The particle powder may consist of first particles or of a mixture of first, second and possibly further particles.
1st example of embodiment: Blue-emitting organic electroluminescent light source with YAGrCe particles in the third sublayer structure Layer thickness Material
100 nm Reflective aluminum cathode LiF electron injection layer
Electron transport layer consisting of 8-hydroxyquinoline (AIq) Emission layer consisting of AIq, e.g. doped with pyrylene (blue) Hole transport layer consisting of amines, e.g. TPD 120 nm Transparent anode consisting of ITO 143 nm SiO2
46 nm TiO2
384 nm SiO2
137 nm TiO2
Glass substrate 30 μm YAG:Ce particle layer, mean particle diameter 5 μm
White light is produced by mixing of blue-emitted light and absorption of the short-wave component of the blue light and re-emission in the yellow spectral region. In order to further improve the emission properties, the particle layer may also contain 20% particles of CaS:Eu in addition to YAG:Ce particles. YAG:Ce absorbs in the blue region at 460 nm, and CaS :Eu absorbs below approx. 580 nm. The Si(VTiCh layer structure forms the second mirror of the microcavity arrangement and is referred to as the second sublayer structure in this document.
2nd example of embodiment: Blue-emitting organic electroluminescent light source with CaSrEuZSrGa2S^Eu particles in the third sublayer structure
Layer thickness Material
100 nm Reflective aluminum cathode
LiF electron injection layer
Electron transport layer consisting of 8-hydroxyquinoline (AIq) Emission layer consisting of AIq, e.g. doped with pyrylene (blue)
Hole transport layer consisting of amines, e.g. TPD 120 nm Transparent anode consisting of ITO
143 nm SiO2
46 nm TiO2 384 nm SiO2
137 nm TiO2
Glass substrate
20 μm CaS:Eu/SrGa2S4.Εu particle layer, mean particle diameter 5 μm White light is produced by mixing of blue-emitted light and absorption of the short-wave component of the blue light and re-emission in the green (SrGa2S4IEu) and red (CaSrEu) spectral region. As an alternative to the above particle materials, BaMg2Ali6θ27:Eu,Mn (green emission) and Mg4GeOs^FrMn (red emission) with absorption threshold wavelengths < 430 nm would also be possible. The particle layer thickness and the mixture of red- and green-emitting particles are to be set such that, together with the emitted light of the organic EL layer, it sets the desired white color point. The SiO2ATiO2 layer structure forms the second mirror of the microcavity arrangement and is referred to as the second sublayer structure in this document.
3rd example of embodiment: Blue- and red-emitting organic electroluminescent light source with SrGa2S4:Eu particles in the third sublayer structure Layer thickness Material
100 nm Reflective aluminum cathode
LiF electron injection layer
Electron transport layer consisting of 8-hydroxyquinoline (AIq)
Emission layer consisting of AIq, e.g. doped with pyrylene (blue) and DCM (red)
Hole transport layer consisting of amines, e.g. TPD 120 nm Transparent anode consisting of ITO
143 nm SiO2 46 nm TiO2
384 nm SiO2
137 nm TiO2
Glass substrate
20 μm SrGa2S^Eu particle layer, mean particle diameter 5 μm White light is produced by mixing of blue- and red-emitted light and absorption of blue light and re-emission in the green (SrGa2S^Eu) spectral region. As an alternative to SrGa2S^-Eu, the use of particles of BaMg2Ali6θ27:Eu,Mn (green emission) with absorption threshold wavelengths < 430 nm would also be possible. The SiO2/TiO2 layer structure forms the second mirror of the microcavity arrangement and is referred to as the second sublayer structure in this document.
Further advantageous materials for absorbing light at wavelengths shorter than 430 nm and re-emitting light are ZnS:Ag (blue emission) or SrAl2O^Eu (green emission). If necessary, a material which emits in the longer-wave blue spectral region may also be added to the third sublayer structure, in order to amplify the blue spectral component in the case of high absorption.
The embodiments explained with reference to the figures and the description are only examples of an electroluminescent light source and should not be understood as limiting the patent claims to these examples. Alternative embodiments which are likewise covered by the protective scope of the following patent claims will also be possible for the person skilled in the art. The numbering of the dependent claims is not intended to imply that other combinations of the claims do not also represent advantageous embodiments.

Claims

CLAIMS:
1. An electroluminescent light source comprising a layer structure applied to a substrate (1), said layer structure comprising
- a first sublayer structure comprising at least one electrode as anode (3), one electrode as cathode (7) and an electroluminescent layer (5) located therebetween for emitting light, wherein one of the two electrodes is provided for reflecting the light and the respective other electrode is provided for transmitting the light,
- a second sublayer structure (2) which adjoins the electrode provided for transmission, said second sublayer structure consisting of at least one semitransparent layer for partially reflecting the light, and - a third sublayer structure which, as seen in the emission direction of the light, is arranged behind the second sublayer structure, said third sublayer structure comprising at least one layer (9) having particles (10) for absorbing some of the light at wavelengths below a threshold wavelength, for emitting light at wavelengths above the threshold wavelength, and for scattering the non-absorbed light.
2. An electroluminescent light source as claimed in claim 1, characterized in that the third sublayer structure (9), as seen in the emission direction of the light, is applied to the rear side of the substrate (1).
3. An electroluminescent light source as claimed in claim 1 or 2, characterized in that the third sublayer structure, in particular the volume percent of the particles, the minimum diameter of the particles and the thickness of the third sublayer structure, is configured in such a way that the light exits the layer in a non-directional manner.
4. An electroluminescent light source as claimed in claim 3, characterized in that the volume percent of the particles (10) of the third sublayer structure (9) is between 5% and 60%. 5. An electroluminescent light source as claimed in claim 3 or 4, characterized in that the particles (10) of the third sublayer structure (9) have a diameter greater than 0.
5 μm.
6. An electroluminescent light source as claimed in any of claims 3 to 5, characterized in that the third sublayer structure is configured in such a way that the path length of the non-absorbed light on average corresponds to twice the layer thickness.
7. An electroluminescent light source as claimed in any of claims 1 to 6, characterized in that the electroluminescent layer emits light with a respective maximum intensity at a first and/or second wavelength, wherein the first wavelength is shorter than the second wavelength.
8. An electroluminescent light source as claimed in claim 7, characterized in that the first wavelength lies in the blue spectral region and the second wavelength lies in the red spectral region.
9. An electroluminescent light source as claimed in claim 7 or 8, characterized in that the threshold wavelength is shorter than the first wavelength, in particular if the first wavelength lies in the blue spectral region.
10. An electroluminescent light source as claimed in any of claims 3 to 9, characterized in that the third sublayer structure contains at least first particles and second particles which respectively emit at least in a first spectral region, in particular in the yellow or green spectral region, and in a second spectral region which is not the same as the first spectral region, in particular in the red spectral region.
PCT/IB2005/053213 2004-10-12 2005-09-29 Electroluminescent light source WO2006040704A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE602005023891T DE602005023891D1 (en) 2004-10-12 2005-09-29 ELECTROLUMINSEZENTE LIGHT SOURCE
AT05785099T ATE483257T1 (en) 2004-10-12 2005-09-29 ELECTROLUMINescent LIGHT SOURCE
US11/576,901 US8471456B2 (en) 2004-10-12 2005-09-29 Electroluminescent light source with improved color rendering
EP05785099A EP1803175B1 (en) 2004-10-12 2005-09-29 Electroluminescent light source
JP2007536299A JP2008516405A (en) 2004-10-12 2005-09-29 Electroluminescence light source
CN200580034870XA CN101040397B (en) 2004-10-12 2005-09-29 Electroluminescent light source

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP04104979.2 2004-10-12
EP04104979 2004-10-12

Publications (1)

Publication Number Publication Date
WO2006040704A1 true WO2006040704A1 (en) 2006-04-20

Family

ID=35609643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2005/053213 WO2006040704A1 (en) 2004-10-12 2005-09-29 Electroluminescent light source

Country Status (9)

Country Link
US (1) US8471456B2 (en)
EP (1) EP1803175B1 (en)
JP (1) JP2008516405A (en)
KR (1) KR20070085321A (en)
CN (1) CN101040397B (en)
AT (1) ATE483257T1 (en)
DE (1) DE602005023891D1 (en)
TW (1) TW200633588A (en)
WO (1) WO2006040704A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008140644A1 (en) * 2007-05-10 2008-11-20 Eastman Kodak Company Electroluminescent device having improved light output
WO2008150424A1 (en) 2007-05-31 2008-12-11 Eastman Kodak Company Electroluminescent device having improved light output
JP2009054493A (en) * 2007-08-28 2009-03-12 Panasonic Electric Works Co Ltd Organic electroluminescent element
DE102008005344A1 (en) * 2007-09-21 2009-04-02 Osram Opto Semiconductors Gmbh Radiation-emitting component
WO2010113073A1 (en) 2009-03-31 2010-10-07 Koninklijke Philips Electronics N. V. Illuminated serving tray with sheet-like light source
US9093666B2 (en) 2010-04-29 2015-07-28 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Light-emitting device and method for manufacturing the same
CN110676294A (en) * 2013-10-24 2020-01-10 三星显示有限公司 Organic light emitting display device

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009060916A1 (en) * 2007-11-09 2009-05-14 Asahi Glass Co., Ltd. Light transmitting substrate, method for manufacturing light transmitting substrate, organic led element and method for manufacturing organic led element
DE102008054435A1 (en) * 2008-12-09 2010-06-10 Universität Zu Köln Organic light emitting diode with optical resonator and manufacturing method
EP2202819A1 (en) * 2008-12-29 2010-06-30 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO Electro-optic device and method for manufacturing the same
US8796914B2 (en) 2010-04-07 2014-08-05 Sharp Kabushiki Kaisha Organic electroluminescence element, organic electroluminescence display, and organic electroluminescence display apparatus
GB2516566A (en) * 2012-03-21 2015-01-28 Mflex Uk Ltd Transflective display with color shift reduction
JPWO2014087462A1 (en) * 2012-12-03 2017-01-05 株式会社日立製作所 ORGANIC ELECTROLUMINESCENT LIGHT EMITTING DEVICE, ORGANIC ELECTROLUMINESCENT ELEMENT USED FOR THE SAME, AND LIGHT EXTRACTION SHEET USED FOR THE SAME
KR102297423B1 (en) 2015-09-01 2021-09-06 삼성디스플레이 주식회사 Organic light emitting display apparatus
CN105304798A (en) * 2015-09-23 2016-02-03 深圳市华星光电技术有限公司 Light-emitting device
US9780320B2 (en) 2015-09-23 2017-10-03 Shenzhen China Star Optoelectronics Technology Co., Ltd Light emitting device
CN105185920A (en) * 2015-09-23 2015-12-23 深圳市华星光电技术有限公司 Light-emitting device
CN105226198A (en) * 2015-10-13 2016-01-06 京东方科技集团股份有限公司 A kind of waterproof transmission increasing flexible OLED devices device and preparation method thereof
CN107658331B (en) * 2017-10-17 2021-04-13 京东方科技集团股份有限公司 Display panel and display device
JPWO2022118140A1 (en) * 2020-12-04 2022-06-09
WO2024062884A1 (en) * 2022-09-21 2024-03-28 富士フイルム株式会社 Optical film, and organic electroluminescent display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6447934B1 (en) * 1998-10-09 2002-09-10 Denso Corporation Organic electroluminescent panel
US20020175619A1 (en) * 2001-03-27 2002-11-28 Konica Corporation Organic electroluminescent element, displaying apparatus, light emitting method, displaying method and transparent substrate
US20040027062A1 (en) * 2001-01-16 2004-02-12 General Electric Company Organic electroluminescent device with a ceramic output coupler and method of making the same
WO2004021463A2 (en) * 2002-06-26 2004-03-11 3M Innovative Properties Company Buffer layers for organic electroluminescent devices and methods of manufacture and use
WO2004032576A1 (en) * 2002-10-01 2004-04-15 Philips Intellectual Property & Standards Gmbh Electroluminescent display with improved light outcoupling

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3276745B2 (en) * 1993-11-15 2002-04-22 株式会社日立製作所 Variable wavelength light emitting device and control method thereof
US5405710A (en) 1993-11-22 1995-04-11 At&T Corp. Article comprising microcavity light sources
US5939142A (en) * 1994-05-11 1999-08-17 Stephen W. Comisky Reflected light glare minimization for athletic contest participants while providing a non-verbal communication
US5478658A (en) 1994-05-20 1995-12-26 At&T Corp. Article comprising a microcavity light source
JP2000212554A (en) * 1998-11-20 2000-08-02 Idemitsu Kosan Co Ltd Fluorescence conversion medium and display device using the same
US6762553B1 (en) * 1999-11-10 2004-07-13 Matsushita Electric Works, Ltd. Substrate for light emitting device, light emitting device and process for production of light emitting device
US6661029B1 (en) 2000-03-31 2003-12-09 General Electric Company Color tunable organic electroluminescent light source
US6777871B2 (en) 2000-03-31 2004-08-17 General Electric Company Organic electroluminescent devices with enhanced light extraction
US6577073B2 (en) * 2000-05-31 2003-06-10 Matsushita Electric Industrial Co., Ltd. Led lamp
JP3609709B2 (en) * 2000-09-29 2005-01-12 株式会社シチズン電子 Light emitting diode
JP2004513483A (en) * 2000-11-02 2004-04-30 スリーエム イノベイティブ プロパティズ カンパニー Bright and contrast enhanced direct-view luminescent display
US20020063520A1 (en) * 2000-11-29 2002-05-30 Huei-Che Yu Pre-formed fluorescent plate - LED device
GB0124068D0 (en) * 2001-10-06 2001-11-28 Ibm Fluorescence-enhanced reflective LCD
EP1445095B1 (en) * 2001-10-25 2012-12-26 Panasonic Corporation Composite thin film holding substrate, transparent conductive film holding substrate, and panel light emitting body
JP2003142262A (en) * 2001-11-06 2003-05-16 Seiko Epson Corp Photoelectric device, film-shaped member, laminated film, film with low refractive index, multi-layered laminated film, and electronic device
US6815092B2 (en) * 2001-12-05 2004-11-09 Agfa-Gevaert Radiation image storage panel
US6903505B2 (en) * 2001-12-17 2005-06-07 General Electric Company Light-emitting device with organic electroluminescent material and photoluminescent materials
US6703781B2 (en) * 2002-05-21 2004-03-09 Durel Corporation El lamp with light scattering particles in cascading layer
US6870311B2 (en) * 2002-06-07 2005-03-22 Lumileds Lighting U.S., Llc Light-emitting devices utilizing nanoparticles
US7015640B2 (en) * 2002-09-11 2006-03-21 General Electric Company Diffusion barrier coatings having graded compositions and devices incorporating the same
EP1603367B1 (en) * 2003-03-12 2015-09-09 Mitsubishi Chemical Corporation Electroluminescence device
US6847162B2 (en) * 2003-04-29 2005-01-25 General Electric Company Light source with organic layer and photoluminescent layer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6447934B1 (en) * 1998-10-09 2002-09-10 Denso Corporation Organic electroluminescent panel
US20040027062A1 (en) * 2001-01-16 2004-02-12 General Electric Company Organic electroluminescent device with a ceramic output coupler and method of making the same
US20020175619A1 (en) * 2001-03-27 2002-11-28 Konica Corporation Organic electroluminescent element, displaying apparatus, light emitting method, displaying method and transparent substrate
WO2004021463A2 (en) * 2002-06-26 2004-03-11 3M Innovative Properties Company Buffer layers for organic electroluminescent devices and methods of manufacture and use
WO2004032576A1 (en) * 2002-10-01 2004-04-15 Philips Intellectual Property & Standards Gmbh Electroluminescent display with improved light outcoupling

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7911133B2 (en) 2007-05-10 2011-03-22 Global Oled Technology Llc Electroluminescent device having improved light output
WO2008140644A1 (en) * 2007-05-10 2008-11-20 Eastman Kodak Company Electroluminescent device having improved light output
JP2010529598A (en) * 2007-05-31 2010-08-26 イーストマン コダック カンパニー Electroluminescent devices with improved light output
WO2008150424A1 (en) 2007-05-31 2008-12-11 Eastman Kodak Company Electroluminescent device having improved light output
US7902748B2 (en) 2007-05-31 2011-03-08 Global Oled Technology Llc Electroluminescent device having improved light output
EP2190265A1 (en) * 2007-08-28 2010-05-26 Panasonic Electric Works Co., Ltd Organic electroluminescence device
JP2009054493A (en) * 2007-08-28 2009-03-12 Panasonic Electric Works Co Ltd Organic electroluminescent element
EP2190265A4 (en) * 2007-08-28 2011-04-06 Panasonic Elec Works Co Ltd Organic electroluminescence device
US8357930B2 (en) 2007-08-28 2013-01-22 Panasonic Corporation Organic electroluminescence device
DE102008005344A1 (en) * 2007-09-21 2009-04-02 Osram Opto Semiconductors Gmbh Radiation-emitting component
US8373186B2 (en) 2007-09-21 2013-02-12 Osram Opto Semiconductors Gmbh Radiation-emitting component
US8963181B2 (en) 2007-09-21 2015-02-24 Osram Opto Semiconductors Gmbh Radiation-emitting component
WO2010113073A1 (en) 2009-03-31 2010-10-07 Koninklijke Philips Electronics N. V. Illuminated serving tray with sheet-like light source
US9093666B2 (en) 2010-04-29 2015-07-28 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Light-emitting device and method for manufacturing the same
CN110676294A (en) * 2013-10-24 2020-01-10 三星显示有限公司 Organic light emitting display device
US11527733B2 (en) 2013-10-24 2022-12-13 Samsung Display Co., Ltd. Organic light emitting display apparatus
CN110676294B (en) * 2013-10-24 2023-05-26 三星显示有限公司 Organic light emitting display device
US11930652B2 (en) 2013-10-24 2024-03-12 Samsung Display Co., Ltd. Organic light emitting display apparatus including sub light emitting layers

Also Published As

Publication number Publication date
TW200633588A (en) 2006-09-16
US20080093977A1 (en) 2008-04-24
ATE483257T1 (en) 2010-10-15
CN101040397B (en) 2010-12-08
DE602005023891D1 (en) 2010-11-11
EP1803175B1 (en) 2010-09-29
EP1803175A1 (en) 2007-07-04
US8471456B2 (en) 2013-06-25
KR20070085321A (en) 2007-08-27
JP2008516405A (en) 2008-05-15
CN101040397A (en) 2007-09-19

Similar Documents

Publication Publication Date Title
US8471456B2 (en) Electroluminescent light source with improved color rendering
KR101490233B1 (en) Phosphor converted monochromatic LED comprising a long wave pass filter
US20150162503A1 (en) Led assembly
US8138666B2 (en) Wavelength conversion member and light-emitting device
US8330348B2 (en) Structured luminescence conversion layer
US9048399B2 (en) Light emitting device
JP5210109B2 (en) LED light emitting device
TWI418050B (en) Luminescence conversion led
US10978517B2 (en) Display substrate having a filter conversion layer
GB2404276A (en) Organic EL display
TWI651393B (en) LED package with red luminescent phosphor
KR20100035134A (en) Highly efficient organic light emitting device and method for manufacturing the same
JP2011168627A (en) Wavelength converting member, method for manufacturing the same and light-emitting equipment using the same
JP2009059896A (en) Light-emitting device
WO2017043245A1 (en) Organic electroluminescent device, organic electroluminescent device manufacturing method, lighting device and display device
JP2011513964A (en) Light emitting diode device
KR100771806B1 (en) White light emitting device
CN1157755C (en) Crt
KR20060024545A (en) High-luminance organic light-emitting device displays
CN1271672C (en) Cathode-ray tube
JP2008052950A (en) Display device
WO2019061818A1 (en) Wavelength conversion device and light emitting device
KR100325851B1 (en) Blue phosphor complex having near ultraviolet-excited blue phosphors and cathode ray tube employing phosphor layer formed using the same
CN103137835A (en) Method of enhancing color rendering index of a white led
TW200913339A (en) Organic light emitting diode device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005785099

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11576901

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007536299

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580034870.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077010768

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005785099

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11576901

Country of ref document: US