WO2006035571A1 - Method for producing high-purity liquid chlorine - Google Patents

Method for producing high-purity liquid chlorine Download PDF

Info

Publication number
WO2006035571A1
WO2006035571A1 PCT/JP2005/016157 JP2005016157W WO2006035571A1 WO 2006035571 A1 WO2006035571 A1 WO 2006035571A1 JP 2005016157 W JP2005016157 W JP 2005016157W WO 2006035571 A1 WO2006035571 A1 WO 2006035571A1
Authority
WO
WIPO (PCT)
Prior art keywords
chlorine
photolysis
producing high
purity
purity liquefied
Prior art date
Application number
PCT/JP2005/016157
Other languages
French (fr)
Japanese (ja)
Inventor
Minako Horiba
Shozo Yago
Original Assignee
Showa Denko K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko K.K. filed Critical Showa Denko K.K.
Priority to JP2006537657A priority Critical patent/JP5219372B2/en
Publication of WO2006035571A1 publication Critical patent/WO2006035571A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/07Purification ; Separation
    • C01B7/075Purification ; Separation of liquid chlorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/123Ultraviolet light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/127Sunlight; Visible light
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the present invention relates to a method for producing high-purity liquefied chlorine.
  • the present invention relates to a method for producing high-purity liquefied chlorine.
  • the present invention relates to a method for producing high-purity liquefied chlorine.
  • the present invention relates to a method capable of producing high-purity liquefied chlorine having a purity of 99.999% or more by refining raw material chlorine containing chlorine oxide impurities.
  • Chlorine oxides such as dichlorine monoxide, chlorine dioxide, dichlorine hexaoxide (chlorine trioxide) are very easy to decompose, and decompose into chlorine and oxygen by the heat and light as shown below.
  • the ratio of the concentration of chlorine oxide, especially chlorine dioxide, in the liquefied chlorine in the gas phase to the liquid phase is about 0.7 compared to the liquid phase 1 and there is no significant difference in concentration.
  • the ratio of the concentration of oxygen, which is a decomposition product of chlorine oxide, in the gas phase and the liquid phase in the liquefied chlorine is overwhelmingly larger than the liquid phase 1 with the gas phase being more than 100 Will exist.
  • the total amount of impurities is 10 ppm or less, and even if the purity of chlorine is 99.999% or more, chlorine and oxygen are produced when this small amount of chlorine dioxide is gradually decomposed in the container.
  • most of the oxygen produced by the decomposition of chlorine dioxide is concentrated on the gas phase side, and the purity decreases as the oxygen concentration in the gas phase becomes more than 100 times that at the time of filling.
  • semiconductors, 'LCD It will be unsuitable for high purity applications. Therefore, in order to ensure a purity of 99.999% or higher, it is necessary to reduce the concentration of chlorine oxide, especially chlorine dioxide, to at least 0.01 ppm or less.
  • Chlorine oxides are known to be mixed into chlorine when chlorine is produced by electrolysis of salt.
  • Various processes for producing chlorine and sodium hydroxide by electrolysis of sodium chloride are known. In such a process, a certain concentration of saline was supplied to the anode chamber of the electrolytic cell, and the concentration decreased due to electrolysis. The saline solution is discharged out of the tank as return salt water, and the concentration is adjusted again and supplied to the electrolytic cell. At this time, sodium chlorate is produced as a by-product of electrolysis, so the concentration of sodium chlorate gradually increases when it is circulated as it is.
  • the chlorate is decomposed into chlorine or chlorine dioxide in the diffusion tank with the anode surface acidified, which causes chlorine oxide, especially chlorine dioxide, to be mixed into the chlorine gas.
  • a method of suppressing chlorate formation in an electrolytic cell for example, a method of reducing with hydrochloric acid or a method of decomposing with sulfuric acid is used.
  • a method of reducing with hydrochloric acid or a method of decomposing with sulfuric acid is used as a method of suppressing chlorate formation in an electrolytic cell.
  • there is a limit to lowering the pH of salt water and it is difficult to completely suppress the formation of chlorate, and it is inevitable that chlorine oxide is mixed in chlorine.
  • methods for removing chlorine oxides in chlorine, particularly chlorine dioxide include distillation, adsorption removal, etc. as commonly used methods. Also, chlorine and chlorine are easily utilized by utilizing the property that chlorine dioxide is easily decomposed. A method of decomposing into oxygen is known. If the distillation method is used, the boiling point of chlorine is 13.5 ° C, and the boiling point of chlorine dioxide is 11 ° C and there is a difference in boiling point, but the vapor-liquid equilibrium is close to 1 at room temperature. Removal by distillation was difficult. In addition, in the adsorption method, there are few adsorbents that are resistant to chlorine. Since it is small, a large device is required, and further, it is difficult to regenerate due to deterioration due to chlorine, and the frequency of replacement of the adsorbent is increased, resulting in higher costs.
  • SHO 50-1390 777 describes a method in which a chlorine oxide containing chlorine dioxide in a gas is brought into contact with activated carbon and reductively decomposed with activated carbon. Yes.
  • chlorine is adsorbed on the activated carbon, so the action of activated carbon as a reducing agent cannot be obtained, and it is difficult to remove chlorine dioxide.
  • Japanese Patent Application Laid-Open No. Sho 5 3-990 69 discloses a method in which chlorine dioxide is reacted with iron to remove it as iron oxide and iron chloride. Since iron reacts with chlorine, it is difficult to selectively remove chlorine dioxide.
  • JP-A-3-38 2 18 describes a method of decomposing chlorine dioxide by irradiating chlorine dioxide with ultraviolet rays of 1 to 2900 nm.
  • chlorine shows almost the same light absorption as chlorine dioxide, most of the light energy is absorbed by chlorine even if it is irradiated with ultraviolet rays alone. Therefore, more than one energy absorbed by chlorine. Energy is required, so it is not possible to decompose chlorine dioxide efficiently. Disclosure of the invention
  • An object of the present invention is to provide a method capable of efficiently removing chlorine oxide impurities from chlorine and producing, for example, high purity liquefied chlorine having a purity of 99.999% or more.
  • the present inventors have found a method capable of efficiently performing photolysis in a method of removing chlorine oxide impurities in chlorine, particularly chlorine dioxide impurities, by photolysis. That is, the present invention provides a method for producing high-purity liquefied chlorine, which comprises irradiating raw material chlorine containing chlorine oxide as an impurity, decomposing the chlorine oxide into chlorine and oxygen, and then performing purification by distillation. provide.
  • this invention consists of the manufacturing method of the high purity liquefied chlorine of following (1)-(10), for example.
  • a method for producing high purity liquefied chlorine by refining raw material chlorine containing chlorine oxide as an impurity the raw material chlorine is irradiated with light and the chlorine oxide impurity is decomposed into chlorine and oxygen by photolysis.
  • a method for producing high-purity liquefied chlorine comprising: a photolysis step; and a distillation step for removing photolysis products and other impurities by distillation.
  • chlorine oxide in chlorine can be easily and economically and efficiently removed to obtain high-purity liquefied chlorine, particularly high-purity liquefied chlorine having a purity of 99.999% or more. it can.
  • FIG. 1 is a schematic diagram showing the steps of the method of the present invention.
  • FIG. 2 is a schematic diagram of the photolysis apparatus used in the examples.
  • FIG. 3 is a schematic diagram of the photolysis apparatus used in the examples. BEST MODE FOR CARRYING OUT THE INVENTION
  • the method for producing high-purity liquefied chlorine of the present invention is to photoly decompose chlorine oxide impurities by irradiating the raw material chlorine with light when producing high-purity liquefied chlorine using liquefied chlorine containing chlorine oxide impurities as a raw material. It includes a process. That is, the production method of the present invention includes a photolysis step of photolyzing chlorine oxide in raw material chlorine containing chlorine oxide impurities, and distillation of oxygen and other impurities generated by decomposition of chlorine oxide. And a distillation step to be further removed.
  • chlorine dioxide As described in Japanese Patent Publication No. 3 — 3 8 2 1 8, chlorine dioxide has the property of decomposing by light and is known to be chlorine and oxygen. The mechanism of chlorine dioxide photodecomposition is not clear, but is presumed as follows.
  • the photolysis equipment used for photolysis of chlorine oxide has a light irradiator through which chlorine flows and an explosion-proof light source. Should be sealed, purged with air or inert gas, etc., and exhausted to a detoxification line in case of chlorine leakage.
  • an intubation tube is provided in the light irradiator.
  • a light source may be installed in the intubation tube, and light may be emitted from the inside of the light irradiator.
  • a light source may be installed outside the light irradiator and light may be emitted from the outside. .
  • the light irradiator may be in any form, for example, may be a straight tube or a spiral, or may be provided with a plate or the like inside the light irradiator. Also, if necessary, a plurality of light beams and guns may be connected in series or in parallel. Further, the reflection efficiency of light may be improved by using a reflecting mirror around the surroundings.
  • the material of the light irradiator used for the light irradiation may be transparent as long as it is resistant to chlorine and each light source. For example, glass or plastic can be used.
  • the photodecomposition reaction may be performed in the gas phase or in the liquid phase, but for safety, it is better to irradiate light in the gas phase, and vaporize the raw chlorine in the vaporizer before the photolysis process It is preferable to do so.
  • the photolysis reaction can be carried out either batchwise or flow-through, but a flow-through method is preferred because continuous purification is possible.
  • the light source used for the photodecomposition of chlorine oxide may be light having a wavelength within the range of absorption wavelength of chlorine dioxide,
  • Wavelengths below 3 3 O nm are strongly affected by absorption by chlorine, so in order to decompose chlorine dioxide, more than one energy absorbed by chlorine is required, and the pressure of chlorine It is not efficient and practical because it is affected. Therefore, as the light source, it is preferable to use a light source having a relatively small absorption of chlorine and having a wavelength within the absorption wavelength range of chlorine dioxide, for example, a wavelength in the range of 300 nm to 500 nm. Therefore, examples of such lamps include various fluorescent lamps, low-pressure mercury lamps, LED lamps, various HID lamps (high-pressure mercury lamps, high-pressure sodium lamps, metal halide lamps, etc.) and the like. A lamp with a wavelength of nm can be used.
  • the time required for photolysis is simply proportional to the chlorine oxide concentration and the light intensity. It can be determined by the type of light, the diameter of the light irradiator, light intensity, chlorine oxide concentration and chlorine flow rate.
  • the temperature in the photolysis step may be a usual temperature, preferably 20 to 60 ° C.
  • the pressure may be a normal pressure, and is preferably from 0.01 to 1.5 MPa.
  • the distillation step in the present invention can be carried out by a normal distillation operation. However, it is preferable to carry out distillation that cuts off low-boiling components at an optimum reflux ratio in order to remove oxygen generated in the photolysis step. . This not only removes oxygen but also removes low-boiling point impurities such as nitrogen and hydrogen. Subsequently, heavy metal, water and water are distilled by performing distillation to cut off the high boiling point components at total reflux. Impurities of high boiling point components such as organic substances can also be removed. By using the method of the present invention, continuous purification is possible, and the equipment cost can be kept low.
  • FIG. 1 is a schematic diagram showing the steps of the method of the present invention.
  • Raw material chlorine containing chlorine oxide impurities is vaporized by the vaporizer 1 and sent to a photolysis process having a photolysis device 2, where chlorine oxide impurities are removed by photolysis. Subsequently, it is sent to a distillation process having a distillation column 3, where oxygen and other impurities produced by the decomposition of chlorine oxide are distilled off.
  • FIG. 2 shows the photolysis device used in the example, which irradiates light from the inside of the light irradiator.
  • the photolysis device 4 is provided with a stainless steel tube 7, and a glass tube 8 is fixed at the center by a flange 9, packing 10, and screws 1 1, and the glass tube 8 has a lamp. 1 2 is inserted, and gas is introduced from inlet 1 3 and circulated to outlet 1 4. The entire light irradiator is sealed, air and inert gas are introduced through the inlet 5, and the outlet 6 is connected to abatement.
  • Fig. 3 shows the photolysis device used in the example, which irradiates light from the outside of the light irradiator.
  • Glass tube 1 8 is fixed to photolysis device 1 5 with flange 19, screw 20, screw 2 1, lamp 2 2 is installed around the glass tube, and gas is supplied to inlet 2 3 Introduced from and distributed to outlet 24.
  • the entire light irradiator is sealed, air is inert gas introduced through inlet 16 and outlet 17 is connected to abatement.
  • Chlorine dioxide is analyzed by Fourier transform infrared spectroscopy, and other impurity gases are analyzed by a gas chromatograph with a TCD detector. More went.
  • the photolysis device 4 shown in Fig. 2 three fluorescent lamps (FL 6 WD 6 W from National) are used as lamps in the photolysis device 4 shown in Fig. 2, and chlorine containing chlorine dioxide is used in the photolysis tube.
  • the gas was flowed at a flow rate of 100 NL / min at a pressure of 0. IMP a and IMP a.
  • the inlet concentration of chlorine dioxide was 20 ppm, but it was less than 0. Olpm at the outlet after photolysis.
  • the low-boiling component and the high-boiling component were removed by distillation, and the chlorine gas was liquefied, filled into a container and analyzed, and the purity was 99.999% or more. Even if the container was left for 30 days and analyzed, the purity was 99.9999% or more.
  • a high-pressure mercury lamp (Sen Special Light Source Co., Ltd. HL— 1 0 0 C H_5, 1 0 0 W) is used as a lamp in the photolysis apparatus 15 shown in FIG. Used, irradiate light only in one direction toward the glass tube 18 and flow chlorine gas containing chlorine dioxide into the photolysis tube at a flow rate of 30 N LZ at a pressure of 0. IMP a and IMP a. I let it pass.
  • the inlet concentration of chlorine dioxide at this time was 10 ppm, but at the outlet after photolysis, it was less than 0.1 ppm.
  • Example 2 except that six fluorescent lamps (FL 6 WD 6 W made by National) were used as the lamps and light was irradiated from six directions around the glass tube. Similar results were obtained when chlorine gas was circulated under the same conditions.
  • Example 2 A similar result was obtained when chlorine gas was circulated under the same conditions as in Example 2 except that a metal halide lamp (MCK 1 5 0 W-0 7 H 1 5 0 W manufactured by Iwasaki Electric Co., Ltd.) was used as the lamp. Obtained.
  • a metal halide lamp MK 1 5 0 W-0 7 H 1 5 0 W manufactured by Iwasaki Electric Co., Ltd.
  • Example 6 A low-pressure mercury lamp (manufactured by Sen Special Light Source Co., Ltd. HF—100 G 20 W) was used as the lamp, and chlorine gas was circulated under the same conditions as in Example 2 except that the flow rate was 20 NL / min. However, similar results were obtained.
  • Example 6 A low-pressure mercury lamp (manufactured by Sen Special Light Source Co., Ltd. HF—100 G 20 W) was used as the lamp, and chlorine gas was circulated under the same conditions as in Example 2 except that the flow rate was 20 NL / min. However, similar results were obtained.
  • Example 6 A low-pressure mercury lamp (manufactured by Sen Special Light Source Co., Ltd. HF—100 G 20 W) was used as the lamp, and chlorine gas was circulated under the same conditions as in Example 2 except that the flow rate was 20 NL / min. However, similar results were obtained.
  • Example 6 A low-pressure mercury lamp (manufactured by Sen Special Light Source Co., Ltd. HF—100 G 20 W)
  • Chlorine gas was purified only by the distillation process without using the photoreaction process.
  • the inlet concentration of chlorine dioxide at this time was 10 ppm, but it was 7 ppm at the outlet of the distillation process, and the amount removed was small.
  • chlorine dioxide was 7 ppm, but other impurities including oxygen were 1 ppm or less, and the total impurity concentration was l O p pm or less. Yes, the purity was 9 9. 9 9 9% or more .
  • chlorine dioxide decreased to 4 ppm, oxygen increased to 700 ppm, and the purity of chlorine decreased.
  • Photolysis process Niic acid 'Sodium chloride concentration (m) Chlorine purity (%) Pressure (MPa) Before purification 30 days after filling After 30 days after filling Example 1 0. 1 20 ⁇ 0. 01 ⁇ 0. 01> 99 999> 99. 999
  • chlorine oxide in chlorine can be easily and economically and efficiently removed to produce high-purity liquefied chlorine, which can be advantageously used industrially.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

Disclosed is a method for producing high-purity liquid chlorine wherein a raw material chlorine which contains chlorine oxide as impurities is irradiated with light so that the chlorine oxide is decomposed into chlorine and oxygen, and then purification is performed by distillation. Consequently, chlorine oxide impurities can be efficiently removed from chlorine.

Description

高純度液化塩素の製造方法 技術分野 Manufacturing method of high purity liquefied chlorine Technical Field
本発明は、 高純度液化塩素の製造方法に関する。 本発明は、 特に The present invention relates to a method for producing high-purity liquefied chlorine. In particular, the present invention
、 塩素酸化物不純物を含む原料塩素を精製することにより純度 9 9 . 9 9 9 %以上の高純度液化塩素を製造することのできる方法に関 する。 背景技術 The present invention relates to a method capable of producing high-purity liquefied chlorine having a purity of 99.999% or more by refining raw material chlorine containing chlorine oxide impurities. Background art
一酸化二塩素、 二酸化塩素、 六酸化二塩素 (三酸化塩素) 等の塩 素酸化物は非常に分解しやすく、 熱や光によって下式のように塩素 と酸素に分解する。  Chlorine oxides such as dichlorine monoxide, chlorine dioxide, dichlorine hexaoxide (chlorine trioxide) are very easy to decompose, and decompose into chlorine and oxygen by the heat and light as shown below.
C 1 2 O → C 1 2 + 1 / 2 O 2 ( 1 ) C 1 O 2 → 1 / 2 C 1 2 + 〇 2 ( 2 ) C 1 2 O 6 → C 1 2 + 3 O 2 ( 3 ) 塩素酸化物、 特に二酸化塩素の液化塩素中での気相と液相での濃 度の比は、 液相 1 に対して気相は 0 . 7程度で大きな濃度差はない 。 塩素酸化物の分解生成物である酸素の液化塩素中での気相と液相 での濃度の比は、 液相 1 に対して気相は 1 0 0以上と圧倒的に気相 側に多量に存在することになる。 充填した時点では全不純物量が 1 0 p p m以下であり、 塩素の純度が 9 9 . 9 9 9 %以上であっても 、 この微量の二酸化塩素が容器内で徐々に分解すると塩素と酸素が 生成され、 二酸化塩素の分解によって生成した酸素はそのほとんど が気相側に濃縮され、 気相の酸素濃度が充填時の 1 0 0倍以上とな つて純度が低下してしまい、 例えば、 光ファイバ一や半導体、 '液晶 用途等の高純度での用途に適さないものとなってしまう。 よって、 純度 9 9 . 9 9 9 %以上を確保しておくためには、 塩素酸化物、 特 に二酸化塩素濃度を少なく とも 0 . 0 1 p p m以下にまで低減させ る必要がある。 C 1 2 O → C 1 2 + 1/2 O 2 (1) C 1 O 2 → 1/2 C 1 2 + ○ 2 (2) C 1 2 O 6 → C 1 2 + 3 O 2 (3) The ratio of the concentration of chlorine oxide, especially chlorine dioxide, in the liquefied chlorine in the gas phase to the liquid phase is about 0.7 compared to the liquid phase 1 and there is no significant difference in concentration. The ratio of the concentration of oxygen, which is a decomposition product of chlorine oxide, in the gas phase and the liquid phase in the liquefied chlorine is overwhelmingly larger than the liquid phase 1 with the gas phase being more than 100 Will exist. At the time of filling, the total amount of impurities is 10 ppm or less, and even if the purity of chlorine is 99.999% or more, chlorine and oxygen are produced when this small amount of chlorine dioxide is gradually decomposed in the container. However, most of the oxygen produced by the decomposition of chlorine dioxide is concentrated on the gas phase side, and the purity decreases as the oxygen concentration in the gas phase becomes more than 100 times that at the time of filling. And semiconductors, 'LCD It will be unsuitable for high purity applications. Therefore, in order to ensure a purity of 99.999% or higher, it is necessary to reduce the concentration of chlorine oxide, especially chlorine dioxide, to at least 0.01 ppm or less.
塩素酸化物は食塩の電解により塩素を製造する際に塩素中に混入 してしまう ことが知られている。 食塩の電解により塩素および水酸 化ナトリウムを製造するプロセスは種々知られているが、 そのよう なプロセスにおいて電解槽の陽極室には一定濃度の食塩水が供給さ れ、 電解により濃度の低下した食塩水は戻り塩水として槽外へ排出 され、 再度濃度を調整して電解槽へ供給される。 この際、 電解によ り塩素酸ナトリウムが副生されるため、 そのまま循環させると、 塩 素酸ナトリウムの濃度が次第に高くなる。 塩素酸塩は陽極表面が酸 性化された拡散槽内で塩素または二酸化塩素に分解し、 これにより 塩素ガス中に塩素酸化物、 特に二酸化塩素が混入してしまう。  Chlorine oxides are known to be mixed into chlorine when chlorine is produced by electrolysis of salt. Various processes for producing chlorine and sodium hydroxide by electrolysis of sodium chloride are known. In such a process, a certain concentration of saline was supplied to the anode chamber of the electrolytic cell, and the concentration decreased due to electrolysis. The saline solution is discharged out of the tank as return salt water, and the concentration is adjusted again and supplied to the electrolytic cell. At this time, sodium chlorate is produced as a by-product of electrolysis, so the concentration of sodium chlorate gradually increases when it is circulated as it is. The chlorate is decomposed into chlorine or chlorine dioxide in the diffusion tank with the anode surface acidified, which causes chlorine oxide, especially chlorine dioxide, to be mixed into the chlorine gas.
従来、 電解槽での塩素酸塩生成を抑える方法としては、 例えば、 塩酸により還元する方法や硫酸により分解する方法等が用いられる 。 しかし、 塩水の p Hを下げるのには限度があり、 塩素酸塩の生成 を完全に抑えることは困難であり、 塩素中に塩素酸化物が混入して しまうことは避けられない。  Conventionally, as a method of suppressing chlorate formation in an electrolytic cell, for example, a method of reducing with hydrochloric acid or a method of decomposing with sulfuric acid is used. However, there is a limit to lowering the pH of salt water, and it is difficult to completely suppress the formation of chlorate, and it is inevitable that chlorine oxide is mixed in chlorine.
一方、 塩素中の塩素酸化物、 特に二酸化塩素を除去する方法とし ては、 一般的に用いられる方法として蒸留、 吸着除去等が挙げられ 、 また二酸化塩素が分解しやすい性質を利用して塩素と酸素に分解 する方法が知られている。 蒸留方法を用いた場合、 塩素の沸点は一 3 5 °Cであり、 二酸化塩素の沸点は 1 1 °Cであって沸点差はあるけ れども、 常温では気液平衡が 1 に近いためか、 蒸留による除去は困 難であった。 また、 吸着方法では、 塩素に対して耐性のある吸着剤 が少ないが、 その中で二酸化塩素を吸着する吸着剤でもその能力は 小さいため、 大きな装置が必要となってしまい、 さらには塩素によ る劣化により再生が困難で、 吸着剤の交換頻度が多くなり、 コス ト がかかる。 On the other hand, methods for removing chlorine oxides in chlorine, particularly chlorine dioxide, include distillation, adsorption removal, etc. as commonly used methods. Also, chlorine and chlorine are easily utilized by utilizing the property that chlorine dioxide is easily decomposed. A method of decomposing into oxygen is known. If the distillation method is used, the boiling point of chlorine is 13.5 ° C, and the boiling point of chlorine dioxide is 11 ° C and there is a difference in boiling point, but the vapor-liquid equilibrium is close to 1 at room temperature. Removal by distillation was difficult. In addition, in the adsorption method, there are few adsorbents that are resistant to chlorine. Since it is small, a large device is required, and further, it is difficult to regenerate due to deterioration due to chlorine, and the frequency of replacement of the adsorbent is increased, resulting in higher costs.
また、 分解除去する方法としては、 熱分解、 触媒分解、 光分解が 知られている。 熱分解では、 二酸化塩素は 1 0 0 °c以上のガス温度 にすると分解することが知られており、 例えば、 シェルアンドチュ —プ型の反応容器を用い、 シェル側を蒸気により加熱し、 チューブ 側に二酸化塩素を流す方法等がある。 しかしながら、 単に温度を 1 0 0 °c以上に上昇させる方法では、 分解効率が低く、 ガス全体を均 一な温度に上昇させる必要があるためエネルギーが増大してしまう 。 また、 高温の塩素に対して耐性のある装置の材質が必要となり、 コス トが高くなつてしまう。 特開平 3— 4 0 9 0 3号公報には、 二 酸化塩素を熱分解するに際して、 局部的に二酸化塩素の分解温度よ り も高い温度に加熱することにより一旦ラジカルを生じさせ、 連鎖 反応的に最終的に塩素と酸素とに分解する方法が記載されている。 しかし、 この方法では、 塩素に対する二酸化塩素濃度が 0 . 5 %未 満では二酸化塩素を効率よく分解させることはできず、 例えば、 P p mオーダ一の二酸化塩素不純物を効率的に除去することはできな い。 また、 二酸化塩素は 1 0 0 °C以下でも徐々に分解するが、 分解 には長時間を要し、 実用的ではない。 触媒分解としては、 例えば、 特開昭 5 0— 1 3 9 0 7 7号公報には、 ガス中の二酸化塩素を含む 塩素酸化物を活性炭に接触させて活性炭により還元分解する方法が 記載されている。 しかし、 塩素ガス中の二酸化塩素の除去に関して は、 塩素が活性炭に吸着されてしまうため、 活性炭の還元剤として の作用は得られず、 二酸化塩素の除去は困難である。 また、 特開昭 5 3 - 9 9 0 6 9号公報には、 二酸化塩素を鉄と反応させて酸化鉄 および塩化鉄として除去する方法が挙げられているが、 塩素中では 鉄は塩素と反応してしまうため、 二酸化塩素を選択的に除去するの は困難である。 光分解としては、 特開平 3 — 3 8 2 1 8号公報に二 酸化塩素に 1 ~ 2 9 0 n mの紫外線を照射して二酸化塩素を分解す る方法が記載されている。 しかし、 塩素も二酸化塩素とほぼ同様の 光吸収を示すことから、 紫外線のみを照射しても光エネルギーのほ とんどが塩素に吸収されてしまうため、 塩素により吸収されるエネ ルギ一以上のエネルギーが必要となり、 そのため効率的に二酸化塩 素を分解することができない。 発明の開示 As decomposition and removal methods, thermal decomposition, catalytic decomposition, and photolysis are known. In pyrolysis, chlorine dioxide is known to decompose at a gas temperature of 100 ° C or higher. For example, a shell-and-tube reaction vessel is used, the shell side is heated with steam, and the tube There is a method of flowing chlorine dioxide to the side. However, the method of simply raising the temperature to 100 ° C. or more increases the energy because the decomposition efficiency is low and the entire gas needs to be raised to a uniform temperature. In addition, equipment materials that are resistant to high-temperature chlorine are required, resulting in high costs. In Japanese Patent Laid-Open No. 3-041093, when pyrolysis of chlorine dioxide, radicals are once generated by locally heating to a temperature higher than the decomposition temperature of chlorine dioxide, and chain reaction is performed. Describes a method of finally decomposing into chlorine and oxygen. However, with this method, if the chlorine dioxide concentration with respect to chlorine is less than 0.5%, chlorine dioxide cannot be efficiently decomposed. For example, chlorine dioxide impurities of the order of P pm cannot be efficiently removed. Absent. Chlorine dioxide decomposes gradually even at temperatures below 100 ° C, but the decomposition takes a long time and is not practical. As the catalytic decomposition, for example, Japanese Patent Application Laid-Open No. SHO 50-1390 777 describes a method in which a chlorine oxide containing chlorine dioxide in a gas is brought into contact with activated carbon and reductively decomposed with activated carbon. Yes. However, with regard to the removal of chlorine dioxide from chlorine gas, chlorine is adsorbed on the activated carbon, so the action of activated carbon as a reducing agent cannot be obtained, and it is difficult to remove chlorine dioxide. Japanese Patent Application Laid-Open No. Sho 5 3-990 69 discloses a method in which chlorine dioxide is reacted with iron to remove it as iron oxide and iron chloride. Since iron reacts with chlorine, it is difficult to selectively remove chlorine dioxide. As photodecomposition, JP-A-3-38 2 18 describes a method of decomposing chlorine dioxide by irradiating chlorine dioxide with ultraviolet rays of 1 to 2900 nm. However, since chlorine shows almost the same light absorption as chlorine dioxide, most of the light energy is absorbed by chlorine even if it is irradiated with ultraviolet rays alone. Therefore, more than one energy absorbed by chlorine. Energy is required, so it is not possible to decompose chlorine dioxide efficiently. Disclosure of the invention
本発明は、 塩素から塩素酸化物不純物を効率的に除去し、 例えば 、 純度 9 9 . 9 9 9 %以上の高純度液化塩素を製造することのでき る方法を提供することを目的とする。  An object of the present invention is to provide a method capable of efficiently removing chlorine oxide impurities from chlorine and producing, for example, high purity liquefied chlorine having a purity of 99.999% or more.
本発明者らは、 塩素中の塩素酸化物不純物、 特に二酸化塩素不純 物を光分解することによって除去する方法において、 光分解を効率 的に行う ことのできる方法を見出した。 すなわち、 本発明は、 塩素 酸化物を不純物として含む原料塩素に光を照射して塩素酸化物を塩 素および酸素に分解し、 その後蒸留による精製を行うことを含む高 純度液化塩素の製造方法を提供する。  The present inventors have found a method capable of efficiently performing photolysis in a method of removing chlorine oxide impurities in chlorine, particularly chlorine dioxide impurities, by photolysis. That is, the present invention provides a method for producing high-purity liquefied chlorine, which comprises irradiating raw material chlorine containing chlorine oxide as an impurity, decomposing the chlorine oxide into chlorine and oxygen, and then performing purification by distillation. provide.
よって、 本発明は、 例えば、 次の ( 1 ) 〜 ( 1 0 ) の高純度液化 塩素の製造方法からなる。  Therefore, this invention consists of the manufacturing method of the high purity liquefied chlorine of following (1)-(10), for example.
( 1 ) 塩素酸化物を不純物として含む原料塩素を精製することに より高純度液化塩素を製造する方法において、 原料塩素に光を照射 して塩素酸化物不純物を光分解によって塩素と酸素に分解する光分 解工程と、 光分解生成物およびその他の不純物を蒸留によって除去 する蒸留工程とを含むことを特徴とする高純度液化塩素の製造方法 ( 2 ) 塩素酸化物不純物の濃度が 0. l〜 5 0 p p mである、 上 記 ( 1 ) に記載の高純度液化塩素の製造方法。 (1) In a method for producing high purity liquefied chlorine by refining raw material chlorine containing chlorine oxide as an impurity, the raw material chlorine is irradiated with light and the chlorine oxide impurity is decomposed into chlorine and oxygen by photolysis. A method for producing high-purity liquefied chlorine, comprising: a photolysis step; and a distillation step for removing photolysis products and other impurities by distillation. (2) The method for producing high-purity liquefied chlorine as described in (1) above, wherein the concentration of chlorine oxide impurities is 0.1 to 50 ppm.
( 3 ) 塩素酸化物不純物が二酸化塩素である、 上記 ( 1 ) または ( 2 ) に記載の高純度液化塩素の製造方法。  (3) The method for producing high-purity liquefied chlorine according to (1) or (2) above, wherein the chlorine oxide impurity is chlorine dioxide.
( 4 ) 光分解工程の光源が、 3 0 0〜 5 0 0 n mの範囲の波長を 含む光源である、 上記 ( 1 ) 〜 ( 3 ) のいずれかに記載の高純度液 化塩素の製造方法。  (4) The method for producing high-purity liquefied chlorine according to any one of (1) to (3) above, wherein the light source for the photolysis step is a light source containing a wavelength in the range of 300 to 500 nm. .
( 5 ) 原料塩素を光分解工程の前に気化器により気化させ、 光分 解工程において気相で光分解反応を行う、 上記 ( 1 ) 〜 ( 4 ) のい ずれかに記載の高純度液化塩素の製造方法。  (5) The high-purity liquefaction according to any one of (1) to (4) above, wherein the raw material chlorine is vaporized by a vaporizer before the photolysis step, and the photolysis reaction is performed in the gas phase in the photolysis step. Chlorine production method.
( 6 ) 光分解工程における光分解反応が、 流通式での光分解反応 である、 上記 ( 1 ) 〜 ( 5 ) のいずれかに記載の高純度液化塩素の 製造方法。  (6) The method for producing high-purity liquefied chlorine according to any one of (1) to (5) above, wherein the photolysis reaction in the photolysis step is a flow-type photolysis reaction.
( 7 ) 光分解工程における光分解反応の温度が 2 0〜 6 0 °Cであ る、 上記 ( 1 ) 〜 ( 6 ) のいずれかに記載の高純度液化塩素の製造 方法。  (7) The method for producing high-purity liquefied chlorine according to any one of the above (1) to (6), wherein the temperature of the photolysis reaction in the photolysis step is 20 to 60 ° C.
( 8 ) 光分解工程における光分解反応の圧力が 0. 0 1〜 1. 5 M P aである、 上記 ( 1 ) 〜 ( 7 ) のいずれかに記載の高純度液化 塩素の製造方法。  (8) The method for producing high-purity liquefied chlorine according to any one of the above (1) to (7), wherein the pressure of the photolysis reaction in the photolysis step is 0.01 to 1.5 MPa.
( 9 ) 蒸留工程が、 光分解工程で生成した酸素を含む低沸点不純 物を除去する低沸蒸留工程を含む、 上記 ( 1 ) に記載の高純度液化 塩素の製造方法。  (9) The method for producing high-purity liquefied chlorine according to the above (1), wherein the distillation step includes a low-boiling distillation step of removing low-boiling impurities including oxygen generated in the photolysis step.
( 1 0 ) 高純度液化塩素の純度が 9 9. 9 9 9 %以上である、 上 記 ( 1 ) 〜 ( 9 ) のいずれかに記載の高純度液化塩素の製造方法。  (10) The method for producing high-purity liquefied chlorine according to any one of the above (1) to (9), wherein the purity of the high-purity liquefied chlorine is 99.99 9% or more.
本発明によれば、 簡便にかつ経済的、 効率的に塩素中の塩素酸化 物を除去し、 高純度の液化塩素、 特に純度 9 9. 9 9 9 %以上の高 純度液化塩素を得ることができる。 図面の簡単な説明 According to the present invention, chlorine oxide in chlorine can be easily and economically and efficiently removed to obtain high-purity liquefied chlorine, particularly high-purity liquefied chlorine having a purity of 99.999% or more. it can. Brief Description of Drawings
図 1 は、 本発明の方法の工程を示す模式図である。  FIG. 1 is a schematic diagram showing the steps of the method of the present invention.
図 2は、 実施例で用いた光分解装置の模式図である。  FIG. 2 is a schematic diagram of the photolysis apparatus used in the examples.
図 3は、 実施例で用いた光分解装置の模式図である。 発明を実施するための最良の形態  FIG. 3 is a schematic diagram of the photolysis apparatus used in the examples. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の好ましい実施形態について詳しく説明する。  Hereinafter, preferred embodiments of the present invention will be described in detail.
本発明の高純度液化塩素の製造方法は、 塩素酸化物不純物を含む 液化塩素を原料として用いて高純度液化塩素を製造するにあたり、 原料塩素に光を照射して塩素酸化物不純物を光分解する工程を含む ことを特徴とする。 すなわち、 本発明の製造方法は、 塩素酸化物不 純物を含む原料塩素中の塩素酸化物を光分解する光分解工程と、 塩 素酸化物の分解により生成した酸素およびその他の不純物を蒸留に より除去する蒸留工程とからなる。  The method for producing high-purity liquefied chlorine of the present invention is to photoly decompose chlorine oxide impurities by irradiating the raw material chlorine with light when producing high-purity liquefied chlorine using liquefied chlorine containing chlorine oxide impurities as a raw material. It includes a process. That is, the production method of the present invention includes a photolysis step of photolyzing chlorine oxide in raw material chlorine containing chlorine oxide impurities, and distillation of oxygen and other impurities generated by decomposition of chlorine oxide. And a distillation step to be further removed.
塩素酸化物不純物の中でもその主な物質は二酸化塩素である。 特 開平 3 — 3 8 2 1 8号公報にも記載されているように、 二酸化塩素 は光によって分解する性質があり、 塩素と酸素になることが知られ ている。 二酸化塩素の光による分解の機構としては、 明確ではない が、 次のように推測される。  Among the chlorine oxide impurities, the main substance is chlorine dioxide. As described in Japanese Patent Publication No. 3 — 3 8 2 1 8, chlorine dioxide has the property of decomposing by light and is known to be chlorine and oxygen. The mechanism of chlorine dioxide photodecomposition is not clear, but is presumed as follows.
二酸化塩素の光吸収では、 極大吸収波長を 3 7 O n m付近に、 そ して吸収バンドを 2 5 0〜 4 5 0 n m付近の範囲に持っていること が知られている。 これらの波長の光を吸収することにより励起され てラジカルが生じる反応、 例えば、 下記式 ( 4 ) で示される反応が 開始反応となり、 続いて下記式 ( 5 ) 〜 ( 7 ) で示される連鎖反応 が進行し、 最終的に塩素と酸素とが生成するということが考えられ る。 また、 塩素自体も極大吸収波長が 3 3 0 n m付近で、 吸収バン ドが 2 0 0〜 4 5 0 n m付近の範囲の光を吸収することが知られて いる。 このとき、 二酸化塩素と同様に下 gel式 ( 8 ) で示されるよう に解離してラジカルを生じるが、 器壁等により再び塩素になると推 測される。 In the light absorption of chlorine dioxide, it is known that the maximum absorption wavelength is in the vicinity of 37 nm and the absorption band is in the range of 25-50 nm. A reaction that is excited by absorbing light of these wavelengths to generate radicals, for example, a reaction represented by the following formula (4) is an initiation reaction, followed by a chain reaction represented by the following formulas (5) to (7). It can be considered that chlorine and oxygen are finally produced. Chlorine itself is also known to absorb light with a maximum absorption wavelength of around 3300 nm and an absorption band in the range of about 200 nm to 4500 nm. Yes. At this time, as with chlorine dioxide, it dissociates as shown by the following gel formula (8) to generate radicals, but it is presumed that it becomes chlorine again by the vessel wall or the like.
C 1 O 2 + h V → C I O * + o * ( 4 )C 1 O 2 + h V → CIO * + o * (4)
C I O * + C l 〇 氺 → C 1 2 + 〇 2 ( 5 )CIO * + C l ○ 氺 → C 1 2 + ○ 2 (5)
C 1 O 2 + O * → C 1 0 3 * ( 6 )C 1 O 2 + O * → C 1 0 3 * (6)
2 C 1 O 3 * → C 1 2 0 6 → C 1 2 + 3 O 2 ( 7 )2 C 1 O 3 * → C 1 2 0 6 → C 1 2 + 3 O 2 (7)
C 1 2 + h v → C I * + C 1 氺 ( 8 ) 塩素酸化物の光分解に用いられる光分解装置としては、 塩素が流 通する光照射器および防爆構造の光源を持ち 、 装置全体は周囲が密 閉され、 空気や不活性ガスなどでパージされ 、 塩素漏洩時に備えて 除害ラインへと排気されているのがよい o 7Uの照射方法としては、 光照射器内に内挿管を設けて内挿管内に光源を設置し、 光照射器の 内側から光を照射するようにしてもよく 、 めるいは光照射器の外に 光源を設置し、 光を外側から照射するようにしてもよい。 光照射器 はいかなる形態にあってもよく、 例えば 、 直管状もしくはらせん状 でもよく、 あるいは光照射器内部にじやま板等を備えるものであつ てもよい。 また、 必要に応じて、 複数個の光ノ昭ハ、射器を直列あるいは 並列に連結してもよい。 また、 周囲等に反射鏡を用いる等により光 の反射効率を向上させてもよい。 光照射に用いる光照射器の材質は 透明で、 塩素および各光源に耐性のあるものであればよく、 例えば 、 ガラスやプラスチック等を用いることができる。 C 1 2 + hv → CI * + C 1 氺 (8) The photolysis equipment used for photolysis of chlorine oxide has a light irradiator through which chlorine flows and an explosion-proof light source. Should be sealed, purged with air or inert gas, etc., and exhausted to a detoxification line in case of chlorine leakage. O As a 7U irradiation method, an intubation tube is provided in the light irradiator. A light source may be installed in the intubation tube, and light may be emitted from the inside of the light irradiator. Alternatively, a light source may be installed outside the light irradiator and light may be emitted from the outside. . The light irradiator may be in any form, for example, may be a straight tube or a spiral, or may be provided with a plate or the like inside the light irradiator. Also, if necessary, a plurality of light beams and guns may be connected in series or in parallel. Further, the reflection efficiency of light may be improved by using a reflecting mirror around the surroundings. The material of the light irradiator used for the light irradiation may be transparent as long as it is resistant to chlorine and each light source. For example, glass or plastic can be used.
光分解反応は、 気相で行っても、 液相で行ってもよいが、 安全上 、 気相で光を照射して行うのがよく、 光分解工程の前に原料塩素を 気化器で気化させるのが好ましい。 光分解反応は、 回分式でも、 流 通式でも行うことできるが、 連続の精製も可能となることから流通 式が好ましい。 塩素酸化物の光分解に用いられる光源としては、 少なく とも二酸 化塩素の吸収波長の範囲内の波長を持つ光であればよいけれども、The photodecomposition reaction may be performed in the gas phase or in the liquid phase, but for safety, it is better to irradiate light in the gas phase, and vaporize the raw chlorine in the vaporizer before the photolysis process It is preferable to do so. The photolysis reaction can be carried out either batchwise or flow-through, but a flow-through method is preferred because continuous purification is possible. The light source used for the photodecomposition of chlorine oxide may be light having a wavelength within the range of absorption wavelength of chlorine dioxide,
3 3 O nm付近以下の波長は塩素による吸収の影響を強く受けるの で、 二酸化塩素を分解するためには塩素により吸収されるエネルギ 一以上のエネルギーが必要となってしまい、 また塩素の圧力の影響 も受けてしまうため効率的でなく、 実用的ではない。 したがって、 光源としては、 塩素の吸収が比較的小さく、 二酸化塩素の吸収波長 範囲内にある波長、 例えば、 3 0 0〜 5 0 0 nmの範囲の波長をも つ光源を用いるのがよい。 よって、 そのためのランプとしては、 例 えば、 各種蛍光ランプ、 低圧水銀ランプ、 L E Dランプ、 各種 H I Dランプ (高圧水銀ランプ、 高圧ナトリウムランプ、 メタルハラィ ドランプ等) 等であって、 3 0 0〜 5 0 0 n mの波長を持つランプ を用いることができる。 Wavelengths below 3 3 O nm are strongly affected by absorption by chlorine, so in order to decompose chlorine dioxide, more than one energy absorbed by chlorine is required, and the pressure of chlorine It is not efficient and practical because it is affected. Therefore, as the light source, it is preferable to use a light source having a relatively small absorption of chlorine and having a wavelength within the absorption wavelength range of chlorine dioxide, for example, a wavelength in the range of 300 nm to 500 nm. Therefore, examples of such lamps include various fluorescent lamps, low-pressure mercury lamps, LED lamps, various HID lamps (high-pressure mercury lamps, high-pressure sodium lamps, metal halide lamps, etc.) and the like. A lamp with a wavelength of nm can be used.
上記の波長範囲を持つ光源で同種類の光源を用いた同じ光照射器 では、 光分解に必要な時間は塩素酸化物濃度および光の強度に単純 に比例するので、 光分解装置の構成は光源の種類、 光照射器の径、 光強度、 塩素酸化物濃度および塩素流量により決定することができ る。  In the same light irradiator using the same type of light source with the above-mentioned wavelength range, the time required for photolysis is simply proportional to the chlorine oxide concentration and the light intensity. It can be determined by the type of light, the diameter of the light irradiator, light intensity, chlorine oxide concentration and chlorine flow rate.
光分解工程における温度は、 常用の温度でよく、 好ましくは 2 0 〜 6 0 °Cである。 圧力は、 常用の圧力でよく、 好ましくは 0. 0 1 〜 1. 5 M P aである。  The temperature in the photolysis step may be a usual temperature, preferably 20 to 60 ° C. The pressure may be a normal pressure, and is preferably from 0.01 to 1.5 MPa.
本発明における蒸留工程は、 通常の蒸留操作で行うことができる が、 少なく とも光分解工程で生成した酸素を除去するため、 最適な 還流比で低沸点成分をカッ トする蒸留を行うのが好ましい。 これに より酸素を除去できるほか、 窒素、 水素等の低沸点成分の不純物が 含まれる場合にはそれらを除去することもできる。 続いて、 全還流 での高沸点成分をカッ トする蒸留を行うことによって、 重金属、 水 、 有機物といった高沸点成分の不純物を除去することもできる。 本発明の方法を用いることにより、 連続の精製も可能であり、 設 備コス トも低く抑えることができる。 The distillation step in the present invention can be carried out by a normal distillation operation. However, it is preferable to carry out distillation that cuts off low-boiling components at an optimum reflux ratio in order to remove oxygen generated in the photolysis step. . This not only removes oxygen but also removes low-boiling point impurities such as nitrogen and hydrogen. Subsequently, heavy metal, water and water are distilled by performing distillation to cut off the high boiling point components at total reflux. Impurities of high boiling point components such as organic substances can also be removed. By using the method of the present invention, continuous purification is possible, and the equipment cost can be kept low.
本発明を以下の実施例により説明するが、 本発明はこれらの実施 例に何ら限定されるものではない。  The present invention will be described with reference to the following examples, but the present invention is not limited to these examples.
図 1 は、 本発明の方法の工程を示す模式図である。 塩素酸化物不 純物を含む原料塩素は気化器 1 により気化され、 光分解装置 2 を有 する光分解工程に送られ、 ここで塩素酸化物不純物が光分解によつ て除去される。 続いて、 蒸留塔 3 を有する蒸留工程に送られ、 ここ で塩素酸化物の分解により生成された酸素およびその他の不純物が 蒸留除去される。  FIG. 1 is a schematic diagram showing the steps of the method of the present invention. Raw material chlorine containing chlorine oxide impurities is vaporized by the vaporizer 1 and sent to a photolysis process having a photolysis device 2, where chlorine oxide impurities are removed by photolysis. Subsequently, it is sent to a distillation process having a distillation column 3, where oxygen and other impurities produced by the decomposition of chlorine oxide are distilled off.
図 2 に、 実施例に用いた光分解装置であって、 光照射器の内側か ら光を照射する装置を示す。 光分解装置 4にはステンレス製の管 7 が設けられており、 その中央部にはガラス管 8がフランジ 9、 パッ キン 1 0、 ねじ 1 1 によって固定されており、 ガラス管 8にはラン プ 1 2が挿入されており、 ガスは入口 1 3から導入され、 出口 1 4 へと流通される。 光照射器全体は密閉され、 空気や不活性ガスが入 口 5から導入され、 出口 6は除害へと接続されている。  Figure 2 shows the photolysis device used in the example, which irradiates light from the inside of the light irradiator. The photolysis device 4 is provided with a stainless steel tube 7, and a glass tube 8 is fixed at the center by a flange 9, packing 10, and screws 1 1, and the glass tube 8 has a lamp. 1 2 is inserted, and gas is introduced from inlet 1 3 and circulated to outlet 1 4. The entire light irradiator is sealed, air and inert gas are introduced through the inlet 5, and the outlet 6 is connected to abatement.
図 3 に、 実施例に用いた光分解装置であって、 光照射器の外側か ら光を照射する装置を示す。 光分解装置 1 5にはガラス管 1 8がフ ランジ 1 9、 ノ \°ッキン 2 0、 ねじ 2 1 によって固定されており、 ラ ンプ 2 2がガラス管周囲に設置され、 ガスは入口 2 3から導入され 、 出口 2 4へと流通される。 光照射器全体は密閉され、 空気ゃ不活 性ガスが入口 1 6から導入され、 出口 1 7は除害へと接続されてい る。  Fig. 3 shows the photolysis device used in the example, which irradiates light from the outside of the light irradiator. Glass tube 1 8 is fixed to photolysis device 1 5 with flange 19, screw 20, screw 2 1, lamp 2 2 is installed around the glass tube, and gas is supplied to inlet 2 3 Introduced from and distributed to outlet 24. The entire light irradiator is sealed, air is inert gas introduced through inlet 16 and outlet 17 is connected to abatement.
なお、 二酸化塩素の分析はフーリエ変換赤外分光により行い、 そ の他の不純物ガスの分析は T C D検出器付きガスクロマトグラフに より行った。 Chlorine dioxide is analyzed by Fourier transform infrared spectroscopy, and other impurity gases are analyzed by a gas chromatograph with a TCD detector. More went.
実施例 1  Example 1
図 1 に示す工程により、 光分解工程 2においては図 2に示す光分 解装置 4にランプとして蛍光ランプ (ナショナル製 F L 6 W D 6 W) 3本を用い、 光分解管に二酸化塩素を含む塩素ガスを、 0. I M P aおよび I M P aの圧力で、 1 0 0 N L/分の流量で流通さ せた。 このときの二酸化塩素の入口濃度は 2 0 p p mであったが、 光分解後の出口では 0. O l p pm以下であった。 その後、 蒸留に より低沸点成分および高沸点成分を除去し、 この塩素ガスを液化し 、 容器に充填した後分析したところ、 純度は 9 9. 9 9 9 %以上で あった。 この容器を 3 0 日放置した後分析しても、 同じく純度は 9 9. 9 9 9 %以上であった。  According to the process shown in Fig. 1, in the photolysis step 2, three fluorescent lamps (FL 6 WD 6 W from National) are used as lamps in the photolysis device 4 shown in Fig. 2, and chlorine containing chlorine dioxide is used in the photolysis tube. The gas was flowed at a flow rate of 100 NL / min at a pressure of 0. IMP a and IMP a. At this time, the inlet concentration of chlorine dioxide was 20 ppm, but it was less than 0. Olpm at the outlet after photolysis. Thereafter, the low-boiling component and the high-boiling component were removed by distillation, and the chlorine gas was liquefied, filled into a container and analyzed, and the purity was 99.999% or more. Even if the container was left for 30 days and analyzed, the purity was 99.9999% or more.
実施例 2  Example 2
図 1 に示す工程により、 光分解工程においては図 3に示す光分解 装置 1 5にランプとして高圧水銀ランプ (セン特殊光源 (株) 製 H L— 1 0 0 C H_ 5、 1 0 0 W) を用い、 ガラス管 1 8に向けて一 方向からのみ光を照射し、 光分解管に二酸化塩素を含む塩素ガスを 、 0. I M P aおよび I M P aの圧力で、 3 0 N LZ分の流量で流 通させた。 このときの二酸化塩素の入口濃度は 1 0 p p mであった が、 光分解後の出口ではひ . 0 1 p p m以下であった。 その後、 蒸 留により低沸点成分および高沸点成分を除去し、 この塩素ガスを液 化し、 容器に充填した後分析したところ、 純度は 9 9. 9 9 9 %以 上であった。 この容器を 3 0 日放置した後分析しても、 同じく純度 は 9 9. 9 9 9 %以上であった。  With the process shown in Fig. 1, in the photolysis process, a high-pressure mercury lamp (Sen Special Light Source Co., Ltd. HL— 1 0 0 C H_5, 1 0 0 W) is used as a lamp in the photolysis apparatus 15 shown in FIG. Used, irradiate light only in one direction toward the glass tube 18 and flow chlorine gas containing chlorine dioxide into the photolysis tube at a flow rate of 30 N LZ at a pressure of 0. IMP a and IMP a. I let it pass. The inlet concentration of chlorine dioxide at this time was 10 ppm, but at the outlet after photolysis, it was less than 0.1 ppm. After that, low boiling point components and high boiling point components were removed by distillation, and this chlorine gas was liquefied, filled into a container and analyzed, and the purity was 99.999% or more. Even if the container was left for 30 days and analyzed, the purity was 99.9999% or more.
実施例 3  Example 3
ランプとして蛍光ランプ (ナショナル製 F L 6 W D 6 W) 6 本を用い、 ガラス管の周囲 6方向から光を照射した以外は実施例 2 と同様の条件で塩素ガスを流通させたところ、 同様な結果が得られ た。 Example 2 except that six fluorescent lamps (FL 6 WD 6 W made by National) were used as the lamps and light was irradiated from six directions around the glass tube. Similar results were obtained when chlorine gas was circulated under the same conditions.
実施例 4  Example 4
ランプとしてメタルハライ ドランプ (岩崎電機 (株) 製 M C K 1 5 0 W- 0 7 H 1 5 0 W) を用いた以外は実施例 2 と同様の条件 で塩素ガスを流通させたところ、 同様な結果が得られた。  A similar result was obtained when chlorine gas was circulated under the same conditions as in Example 2 except that a metal halide lamp (MCK 1 5 0 W-0 7 H 1 5 0 W manufactured by Iwasaki Electric Co., Ltd.) was used as the lamp. Obtained.
実施例 5  Example 5
ランプとして低圧水銀ランプ (セン特殊光源 (株) 製 H F— 1 0 0 G 2 0 W) を用い、 流量を 2 0 N L /分とした以外は実施例 2 と同様の条件で塩素ガス流通させたところ、 同様な結果が得られた 実施例 6  A low-pressure mercury lamp (manufactured by Sen Special Light Source Co., Ltd. HF—100 G 20 W) was used as the lamp, and chlorine gas was circulated under the same conditions as in Example 2 except that the flow rate was 20 NL / min. However, similar results were obtained. Example 6
ランプとしてブラックライ ト (N E C製 F L 1 5 B L— B 1 5 W) を用い、 流量を 2 0 NL/分とした以外は実施例 2 と同様の 条件で塩素ガス流通させたところ、 同様な結果が得られた。  Similar results were obtained when black light (NEC FL 15 BL- B 15 W) was used as the lamp and chlorine gas was circulated under the same conditions as in Example 2 except that the flow rate was 20 NL / min. was gotten.
実施例 7  Example 7
ランプとして白熱電球 (岩崎電機 (株) 製 R F 1 0 0 V 2 7 0 W H 2 7 0 W) を用い、 流量を 2 0 N LZ分とした以外は実施例 2 と同様の条件で塩素ガス流通させたところ、 同様な結果が得られた 比較例 1  Circulating chlorine gas under the same conditions as in Example 2 except that an incandescent bulb (RF 1 0 0 V 2 7 0 WH 2 7 0 W manufactured by Iwasaki Electric Co., Ltd.) was used as the lamp and the flow rate was 20 N LZ. When similar results were obtained, Comparative Example 1
光反応工程を用いず、 蒸留工程のみで塩素ガスを精製した。 この ときの二酸化塩素の入口濃度は 1 0 p p mであったが、 蒸留工程出 口では 7 p p mであり、 除去量は少なかった。 この塩素を容器に充 填した後分析を行ったところ、 二酸化塩素は 7 p p mであったが、 酸素を含めてその他の不純物は 1 p p m以下であり、 不純物濃度の 合計は l O p pm以下であり、 純度は 9 9. 9 9 9 %以上であった 。 しかし、 この容器を 3 0 日放置した後その気相を分析したところ 、 二酸化塩素が 4 p p mと減少し、 酸素が 7 0 0 p p mにまで増加 し、 塩素の純度が低下してしまった。 これは、 二酸化塩素が容器内 で徐々に分解し、 二酸化塩素の分解により生成した酸素が気相側に 濃縮されてしまったため酸素不純物濃度が上がり、 塩素ガスの純度 が低下し、 高純度の用途に適さないものになってしまったものであ る。 Chlorine gas was purified only by the distillation process without using the photoreaction process. The inlet concentration of chlorine dioxide at this time was 10 ppm, but it was 7 ppm at the outlet of the distillation process, and the amount removed was small. When chlorine was filled in the container and analyzed, chlorine dioxide was 7 ppm, but other impurities including oxygen were 1 ppm or less, and the total impurity concentration was l O p pm or less. Yes, the purity was 9 9. 9 9 9% or more . However, when this vessel was left for 30 days and its gas phase was analyzed, chlorine dioxide decreased to 4 ppm, oxygen increased to 700 ppm, and the purity of chlorine decreased. This is because chlorine dioxide is gradually decomposed in the container, and oxygen produced by the decomposition of chlorine dioxide is concentrated on the gas phase side, so that the oxygen impurity concentration increases and the purity of chlorine gas decreases, and high-purity applications It has become unsuitable for.
以上の結果を表 1 にまとめて示す。 The above results are summarized in Table 1.
光分解工程 ニ酸ィ '匕塩素濃度 ( m) 塩素純度 (%) 圧力(MP a) 精製前 充填直後 30日後 充填直後 30日後 実施例 1 0. 1 20 <0. 01 <0. 01 〉99. 999 >99. 999 Photolysis process Niic acid 'Sodium chloride concentration (m) Chlorine purity (%) Pressure (MPa) Before purification 30 days after filling After 30 days after filling Example 1 0. 1 20 <0. 01 <0. 01> 99 999> 99. 999
1. 0 20 <0. 01 <0. 01 >99. 999 >99. 999 実施例 2 0. 1 10 <0. 01 <0. 01 >99. 999 >99. 999  1. 0 20 <0. 01 <0. 01> 99. 999> 99. 999 Example 2 0. 1 10 <0. 01 <0. 01> 99. 999> 99. 999
1. 0 10 <0. 01 <0. 01 >99. 999 >99. 999 実施例 3 0. 1 10 <0. 01 ぐ 0. 01 >99. 999 〉99. 999  1. 0 10 <0. 01 <0. 01> 99. 999> 99. 999 Example 3 0. 1 10 <0. 01 right 0. 01> 99. 999> 99. 999
1. 0 10 <0. 01 <0. 01 >99. 999 〉99. 999 実施例 4 0. 1 10 <0. 01 <0. 01 >99. 999 >99. 999  1. 0 10 <0. 01 <0. 01> 99. 999> 99. 999 Example 4 0. 1 10 <0. 01 <0. 01> 99. 999> 99. 999
1. 0 10 <0. 01 <0. 01 >99. 999 >99. 999 実施例 5 0. 1 10 <0. 01 <0. 01 >99. 999 >99. 999  1. 0 10 <0. 01 <0. 01> 99. 999> 99. 999 Example 5 0. 1 10 <0. 01 <0. 01> 99. 999> 99. 999
1. 0 10 <0. 01 <0. 01 〉99. 999 >99. 999 実施例 6 0. 1 . 10 <0. 01 <0. 01 >99. 999 〉99. 999  1. 0 10 <0. 01 <0. 01> 99.999> 99.999 Example 6 0.1.10 <0.01 <0.01> 99.999> 99.999
1. 0 10 <0. 01 <0. 01 >99. 999 >99. 999 実施例 7 0. 1 10 <0. 01 <0. 01 >99. 999 〉99. 999  1. 0 10 <0. 01 <0. 01> 99. 999> 99. 999 Example 7 0. 1 10 <0. 01 <0. 01> 99. 999> 99. 999
1. 0 10 <0. 01 <0. 01 >99. 999 >99. 999 比較例 1 一 10 7 4 >99. 999 99. 93 1. 0 10 <0. 01 <0. 01> 99. 999> 99. 999 Comparative Example 1 1 10 7 4> 99. 999 99. 93
産業上の利用可能性 Industrial applicability
本発明は、 簡便にかつ経済的、 効率的に塩素中の塩素酸化物を除 去し、 高純度液化塩素を製造することができるので、 産業上有利に 用いることができる。  INDUSTRIAL APPLICABILITY According to the present invention, chlorine oxide in chlorine can be easily and economically and efficiently removed to produce high-purity liquefied chlorine, which can be advantageously used industrially.

Claims

1 . 塩素酸化物を不純物として含む原料塩素を精製することによ り高純度液化塩素を製造する方法において、 原料塩素に光を照射し て塩素酸化物不純物を光分解によつて塩素と酸素に分解する光分解 工程と、 光分解生成物およびその他の不純物を蒸留によって除去す 請 1. In a method for producing high-purity liquefied chlorine by refining raw material chlorine containing chlorine oxide as an impurity, the raw material chlorine is irradiated with light and the chlorine oxide impurity is converted into chlorine and oxygen by photolysis. Photolysis process to decompose, and photolysis products and other impurities are removed by distillation
る蒸留工程とを含むことを特徴とする高純度液化塩素の製造方法。 A method for producing high-purity liquefied chlorine, comprising a distillation step.
2 . 塩素酸化物不純物の濃度が 0 . l〜 5 0 p p mである、 請求 項 1 に記載の高純度液化塩素の製の造方法。  2. The method for producing high-purity liquefied chlorine according to claim 1, wherein the concentration of chlorine oxide impurities is 0.1 to 50 ppm.
3 . 塩素酸化物不純物が二酸化塩素である、 請求項 1 または 2に 記載の高純度液化塩素の製造方法。  3. The method for producing high-purity liquefied chlorine according to claim 1 or 2, wherein the chlorine oxide impurity is chlorine dioxide.
 Surrounding
4 . 光分解工程の光源が、 3 0 0〜 5 0 0 n mの範囲の波長を含 む光源である、 請求項 1〜 3のいずれかに記載の高純度液化塩素の 製造方法。  4. The method for producing high-purity liquefied chlorine according to any one of claims 1 to 3, wherein the light source in the photolysis step is a light source including a wavelength in the range of 300 to 500 nm.
5 . 原料塩素を光分解工程の前に気化器により気化させ、 光分解 工程において気相で光分解反応を行う、 請求項 1 〜 4のいずれかに 記載の高純度液化塩素の製造方法。  5. The method for producing high-purity liquefied chlorine according to any one of claims 1 to 4, wherein the raw material chlorine is vaporized by a vaporizer before the photolysis step, and the photolysis reaction is performed in the gas phase in the photolysis step.
6 . 光分解工程における光分解反応が、 流通式での光分解反応で ある、 請求項 1 〜 5のいずれかに記載の高純度液化塩素の製造方法  6. The method for producing high-purity liquefied chlorine according to any one of claims 1 to 5, wherein the photolysis reaction in the photolysis step is a flow-type photolysis reaction.
7 . 光分解工程における光分解反応の温度が 2 0〜 6 0 °Cである 、 請求項 1〜 6のいずれかに記載の高純度液化塩素の製造方法。 7. The method for producing high-purity liquefied chlorine according to any one of claims 1 to 6, wherein the temperature of the photolysis reaction in the photolysis step is 20 to 60 ° C.
8 . 光分解工程における光分解反応の圧力が 0 . 0 1 〜 1 . 5 M P aである、 請求項 1〜 7のいずれかに記載の高純度液化塩素の製 造方法。  8. The method for producing high-purity liquefied chlorine according to any one of claims 1 to 7, wherein the pressure of the photolysis reaction in the photolysis step is 0.01 to 1.5 MPa.
9 . 蒸留工程が、 光分解工程で生成した酸素を含む低沸点不純物 を除去する低沸蒸留工程を含む、 請求項 1 に記載の高純度液化塩素 の製造方法。 9. The high-purity liquefied chlorine according to claim 1, wherein the distillation step includes a low-boiling distillation step for removing low-boiling impurities including oxygen generated in the photolysis step. Manufacturing method.
1 0 . 高純度液化塩素の純度が 9 9 . 9 9 9 %以上である、 請求 項 1〜 9のいずれかに記載の高純度液化塩素の製造方法。  10. The method for producing high-purity liquefied chlorine according to any one of claims 1 to 9, wherein the purity of the high-purity liquefied chlorine is 99.999% or more.
PCT/JP2005/016157 2004-09-29 2005-08-29 Method for producing high-purity liquid chlorine WO2006035571A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006537657A JP5219372B2 (en) 2004-09-29 2005-08-29 Production method of high purity liquefied chlorine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-283475 2004-09-29
JP2004283475 2004-09-29

Publications (1)

Publication Number Publication Date
WO2006035571A1 true WO2006035571A1 (en) 2006-04-06

Family

ID=36118723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016157 WO2006035571A1 (en) 2004-09-29 2005-08-29 Method for producing high-purity liquid chlorine

Country Status (4)

Country Link
JP (1) JP5219372B2 (en)
KR (1) KR100849656B1 (en)
TW (1) TWI391326B (en)
WO (1) WO2006035571A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035673A1 (en) * 2008-09-24 2010-04-01 東亞合成株式会社 Process for producing high-purity chlorine
JP2013545704A (en) * 2011-10-11 2013-12-26 ホンインケミカル シーオー.,エルティディ. Method and system for producing high purity hydrogen chloride

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101203490B1 (en) * 2011-11-29 2012-11-21 홍인화학 주식회사 A production method and production system for high purity hydrogen chloride

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5120092A (en) * 1974-08-12 1976-02-17 Asahi Denka Kogyo Kk GASUNOSEISEIHO
JPS5632301A (en) * 1979-08-13 1981-04-01 Shell Int Research Method of improving quality of chlorine
JPH028683A (en) * 1988-02-16 1990-01-12 Mitsui Toatsu Chem Inc Method for separating and recovering chlorine
JPH0338218A (en) * 1989-06-30 1991-02-19 Daikin Ind Ltd Malodorous gas remover
JP2002316804A (en) * 2001-04-19 2002-10-31 Sumitomo Chem Co Ltd Method for refining chlorine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528195Y2 (en) 1974-08-01 1980-07-05
US5944962A (en) * 1995-10-03 1999-08-31 Laroche Industries, Inc. Process for photochlorination
US5908532A (en) * 1996-10-30 1999-06-01 Eka Chemicals, Inc. Method of converting chlorine dioxide present in a gaseous stream from a pulp bleach plant by irradiation to chlorine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5120092A (en) * 1974-08-12 1976-02-17 Asahi Denka Kogyo Kk GASUNOSEISEIHO
JPS5632301A (en) * 1979-08-13 1981-04-01 Shell Int Research Method of improving quality of chlorine
JPH028683A (en) * 1988-02-16 1990-01-12 Mitsui Toatsu Chem Inc Method for separating and recovering chlorine
JPH0338218A (en) * 1989-06-30 1991-02-19 Daikin Ind Ltd Malodorous gas remover
JP2002316804A (en) * 2001-04-19 2002-10-31 Sumitomo Chem Co Ltd Method for refining chlorine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035673A1 (en) * 2008-09-24 2010-04-01 東亞合成株式会社 Process for producing high-purity chlorine
JP2010076953A (en) * 2008-09-24 2010-04-08 Toagosei Co Ltd Method for producing high purity chlorine
JP2013545704A (en) * 2011-10-11 2013-12-26 ホンインケミカル シーオー.,エルティディ. Method and system for producing high purity hydrogen chloride

Also Published As

Publication number Publication date
TWI391326B (en) 2013-04-01
KR20070028586A (en) 2007-03-12
TW200621636A (en) 2006-07-01
KR100849656B1 (en) 2008-08-01
JPWO2006035571A1 (en) 2008-05-15
JP5219372B2 (en) 2013-06-26

Similar Documents

Publication Publication Date Title
US6464867B1 (en) Apparatus for producing water containing dissolved ozone
US20040101460A1 (en) Apparatus and method for point-of-use treatment of effluent gas streams
JP5219372B2 (en) Production method of high purity liquefied chlorine
FR2724806A1 (en) Novel method for the non-catalytic vapour cracking of hydrocarbon(s) and halogen-organic cpds.
CN106477525B (en) Method for purifying chlorination tail gas chlorine hydride dechlorination gas
US6596664B2 (en) Method, catalyst, and photocatalyst for the destruction of phosgene
RU2253607C1 (en) Method of production of chlorine from gaseous hydrogen chloride
US7659522B2 (en) Method of purifying the used O-18 enriched cyclotron target water and apparatus for the same
Pflieger et al. Diagnosing the plasma formed during acoustic cavitation in [BEPip][NTf 2] ionic liquid
JP5955187B2 (en) Method for producing hydrogen chloride
JP5374955B2 (en) Method for synthesizing methanol from carbon dioxide
JP2006272034A (en) Contamination gas treatment device and method using photocatalyst
Horikoshi et al. Use of microwave discharge electrodeless lamps (MDEL): II. Photodegradation of acetaldehyde over TiO2 pellets
JP2015157230A (en) Treatment apparatus and method
JPH0824629A (en) Photo-catalytic reaction tank
TWI554468B (en) Methods and devices of producing ozone
Briner Photochemical production of ozone
JP5946740B2 (en) Anhydrous hydrogen chloride purification method and anhydrous hydrogen chloride purification apparatus
WO2022270409A1 (en) Method and device for manufacturing carbon monoxide
US4695357A (en) Removal of unsaturated hydrocarbons in anhydrous hydrogen halide by infrared laser radiation
US20240294386A1 (en) Method and device for manufacturing carbon monoxide
CN208694715U (en) VOCs catalytic purifier
KR20110090329A (en) Method and apparatus for processing freon gas using electrodeless ultra-violet lamp driven by microwave
Iguchi et al. AgFe dual cocatalyst for selective conversion of CO2 using K2YTa5O15 photocatalyst
CN115196597A (en) Method for removing nitrogen trichloride in chlorine gas or liquid chlorine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006537657

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020077001846

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020077001846

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05777061

Country of ref document: EP

Kind code of ref document: A1