WO2006039427A2 - Methods and apparatuses for aesthetically enhanced image conversion - Google Patents
Methods and apparatuses for aesthetically enhanced image conversion Download PDFInfo
- Publication number
- WO2006039427A2 WO2006039427A2 PCT/US2005/035074 US2005035074W WO2006039427A2 WO 2006039427 A2 WO2006039427 A2 WO 2006039427A2 US 2005035074 W US2005035074 W US 2005035074W WO 2006039427 A2 WO2006039427 A2 WO 2006039427A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- color
- image
- channels
- gray scale
- channel
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/40—Picture signal circuits
- H04N1/40012—Conversion of colour to monochrome
Definitions
- the invention relates to image processing, and more particular to automated conversion of electronic color images.
- the RGB values of a pixel can be used to compute the luminance component of a Hue, Saturation and Luminance (HSL) color space; the luminance component can then be used as the gray scale intensity and assigned to the RGB channels of the pixel.
- HSL Hue, Saturation and Luminance
- Some software programs allow a user to choose the weight of each of the color channels for computing the gray scale intensity. After a user specifies a set of weights for different color channels, the software programs convert a color image into a gray scale image based on the user specified weights. Thus, a user may manually adjust the weight for each of the color channels to create different gray scale images for inspection and for comparison. Through manual adjustment the weights for different channels and visual inspection of the resulting gray scale images, a user can create a customized gray scale image according to the artistic taste of the user. Such an approach is suitable for users who have the time, interest, and knowledge in customizing the gray scale image. Although an experienced user may produce the desired result quickly, a typical user may find the trial-and-error process time consuming.
- the mix of color channels of a color image is automatically determined as a result of analysis of the image for the generation of a gray scale image.
- the data of a color channel e.g., Blue
- the adjustment strength depends on the image itself.
- a stronger color channel is automatically weighted less than a weaker color channel for enhancement.
- the boundary portion of the image is darkened to strengthen the edges and draw attention to the center of the image.
- an attractive color balance adjustment is also made according to the gray levels to further enhance the appearance.
- a method of image conversion includes: automatically generating a substantially gray scale image using data of a plurality of color channels of a color image, where a weight of a color channel (e.g., Blue) of the color image is reduced substantially and automatically in generating the substantially gray scale image.
- the weight for the color channel e.g., Blue
- data of the color channel of the color image e.g., blue values of the color images
- color points of the substantially gray scale image are close to a white point (e.g., on a chromaticity diagram).
- colors of the substantially gray scale image are a function of luminance level.
- weights for the plurality of color channels are determined from statistical data of the plurality of color channels.
- the plurality of color channels includes a first color channel and a second color channel; weights for the first and second channels are reverse proportional to indicators of overall color of the first and second channels of the color image.
- the indicators of overall color of the first and second color channels of the color image are determined based on: an average color value of the first color channel of the color image; and an average color value of the second color channel of the color image.
- the indicators of overall color of the first and second color channels of the color image are determined based on: a count of pixels with larger color values of the first color channel of the color image than color values of the second color channel of the color image; and a count of pixels with larger color values of the second color channel of the color image than color values of the first color channel of the color image (e.g., a count of red dominant pixels and a count of green dominant pixels).
- generating the substantially gray scale image includes: scaling luminance levels to stretch a range of luminance levels; reducing luminance levels for a boundary region of the substantially gray scale image based on a distance to a boundary; and adjusting color balance according to luminance level.
- a method of image conversion includes: automatically determining weights for a plurality of color channels of a color image based on statistical data of the color image; and generating a substantially gray scale image from data of the plurality of color channels of the color image according to the weights.
- the plurality of color channels are Red and Green; and data of Blue channel of the image is not used in generating the substantially gray scale image.
- the statistical data are determined from data of the plurality of color channels of the color image; and the statistical data comprises at least one of: an average of color values of one of the plurality of color channels of the color image; and a count of pixels with larger color values of a first color channel of the color image than color values of a second color channel of the color image.
- a ratio between a weight for a first one of the plurality of color channels of the color image and a weight for a second one of the plurality of color channels of the color image is reverse proportional to a ratio between an average of color values of the first one of the plurality of color channels of the color image and an average of color values of the second one of the plurality of color channels of the color image; alternatively, a ratio between a weight for a first one of the plurality of color channels of the color image and a weight for a second one of the plurality of color channels of the color image is reverse proportional to a ratio between a count of pixels with larger color values of the first one of the plurality of color channels of the color image than color values of the second one of the plurality of color channels of the color image and a count of pixels with larger color values of the second one of the plurality of color channels of the color image than color values of the first one of the plurality of color channels of the color image.
- generating the substantially gray scale image includes: determining gray levels from color values of the plurality of color channels according to the weights; scaling the gray levels to enhance contrast; reducing the gray levels for a boundary region of the substantially gray scale image based on a distance to a boundary; and determining color values of the substantially gray scale image according to the gray levels.
- the present invention includes methods and apparatuses which perform these methods, including data processing systems which perform these methods, and computer readable media which when executed on data processing systems cause the systems to perform these methods.
- Figure 1 shows a block diagram example of a data processing system which may be used with the present invention.
- Figure 2 shows an example of an image taking system which may be used in embodiments of the invention.
- Figure 3 shows an example of converting a color image into a gray scale image according to one embodiment of the present invention.
- Figure 4 shows an example of determining a weight for a color channel according to one embodiment of the present invention.
- Figure 5 shows examples of stretching the luminance range of an image according to one embodiment of the present invention.
- Figure 6 shows an example of edge darkening according to one embodiment of the present invention.
- Figure 7 shows an example user interface for adjusting parameters for transforming an image according to one embodiment of the present invention.
- Figure 8 shows a flow chart of a method to perform image conversion according to one embodiment of the present invention.
- Figure 9 shows a detailed method to transform an image according to one embodiment of the present invention.
- At least one embodiment of the present invention seeks to automatically convert a color image to an aesthetically enhanced gray scale image, or a substantially gray scale image with a slight color shade based gray scale.
- the color image is analyzed to automatically determine the strength of adjustments.
- color channels e.g., Red and Green
- color channels with data suitable for a gray scale representation is weighted much more heavily than a channel that has data not suitable for a gray scale representation (e.g., Blue).
- the color channels are automatically weighted to produce aesthetically superior results than those obtained from the traditional automated methods.
- an image taking system e.g., a video camera or a still image camera
- an image processing system e.g., a portable computer or a desktop computer
- the Blue channel is given a very small or zero weight in a conversion from a color image to a gray scale image, since the Blue channel data is "noisy" for a gray scale representation. If only the Blue channel data of a typical photographical is converted to a gray scale image, the resulting gray scale image is typically a high contrast image with less recognizable detail features than those observable in the original color image. [0024] In one embodiment, the Blue channel data is not used at all in the automated generation of a gray scale image. The Red and Green channels are weighted according to statistical data about the color image to enhance the resulting gray scale image.
- Figure 1 shows one example of a typical computer system which may be used with the present invention. Note that while Figure 1 illustrates various components of a computer system, it is not intended to represent any particular architecture or manner of interconnecting the components as such details are not germane to the present invention. It will also be appreciated that network computers and other data processing systems which have fewer components or perhaps more components may also be used with the present invention.
- the computer system of Figure 1 may, for example, be an Apple Macintosh computer.
- the computer system 101 which is a form of a data processing system, includes a bus 102 which is coupled to a microprocessor 103 and a ROM 107 and volatile RAM 105 and a non-volatile memory 106.
- the microprocessor 103 which may be, for example, a G3, G4, or G5 microprocessor from Motorola, Inc. or IBM is coupled to cache memory 104 as shown in the example of Figure 1.
- the bus 102 interconnects these various components together and also interconnects these components 103, 107, 105, and 106 to a display controller and display device 108 and to peripheral devices such as input/output (I/O) devices which may be mice, keyboards, modems, network interfaces, printers, scanners, video cameras and other devices which are well known in the art.
- I/O input/output
- the input/output devices 110 are coupled to the system through input/output controllers 109.
- the volatile RAM 105 is typically implemented as dynamic RAM (DRAM) which requires power continually in order to refresh or maintain the data in the memory.
- DRAM dynamic RAM
- the non- volatile memory 106 is typically a magnetic hard drive or a magnetic optical drive or an optical drive or a DVD RAM or other type of memory systems which maintain data even after power is removed from the system.
- the non- volatile memory will also be a random access memory although this is not required.
- Figure 1 shows that the non- volatile memory is a local device coupled directly to the rest of the components in the data processing system, it will be appreciated that the present invention may utilize a non- volatile memory which is remote from the system, such as a network storage device which is coupled to the data processing system through a network interface such as a modem or Ethernet interface.
- the bus 102 may include one or more buses connected to each other through various bridges, controllers and/or adapters as is well known in the art.
- the I/O controller 109 includes a USB (Universal Serial Bus) adapter for controlling USB peripherals, and/or an IEEE- 1394 bus adapter for controlling IEEE-1394 peripherals.
- USB Universal Serial Bus
- IEEE- 1394 IEEE- 1394 bus adapter for controlling IEEE-1394 peripherals.
- a machine readable medium can be used to store software and data which when executed by a data processing system causes the system to perform various methods of the present invention.
- This executable software and data may be stored in various places including for example ROM 107, volatile RAM 105, non ⁇ volatile memory 106 and/or cache 104 as shown in Figure 1.
- a machine readable medium includes any mechanism that provides (i.e., stores and/or transmits) information in a form accessible by a machine (e.g., a computer, network device, personal digital assistant, manufacturing tool, any device with a set of one or more processors, etc.).
- a machine readable medium includes recordable/non-recordable media (e.g., read only memory (ROM); random access memory (RAM); magnetic disk storage media; optical storage media; flash memory devices; etc.), as well as electrical, optical, acoustical or other forms of propagated signals (e.g., carrier waves, infrared signals, digital signals, etc.); etc.
- Figure 2 shows an example of an image taking system which may be used in embodiments of the invention.
- This imaging device 151 may be, for example, a digital still or video (movie) camera.
- the imaging device 151 includes a microcontroller or microprocessor 155 which is coupled by a bus 152 to a memory 153, an Input/Output (I/O) port 161, a CCD (Charge Coupled Device) image sensor 159, and a ROM (Read Only Memory) 157.
- the imaging device 151 may also include a Liquid Crystal Display (LCD) 171, which is also coupled to the bus 152 and which may be used to display images which are captured or recorded by the imaging device 151.
- the LCD 171 serves as a viewfmder of a camera and there may optionally be other types of image display devices on imaging device 151 which can serve as a viewfmder.
- the LCD display may further be used to display the user interface for setting the options for image restoration and enhancement and for displaying the transformed images.
- the imaging device 151 also includes an imaging lens 163 which can be disposed over CCD 159.
- the microprocessor 155 controls the operation of the imaging device 151; and, it may do so by executing a software program stored in ROM 157, or in the microprocessor 155, or in both ROM 157 and the microprocessor 155.
- the microprocessor 155 controls the image transformation operation; and, it controls the storage of a captured image in memory 153.
- the microprocessor 155 also controls the exporting of image data (which may or may not be color corrected) to an external general purpose computer or special purpose computer through one of the I/O ports 161.
- the microprocessor 155 also responds to user commands (e.g., a command to "take” a picture by capturing an image on the CCD and storing it in memory or a command to select an option for contrast enhancement and color balance adjustment).
- the ROM 157 may store software instructions for execution by the microprocessor 155 and may also store the options (or preferences) for performing the image conversion.
- the memory 153 is used to store captured/recorded images which are received from the CCD 159. It will be appreciated that other alternative architectures of a camera can be used with the various embodiments of the invention.
- FIG. 3 shows an example of converting a color image into a gray scale image according to one embodiment of the present invention.
- color image 201 has an array of pixels. Each of the pixels of color image 201 specifies color information for a point in the color image. For example, a pixel (i) has color values Red 241 (Rj), Green 243 (Gi), and Blue 245 (B 1 ) in a Red, Green and Blue (RGB) color space.
- the color image (201) can be analyzed (203) to obtain statistical data about the image. For example, the average components can be determined for the color channels, Red, Green and Blue.
- Average Red 231 (R A ), average Green 233 (G A ) and average Blue 235 (B A ) can then be used to determine (205) the weight for mixing the data from the different channels.
- the weight W B (255) for the Blue channel is small or zero, since the data from the Blue channel of a photo image is not suitable for the generation of an aesthetically pleasing gray scale image.
- one embodiment of the present invention uses a zero weight for the Blue channel so that the data from the Blue channel is not used; it may not be necessary to evaluate the average Blue B A (235); and the averages R A (231) and G A (233) are used to determine the weights W R (251) and W G (253) for the Red and Green channels.
- a larger weight is used for a channel that has a smaller average than the other channel so that the details in the channel with the smaller average can be enhanced and emphasized. For example, when the average R A (231) is smaller than G A (233), the Red channel has a weight W R (251) larger than W G (253).
- the data of the Blue channel is analyzed for a determination of the weight for the Blue channel. For example, the mid-blue pixels that have non-extreme blue values (e.g., pixels without very high or very low blue values) are counted.
- the weight for the Blue channel increases as the percentage of the mid-blue pixels increases.
- a typical photo image has only a small number of mid-blue pixels so that a gray scale image generated based on only the Blue channel data provides little detailed features. If not heavily discounted, the high contrast blue channel data can bury the details of the other channels.
- the percentages of the mid-red, mid-green and mid-blue pixels are used to determine weights so that weights are proportional (linearly or nonlinearly) to these percentages. Further, the weights based on the percentages of mid-red, mid-green and mid-blue pixels can be combined with weights based on other considerations (e.g., the Red to Green ratio) to determine the final weights for individual channels. [0034] Once the weights for different channels are determined for the statistic analysis, the color channels are weighted to determine (209) gray levels.
- the gray scale image is represented in the RGB space; and the value of the gray level g; is equally assigned to the Red, Green and Blue channels of the gray scale image. The contrast can be then optionally enhanced (221) for the generation of the gray scale image 223.
- Figure 4 shows an example of determining a weight for a color channel according to one embodiment of the present invention.
- the weight for the Blue channel is zero (W B ); and the weight for the Red and Blue channels are computed according to the following expression.
- the adjustable parameter ⁇ specifies how sensitive the adjustments are to changes in the Red to Green ratio (R A /G A ).
- the average Green is equal to the average Red (e.g., R A /GA — G A /RA ⁇ I)-
- the weights W R and W G can be computed from an analytical expression as illustrated above.
- the weight as a function of the Red to Green ratio e.g., R A /G A
- the weight as a function of the Red to Green ratio can also be determined from a look up table or from an interpolation (e.g., piecewise linear or polynomial interpolation) based on a look up table.
- the look up table or an analytical expression can be derived from curve fitting the results created by one or more accomplished photographers. For example, after a number of different photo images are manually converted into aesthetically pleasing gray scale images, the resulting gray scale images can be compared to the original images to determine the weights W R and WQ as the function of the Red to Green ratio (e.g., RA/GA).
- the above example illustrates a simple and effective embodiment where the Blue channel is discarded and the weights for the Red and Green channels are determined as a function of the Red to Green ratio (e.g., R A /GA).
- the weights for the color channels can be derived from various statistical data (such as averages, standard deviations, distribution of different values in a color channel, and others) can be used to compute the weights. Further different indicators of the Red to Green ratio can be used. For example, each pixel may be examined to determine whether the pixel is reddish or greenish based on its Red and Green components.
- Ri > Gi the pixel is reddish; and when R; ⁇ Gi, the pixel is greenish.
- the number of reddish pixels (N R ) and the number of greenish pixels (N G ) can be counted for the determination of the weights for the Red and Green channels.
- the weights for the Red and Green channels can be alternatively determined using the following expressing.
- N G the average Red (R A ), and the average Green (G A ) can be used together to determine the weights.
- R A the average Red
- G A the average Green
- N G /N R and (R A /G A ) may have different exponents.
- R A /G A may have different exponents.
- a more sophisticated embodiment uses the parameters of the statistical data to curve fit the results generated by designers or accomplished photographers.
- gray scale images in different styles; and the weights for the different styles can be generated accordingly.
- aesthetically pleasing gray scale images according to the selected style can be generated automatically without further efforts from the user.
- the Red to Green ratio (e.g., R A /G A , NR/N G , or a combination of R A /G A andNR/Nc) is computed based on the averages of the entire image.
- the Red to Green ratio can also be computed based on an area of interest, such as a center region of the image. Objects of interests are typically located in the center portion of a photo image.
- Green channels of the center portions can be used to determine the weights for mixing the channels to produce pleasing results for the objects of interest.
- the methods of embodiments of the present invention can also be applied to other image formats in other color spaces.
- the image may be defined as analog signals on a number scan lines.
- the weights for the Red, Green and Blue channels can also be converted into weights for other color components in other color spaces.
- the range of the luminance level is adjusted
- the gray level can be scaled linearly according to:
- g; 1 (g; - L min ) / (L max - L min )
- the gray level is scaled back to have the original luminance range of the original color image.
- Figure 5 shows examples of stretching the luminance range of an image according to one embodiment of the present invention.
- a curve in Figure 5 maps from an input luminance L to a target luminance L*.
- the luminance level is linear stretched (e.g., according to line segments 331 and 333).
- nonlinear scaling is used in one embodiment of the present invention to enhance contrast.
- curve 343 can be used for the darker portion (e.g., between points 321 and 323); and, the light portion (e.g., between points 321 and 325) may be scaled linearly using line segment 331, or nonlinearly using curve 345 or 341.
- a nonlinear curve 343 is below the lines 333 and 331 in the low luminance region and a nonlinear curve 345 is above the lines 333 and 331 in the high luminance region; in another embodiment, a nonlinear curve for contrast enhancement is above the line for linear transformation in the low luminance region and below the line for linear transformation in the high luminance region (e.g., curves 347 and 341).
- the boundary portion of the image is darkened.
- Figure 6 shows an example of edge darkening according to one embodiment of the present invention. In Figure 6, the luminance of the boundary region (e.g., the portion outside region 373) is reduced by a percentage according to the distance to the center.
- the signal level for each of the color channels of the pixel is reduced by a percentage indicated by the line segment between points 361 and 363.
- f x (x) Max( [1 - 0.12 x (
- - W d )/(W/2 - W d )], 1) [0062] g(y) Max( [1 - 0.12 x (
- Wd can be 3/8 W so that the boundary portion of a width of W/8 is darkened on the left and on the right.
- H d can be 3/8 H so that the boundary portion of a height of H/8 is darkened on the top and on the bottom.
- the amount of edge darkening is small so that the darkening may not consciously noticeable. However, the edge darkening strengthens the edges and draw attention to the center of the image.
- an attractive color balance adjustment is performed so that the gray scale image is substantially gray with a color tone.
- the color balance is adjusted so that the resulting image is not exactly on a white point.
- a gray scale image is perfectly white balanced; and the color points of the gray scale image are on a white point (e.g., on a chromaticity diagram).
- the substantially gray scale image has color points very close to the white point for pixels that do not have a very low luminance level.
- the colors of the substantially gray scale image are a function of luminance level.
- Ri I ko [gi" + ki (l - gi") q ]
- Cr 1 I ko [gi" + k 2 (l - gi") q ]
- B i ' ko [gi" + k 3 (l - g i ") q ]
- k 1 , k 2 and k 3 values are used to move the color off balance way from white.
- ⁇ k ⁇ (e.g., 0.04) causes the color shifting toward Red
- k 2 (e.g., 0.01) causes the color shifting toward Green
- k 3 (e.g., 0.04) causes the color shifting toward Blue.
- k 2 is zero.
- the color shifting is a function of the gray level.
- the factor (1 - gi") q (q > 0) causes the color shifting to be reverse proportional to the gray level.
- exponent q is larger than zero such that the brighter the pixel, the smaller the shift.
- q 1 so that the variation is a linear function of the gray level.
- q may be zero so that the same amount of shifting is applied to all pixels.
- q may be larger than 1 (e.g., 2) or smaller than 1 (e.g., 0.5).
- k 0 can be chosen as 3 g," / [3 g,” + (Ic 1 + k 2 + k 3 ) x
- color balance adjustments can be made in different styles and using different methods. For example, customized color balance adjustments produced by designers can be curved fitted or coded as a look up table.
- Figure 7 shows an example user interface for adjusting parameters for transforming an image according to one embodiment of the present invention.
- window 401 shows a graphical user interface that may be implemented in a computer system for the selection of parameters that controls the transformation of image.
- window 401 has a title bar 403 and panels (or frames) 411 —
- Check buttons 431, 433, 435, 437 and 439 can be used to selectively enable the respective options in the panels.
- Panel 411 allows a user to specify the parameters for computing the weights. For example, when the weights for the color channels are determined by
- W 0 1/ ⁇ 1+[(G A /R A )X(N G /N R )] P ⁇
- the parameter ⁇ can be specified in entry box 428.
- the user may choose to determine the Red to Green ratio based on the average color value (e.g.,
- R A and G A the pixel count (e.g., N R and N G ) or both.
- N R and N G the pixel count
- N R and N G the pixel count
- Panel 413 allows a user to select the definitions of the center portion for the color ratio determination.
- the parameters for the determination of the Red to Green ratio e.g., R A , G A , N R and N G
- the parameters for the determination of the Red to Green ratio are computed based on the center portion of the color image.
- a number of predefined configurations can be presented as radio button icons (e.g., 441-445), such that a user can simply choose from one of them.
- the icons may further bring a window for the specification of the sizes and positions of the different regions.
- a drawing window may allow a user to draw the center portion (e.g., through receiving input from an input device which represent drawing actions and displaying the feedback of the received input interactively to show the result of the interpreted drawing actions).
- Panel 419 allows a user to select whether or not to stretch the luminance range.
- box 435 is checked, the luminance of the gray scale image is scaled to the maximum possible range.
- an interface may allow the user to specify the target range of the luminance if the user chooses to stretch the luminance range.
- J Panel 415 allows the user to select the different types of scaling for the dark portion of the luminance range and the light portion of the luminance range.
- a linear scaling is used; when the scale is move to the left, a nonlinear scaling is according to a curve with a shape similar to that of curve 345 in Figure 5; and when the scale is move to the right, a nonlinear scaling is according to a curve with a shape similar to that of curve 341 in Figure 5.
- the scale controls the curvature of the luminance-scaling curve.
- Panel 417 allows a user to select whether or not to darken the boundary region. When box 439 is checked, edge darkening is applied. Radio icon buttons (e.g., 461 - 465) can be used to select a definition of the boundary region. Alternatively, similar to the buttons for the selection of the center region, the radio buttons 461 - 465 may further bring windows for the specification of the dimensions and positions of predefined shapes of boundary regions. Furthermore, a user interface may allow the user to draw a shape to define the boundary regions. [0084] Panel 421 allows a user to specify the color tone (e.g., ⁇ k l3 k 2 , k 3 ⁇ ). When box 431 is not checked, a gray scale image is generated without color balance adjustment.
- the color tone e.g., ⁇ k l3 k 2 , k 3 ⁇
- the gray scale image is adjusted to have a color tone.
- a cursor-controlling device e.g., a mouse, a touch pad, or a track ball, or others
- a circle e.g., a circle, a touch pad, or a track ball, or others
- a cursor-controlling device e.g., a mouse, a touch pad, or a track ball, or others
- G k o [g + k 2 (l - g)]
- any other methods known in the art for selecting a color can be used.
- the human interface is illustrated with an example in Figure 7, from this description, one skilled in the art understands that various different types of user interfaces may be used for different types of data processing system, such as computers, palm top computers, still cameras, video cameras, and others. It is understood that different types of systems typically use different types of user interface elements (e.g., graphical user interface based, text based, icon based) and may offer different levels of details for the specification of options. Various types of user interface techniques known in the art can be used for the specification of the options of the present invention. Further, the user interface may present the resulting image interactively such that a user can observes the effects of changing options interactively.
- user interface may present the resulting image interactively such that a user can observes the effects of changing options interactively.
- a set of pre-designed parameters is provided as default values for the image conversion.
- the data processing system e.g., a still camera or a computer connected to a video camera for video conferencing
- a user is provided with an interface to adjust at least some of the parameters to create a set of user customized parameters.
- a user may be presented with a user interface (e.g., as show in Figure 7) to directly specify the customized parameters; alternatively, the user may be presented with a number of sample images for customization (e.g., using a traditional software programs for customizing a photo image), the results of which are then used to derive the parameters.
- color images are automatically converted to gray scale images without further user adjustments.
- a user may choose to convert the color images of a video camera for video conference to gray scale images; the video images can be automatically converted to aesthetically enhanced gray scale images in real time.
- Figure 8 shows a flow chart of a method to perform image conversion according to one embodiment of the present invention.
- operation 501 determines color statistic data for at least a portion of a color image (e.g., a color image captured by a digital camera, a video camera or a scanner)
- operation 503 automatically determines weights for individual color channels based on the color statistic data.
- operation 505 converts the color image into a substantially gray scale image using the weights.
- FIG. 9 shows a detailed method to transform an image according to one embodiment of the present invention.
- Operation 601 determines average color components in Red and Green channels for at least a portion of a color image.
- Operation 603 determines weights for the Red and Green channels according to the average color components (e.g., the channel with a smaller average color component has a larger weight).
- Operation 605 determines gray scale components from the Red and Green components of the color image weighted according to the weights for the Red and Green channels to generate a gray scale image.
- Operation 607 scales color components of all color channels equally for each non-black-and-white pixel to stretch a luminance range of non-black-and-white pixels of the image to a predetermined range (e.g., the maximum allowable range).
- Operation 609 optionally decreases the luminance levels for pixels in a boundary region of the image according to distances from the pixels to a center point of the image.
- Operation 611 optionally offsets one or more color channels of the gray scale slightly (e.g., linearly according to the luminance) to generate a color-toned gray scale image.
- methods of the present application can be incorporated into image capturing devices not only for still images but also for video (or streaming) images.
- the methods of the present invention can be used to convert the outbound images as well as the inbound images.
- the methods of the present invention can be implemented using dedicated hardware (e.g., using Field Programmable Gate Arrays, or Application Specific Integrated Circuit, which many be integrated with image sensors, such as CCD or CMOS based image sensors) or shared circuitry (e.g., microprocessors or microcontrollers under control of program instructions stored in a machine readable medium, such as memory chips) for an imaging device, such as system 151 in Figure 2.
- the methods of the present invention can also be implemented as computer instructions for execution on a data processing system, such as system 101 of Figure 1.
- methods of the present inventions are implemented in video applications (e.g., implemented as a software module in video conference application programs, implemented as hardware circuits in video capturing devices, such as video cameras for computer or hand-held devices, for video monitoring, or for other video applications). It may be desirable to convert the color image to a substantially gray scale image that is aesthetically pleasing, clearly displaying the details in the image (e.g., the objects in the center portion of the image) for viewing and for the recognition of details. For example, in a video conference, it may typically be expected that the face of the person in the conversation is in the center of the image. The image will be pleasing if the color tone of the face is properly represented in the gray scale image with great details regardless of the color and intensity of the background light and environment condition.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Image Processing (AREA)
- Facsimile Image Signal Circuits (AREA)
- Processing Of Color Television Signals (AREA)
- Color Television Image Signal Generators (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05802820A EP1795001A2 (en) | 2004-09-29 | 2005-09-26 | Methods and apparatuses for aesthetically enhanced image conversion |
CA2576066A CA2576066C (en) | 2004-09-29 | 2005-09-26 | Methods and apparatuses for aesthetically enhanced image conversion |
CN2005800323897A CN101027895B (en) | 2004-09-29 | 2005-09-26 | Methods and apparatuses for aesthetically enhanced image conversion |
JP2007533783A JP5512928B2 (en) | 2004-09-29 | 2005-09-26 | Method and apparatus for aesthetically enhanced image conversion |
AU2005292046A AU2005292046B2 (en) | 2004-09-29 | 2005-09-26 | Methods and apparatuses for aesthetically enhanced image conversion |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/955,762 US8462384B2 (en) | 2004-09-29 | 2004-09-29 | Methods and apparatuses for aesthetically enhanced image conversion |
US10/955,762 | 2004-09-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2006039427A2 true WO2006039427A2 (en) | 2006-04-13 |
WO2006039427A3 WO2006039427A3 (en) | 2006-06-22 |
Family
ID=35625550
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2005/035074 WO2006039427A2 (en) | 2004-09-29 | 2005-09-26 | Methods and apparatuses for aesthetically enhanced image conversion |
Country Status (7)
Country | Link |
---|---|
US (1) | US8462384B2 (en) |
EP (1) | EP1795001A2 (en) |
JP (1) | JP5512928B2 (en) |
CN (1) | CN101027895B (en) |
AU (1) | AU2005292046B2 (en) |
CA (1) | CA2576066C (en) |
WO (1) | WO2006039427A2 (en) |
Families Citing this family (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8004511B2 (en) * | 2004-12-02 | 2011-08-23 | Sharp Laboratories Of America, Inc. | Systems and methods for distortion-related source light management |
US8947465B2 (en) * | 2004-12-02 | 2015-02-03 | Sharp Laboratories Of America, Inc. | Methods and systems for display-mode-dependent brightness preservation |
US8922594B2 (en) * | 2005-06-15 | 2014-12-30 | Sharp Laboratories Of America, Inc. | Methods and systems for enhancing display characteristics with high frequency contrast enhancement |
US8913089B2 (en) * | 2005-06-15 | 2014-12-16 | Sharp Laboratories Of America, Inc. | Methods and systems for enhancing display characteristics with frequency-specific gain |
US7924261B2 (en) * | 2004-12-02 | 2011-04-12 | Sharp Laboratories Of America, Inc. | Methods and systems for determining a display light source adjustment |
US7515160B2 (en) * | 2006-07-28 | 2009-04-07 | Sharp Laboratories Of America, Inc. | Systems and methods for color preservation with image tone scale corrections |
US7768496B2 (en) * | 2004-12-02 | 2010-08-03 | Sharp Laboratories Of America, Inc. | Methods and systems for image tonescale adjustment to compensate for a reduced source light power level |
US7782405B2 (en) * | 2004-12-02 | 2010-08-24 | Sharp Laboratories Of America, Inc. | Systems and methods for selecting a display source light illumination level |
US9083969B2 (en) * | 2005-08-12 | 2015-07-14 | Sharp Laboratories Of America, Inc. | Methods and systems for independent view adjustment in multiple-view displays |
US7982707B2 (en) * | 2004-12-02 | 2011-07-19 | Sharp Laboratories Of America, Inc. | Methods and systems for generating and applying image tone scale adjustments |
US8111265B2 (en) * | 2004-12-02 | 2012-02-07 | Sharp Laboratories Of America, Inc. | Systems and methods for brightness preservation using a smoothed gain image |
US7961199B2 (en) * | 2004-12-02 | 2011-06-14 | Sharp Laboratories Of America, Inc. | Methods and systems for image-specific tone scale adjustment and light-source control |
US7800577B2 (en) * | 2004-12-02 | 2010-09-21 | Sharp Laboratories Of America, Inc. | Methods and systems for enhancing display characteristics |
US8120570B2 (en) | 2004-12-02 | 2012-02-21 | Sharp Laboratories Of America, Inc. | Systems and methods for tone curve generation, selection and application |
JP2007041300A (en) * | 2005-08-03 | 2007-02-15 | Fuji Xerox Co Ltd | Image processing device, method, and program |
US8061610B2 (en) * | 2005-10-24 | 2011-11-22 | Cognex Technology And Investment Corporation | System and method for employing color illumination and color filtration in a symbology reader |
US7965887B2 (en) * | 2005-12-01 | 2011-06-21 | Cognex Technology And Investment Corp. | Method of pattern location using color image data |
US7839406B2 (en) * | 2006-03-08 | 2010-11-23 | Sharp Laboratories Of America, Inc. | Methods and systems for enhancing display characteristics with ambient illumination input |
WO2007119252A1 (en) * | 2006-04-13 | 2007-10-25 | Manuele Casale | Apparatus and method for (videorhinohygrometric (vri) measures |
US20070253040A1 (en) * | 2006-04-28 | 2007-11-01 | Eastman Kodak Company | Color scanning to enhance bitonal image |
KR101090060B1 (en) | 2006-11-14 | 2011-12-07 | 삼성전자주식회사 | Image forming apparatus and image forming method capable of revising gray image |
US20100177184A1 (en) * | 2007-02-14 | 2010-07-15 | Chrustie Medical Holdings, Inc. | System And Method For Projection of Subsurface Structure Onto An Object's Surface |
US7826681B2 (en) * | 2007-02-28 | 2010-11-02 | Sharp Laboratories Of America, Inc. | Methods and systems for surround-specific display modeling |
US8345038B2 (en) * | 2007-10-30 | 2013-01-01 | Sharp Laboratories Of America, Inc. | Methods and systems for backlight modulation and brightness preservation |
US8155434B2 (en) * | 2007-10-30 | 2012-04-10 | Sharp Laboratories Of America, Inc. | Methods and systems for image enhancement |
US9177509B2 (en) * | 2007-11-30 | 2015-11-03 | Sharp Laboratories Of America, Inc. | Methods and systems for backlight modulation with scene-cut detection |
US8378956B2 (en) * | 2007-11-30 | 2013-02-19 | Sharp Laboratories Of America, Inc. | Methods and systems for weighted-error-vector-based source light selection |
US8179363B2 (en) * | 2007-12-26 | 2012-05-15 | Sharp Laboratories Of America, Inc. | Methods and systems for display source light management with histogram manipulation |
US8207932B2 (en) | 2007-12-26 | 2012-06-26 | Sharp Laboratories Of America, Inc. | Methods and systems for display source light illumination level selection |
US8169431B2 (en) | 2007-12-26 | 2012-05-01 | Sharp Laboratories Of America, Inc. | Methods and systems for image tonescale design |
US8223113B2 (en) * | 2007-12-26 | 2012-07-17 | Sharp Laboratories Of America, Inc. | Methods and systems for display source light management with variable delay |
US8203579B2 (en) * | 2007-12-26 | 2012-06-19 | Sharp Laboratories Of America, Inc. | Methods and systems for backlight modulation with image characteristic mapping |
WO2009123066A1 (en) * | 2008-04-03 | 2009-10-08 | 日本電気株式会社 | Image processing method, image processing device, and recording medium |
US8531379B2 (en) * | 2008-04-28 | 2013-09-10 | Sharp Laboratories Of America, Inc. | Methods and systems for image compensation for ambient conditions |
US8416179B2 (en) * | 2008-07-10 | 2013-04-09 | Sharp Laboratories Of America, Inc. | Methods and systems for color preservation with a color-modulated backlight |
JP5335305B2 (en) * | 2008-07-11 | 2013-11-06 | キヤノン株式会社 | Image processing apparatus, image processing method, and program |
US9330630B2 (en) * | 2008-08-30 | 2016-05-03 | Sharp Laboratories Of America, Inc. | Methods and systems for display source light management with rate change control |
GB2463296B (en) * | 2008-09-09 | 2013-02-20 | Hewlett Packard Development Co | Conversion to monochrome image |
US8165724B2 (en) * | 2009-06-17 | 2012-04-24 | Sharp Laboratories Of America, Inc. | Methods and systems for power-controlling display devices |
US20110001737A1 (en) * | 2009-07-02 | 2011-01-06 | Kerofsky Louis J | Methods and Systems for Ambient-Adaptive Image Display |
JP5121786B2 (en) * | 2009-07-10 | 2013-01-16 | キヤノン株式会社 | Image processing method, image processing apparatus, and program |
US20110074803A1 (en) * | 2009-09-29 | 2011-03-31 | Louis Joseph Kerofsky | Methods and Systems for Ambient-Illumination-Selective Display Backlight Modification and Image Enhancement |
DE102009058605A1 (en) * | 2009-12-17 | 2011-06-22 | Mühlbauer AG, 93426 | Method and device for increasing the contrast of a gray scale image |
US8786666B2 (en) * | 2010-04-27 | 2014-07-22 | Lifesize Communications, Inc. | Providing separate video and presentation streams to a recording server |
US8505823B2 (en) | 2010-06-30 | 2013-08-13 | International Business Machine Corporation | Noise removal from color barcode images |
TW201205180A (en) * | 2010-07-27 | 2012-02-01 | Hon Hai Prec Ind Co Ltd | Camera |
JP5252247B2 (en) * | 2010-08-19 | 2013-07-31 | アイシン精機株式会社 | Target position determination device |
US9349327B2 (en) * | 2010-12-06 | 2016-05-24 | Lg Display Co., Ltd. | Electrophoretic display apparatus, method for driving same, and method for measuring image stability thereof |
CN103839042B (en) * | 2012-11-27 | 2017-09-22 | 腾讯科技(深圳)有限公司 | Face identification method and face identification system |
TWI551472B (en) * | 2014-02-20 | 2016-10-01 | 虹光精密工業股份有限公司 | Image reproducing method and digital processing machine using such method |
AT516863A2 (en) * | 2015-02-24 | 2016-09-15 | Ait Austrian Inst Technology | Method and device for selecting a mapping rule |
CN105047121A (en) * | 2015-08-07 | 2015-11-11 | 深圳市康冠商用科技有限公司 | Method and system for converting at least one path in multi-path image to gray scale |
GB2542125A (en) * | 2015-09-08 | 2017-03-15 | Sony Corp | Colour conversion |
JP6699136B2 (en) * | 2015-11-10 | 2020-05-27 | 富士通株式会社 | Image processing apparatus, image processing program, and image processing method |
WO2018119406A1 (en) * | 2016-12-22 | 2018-06-28 | Aestatix LLC | Image processing to determine center of balance in a digital image |
CN110580693B (en) * | 2018-06-07 | 2022-03-25 | 湖南爱威医疗科技有限公司 | Image processing method, image processing device, computer equipment and storage medium |
EP3896967A1 (en) * | 2020-04-17 | 2021-10-20 | Leica Microsystems CMS GmbH | Digital imaging device and method for generating a digital color image |
JP2023006690A (en) * | 2021-06-30 | 2023-01-18 | キヤノン株式会社 | Image processing apparatus, method of controlling the same, and program |
CN114494084B (en) * | 2022-04-14 | 2022-07-26 | 广东欧谱曼迪科技有限公司 | Image color homogenizing method and device, electronic equipment and storage medium |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1292112A1 (en) | 2001-08-23 | 2003-03-12 | Océ-Technologies B.V. | Conversion of colour images to grey value images |
Family Cites Families (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4381890A (en) | 1980-05-19 | 1983-05-03 | Wallace George A | Incident light filter for cameras |
JPS58194488A (en) | 1982-05-07 | 1983-11-12 | Nippon Kogaku Kk <Nikon> | Color balance controller |
US4473289A (en) | 1983-03-24 | 1984-09-25 | Wallace George A | Incident light filter for cameras |
US4811086A (en) | 1985-02-12 | 1989-03-07 | Canon Kabushiki Kaisha | Image sensing apparatus |
JPH0769564B2 (en) | 1987-04-20 | 1995-07-31 | 富士写真フイルム株式会社 | Video camera with still camera |
JP2508951Y2 (en) | 1988-02-03 | 1996-08-28 | 富士写真フイルム株式会社 | White balance adjuster |
US5045928A (en) | 1988-04-21 | 1991-09-03 | Canon Kabushiki Kaisha | White balance control with choice of control dependent on brightness |
GB2226925B (en) | 1988-12-12 | 1993-01-06 | Samsung Electronics Co Ltd | Automatic optical filter displacing circuit |
US5198890A (en) | 1989-03-30 | 1993-03-30 | Canon Kabushiki Kaisha | White balance correcting device for an image sensing |
JP3219403B2 (en) * | 1989-05-10 | 2001-10-15 | キヤノン株式会社 | Image storage device |
US5134466A (en) | 1989-12-30 | 1992-07-28 | Goldstar Co., Ltd. | Combined white balance switching device of video camera |
JPH03259664A (en) | 1990-03-09 | 1991-11-19 | Fuji Xerox Co Ltd | Original input device |
JP2576068B2 (en) | 1990-03-09 | 1997-01-29 | 株式会社ニコン | Surface-sequential camera |
US5070407A (en) | 1990-05-11 | 1991-12-03 | Wheeler Ernest E | Filter changing mechanism for a video camera |
US5148288A (en) | 1990-08-29 | 1992-09-15 | Savitar, Inc. | Standardized color calibration of electronic imagery |
US5294989A (en) | 1991-09-17 | 1994-03-15 | Moore Color, Inc. | Saturable smoothing grid for image processing |
JP2819365B2 (en) | 1992-05-28 | 1998-10-30 | キヤノン株式会社 | Image forming device |
JPH06165189A (en) | 1992-11-25 | 1994-06-10 | Nikon Corp | White balance adjusting device |
JPH0779444A (en) | 1993-09-06 | 1995-03-20 | Asahi Optical Co Ltd | Still video camera |
US5434958A (en) | 1994-04-04 | 1995-07-18 | Lifetouch Portrait Studios, Inc. | Method and apparatus for creating special effects on video screen |
JP3401977B2 (en) | 1995-03-07 | 2003-04-28 | ミノルタ株式会社 | Image reproduction device |
US5793883A (en) * | 1995-09-29 | 1998-08-11 | Siemens Medical Systems, Inc. | Method for enhancing ultrasound image |
JP2000501184A (en) * | 1995-11-30 | 2000-02-02 | クロマビジョン メディカル システムズ,インコーポレイテッド | Method and apparatus for automatic image analysis of biological specimens |
US5883973A (en) | 1996-02-20 | 1999-03-16 | Seiko Epson Corporation | Method and apparatus for processing a document by segmentation into text and image areas |
US6795120B2 (en) | 1996-05-17 | 2004-09-21 | Sony Corporation | Solid-state imaging apparatus and camera using the same |
US5926218A (en) | 1996-06-04 | 1999-07-20 | Eastman Kodak Company | Electronic camera with dual resolution sensors |
JPH1063833A (en) | 1996-08-22 | 1998-03-06 | Canon Inc | Processor and method for image processing |
US6151410A (en) | 1996-11-19 | 2000-11-21 | Seiko Epson Corporation | Image processing apparatus, image processing method and medium for storing image-processing control program |
US6141033A (en) * | 1997-05-15 | 2000-10-31 | Cognex Corporation | Bandwidth reduction of multichannel images for machine vision |
DE19728513A1 (en) | 1997-07-04 | 1999-01-07 | Daimler Benz Ag | Measuring mark and method for recognizing measuring marks and method for object measurement |
US6115485A (en) * | 1997-10-06 | 2000-09-05 | General Electric Company | Introducing reduced data set information into a primary image data set |
US6038339A (en) | 1997-11-14 | 2000-03-14 | Hewlett-Packard Company | White point determination using correlation matrix memory |
KR100607018B1 (en) | 1998-06-23 | 2006-08-01 | 샤프 가부시키가이샤 | Image processor, image processing method, and medium on which image processing program is recorded |
DE69937302T2 (en) | 1998-07-31 | 2008-07-10 | Seiko Epson Corp. | MONTONE CONVERSION DEVICE, MONOTONE CONVERSION PROCESS AND MEDIUM ON WHICH A MONOTONE CONVERTIBLE PROGRAM CAN BE TAKEN |
US6771272B2 (en) | 2000-03-17 | 2004-08-03 | Sun Microsystems, Inc. | Graphics system having a super-sampled sample buffer with hot spot correction |
US7738688B2 (en) * | 2000-05-03 | 2010-06-15 | Aperio Technologies, Inc. | System and method for viewing virtual slides |
JP2002027260A (en) | 2000-07-12 | 2002-01-25 | Riso Kagaku Corp | Gray converting method for color picture and device for the same |
US6847377B2 (en) * | 2001-01-05 | 2005-01-25 | Seiko Epson Corporation | System, method and computer program converting pixels to luminance levels and assigning colors associated with luminance levels in printer or display output devices |
US20020130959A1 (en) | 2001-01-12 | 2002-09-19 | Mcgarvey James E. | Venue customizable white balance digital camera system |
TW499812B (en) * | 2001-02-01 | 2002-08-21 | Ind Tech Res Inst | Method to determine the semi-S curve tone process of digital image |
US6895112B2 (en) | 2001-02-13 | 2005-05-17 | Microsoft Corporation | Red-eye detection based on red region detection with eye confirmation |
US7184080B2 (en) | 2001-06-25 | 2007-02-27 | Texas Instruments Incorporated | Automatic white balancing via illuminant scoring |
US7050086B2 (en) * | 2001-06-26 | 2006-05-23 | Pentax Corporation | Electronic endoscope system with color-balance alteration process |
US7057768B2 (en) | 2001-07-02 | 2006-06-06 | Corel Corporation | Automatic color balance |
JP3582649B2 (en) | 2001-08-03 | 2004-10-27 | セイコーエプソン株式会社 | PRINTING APPARATUS, PRINTING METHOD, PRINTING APPARATUS CONTROL PROGRAM, AND MEDIUM RECORDING PRINTING APPARATUS CONTROL PROGRAM |
FR2832528B1 (en) | 2001-11-22 | 2004-02-13 | Eastman Kodak Co | DETERMINING AN ILLUMINANT OF A DIGITAL COLOR IMAGE BY SEGMENTATION AND FILTERING |
US6985628B2 (en) | 2002-01-07 | 2006-01-10 | Xerox Corporation | Image type classification using edge features |
US20030151611A1 (en) * | 2002-02-12 | 2003-08-14 | Turpin Kenneth A. | Color selection and visualization system and methods of making and using same |
JP3943973B2 (en) | 2002-03-20 | 2007-07-11 | キヤノン株式会社 | Image processing apparatus and method |
US20030189579A1 (en) * | 2002-04-05 | 2003-10-09 | Pope David R. | Adaptive enlarging and/or sharpening of a digital image |
JP2006502672A (en) | 2002-10-09 | 2006-01-19 | エクスポディスク インコーポレイテッド | Diffusion apparatus and method for effectively performing white balance operation procedure of electronic camera |
US7257251B2 (en) * | 2003-08-28 | 2007-08-14 | Sharp Laboratories Of America, Inc. | Chrominance smoothing |
US7285047B2 (en) * | 2003-10-17 | 2007-10-23 | Hewlett-Packard Development Company, L.P. | Method and system for real-time rendering within a gaming environment |
-
2004
- 2004-09-29 US US10/955,762 patent/US8462384B2/en not_active Expired - Fee Related
-
2005
- 2005-09-26 CN CN2005800323897A patent/CN101027895B/en active Active
- 2005-09-26 WO PCT/US2005/035074 patent/WO2006039427A2/en active Application Filing
- 2005-09-26 EP EP05802820A patent/EP1795001A2/en not_active Withdrawn
- 2005-09-26 JP JP2007533783A patent/JP5512928B2/en active Active
- 2005-09-26 AU AU2005292046A patent/AU2005292046B2/en active Active
- 2005-09-26 CA CA2576066A patent/CA2576066C/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1292112A1 (en) | 2001-08-23 | 2003-03-12 | Océ-Technologies B.V. | Conversion of colour images to grey value images |
Also Published As
Publication number | Publication date |
---|---|
US8462384B2 (en) | 2013-06-11 |
AU2005292046A1 (en) | 2006-04-13 |
AU2005292046B2 (en) | 2010-09-23 |
CA2576066A1 (en) | 2006-04-13 |
CN101027895A (en) | 2007-08-29 |
JP5512928B2 (en) | 2014-06-04 |
JP2008515063A (en) | 2008-05-08 |
US20060072158A1 (en) | 2006-04-06 |
WO2006039427A3 (en) | 2006-06-22 |
CA2576066C (en) | 2014-09-16 |
CN101027895B (en) | 2011-05-25 |
EP1795001A2 (en) | 2007-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2005292046B2 (en) | Methods and apparatuses for aesthetically enhanced image conversion | |
US10672363B2 (en) | Color rendering for images in extended dynamic range mode | |
US8224086B2 (en) | Methods and apparatuses for restoring color and enhancing electronic images | |
US8958638B2 (en) | Method and system for multi-stage auto-enhancement of photographs | |
RU2642335C2 (en) | Image processing with brightness change at colour limitations | |
US20150169982A1 (en) | Observer Preference Model | |
US20130222414A1 (en) | Color signal processing device | |
CN102210145B (en) | Picture quality control method and image display using same | |
US9025224B2 (en) | Image-color-correcting method using a multitouch screen | |
US9805284B2 (en) | Image processing apparatus, and non-transitory computer readable medium for generating a feature-reflected image and for changing a degree of reflection of a feature in the feature-reflected image | |
US10665141B2 (en) | Super-resolution, extended-range rendering for enhanced subpixel geometry | |
US8462171B2 (en) | Saturation contrast image enhancement | |
US10777167B2 (en) | Color image display adaptation to ambient light | |
JP5896834B2 (en) | Image adjustment unit, image display device, computer program, recording medium, and image adjustment method | |
Adams et al. | Perceptually based image processing algorithm design | |
AU2013273630B2 (en) | Observer preference model | |
AU2014201797A1 (en) | Method, apparatus and system for determining chromatic difference |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2005292046 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2576066 Country of ref document: CA |
|
REEP | Request for entry into the european phase |
Ref document number: 2005802820 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005802820 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2005292046 Country of ref document: AU Date of ref document: 20050926 Kind code of ref document: A |
|
WWP | Wipo information: published in national office |
Ref document number: 2005292046 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007533783 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200580032389.7 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWP | Wipo information: published in national office |
Ref document number: 2005802820 Country of ref document: EP |