WO2006038620A1 - 脚柱の接合部構造および接合方法 - Google Patents

脚柱の接合部構造および接合方法 Download PDF

Info

Publication number
WO2006038620A1
WO2006038620A1 PCT/JP2005/018357 JP2005018357W WO2006038620A1 WO 2006038620 A1 WO2006038620 A1 WO 2006038620A1 JP 2005018357 W JP2005018357 W JP 2005018357W WO 2006038620 A1 WO2006038620 A1 WO 2006038620A1
Authority
WO
WIPO (PCT)
Prior art keywords
joining
pile head
cylindrical
base structure
steel shell
Prior art date
Application number
PCT/JP2005/018357
Other languages
English (en)
French (fr)
Inventor
Masahiro Takeguchi
Takeshi Umebara
Yasumi Wakabayashi
Yuuji Mishima
Setsuo Iwata
Yoshikazu Kobayashi
Terukatsu Sasaya
Kenichirou Sakamoto
Original Assignee
Incorporated Administrative Agency Public Works Research Institute
Hitachi Zosen Corporation
Fujita Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Incorporated Administrative Agency Public Works Research Institute, Hitachi Zosen Corporation, Fujita Corporation filed Critical Incorporated Administrative Agency Public Works Research Institute
Publication of WO2006038620A1 publication Critical patent/WO2006038620A1/ja

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/10Deep foundations
    • E02D27/12Pile foundations
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/02Piers; Abutments ; Protecting same against drifting ice
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/34Concrete or concrete-like piles cast in position ; Apparatus for making same
    • E02D5/38Concrete or concrete-like piles cast in position ; Apparatus for making same making by use of mould-pipes or other moulds
    • E02D5/385Concrete or concrete-like piles cast in position ; Apparatus for making same making by use of mould-pipes or other moulds with removal of the outer mould-pipes

Definitions

  • the present invention relates to a junction structure and a joining method for a pedestal that joins concrete piles such as a three-dimensional crossing bridge, a viaduct, an elevated structure, a general bridge, and a railway bridge and steel legs.
  • a joint of a bridge pier that joins a concrete pile (hereinafter referred to as an RC pile) driven into the ground and a steel pedestal is provided with a footing at the top of one or more RC piles
  • a material for joining the base end portion of the pedestal to this footing is disclosed in publicly known document 1 (for example, Japanese Patent Application Laid-Open No. 9-71949, Japanese Patent Application Laid-Open No. 2004-68338).
  • publicly known document 2 for example, JP-A-2004-68338
  • a material to be joined by embedding a pedestal in an RC pile is known document 3 (for example, JP-A-200 1 348887).
  • the present invention solves the above-mentioned problems, reduces the construction work period with a small occupation area for on-site construction, can reduce the construction cost, and can secure a sufficient resistance against joint joints.
  • An object is to provide a joint structure and a joining method. Means for solving the problem
  • the present invention relates to a pedestal connection structure for connecting a base of a steel cylindrical leg on a pile head of a concrete pile, and a base structure provided at the base of the cylindrical leg A cylindrical steel shell that is externally fitted to the outer periphery of the base structure, an extension that projects from the outer plate of the base structure and is connected and fixed to the cylindrical steel shell, and the pile head A joint having a joint reinforcing bar protruding into a cylindrical steel shell, and a concrete for joining which is placed in the cylindrical steel shell and joins the base structure, the extension, the joint reinforcing bar and the pile head.
  • a unit is provided, and at least the outer plate of the base structure is formed with a number of anti-slip holes that transmit shear force from the base structure to the pile head via the joining concrete. .
  • the cylindrical leg is a rectangular tube leg having a rectangular cross section, and the extension portion is formed by extending the outer plate cover of the base structure.
  • the cylindrical leg is a cylindrical leg having a circular cross section, and the extension part projects in a radial direction from the outer plate of the base structure.
  • an extra insertion portion for externally fitting the cylindrical steel shell to the top of the pile head is provided at a lower portion of the cylindrical steel shell, and the slip prevention hole is provided as a reinforcing rib for the base structure and the extension. Each part is formed.
  • a slip prevention member is disposed in the slip prevention hole in the portion where the shearing force applied to the base structure is large.
  • a base structure provided at the base of the cylindrical leg and a cylinder fitted around the outer periphery thereof
  • a joining unit in which a steel shell is connected and fixed via an extension part projecting from the outer plate of the base structure and formed with a number of detent holes for transmitting shearing force to the pile head
  • the cylindrical leg is arranged on the pile head via the joining unit, and the joining reinforcing bar protruding from the pile head is made in the cylindrical steel shell for joining in the cylindrical steel shell. Concrete is placed to join the base structure, the extension, the joining rebar, and the pile head to connect the pile head and the cylindrical leg.
  • the cylindrical steel shell is placed on the top of the pile head.
  • An extra insertion portion is formed to be externally fitted downward, and an anti-slip member is disposed in the anti-slip hole in a portion where a large shear force is applied.
  • the cylindrical steel shell is displaced substantially in accordance with the behavior of the base structure, and the conventional socket Compared to the foundation, the bearing pressure and peeling force can be greatly reduced.
  • the joining concrete uniformly with the circular steel shell, it is possible to prevent the splitting fracture of the joining concrete, restrain the strain of the joining concrete, and sufficiently exert the shear resistance by the anti-slip holes. .
  • the shearing force can be well transmitted from the base structure to the concrete pile through the joining concrete, and crushing can be prevented. Therefore, the joint unit can reduce the occupation area, shorten the construction period, reduce the construction cost, and secure sufficient joint resistance.
  • an extra insertion part that allows the lower part of the cylindrical steel shell to be externally fitted to the pile head is provided at the boundary part between the joining unit and the concrete pile, so that this connection part is only a reinforcing bar assembly with a protruding concrete pile force. It is possible to improve the horizontal shear resistance by reducing the stress concentration due to sudden change in cross section.
  • the shear force shared by the stopper holes varies depending on the displacement of the individual stopper holes due to the rigidity of the steel plate. For this reason, the shear force can be improved by arranging the anti-slip member in the retaining hole with a large shearing force, and the shearing force can be satisfactorily transmitted from the base structure to the joining concrete. .
  • an extra insertion part where the lower part of the cylindrical steel shell is externally fitted to the pile head alleviates stress concentration due to sudden change in cross section and improves horizontal shear strength.
  • the shear force can be further improved by disposing a slip-preventing member in the retaining hole that has a large shearing force. Structure strength It can be transmitted well to the concrete piles through the joining concrete.
  • FIG. 1 is a plan view of a joining unit installed state, showing Embodiment 1 of a joining portion of a pedestal column according to the present invention.
  • FIG. 2 is a cross-sectional view taken along line AA shown in FIG.
  • FIG. 3 is a cross-sectional view taken along the line C-C shown in FIG.
  • FIG. 4 is a cross-sectional view taken along the line BB shown in FIG.
  • FIG. 5 is a partially enlarged perspective view showing a stopper hole and a stopper member of the joint portion.
  • FIG. 6 is a perspective view showing a joining unit in which a slip prevention member at the joint is omitted.
  • FIG. 7 is a perspective view showing an installation state of the joining unit.
  • FIG. 8 is an overall side view showing a viaduct using the joint.
  • FIG. 9 An explanatory diagram showing the installation state of the earth retaining stand pipe in the on-site construction procedure of the joint.
  • FIG. 10 An explanatory view showing the formation state of a drilling hole for a pile driving standpipe in the on-site construction procedure of the joint.
  • FIG. 11 is an explanatory view showing an insertion state of a reinforcing bar assembly in the on-site construction procedure of the joint
  • FIG. 12 is an explanatory diagram showing the formation state of RC piles in the on-site construction procedure for the joint.
  • FIG. 13 is an explanatory diagram showing a state of scraping a deteriorated portion of the RC pile in the on-site construction procedure of the joint.
  • FIG. 14 is an explanatory view showing a state where the joining unit is carried in the on-site construction procedure of the joint.
  • FIG. 15 is an explanatory view showing a holding state of the joining unit in the on-site construction procedure of the joint.
  • FIG. 16 is an explanatory view showing a state of placing concrete for joining in the on-site construction procedure of the joint.
  • FIG. 17a is an explanatory diagram showing the shear force of the stopper hole when the stopper hole is formed in the rib attached to the main structure.
  • FIG. 17b is an explanatory diagram showing the shearing force of the stopper hole when the stopper hole is formed in the steel plate as the main structure.
  • FIG. 18 is a cross-sectional view of the installation state of the joining unit, showing a modification of the joint portion of the pedestal column of the first embodiment.
  • FIG. 19a] is a plan view showing the first specimen.
  • FIG. 19b] is a longitudinal sectional view showing the first specimen.
  • FIG. 20a is a plan view showing a second specimen.
  • FIG. 20b is a longitudinal sectional view showing a second specimen.
  • FIG. 24 is a plan view of a joining unit installed state, showing Embodiment 2 of the joining portion of the pedestal column according to the present invention.
  • FIG. 25 is a cross-sectional view taken along the line E-E shown in FIG. 24 with the joint unit installed.
  • FIG. 26 is a cross-sectional view taken along the line F-F shown in FIG.
  • FIG. 27 is a cross-sectional view taken along the line G-G shown in FIG. 25 with the joint unit installed.
  • FIG. 28 is a cross-sectional view showing a state in which concrete for joining the joint unit in FIG. 25 is filled.
  • FIG. 29 is a cross-sectional view taken along line H—H shown in FIG. 25 in a state where the joint unit is installed.
  • ⁇ 30a] is an explanatory diagram showing bending moment and shearing force in a conventional socket foundation.
  • [30b] It is an explanatory diagram showing the resultant force of bearing pressure and frictional force, bending moment, and shearing force in a conventional socket foundation.
  • the span girder length L is, for example, related to the joint structure of the pier (limb) 2 of the three-dimensional crossing bridge 1 having a length of about 200 m.
  • the bridge pier 2 is a pile head 3a of an RC pile (concrete pile) 3 and a rectangular tube leg 4 having a rectangular section made of steel joined via a joining unit (steel footing) 5.
  • the RC pile 3 is inserted into the hole 44 formed in the ground by a drilling device 45 such as a screw auger at a predetermined position after the reinforcing bar assembly 7 is inserted. It is called a cast-in-place concrete pile formed by placing concrete. Since the upper end of the concrete of RC pile 3 is a deteriorated part with poor quality including air bubbles and impurities, the joining unit 5 is joined after removing the deteriorated part.
  • a large number of joint reinforcing bars 8 integrally extended from the reinforcing bar assembly 7 protrude upward from the vicinity of the outer peripheral portion.
  • These joining reinforcing bars 8 have a length corresponding to the height of the joining unit 5 and are arranged so that the web 11, the flange 12 and the extension plate 15 in the joining unit 5 can be sufficiently installed.
  • the joining unit 5 includes a base structure 4b continuously formed on the base of the leg structure 4a of the rectangular tube leg 4, and a cylindrical steel shell that is externally fixed to the outer periphery of the base structure 4b. 21 and a base structure 4b and a concrete 31 for joining placed in the cylindrical steel shell 21.
  • the base structure 4b of the square tube leg 4 is formed in a rectangular cross section by a pair of front and rear webs (outer plate) 11 and a pair of left and right flanges (outer plate) 12 which are integrally continuous from the leg structure 4a.
  • the width of the web 11 is wider than the flange 12.
  • the force flange 12 is wider than the web 11!
  • a plurality of reinforcing plate-like ribs 13 and 14 are provided on the inner surfaces of the web 11 and the flange 12 so as to protrude in the vertical direction.
  • extension plate 15 extends whose both side forces protrude outward and whose tip is connected and fixed to the inner surface of the cylindrical steel shell 21.
  • extension plates 15 connect the base structure 4b and the cylindrical steel shell 21 so that the joining unit 5 is integrated.
  • extension plates may be provided integrally from both sides of the web 11, and two extensions that are continuous to both the flange 12 and the web 11 at each corner. Even if the board is installed at right angles,
  • the pile head 3a of the RC pile 3 is directly or installed on the block.
  • a mounting base plate 17 is provided to be seated via (for example, an H-shaped steel force is also used as shown in FIG. 14).
  • a partition plate 18 for partitioning the leg structure 4a and the base structure 4b is attached to the upper end of the cylindrical steel shell 21, and an opening 18a is formed at the center thereof.
  • the web 11, the flange 12, the plate-like ribs 13, 14 and the extension 15 are each formed with a number of anti-slip holes (also referred to as perforated steel plate gibber: PBL) 16 at predetermined pitches. Loads such as axial force, bending moment and shearing force from the square tube legs 4 are transmitted to the RC pile 3 via the concrete 31 for bonding. Transmission of the shearing force to the joining concrete 31 by these slip preventing holes 16 is more effectively performed by the cylindrical steel shell 21 that uniformly restrains the joining concrete 31 from the outer peripheral side.
  • PBL perforated steel plate gibber
  • the features of the anti-slip hole 16 are as follows: a) Since the shear resistance per unit area is large, there is no need to install as many studs as the anti-slip stud, and the structure can be simplified. b) Fatigue durability and sufficient toughness to prevent slippage. c) Design method has been established and it has been put on road bridges.
  • stiffeners can be omitted, and e) the load of the detent is directly applied to the square tube leg 4 It can be transmitted to the web 11 and the flange 12 and the transmission (flow) of the load or stress is clarified, and the problem such as fatigue cracks occurring in the welded portion with the stiffener does not occur.
  • the formation of the stopper holes 16 in the web 11 and the flange 12 which are structural bodies may reduce the rigidity of the square tube legs 4 and reduce the tensile strength of the steel sheet.
  • the interval of 16 and the hole diameter it is possible to prevent a decrease in the tensile strength of the steel sheet.
  • the plate thickness of the web 11 and the flange 12 and the interval between the stopper holes 16 are set appropriately, and the hole cross section of the stopper holes 16 is determined.
  • each anti-slip hole c is equally displaced as a hole on the rigid body, so that each anti-slip hole c has almost the same shear resistance.
  • FIG. 17b when the shear hole e is formed in the steel plate as the main structure d, when a tensile load is applied, the rigidity of the steel plate makes it difficult to The amount of displacement is different.
  • the shearing force shared by each is different, and it is impossible to design that all the detent holes e share the shearing force equally.
  • the main structure d is a steel plate and a plurality of locking holes e are formed in the vertical direction, as shown in the figure, the locking holes e support when an upward tensile force is applied to the main structure d.
  • the distribution becomes smaller as the shearing force goes downward as the load force also moves away. Since this distribution changes depending on the rigidity of the steel plate, the elastic modulus of the concrete, etc., it is necessary to perform an analysis in advance to confirm the shear resistance.
  • a locking member (proof member) 19 is arranged in the upper locking hole 16 having a large shearing force. It is location.
  • a reinforcing bar is used as the anti-slip member 19, and a specific support jig is not required by inserting between the anti-slip holes 16 formed at positions opposed to each other in the horizontal direction.
  • These anti-slip members 19 are here provided in the anti-slip holes 16 between the webs 11 and 11, between the flanges 12 and 12, between the ribs 13 and 13, between the ribs 14 and 14, and between the extension plates 15 and 15, respectively. Each is arranged.
  • the cylindrical steel shell 21 is formed to have the same or larger inner diameter as the pile head 3a of the RC pile 3, and a plurality of studs 22 for preventing concrete peeling in the radial direction are provided on the inner surface at predetermined intervals. This is planted.
  • the anti-slip hole 16 has a high shear resistance of 2 to 3 times compared to a stud planted for anti-slipping, and exhibits excellent anti-slipping properties. This is because the tensile strain is prevented at the interface between the steel plate and the concrete where the anti-slip hole 16 is formed and the tensile strain is restrained, and it is joined to prevent the concrete in the anti-slip hole 16 from breaking apart. It is necessary to constrain the strain of concrete 31 for use. This For this reason, in the present invention, a cylindrical steel shell 21 is adopted that can constrain the concrete evenly in the circular cross section and the outer peripheral force, and this cylindrical steel shell 21 is installed to obtain a restraining effect with an RC pile or the like.
  • Fig. 30a and Fig. 30b show a conventional socket foundation.
  • M is the bending moment
  • Q is the shearing force
  • P is the resultant force of the support pressure
  • T is the resultant force of the frictional force
  • L is the length of the pedestal U embedded in the socket S.
  • the supporting pressure P acts dominantly between the pedestal U and the socket S to form a load-bearing structure.
  • the base structure 4b and the cylindrical steel shell 21 are integrally connected and fixed via the extension plate 15, the cylindrical steel shell 21 is displaced substantially in accordance with the behavior of the base structure 4b.
  • a small-diameter pile driving stand pipe 43 is installed in the earth retaining stand pipe 42, and a drilling hole 44 is formed in the ground from the pile driving stand pipe 43 by the drilling device 45 [ Figure 10].
  • FIGs. 2 and 4 the force for installing the base structure 4b directly on the top surface of the pile head 3a via the mounting base plate 17 is shown in Fig. 14. Between 3a and H type steel An installation block 46 may be arranged. By this installation block 46, the unevenness of the chipped surface of the pile head 3a can be absorbed.
  • the joining unit 21 is held at a predetermined height position by a jack or a supporting member to form an extra insertion portion 23, and the opening 18a of the partition plate 18, the base structure 4b, and the cylindrical steel shell 21
  • the concrete 31 for joining is poured from between the two, and the RC pile 3 and the square leg 4 are joined via the joining unit 5 [Fig. 4, Fig. 15].
  • test results obtained by manufacturing a test body including the joining unit 21 having the above structure will be described with reference to FIGS.
  • first specimen 81 and second specimen 82 of 1Z5 of actual pier joints were manufactured.
  • a major earthquake is a “Level 2 ground motion” as defined in the “Road Bridge Specification and Description V (Aseismic Design)”. Although it has a low probability of occurring during the in-service period, it is a strong ground motion, and refers to ground motion due to plate boundary type large-scale earthquakes and inland earthquakes.
  • the first specimen 81 has a partial structure in which the joint head 5 of the pile head 3a of the RC pile 3 and the steel square tube leg 4 is taken out.
  • 82 is a partial structure that considers the strength characteristics of joint unit 5 including the characteristics of RC pile 3.
  • the anti-slip hole (perforated steel plate gibber: PBL) 16 has a diameter of 70 mm at the actual pier joint, and when it is scaled to 1Z5, it becomes a force of 14 mm in diameter.
  • stopper hole 16 is 35 mm, which has a large amount of published test data.
  • the number of stop holes 16 was adjusted.
  • the first specimen 81, the actual compression strength of RC piles 3 and junction concrete in the second specimen 82 is a 45NZmm 2
  • the upper hydraulic jack 83 applies a vertical load to the first test body 81 and the second test body 82 as well as an upward force to the square tube leg 4 via the intermediate member, respectively.
  • the horizontal hydraulic jack 85 causes the first specimen 81 and 81 to be In addition, positive and negative alternating horizontal loads were applied to the second specimen 82, respectively.
  • Fig. 22 shows the horizontal load (vertical axis) and horizontal displacement (horizontal axis) when positive and negative alternating loads were applied to the first specimen 81
  • Fig. 23 shows positive and negative alternations on the second specimen 82.
  • the horizontal load (vertical axis) and horizontal displacement (horizontal axis) when the load is applied are shown.
  • Pa is the design load
  • Py is the horizontal load (yield load) when the reinforcing bar 8 at the outermost edge on the tension side yields
  • Pu is the fracture and compression side of the reinforcing bar 8 on the tension side.
  • This is the horizontal load (final load) when the horizontal load shows the maximum value just before the concrete collapse occurs.
  • the joint reinforcement 8 at the cross-section change part between the pile head 3a of the RC pile 3 and the lower end of the square tube leg 4 yielded, but in the second specimen 82, the RC pile 3 Reinforcing bar 8 of the pile head 3a yielded and broke and reached its end.
  • the yield load Py of both the first test body 81 and the second test body 82 was a value with a margin of about twice the design load Pa. Furthermore, since there was no displacement between the RC pile 3 and the square tube leg 4 in both the first test body 81 and the second test body 82, it was determined that the breakage of the detent hole 16 in the joining unit 5 was strong. It was.
  • the base unit 4b is joined with the cylindrical steel shell 21 through the extension plate 15, and the joining unit 5 is integrated into the formwork and layout at the construction site.
  • the line work can be omitted, the construction period of the construction site can be shortened compared to the conventional method, and the construction cost can be reduced.
  • FIG. 18 shows a modification of the first embodiment.
  • the outer peripheral portion of the pile head 3a is shaved by a height corresponding to the extra insertion portion 23 to obtain a step portion 9 Is formed.
  • This step 9 makes it easy to form a play (margin) between the pile head 3a and the circular steel shell 21 and to fit the joint 5 to the pile head 3a, and to improve the dimensional accuracy during construction. Can be relaxed
  • the pedestal in the first embodiment is a cylindrical leg 51 having a circular cross section. Note that the same members as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • This joint portion joins the pile head 3 a of the RC pile (concrete pile) 3 and the steel cylindrical leg 51 having a circular cross section via a joining unit (steel footing) 52.
  • a base structure 51b provided at the base of the leg structure 51a of the cylindrical leg 51 includes a cylindrical outer plate 53 formed continuously from the cylindrical leg structure 51a, and an inner portion of the cylindrical outer plate 53.
  • a longitudinal inner reinforcing face plate 54 that is joined at 90 ° in the axial direction at the center, and four protruding in the radial direction at the extended position continuous with the inner reinforcing face plate 54 on the outer surface of the cylindrical outer plate 53.
  • the joining unit 52 includes the base structure 51b, a cylindrical steel shell 21 that is externally fitted to the base structure 5 lb and connected and fixed via an extension plate 15, and the base structure 51b and the cylindrical steel shell 21. It is equipped with jointing concrete 31 placed inside.
  • the extension plate 15 connects the base structure 51b and the cylindrical steel shell 21 so that the joining unit 52 is integrated.
  • a mounting base that is seated directly on the pile head 3a of the RC pile 3 or via an installation block (for example, H-type steel force) 46 Plate 17 is installed.
  • a partition plate 18 having an opening 18a formed at the center is attached to the boundary between the leg structure 51a of the cylindrical leg 51 and the base structure 51b corresponding to the upper end of the cylindrical steel shell 21.
  • Each of the cylindrical outer plate 53, the inner reinforcing face plate 54, the plate-like rib 55, and the extension plate 15 has a large number of detent holes 16 (also referred to as perforated steel plate gibber: PBL) at a predetermined pitch.
  • detent holes 16 also referred to as perforated steel plate gibber: PBL
  • the axial force, bending moment and shearing force from the cylindrical leg 51 are transmitted to the RC pile 3 via the connecting concrete 31. Transmission of the shearing force to the joining concrete 31 by the slip preventing holes 16 is effectively performed by the cylindrical steel shell 21 that uniformly restrains the joining concrete 31 from the outer peripheral side.
  • the cylindrical outer plate 53, the inner reinforcing face plate 54, the plate-like rib 55, and the extension plate 15 have an upper shear hole 16 having a large shear force.
  • a stiffening prevention member 19 for reinforcement is arranged.
  • These detent members 19 are made of, for example, reinforcing bars, which are inserted between the detent holes 16 formed at positions opposite to each other in the horizontal direction, and spanned in a cross, radial or arc shape as shown in the figure. Therefore, no specific support jig is required.
  • the joint structure and joining method of the pedestals according to the present invention are narrow, the occupation area of the construction, and when it is necessary to perform the construction in a short period of time, It is suitable for connecting the base of a steel cylindrical leg with sufficient joint resistance, and can be used for three-dimensional bridges, viaducts, elevated structures, general bridges, railway bridges, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Bridges Or Land Bridges (AREA)
  • Foundations (AREA)

Abstract

 RC杭(3)の杭頭(3a)と、鋼製の角筒脚(4)の基部構造体(4b)とを接続する脚柱の接合部構造であって、基部構造体(4b)と、基部構造体(4b)のフランジ(12)から延長された延長板(15)と、杭頭(3b)から上方に突出された接合用鉄筋(8)と、基部構造体(4b)および接合用鉄筋(8)に外嵌され延長板(15)を介して基部構造体(4b)に連結固定されるとともに打設された接合用コンクリート(31)を外周から拘束する円筒鋼殻(21)とを具備した接合ユニット(5)を設け、基部構造体(4b)のウェブ(11)、フランジ(12)、リブ(13,14)および延長板(15)に、基部構造体(4b)から接合用コンクリート(31)を介して杭頭(3a)にせん断力を伝達する多数のずれ止め孔(16)を形成した。

Description

明 細 書
脚柱の接合部構造および接合方法
技術分野
[0001] 本発明は、立体交差橋や高架橋、高架構造体、一般橋梁、鉄道橋などのコンクリ ート製杭と鋼製脚とを接合する脚柱の接合部構造および接合方法に関する。
背景技術
[0002] 従来、地中に打ち込まれたコンクリート製杭 (以下 RC杭という)と、鋼製の脚柱とを 接合する橋脚の接合部は、単数または複数の RC杭の頂部にフーチングを設け、こ のフーチングに脚柱の基端部を接合するものが公知資料 1 (たとえば特開平 9— 719 49号公報、特開 2004— 68338)に開示されている。またアンカーボルトにより RC杭 と脚柱とを接合するものが公知資料 2 (たとえば特開 2004— 68338)に開示されて いる。さらに RC杭に脚柱を埋め込んで接合するものが公知資料 3 (たとえば特開 200 1 348887)【こ開示されて!、る。
発明の開示
発明が解決しょうとする課題
[0003] し力しながら、公知資料 1のフーチングによる接合構造の場合、形枠工事など煩雑 な現場工事が付随してェ期が長くなる傾向にある。また現場施工に必要な占有面積 が大きくなるとともに、フーチング形成時にコンクリートの打設面積が大きいと天候の 影響を受けやすい。このため、工事用地の確保が困難で、施工期間が短い立体交 差橋などの工事に適さない。また公知資料 2のアンカーボルトによる接合構造の場合 、煩雑な現場工事が付随し、施工工事期間が長いという問題があった。さらに公知資 料 1, 2では寸法精度の確保が困難であった。また公知資料 3の RC杭に脚柱を埋め 込む接合構造の場合、寸法精度は向上できるが、接合部でコンクリートの圧壊がおこ るおそれがあった。
[0004] したがって、本発明は上記問題点を解決して、現場工事の占有面積も小さぐ施工 工期を短縮できて工事費の削減が図れ、十分な接合部の耐カを確保できる脚柱の 接合部構造および接合方法を提供することを目的とする。 課題を解決するための手段
[0005] 本発明は、コンクリート製杭の杭頭上に、鋼製の筒状脚の基部を接続する脚柱の接 合部構造であって、前記筒状脚の基部に設けられた基部構造体と、前記基部構造 体の外周部に外嵌される円筒鋼殻と、前記基部構造体の外板に突設されて前記円 筒鋼殻に連結固定された延長部と、前記杭頭から前記円筒鋼殻内に突出された接 合用鉄筋と、前記円筒鋼殻内に打設されて前記基部構造体、前記延長部、前記接 合用鉄筋および前記杭頭を接合する接合用コンクリートとを有する接合ユニットを具 備し、前記基部構造体の少なくとも前記外板に、前記基部構造体から前記接合用コ ンクリートを介して前記杭頭にせん断力を伝達する多数のずれ止め孔を形成したも のである。
[0006] また、前記筒状脚が矩形断面の角筒脚であり、前記延長部は、前記基部構造体の 前記外板カゝら延長して形成されたものである。
[0007] さらに、前記筒状脚は円形断面の円筒脚であり、前記延長部は、前記基部構造体 の前記外板から半径方向に突設されたものである。
[0008] さらにまた、前記円筒鋼殻の下部に、当該円筒鋼殻を前記杭頭の頂部に外嵌する 余入れ部を設け、前記ずれ止め孔を前記基部構造体の補強用リブおよび前記延長 部にそれぞれ形成したものである。
[0009] また、前記基部構造体に負荷されるせん断力の大きい部分の前記ずれ止め孔に、 ずれ止め部材を配設したものである。
[0010] さらに、コンクリート製杭の杭頭上に、鋼製の筒状脚の基部を接続するに際して、前 記筒状脚の基部に設けられた基部構造体とその外周部に外嵌される円筒鋼殻とが、 該基部構造体の外板カゝら突設されかつ前記杭頭にせん断力を伝達するための多数 のずれ止め孔が形成された延長部を介して連結固定された接合ユニットを形成し、 前記筒状脚を前記接合ユニットを介して前記杭頭上に配置して前記杭頭から突出さ れた接合用鉄筋を前記円筒鋼殻に内在させ、前記円筒鋼殻内に接合用コンクリート を打設して前記基部構造体、前記延長部、前記接合用鉄筋および前記杭頭とを接 合し前記杭頭と前記筒状脚とを接続するものである。
[0011] さらにまた、前記接合ユニットの取り付け時に、前記円筒鋼殻を前記杭頭の頂部か ら下方に外嵌させる余入れ部を形成し、せん断力が大きく負荷される部分の前記ず れ止め孔にずれ止め部材を配置したものである。
[0012] また、前記接合ユニットを前記杭頭に嵌合する時に、少なくとも前記余入れ部の高 さ分の前記杭頭の外周部を削径して、前記杭頭を前記円筒鋼殻の内径より小さくす るものである。
発明の効果
[0013] 上記発明によれば、基部構造体と円筒鋼殻とを延長部を介して一体に連結固定す ることにより、基部構造体の挙動にほぼ従って円筒鋼殻が変位され、従来のソケット 基礎に比較して支圧や剥離力を大幅に低減することができる。また接合用コンクリー トを円形鋼殻により均一に拘束することにより、接合用コンクリートの割裂破壊を防止 して接合用コンクリートのひずみを拘束できずれ止め孔によるせん断耐カを十分に 発揮することができる。これによりせん断力を、基部構造体から接合用コンクリートを 介してコンクリート杭に良好に伝達することができて圧壊などを防止できる。したがつ て、接合ユニットにより工事の占有面積を小さくできて施工ェ期を短縮できて工事費 を削減することができ、また十分な接合部の耐カを確保することができる。
[0014] また、接合ユニットとコンクリート杭との境界部分で、円筒鋼殻の下部を杭頭に外嵌 させる余入れ部を設けたので、この連結部分がコンクリート杭力 突出された鉄筋組 物だけになるのを避け、断面急変による応力集中を緩和して、水平せん断耐カを向 上させることができる。
[0015] さらに、基部構造体の外板に形成されたずれ止め孔が形成された場合、鋼板の剛 性により個々のずれ止め孔の変位が異なることによりずれ止め孔が分担するせん断 力も異なる。このため、せん断力が大きいずれ止め孔にずれ止め部材を配置すること により、せん断耐カを向上させることができて、せん断力を基部構造体から接合用コ ンクリートに良好に伝達することができる。
[0016] さらにまた、接合ユニットとコンクリート杭との境界部分で、円筒鋼殻の下部を杭頭 に外嵌させる余入れ部により、断面急変による応力集中を緩和して、水平せん断耐 力を向上させることができる。また、せん断力が大きいずれ止め孔にずれ止め部材を 配置することにより、さらにせん断耐カを向上させることができて、せん断力を基部構 造体力 接合用コンクリートを介してコンクリート杭に良好に伝達することができる。
[0017] また、円筒鋼殻を必要以上に大径にすることなぐ余入れ部に対応する杭頭を円筒 鋼殻の内径より小さく削径することにより、コンクリート杭と角筒脚のずれを吸収して施 ェ時の寸法精度を緩和することができ、施工の容易化とェ期の短縮ィ匕を図ることが できる。
図面の簡単な説明
[0018] [図 1]本発明に係る脚柱の接合部の実施の形態 1を示し、接合ユニットの設置状態の 平面図である。
[図 2]図 1に示す A— A断面図である。
[図 3]図 2に示す C— C断面図である。
[図 4]図 1に示す B— B断面図である。
[図 5]同接合部のずれ止め孔とずれ止め部材を示す部分拡大斜視図である。
[図 6]同接合部のずれ止め部材を省略した接合ユニットを示す斜視図である。
[図 7]同接合ユニットの設置状態を示す斜視図である。
[図 8]同接合部を使用する高架橋を示す全体側面図である。
[図 9]同接合部の現場施工手順における土留用スタンドパイプの設置状態を示す説 明図である。
[図 10]同接合部の現場施工手順における杭打ち用スタンドパイプ力もの削穴の形成 状態を示す説明図である。
[図 11]同接合部の現場施工手順における鉄筋組物の挿入状態を示す説明図である
[図 12]同接合部の現場施工手順における RC杭の形成状態を示す説明図である。
[図 13]同接合部の現場施工手順における RC杭の劣化部の削り取り状態を示す説明 図である。
[図 14]同接合部の現場施工手順における接合ユニットの搬入状態を示す説明図で ある。
[図 15]同接合部の現場施工手順における接合ユニットの保持状態を示す説明図で ある。 [図 16]同接合部の現場施工手順における接合用コンクリートの打設状態を示す説明 図である。
[図 17a]主構造体に取り付けられたリブにずれ止め穴を形成した時のずれ止め孔の せん断力を示す説明図である。
[図 17b]主構造体である鋼板にずれ止め穴を形成した時の止め孔のせん断力を示す 説明図である。
圆 18]実施の形態 1の脚柱の接合部の変形例を示すもので、接合ユニットの設置状 態の断面図である。
圆 19a]第 1試験体を示す平面図である。
圆 19b]第 1試験体を示す縦断面図である。
[図 20a]第 2試験体を示す平面図である。
[図 20b]第 2試験体を示す縦断面図である。
圆 21]試験装置を示す正面図である。
圆 22]第 1試験体の断面変化部における水平荷重と水平変位の関係を示すグラフで ある。
圆 23]第 2試験体の断面変化部における水平荷重と水平変位の関係を示すグラフで ある。
[図 24]本発明に係る脚柱の接合部の実施の形態 2を示し、接合ユニットの設置状態 の平面図である。
[図 25]同接合ユニット設置状態の図 24に示す E—E断面図である。
[図 26]同接合ユニット設置状態の図 25に示す F— F断面図である。
[図 27]同接合ユニット設置状態の図 25に示す G— G断面図である。
[図 28]図 25の接合ユニットへの接合用コンクリートの充填状態を示す断面図である。
[図 29]同接合ユニット設置状態の図 25に示す H— H断面図である。
圆 30a]従来のソケット基礎における曲げモーメントとせん断力を示す説明図である。 圆 30b]従来のソケット基礎における支圧および摩擦力の合力、曲げモーメント、せん 断力を示す説明図である。
発明を実施するための最良の形態 [0019] 本発明に係る橋脚の接合部の構造および接合方法について説明する。
[0020] [実施の形態 1]
実施の形態 1を図 1〜図 17に、試験方法と結果を図 25〜図 30に、従来との比較を 図 31にそれぞれ基づいて説明する。
[0021] 図 8に示すように、径間桁長 Lがたとえば約 200mの立体交差橋 1の橋脚 (脚柱) 2 の接合部構造に係るもので、図 1〜図 7に示すように、橋脚 2は RC杭 (コンクリート杭) 3の杭頭 3aに鋼製の矩形断面の角筒脚 4とが接合ユニット (鋼製フーチング) 5を介し て接合されたものである。
[0022] 前記 RC杭 3は、たとえば図 10,図 11に示すように、所定位置にスクリューオーガな どの穿孔装置 45により地盤に形成された削穴 44内に、鉄筋組物 7を挿入した後、コ ンクリートを打設して形成される場所打ちコンクリート杭と呼ばれるものである。この R C杭 3のコンクリート上端部は、気泡や不純物を含む品質が悪い劣化部であるため、 この劣化部をはつって除去した後に、接合ユニット 5が接合される。また RC杭 3の杭 頭 3aには、前記鉄筋組物 7から一体に延長された多数の接合用鉄筋 8が外周部近 傍から上方に突出されて 、る。これら接合用鉄筋 8は接合ユニット 5の高さ分の長さを 有し、かつ接合ユニット 5内のウェブ 11、フランジ 12および延長板 15の据付が十分 可能となるように配置されて 、る。
[0023] 前記接合ユニット 5は、前記角筒脚 4の脚構造体 4aの基部に連続して形成された 基部構造体 4bと、基部構造体 4bの外周部に外嵌固定される円筒鋼殻 21と、基部構 造体 4bおよび円筒鋼殻 21内に打設される接合用コンクリート 31とを具備している。
[0024] 前記角筒脚 4の基部構造体 4bは、脚構造体 4aからそれぞれ一体に連続する前後 一対のウェブ (外板) 11と左右一対のフランジ (外板) 12とにより矩形断面に形成され 、たとえばここではウェブ 11の幅がフランジ 12より広い横長に形成されている力 フラ ンジ 12の幅がウェブ 11より幅が広!、矩形断面でもよ!/、。またウェブ 11およびフランジ 12の内面に、複数の補強用の板状リブ 13, 14がそれぞれ上下方向に突設されてい る。さらにフランジ 12には、両側部力も外側に突出されて先端部が円筒鋼殻 21の内 面に連結固定される延長板 (延長部) 15がー体に設けられている。これら延長板 15 は基部構造体 4bと円筒鋼殻 21とを連結して接合ユニット 5を一体ィ匕するものである。 なお、延長板 15はフランジ板 12に設ける以外に、ウェブ 11の両側部から延長板を 一体に設けてもよいし、また各コーナー部でフランジ 12とウェブ 11の両方に連続する 2枚の延長板を直角方向に設けてもょ 、。
[0025] またウェブ 11とフランジ 12の下端部に RC杭 3の杭頭 3aに直接または据付ブロック
(たとえば図 14のように H型鋼力もなる)を介して着座させる据付台板 17が設けられ ている。また円筒鋼殻 21の上端部に対応して脚構造体 4aと基部構造体 4bとを区画 する仕切板 18が取付けられ、その中央部に開口部 18aが形成されている。
[0026] そしてウェブ 11、フランジ 12、板状リブ 13, 14および延長部 15には、それぞれ所 定ピッチで多数のずれ止め孔(孔明き鋼板ジベル: PBLともいう) 16がそれぞれ貫通 形成され、角筒脚 4からの軸力、曲げモーメントおよびせん断力などの負荷を接合用 コンクリート 31を介して RC杭 3に伝達するように構成されている。これらずれ止め孔 1 6による接合用コンクリート 31に対するせん断力の伝達は、接合用コンクリート 31を外 周側から均一に拘束する円筒鋼殻 21によりさらに効果的におこなわれる。
[0027] 前記ずれ止め孔 16の特徴は、 a)単位面積当りのせん断抵抗が大きいため、ずれ 止め用のスタッドのように多く設置する必要も無ぐ構造的に簡略ィ匕することができる 、 b)疲労耐久性があり、十分な靭性を有するずれ止め構造となる、 c)設計法が確立 されており、道路橋などに置いて実績があるなどである。また、 d)角筒脚 4を構成する ウェブ 11とフランジ 12に形成することにより、ずれ止めのための補剛材を省略するこ とができ、 e)ずれ止めの荷重を直接角筒脚 4のウェブ 11とフランジ 12に伝達できて 荷重あるいは応力の伝達 (流れ)が明解になるとともに、補剛材との溶接部に生じる 疲労亀裂などの問題が発生しないという点も特徴となる。
[0028] なお、構造体であるウェブ 11とフランジ 12にずれ止め孔 16を形成することにより、 角筒脚 4の剛性が減少して鋼板の引張強度が減少するおそれがあるが、ずれ止め 孔 16の間隔と穴径とを適宜選択することにより、鋼板の引張強度の減少を防止する ことができる。また座屈に対しては、接合用コンクリート 31の周囲が円筒鋼殻 21によ つて拘束され変形が防止されているため、接合用コンクリート 31が破壊されない限り は問題がない。もちろん、全断面塑性に対しては、ウェブ 11とフランジ 12の板厚およ びずれ止め孔 16の間隔を適切に設定してずれ止め孔 16の穴断面が決定される。 [0029] ところで、図 17aに示すように、主構造体 aに取付けられたリブ bにずれ止め孔 cを形 成した場合、主構造体 aの母材が力なり大きい高剛性とすると、引張り荷重が負荷さ れた場合、個々のずれ止め孔 cはあた力も剛体の上に乗った穴として全体が均等に 変位されるため、個々のずれ止め孔 cはほぼ等しいせん断耐カを有する仮定して設 計することができる。これに対して、図 17bに示すように、主構造体 dである鋼板にず れ止め孔 eが形成された場合、引張り荷重が負荷されると、鋼板の剛性により個々の ずれ止め孔 eの変位量が異なる。これにより、それぞれが分担するせん断力が異なり 、全てのずれ止め孔 eが等しくせん断力を分担するという設計ができない。たとえば主 構造体 dを鋼板として複数のずれ止め孔 eを上下方向に形成した時には、図示するよ うに、主構造体 dに上方への引張り力が負荷された時には、ずれ止め孔 eが支持する せん断力が荷重力も遠ざかる下方にいくに従って小さくなる分布となる。この分布は 、鋼板の剛性、コンクリートの弾性係数などによって変化するため、予め解析を行って せん断耐カを確認する必要がある。
[0030] 本発明では、前記せん断耐力および破壊靭性を高めるために、図 2〜図 5に示す ように、せん断力の大きい上部のずれ止め孔 16にずれ止め部材 (耐カ部材) 19を配 置している。これらずれ止め部材 19にはたとえば鉄筋が使用され、互いに水平方向 に対向する位置に形成されたずれ止め孔 16間に挿入して掛け渡すことで、特定の 支持治具を必要としない。これらずれ止め部材 19は、ここでは、ウェブ 11, 11間、フ ランジ 12, 12間、リブ 13, 13間、リブ 14, 14間および延長板 15, 15間の各上部の ずれ止め孔 16にそれぞれ配置される。
[0031] 前記円筒鋼殻 21は、 RC杭 3の杭頭 3aと内径が同じかまたは大きく形成され、その 内面に所定間隔ごとに半径方向のコンクリート剥離防止用のスタッド 22が所定間隔 ごとに複数本植設されている。
[0032] ところで、ずれ止め用として植設されるスタッドに比較して、前記ずれ止め孔 16は 2 〜3倍のせん断耐力が高ぐずれ止め性能として優れた特性を示すが、この性能を 発揮できるのは、ずれ止め孔 16が形成された鋼板とコンクリートとの境界面で引張破 壊を防止する引張方向のひずみの拘束や、ずれ止め孔 16内のコンクリートの割裂破 壊を防止するために接合用コンクリート 31のひずみを拘束することが必要である。こ のため、本発明では円形断面で外周部力もコンクリートを均等に拘束が可能な円筒 鋼殻 21が採用されており、この円筒鋼殻 21は RC杭などで拘束効果を得るために内 装されるフープ鉄筋などに比較して拘束効果が高い。またここで、円筒鋼殻 21に替 えて矩形断面の角筒鋼殻で囲んでも、接合用コンクリート 31の均一な拘束力を得ら れず、ずれ止め孔 16による十分なせん断耐カを確保することができない。
[0033] ところで、図 30aおよび図 30bは従来のソケット基礎を示している。ここで、 Mは曲げ モーメント、 Qはせん断力、 Pは支圧力の合力、 Tは摩擦力の合力、 Lは脚柱 Uのソケ ット Sへの埋め込み長さである。このソケット基礎では、脚柱 Uとソケット Sとの間に支 圧力 Pが支配的に作用して耐荷構造が形成される。しかし本発明では、延長板 15を 介して基部構造体 4bと円筒鋼殻 21とが一体に連結固定されるため、円筒鋼殻 21は 基部構造体 4bの挙動にほぼ従って変位する。したがって、若干の支圧と円筒鋼殻 2 1と基部構造体 4bの剥離力は生じるが、ソケット基礎に比較してそれほど大きくない。 また本発明では、ずれ止め孔 16によりせん断力が接合用コンクリート 31を介して RC 杭 3に伝達されるためには、接続用鉄筋 8の十分な長さによる付着力が必要であるが 、これも計算により求めることができる。
[0034] 次にこの橋脚の現場における施工方法を図 9〜図 16を参照して説明する。
[0035] 1)施工位置を掘削後、ジブクレーン 41等の揚降装置を使用して土留用スタンドパ イブ 42を施工位置に設置する [図 9]。
[0036] 2)土留用スタンドパイプ 42内に小径の杭打ち用スタンドパイプ 43を設置し、穿孔 装置 45により杭打ち用スタンドパイプ 43から地中に杭打設用の削穴 44を形成する [ 図 10]。
[0037] 3)削穴 44内に鉄筋組物 7を挿入設置し [図 11]、杭打ち用スタンドパイプ 43を撤 去後、土留用スタンドパイプ 42の下端より所定高さ上方位置までコンクリートを打設し て RC杭 3を形成する [図 12]。
[0038] 4)杭頭 3aの劣化部が削り取られた後 [図 13]、脚構造体 4bとともに接合ユニット 5 を搬入し、円筒鋼殻 21を杭頭 3aに外嵌する [図 14]。
[0039] なお、図 2,図 4では基部構造体 4bを据付台板 17を介して直接杭頭 3a頂面に設 置している力 図 14に示すように、基部構造体 4bと杭頭 3aとの間に、 H型鋼力もなる 据付ブロック 46を配置してもよい。この据付ブロック 46により、杭頭 3aのハツリ面の凹 凸を吸収することができる。
[0040] 5)ジャッキや支持部材により接合ユニット 21を所定の高さ位置に保持して余入れ 部 23が形成されるとともに、仕切板 18の開口部 18aおよび基部構造体 4bと円筒鋼 殻 21の間から接合用コンクリート 31が注入打設され、 RC杭 3と角筒脚 4とが接合ュ ニット 5を介して接合される [図 4,図 15]。
[0041] 6)埋め戻した後、スタンドパイプ 42を撤去する。 [図 16]
次に上記構造の接合ユニット 21を具備した試験体を製作して行った試験結果を、 図 19〜図 23を参照して説明する。
[0042] 橋脚接合部が大地震にも耐えうる強度を有することを確認するために、実際の橋脚 接合部の 1Z5の 2種類の第 1試験体 81と第 2試験体 82を製作した。ここで大地震と は、「道路橋示方書 ·同解説 V (耐震設計編)」に規定されて!ヽる『レベル 2地震動』の ことであり、『レベル 2地振動』とは、道路橋の供用期間中に発生する確率は低いが、 大きな強度を持つ地震動であり、プレート境界型大規模地震による地震動および内 陸直下型地震による地震動を指す。
[0043] 第 1試験体 81は、図 19aおよび図 19bに示すように、 RC杭 3の杭頭 3aと鋼製の角 筒脚 4の接合ユニット 5を取り出した部分構造とし、第 2試験体 82は、図 20aおよび図 20bに示すように、 RC杭 3の特性まで含めて接合ユニット 5の強度特性を考察する部 分構造とした。ただし、ずれ止め孔 (孔明き鋼板ジベル: PBL) 16は、実際の橋脚接 合部では直径 70mmであり、それを 1Z5に縮尺すると直径 14mmとなる力 これま での研究にぉ 、て、このような小径のずれ止め孔を用いた実験を行った実績がな ヽ ことを考慮して、ずれ止め孔 16の直径は公表された試験データの多い直径 35mmと し、強度特性が合うようにずれ止め孔 16の個数を調整した。上記第 1試験体 81と第 2 試験体 82における RC杭 3と接合部コンクリートの実圧縮強度は、 45NZmm2である
[0044] 図 21に示す試験装置を使用して、上部油圧ジャッキ 83により中間部材を介して角 筒脚 4に上方力も第 1試験体 81および第 2試験体 82にそれぞれ鉛直荷重を与えると ともに、水平油圧ジャッキ 85により角筒脚 4の上部に水平方向から第 1試験体 81およ び第 2試験体 82にそれぞれ正負の交番水平荷重を与えた。
[0045] 図 22は,第 1試験体 81に正負交番荷重を与えた状態における水平荷重 (縦軸)と 水平変位 (横軸)を示し、また図 23は、第 2試験体 82に正負交番荷重を与えた状態 における水平荷重 (縦軸)と水平変位 (横軸)を示す。ここで Paは設計荷重、 Pyは引 張側の最外縁位置の接合用鉄筋 8が降伏する時の水平荷重(降伏荷重)、 Puは、引 張側の接合用鉄筋 8の破断と圧縮側のコンクリートの圧壊が起こる直前において水 平荷重が最大値を示す時の水平荷重 (終局荷重)である。
[0046] 第 1試験体 81では、 RC杭 3の杭頭 3aと角筒脚 4の下端の間の断面変化部の接合 用鉄筋 8が降伏したが、第 2試験体 82では、 RC杭 3の杭頭 3aの接合用鉄筋 8が降 伏 ·破断して終局を迎えた。第 1試験体 81,第 2試験体 82とも降伏荷重 Pyは、設計 荷重 Paに対して約 2倍程度の余裕のある値となった。さらに第 1試験体 81,第 2試験 体 82とも、 RC杭 3と角筒脚 4との間でずれが無かったので、接合ユニット 5内のずれ 止め孔 16の破壊はな力つたと判断された。このように、 RC杭 3と角筒脚 4の接合部分 では、断面変化部および RC杭の杭頭 3aの破壊が先行して発生することが明らかと なり、接合部は『レベル 2地震』に対して十分な耐カを有することが確認された。
[0047] 上記実施の形態 1によれば、
A.従来の RCフーチングとアンカーフレームを用いない簡単な構造で、基部構造 体 4bに延長板 15を介して円筒鋼殻 21を一体ィ匕した接合ユニット 5により、施工現場 での型枠や配筋作業を省略することができ、従来に比較して現場施工工期を短縮す ることができ、工事費を削減できる。
[0048] B.円筒鋼殻 21により、接合ユニット 5の接合用コンクリート 31を外周側力 均一に 拘束して、多数のずれ止め孔 16により、基部構造体 4bから接合用コンクリート 31を 介して RC杭にせん断力を効果的に伝達することができる。これにより、従来必要であ つたフープ鉄筋ゃスタッドなどのせん断力伝達用の複雑な構造部材を省略でき、ま たずれ止め孔 16を基部構造体 4bのウェブ 11やフランジ 12に直接に形成することで 、ずれ止め用のリブを不要にすることができ、構造の簡略化とコストダウンを図ること ができる。
[0049] C.基部構造体 4bの外板であるウェブ 11やフランジ 12にずれ止め孔 16を形成す ることで、ずれ止め孔 16の位置によりせん断力に差が生じる力 予めせん断力分布 を計算して予測し、大きいせん断力が加わる上部のずれ止め孔 16にたとえば鉄筋か らなるずれ止め部材 19を配設することにより、せん断耐カをさらに向上してせん断力 を効果的に伝達することができる。
[0050] D.現場施工時に、図 2に示すように、余入れ部 23を設けて円筒鋼殻 21の下部が 杭頭 3aに外嵌されるので、断面の急変による応力集中を緩和し、水平方向のせん断 力に抵抗することができる。
[0051] なお、図 18は実施の形態 1の変形例で、施工時の精度緩和のために、杭頭 3aの 外周部を、余入れ部 23に対応する高さ分だけ削り取って段部 9を形成したものであ る。この段部 9により、杭頭 3aと円形鋼殻 21と間に遊び (余裕)を形成して接合ュ-ッ ト 5を杭頭 3aに嵌合する作業を容易化し、施工時の寸法精度を緩和することができる
[0052] [実施の形態 2]
図 25〜図 29は実施の形態 2を示し、実施の形態 1における脚柱を円形断面の円 筒脚 51としたものである。なお、実施の形態 1と同一部材には同一符号を付して説明 を省略する。
[0053] この接合部は、 RC杭 (コンクリート杭) 3の杭頭 3aと鋼製の円形断面の円筒脚 51と を接合ユニット (鋼製フーチング) 52を介して接合するものである。
[0054] 前記円筒脚 51の脚構造体 51aの基部に設けられた基部構造体 51bは、円筒状の 脚構造体 51aから連続して形成された円筒外板 53と、この円筒外板 53内に軸心位 置で 90° で接合交差された縦方向の内補強面板 54と、円筒外板 53の外面で内補 強面板 54に連続する延長位置に半径方向に突設された 4枚の延長板 (延長部) 15 と、円筒外板 53の外周面で延長板 15の間に所定角度(図では 30° )隔てて半径方 向に突設された複数枚の補強用板状リブ 55とで構成されて ヽる。
[0055] 前記接合ユニット 52は、前記基部構造体 51bと、基部構造体 5 lbに外嵌され延長 板 15を介して連結固定された円筒鋼殻 21と、基部構造体 51bおよび円筒鋼殻 21内 に打設される接合用コンクリート 31とを具備している。そして前記延長板 15は基部構 造体 51bと円筒鋼殻 21とを連結して接合ユニット 52を一体ィ匕するものである。 [0056] また円筒外板 53と内補強面板 54の下端縁部に沿って、 RC杭 3の杭頭 3aに直接ま たは据付ブロック (たとえば H型鋼力もなる) 46を介して着座させる据付台板 17が設 けられている。また円筒鋼殻 21の上端部に対応する円筒脚 51の脚構造体 51aと基 部構造体 51bの境界部には、中央部に開口部 18aが形成された仕切板 18が取付け られている。
[0057] そして円筒外板 53、内補強面板 54および板状リブ 55および延長板 15には、それ ぞれ所定ピッチで多数のずれ止め孔(孔明き鋼板ジベル: PBLともいう) 16がそれぞ れ貫通形成され、円筒脚 51からの軸力、曲げモーメントおよびせん断力を接合用コ ンクリート 31を介して RC杭 3に伝達するように構成されている。これらずれ止め孔 16 による接合用コンクリート 31に対するせん断力の伝達は、接合用コンクリート 31を外 周側から均一に拘束する円筒鋼殻 21により効果的に行われる。
[0058] また、せん断耐力および破壊靭性を高めるために、円筒外板 53、内補強面板 54 および板状リブ 55および延長板 15でせん断力の大きい上部のずれ止め孔 16には、 せん断耐カ補強用のずれ止め部材 19が配置されている。これらずれ止め部材 19に はたとえば鉄筋が使用され、互いに水平方向に対向する位置に形成されたずれ止 め孔 16間に挿入して図示するように井桁状や放射状、円弧状などに掛け渡すことで 、特定の支持治具を必要としない。
[0059] 現場における脚柱の接合部の施工手順も、実施の形態 1と同様の手順で実施する ことができる。
[0060] 上記実施の形態 2によれば、実施の形態 1と同様の効果を奏することができる。
産業上の利用可能性
[0061] 以上のように本発明に係る脚柱の接合部構造および接合方法は、狭 、工事の占 有面積でかつ短期間に工事を行う必要がある場合において、コンクリート製杭の杭頭 と鋼製の筒状脚の基部とを十分な接合部の耐カを有して接続するのに適し、立体交 差橋や高架橋、高架構造体、一般橋梁、鉄道橋などに利用可能である。

Claims

請求の範囲
[1] コンクリート製杭の杭頭上に、鋼製の筒状脚の基部を接続する脚柱の接合部構造 であって、
前記筒状脚の基部に設けられた基部構造体と、前記基部構造体の外周部に外嵌 される円筒鋼殻と、前記基部構造体の外板に突設されて前記円筒鋼殻に連結固定 された延長部と、前記杭頭から前記円筒鋼殻内に突出された接合用鉄筋と、前記円 筒鋼殻内に打設されて前記基部構造体、前記延長部、前記接合用鉄筋および前記 杭頭を接合する接合用コンクリートとを有する接合ユニットを具備し、
前記基部構造体の少なくとも前記外板に、前記基部構造体力も前記接合用コンクリ ートを介して前記杭頭にせん断力を伝達する多数のずれ止め孔を形成した
脚柱の接合部構造。
[2] 前記筒状脚が矩形断面の角筒脚であり、
前記延長部は、前記基部構造体の前記外板から延長して形成された
請求項 1記載の脚柱の接合部構造。
[3] 前記筒状脚は円形断面の円筒脚であり、
前記延長部は、前記基部構造体の前記外板から半径方向に突設された ことを特徴とする請求項 1記載の脚柱の接合部構造。
[4] 前記円筒鋼殻の下部に、当該円筒鋼殻を前記杭頭の頂部に外嵌する余入れ部を 設け、
前記ずれ止め孔を前記基部構造体の補強用リブおよび前記延長部にそれぞれ形 成した
請求項 1乃至 3のいずれかに記載の脚柱の接合部構造。
[5] 前記基部構造体に負荷されるせん断力の大きい部分の前記ずれ止め孔に、ずれ 止め部材を配設した
請求項 1乃至 4のいずれかに記載の脚柱の接合部構造。
[6] コンクリート製杭の杭頭上に、鋼製の筒状脚の基部を接続するに際して、
前記筒状脚の基部に設けられた基部構造体とその外周部に外嵌される円筒鋼殻と 力 該基部構造体の外板カゝら突設されかつ前記杭頭にせん断力を伝達するための 多数のずれ止め孔が形成された延長部を介して連結固定された接合ユニットを形成 し、
前記筒状脚を前記接合ユニットを介して前記杭頭上に配置して前記杭頭カゝら突出 された接合用鉄筋を前記円筒鋼殻に内在させ、
前記円筒鋼殻内に接合用コンクリートを打設して前記基部構造体、前記延長部、 前記接合用鉄筋および前記杭頭とを接合し前記杭頭と前記筒状脚とを接続する 脚柱の接合方法。
[7] 前記接合ユニットの取り付け時に、前記円筒鋼殻を前記杭頭の頂部力も下方に外 嵌させる余入れ部を形成し、
せん断力が大きく負荷される部分の前記ずれ止め孔にずれ止め部材を配置した 請求項 6記載の脚柱の接合方法。
[8] 前記接合ユニットを前記杭頭に嵌合する時に、少なくとも前記余入れ部の高さ分の 前記杭頭の外周部を削径して、前記杭頭を前記円筒鋼殻の内径より小さくする 請求項 7記載の脚柱の接合方法。
PCT/JP2005/018357 2004-10-05 2005-10-04 脚柱の接合部構造および接合方法 WO2006038620A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-292031 2004-10-05
JP2004292031A JP4691690B2 (ja) 2004-10-05 2004-10-05 脚柱の接合部構造および接合方法

Publications (1)

Publication Number Publication Date
WO2006038620A1 true WO2006038620A1 (ja) 2006-04-13

Family

ID=36142693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018357 WO2006038620A1 (ja) 2004-10-05 2005-10-04 脚柱の接合部構造および接合方法

Country Status (2)

Country Link
JP (1) JP4691690B2 (ja)
WO (1) WO2006038620A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045370A (ja) * 2006-08-21 2008-02-28 Ihi Corp 鋼製橋脚と杭の定着方法及び装置
CN101831867A (zh) * 2010-05-11 2010-09-15 天津市市政工程设计研究院 钢主塔或钢主拱的钢-混凝土结合段的结构
KR101191742B1 (ko) 2010-11-16 2012-10-15 재단법인 포항산업과학연구원 구조용 강판 철근 및 이를 이용한 기둥 구조
CN104080977A (zh) * 2012-02-23 2014-10-01 日立造船株式会社 钢制桥墩与混凝土制桩基的接合结构
CN107532398A (zh) * 2015-05-08 2018-01-02 日立造船株式会社 支柱下端部与混凝土桩的刚性连接构造体
CN108360370A (zh) * 2018-05-11 2018-08-03 重庆大学 一种预制钢管约束钢筋混凝土桥墩与承台连接节点
CN108918233A (zh) * 2018-09-25 2018-11-30 山东科技大学 一种用于模袋混凝土圆柱偏压试验的柱头加筋定位装置及使用方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4912030B2 (ja) * 2006-05-02 2012-04-04 日立造船株式会社 橋脚と杭との接合部構造
JP2010216075A (ja) * 2009-03-13 2010-09-30 Daiwa House Industry Co Ltd 鉄筋コンクリート柱・鉄骨梁の接合構造
CN102995572B (zh) * 2012-12-03 2015-09-23 河海大学 桥梁顶升后薄壁空心墩与原墩柱的连接方法及其装置
JP6180775B2 (ja) * 2013-04-10 2017-08-16 株式会社大林組 鋼管・コンクリート複合構造橋脚
JP6338100B2 (ja) * 2013-06-28 2018-06-06 清水建設株式会社 柱同士の接合構造及び建築物
JP6432764B2 (ja) * 2013-08-29 2018-12-05 清水建設株式会社 柱接合構造
CN103452040B (zh) * 2013-09-18 2015-11-18 中交公路长大桥建设国家工程研究中心有限公司 一种下部采用钢-混凝土组合结构的桥塔或桥墩
CN105113389B (zh) * 2015-09-18 2017-01-25 河海大学 装配式钢‑混凝土组合结构桥墩柱构件
CN105735113B (zh) * 2016-04-20 2018-03-09 四川省交通运输厅公路规划勘察设计研究院 用于钢管混凝土桥梁的墩桩过渡连接构造及其施工方法
CN106836264A (zh) * 2017-01-09 2017-06-13 国网山东省电力公司烟台供电公司 一种杆塔基础施工方法
JP7233295B2 (ja) * 2019-05-07 2023-03-06 日本製鉄株式会社 杭頭部の接合構造および基礎構造

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06146303A (ja) * 1992-11-11 1994-05-27 Kajima Corp 構真柱
JPH0726568A (ja) * 1993-07-09 1995-01-27 Kawasaki Steel Corp 鉄骨柱、杭および基礎梁の接合構造
JP2001098641A (ja) * 1999-09-30 2001-04-10 Shimizu Corp 地盤改良体を用いた建物
JP2001220755A (ja) * 2000-02-10 2001-08-17 Masanao Isozaki 柱脚固定構造

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07247556A (ja) * 1994-03-03 1995-09-26 Nippon Steel Corp 鋼製柱部材における柱脚の固定構造
JP2002188154A (ja) * 2000-12-20 2002-07-05 Shimizu Corp 建築物の基礎構造および基礎の施工方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06146303A (ja) * 1992-11-11 1994-05-27 Kajima Corp 構真柱
JPH0726568A (ja) * 1993-07-09 1995-01-27 Kawasaki Steel Corp 鉄骨柱、杭および基礎梁の接合構造
JP2001098641A (ja) * 1999-09-30 2001-04-10 Shimizu Corp 地盤改良体を用いた建物
JP2001220755A (ja) * 2000-02-10 2001-08-17 Masanao Isozaki 柱脚固定構造

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045370A (ja) * 2006-08-21 2008-02-28 Ihi Corp 鋼製橋脚と杭の定着方法及び装置
CN101831867A (zh) * 2010-05-11 2010-09-15 天津市市政工程设计研究院 钢主塔或钢主拱的钢-混凝土结合段的结构
KR101191742B1 (ko) 2010-11-16 2012-10-15 재단법인 포항산업과학연구원 구조용 강판 철근 및 이를 이용한 기둥 구조
CN104080977A (zh) * 2012-02-23 2014-10-01 日立造船株式会社 钢制桥墩与混凝土制桩基的接合结构
CN104080977B (zh) * 2012-02-23 2016-03-23 日立造船株式会社 钢制桥墩与混凝土制桩基的接合结构
CN107532398A (zh) * 2015-05-08 2018-01-02 日立造船株式会社 支柱下端部与混凝土桩的刚性连接构造体
CN107532398B (zh) * 2015-05-08 2020-08-07 日立造船株式会社 支柱下端部与混凝土桩的刚性连接构造体
CN108360370A (zh) * 2018-05-11 2018-08-03 重庆大学 一种预制钢管约束钢筋混凝土桥墩与承台连接节点
CN108360370B (zh) * 2018-05-11 2019-11-12 重庆大学 一种预制钢管约束钢筋混凝土桥墩与承台连接节点
CN108918233A (zh) * 2018-09-25 2018-11-30 山东科技大学 一种用于模袋混凝土圆柱偏压试验的柱头加筋定位装置及使用方法

Also Published As

Publication number Publication date
JP2006104747A (ja) 2006-04-20
JP4691690B2 (ja) 2011-06-01

Similar Documents

Publication Publication Date Title
WO2006038620A1 (ja) 脚柱の接合部構造および接合方法
JP4992042B2 (ja) プレキャスト横梁およびそれを用いた橋脚
JP2008063803A (ja) 内リブ付形鋼を用いた合成床版、合成床版橋又は合成桁橋
KR20090092973A (ko) 기존 교량의 보수, 보강시 지반에 설치되는 강재말뚝의압입방법 및 장치
JP3844743B2 (ja) 箱桁橋構造およびその構築方法
JP4897643B2 (ja) 鉄筋コンクリート合成鋼床版桁橋
JP2007077630A (ja) プレキャスト主桁セグメントを使用した連続桁およびその架設方法
JP3780816B2 (ja) 既存建物の免震構造化方法
KR100949828B1 (ko) 층고절감형 철골보 및 이를 이용한 철골-콘크리트 합성보
JP2008025221A (ja) Pc構造脚柱と鋼製箱桁とを結合した高架構造物
JPH09316892A (ja) 杭基礎補強構造
KR101072958B1 (ko) 마이크로파일 및 트러스를 이용한 기초구조, 및 주위구조물과 인접한 곳에서 이의 시공방법
JP3877995B2 (ja) 張弦桁橋の構築方法
JP7158231B2 (ja) 合成柱及びそれを用いた橋脚、施工方法
JP4405879B2 (ja) 鋼桁橋の補強方法
KR100530025B1 (ko) 확대된 단면에 프리스트레스를 도입하여 철근 콘크리트구조물의 지지력 보강을 위한 단면 확대 보수보강장치 및이를 이용한 보수보강 시공방법
JP4293696B2 (ja) 合成床版橋の構築方法
JP2006316495A (ja) 橋脚基礎構造とその施工方法
JP2013181322A (ja) 杭基礎の改築方法および杭基礎構造
JP4562631B2 (ja) コンクリート構造物に於けるヒンジ部の補修構造
JP5356010B2 (ja) 基礎補強構造
JP7270412B2 (ja) 組積造建物の補強構造
JP2002013297A (ja) 耐震補強方法
JP2006169837A (ja) 鉄筋コンクリート造の柱梁接合構造
JP6364210B2 (ja) 橋脚の補強構造

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05790239

Country of ref document: EP

Kind code of ref document: A1