WO2006035771A1 - Cmp研磨剤及び基板の研磨方法 - Google Patents

Cmp研磨剤及び基板の研磨方法 Download PDF

Info

Publication number
WO2006035771A1
WO2006035771A1 PCT/JP2005/017747 JP2005017747W WO2006035771A1 WO 2006035771 A1 WO2006035771 A1 WO 2006035771A1 JP 2005017747 W JP2005017747 W JP 2005017747W WO 2006035771 A1 WO2006035771 A1 WO 2006035771A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
cmp
polishing
abrasive
strong acid
Prior art date
Application number
PCT/JP2005/017747
Other languages
English (en)
French (fr)
Inventor
Yasushi Kurata
Kazuhiro Enomoto
Naoyuki Koyama
Masato Fukasawa
Original Assignee
Hitachi Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US11/576,010 priority Critical patent/US20070218811A1/en
Application filed by Hitachi Chemical Co., Ltd. filed Critical Hitachi Chemical Co., Ltd.
Priority to CN2005800317627A priority patent/CN101023512B/zh
Priority to JP2006537753A priority patent/JP4853287B2/ja
Publication of WO2006035771A1 publication Critical patent/WO2006035771A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step

Definitions

  • the present invention relates to a planarization process of a substrate surface, which is a technique for manufacturing a semiconductor device, in particular, an interlayer insulation film, a flattening process of a BPSG (boron, phosphorus-doped silicon dioxide-silicon film) film, a shallow trench
  • the present invention relates to a CMP abrasive used in a step of forming a hose separation and a method for polishing a substrate using the CMP abrasive.
  • an inorganic insulating film layer such as a silicon oxide insulating film is formed by a method such as plasma CVD or low pressure CVD.
  • a fumed silica-based abrasive As a slurry-like chemical mechanical abrasive for flattening the inorganic insulating film layer, a fumed silica-based abrasive has been generally studied. Fumed silica-based abrasives are manufactured by adjusting the pH by growing grains by methods such as thermal decomposition of silicon tetrachloride. However, such an abrasive has a technical problem that the polishing rate is low.
  • shallow trench isolation is used for element isolation in an integrated circuit.
  • CMP is used to remove the excess silicon oxide film formed on the substrate, and a low-polishing stock film is formed under the silicon oxide film to stop polishing. Is done.
  • Silicon nitride or the like is used for the stubber film, and it is desirable that the polishing rate ratio between the silicon oxide film and the staggered film is large.
  • Conventional colloidal silica-based abrasives have the strength to withstand practical use for shallow trench isolation where the polishing rate ratio between the silicon oxide film and the staggered film is as small as about 3.
  • cerium oxide-based abrasives are used as glass surface abrasives for photomasks and lenses. It is used. Oxidized cerium particles have lower hardness than silica particles and alumina particles, and therefore are less likely to scratch the polished surface, and are useful for finish mirror polishing. In addition, there is an advantage that the polishing rate is faster than the silica abrasive.
  • CMP abrasives for semiconductors using high-purity cerium oxide abrasive grains have been used. For example, this technique is disclosed in Japanese Patent Laid-Open No. 10-106994.
  • the abrasive using cerium oxide as described above has a problem that the particle diameter of the abrasive grains changes and a film thickness difference due to a difference in turn density tends to occur.
  • the area where the area density of the convex part (active part) where the base such as STI is coated with silicon nitride is small is higher than the area where the area density is large, so the polishing is performed first. Easy to progress. As a result, the remaining film thickness of the silicon nitride in the low-density part eventually becomes smaller (thickness loss increases), which causes a problem that the film thickness difference due to the pattern density difference tends to increase.
  • a silicon oxide film or the like is formed at high speed with a small difference in film thickness due to a difference in turn density. It is another object of the present invention to provide an abrasive and a polishing method that can be easily and easily managed.
  • the present invention is (1) a polishing agent containing acid cerium particles, a dispersant, a polycarboxylic acid, a strong acid having a pKa value of 3.2 or less of the first dissociable acidic group, and water.
  • the present invention relates to a CMP polishing slurry characterized by having a pH of 4.0 to 7.5 and a strong acid concentration in the polishing slurry of 100 to 1000 ppm.
  • the present invention is (2) an abrasive containing a strong acid in which the pKa value of the acid cerium particles, the dispersant, the polycarboxylic acid, and the first dissociable acidic group is 3.2 or less, and water.
  • the present invention relates to a CMP polishing slurry characterized by having a pH of 4.0 to 7.5 and a strong acid concentration in the polishing slurry of 50 to LOOOppm.
  • the present invention is (3) an abrasive containing a strong acid in which the pKa value of the acid cerium particles, the dispersant, the polycarboxylic acid, and the first dissociable acidic group is 3.2 or less, and water.
  • the present invention relates to a CMP abrasive, characterized in that the pH is 4.0 or more and 7.5 or less, and the strong acid in the abrasive is a monovalent strong acid with a concentration of 50 to 500 ppm.
  • the present invention is (4) a polishing agent containing acid cerium particles, a dispersant, a polycarboxylic acid, a strong acid having a pKa value of 3.2 or less of the first dissociable acidic group, and water.
  • the present invention relates to a CMP polishing slurry characterized in that the pH is 4.0 or more and 7.5 or less, and the strong acid in the polishing slurry is a divalent strong acid with a concentration of 100 to LOOOppm.
  • the present invention relates to (5) the CMP polishing slurry according to the above (1) or (4), wherein the strong acid concentration in the polishing slurry is 200 to: LOOOppm.
  • the present invention relates to (6) the CMP polishing slurry according to (1) or (4) above, wherein the strong acid concentration in the polishing slurry is 300 to 600 ppm.
  • the present invention relates to (7) the CMP abrasive according to (1) or (4) above, wherein the strong acid is sulfuric acid.
  • the present invention relates to (8) the CMP polishing slurry according to (2) or (3) above, wherein the strong acid concentration in the polishing slurry is 100 to 500 ppm.
  • the present invention relates to (9) the CMP polishing slurry according to (2) or (3) above, wherein the strong acid concentration in the polishing slurry is 150 to 300 ppm.
  • the first dissociable acidic group of the strong acid has a pKa value of 2.0 or less.
  • the present invention relates to (11) the CMP polishing slurry according to (10), wherein the pKa value of the first dissociable acidic group of the strong acid is 1.5 or less.
  • the present invention relates to (12) the CMP polishing slurry according to any one of (1) to (11), wherein the pH is 4.5 or more and 5.5 or less.
  • the present invention relates to (13) the CMP abrasive according to any one of (1) to (12), wherein the polycarboxylic acid power is polyacrylic acid.
  • the present invention relates to (14) the CMP abrasive according to any one of (1) to (13), wherein the dispersant is a polymer compound containing an ammonium acrylate salt.
  • the present invention provides (15) the above-mentioned (1) to (14), wherein the abrasive power is mixed with an unneutralized polycarboxylic acid, a strong acid or a strong acid salt and water and then adjusted with ammonia. ) The CMP abrasive
  • the content of the cerium oxide particles is 0.1 parts by weight or more and 5 parts by weight or less with respect to 100 parts by weight of the CMP abrasive. As described in any one
  • the present invention relates to any one of (1) to (16), wherein (17) the content of polycarboxylic acid is 0.01 parts by weight or more and 2 parts by weight or less with respect to 100 parts by weight of the CMP abrasive. As described in
  • the present invention is as described in any one of (1) to (17), wherein (18) the polycarboxylic acid has a weight average molecular weight (GPC PEG conversion) of 500 or more and 20,000 or less. Regarding CMP abrasives.
  • GPC PEG conversion weight average molecular weight
  • the present invention relates to (19) the CMP abrasive according to any one of (1) to (18), wherein an average particle diameter of the cerium oxycerium particles is from 1 nm to 400 nm.
  • the present invention relates to (20) a polymerization initiator for at least one of the polycarboxylic acid-powered cationic azo compound and a salt thereof, or at least one of a ionic azo compound and a salt thereof.
  • the CMP according to any one of (1) to (19), wherein the CMP is a polymer obtained by polymerizing a monomer containing at least one of a carboxylic acid having an unsaturated double bond and a salt thereof. It relates to an abrasive.
  • the present invention comprises (21) mixing cerium oxide particles, a dispersant, and an acid cerium slurry that also has hydraulic power, and an additive solution containing polycarboxylic acid, strong acid, pH adjuster, and water.
  • polishing agent as described in any one of said (1)-(20) obtained by these.
  • the present invention provides (22) a method for producing a CMP polishing slurry according to any one of (1) to (21) above, comprising an unneutralized polycarboxylic acid and a strong acid or strong acid salt and water. And a step of adjusting the pH of the aqueous solution with ammonia after the step, and a method for producing a CMP abrasive, characterized by comprising:
  • the present invention is (23) a method for producing a CMP abrasive slurry according to any one of (1) to (21) above, wherein the oxidation comprises cerium oxide particles, a dispersant, and water. Cerium slurry and po
  • the present invention relates to a method for producing a CMP polishing slurry, which comprises mixing a recarboxylic acid, a strong acid, and an additive solution containing water.
  • the present invention provides (24) a substrate on which a film to be polished is formed, pressed against a polishing cloth of a polishing surface plate and pressurized, and the CMP abrasive according to any one of (1) to (21) is used.
  • the present invention relates to a method for polishing a substrate, characterized by polishing a film to be polished by relatively powering a substrate and a polishing surface plate while supplying the film between the film to be polished and a polishing cloth.
  • the film thickness difference due to the difference in turn density is reduced, and the process management is also performed at high speed. It is possible to provide an abrasive and a polishing method capable of easily polishing an oxide silicon film and the like.
  • cerium oxide is obtained by oxidizing a cerium compound of carbonate, nitrate, sulfate, or oxalate.
  • TEOS Cerium oxide abrasives used for polishing silicon oxide films formed by CVD, etc., are faster when the crystallite size of the particles is larger and the crystal distortion is smaller, that is, the better the crystallinity is.
  • the crystallite diameter of the cerium oxide is preferably 1 nm or more and 300 nm or less.
  • the content of alkali metal, nitrogen, and rogen be suppressed to 10 ppm or less in the cerium oxide particles.
  • the firing temperature is preferably 350 ° C or higher and 900 ° C or lower.
  • the cerium oxide particles produced by the above method are agglomerated, it is preferably mechanically pulverized.
  • a dry pulverization method such as a jet mill or a wet pulverization method such as a planetary bead mill is preferable.
  • the jet mill is described in, for example, “Chemical Engineering Papers” Vol. 6 No. 5 (1980) pp. 527-532.
  • a homogenizer, an ultrasonic disperser, a wet ball mill, or the like is used in addition to a dispersion treatment using a normal stirrer. it can.
  • the cerium oxide dispersion is allowed to stand for a long time to precipitate large particles, and the supernatant is pumped out by pumping.
  • a classification method is used.
  • a method using a high-pressure homogenizer that collides the oxycerium particles in the dispersion medium at a pressure of 90 MPa or more is also used.
  • the average particle size of the cerium oxide particles thus produced is preferably 1 to 400 nm in the CMP abrasive. More preferably, it is l-300 nm, More preferably, it is l-200 nm. This is because if the average particle size of the cerium oxide particles is less than 1 nm, the polishing rate tends to be low, and if it exceeds 400 nm, the polishing film tends to be easily damaged.
  • the average particle diameter of the cerium oxide particles refers to the value of D50 (median diameter of volume distribution, cumulative median value) measured with a laser diffraction particle size distribution meter.
  • the CMP abrasive according to the present invention includes, for example, an acid / cerium particle (A) having the above characteristics, a dispersant (B), and water (C) to disperse the particles. It can be obtained by adding (D) and a strong acid (E) described later.
  • the concentration of the cerium oxide particles is preferably in the range of 0.1 to 5 parts by weight with respect to 100 parts by weight of the abrasive. More preferably, it is 0.2 parts by weight or more and 3 parts by weight or less. This is because if the concentration is too low, the polishing rate tends to be low, and if it is too high, it tends to aggregate.
  • Examples of the (B) dispersant include a water-soluble anionic dispersant, a water-soluble nonionic dispersant, a water-soluble cationic dispersant, a water-soluble amphoteric dispersant, and the like.
  • a dispersant which is a polymer compound containing an acrylic acid ammonium salt is preferred. Examples thereof include polyacrylic acid ammonium and copolymers of acrylic acid amide and acrylic acid ammonium.
  • Two or more kinds of dispersants including at least one selected from an agent and a water-soluble amphoteric dispersant may be used in combination.
  • the content of alkali metals such as sodium ions and force ions in the dispersant is preferably suppressed to 10 ppm or less.
  • water-soluble anionic dispersant examples include lauryl sulfate triethanolamine, lauryl sulfate ammonium, polyoxyethylene alkyl ether sulfate triethanolamine, polycarboxylic acid type polymer dispersant, and the like. Is mentioned.
  • Examples of the polycarboxylic acid type polymer dispersant include a polymer of a carboxylic acid monomer having an unsaturated double bond such as acrylic acid, methacrylic acid, maleic acid, fumaric acid, and itaconic acid, Examples thereof include a copolymer of a carboxylic acid monomer having an unsaturated double bond and another monomer having an unsaturated double bond, and their ammonium salts and amine salts.
  • water-soluble nonionic dispersant examples include polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, polyoxyethylene glycol ether, polyoxyethylene higher alcohol ether, polyoxyethylene.
  • Examples of the water-soluble cationic dispersant include polyvinylpyrrolidone, coconut amine acetate, stearylamine acetate, and the like.
  • Examples of the water-soluble amphoteric dispersant include lauryl betaine, stearyl betaine. , Lauryldimethylamine oxide, 2-anolequinole-N-canoleboxoxymethinole-N-hydroxyethylimidazolium umbetaine, and the like.
  • the amount of these dispersants added is determined by the dispersibility of particles in the abrasive and the prevention of settling, and further, the scratch
  • the relationship between the amount of the dispersant and the added amount of the dispersant is preferably in the range of 0.01 to 10 parts by weight with respect to 100 parts by weight of the cerium oxide particles.
  • the weight average molecular weight of the dispersant is preferably from 100 to 50,000, more preferably from 1,000 to 10,000.
  • the weight average molecular weight of the dispersant is less than 100, it may be difficult to obtain a sufficient polishing rate when polishing the silicon oxide film or the silicon nitride film, and the weight average molecular weight of the dispersant is 50, If it exceeds 000, the viscosity increases, and the storage stability of the CMP abrasive may decrease.
  • the CMP abrasive in the present invention can improve the planarization characteristics.
  • the silicon oxide film which is the main film to be polished, has an effect of suppressing the polishing rate of the silicon nitride film, which is the staggered film, process management becomes easier.
  • the polycarboxylic acid may have a function as a dispersant. Examples of the polycarboxylic acid include polyacrylic acid, polymethacrylic acid, polystyrene carboxylic acid, and copolymers thereof.
  • the polycarboxylic acid includes a copolymer of a carboxylic acid and other copolymerizable monomers such as a copolymer of acrylic acid and methyl acrylate. In that case, the copolymerization ratio of carboxylic acid is preferably 50% by weight or more.
  • the polycarboxylic acid is a carboxylic acid having an unsaturated double bond using at least one of a cationic azo compound and a salt thereof, or at least one of a cation azo compound and a salt thereof as a polymerization initiator. And a polymer obtained by polymerizing a monomer containing at least one of the salt thereof. Examples of the polymerization initiator include 2, 2'-azobis [2- (2-imidazolin-2-yl) propane] disulfate dihydrate, 2, 2'-azobis [2- (2-imidazoline- 2-yl) propane] and the like.
  • the method for synthesizing the polycarboxylic acid used in the present invention is not limited.
  • a weight average molecular weight of 500 to 20,000 in terms of GPC PEG is preferable. More preferably, the weight average molecular weight is 1,000 or more and 20,000 or less, and particularly preferably 2,000 or more and 10,000 or less. If the molecular weight is too low, the flatness effect may be insufficient. If the molecular weight is too high, the cerium oxide particles may be easily aggregated, or the polishing rate of the pattern protrusions may be reduced. Because there is.
  • the polycarboxylic acid content is preferably in the range of 0.01 to 2 parts by weight with respect to 100 parts by weight of the CMP abrasive. More preferably 0.1. The amount is 1 part by weight or more. If the content is too small, it is difficult to obtain high planarization characteristics. If the content is too large, the polishing rate of the pattern protrusions will be greatly reduced, and the dispersion stability of the cerium oxide particles tends to be lowered.
  • the CMP abrasive according to the present invention contains a strong acid (E) having a p Ka value of 3.2 or less of the first dissociable acidic group in addition to the polycarboxylic acid, thereby improving the flatness characteristics.
  • E strong acid
  • the film thickness difference due to the pattern density difference can be reduced. That is, it is possible to reduce the thickness of the silicon nitride film at the portion where the area density of the convex portion (active portion) whose base such as STI is coated with silicon nitride is small.
  • the strong acid means that the pKa value (pK) of the first dissociable acidic group is 3.2 or less.
  • the strong acid the lower the pKa value of the first dissociable acidic group, the higher the effect of the present invention, and the pKa value of the acid having the pKa value of the first dissociable acidic group of 2.0 or less is more preferable. Most preferred is an acid having a ⁇ 1.5. If the pKa value of the first dissociable acidic group is greater than 3.2, sufficient effects cannot be obtained.
  • the strong acid used in the present invention is contained in a polycarboxylic acid which may be added separately from the polycarboxylic acid which is not limited to the method of addition to the abrasive.
  • the pK value is 4 to 5 (acrylic acid is 4.
  • the high flatness effect due to the inclusion of polycarboxylic acid is considered to be due to the surface protection effect (adhesion suppression action of silicon oxide film) by adsorption of polycarboxylic acid on the surface of silicon oxide film and cerium oxide particles. It is done.
  • a polycarboxylic acid and a strong acid in combination dissociation of the polycarboxylic acid is suppressed. Thereby, the hydrogen bond adsorption action of the polycarboxylic acid to the silicon oxide film is strengthened, and thus the force considered to obtain the above effect is not limited to this mechanism.
  • the pKa value in the present invention is “Chemical Handbook Basic Edition” revised 4th edition (published on September 30, 1993, by the Chemical Society of Japan, published by Maruzen Co., Ltd., II— 317-11-322. ) Power is also quoted.
  • the strong acid may be used as a salt in the form of a salt.
  • Strong acid salts include ammonium sulfate, ammonium nitrate, ammonium oxalate, ammonium sulfite, ammonium nitrite, ammonium amidosulfate, ammonium iodate, Ammonium salts such as ammonium persulfate and ammonium persulfate are listed.
  • the strong acid content is required to be 100 to 1000 ppm by weight in the abrasive, preferably 200 to 1000 ppm, more preferably 300 to 600 ppm.
  • a range of 0.01 parts by weight or more and 0.1 parts by weight or less is required with respect to 100 parts by weight of the CMP abrasive.
  • it is 0.02 parts by weight or more and 0.1 parts by weight or less, more preferably 0.03 parts by weight or more and 0.06 parts by weight or less.
  • the content of strong acid in the weight ratio in the abrasive must be 50 to: LOOOppm.
  • the strong acid is a monovalent strong acid
  • its content is preferably 50 to 500 ppm, more preferably 100 to 500 ppm, and even more preferably 150 to 300 ppm.
  • the content is preferably 100 to 1000 ppm, more preferably 200 to 1 OOOppm, and more preferably 300 to 600 ppm.
  • the divalent strong acid tends to be less likely to agglomerate than the monovalent strong acid.
  • the abrasive of the present invention may be used in combination with other water-soluble polymers.
  • Other water-soluble polymers are not particularly limited, for example, polysaccharides such as alginic acid, pectinic acid, carboxymethyl cellulose, agar, curdlan and pullulan; polyaspartic acid, polyglutamic acid, polylysine, polymalic acid , Polycarboxylic acids such as polyamic acid, polymaleic acid, polyitaconic acid, polyfumaric acid, polyamic acid ammonium salt, polyamic acid sodium salt and polydarioxylic acid and their salts; And vinyl-based polymers.
  • These water-soluble polymers preferably have a weight average molecular weight of 500 or more. The blending amount of these is preferably in the range of 0.01 to 5 parts by weight with respect to 100 parts by weight of the CMP abrasive.
  • the CMP abrasive in the present invention is adjusted to a desired pH within a predetermined range and used for polishing. It is.
  • aqueous ammonia is preferably used rather than alkali metals when used for semiconductor polishing.
  • an aqueous solution in which a strong acid, an unneutralized polycarboxylic acid and water are mixed is prepared, and the aqueous solution can be adjusted by adding a pH adjuster such as ammonia water. Then, it is mixed with the remaining cerium oxide particles to obtain a CMP abrasive. If the amount of ammonia that reaches a predetermined pH is known, it is possible to add a strong acid at a predetermined concentration after adding ammonia.
  • a polycarboxylic acid ammonium salt having a neutralization rate of 100% or less that is, a polycarboxylic acid partially or completely neutralized with a pH adjusting agent in place of the polycarboxylic acid and the pH adjusting agent. It can also be used.
  • the polycarboxylic acid ammonium salt can be mixed with water prior to the strong acid, and a strong acid in a predetermined concentration range can be added to adjust to a predetermined pH.
  • the neutralization rate of the polycarboxylic acid ammonium is determined by the following method. Solid-liquid separation of the abrasive is performed for 30 minutes at 15,000 rpm using a CF-15R micro high-speed centrifuge manufactured by Hitachi Koki Co., Ltd. equipped with an angle porter. Using a total organic carbon meter, TOC-5000, manufactured by Shimadzu Corporation, measure the organic carbon content of the supernatant and measure the polycarboxylic acid concentration.
  • the electrophoresis solution is 10 mM imidazole
  • the sample injection is the drop method (25 mm, 90 sec)
  • the electrophoresis voltage is 30 kV
  • the detection method is indirect UV (210 nm). Measure the ammonium ion concentration with, and determine the neutralization rate of the polystrength rubonic acid.
  • the pH of the CMP abrasive needs to be 4.0 or more and pH 7.5 or less, preferably pH 4.5 or more and pH 5.5 or less. If the pH is too low, the chemical polishing action of the abrasive itself will be reduced, which will reduce the polishing rate and make it difficult for the dispersant to dissociate. Dispersion stability tends to decrease. On the other hand, if the pH is too high, the flatness will decrease, and the amount of polycarboxylic acid or strong acid required to obtain high flatness will increase, and the ammonia content will increase accordingly. This is because the dispersion stability of cerium particles tends to decrease and the particle diameter of cerium oxide tends to increase.
  • the pH of the CMP abrasive is measured by a pH meter (for example, manufactured by Yokogawa Electric Corporation).
  • the polishing agent of the present invention includes an acid-cerium slurry comprising acid-cerium particles, a dispersant, and water, a polycarboxylic acid, a strong acid, and water, and a pH adjuster such as ammonia as necessary. Even if stored as a two-component CMP abrasive that is separated from the pH-adjusted additive solution, acid / cerium particles, dispersant, polycarboxylic acid, strong acid and water, and if necessary pH adjustment It may be stored as a one-component abrasive containing an agent.
  • the additive solution is sent through a separate pipe from the cerium oxide slurry, and these pipes are merged, mixed immediately before the supply pipe outlet, and supplied onto the polishing platen. be able to. It is also possible to supply acid cerium slurry stored as a two-component abrasive, additive, and deionized water in a predetermined mixing ratio in advance, so that one-component abrasive is supplied through one pipe. it can. Further, when the cerium oxide slurry and additive are mixed in the pipe as described above, the deionized water can be mixed as necessary to adjust the polishing characteristics.
  • a substrate on which a film to be polished is formed is pressed against a polishing cloth on a polishing platen and pressurized, and the CMP abrasive of the present invention is supplied between the film to be polished and the polishing cloth.
  • the film to be polished is polished by relatively powering the base plate and the polishing surface plate.
  • an inorganic insulating layer is formed on a semiconductor substrate such as a substrate related to semiconductor element manufacture, for example, a semiconductor substrate at a stage where a circuit element and a wiring pattern are formed, or a semiconductor substrate at a stage where a circuit element is formed.
  • the substrate which was made is mentioned.
  • the film to be polished include the inorganic insulating layer, such as an oxide silicon film layer or a silicon nitride film layer and an oxide silicon film layer. It is. By polishing the silicon oxide film layer or silicon nitride film layer formed on such a semiconductor substrate with the CMP abrasive, unevenness on the surface of the silicon oxide film layer is eliminated, and the entire surface of the semiconductor substrate is removed.
  • the ratio of the silicon oxide film polishing rate to the silicon nitride film polishing rate, the silicon oxide film polishing rate Z and the silicon nitride film polishing rate are preferably 10 or more. If this ratio is less than 10, the difference between the silicon oxide film polishing rate and the silicon nitride film polishing rate is small, and it becomes difficult to stop polishing at a predetermined position when performing shallow trench isolation. When this ratio is 10 or more, the polishing rate of the silicon nitride film is further reduced and the polishing can be easily stopped, which is preferable for shallow trench isolation. In addition, it is preferable that scratches are less likely to occur during polishing for use in shallow trench isolation.
  • polishing method will be described by taking the case of a semiconductor substrate on which an inorganic insulating layer is formed as an example.
  • the polishing apparatus includes a polishing surface plate to which a polishing cloth (pad) can be attached and a motor capable of changing the number of rotations, and a semiconductor substrate or the like.
  • a general polishing apparatus having a holder capable of holding a substrate having a polishing film can be used.
  • polishing apparatus manufactured by Ebara Manufacturing Co., Ltd .: Model No. EPO-111 can be used.
  • the polishing cloth general non-woven fabric, foamed polyurethane, porous fluorine resin and the like can be used, and there is no particular limitation.
  • it is preferable that the polishing cloth is subjected to groove processing so that the CMP abrasive is accumulated.
  • the rotation speed of the platen is preferably 200 rpm or less so that the semiconductor substrate does not pop out.
  • the pressure (working load) applied to the semiconductor substrate is lOOkPa so that scratches do not occur after polishing.
  • the following is preferred.
  • CMP polishing agent is continuously supplied to the polishing cloth with a pump. This supply is not limited, but it is preferable that the surface of the polishing cloth is always covered with CMP abrasive.
  • the semiconductor substrate after polishing is thoroughly washed in running water, and then water droplets adhering to the semiconductor substrate are removed using a spin dryer or the like, and then dried and dried.
  • the inorganic insulating layer which is a polishing film
  • a polishing film with the above-described abrasive
  • surface irregularities can be eliminated and a smooth surface can be obtained over the entire surface of the semiconductor substrate.
  • an aluminum wiring is formed on the silicon oxide insulating film layer
  • a silicon oxide insulating film is formed again between the wirings and on the wirings by a method to be described later, and then polished in the same manner using the CMP abrasive to obtain a smooth surface.
  • the protruding portion needs to be selectively polished.
  • a protective film is formed on the surface of the cerium oxide particles or the film to be polished.
  • the film to be polished in the concave portion having a small effective polishing load is protected, but the film to be polished in the convex portion having a large effective polishing load is selectively polished by removing the protective film made of the water-soluble polymer.
  • a global flatness with little dependence can be achieved.
  • Examples of a method for producing an inorganic insulating film in which the CMP abrasive of the present invention is used include a low-pressure CVD method and a plasma CVD method. Silicon oxide film formation by the low pressure CVD method uses monosilane: SiH as the Si source and oxygen: O as the oxygen source. This SiH—O oxidation reaction
  • the reaction gas includes SiH—N 2 O gas using SiH as the Si source and N 2 O as the oxygen source,
  • TEOS-O-based gas using tetraethoxysilane (TEOS) as Si source
  • the substrate temperature is preferably in the range of 250 ° C. to 400 ° C., and the reaction pressure is in the range of 67 to 400 Pa.
  • elements such as phosphorus and boron may be doped in the silicon oxide film in the present invention.
  • silicon nitride film formation by low-pressure CVD uses dichlorosilane: SiH C1 as a Si source and ammonia: NH as a nitrogen source. This SiH C1— N
  • the reaction gas is SiH-NH gas using SiH as Si source and NH as nitrogen source.
  • the substrate temperature is preferably 300 ° C to 400 ° C! /.
  • the CMP abrasive and polishing method of the present invention can be applied to manufacturing processes of various semiconductor devices other than just a silicon oxide film formed on a semiconductor substrate.
  • Insulating films such as silicon oxide film, glass, silicon nitride, etc. formed on wiring boards with fixed wiring; films mainly containing polysilicon, Al, Cu, Ti, TiN, W, Ta, TaN, etc .; photo Optical glass such as mask 'lens'prism; Inorganic conductive film such as ITO; Optical integrated circuit composed of glass and crystalline material ⁇ Optical switching element ⁇ Optical waveguide, optical fiber end face, scintillator, etc.
  • Crystals Solid laser single crystal, blue laser LED sapphire substrate, semiconductor single crystal such as SiC, GaP, GaAs, etc .; glass substrate for magnetic disk; magnetic head, etc. can be polished.
  • the resulting supernatant was then diluted with deionized water to a solid content concentration of 5% by weight to obtain an acid-cerium slurry. Dilute to an appropriate concentration to measure the average particle size in the cerium oxide slurry, and use a laser diffraction particle size analyzer, Master Sizer Microplus (trade name, manufactured by Malvern), with a refractive index of 1.93, absorption 0 As a result, the value of D50 was 170 nm.
  • impurity ions Na, K, Fe, Al, Zr, Cu, Si, Ti
  • atomic absorption photometer AA-670G model number, manufactured by Shimadzu Corporation
  • Example 1 (Preparation of polycarboxylic acid-containing additive solution)
  • a commercially available polyacrylic acid aqueous solution (weight average molecular weight 5000) (40% by weight) 4 0.5 g and 4600 g of deionized water were mixed, and an abrasive 600 Og after mixing with cerium oxide (ceria) slurry.
  • Deionized water was mixed to obtain an additive solution.
  • Example 2 40.5 g of the same commercially available polyacrylic acid aqueous solution (40% by weight) as in Example 1 and 4600 g of deionized water were mixed, and the sulfuric acid concentration in 6000 g of the abrasive after ceria slurry mixing was 300 ppm. after 1. 88 g addition of sulfuric acid (96 wt 0/0) so that, adjusted to pH 4. 8 with ammonia water (25 weight 0/0), and finally becomes an aqueous solution weight force 800g to deionized Water was mixed.
  • Example 3 40.5 g of the same commercially available polyacrylic acid aqueous solution (40% by weight) as in Example 1 and 4600 g of deionized water were mixed, and the sulfuric acid concentration in 6000 g of the abrasive after ceria slurry mixing was 600 p pm after 3. 75 g addition of sulfuric acid (96 wt 0/0) so that, adjusted to pH 4. 8 with ammonia water (25 weight 0/0), and finally becomes an aqueous solution weight force 800g to deionized Water was mixed.
  • Example 4 In Example 4, 40.5 g of the same commercially available polyacrylic acid aqueous solution (40% by weight) as in Example 1 and 4600 g of deionized water were mixed, and the sulfuric acid concentration in 6000 g of the abrasive after ceria slurry mixing was 900 ppm. after 5. 63 g addition of sulfuric acid (96 wt 0/0) so that, adjusted to pH 4. 8 with ammonia water (25 weight 0/0), and finally becomes an aqueous solution weight force 800g to deionized Water was mixed.
  • Example 5 In Example 5, 40.5 g of the same commercially available polyacrylic acid aqueous solution (40 wt%) as in Example 1 and 4600 g of deionized water were mixed, and the hydrochloric acid concentration in 6000 g of the abrasive after ceria slurry mixing was 300 ppm. pH4 with hydrochloric acid such that the (36 weight 0/0) 5. Og after the addition, aqueous ammonia (25 wt 0/0). adjusted to 8, and finally as to become a solution weight force 800g deionized water Were mixed.
  • Example 6 40.5 g of the same commercially available polyacrylic acid aqueous solution (40% by weight) as in Example 1 and 4600 g of deionized water were mixed, and the nitric acid concentration in 6000 g of the abrasive after ceria slurry mixing was 300 ppm. after 2. 58 g addition of nitric acid (70 wt 0/0) so that, adjusted to pH 4. 8 with ammonia water (25 weight 0/0), and finally becomes an aqueous solution weight force 800g to deionized Water was mixed.
  • Example 1 The same commercially available aqueous solution of polyacrylic acid (weight average molecular weight 5000) (40 wt 0/0) were mixed 40. 5 g of deionized water 4600g, without the addition of sulfuric acid Adjust the pH to 4.8 with ammonia water (25% by weight), and finally remove it so that the weight of the aqueous solution reaches 800 g. On water was mixed.
  • Comparative Example 2 40.5 g of the same commercially available polyacrylic acid aqueous solution (40 wt%) as in Comparative Example 1 and 4600 g of deionized water were mixed, and the malic acid concentration in 6000 g of the abrasive after ceria slurry mixing was 3 after 1. 8 g addition of malic acid so that the OOppm, adjusted with ammonia water (25 weight 0/0) to pH 4. 8, and finally mixing the manner deionized water comprising an aqueous solution by weight force 800 g.
  • Comparative Example 3 the same commercially available polyacrylic acid aqueous solution (40% by weight) as Comparative Example 1 was mixed with 40.5 g of deionized water and 4600 g of deionized water. Cono and succinic acid concentrations in 6000 g of the abrasive after ceria slurry mixing There after 1. 8 g adding succinic acid to be 3 OOppm, adjusted with ammonia water (25 weight 0/0) to pH 4. 8, and finally mixing the manner deionized water comprising an aqueous solution weight force 800g .
  • Comparative Example 4 40.5 g of the same commercially available polyacrylic acid aqueous solution (40 wt%) as in Comparative Example 1 and 4600 g of deionized water were mixed, and the acetic acid concentration in 6000 g of the abrasive after ceria slurry mixing was 300 ppm. after 1. 8 g acetic acid (99.9 wt 0/0) so that, adjusted to pH 4. 8 with ammonia water (25 weight 0/0), so that the last solution weight force 800g Deionized water was mixed.
  • Comparative Example 5 40.5 g of the same commercially available polyacrylic acid aqueous solution (40 wt%) as in Comparative Example 1 and 4600 g of deionized water were mixed, and the sulfuric acid concentration in 6000 g of the abrasive after ceria slurry mixing was 1200 ppm. after 7. 5 g addition of sulfuric acid (96 wt 0/0) so that, adjusted to pH 4. 8 with ammonia water (25 weight 0/0), and finally becomes an aqueous solution weight force 800g to deionized Water was mixed.
  • the abrasive had a pH of 5.0.
  • the results were measured by diluting to an appropriate concentration.
  • the value is 170 nm.
  • the value of 0 was 180 nm.
  • the supernatant obtained by centrifuging the CMP abrasives obtained in Examples 1 to 6 and Comparative Examples 1 to 5 was subjected to a capillary electrophoresis measurement device (model number CAPI— manufactured by Otsuka Electronics Co., Ltd.). 3300) was used to measure sulfate ion concentration, hydrochloric acid ion concentration and nitrate ion concentration in the abrasive. Electrophoresis voltage—30 kV, buffer, sample injection was performed using the drop method (drop 25 mm), injection time 30 seconds. A calibration curve was created at three points for each strong acid ion concentration of 300, 600 and lOOOppm, and the concentration was calculated.
  • the abrasives of Examples 1 to 6 and Comparative Example 5 contained strong acid ions at a predetermined concentration.
  • the strong acid ion concentration in the abrasives of Comparative Examples 1 to 4 was 1 Oppm or more.
  • Shallow element isolation (STI) insulation film Among the test wafers for CMP evaluation, as a blanket wafer with no pattern, PE-TEOS oxide silicon film (SiO 2) is formed on the Si substrate.
  • PE-TEOS oxide silicon film SiO 2
  • a film-formed wafer ( ⁇ 200 mm) was used.
  • recess depth is 480nm, wrench depth 330nm + Si N film thickness 150 force
  • Convex and space (concave) width is 100 m pitch
  • convex pattern density is 10% to 90%
  • Lines and spaces are simulated STI patterns, masked with convex Si N
  • a convex pattern density of 10% means a pattern in which convex width 10 m and concave width 90 m are arranged alternately
  • convex pattern density 90% means convex width 90 m and concave width 10 Means a pattern of alternating / zm.
  • the above test wafer is set in the holder of the polishing equipment (Applied Materials, product name: Mirra) with the suction pad for attaching the substrate to be held.
  • a polishing pad model IC-1000 (K groove) made of porous urethane resin was pasted.
  • the holder is placed on the pad with the insulating film face down, and the membrane, retainer ring, and inner tube pressure are set to 3. Opsi, 3.5 psi, 3.0 psi (20.6 kPa, 24. , 20.6kPa) [This setting was made.
  • the surface plate and the wafer were operated at 98 rpm and 78 rpm, respectively, to polish the test wafer for STI insulating film CMP evaluation.
  • the blanket wafer was polished for 60 seconds.
  • the polishing time of the patterned wafer is the time until the Si N film is almost exposed at the 100% (4 X 4 convex) pattern part.
  • Example 7 960 g of deionized water was put into a 3 liter synthesis flask, heated to 90 ° C. with stirring under a nitrogen gas atmosphere, and then 547 g of acrylic acid and 54 g of ammonium persulfate were added. A solution dissolved in 500 g of deionized water was poured into the flask over 2 hours. Thereafter, the mixture was kept at 90 ° C. for 5 hours, cooled and taken out to obtain a polyacrylic acid aqueous solution. The nonvolatile content was measured and found to be 25% by weight.
  • Example 8 960 g of deionized water was put into a 3 liter synthesis flask, heated to 90 ° C with stirring under a nitrogen gas atmosphere, and then 497 g of acrylic acid and 2,2'-azobis were added. [2- (2-imidazoline-2-yl) propane] disulphate dihydrate 103 g dissolved in 500 g of deionized water was poured into the flask over 2 hours. Thereafter, the mixture was kept at 90 ° C. for 3 hours, cooled and taken out to obtain a polyacrylic acid solution. The nonvolatile content was measured and found to be 25% by weight. When the molecular weight of the obtained polyacrylic acid was measured in the same manner as in Example 7, the weight average molecular weight was 3200 (polyethylene glycol equivalent).
  • Example 9 960 g of deionized water was put into a 3 liter synthesis flask, heated to 90 ° C with stirring under a nitrogen gas atmosphere, and then 256 g of methacrylic acid, 255 g of acrylic acid, and 2, 89 g of 2′-azobis [2- (2-imidazoline-2-yl) propane] disulfate dihydrate dissolved in 500 g of deionized water was poured into the flask over 2 hours. Thereafter, the mixture was kept at 90 ° C. for 3 hours and then cooled and taken out to obtain a water-soluble polymer solution (polyacrylic acid-methacrylic acid copolymer aqueous solution). The nonvolatile content was measured and found to be 25% by weight. When the molecular weight of the obtained water-soluble polymer was measured in the same manner as in Example 7, the weight average molecular weight was 7,500 (polyethylene glycol equivalent).
  • the weight average molecular weight was 5000 (polyethylene glycol equivalent).
  • the polycarboxylic acid aqueous solution obtained in Examples 7 to 8 and Comparative Example 6 and the polyacrylic acid-methacrylic acid copolymer aqueous solution obtained in Example 9 were diluted 100 times with deionized water.
  • the sulfate ion concentration of this diluted solution was measured using the same apparatus and the same conditions as the supernatant of the CMP abrasive slurry of Examples 1-6.
  • a calibration curve was created at three points of sulfate ion concentration of 300, 600, and lOOOOppm, and the concentration was calculated.
  • the polymer of Example 7 and Example 9 contained about 8% by weight sulfate ion, the polymer of Example 8 contained about 9% by weight sulfate ion, and the polymer of Comparative Example 6 It was confirmed that the sulfate ion concentration in the solution was less than 1% by weight.
  • Example 9 polyacrylic acid over methacrylic acid copolymer solution (25 by weight 0/0) obtained above 64. mixing 8g and Datsuisain water 4600g, ammonia water (25 weight 0 / 0) at was adjusted to pH 4. 8, and finally mixing the manner deionized water comprising an aqueous solution by weight force 800 g.
  • the abrasives of Examples 7 to 9 and Comparative Example 6 were The average particle size D50 was 170 nm. In addition, the particle diameter after 3 months did not change with an average value D50 of 170 nm.
  • the sulfate ion concentration of the supernatant obtained by centrifuging each of the obtained CMP abrasives was measured using the same apparatus and the same conditions as the supernatants of the CMP abrasive supernatants of Examples 1 to 6. .
  • a calibration curve was created at three points of sulfate ion concentration of 300, 600 and lOOOppm, and the concentration was calculated.
  • the sulfate ion concentrations in the abrasives of Example 7, Example 8 and Example 9 were 2 respectively. 40 ppm, 270 ppm and 230 ppm were confirmed.
  • the concentration of sulfate in the abrasive of Comparative Example 6 was 10 ppm or less.
  • Example 10 to 11 and Comparative Examples 7 to 8 examination was made by changing the pH of the abrasive.
  • Example 12 a study was conducted using a strong acid salt.
  • Example 13 and Comparative Example 9 using Poriatari Le acid Anmoniumu salts was investigated with an adjusted P H with a strong acid.
  • Example 10 22.5 g of commercially available polyacrylic acid aqueous solution (weight average molecular weight 5000) (40 wt%) and 4600 g of deionized water were mixed so that the sulfuric acid concentration in 6000 g of the abrasive after ceria slurry mixing was 300 ppm. After adding 1.88 g of sulfuric acid (96 wt%) to the solution, the pH was adjusted to 4.0 with aqueous ammonia (25 wt%), and finally deionized water was mixed so that the weight of the aqueous solution became 800 g.
  • Example 11 150 g of the same commercially available polyacrylic acid aqueous solution (40% by weight) as in Example 10 and 4500 g of deionized water were mixed, and the sulfuric acid concentration in 6000 g of the abrasive after ceria slurry mixing was 10 OOppm. after mixing 6. 25 g addition of sulfuric acid (96 wt 0/0), and adjusted to aqueous ammonia (25 wt 0/0) in hand pH 6. 8, finally as deionized water comprising an aqueous solution by weight force 800g as did
  • Example 12 40.5 g of the same commercially available polyacrylic acid aqueous solution (40 wt%) as in Example 10 and 4600 g of deionized water were mixed, and the sulfuric acid concentration in 6000 g of the abrasive after ceria slurry mixing was 30 Oppm. Then, 2.44 g of ammonium sulfate was added to adjust the pH to 4.8 with aqueous ammonia (25 wt%), and finally deionized water was mixed so that the weight of the aqueous solution became 800 g.
  • Example 13 a commercially available neutralization of about 100% of polyacrylic acid ammonium - ⁇ anhydrous solution (weight average molecular weight 8000) (. 40 weight 0/0, pH6 1) 27. Og of deionized water 4600g After adding nitric acid (70% by weight) to adjust the pH to 4.6, the final weight of the aqueous solution is 4800 The water was mixed so that it was g.
  • Comparative Example 9 a commercially available over-neutralized (neutralization ratio of 100% or more) polyacrylate en mode -. ⁇ anhydrous solution (weight average molecular weight 8000) (40 wt 0/0, pH 9 1 27. Mix Og and 4600 g of deionized water, add nitric acid (70% by weight) to adjust the pH to 4.6, and finally mix deionized water to a weight of 800 g of aqueous solution. did.
  • the electrophoresis solution was 10 mM imidazole
  • the sample injection was the drop method (25 mm, 90 sec)
  • the electrophoresis voltage was 30 kV
  • the detection method was indirect UV (210 nm).
  • the neutralization rate of polyacrylic acid was determined by measuring the concentration of the muon ion.
  • the pH of the abrasive was 4.2 for Example 10, 7.0 for Example 11, 5.0 for Example 12, 4.8 for Example 13, 3.9 for Comparative Example 7, and Comparative Example, respectively. 8 was 7.6, and Comparative Example 9 was 4.8.
  • the average particle size of the particles in the abrasive is determined by the laser diffraction particle size As a result of diluting to an appropriate concentration for measurement with a cloth meter, the D50 value was 170 nm in Examples 10 to 13, and the D50 value was 180 nm in Comparative Examples 7 to 9.
  • Example 10 The particle diameter after 3 months passed was Example 10 to: In L1, the value of D50 was 180 nm, and Examples 12 and 13 remained at 170 nm. In Comparative Examples 7 to 9, the value of D50 was 200 nm, and the cerium oxide particle diameter tended to increase.
  • the supernatant obtained by centrifuging each of the CMP abrasives was subjected to the same apparatus as the supernatant of the CMP abrasives of Examples 1 to 6 in terms of sulfate ion concentration and nitrate ion concentration. Measurements were made under the same conditions. A calibration curve was created at three points for each strong acid ion concentration of 300, 600, and 1200 ppm, and the concentration was calculated. As a result, it was confirmed that the abrasives of Examples 10 to 12 and Comparative Examples 7 to 8 contained sulfate ions having a predetermined concentration. The nitrate ion concentrations in the abrasives of Example 13 and Comparative Example 9 were found to be 520 ppm and 1200 ppm, respectively.
  • Example 1 by containing a strong acid in addition to polyacrylic acid, the difference in thickness of the projections in pattern polishing is reduced as compared with Comparative Example 1 that does not contain a strong acid.
  • Example 7 to Example 9 by using polyacrylic acid containing sulfuric acid or polyacrylic-methacrylic acid, compared with Comparative Example 6 using polyacrylic acid not containing sulfuric acid, no. The difference in film thickness between the convex portions between the pattern densities in turn polishing is reduced.
  • Example 10 and Example 11 the difference in convex film thickness between pattern densities in pattern polishing was reduced by adjusting the content of polyacrylic acid and sulfuric acid in accordance with the pH of the abrasive.
  • Example 12 the same effect was obtained when a strong acid salt was used.
  • Example 13 is a pre-neutralized polyacrylic acid.
  • the strength of nitrate which is an example of adjusting pH with nitric acid using ammonium salt, is within the scope of the present invention, and the same effect was obtained.
  • Comparative Examples 2 to 4 are examples in which polyacrylic acid and a weak acid having a pKa> 3.2 are contained, and the difference in convex film thickness between pattern densities in force pattern polishing is not reduced.
  • Comparative Example 5 contains strong acid in addition to polyacrylic acid, but since the sulfuric acid content is too high, the particle size immediately after mixing with the cerium oxide abrasive increases, and the polishing time for NOTURN also increases. It has become long (> 350 seconds).
  • Comparative Example 7 and Comparative Example 8 the force when the pH of the polishing agent is different. In Comparative Example 7, the polishing agent pH is too low (pH 3.9).
  • Comparative Example 8 Tended to become longer (> 400 seconds), and the cerium oxide particle size immediately after mixing of the abrasives tended to increase.
  • Comparative Example 8 since the polishing agent pH was too high (pH 7.6), the cerium oxide particle size immediately after mixing the polishing agent was observed to have a large effect of containing polyacrylic acid and sulfuric acid.
  • Comparative Example 9 is an example in which an excessively neutralized ammonium salt is used as polyacrylic acid, and the pH is adjusted with nitric acid.
  • the polishing time of the patterned wafer Even after 450 seconds, a polishing residue was observed, the particle size of cerium oxide immediately after mixing of the abrasives tended to increase, and the dispersion stability also deteriorated.
  • the film thickness difference due to the difference in the turn density is reduced, and the process management is also performed at high speed. It is possible to provide an abrasive and a polishing method capable of easily polishing an oxide silicon film and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

 本発明のCMP研磨剤は、酸化セリウム粒子、分散剤、ポリカルボン酸、第1解離可能酸性基のpKa値が3.2以下である強酸および水を含有し、pHが4.5~7.5であって、前記強酸は、濃度が100~1000ppmであるか、濃度が50~1000ppmであるか、一価の強酸で濃度は50~500ppmであるか、または二価の強酸で濃度は100~1000ppmである。好ましくは、前記ポリカルボン酸がポリアクリル酸である。これにより、層間絶縁膜、BPSG膜、シャロートレンチ分離用絶縁膜を平坦化するCMP技術において、パターン密度依存の影響を少なく、効率的、高速に、研磨傷なく、かつ研磨プロセス管理も容易に、研磨できる。

Description

明 細 書
CMP研磨剤及び基板の研磨方法
技術分野
[0001] 本発明は、半導体素子製造技術である、基板表面の平坦化工程、特に、層間絶縁 膜、 BPSG (ボロン、リンをドープした二酸ィ匕珪素膜)膜の平坦ィ匕工程、シヤロートレン チ分離の形成工程等において使用される CMP研磨剤及びこの CMP研磨剤を使用 した基板の研磨方法に関する。
背景技術
[0002] 現在の ULSI半導体素子製造工程では、高密度.微細化のための加工技術が研 究開発されている。その一つである CMP (ケミカルメカ-カルボリツシング:化学機械 研磨)技術は、半導体素子の製造工程において、層間絶縁膜の平坦化、シャロート レンチ素子分離形成、プラグ及び埋め込み金属配線形成等を行う際に必須の技術と なってきている。
[0003] 半導体素子の製造工程において、酸化珪素絶縁膜等の無機絶縁膜層が、プラズ マー CVD、低圧 CVD等の方法で形成される。従来、この無機絶縁膜層を平坦ィ匕 するためのスラリ状の化学機械研磨剤として、フュームドシリカ系の研磨剤が一般的 に検討されている。フュームドシリカ系の研磨剤は、四塩化珪素を熱分解する等の方 法で粒成長させ、 pH調整を行って製造している。し力しながら、この様な研磨剤は、 研磨速度が低 、と 、う技術課題がある。
[0004] また、デザインルール 0.25 μ m以降の世代では、集積回路内の素子分離にシャロ 一トレンチ分離が用いられている。シヤロートレンチ分離では、基板上に成膜した余 分の酸ィ匕珪素膜を除くために CMPが使用され、研磨を停止させるために、酸化珪素 膜の下に研磨速度の遅いストツバ膜が形成される。ストツバ膜には窒化珪素などが使 用され、酸ィ匕珪素膜とストツバ膜との研磨速度比が大きいことが望ましい。従来のコロ ィダルシリカ系の研磨剤は、上記の酸ィ匕珪素膜とストツバ膜の研磨速度比が 3程度と 小さぐシヤロートレンチ分離用としては実用に耐える特性を有していな力つた。
[0005] 一方、フォトマスクやレンズ等のガラス表面研磨剤として、酸化セリウム系研磨剤が 用いられている。酸ィ匕セリウム粒子はシリカ粒子やアルミナ粒子に比べ硬度が低ぐ したがって、研磨表面に傷が入りにくいことから、仕上げ鏡面研磨に有用である。また 、シリカ研磨剤に比べ、研磨速度が速い利点がある。近年、高純度酸化セリウム砥粒 を用いた半導体用 CMP研磨剤が使用されている。例えば、その技術は日本国特開 平 10— 106994号公報に開示されている。
[0006] また、酸化セリウム研磨剤の研磨速度を制御し、グローバルな平坦性を向上させる ために添加剤をカ卩えることが知られている。例えば、この技術は日本国特開平 8— 22 970号公報に開示されて 、る。
発明の開示
[0007] し力しながら、上記のような酸ィ匕セリウムを用いた研磨剤は、砥粒粒子の粒径が変 化しやすぐノターン密度差による膜厚差が発生しやすいという問題があった。また、 一般に、 STI等の下地が窒化珪素で被覆された凸部 (アクティブ部)の面積密度が小 さい部分では、面積密度が大きい部分に比べ、実効研磨圧力が大きいために、研磨 が先に進行しやすい。そのため、最終的に低密度部の窒化珪素の残膜厚が小さくな り(膜厚ロスがおおきくなり)、これによつて、パターン密度差による膜厚差が大きくなり やすいという課題があった。
[0008] 本発明は、層間絶縁膜、 BPSG膜、シヤロートレンチ分離用絶縁膜を平坦ィ匕する C MP技術において、酸化珪素膜等を、ノターン密度差による膜厚差を小さぐ高速に 、かつプロセス管理も容易に、研磨できる研磨剤および研磨方法を提供するものであ る。
[0009] 本発明は、(1)酸ィ匕セリウム粒子、分散剤、ポリカルボン酸、第 1解離可能酸性基の pKa値が 3. 2以下である強酸および水を含有する研磨剤であって、 pHが 4. 0以上 7 . 5以下、研磨剤中の強酸濃度が 100〜1000ppmであることを特徴とする CMP研磨 剤に関する。
[0010] 本発明は、(2)酸ィ匕セリウム粒子、分散剤、ポリカルボン酸、第 1解離可能酸性基の pKa値が 3. 2以下である強酸および水を含有する研磨剤であって、 pHが 4. 0以上 7 . 5以下、研磨剤中の強酸濃度が 50〜: LOOOppmであることを特徴とする CMP研磨 剤に関する。 [0011] 本発明は、(3)酸ィ匕セリウム粒子、分散剤、ポリカルボン酸、第 1解離可能酸性基の pKa値が 3. 2以下である強酸および水を含有する研磨剤であって、 pHが 4. 0以上 7 . 5以下、研磨剤中の強酸が、一価の強酸で濃度は 50〜500ppmであることを特徴と する CMP研磨剤に関する。
[0012] 本発明は、(4)酸ィ匕セリウム粒子、分散剤、ポリカルボン酸、第 1解離可能酸性基の pKa値が 3. 2以下である強酸および水を含有する研磨剤であって、 pHが 4. 0以上 7 . 5以下、研磨剤中の強酸が、二価の強酸で濃度は 100〜: LOOOppmであることを特 徴とする CMP研磨剤に関する。
[0013] 本発明は、(5)研磨剤中の強酸濃度が 200〜: LOOOppmである前記(1)または (4) 記載の CMP研磨剤に関する。
[0014] 本発明は、(6)研磨剤中の強酸濃度が 300〜600ppmである前記(1)または (4)記 載の CMP研磨剤に関する。
[0015] 本発明は、 (7)強酸が硫酸である前記(1)または (4)記載の CMP研磨剤に関する
[0016] 本発明は、(8)研磨剤中の強酸濃度が 100〜500ppmである前記(2)または(3)記 載の CMP研磨剤に関する。
[0017] 本発明は、(9)研磨剤中の強酸濃度が 150〜300ppmである前記(2)または(3)記 載の CMP研磨剤に関する。
[0018] 本発明は、(10)強酸の第 1解離可能酸性基の pKa値が 2. 0以下である前記(1)〜
(9)のいずれか一項記載の CMP研磨剤に関する。
[0019] 本発明は、(11)強酸の第 1解離可能酸性基の pKa値が 1. 5以下である前記(10) 記載の CMP研磨剤に関する。
[0020] 本発明は、(12) pHが 4. 5以上 5. 5以下である前記(1)〜(11)のいずれか一項 記載の CMP研磨剤に関する。
[0021] 本発明は、(13)前記ポリカルボン酸力 ポリアクリル酸である前記(1)〜(12)のい ずれか一項に記載の CMP研磨剤に関する。
[0022] 本発明は、(14)前記分散剤が、アクリル酸アンモニゥム塩を含む高分子化合物で ある前記(1)〜(13)のいずれか一項記載の CMP研磨剤に関する。 [0023] 本発明は、(15)前記研磨剤力 未中和のポリカルボン酸と強酸または強酸塩及び 水を混合させた後に、アンモニアで pH調整されたものである前記(1)〜(14)のいず れか一項記載の CMP研磨剤に関する。
[0024] 本発明は、(16)前記酸化セリウム粒子の含有量が、 CMP研磨剤 100重量部に対 して 0. 1重量部以上 5重量部以下である前記(1)〜(15)のいずれか一項に記載の
CMP研磨剤に関する。
[0025] 本発明は、(17)前記ポリカルボン酸の含有量力 CMP研磨剤 100重量部に対し て 0. 01重量部以上 2重量部以下である前記(1)〜(16)のいずれか一項に記載の
CMP研磨剤に関する。
[0026] 本発明は、(18)前記ポリカルボン酸の重量平均分子量(GPCの PEG換算)が、 500 以上 20, 000以下である前記(1)〜(17)のいずれか一項に記載の CMP研磨剤に 関する。
[0027] 本発明は、(19)前記酸ィ匕セリウム粒子の平均粒径が lnm以上 400nm以下である 前記(1)〜(18)のいずれか一項に記載の CMP研磨剤に関する。
[0028] 本発明は、(20)前記ポリカルボン酸力 カチオン性ァゾィ匕合物およびその塩の少 なくとも一方、またはァ-オン性ァゾィ匕合物およびその塩の少なくとも一方を重合開 始剤として、不飽和二重結合を有するカルボン酸およびその塩の少なくとも一方を含 む単量体が重合してなる重合体である前記(1)〜(19)のいずれか一項に記載の C MP研磨剤に関する。
[0029] 本発明は、(21)酸ィ匕セリウム粒子、分散剤、及び水力もなる酸ィ匕セリウムスラリと、 ポリカルボン酸、強酸、 pH調整剤及び水を含む添加液とを混合することにより得られ る前記(1)〜(20)のいずれか一項に記載の CMP研磨剤に関する。
[0030] 本発明は、(22)前記(1)〜(21)のいずれか一項記載の CMP研磨剤を製造する 方法であって、未中和のポリカルボン酸と強酸または強酸塩及び水を混合させた水 溶液を得る工程と、該工程の後に、前記水溶液をアンモニアで pH調整する工程とを 有することを特徴とする CMP研磨剤の製造方法に関する。
[0031] 本発明は、(23)前記(1)〜(21)のいずれか一項に記載の CMP研磨剤を製造す る方法であって、酸化セリウム粒子、分散剤、及び水からなる酸化セリウムスラリと、ポ リカルボン酸、強酸、及び水を含む添加液とを混合することを特徴とする CMP研磨 剤の製造方法に関する。
[0032] 本発明は、(24)被研磨膜を形成した基板を研磨定盤の研磨布に押しあて加圧し、 前記(1)〜(21)のいずれか一項に記載の CMP研磨剤を被研磨膜と研磨布との間 に供給しながら、基板と研磨定盤とを相対的に動力ゝして被研磨膜を研磨することを特 徴とする基板の研磨方法に関する。
[0033] 本願の開示は、 2004年 9月 27日に出願された特願 2004— 279601号及び 2005 年 6月 20日に出願された特願 2005— 179464号に記載の主題と関連しており、そ れらの開示内容は引用によりここに援用される。
[0034] 本発明により、層間絶縁膜、 BPSG膜、シヤロートレンチ分離用絶縁膜等を平坦ィ匕 する CMP技術において、ノターン密度差による膜厚差を低減し、高速に、かつプロ セス管理も容易に、酸ィ匕珪素膜等を研磨できる研磨剤および研磨方法を提供するこ とがでさる。
発明を実施するための最良の形態
[0035] 一般に酸ィ匕セリウムは、炭酸塩、硝酸塩、硫酸塩、しゅう酸塩のセリウム化合物を酸 化することによって得られる。 TEOS— CVD法等で形成される酸ィ匕珪素膜の研磨に 使用する、酸化セリウム研磨剤は、粒子の結晶子径が大きぐかつ結晶ひずみが少 ないほど、すなわち結晶性が良いほど高速研磨が可能であるが、研磨傷が入りやす い傾向がある。そこで、本発明で用いる酸ィ匕セリウム粒子は、その製造方法を限定す るものではないが、酸ィ匕セリウム結晶子径は lnm以上 300nm以下であることが好ま しい。また、半導体素子の製造に係る研磨に使用することから、アルカリ金属及びノ、 ロゲン類の含有率は酸ィ匕セリウム粒子中 lOppm以下に抑えることが好ましい。
[0036] 本発明にお 、て、酸化セリウム粉末を作製する方法として焼成または過酸化水素 等による酸ィ匕法が使用できる。焼成温度は 350°C以上 900°C以下が好ましい。
[0037] 上記の方法により製造された酸ィ匕セリウム粒子は凝集しているため、機械的に粉砕 することが好ましい。粉砕方法として、ジェットミル等による乾式粉砕や遊星ビーズミル 等による湿式粉砕方法が好ましい。ジェットミルは、例えば「化学工学論文集」第 6卷 第 5号(1980) 527〜532頁【こ説明されて!ヽる。 [0038] このような酸ィ匕セリウム粒子を主な分散媒である水中に分散させる方法としては、通 常の攪拌機による分散処理の他にホモジナイザ、超音波分散機、湿式ボールミル等 を用いることができる。
[0039] 上記の方法により分散された酸ィ匕セリウムをさらに微粒子化する方法として、酸ィ匕セ リウム分散液を長時間静置させて大粒子を沈降させ、上澄みをポンプで汲み取ること による沈降分級法が用いられる。他に、分散媒中の酸ィ匕セリウム粒子同士を 90MPa 以上の圧力で衝突させる高圧ホモジナイザを使用する方法も使用される。
[0040] こうして作製された酸化セリウム粒子の平均粒径は、 CMP研磨剤中で l〜400nm であることが好ましい。より好ましくは l〜300nmであり、さらに好ましくは l〜200nm である。酸ィ匕セリウム粒子の平均粒径が lnm未満であると研磨速度が低くなる傾向 があり、 400nmを超えると研磨する膜に傷がつきやすくなる傾向があるからである。 本発明で、酸ィ匕セリウム粒子の平均粒径とは、レーザ回折式粒度分布計で測定した D50の値 (体積分布のメジアン径、累積中央値)をいう。
[0041] 本発明における CMP研磨剤は、例えば、上記の特徴を有する酸ィ匕セリウム粒子( A)と分散剤 (B)と水 (C)を配合して粒子を分散させ、さらにポリカルボン酸 (D)及び 後述する強酸 (E)を添加することによって得られる。酸ィ匕セリウム粒子の濃度は研磨 剤 100重量部に対して 0. 1重量部以上 5重量部以下の範囲が好ましい。より好ましく は 0. 2重量部以上 3重量部以下である。濃度が低すぎると研磨速度が低くなる傾向 があり、高すぎると凝集する傾向があるためである。
[0042] (B)分散剤として、例えば、水溶性陰イオン性分散剤、水溶性非イオン性分散剤、 水溶性陽イオン性分散剤、水溶性両性分散剤等が挙げられ、共重合成分としてァク リル酸アンモ-ゥム塩を含む高分子化合物である分散剤が好ましい。例えば、ポリア クリル酸アンモ-ゥム、アクリル酸アミドとアクリル酸アンモ-ゥムとの共重合体等が挙 げられる。
[0043] また、共重合成分としてアクリル酸アンモ-ゥム塩を含む高分子分散剤の少なくとも 1種類と、水溶性陰イオン性分散剤、水溶性非イオン性分散剤、水溶性陽イオン性 分散剤、水溶性両性分散剤カゝら選ばれた少なくとも 1種類とを含む 2種類以上の分 散剤を併用してもよい。 [0044] 半導体素子の製造に係る研磨に使用することから、分散剤中のナトリウムイオン、力 リウムイオン等のアルカリ金属の含有率は lOppm以下に抑えることが好ましい。
[0045] 水溶性陰イオン性分散剤としては、例えば、ラウリル硫酸トリエタノールァミン、ラウリ ル硫酸アンモ-ゥム、ポリオキシエチレンアルキルエーテル硫酸トリエタノールァミン、 ポリカルボン酸型高分子分散剤等が挙げられる。
[0046] 前記ポリカルボン酸型高分子分散剤としては、例えば、アクリル酸、メタクリル酸、マ レイン酸、フマル酸、ィタコン酸等の不飽和二重結合を有するカルボン酸単量体の重 合体、不飽和二重結合を有するカルボン酸単量体と他の不飽和二重結合を有する 単量体との共重合体、及びそれらのアンモニゥム塩ゃァミン塩などが挙げられる。
[0047] 水溶性非イオン性分散剤としては、例えばポリオキシエチレンラウリルエーテル、ポ リオキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキ シエチレンォレイルエーテル、ポリオキシエチレン高級アルコールエーテル、ポリオキ シエチレンォクチルフエニルエーテル、ポリオキシエチレンノニルフエニルエーテル、 ポリオキシアルキレンアルキルエーテル、ポリオキシエチレン誘導体、ポリオキシェチ レンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオ キシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリステアレー ト、ポリオキシエチレンソルビタンモノォレエート、ポリオキシエチレンソルビタントリオ レエート、テトラオレイン酸ポリオキシエチレンソルビット、ポリエチレングリコールモノラ ゥレート、ポリエチレングリコールモノステアレート、ポリエチレングリコールジステアレ ート、ポリエチレングリコールモノォレエート、ポリオキシエチレンアルキルァミン、ポリ ォキシエチレン硬化ヒマシ油、 2—ヒドロキシェチルメタタリレート、アルキルアルカノ ールアミド等が挙げられる。
[0048] 水溶性陽イオン性分散剤としては、例えば、ポリビニルピロリドン、ココナットアミンァ セテート、ステアリルアミンアセテート等が挙げられ、水溶性両性分散剤としては、例 えば、ラウリルべタイン、ステアリルべタイン、ラウリルジメチルァミンオキサイド、 2—ァ ノレキノレ -N-カノレボキシメチノレ -N-ヒドロキシェチルイミダゾリ-ゥムベタイン等が 挙げられる。
[0049] これらの分散剤添加量は、研磨剤中の粒子の分散性及び沈降防止、さらに研磨傷 と分散剤添加量との関係力も酸ィ匕セリウム粒子 100重量部に対して、 0. 01重量部以 上 10重量部以下の範囲が好ましい。分散剤の重量平均分子量は、 100-50, 000 が好ましぐ 1, 000-10, 000がより好ましい。分散剤の重量平均分子量が 100未 満の場合は、酸ィ匕珪素膜あるいは窒化珪素膜を研磨するときに、十分な研磨速度が 得られにくい場合があり、分散剤の重量平均分子量が 50, 000を超えた場合は、粘 度が高くなり、 CMP研磨剤の保存安定性が低下する場合があるからである。
[0050] 本発明における CMP研磨剤はポリカルボン酸 (D)を含有することで、平坦化特性 を向上することができる。また、主な被研磨膜である酸ィ匕珪素膜より、ストツバ膜であ る窒化珪素膜の研磨速度を抑制する効果を有するため、プロセス管理が容易となる 。また、ポリカルボン酸は分散剤としての機能を持つ場合もある。ポリカルボン酸とし ては、ポリアクリル酸、ポリメタクリル酸、ポリスチレンカルボン酸、及びこれらの共重合 体等が挙げられる。ポリカルボン酸は、アクリル酸 zアクリル酸メチルの共重合体等の ような、カルボン酸とその他の共重合可能な単量体との共重合体なども含む。その場 合はカルボン酸の共重合比率が 50重量%以上になるようにすることが好ましい。ポリ カルボン酸は、カチオン性ァゾィ匕合物およびその塩の少なくとも一方、またはァ-ォ ン性ァゾィ匕合物およびその塩のうち少なくとも一方を重合開始剤として、不飽和二重 結合を有するカルボン酸およびその塩の少なくとも一方を含む単量体が重合してな る重合体であるのが好ましい。重合開始剤には、例えば 2, 2'—ァゾビス〔2—(2—ィ ミダゾリン 2—ィル)プロパン〕二硫酸塩二水和物、 2, 2'—ァゾビス〔2—(2—イミダ ゾリンー 2—ィル)プロパン〕等が挙げられる。
[0051] 本発明で使用されるポリカルボン酸の合成方法に制限はなぐ例えばポリアクリル 酸の場合、重量平均分子量が GPCの PEG換算で 500以上 20, 000以下のものが好 ましい。より好ましくは重量平均分子量 1, 000以上 20, 000以下であり、特に好まし くは、 2, 000以上 10, 000以下である。該分子量が低すぎると平坦ィ匕効果が不足と なる場合があり、該分子量が高すぎると酸ィ匕セリウム粒子が凝集しやすくなつたり、パ ターン凸部の研磨速度が低下したりする場合があるためである。
[0052] ポリカルボン酸含有量は、例えばポリアクリル酸の場合、 CMP研磨剤 100重量部 に対して、 0. 01重量部以上 2重量部以下の範囲が好ましい。より好ましくは 0. 1重 量部以上 1重量部以下である。含有量が少なすぎると高平坦化特性が得られにくぐ 多すぎるとパターン凸部の研磨速度も大幅に低下したり、酸ィ匕セリウム粒子の分散安 定性が低下したりする傾向がある。
[0053] 本発明における CMP研磨剤はポリカルボン酸にカ卩えて、第 1解離可能酸性基の p Ka値が 3. 2以下の強酸 (E)を含有することで、平坦ィ匕特性の向上にカ卩えて、パター ン密度差による膜厚差を低減することができる。すなわち、 STI等の下地が窒化珪素 で被覆された凸部 (アクティブ部)の面積密度が小さ ヽ部分での、窒化珪素の膜厚口 スを低減することができる。
[0054] 本発明において、強酸とは、第 1解離可能酸性基の pKa値 (pK )が 3. 2以下である
al
酸とする。このような酸の例を次に例示する。硫酸 (第 1解離段 pK < 0、第 2解離段 ρ
al
K : 1.96、以下第 1解離段の pKa値のみ示す。)、塩酸(一 3.7)、硝酸(一 1.8)、リン酸 a2
(2.15)、シユウ酸(1.04)、マレイン酸(1.75)、ピクリン酸(0.33)、亜硫酸(1.86)、チォ 硫酸 (0.6)、アミド硫酸 (0.99)、塩素酸、過塩素酸(< 0)、亜塩素酸 (2.31)、ヨウ化水 素酸(一 10)、過ヨウ素酸、ヨウ素酸 (0.77)、臭化水素酸(一 9)、過臭素酸、臭素酸、 クロム酸(一 0.2)、亜硝酸 (3.15)、 2リン酸 (0.8)、トリポリリン酸 (2.0)、ピクリン酸 (0.33) 、ピコリン酸(1.03)、ホスフィン酸(1.23)、ホスホン酸(1.5)、イソニコチン酸 (1.79)、二 コチン酸(2.05)、トリクロ口酢酸(0.66)、ジクロロ酢酸(1.30)、クロ口酢酸(2.68)、シァ ノ酢酸(2.47)、ォキサ口酢酸(2.27)、二ロト酢酸(1.46)、ブロモ酢酸(2.72)、フルォロ 酢酸 (2.59)、フ ノキシ酢酸 (2.99)、 0—ブロモ安息香酸 (2.85)、 0—二トロ安息香酸 (2.17)、 0—クロ口安息香酸 (2.92)、 p ァミノ安息香酸 (2.41)、アントラ-ル酸 (2.00) 、フタル酸(2.75)、フマル酸(2.85)、マロン酸(2.65)、 d 酒石酸(2.83)、クェン酸(2. 90)、 0—クロロア二リン(2.64)、 2,2, 一ビビリジン(2.69)、 4,4, 一ビビリジン(2.69)、 2,6 ピリジンジカノレボン酸(2.09)、ピノレビン酸(2.26)、ポリスチレンスノレホン酸(< 3.0)、 ポリスルホン酸 (〈3.0)、グルタミン酸(2.18)、サリチル酸(2.81)、ァスパラギン酸 (1.93) 、 2 アミノエチルホスホン酸(1.1)、グリシン(2.36)、アルギニン(2.05)、イソロイシン( 2.21)、サルコシン(2.15)、オル-チン(1.9)、グアノシン (1.8)、シトルリン(2.43)、チロ シン(2.17)、パリン(2.26)、ヒポキサンチン(2.04)、メチォニン(2.15)、リシン(2.04)、 ロイシン (2.35)等が挙げられる。特に硫酸が好ま 、。 [0055] 強酸としては、第 1解離可能酸性基の pKa値が低いものほど、本発明の効果が高く 、第 1解離可能酸性基の pKa値が 2.0以下の酸がより好ましぐ該 pKa値が 1. 5以下 の酸が最も好ましい。第 1解離可能酸性基の pKa値が 3. 2より大きいと、充分な効果 が得られない。本発明で使用される強酸の研磨剤への添加方法に制限はなぐポリ カルボン酸と別に添加してもよぐポリカルボン酸中に含有される場合もある。
[0056] 例えばポリカルボン酸がポリアクリル酸の場合、その pK 値が 4〜5 (アクリル酸が 4.
al
26)であると推定されるので、それよりも解離しやすい酸を含有することにより、ポリア クリル酸の解離を抑制し、ポリアクリル酸の高平坦ィ匕効果を向上することができる。ポ リカルボン酸を含有することによる高平坦ィ匕効果は、ポリカルボン酸の酸ィ匕珪素膜表 面や酸化セリウム粒子表面への吸着による表面保護作用(酸化珪素膜の研磨抑制 作用)によると考えられる。ポリカルボン酸と強酸を併用することにより、ポリカルボン 酸の解離が抑制される。これにより、ポリカルボン酸の酸ィ匕珪素膜への水素結合吸着 作用が強くなるために、上記のような効果が得られると考えられる力 本発明は、この メカニズムに限定されるものではない。
[0057] 本発明における pKa値は、「化学便覧基礎編」改訂 4版 (平成 5年 9月 30日発行、社 団法人日本化学会著、丸善株式会社発行、 II— 317〜11- 322ページ)力も引用し たものである。
[0058] また、強酸は塩の形態で研磨剤に使用されても良 、。強酸塩としては、硫酸アンモ ユウム、硝酸アンモ-ゥム、シユウ酸アンモ-ゥム、亜硫酸アンモ-ゥム、亜硝酸アン モ-ゥム、アミド硫酸アンモ-ゥム、ヨウ素酸アンモ-ゥム、過硫酸アンモ-ゥム、過塩 素酸アンモ-ゥム等のアンモ-ゥム塩などが挙げられる。
[0059] 強酸含有量は、研磨剤中の重量比で 100〜1000ppmが必要であり、好ましくは、 200〜1000ppm、より好ましくは 300〜600ppmである。例えば硫酸の場合、 CMP 研磨剤 100重量部に対して、 0. 01重量部以上 0. 1重量部以下の範囲が必要であ る。好ましくは 0. 02重量部以上 0. 1重量部以下であり、より好ましくは 0. 03重量部 以上 0. 06重量部以下である。また、強酸の種類によっては、研磨剤中の重量比で 強酸含有量が 50〜: LOOOppmである必要がある。例えば一価の酸の場合などである [0060] 強酸の含有量が少なすぎるとパターン密度依存の低減効果が得られにくい傾向が ある。また、多すぎるとパターン凸部の研磨速度も大幅に低下したり、酸化セリウム粒 子の分散安定性が低下したりする傾向があり、長時間放置した場合に再分散しても 酸ィ匕セリウム粒径が大きくなる傾向がある。実際には、研磨剤中の規定度 (モル濃度 に酸の価数をかけたもの)が影響するので、分子量が小さいものほど、価数 (解離段 数)の大き 、ものほど、同じ重量部含有した時の効果は大き 、。
[0061] 強酸が 1価の強酸の場合、その含有量は 50〜500ppmであることが好ましぐ 100 〜500ppmであることがより好ましぐ 150〜300ppmであること力特に好ましい。
[0062] 2価の強酸の場合、その含有量は 100〜1000ppmであることが好ましぐ 200〜1 OOOppmであることがより好ましぐ 300〜600ppmであること力 S特に好ましい。 1価の 強酸と 2価の強酸とのそれぞれ同量を研磨剤中に配合する場合、 1価の強酸よりも 2 価の強酸のほうが酸ィ匕セリウム粒子は凝集しにくい傾向がある。
[0063] 研磨剤の pHが高い場合には、高平坦性を得るために必要なポリカルボン酸の含 有量が増加する力 ポリカルボン酸の含有量が不足するほど、必要な強酸量が増加 する傾向がある。すなわち、研磨剤の pHが高いほど、同じ高平坦性を得るためのポ リカルボン酸の添加量及び強酸量が増加することになり、酸ィ匕セリウム粒子の分散安 定性が悪ィ匕し、時間経過後の粒径が大きくなる傾向があるが、本発明のパターン密 度による膜厚差を低減する効果は得られる。
[0064] また、本発明の研磨剤は他の水溶性高分子を併用してもよい。他の水溶性高分子 としては、特に制限はなぐ例えばアルギン酸、ぺクチン酸、カルボキシメチルセル口 ース、寒天、カードラン及びプルラン等の多糖類;ポリアスパラギン酸、ポリグルタミン 酸、ポリリシン、ポリリンゴ酸、ポリアミド酸、ポリマレイン酸、ポリイタコン酸、ポリフマル 酸、ポリアミド酸アンモ-ゥム塩、ポリアミド酸ナトリウム塩及びポリダリオキシル酸等の ポリカルボン酸及びその塩;ポリビュルアルコール、ポリビュルピロリドン及びポリアク ロレイン等のビニル系ポリマ等が挙げられる。これら水溶性高分子の重量平均分子 量は 500以上が好ましい。また、これらの配合量は CMP研磨剤 100重量部に対して 、 0. 01重量部以上 5重量部以下の範囲が好ましい。
[0065] 本発明における CMP研磨剤は所定の範囲内の所望の pHに調整して研磨に供さ れる。
[0066] pH調整剤に制限はないが、半導体研磨に使用される場合にはアルカリ金属類より も、アンモニア水が好適に使用される。
[0067] pH調整は、まず、強酸と未中和ポリカルボン酸と水を混合した水溶液を作製し、こ の水溶液をアンモニア水等の pH調整剤の添加で調整することができる。その後、残 りの酸ィ匕セリウム粒子等と混合して CMP研磨剤が得られる。あら力じめ所定の pHに なるアンモニア量がわかっている場合には、アンモニアを入れた後で、所定の濃度の 強酸を添加することもできる。
[0068] また、中和率力 100%以下のポリカルボン酸アンモ-ゥム塩、すなわち pH調整剤で 一部または全部を予め中和したポリカルボン酸を、ポリカルボン酸及び pH調整剤の 代わりに用いることもできる。この場合に、ポリカルボン酸アンモ-ゥム塩を強酸よりも 先に水と混合して、所定の濃度範囲の強酸を入れて所定の pHに調整できる。
[0069] ただし、アンモニアで中和された前記ポリカルボン酸のアンモニゥム塩を使用する 場合、過剰に(中和率 100%を超えて)中和されたアンモ-ゥム塩を使用したときは、 所望の pHに調整する際に、過剰なアンモニア成分を中和するために酸成分を追カロ する必要があり、酸ィ匕セリウム粒子の分散安定性を悪化させたり、再分散させた時の 酸ィ匕セリウム粒径が大きくなつたりすることがある。
[0070] 上記ポリカルボン酸アンモニゥムの中和率は、以下の方法で決定する。アングル口 ータを備えた日立工機株式会社製微量高速遠心分離機 CF—15Rを用い、 15,000 rpm、 30分間、研磨剤の固液分離を行う。株式会社島津製作所製全有機体炭素計 T OC— 5000を用い、上澄み液の有機炭素分を測定してポリカルボン酸濃度を測定す る。さらに大塚電子株式会社製キヤビラリ電気泳動装置 CAPI— 3300を用い、泳動 液を 10mMイミダゾール、試料注入を落差法(25mm、 90sec)、泳動電圧を 30kV、検出 法をインダイレクト UV(210nm)とすることでアンモ-ゥムイオン濃度を測定して、ポリ力 ルボン酸の中和率を決定する。
[0071] CMP研磨剤の pHは 4. 0以上、 pH7. 5以下の必要があり、 pH4. 5以上、 pH5. 5 以下が好ましい。 pHが低すぎると研磨剤自体の化学的な研磨作用が低下するため に研磨速度が低下したり、分散剤が解離しにくくなつたりするため酸ィ匕セリウム粒子の 分散安定性が低下する傾向がある。一方 pHが高すぎると平坦性が低下し、高平坦 性を得るために必要なポリカルボン酸の添加量あるいは強酸の添加量が増加し、そ れに伴いアンモニア含有量も増えるために、酸ィ匕セリウム粒子の分散安定性が低下 したり、酸ィ匕セリウムの粒径が大きくなつたりする傾向があるからである。
[0072] 本発明にお 、て CMP研磨剤の pHは、 pHメータ (例えば、横河電機株式会社製の
Model PH81)で測定した。標準緩衝液 (フタル酸塩 pH緩衝液 pH:4. 21(25°C)、 中性りん酸塩 pH緩衝液 pH6. 86 (25°C) )を用いて、 2点校正した後、電極を CMP 研磨剤に入れて、 2分以上経過して安定した後の値を測定した。
[0073] 本発明の研磨剤は、酸ィ匕セリウム粒子、分散剤、及び水からなる酸ィ匕セリウムスラリ と、ポリカルボン酸、強酸及び水を含み、必要に応じてアンモニア等の pH調整剤で p H調整された添加液とを分けた 2液式 CMP研磨剤として保存しても、また酸ィ匕セリウ ム粒子、分散剤、ポリカルボン酸、強酸及び水、さらに必要に応じて pH調整剤を含 んだ 1液式研磨剤として保存してもよい。酸ィ匕セリウムスラリと添加液とを分けた 2液式 研磨剤として保存する場合、これら 2液の配合を任意に変えられることにより平坦ィ匕 特性と研磨速度の調整が可能となる。 2液式研磨剤で研磨する場合、添加液は、酸 化セリウムスラリと別々の配管で送液し、これらの配管を合流させて供給配管出口の 直前で混合して研磨定盤上に供給することができる。また、 2液式研磨剤として保管 された酸ィ匕セリウムスラリと添加剤及び脱イオン水をあらかじめ所定の配合比で混合 すること〖こより、 1液型研磨剤として 1つの配管で供給することもできる。更に、酸ィ匕セ リウムスラリと添加剤を上記のように配管内で混合する場合に、必要に応じて脱イオン 水を混合して、研磨特性を調整することもできる。
[0074] 本発明の研磨方法は、被研磨膜を形成した基板を研磨定盤の研磨布に押し当て 加圧し、上記本発明の CMP研磨剤を被研磨膜と研磨布との間に供給しながら、基 板と研磨定盤とを相対的に動力ゝして被研磨膜を研磨することを特徴とする。
[0075] 基板として、半導体素子製造に係る基板、例えば回路素子と配線パターンが形成 された段階の半導体基板、回路素子が形成された段階の半導体基板等の半導体基 板上に無機絶縁層が形成された基板が挙げられる。そして、被研磨膜は、前記無機 絶縁層、例えば酸ィ匕珪素膜層あるいは窒化珪素膜層及び酸ィ匕珪素膜層等が挙げら れる。このような半導体基板上に形成された酸ィ匕珪素膜層あるいは窒化珪素膜層を 上記 CMP研磨剤で研磨することによって、酸ィ匕珪素膜層表面の凹凸を解消し、半 導体基板全面にわたって平滑な面とすることができる。また、シヤロートレンチ分離に も使用できる。シヤロートレンチ分離に使用するためには、酸化珪素膜研磨速度と窒 化珪素膜研磨速度の比、酸化珪素膜研磨速度 Z窒化珪素膜研磨速度が 10以上で あることが好ましい。この比が 10未満では、酸ィ匕珪素膜研磨速度と窒化珪素膜研磨 速度の差が小さぐシヤロートレンチ分離をする際、所定の位置で研磨を停止しにくく なるためである。この比が 10以上の場合は窒化珪素膜の研磨速度がさらに小さくな つて研磨の停止が容易になり、シヤロートレンチ分離により好適である。また、シャロ 一トレンチ分離に使用するためには、研磨時に傷の発生が少な 、ことが好まし 、。
[0076] 以下、無機絶縁層が形成された半導体基板の場合を例に挙げて研磨方法を説明 する。
[0077] 本発明の研磨方法において、研磨する装置としては、研磨布 (パッド)を貼り付け可 能で、回転数が変更可能なモータ等を取り付けてある研磨定盤と、半導体基板等の 被研磨膜を有する基板を保持できるホルダーとを有する一般的な研磨装置が使用で きる。例えば、荏原製作所株式会社製研磨装置:型番 EPO— 111が使用できる。研 磨布としては、一般的な不織布、発泡ポリウレタン、多孔質フッ素榭脂などが使用で き、特に制限がない。また、研磨布には CMP研磨剤がたまるような溝加工を施すこと が好ましい。研磨条件に制限はないが、定盤の回転速度は半導体基板が飛び出さ ないように 200rpm以下の低回転が好ましぐ半導体基板にかける圧力(加工荷重) は研磨後に傷が発生しないように lOOkPa以下が好ましい。研磨している間、研磨布 には CMP研磨剤をポンプ等で連続的に供給する。この供給量に制限はないが、研 磨布の表面が常に CMP研磨剤で覆われて 、ることが好ま 、。
[0078] 研磨終了後の半導体基板は、流水中で良く洗浄後、スピンドライャ等を用いて半導 体基板上に付着した水滴を払 、落として乾燥させることが好ま U、。このように被研 磨膜である無機絶縁層を上記研磨剤で研磨することによって、表面の凹凸を解消し 、半導体基板全面にわたって平滑な面が得られる。このようにして平坦ィ匕されたシャ ロートレンチを形成したあと、酸化珪素絶縁膜層の上に、アルミニウム配線を形成し、 その配線間及び配線上に後述する方法により酸化珪素絶縁膜を再度形成後、上記 CMP研磨剤を用いて同様に研磨して平滑な面とする。この工程を所定数繰り返すこ とにより、所望の層数を有する半導体基板を製造することができる。
[0079] 凹凸が存在する被研磨膜 (酸化珪素膜)のグロ一ノ レ平坦ィ匕を達成するには、凸 部が選択的に研磨される必要がある。本発明の水溶性高分子を含有する研磨剤を 用いると、酸ィ匕セリウム粒子または被研磨膜の表面に保護膜を形成する。すなわち、 実効研磨荷重の小さい凹部の被研磨膜は保護されるが、実効研磨荷重の大きい凸 部被研磨膜は水溶性高分子による保護膜が排除されることで選択的に研磨され、パ ターン依存性の少ないグローバル平坦ィ匕が達成可能である。
[0080] 本発明の CMP研磨剤が使用される無機絶縁膜の作製方法として、低圧 CVD法、 プラズマ CVD法等が挙げられる。低圧 CVD法による酸化珪素膜形成は、 Si源として モノシラン: SiH、酸素源として酸素: Oを用いる。この SiH— O系酸化反応を 400
4 2 4 2
°C以下の低温で行わせることにより得られる。場合によっては、 CVD後 1000°Cまた はそれ以下の温度で熱処理される。高温リフローによる表面平坦ィ匕を図るためにリン : Pをドープするときには、 SiH— O -PH系反応ガスを用いることが好ましい。プラ
4 2 3
ズマ CVD法は、通常の熱平衡下では高温を必要とする化学反応が低温でできる利 点を有する。プラズマ発生法には、容量結合型と誘導結合型の 2つが挙げられる。反 応ガスとしては、 Si源として SiH、酸素源として N Oを用いた SiH— N O系ガスと、
4 2 4 2
テトラエトキシシラン (TEOS)を Si源に用いた TEOS— O系ガス(TEOS—プラズマ
2
CVD法)が挙げられる。基板温度は 250°C〜400°C、反応圧力は 67〜400Paの範 囲が好ましい。このように、本発明における酸ィ匕珪素膜にはリン、ホウ素等の元素がド ープされていても良い。同様に、低圧 CVD法による窒化珪素膜形成は、 Si源として ジクロルシラン: SiH C1、窒素源としてアンモニア: NHを用いる。この SiH C1— N
2 2 3 2 2
H系酸ィ匕反応を 900°Cの高温で行わせることにより得られる。プラズマ CVD法は、
3
反応ガスとしては、 Si源として SiH、窒素源として NHを用いた SiH -NH系ガスが
4 3 4 3 挙げられる。基板温度は 300°C〜400°Cが好まし!/、。
[0081] 本発明の CMP研磨剤及び研磨方法は、半導体基板に形成された酸化珪素膜だ けでなぐ各種半導体装置の製造プロセス等にも適用することができる。例えば、所 定の配線を有する配線板に形成された酸化珪素膜、ガラス、窒化珪素等の無機絶 縁膜;ポリシリコン、 Al、 Cu、 Ti、 TiN、 W、 Ta、 TaN等を主として含有する膜;フォト マスク 'レンズ'プリズム等の光学ガラス; ITO等の無機導電膜;ガラス及び結晶質材 料で構成される光集積回路 ·光スイッチング素子 ·光導波路、光ファイバ一の端面、 シンチレータ等の光学用単結晶;固体レーザ単結晶、青色レーザ LED用サフアイャ 基板、 SiC、 GaP、 GaAs等の半導体単結晶;磁気ディスク用ガラス基板;磁気ヘッド 等を研磨することができる。
実施例
[0082] [実施例 1〜実施例 6及び比較例 1〜比較例 5]
(酸化セリウム粒子及び酸化セリウムスラリの作製)
炭酸セリウム水和物 60kgをアルミナ製容器に入れ、 830°Cで 2時間空気中で焼成 することにより黄白色の粉末を約 30kg得た。この粉末を X線回折法で相同定を行な つたところ酸ィ匕セリウムであること確認した。焼成粉末粒子径は 30〜: LOO /z mであつ た。酸ィ匕セリウム粒子粉末 30kgをジェットミルを用いて乾式粉砕を行なった。多結晶 体の比表面積を BET法により測定した結果、 9m2/gであった。
[0083] 上記で得た酸ィ匕セリウム粉末 20kgと脱イオン水 79. 750kgを混合し、分散剤として 市販のポリアクリル酸アンモ-ゥム水溶液(重量平均分子量 8000) (重量 40%) 500 gを添加し、攪拌しながら超音波分散を行なって酸ィ匕セリウム分散液を得た。超音波 周波数は、 400kHzで、分散時間 20分で行なった。その後、 10L容器に 5kgずつの 酸化セリウム分散液を入れて静置し、沈降分級を行なった。分級時間 200時間後、 容器底からの高さ 110mm以上の上澄みをポンプでくみ上げた。得られた上澄みを、 次いで固形分濃度が 5重量%になるように、脱イオン水で希釈して酸ィ匕セリウムスラリ を得た。酸ィ匕セリウムスラリ中の平均粒径を測定するため適当な濃度に希釈し、レー ザ回折式粒度分布計 Master Sizer Microplus (Malvern社製商品名)を用い、屈 折率 1. 93、吸収 0として、測定したところ、 D50の値は 170nmであった。また、原子 吸光光度計 AA—670G (株式会社島津製作所製型番)を用いて測定した不純物ィ オン(Na、 K、 Fe、 Al、 Zr、 Cu、 Si、 Ti)は lppm以下であった。
[0084] (ポリカルボン酸含有添加液の調製) 実施例 1では、市販のポリアクリル酸水溶液 (重量平均分子量 5000) (40重量%) 4 0. 5gと脱イオン水 4600gを混合し、酸ィ匕セリウム (セリア)スラリ混合後の研磨剤 600 Og中の硫酸濃度が 200ppmになるように硫酸(96重量%)を 1. 25g添加後、アンモ ユア水 (25重量%)にて pH4. 8に調整し、最後に水溶液重量力 800gになるように 脱イオン水を混合して添加液を得た。
[0085] 実施例 2では、実施例 1と同じ市販のポリアクリル酸水溶液 (40重量%) 40. 5gと脱 イオン水 4600gを混合し、セリアスラリ混合後の研磨剤 6000g中の硫酸濃度が 300p pmになるように硫酸(96重量0 /0)を 1. 88g添加後、アンモニア水 (25重量0 /0)にて pH 4. 8に調整し、最後に水溶液重量力 800gになるように脱イオン水を混合した。
[0086] 実施例 3では、実施例 1と同じ市販のポリアクリル酸水溶液 (40重量%) 40. 5gと脱 イオン水 4600gを混合し、セリアスラリ混合後の研磨剤 6000g中の硫酸濃度が 600p pmになるように硫酸(96重量0 /0)を 3. 75g添加後、アンモニア水 (25重量0 /0)にて pH 4. 8に調整し、最後に水溶液重量力 800gになるように脱イオン水を混合した。
[0087] 実施例 4では、実施例 1と同じ市販のポリアクリル酸水溶液 (40重量%) 40. 5gと脱 イオン水 4600gを混合し、セリアスラリ混合後の研磨剤 6000g中の硫酸濃度が 900p pmになるように硫酸(96重量0 /0)を 5. 63g添加後、アンモニア水 (25重量0 /0)にて pH 4. 8に調整し、最後に水溶液重量力 800gになるように脱イオン水を混合した。
[0088] 実施例 5では、実施例 1と同じ市販のポリアクリル酸水溶液 (40重量%) 40. 5gと脱 イオン水 4600gを混合し、セリアスラリ混合後の研磨剤 6000g中の塩酸濃度が 300p pmになるように塩酸(36重量0 /0)を 5. Og添加後、アンモニア水 (25重量0 /0)にて pH4 . 8に調整し、最後に水溶液重量力 800gになるように脱イオン水を混合した。
[0089] 実施例 6では、実施例 1と同じ市販のポリアクリル酸水溶液 (40重量%) 40. 5gと脱 イオン水 4600gを混合し、セリアスラリ混合後の研磨剤 6000g中の硝酸濃度が 300p pmになるように硝酸(70重量0 /0)を 2. 58g添加後、アンモニア水 (25重量0 /0)にて pH 4. 8に調整し、最後に水溶液重量力 800gになるように脱イオン水を混合した。
[0090] 比較例 1では、実施例 1と同じ市販のポリアクリル酸水溶液 (重量平均分子量 5000 ) (40重量0 /0) 40. 5gと脱イオン水 4600gを混合し、硫酸を添加せずに、アンモニア 水 (25重量%)にて pH4. 8に調整し、最後に水溶液重量力 800gになるように脱ィ オン水を混合した。
[0091] 比較例 2では、比較例 1と同じ市販のポリアクリル酸水溶液 (40重量%) 40. 5gと脱 イオン水 4600gを混合し、セリアスラリ混合後の研磨剤 6000g中のリンゴ酸濃度が 3 OOppmになるようにリンゴ酸を 1. 8g添加後、アンモニア水 (25重量0 /0)にて pH4. 8に 調整し、最後に水溶液重量力 800gになるように脱イオン水を混合した。
[0092] 比較例 3では、比較例 1と同じ市販のポリアクリル酸水溶液 (40重量%) 40. 5gと脱 イオン水 4600gを混合し、セリアスラリ混合後の研磨剤 6000g中のコノ、ク酸濃度が 3 OOppmになるようにコハク酸を 1. 8g添加後、アンモニア水 (25重量0 /0)にて pH4. 8に 調整し、最後に水溶液重量力 800gになるように脱イオン水を混合した。
[0093] 比較例 4では、比較例 1と同じ市販のポリアクリル酸水溶液 (40重量%) 40. 5gと脱 イオン水 4600gを混合し、セリアスラリ混合後の研磨剤 6000g中の酢酸濃度が 300p pmになるように酢酸 (99. 9重量0 /0)を 1. 8g添加後、アンモニア水 (25重量0 /0)にて pH 4. 8に調整し、最後に水溶液重量力 800gになるように脱イオン水を混合した。
[0094] 比較例 5では、比較例 1と同じ市販のポリアクリル酸水溶液 (40重量%) 40. 5gと脱 イオン水 4600gを混合し、セリアスラリ混合後の研磨剤 6000g中の硫酸濃度が 1200 ppmになるように硫酸(96重量0 /0)を 7. 5g添加後、アンモニア水 (25重量0 /0)にて pH 4. 8に調整し、最後に水溶液重量力 800gになるように脱イオン水を混合した。
[0095] 上記で使用した市販ポリアクリル酸の分子量測定のために、示差屈折計 (株式会社 日立製作所製型番 L 3300)を備えた HPLCポンプ (株式会社日立製作所製型番 L- 7100)に GPCカラム(日立化成工業株式会社製型番 W550)を接続し、 0. 3 M NaClを移動相として用いて測定を行ったところ、その重量平均分子量はポリェチ レングリコール換算値で 5000であつた。
[0096] (CMP研磨剤の調製)
実施例 1〜6及び比較例 1〜5の添加液 4800gと上記の酸ィ匕セリウムスラリ(固形分 : 5重量0 /0) 1200gを混合して、酸ィ匕セリウム系 CMP研磨剤(固形分: 1. 0重量0 /0)を 6000g作製した。その研磨剤の pHは 5.0であった。また、研磨剤中の粒子の平均粒 径をレーザ回折式粒度分布計で測定するために、適当な濃度に希釈して測定した 結果、実施例 1〜6、比較例 1〜4では、 D50の値は 170nmであり、比較例 5では D5 0の値は 180nmであった。
[0097] また、 3ヶ月経過後の粒径は、実施例 1〜6、比較例 1〜4では、 D50の値は 170η mのままであつたが、比較例 5では D50の値が 200nmであり、酸化セリウム粒子径が 大きくなる傾向が見られた。
[0098] さらに、得られた実施例 1〜6及び比較例 1〜5の各 CMP研磨剤を遠心分離して得 られた上澄み液を、キヤビラリ電気泳動測定装置 (大塚電子株式会社製型番 CAPI— 3300)を用いて研磨剤中の硫酸イオン濃度、塩酸イオン濃度及び硝酸イオン濃度を 測定した。泳動電圧— 30kV、バッファ、試料注入は落差法 (落差 25mm)、注入時間 30秒で行なった。各強酸イオン濃度 300、 600、 lOOOppmの 3点で検量線を作成し 、濃度を算出した。その結果、実施例 1〜6及び比較例 5の研磨剤は、所定濃度の強 酸イオンを含有することを確認した。比較例 1〜4の研磨剤中の強酸イオン濃度は、 1 Oppm以" h ζ¾>つた。
[0099] (絶縁膜層の研磨)
浅素子分離 (STI)絶縁膜 CMP評価用試験ウェハのうち、パターンの形成されてい ないブランケットウェハとして、 Si基板上に PE— TEOS酸ィ匕珪素膜 (SiO )が膜厚 100
2
0應成膜されたウェハ( φ 200mm)と、 Si基板上に窒化珪素膜 (Si N )が膜厚 200η
3 4
m成膜されたウェハ( φ 200mm)を使用した。
[0100] また、 STIの模擬パターンが形成されたパターンウェハとしては、 International SEM ATECH製 864ウェハ( φ 200mm)を用いた。これに埋め込まれて 、る酸化珪素(S iO )の絶縁膜は、 HDP(High Density Plasma)法により成膜されたものであり、膜厚が
2
600nmのものを使用した。なお、 Si N膜厚 150nm、 SiO膜厚凸部 600nm、凹部 6
3 4 2
00應、凹部深さは 480nmであり、卜レンチ深さ 330nm + Si N膜厚 150 力もなる
3 4
[0101] パターン密度依存性の評価には、 4 X 4mmのブロックからなるダイのなかで、ライン
(凸部)及びスペース(凹部)幅が 100 mピッチで、凸部パターン密度が 10%〜90% のもの、及び 0% (4 X 4mm凹部)と 100% (4 X 4mm凸部)のものを使用した。ライン およびスペースは、 STIの模擬的なパターンであり、凸部である Si Nでマスクされた
3 4
アクティブ部と凹部である溝が形成されたトレンチ部が交互に並んだパターンである 。 100 μ mピッチとは、ライン部とスペース部の幅の合計が 100 μ mであることを意味す る。例えば、凸部パターン密度 10%とは、凸部幅 10 mと凹部幅 90 mが交互に並 んだパターンを意味し、凸部パターン密度 90%とは、凸部幅 90 mと凹部幅 10 /z m が交互に並んだパターンを意味する。
[0102] 研磨装置 (Applied Materials社製商品名 Mirra)の、保持する基板取り付け用 の吸着パッドを貼り付けたホルダーに上記試験ウェハをセットし、一方、 φ 480mmの 研磨定盤に口デール社製多孔質ウレタン榭脂製の研磨パッド型番 IC—1000(K溝) を貼り付けた。該パッド上に絶縁膜面を下にして前記ホルダーを載せ、さらに加工荷 重としてメンブレン、リテーナリング、インナチューブ圧力をそれぞれ 3. Opsi、 3. 5psi 、 3. 0psi (20. 6kPa、 24. OkPa、 20. 6kPa)【こ設定した。定盤上【こ上記で調製した CMP研磨剤を 200mLZ分の速度で滴下しながら、定盤とウェハとをそれぞれ 98rp m、 78rpmで作動させて STI絶縁膜 CMP評価用試験ウェハを研磨した。
[0103] ブランケットウェハの研磨時間は 60秒で行った。パターンウェハの研磨時間は、 10 0% (4 X 4凸部)パターン部でほぼ Si N膜が露出するまでの時間とし、研磨定盤ト
3 4
ルク電流値をモニタすることで、研磨の終点検出を行った。また、パターン凸部の Si
3
N膜上に SiO残膜が 10應以上ある場合には随時追加研磨を行った。
4 2
[0104] 研磨後のウェハを純水で良く洗浄後、乾燥した。その後、光干渉式膜厚装置 (ナノ メトリタス社製商品名、 Nanospec AFT— 5100)を用いて、凹部の絶縁膜の残膜厚 、凸部の絶縁膜の残膜厚、あるいは Si N膜の残膜厚を測定した。さらに段差計 Dek
3 4
tak V200— S Veeco社製型番)を用いて、研磨後の凸部と凹部の残段差を測定 した。表 1、表 2に得られた各測定結果を示す。
[0105] [実施例 7〜実施例 9]
実施例 7〜実施例 9、比較例 6では、ポリカルボン酸の合成力も行なった。
[0106] (酸化セリウム粒子及び酸化セリウムスラリの作製)
実施例 1〜実施例 6と同様の方法で行なった。
[0107] (ポリカルボン酸の合成)
実施例 7では、脱イオン水 960gを 3リットルの合成用フラスコに投入し、窒素ガス雰 囲気下で撹拌しながら 90°Cに昇温後、アクリル酸 547gと過硫酸アンモ-ゥム 54gを 脱イオン水 500gに溶解させたものを 2時間かけてフラスコ中に注入した。その後 90 °Cで 5時間保温後、冷却して取り出しポリアクリル酸水溶液を得た。不揮発分を測定 したところ、 25重量%であった。
[0108] さらに、上記で得られたポリアクリル酸の分子量測定を、実施例 1で用いた巿販ポリ アクリル酸の分子量測定と同じ条件で行ったところ、その重量平均分子量は 5000(ポ リエチレングリコール換算値)であった。
[0109] 実施例 8では、脱イオン水 960gを 3リットルの合成用フラスコに投入し、窒素ガス雰 囲気下で撹拌しながら 90°Cに昇温後、アクリル酸 497gと 2, 2'—ァゾビス〔2—(2— イミダゾリン— 2—ィル)プロパン〕二硫酸塩二水和物 103gを脱イオン水 500gに溶解 させたものを 2時間かけてフラスコ中に注入した。その後 90°Cで 3時間保温後、冷却 して取り出してポリアクリル酸溶液を得た。不揮発分を測定したところ、 25重量%であ つた。実施例 7と同様に、得られたポリアクリル酸の分子量測定を行ったところ、その 重量平均分子量は 3200(ポリエチレングリコール換算値)であった。
[0110] 実施例 9では、脱イオン水 960gを 3リットルの合成用フラスコに投入し、窒素ガス雰 囲気下で撹拌しながら 90°Cに昇温後、メタクリル酸 256g、アクリル酸 255gと 2, 2'— ァゾビス〔2— (2—イミダゾリン— 2—ィル)プロパン〕二硫酸塩二水和物 89gを脱ィォ ン水 500gに溶解させたものを 2時間かけてフラスコ中に注入した。その後 90°Cで 3 時間保温後、冷却して取り出し水溶性高分子溶液 (ポリアクリル酸ーメタクリル酸共重 合体水溶液)を得た。その不揮発分を測定したところ、 25重量%であった。実施例 7 と同様に、得られた水溶性高分子の分子量測定を行ったところ、その重量平均分子 量は 7, 500(ポリエチレングリコール換算値)であった。
[0111] 比較例 6では、脱イオン水 960gを 3リットルの合成用フラスコに投入し、窒素ガス雰 囲気下で撹拌しながら 90°Cに昇温後、アクリル酸 497gと 2, 2'—ァゾビス〔2—(2— イミダゾリン— 2—ィル)プロパン〕 53gをメタノール 500gに溶解させたものを 2時間か けてフラスコ中に注入した。その後 90°Cで 3時間保温後、冷却して取り出しポリアタリ ル酸溶液を得た。その不揮発分を測定したところ、 25重量%であった。さらに、上記 で得られたポリアクリル酸の分子量測定を実施例 7と同様に測定したところ、その重 量平均分子量は 5000(ポリエチレングリコール換算値)であった。 [0112] さらに、実施例 7〜8及び比較例 6で得られたポリカルボン酸水溶液、実施例 9で得 られたポリアクリル酸—メタクリル酸共重合体水溶液を脱イオン水で 100倍希釈した。 この希釈液の硫酸イオン濃度を、前記実施例 1〜6の CMP研磨剤の上澄み液と同じ 装置、同じ条件で測定した。硫酸イオン濃度 300、 600、 lOOOppmの 3点で検量線を 作成し、濃度を算出した。その結果、実施例 7及び実施例 9のポリマは、約 8重量% の硫酸イオンを含有すること、実施例 8のポリマは、約 9重量%の硫酸イオンを含有 すること、比較例 6のポリマ中の硫酸イオン濃度は 1重量%未満であることを確認した
[0113] (添加液及び CMP研磨剤の調製)
実施例 7及び実施例 8では、上記で得られたポリアクリル酸水溶液(25重量%) 64 . 8gと脱イオン水 4600gを混合し、アンモニア水 (25重量0 /0)にて pH4. 8に調整し、 最後に水溶液重量力 800gになるように脱イオン水を混合して添加液を得た。
[0114] 実施例 9では、上記で得られたポリアクリル酸ーメタクリル酸共重合体水溶液(25重 量0 /0) 64. 8gと脱ィ才ン水 4600gを混合し、アンモニア水 (25重量0 /0)にて pH4. 8に 調整し、最後に水溶液重量力 800gになるように脱イオン水を混合した。
[0115] 比較例 6では、上記で得られたポリアクリル酸水溶液(25重量%) 64. 8gと脱イオン 水 4600gを混合し、アンモニア水 (25重量%)〖こて pH4. 8に調整し、最後に水溶液 重量力 800gになるように脱イオン水を混合した。
[0116] 実施例 7〜9及び比較例 6の添加液 4800gと上記の酸ィ匕セリウムスラリ(固形分: 5 重量0 /0) 1200gを混合して、酸ィ匕セリウム系 CMP研磨剤(固形分: 1. 0重量0 /0)を 60 00g作製した。研磨剤 pHは 5.0、また、研磨剤中の粒子をレーザ回折式粒度分布計 で測定するために、適当な濃度に希釈して測定した結果、実施 7〜9及び比較例 6の 研磨剤は、粒径の平均値 D50が 170nmであった。また、 3ヶ月経過後の粒径は、粒 径の平均値 D50が 170nmと変化が見られなかった。
[0117] さらに、得られた各 CMP研磨剤を遠心分離して得られた上澄み液の硫酸イオン濃 度を、実施例 1〜6の CMP研磨剤の上澄み液と同じ装置、同じ条件で測定した。硫酸 イオン濃度 300、 600、 lOOOppmの 3点で検量線を作成し、濃度を算出した。その結 果、実施例 7、実施例 8及び実施例 9の研磨剤中の硫酸イオン濃度は、それぞれを 2 40ppm、 270ppm及び 230ppmであることを確認した。比較例 6の研磨剤中の硫酸ィ オン濃度は lOppm以下であった。
[0118] (絶縁膜層の研磨)
実施例 1〜実施例 6と同様の方法で行なった。表 3に得られた各測定結果を示す。
[0119] [実施例 10〜実施例 13、比較例 7〜比較例 9]
実施例 10〜実施例 11、比較例 7〜8では、研磨剤の pHを変えて検討を行った。実 施例 12は、強酸塩を用いた検討を行った。実施例 13及び比較例 9では、ポリアタリ ル酸アンモニゥム塩を用いて、強酸で PHを調整した検討を行った。
[0120] (酸化セリウム粒子及び酸化セリウムスラリの作製)
実施例 1〜実施例 6と同様の方法で行なった。
[0121] (添加液の作製)
実施例 10では、市販のポリアクリル酸水溶液 (重量平均分子量 5000) (40重量%) 22. 5gと脱イオン水 4600gを混合し、セリアスラリ混合後の研磨剤 6000g中の硫酸 濃度が 300ppmになるように硫酸(96重量%)を 1. 88g添加後、アンモニア水 (25重 量%)にて pH4. 0に調整し、最後に水溶液重量力 800gになるように脱イオン水を 混合した。
[0122] 実施例 11では、実施例 10と同じ市販のポリアクリル酸水溶液 (40重量%) 150gと 脱イオン水 4500gを混合し、セリアスラリ混合後の研磨剤 6000g中の硫酸濃度が 10 OOppmになるように硫酸(96重量0 /0)を 6. 25g添加後、アンモニア水 (25重量0 /0)に て pH6. 8に調整し、最後に水溶液重量力 800gになるように脱イオン水を混合した
[0123] 実施例 12では、実施例 10と同じ市販のポリアクリル酸水溶液 (40重量%) 40. 5gと 脱イオン水 4600gを混合し、セリアスラリ混合後の研磨剤 6000g中の硫酸濃度が 30 Oppmになるように硫酸アンモ-ゥムを 2. 44g添加後、アンモニア水 (25重量%)にて p H4. 8に調整し、最後に水溶液重量力 800gになるように脱イオン水を混合した。
[0124] 実施例 13では、市販の中和率約 100%のポリアクリル酸アンモ-ゥム水溶液 (重量 平均分子量 8000) (40重量0 /0、 pH6. 1) 27. Ogと脱イオン水 4600gを混合し、 pH が 4. 6になるように硝酸(70重量%)を添加して調整後、最後に水溶液重量が 4800 gになるように脱ィ才ン水を混合した。
[0125] 比較例 7では、実施例 10と同じ市販のポリアクリル酸水溶液 (40重量%) 22. 5gと 脱イオン水 4600gを混合し、セリアスラリ混合後の研磨剤 6000g中の硫酸濃度が 30 Oppmになるように硫酸(96重量0 /0)を 1. 876g添加後、アンモニア水 (25重量0 /0)に て pH3. 6に調整し、最後に水溶液重量力 800gになるように脱イオン水を混合した
[0126] 比較例 8では、実施例 10と同じ市販のポリアクリル酸水溶液 (40重量%) 225gと脱 イオン水 4500gを混合し、セリアスラリ混合後の研磨剤 6000g中の硫酸濃度が 1000 ppmになるように硫酸(96重量0 /0)を 6. 25g添加後、アンモニア水 (25重量%)にて p H7. 5に調整し、最後に水溶液重量力 800gになるように脱イオン水を混合した。
[0127] 比較例 9では、市販の過剰に中和された(中和率 100%以上の)ポリアクリル酸アン モ-ゥム水溶液(重量平均分子量 8000) (40重量0 /0、pH9. 1) 27. Ogと脱イオン水 4600gを混合し、 pHが 4. 6になるように硝酸(70重量%)を添加して調整後、最後 に水溶液重量力 800gになるように脱イオン水を混合した。
[0128] 上記ポリアクリル酸アンモニゥムの中和率決定は、以下の方法で行った。アングル ロータを備えた日立工機株式会社製微量高速遠心分離機 CF-15Rを用い 15,000r pm、 30分間、研磨剤の固液分離を行った。株式会社島津製作所製全有機体炭素 計 TOC-5000を用い、上澄み液の有機炭素分を測定することでポリアクリル酸濃度 を測定した。さらに大塚電子株式会社製キヤビラリ電気泳動装置 CAPI- 3300を用い 、泳動液を 10mMイミダゾール、試料注入を落差法(25mm、 90sec)、泳動電圧を 30kV 、検出法をインダイレクト UV(210nm)としてアンモ-ゥムイオン濃度を測定することで、 ポリアクリル酸の中和率を決定した。
[0129] (CMP研磨剤の調製)
実施例 10〜13及び比較例 7〜9の添加液 4800gと上記の酸化セリウムスラリ(固形 分:5重量0 /0) 1200gを混合して、酸ィ匕セリウム系 CMP研磨剤(固形分: 1. 0重量0 /0) を 6000g作製した。その研磨剤の pHは、それぞれ実施例 10が 4. 2、実施例 11が 7 . 0、実施例 12が 5. 0、実施例 13が 4. 8、比較例 7が 3. 9、比較例 8が 7. 6、そして 比較例 9が 4. 8であった。また、研磨剤中の粒子の平均粒径をレーザ回折式粒度分 布計で測定するために、適当な濃度に希釈して測定した結果、実施例 10〜13では 、 D50の値は 170nmであり、比較例 7〜9では、 D50の値は 180nmであった。
[0130] また、 3ヶ月経過後の粒径は、実施例 10〜: L 1では、 D50の値は 180nmであり、実 施例 12及び 13は 170nmのままであった。比較例 7〜9では、 D50の値は 200nmで あり、酸ィ匕セリウム粒子径がそれぞれ大きくなる傾向が見られた。
[0131] 実施例 10〜 12及び比較例 7〜8で使用した巿販ポリアクリル酸の分子量を、実施 例 1で用いた市販ポリアクリル酸の分子量と同じ条件で測定したところ、その重量平 均分子量はポリエチレングリコール換算値で 5, 000であった。
[0132] さらに、得られた各 CMP研磨剤を遠心分離して得られた上澄み液の、硫酸イオン濃 度及び硝酸イオン濃度を、実施例 1〜6の CMP研磨剤の上澄み液と同じ装置、同じ 条件で測定した。各強酸イオン濃度 300、 600、 1200ppmの 3点で検量線を作成し、 濃度を算出した。その結果、実施例 10〜12および比較例 7〜8の研磨剤は、所定濃 度の硫酸イオンを含有することを確認した。また実施例 13及び比較例 9の研磨剤中 の硝酸イオン濃度は、それぞれ 520ppmと 1200ppmであることがわかった。
[0133] (絶縁膜層の研磨)
実施例 1〜実施例 6と同様の方法で行なった。表 4に得られた各測定結果を示す。
[表 1]
Figure imgf000027_0001
*:ポリカルボン酸を除く [表 2] .
Figure imgf000028_0001
*:ポリカルボン酸を除く [表 3]
実施例 実施例 実施例 比較例
No.
7 8 9 6 ポリアク
合成ポリ ポリアク ポリアク ポリアク リル-メタ
カルボン酸種 リル酸 リル酸 リル酸 クリル酸
砥粒濃度
1.0 1.0 1.0 1.0 ポリカルボン酸
0.27 0.27 0.27 0.27 ポリマ含有 硫酸 硫酸 硫酸 - 酸種 (pKa) «0) «0) (く 0)
酸濃度 *
240 270 230 く 10 、P pm)
PTE0S 研磨速度
260 250 254 275 (nm/m i n)
Si3N4研磨速度
8 8 8 7 ( n m/m i n )
研磨時間
190 195 155 182 (s e c)
凸部膜厚
128 .. 126 139 113 10% (nm)
凸部膜厚
149 149 151 148 90% (nm)
ύ部膜厚差
21 23 12 35 90%-10% (nm)
凹部膜厚
240 250 210 220 0% (nm)
粒径 (nm) 170 170 170 170 (3力月後) (170) (170) (170) (170) *:ポリアクリル酸、ポリアクリル酸一メタクリル酸共重合体を除く
[表 4]
実施例 実施例 実施例 比較例 比較例
No. 実施例 比較例
10 11 12 13 7 8 9 碓粒濃度
1.0 1.0 1.0 1.0 1.0 1.0 1.0 ポリアクリル酸
0.15 1.0 0.27 0.18 0.15 1.5 0.18 濃度 (重量%)
酸種 硫酸 硫酸 硫酸 硝酸 硫酸 硫酸 硝酸 (pKa) (く0) «0) «0) (一 1.8) (く。) «0) (-1.8) 酸濃度 *
300 1000 300 520 300 1000 1200 (p pm)
研磨剤 PH 4.2 7.0 5.0 4.8 3.9 7.6 4.8
PTE0S 研磨速度
120 300 262 55 70 360 25 ( n m/m i n )
Si3N4研磨速度
10 6 7 7 15 7 8 ( n m/m i n )
パターン研磨
335 160 185 400 415 140 〉450 時間 (s e c)
凸部膜厚
137 125 129 140 130 95 148 10% (nm)
凸部膜厚 >100
151 148. 150 151 151 149
90% (nm) Oxide 凸部膜厚差
14 23 21 11 21 54 >100 90% - 10% (読)
凹部膜厚
340 220 260 420 350 190 460 0% (nm)
粒径 (nm) 170 170 170 170 180 180 180 (3力月後) (180) (180) (170) (170) (200) (200) (200) 37] *:ポリアクリル酸を除く
実施例 1〜実施例 6では、ポリアクリル酸に加えて、強酸を含有することによって、強 酸を含有しない比較例 1に比べて、パターン研磨における凸部膜厚差が低減されて いる。実施例 7〜実施例 9では、硫酸が含有されたポリアクリル酸或いはポリアクリル —メタクリル酸を使用することによって、硫酸を含有しないポリアクリル酸を使用した比 較例 6に比べて、ノ、。ターン研磨におけるパターン密度間の凸部膜厚差が低減されて いる。実施例 10及ぴ実施例 11では、研磨剤の pHにあわせて、ポリアクリル酸及ぴ硫 酸の含有量を調整することにより、パターン研磨におけるパターン密度間の凸部膜厚 差が低減されてレ、るが、研磨剤 pHが低く 4に近い領域、或いは pHが高く 7.5に近い 領域では、 3ヶ月経過後の酸化セリウム粒子径が大きくなり、長時間保管後の分散安 定性が若干悪くなる傾向も見られた。実施例 12では、強酸塩を使用した場合にも、 同様の効果が得られた。実施例 13は、ポリアクリル酸として、あらかじめ中和されたァ ンモニゥム塩を使用して、硝酸で pH調整した例である力 研磨剤中の硝酸イオン濃 度が本発明の範囲であり、同様の効果が得られた。
[0138] 比較例 2〜4は、ポリアクリル酸と pKa> 3. 2の弱酸を含有した例である力 パターン 研磨におけるパターン密度間の凸部膜厚差が低減されていない。比較例 5は、ポリ アクリル酸に加えて強酸を含有しているが、硫酸の含有量 1200ppmが多すぎるため に、酸ィ匕セリウム研磨剤混合直後の粒径が大きくなり、ノターンの研磨時間も長くな つてしまった(> 350秒)。比較例 7及び比較例 8は、研磨剤の pHが異なる場合であ る力 比較例 7では研磨剤 pHが低すぎるために (pH3. 9)、充分な研磨速度が得ら れず、パターン研磨時間が長くなつてしまい(>400秒)、研磨剤混合直後の酸ィ匕セ リウム粒径も大きくなる傾向が見られた。比較例 8では、研磨剤 pHが高すぎるために (pH7. 6)、ポリアクリル酸及び硫酸の含有効果が充分でなぐ研磨剤混合直後の酸 化セリウム粒径も大きくなる傾向が見られた。比較例 9は、ポリアクリル酸として、過剰 に中和したアンモニゥム塩を使用して、硝酸で pH調整した例である力 研磨剤中の 硝酸イオン濃度が 1200ppmと高いために、パターンウェハの研磨時間 450秒でも研 磨残りが見られ、研磨剤混合直後の酸ィ匕セリウム粒径も大きくなる傾向が見られ、分 散安定性も悪化した。
産業上の利用の可能性
[0139] 本発明により、層間絶縁膜、 BPSG膜、シヤロートレンチ分離用絶縁膜等を平坦ィ匕 する CMP技術において、ノターン密度差による膜厚差を低減し、高速に、かつプロ セス管理も容易に、酸ィ匕珪素膜等を研磨できる研磨剤および研磨方法を提供するこ とがでさる。

Claims

請求の範囲
[I] 酸ィ匕セリウム粒子、分散剤、ポリカルボン酸、第 1解離可能酸性基の pKa値が 3. 2 以下である強酸および水を含有する研磨剤であって、 pHが 4. 0以上 7. 5以下、研 磨剤中の強酸濃度が 100〜: LOOOppmであることを特徴とする CMP研磨剤。
[2] 酸ィ匕セリウム粒子、分散剤、ポリカルボン酸、第 1解離可能酸性基の pKa値が 3. 2 以下である強酸および水を含有する研磨剤であって、 pHが 4. 0以上 7. 5以下、研 磨剤中の強酸濃度が 50〜: LOOOppmであることを特徴とする CMP研磨剤。
[3] 酸ィ匕セリウム粒子、分散剤、ポリカルボン酸、第 1解離可能酸性基の pKa値が 3. 2 以下である強酸および水を含有する研磨剤であって、 pHが 4. 0以上 7. 5以下、研 磨剤中の強酸が、一価の強酸で濃度は 50〜500ppmであることを特徴とする CMP 研磨剤。
[4] 酸ィ匕セリウム粒子、分散剤、ポリカルボン酸、第 1解離可能酸性基の pKa値が 3. 2 以下である強酸および水を含有する研磨剤であって、 pHが 4. 0以上 7. 5以下、研 磨剤中の強酸が、二価の強酸で濃度は 100〜1000ppmであることを特徴とする CM P研磨剤。
[5] 研磨剤中の強酸濃度が 200〜1000ppmである請求の範囲第 1項または第 4項記 載の CMP研磨剤。
[6] 研磨剤中の強酸濃度が 300〜600ppmである請求の範囲第 1項または第 4項記載 の CMP研磨剤。
[7] 強酸が硫酸である請求の範囲第 1項または第 4項記載の CMP研磨剤。
[8] 研磨剤中の強酸濃度が 100〜500ppmである請求の範囲第 2項または第 3項記載 の CMP研磨剤。
[9] 研磨剤中の強酸濃度が 150〜300ppmである請求の範囲第 2項または第 3項記載 の CMP研磨剤。
[10] 強酸の第 1解離可能酸性基の pKa値が 2. 0以下である請求の範囲第 1項〜第 9項 の!、ずれか一項記載の CMP研磨剤。
[II] 強酸の第 1解離可能酸性基の pKa値が 1. 5以下である請求の範囲第 10項記載の CMP研磨剤。
[12] pHが 4. 5以上 5. 5以下である請求の範囲第 1項〜第 11項のいずれか一項記載 の CMP研磨剤。
[13] 前記ポリカルボン酸力 ポリアクリル酸である請求の範囲第 1項〜第 12項のいずれ か一項に記載の CMP研磨剤。
[14] 前記分散剤が、アクリル酸アンモニゥム塩を含む高分子化合物である請求の範囲 第 1項〜第 13項のいずれか一項記載の CMP研磨剤。
[15] 前記研磨剤は、未中和のポリカルボン酸と強酸または強酸塩及び水を混合させた 後に、アンモニアで pH調整されたものである請求の範囲第 1項〜第 14項のいずれ か一項記載の CMP研磨剤。
[16] 前記酸化セリウム粒子の含有量が、 CMP研磨剤 100重量部に対して 0. 1重量部 以上 5重量部以下である請求の範囲第 1項〜第 15項のいずれか一項に記載の CM
P研磨剤。
[17] 前記ポリカルボン酸の含有量力 CMP研磨剤 100重量部に対して 0. 01重量部以 上 2重量部以下である請求の範囲第 1項〜第 16項のいずれか一項に記載の CMP 研磨剤。
[18] 前記ポリカルボン酸の重量平均分子量(GPCの PEG換算)が、 500以上 20, 000以 下である請求の範囲第 1項〜第 17項のいずれか一項に記載の CMP研磨剤。
[19] 前記酸ィ匕セリウム粒子の平均粒径が lnm以上 400nm以下である請求の範囲第 1 項〜第 18項のいずれか一項に記載の CMP研磨剤。
[20] 前記ポリカルボン酸力 カチオン性ァゾィ匕合物およびその塩の少なくとも一方、また はァ-オン性ァゾィ匕合物およびその塩の少なくとも一方を重合開始剤として、不飽和 二重結合を有するカルボン酸およびその塩の少なくとも一方を含む単量体が重合し てなる重合体である請求の範囲第 1項〜第 19項のいずれか一項に記載の CMP研 磨剤。
[21] 酸ィ匕セリウム粒子、分散剤、及び水力 なる酸ィ匕セリウムスラリと、ポリカルボン酸、 強酸、 pH調整剤及び水を含む添加液とを混合することにより得られる請求の範囲第 1項〜第 20項のいずれか一項に記載の CMP研磨剤。
[22] 請求の範囲第 1項〜第 21項のいずれか一項記載の CMP研磨剤を製造する方法 であって、未中和のポリカルボン酸と強酸または強酸塩及び水を混合させた水溶液 を得る工程と、該工程の後に、前記水溶液をアンモニアで pH調整する工程とを有す ることを特徴とする CMP研磨剤の製造方法。
[23] 請求の範囲第 1項〜第 21項のいずれか一項に記載の CMP研磨剤を製造する方 法であって、酸ィ匕セリウム粒子、分散剤、及び水からなる酸ィ匕セリウムスラリと、ポリ力 ルボン酸、強酸、及び水を含む添加液とを混合することを特徴とする CMP研磨剤の 製造方法。
[24] 被研磨膜を形成した基板を研磨定盤の研磨布に押しあて加圧し、請求の範囲第 1 項〜第 21項のいずれか一項に記載の CMP研磨剤を被研磨膜と研磨布との間に供 給しながら、基板と研磨定盤とを相対的に動力ゝして被研磨膜を研磨することを特徴と する基板の研磨方法。
PCT/JP2005/017747 2004-09-27 2005-09-27 Cmp研磨剤及び基板の研磨方法 WO2006035771A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/576,010 US20070218811A1 (en) 2004-09-27 2005-09-25 Cmp polishing slurry and method of polishing substrate
CN2005800317627A CN101023512B (zh) 2004-09-27 2005-09-27 Cmp抛光剂以及衬底的抛光方法
JP2006537753A JP4853287B2 (ja) 2004-09-27 2005-09-27 Cmp研磨剤及び基板の研磨方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-279601 2004-09-27
JP2004279601 2004-09-27
JP2005-179464 2005-06-20
JP2005179464 2005-06-20

Publications (1)

Publication Number Publication Date
WO2006035771A1 true WO2006035771A1 (ja) 2006-04-06

Family

ID=36118917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017747 WO2006035771A1 (ja) 2004-09-27 2005-09-27 Cmp研磨剤及び基板の研磨方法

Country Status (6)

Country Link
US (1) US20070218811A1 (ja)
JP (2) JP4853287B2 (ja)
KR (1) KR100849551B1 (ja)
CN (1) CN101023512B (ja)
TW (1) TWI286568B (ja)
WO (1) WO2006035771A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027663A (ja) * 2005-07-21 2007-02-01 Fujimi Inc 研磨用組成物
EP1796152A1 (en) * 2004-07-23 2007-06-13 Hitachi Chemical Company, Ltd. Cmp polishing agent and method for polishing substrate
JP2008306054A (ja) * 2007-06-08 2008-12-18 Fujifilm Corp 研磨液
US20100022171A1 (en) * 2006-10-16 2010-01-28 Nevin Naguib Glass polishing compositions and methods
WO2010104085A1 (ja) * 2009-03-13 2010-09-16 旭硝子株式会社 半導体用研磨剤、その製造方法及び研磨方法
JP2012121086A (ja) * 2010-12-07 2012-06-28 Yokkaichi Chem Co Ltd 研磨用添加剤及び高分散性研磨スラリー
JP2012146974A (ja) * 2010-12-24 2012-08-02 Hitachi Chem Co Ltd 研磨液及びこの研磨液を用いた基板の研磨方法
CN101490201B (zh) * 2006-06-07 2013-01-16 卡伯特微电子公司 用于抛光氮化硅材料的组合物及方法
US9548211B2 (en) 2008-12-04 2017-01-17 Cabot Microelectronics Corporation Method to selectively polish silicon carbide films
US9593261B2 (en) 2015-02-04 2017-03-14 Asahi Glass Company, Limited Polishing agent, polishing method, and liquid additive for polishing

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006061891A1 (de) * 2006-12-28 2008-07-03 Basf Se Zusammensetzung zum Polieren von Oberflächen aus Siliziumdioxid
JP5327427B2 (ja) * 2007-06-19 2013-10-30 Jsr株式会社 化学機械研磨用水系分散体調製用セット、化学機械研磨用水系分散体の調製方法、化学機械研磨用水系分散体および化学機械研磨方法
JP2011142284A (ja) * 2009-12-10 2011-07-21 Hitachi Chem Co Ltd Cmp研磨液、基板の研磨方法及び電子部品
SG11201606187RA (en) 2010-09-08 2016-09-29 Basf Se Aqueous polishing composition and process for chemically mechanically polishing substrates containing silicon oxide dielectric and polysilicon films
RU2608890C2 (ru) * 2010-09-08 2017-01-26 Басф Се Водные полирующие композиции, содержащие n-замещенные диазений диоксиды и/или соли n -замещенных n'-гидрокси-диазений оксидов
RU2577281C2 (ru) 2010-09-08 2016-03-10 Басф Се Водная полирующая композиция и способ химико-механического полирования материалов подложек для электрических, механических и оптических устройств
JP6096670B2 (ja) 2010-12-10 2017-03-15 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 酸化ケイ素誘電体膜およびポリシリコン膜を含有する基板を化学的機械的に研磨するための水性研磨組成物および方法
US8808573B2 (en) * 2011-04-15 2014-08-19 Cabot Microelectronics Corporation Compositions and methods for selective polishing of silicon nitride materials
SG11201403505UA (en) * 2011-12-21 2014-07-30 Basf Se Method for manufacturing cmp composition and application thereof
JPWO2013137220A1 (ja) * 2012-03-14 2015-08-03 日立化成株式会社 研磨方法
US8916061B2 (en) * 2012-03-14 2014-12-23 Cabot Microelectronics Corporation CMP compositions selective for oxide and nitride with high removal rate and low defectivity
CN102627915A (zh) * 2012-03-23 2012-08-08 江苏中晶科技有限公司 高效氧化铝蓝宝石抛光液及其制备方法
JP5957292B2 (ja) 2012-05-18 2016-07-27 株式会社フジミインコーポレーテッド 研磨用組成物並びにそれを用いた研磨方法及び基板の製造方法
WO2014178426A1 (ja) * 2013-05-02 2014-11-06 富士フイルム株式会社 エッチング方法、これに用いるエッチング液およびエッチング液のキット、ならびに半導体基板製品の製造方法
US8906252B1 (en) 2013-05-21 2014-12-09 Cabot Microelelctronics Corporation CMP compositions selective for oxide and nitride with high removal rate and low defectivity
US9165489B2 (en) 2013-05-21 2015-10-20 Cabot Microelectronics Corporation CMP compositions selective for oxide over polysilicon and nitride with high removal rate and low defectivity
KR101470977B1 (ko) * 2013-08-06 2014-12-09 주식회사 케이씨텍 슬러리 조성물
CN105453235B (zh) * 2013-08-30 2018-04-13 日立化成株式会社 浆料、研磨液组、研磨液、基体的研磨方法以及基体
WO2015046163A1 (ja) * 2013-09-30 2015-04-02 株式会社フジミインコーポレーテッド 研磨用組成物およびその製造方法
US9281210B2 (en) * 2013-10-10 2016-03-08 Cabot Microelectronics Corporation Wet-process ceria compositions for polishing substrates, and methods related thereto
US9279067B2 (en) 2013-10-10 2016-03-08 Cabot Microelectronics Corporation Wet-process ceria compositions for polishing substrates, and methods related thereto
CN104726028A (zh) * 2013-12-18 2015-06-24 安集微电子(上海)有限公司 一种化学机械抛光液及其使用方法
US10106704B2 (en) 2014-03-20 2018-10-23 Fujimi Incorporated Polishing composition, polishing method, and method for producing substrate
TWI530557B (zh) * 2014-05-29 2016-04-21 卡博特微電子公司 具高移除速率及低缺陷率之對氧化物與多晶矽及氮化物具有選擇性的cmp組合物
US9299585B2 (en) * 2014-07-28 2016-03-29 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Method for chemical mechanical polishing substrates containing ruthenium and copper
JP2016056292A (ja) * 2014-09-10 2016-04-21 株式会社フジミインコーポレーテッド 研磨用組成物及びその製造方法、研磨方法、並びに基板及びその製造方法
JP5893700B1 (ja) 2014-09-26 2016-03-23 花王株式会社 酸化珪素膜用研磨液組成物
JP6572734B2 (ja) * 2015-02-04 2019-09-11 Agc株式会社 研磨剤と研磨方法、および研磨用添加液
CN104987839A (zh) * 2015-06-30 2015-10-21 安徽德诺化工有限公司 Led用蓝宝石衬底研磨液
US10421890B2 (en) * 2016-03-31 2019-09-24 Versum Materials Us, Llc Composite particles, method of refining and use thereof
WO2018147074A1 (ja) * 2017-02-08 2018-08-16 日立化成株式会社 研磨液及び研磨方法
CN110462525B (zh) 2017-03-24 2024-07-26 富士胶片电子材料美国有限公司 表面处理方法及用于所述方法的组合物
KR102475282B1 (ko) * 2017-03-29 2022-12-07 삼성전자주식회사 화학적 기계적 연마용 슬러리 조성물
US11649377B2 (en) 2017-08-14 2023-05-16 Resonac Corporation Polishing liquid, polishing liquid set and polishing method
KR102634300B1 (ko) * 2017-11-30 2024-02-07 솔브레인 주식회사 연마용 슬러리 조성물 및 고단차 반도체 박막의 연마 방법
KR20200100132A (ko) 2018-01-05 2020-08-25 후지필름 일렉트로닉 머티리얼스 유.에스.에이., 아이엔씨. 표면 처리 조성물 및 방법
CN117198858A (zh) * 2018-02-05 2023-12-08 富士胶片株式会社 药液、药液的制造方法、基板的处理方法
CN112964534B (zh) * 2021-03-19 2022-09-09 中铁工程装备集团有限公司 一种GCr18Mo晶粒度测定的浸蚀剂、方法及应用
CN116200128A (zh) * 2021-11-30 2023-06-02 安集微电子(上海)有限公司 一种制备氧化铈纳米复合物的方法、一种氧化铈纳米复合物及一种化学机械抛光液

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0822970A (ja) * 1994-07-08 1996-01-23 Toshiba Corp 研磨方法
JPH10106994A (ja) * 1997-01-28 1998-04-24 Hitachi Chem Co Ltd 酸化セリウム研磨剤及び基板の研磨法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5858813A (en) * 1996-05-10 1999-01-12 Cabot Corporation Chemical mechanical polishing slurry for metal layers and films
US5759917A (en) * 1996-12-30 1998-06-02 Cabot Corporation Composition for oxide CMP
JPH1180708A (ja) * 1997-09-09 1999-03-26 Fujimi Inkooporeetetsudo:Kk 研磨用組成物
JP3649279B2 (ja) * 1998-12-25 2005-05-18 日立化成工業株式会社 基板の研磨方法
JP3912927B2 (ja) * 1999-05-10 2007-05-09 花王株式会社 研磨液組成物
US7410409B1 (en) * 1999-06-18 2008-08-12 Hitachi Chemical Co., Ltd. Abrasive compound for CMP, method for polishing substrate and method for manufacturing semiconductor device using the same, and additive for CMP abrasive compound
JP2001185516A (ja) * 1999-12-24 2001-07-06 Kao Corp 研磨助剤
JP5017574B2 (ja) * 2001-05-25 2012-09-05 エア プロダクツ アンド ケミカルズ インコーポレイテッド 酸化セリウム研磨剤及び基板の製造方法
WO2004010487A1 (ja) * 2002-07-22 2004-01-29 Seimi Chemical Co., Ltd. 半導体用研磨剤、その製造方法及び研磨方法
TWI256971B (en) * 2002-08-09 2006-06-21 Hitachi Chemical Co Ltd CMP abrasive and method for polishing substrate
JP3974127B2 (ja) * 2003-09-12 2007-09-12 株式会社東芝 半導体装置の製造方法
US20050277262A1 (en) * 2004-06-14 2005-12-15 Taiwan Semiconductor Manufacturing Company, Ltd. Method for manufacturing isolation structures in a semiconductor device
US20060021972A1 (en) * 2004-07-28 2006-02-02 Lane Sarah J Compositions and methods for chemical mechanical polishing silicon dioxide and silicon nitride

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0822970A (ja) * 1994-07-08 1996-01-23 Toshiba Corp 研磨方法
JPH10106994A (ja) * 1997-01-28 1998-04-24 Hitachi Chem Co Ltd 酸化セリウム研磨剤及び基板の研磨法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1796152A1 (en) * 2004-07-23 2007-06-13 Hitachi Chemical Company, Ltd. Cmp polishing agent and method for polishing substrate
EP1796152A4 (en) * 2004-07-23 2008-12-03 Hitachi Chemical Co Ltd POLISHING AGENT FOR MECHANICAL CHEMICAL PLANARIZATION (CMP)
US9293344B2 (en) 2004-07-23 2016-03-22 Hitachi Chemical Company, Ltd. Cmp polishing slurry and method of polishing substrate
JP2007027663A (ja) * 2005-07-21 2007-02-01 Fujimi Inc 研磨用組成物
CN101490201B (zh) * 2006-06-07 2013-01-16 卡伯特微电子公司 用于抛光氮化硅材料的组合物及方法
US8759216B2 (en) * 2006-06-07 2014-06-24 Cabot Microelectronics Corporation Compositions and methods for polishing silicon nitride materials
KR101268128B1 (ko) * 2006-06-07 2013-05-31 캐보트 마이크로일렉트로닉스 코포레이션 질화규소 물질의 연마를 위한 조성물 및 방법
US20100022171A1 (en) * 2006-10-16 2010-01-28 Nevin Naguib Glass polishing compositions and methods
JP2008306054A (ja) * 2007-06-08 2008-12-18 Fujifilm Corp 研磨液
US9548211B2 (en) 2008-12-04 2017-01-17 Cabot Microelectronics Corporation Method to selectively polish silicon carbide films
WO2010104085A1 (ja) * 2009-03-13 2010-09-16 旭硝子株式会社 半導体用研磨剤、その製造方法及び研磨方法
JP2012121086A (ja) * 2010-12-07 2012-06-28 Yokkaichi Chem Co Ltd 研磨用添加剤及び高分散性研磨スラリー
JP2012146974A (ja) * 2010-12-24 2012-08-02 Hitachi Chem Co Ltd 研磨液及びこの研磨液を用いた基板の研磨方法
JP2016183346A (ja) * 2010-12-24 2016-10-20 日立化成株式会社 研磨液及びこの研磨液を用いた基板の研磨方法
US9564337B2 (en) 2010-12-24 2017-02-07 Hitachi Chemical Co., Ltd. Polishing liquid and method for polishing substrate using the polishing liquid
US9593261B2 (en) 2015-02-04 2017-03-14 Asahi Glass Company, Limited Polishing agent, polishing method, and liquid additive for polishing

Also Published As

Publication number Publication date
US20070218811A1 (en) 2007-09-20
CN101023512A (zh) 2007-08-22
KR20070044065A (ko) 2007-04-26
JP4853287B2 (ja) 2012-01-11
JPWO2006035771A1 (ja) 2008-05-15
TW200621958A (en) 2006-07-01
TWI286568B (en) 2007-09-11
CN101023512B (zh) 2010-11-24
KR100849551B1 (ko) 2008-07-31
JP2011181946A (ja) 2011-09-15

Similar Documents

Publication Publication Date Title
WO2006035771A1 (ja) Cmp研磨剤及び基板の研磨方法
JP4755984B2 (ja) Cmp研磨剤及び基板の研磨方法
JP5655879B2 (ja) Cmp研磨剤及び基板の研磨方法
JP4983603B2 (ja) 酸化セリウムスラリー、酸化セリウム研磨液及びこれらを用いた基板の研磨方法
WO2007055278A1 (ja) 酸化ケイ素用研磨剤、添加液および研磨方法
JPWO2004068570A1 (ja) Cmp研磨剤及び研磨方法
JP2010095650A (ja) 研磨剤組成物及びこの研磨剤組成物を用いた基板の研磨方法
JP5186707B2 (ja) Cmp研磨剤、cmp研磨剤用添加液及びこれらを用いた基板の研磨方法
CN101511538A (zh) Cmp研磨剂、cmp研磨剂用添加液以及使用了这些的基板的研磨方法
JP2010272733A (ja) 研磨剤及びこの研磨剤を用いた基板の研磨方法
JP2005286160A (ja) Cmp研磨剤及び基板の研磨方法
JP2006041034A (ja) Cmp研磨剤及び基板の研磨方法
JP2006036963A (ja) Cmp研磨剤及び基板の研磨方法
JP2006041033A (ja) Cmp研磨剤及び基板の研磨方法
JP2011233748A (ja) 基板の研磨方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006537753

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020077006309

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580031762.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11576010

Country of ref document: US

Ref document number: 2007218811

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 11576010

Country of ref document: US

122 Ep: pct application non-entry in european phase