WO2006025289A1 - 情報処理装置 - Google Patents

情報処理装置 Download PDF

Info

Publication number
WO2006025289A1
WO2006025289A1 PCT/JP2005/015595 JP2005015595W WO2006025289A1 WO 2006025289 A1 WO2006025289 A1 WO 2006025289A1 JP 2005015595 W JP2005015595 W JP 2005015595W WO 2006025289 A1 WO2006025289 A1 WO 2006025289A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
imaging
image
blood vessel
finger
Prior art date
Application number
PCT/JP2005/015595
Other languages
English (en)
French (fr)
Inventor
Hideo Sato
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation filed Critical Sony Corporation
Priority to KR1020067006886A priority Critical patent/KR101159142B1/ko
Priority to BRPI0506170 priority patent/BRPI0506170A/pt
Priority to EP05775162.0A priority patent/EP1785937B1/en
Priority to US10/577,728 priority patent/US7634116B2/en
Publication of WO2006025289A1 publication Critical patent/WO2006025289A1/ja
Priority to HK07101566A priority patent/HK1096751A1/xx

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/14Vascular patterns
    • G06V40/145Sensors therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/117Identification of persons
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/14Vascular patterns

Definitions

  • the present invention relates to an information processing apparatus, and is suitably applied to, for example, imaging a blood vessel as a biometric authentication target.
  • Biometrics authentication includes specific structures such as blood vessels that intervene in the living body. This unique structure intervening inside the living body makes it difficult not only to steal directly from the living body but also to impersonate a registrant by a third party, compared to a unique structure such as a fingerprint on the surface of the living body. Therefore, it is attracting attention as something that can enhance security.
  • a finger is irradiated from the finger pad surface with near infrared light whose intensity is higher than the intensity of reflected light reflected from a living body (ordinary light in an atmosphere such as visible light), and the vascular tissue inside the finger Infrared light absorbed by hemoglobin and scattered in tissues other than vascular tissue is guided to a CCD (Charge Coupled Device) through a Mac mouth lens that transmits near-infrared light.
  • CCD Charge Coupled Device
  • the authentication device photoelectrically converts the near-infrared light to change the amount of charge per unit time that is stored in the CCD into the near-infrared light in the CCD.
  • the blood vessel image signal is generated by adjusting the CCD so that the imaging sensitivity for the image becomes more sensitive than the normal light, and the presence or absence of a regular user is determined based on the blood vessel formation pattern in the blood vessel image signal. Yes.
  • the present invention has been made in consideration of the above points, and can improve immediacy. It is intended to propose a processing device.
  • the present invention provides an irradiating unit that irradiates a living body with a plurality of lights having different wavelengths, a spectroscopic unit that divides each light obtained from a living body, and an imaging for each light that is dispersed by the spectroscopic unit.
  • the imaging target can be imaged at the same time without requiring control processing of the optical system, so that the processing load at the time of imaging can be reduced.
  • an imaging signal that is emitted as an imaging result of an imaging element for each of the divided light beams, which is obtained by irradiating a living body with a plurality of lights having different wavelengths. Therefore, by separating the multiple image components corresponding to each light and executing the processing corresponding to these image components individually, the imaging target can be captured at the same time without the need for optical system control processing. Therefore, it is possible to reduce the processing load at the time of imaging, and thus to realize an information processing apparatus that can improve immediacy.
  • FIG. 1 is a schematic diagram showing the overall configuration of the authentication apparatus according to the present embodiment.
  • FIG. 2 is a schematic diagram showing an external configuration of the blood vessel imaging unit.
  • Fig. 3 is a schematic diagram showing the direction of near-infrared light irradiation.
  • FIG. 4 is a schematic diagram showing the structural units and characteristics of the filter array.
  • FIG. 5 is a block diagram showing the configuration of the signal processing unit. BEST MODE FOR CARRYING OUT THE INVENTION Embodiments to which the present invention is applied will be described in detail below with reference to the drawings.
  • reference numeral 1 denotes an authentication apparatus according to the present embodiment as a whole, and includes a hybrid imaging unit 2 that images a surface of a living finger FG and images a blood vessel inside the finger FG as an authentication target, and The imaging control unit 3 controls the hybrid imaging unit 2 so that the surface of the finger FG and the blood vessel are simultaneously imaged, and various types based on the imaging signal output as the imaging result of the hybrid imaging unit 2. And a signal processing unit 4 that executes processing.
  • the hybrid imaging unit 2 has a substantially rectangular parallelepiped casing 11, and a curved guide groove 12 is formed on the upper surface of the casing 11.
  • the imaging opening 13 is formed on the bottom surface in the vicinity of the tip of the guide groove 12.
  • the hybrid imaging unit 2 guides the finger pad of the finger FG arranged so as to be placed in the guide groove 12 onto the imaging opening 13, and the tip of the guide groove 12 is connected to the tip of the finger.
  • the position of the imaging opening portion 13 with respect to the finger FG arranged so as to abut is adapted to be positioned in accordance with the photographer.
  • a transparent transparent opening cover 14 made of a predetermined material is provided on the surface of the imaging opening 13.
  • the camera 11 1 has a camera directly below the imaging opening 13. Part 15 is provided.
  • this hybrid imaging unit 2 prevents the inflow of foreign matter from the imaging opening 13 into the inside of the casing 11 and the camera caused by placing the finger FG in the imaging opening 13.
  • Part 15 is designed to prevent contamination of 5 in advance.
  • a pair of near-infrared light sources 16 (16 A and 16 B) that irradiate near-infrared light as blood vessel imaging light are provided on the side surfaces of the guide groove 12 to guide grooves. It is provided so as to sandwich the imaging aperture 13 in a state parallel to the short direction of 12.
  • This near-infrared light source 16 has a wavelength range of about 900 to 1000 [nm], which is wavelength-dependent on both oxygenated hemoglobin and deoxygenated hemoglobin passing through the blood vessel (hereinafter referred to as the blood vessel-dependent wavelength region). It is designed to irradiate near infrared light.
  • the imaging is not performed in the direction perpendicular to the imaging surface in the camera unit 15.
  • Irradiation direction that forms an acute angle with surface F .1 hereinafter referred to as the near-infrared light irradiation direction
  • the near-infrared light is irradiated from id.
  • the irradiation direction that forms 30 ° to 60 ° with the imaging surface of the camera unit 15 becomes more effective.
  • the high-speed imaging unit 2 can irradiate the finger pad side portion of the finger FG disposed in the guide groove 12 from the near-infrared light source 16 with near-infrared light.
  • the near-infrared light is absorbed by the hemoglobin present in the blood vessel tissue inside the finger FG and is scattered in the tissue other than the blood vessel tissue so as to pass through the finger FG and the finger.
  • the blood enters the camera unit 15 as the blood vessel projection light from the FG through the imaging aperture 13 and the aperture cover 14 one by one.
  • This blood vessel projection light generally contains both oxygenated and deoxygenated hemoglobin in the capillary tissue inherent in the finger FG, but both of these hemoglobins have a wavelength dependent near red region in the blood vessel dependent wavelength region. Since the external light is irradiated, the capillary tissue inherent in the finger FG is more reflected.
  • a pair of visible light sources 17 (17A and 17B) for irradiating visible light as fingerprint imaging light is provided on the side surface of the guide groove 12 in the longitudinal direction of the guide groove 12. Is provided so as to sandwich the imaging aperture 13 in a state of being parallel to each other.
  • the visible light source 17 emits visible light from an irradiation direction (hereinafter, referred to as a visible light irradiation direction) substantially orthogonal to the imaging surface of the camera unit 15. Therefore, the hybrid imaging unit 2 can irradiate visible light from the visible light source 17 to the center of the finger pad of the finger FG disposed in the guide groove 12. In this case, the visible light is reflected on the surface of the finger FG, and is incident on the camera unit 15 through the imaging aperture 13 and the aperture cover 14 as sequential finger surface projection light.
  • This camera unit 15 is configured by sequentially arranging a macro lens 2 1, a filter array 2 2, and a CCD image sensor 2 3 on the optical path of light incident from the aperture cover part 14. .
  • the macro lens 21 condenses the blood vessel projection light and finger surface projection light incident from the aperture cover part 14 on the filter array 22.
  • the filter array 22 has a plurality of pixel filters that transmit light having a wavelength corresponding to a predetermined color as a unit (hereinafter referred to as a color spectroscopic unit) arranged in a grid pattern.
  • a color spectroscopic unit a unit that transmit light having a wavelength corresponding to a predetermined color as a unit (hereinafter referred to as a color spectroscopic unit) arranged in a grid pattern.
  • the “R” pixel filter, “G” pixel filter, and “B” pixel filter are used as color spectral units.
  • Fig. 4 (A) and Fig. 4 (B) light in the wavelength region of about 500 to 600 [nm] is transmitted through the upper left and lower right of the four adjacent pixel filters.
  • “G” pixel filter, upper right part transmits light in the wavelength range of approximately 400 to 500 [nm]
  • B” pixel filter evening lower left part transmits light in the wavelength range of approximately 600 to 700 [nm]
  • “R” Filter array 22 is configured as a general RGB filter array because it is arranged as a pixel filter.
  • the “R” pixel filter is designed to transmit the blood vessel-dependent wavelength region (approximately 900 to 1000 [ni]). It is different.
  • the fill array 22 can disperse the finger surface projection light and blood vessel projection light obtained from the macro lens 21.
  • the CCD image sensor 2 3 has a plurality of photoelectric elements arranged in a grid corresponding to the pixels.
  • a conversion element is provided on the imaging surface, and the blood vessel projection light and finger surface projection light incident on the imaging surface are photoelectrically converted. Then, the CCD image pickup device 23 reads out the electric charge charged by the photoelectric conversion result under the control of the image pickup control unit 3, and outputs the read out charge to the signal processing unit 4 as the image pickup signal S1 0. It is made like that.
  • the near-infrared light incident on the camera part 15 from the aperture cover part 14 is not only that obtained via the inside of the finger FG (blood vessel projection light) as described above, Some of them are reflected mainly on the surface of the finger FG (hereinafter, near infrared light reflected on the surface of the finger FG is referred to as surface reflected near infrared light).
  • This surface-reflected near-infrared light is incident mainly from the direction perpendicular to the direction of near-infrared light irradiation.
  • the blood vessel projection light and the finger surface projection light incident on the camera unit 15 from the aperture cover part 14 to the imaging unit 15 are caused by the presence of bone in the center of the finger cross section and the irradiation direction, etc.
  • the light enters from a substantially vertical direction or a vertical direction. Therefore, in addition to the above-described configuration, the camera unit 15 has a polarization axis in a direction perpendicular to the direction perpendicular to the near-infrared light irradiation direction and a direction parallel to the visible light irradiation direction.
  • a polarizing plate 24 having a polarization axis is provided on the RGB filter array 21.
  • this polarizing plate 24 has a polarization axis in a direction perpendicular to the direction perpendicular to the near-infrared light irradiation direction, the surface-reflecting near infrared light incident on the camera unit 15 is emitted. Since it has a polarization axis that deviates from the road and is parallel to the visible light irradiation direction, it can transmit blood vessel projection light and finger surface projection light that are perpendicular to the imaging surface.
  • blood vessel projection light and finger surface projection light incident through the opening cover unit 14 can be selectively guided to the image pickup surface of the CCD image pickup device 23. It is made like that.
  • the hybrid imaging unit 2 captures an image of the finger FG surface. Both are designed to image blood vessels inside
  • the imaging control unit 3 drives and controls the near-infrared light source 16, the visible light source 1 ⁇ ⁇ , and the CCD image sensor 23, respectively.
  • the imaging control unit 3 uses a near-infrared light source control signal S 2 1 that is supplied from a main power supply unit (not shown) provided in the information processing apparatus 1 at a first voltage level. And a visible light source control signal S 2 2 at the second voltage level. Then, the imaging control unit 3 is driven by applying the near-infrared light source control signal S 2 1 and the visible light source control signal S 2 2 to the corresponding near-infrared light source 16 and visible light source 17. (Do it.)
  • the finger pad side portion of the finger FG placed in the guide groove 12 is irradiated with near infrared light from the near infrared light irradiation direction, and at the same time, visible to the finger pad center portion of the finger FG. Visible light is irradiated from the light irradiation direction.
  • the finger surface projection light obtained from the surface of the finger FG and the blood vessel projection light obtained via the inside of the finger FG are incident on the imaging surface of the CCD imager 23 at the same time. Is done.
  • the imaging control unit 3 generates a CCD imaging device control signal S 23 having a predetermined duty ratio based on a clock signal supplied from a clock generation unit (not shown), It is driven by outputting to the CCD image sensor 23.
  • the falling edge (or rising edge) of the CCD image sensor control signal S23 is used as a readout time point, and as a photoelectric conversion result of both finger surface projection light and blood vessel projection light by the readout time point.
  • the charged charge is sequentially output to the signal processing unit 4 as the imaging signal S 10.
  • the imaging control unit 3 can control the hybrid imaging unit 2 so as to simultaneously image the surface of the finger FG and the blood vessel.
  • the signal processing unit 4 converts the first image signal component corresponding to the finger surface projection light from the imaging signal S 10 (hereinafter referred to as finger surface image component) and the blood vessel projection light.
  • a signal separation unit 31 that separates the corresponding second image signal component (hereinafter referred to as a blood vessel image component) 3 1, executes position shift detection processing for the blood vessel image in the blood vessel image component based on the finger surface image component
  • the misalignment detection processing unit 32 and the authentication processing unit 33 that executes the authentication processing based on the blood vessel imaging component.
  • the signal separation unit 31 generates image data by performing A / D (Analog / Digita conversion) on the image signal S 10 output from the C C D image sensor 23.
  • the signal separation unit 31 extracts, for example, pixel data corresponding to “G” for each color spectroscopic unit from the imaging data, and extracts the pixel data for the finger surface image component data (hereinafter referred to as “this”). This is called finger surface image data) and sent to the displacement detection processing unit 3 2 as D 3 1.
  • the signal separation unit 31 extracts pixel data corresponding to “R” for each color spectroscopic unit from the imaging data, and extracts these pixel data groups from the blood vessel image component (hereinafter referred to as blood vessel image data). It is sent to the authentication processing unit 3 3 as D 3 2.
  • the signal separation unit 31 can separate the finger surface image component and the blood vessel image component corresponding to the blood vessel projection light from the imaging signal S 10.
  • the misalignment detection processing unit 3 2 holds an image of the finger FG surface (hereinafter referred to as a reference finger surface image) placed at the reference position.
  • the cross-correlation between the image and the finger surface image of the finger surface image data D 31 is calculated, and the positional deviation state in the X direction and the Y direction in the finger surface image is detected.
  • the misregistration detection processing unit 32 then authenticates the detection result as data D 33 for correcting the position of the blood vessel image data D 32 in the blood vessel image (hereinafter referred to as position correction data). Sends to part 3 3.
  • the positional deviation detection processing unit 32 detects the positional deviation state of the finger FG at the time of imaging with respect to the imaging result of the finger FG surface. Compared to the above, the position shift state can be detected with high accuracy by the amount of noise components caused by scattering and the like.
  • the misregistration detection processing unit 3 2 obtains the pixel data corresponding to “G” having the highest light quantity in the color spectral unit as the imaging result of the finger FG surface. Since 1) is used, the resolution of the finger surface image can be increased, and as a result, the displacement state can be detected with higher accuracy.
  • the authentication processing unit 3 3 includes a blood vessel extraction unit 3 3 A and a collation unit 3 3 B, and is supplied from the blood vessel image data D 3 2 supplied from the signal separation unit 3 1 and the displacement detection processing unit 3 2.
  • the position correction data D 3 3 is input to the blood vessel extraction unit 3 3 A.
  • the blood vessel extraction unit 3 3 A corrects the position of the blood vessel image based on the blood vessel image data D 3 2 by shifting it by an amount corresponding to the position correction data D 3 3, and the corrected blood vessel image data D 3 2
  • the noise component is removed by performing median fill evening processing.
  • the blood vessel extraction unit 33 A performs, for example, Laplacian processing on the blood vessel image data D 32 from which the noise component has been removed, so that the blood vessel image data is extracted.
  • the blood vessel image of the blood vessel image based on D 3 2 is extracted so as to be emphasized, and the blood vessel image from which the blood vessel contour has been extracted in this way is sent as authentication information D 3 4 to the matching unit 33 B.
  • the verification unit 3 3 B executes a registration mode or an authentication mode in response to a mode determination signal supplied from an operation unit (not shown).
  • the registration mode the blood vessel extraction unit Registration information D 3 4 supplied from 3 3 A is registered in the registration database DB as authentication information D 3 5.
  • the verification unit 3 3 B in the authentication mode, uses the blood vessel image of the authentication information D 3 4 supplied from the blood vessel extraction unit 3 3 A and the registered authentication information D 3 5 registered in the registration database DB.
  • the cross-correlation with the blood vessel image is calculated, and the blood vessel formation padan of the blood vessel image is collated.
  • the collation unit 3 3 B determines that the person to be imaged captured by the hybrid imaging unit 2 at this time is registered database DB. If the cross-correlation value higher than the threshold is obtained, it is determined that the person to be imaged is the registrant, and the determination result is used as the determination data D 3 Send to the outside as 6.
  • the authentication processing unit 33 performs the authentication process on the angiogenesis pattern inherent in the living body, thereby comparing the fingerprint formation pattern on the living body surface. In addition to preventing direct theft from living organisms, impersonation of registrants by third parties can also be prevented.
  • the authentication processing unit 33 corrects the positional displacement of the blood vessel image as a pre-processing of the authentication processing, it is possible to avoid erroneous determination of the presence or absence of the registrant due to the positional displacement of the finger FG during imaging. As a result, it is possible to prevent a decrease in authentication accuracy (collation accuracy) due to the misalignment. Furthermore, in this case, the authentication processing unit 33 does not detect misalignment from the imaging result (blood vessel image) inside the finger FG with relatively many image quality degradation factors, but rather than the imaging result inside the finger FG. Because correction is performed using the position correction data D 3 3 detected from the imaging result (fingerprint image) with few image quality degradation factors, the displacement of the blood vessel image can be corrected easily and with high accuracy. A reduction in authentication accuracy (matching accuracy) can be further prevented.
  • the authentication device 1 irradiates the living body with the first light (visible light) and the second light (near-infrared light) having a different wavelength from the first light at the same time.
  • the first light (finger surface projection light (visible light)) obtained from the living body is transmitted mainly through the “G” pixel filter of the filter array 22 and the second light (blood vessel projection light). (Near-infrared light)) is transmitted through the “R” pixel filter and dispersed.
  • the authentication device 1 uses the first signal corresponding to the first light from the imaging signal S 10 0 output as the imaging result of the imaging device with respect to the first light and the second light thus dispersed.
  • the image signal component (finger surface image data D 3 1) and the second image signal component corresponding to the second light (blood vessel image data D 3 2) are separated, and the first image signal component (finger surface data) Based on the image data D 3 1), the first process (misalignment correction process) is executed, and on the basis of the second image signal component (blood vessel image data D 3 2), the second process (authentication process). Execute. Therefore, in this authentication device 1, it is possible to omit imaging the imaging object twice by imaging the imaging object at the same time and performing different processing from the imaging result. The processing load can be reduced.
  • the authentication device 1 can avoid the situation where the complicated signal processing is adopted because the first image signal component and the second image signal component are not separated only by the signal processing system.
  • the control processing of the optical system can be avoided, The processing load at the time of imaging can be further reduced. Furthermore in this case
  • the authentication device 1 can avoid the physical switching of the optical system at the time of imaging, and thus can be downsized.
  • the authentication device 1 employs visible light as the first light, is different from the first wavelength as the second light, and is dependent on the blood vessel inside the living body to be authenticated.
  • Light is used to split the finger surface projection light (visible light) obtained from the surface of the living body and the blood vessel projection light (near-infrared light) obtained via the inside of the living body. Therefore, the authentication device 1 can simultaneously obtain different properties in the depth direction of the living body, while reducing the processing load during the imaging 9
  • the authentication device 1 uses the image signal component corresponding to the finger surface projection light (visible light) and the blood vessel image in the second image signal component corresponding to the blood vessel projection light (near infrared light). A misalignment state is detected, and authentication processing is executed based on the second image signal component corrected according to the detection result.
  • this authentication device 1 does not detect a position shift from the second component signal inside the finger FG having a relatively large image quality degradation factor, but has a smaller image quality degradation factor than the imaging result inside the finger FG. Since correction is performed using the result detected from the component signal of 1, the displacement of the blood vessel image of the second component signal can be corrected easily and with high accuracy. As a result, it is possible to prevent a decrease in authentication accuracy. it can
  • the first and second light obtained from the living body are irradiated with the first light having the first wavelength and the second light having a wavelength different from the first wavelength.
  • the imaging signal S10 After separating the first component signal corresponding to the first and the second component signal corresponding to the second light from the imaging signal S10 output as the imaging result of the image sensor for the second light
  • the first process is executed based on the first component signal
  • the second process is executed based on the second component signal, thereby eliminating the need to image the imaging target twice. Because it can Thus, it is possible to realize an information processing apparatus that can reduce the processing load at the time of imaging and thus improve immediacy.
  • an irradiation means for irradiating a living body with a plurality of light beams having different wavelengths visible light and near-outside light of 900 to 1000 [nm] having dependency on a blood vessel to be authenticated.
  • the present invention is not limited to this.
  • a marker that is specific to a lesion in the living body is injected to be close to the visible light.
  • the RGB filter array 22 shown in FIG. 4 is applied as a spectroscopic stage for separating each light obtained from a living body has been described.
  • the invention is not limited to this, and various other file arrays can be applied.
  • a complementary color filter array that color-divides the visible light (finger surface projection light) obtained from the surface of the living body into “C y”, “Y e”, “M g”, and “G”.
  • Various units can be used as the color spectral unit in the complementary color filter array.
  • the pixel fill corresponding to “M g” is designed to transmit infrared light, so that it can be applied without changing the fill rate characteristic. There is an advantage that it can be done.
  • a filter array 22 configured so that the “R” pixel filter has a characteristic of transmitting a blood vessel-dependent wavelength region (approximately 900 to 1000 [nm]) is also suitable.
  • a commonly used RGB filter may be applied.
  • the “R” pixel filter is not strictly configured to cut near-infrared light near the wavelength range corresponding to “R”. Therefore, the resolution of the blood vessel image data D 3 2 obtained by extracting the pixel data corresponding to the “R” for each color spectroscopic unit is inferior to that of the above-described embodiment, but is largely contrary to the authentication processing result. Not reflected. Therefore, even in this case, the same effect as in the above-described embodiment can be obtained.
  • Various color spectral units in the RGB filter array can be used instead of the one shown in Fig. 4 (A).
  • a filter array in which a pixel filter that transmits visible light, near-infrared light, or third light is configured as a color spectral unit can be applied.
  • a pixel filter that transmits visible light, near-infrared light, or third light is configured as a color spectral unit.
  • manufacturing costs are increased, but there is an advantage that a plurality of lights irradiated by the irradiation means can be dispersed with high accuracy.
  • a specific Mar force is injected into the lesion in the living body, and the third light having a wavelength different from the visible light and near infrared light and having dependency on the marker is used. Effective in applications where light is irradiated o
  • the finger surface projection is performed as the signal processing means for executing the processing corresponding to each image component separated by the separating means.
  • the first image signal component corresponding to the light visible light
  • the position of the blood vessel image in the second image signal component corresponding to the blood vessel projection light near infrared light
  • the present invention is not limited to this, and other signal processing units 4 You may make it suitable.
  • the signal processing unit 4 determines the position of the blood vessel image in the second image signal component corresponding to the blood vessel projection light (near infrared light) based on the image signal component corresponding to the finger surface projection light (visible light). A misalignment state is detected, and fingerprint matching processing with a pre-registered fingerprint image is executed. Then, when the determination result of the registrant is obtained as the fingerprint collation processing result, the signal processing unit 4 executes the authentication process based on the second image signal component corrected according to the detection result. To do. In this way, the authentication accuracy in the authentication device 1 can be further improved.
  • the signal processing unit 4 In addition, as described above, a marker that is specific to a lesion inside the living body is injected, and the visible light and the near infrared light are different in wavelength and have a dependency on the force.
  • the signal processing unit 4 In the case of irradiating the third light, for example, the signal processing unit 4 generates tomographic image data based on the third light. Then, the signal processing unit 4 executes authentication processing based on the second image signal component corrected in accordance with the position shift detection result in the same manner as in the above-described embodiment, and registers as the authentication processing result.
  • processing such as registering the tomographic image data in the database or displaying it on the display unit is executed.
  • the signal processing means can select the processing corresponding to each image component separated by the separation means according to the application, and execute these processes accordingly. it can.
  • CMOS Complementary Metal Oxide Semiconductor
  • a high-intensity imaging is performed by irradiating near-infrared light from the finger pad side of the finger FG and imaging the blood vessel projection light obtained from the finger pad side through the inside of the finger FG.
  • the imaging unit 2 is applied has been described, the present invention is not limited to this, and the near-infrared light is irradiated from the finger back side of the finger FG and is passed through the inside of the finger FG.
  • a hybrid imaging unit that images blood vessel projection light obtained from the finger pad side may be applied. Even when this hybrid imaging unit is applied, the same effects as those of the above-described embodiment can be obtained.
  • the image pickup unit 2 having the configuration shown in FIG. 1 and FIG. 2 is applied, other types of configurations may be adopted. Industrial applicability
  • the present invention can be used, for example, when observing an imaging target from multiple angles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Vascular Medicine (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Evolutionary Computation (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Biology (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Image Input (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

即時性を向上し得る情報処理装置を提案する。互いに波長の異なる複数の光を生体に照射し、その生体より得られる各光を分光し、当該分光された各光に対する撮像素子での撮像結果として出力される撮像信号から、当該各光に対応する複数の画像成分を分離し、これら画像成分に対応する処理をそれぞれ実行するようにしたことにより、光学系の制御処理を要することなく撮像対象を同時期に撮像することができるため、撮像時における処理負荷を低減することができる。

Description

情報処理装置 技術分野
本発明は、 情報処理装置に関し、 例えばバイオメ ト リクス認証対象とし て血管を撮像する場合に適用して好適なものである。
明 背景技術 田
バイオメ 卜 リクス認証の対象として、 生体内方に介在する血管等の固有 構造物がある。 この生体内方に介在する固有構造物は、 生体表面に有する 指紋等の固有構造物に比して生体からの直接的な盗用のみならず、 第三者 による登録者への成りすましをも困難となる点で、 セキュリティを強化で. きるものとして着目されている。
従来、 .この種の認証装置として、 血管を通る脱酸素化ヘモグロビン (静 脈血) 又は酸素化ヘモグロビン (動脈血) に近赤外線帯域の光が特異的に 吸収されることを利用して血管を撮像し、 当該撮像結果として得られる血 管画像における血管形成パターンに基づいて正規ユーザの有無を判定する ものが提案されている (例えば特許文献 1参照) 。
この認証装置では、 生体から反射する反射光 (可視光等の雰囲気中の通 常光) の強度よりも強い強度の近赤外光を指腹面側から指に照射し、 当該 指内方の血管組織において内在するヘモグロビンに吸収されると共に血管 組織以外の組織において散乱することにより得られた近赤外光を、 近赤外 光を透過するマク口レンズを介して C C D ( Charge Coupled Device)に導 光する。
そして認証装置は、 この近赤外光を光電変換することにより C C Dにチ ヤージされる単位時間あたりの電荷量を、 当該 C C Dにおける近赤外光に 対する撮像感度が通常光よりも鋭敏となるように C C Dを調整するように して血管画像信号を生成し、 この血管画像信号における血管形成パターン に基づいて正規ユーザの有無を判定するようになされている。
従ってこの認証装置では、 可視光等の雰囲気中の通常光に基づく ノイズ 成分の低減することができるため、 血管画像の画質を向上することができ 、 この結果、 認証精度を向上できる。 特許文献 特開 2 0 0 4— 1 3 5 6 0 9公報。 ところでかかる構成の認証装置においては、 撮像時に指がずれた場合に は、 血管画像の画質が良質であっても認証精度の低下を引き起こすことと なる。
この位置ずれに起因する認証精度の低下を防止するための対処策として 、 基準画像に対する血管画像の位置ずれを検出する手法が考えられるが、 そもそも血管画像は生体内方のため、 生体表面の情報を用いて位置ずれを 検出したほ がその検出精度が高くなる。
しかしながらかかる検出手法を認証装置に適用した場合、 この認証装置 では、 生体表面とその内方の血管との双方の撮像が要することとなる結果 、 その分だけ処理負荷がかかることになり、 ひいては即時性が低下すると いった問題が生じる。 この場合、 生体表面とその内方の血管との双方に焦 点深度を合わせることを想定すると、 生体の脂肪量に応じて血管の介在す る皮膚表面からの深さが異なるといったこと等に起因して、 当該焦点深度 を合わせる光学系の制御処理も複雑となる結果、 より即時性が低下するこ ととなる。 発明の開示
本発明は以上の点を考慮してなされたもので、 即時性を向上し得る情報 処理装置を提案しょうとするものである。
かかる課題を解決するため本発明は、 互いに波長の異なる複数の光を生 体に照射する照射手段と、 生体より得られる各光を分光する分光手段と、 分光手段により分光された各光に対する撮像素子での撮像結果として出力 される撮像信号から、 当該各光に対応する複数の画像成分を分離する分離 手段と、 分離手段により分離された各画像成分に対応する処理をそれそれ 実行する信号処理手段とを設けるようにした。
従って本発明では、 光学系の制御処理を要することなく撮像対象を同時 期に撮像するこ ができるため、 撮像時における処理負荷を低減すること ができる。
本発明によれば、 互いに波長の異なる複数の光を生体に照射し、 その生 体より得られる各光を分光し、 当該分光された各光に対する撮像素子での 撮像結果として出力される撮像信号から、 当該各光に対応する複数の画像 成分を分離し、 これら画像成分に対応する処理をそれそれ実行するように したことにより、 光学系の制御処理を要することなく撮像対象を同時期に 撮像することができるため、 撮像時における処理負荷を低減することがで き、 かく して即時性を向上し得る情報処理装置を実現することができる。 図面の簡単な説明
図 1は、 本実施の形態による認証装置の全体構成を示す略線図である。 図 2は、 血管撮像部の外観構成を示す略線図である。
図 3は、 近赤外光の照射方向を示す略線図である。
図 4は、 フィルタアレイの構成単位及び特性を示す略線図である。 図 5は、 信号処理部の構成を示すブロック図である。 発明を実施するための最良の形態 以下図面について本発明を適用した実施の形態を詳述する。
( 1 ) 認証装置の全体構成
図 1において、 1は全体として本実施の形態による認証装置を示し、 生 体の指 F G表面を撮像すると共に指 F G内方における血管を認証対象とし て撮像するハイプリ ッ ド撮像部 2 と、 当該指 F G表面と血管とを同時に撮 像するようにハイプリ ッ ド撮像部 2を制御する撮像制御部 3と、 当該ハイ プリ ッ ド撮像部 2での撮像結果として出力される撮像信号に基づいて各種 処理を実行する信号処理部 4とによって構成される。
( 1 - 1 ) 血管撮像部の構成
この図 1及び図 2に示すように、 ハイブリ ッ ド撮像部 2は、 略直方体形 状の筐体 1 1を有し、 この筐体 1 1の上面には湾曲形状のガイ ド溝 1 2が 指を模るようにして形成されており、 当該ガイ ド溝 1 2の先端近傍におけ る底面には撮像開口部 1 3が設けられている。
従ってこのハイプリ ッ ド撮像部 2は、 ガイ ド溝 1 2にあてがうようにし て配置される指 F Gの指腹を撮像開口部 1 3上にガイ ドし、 当該ガイ ド溝 1 2の先端に指先を当接するように配置された指 F Gに対する撮像開口部 1 3の位置を撮像者に応じて位置決めし得るようになされている。
そしてこの撮像開口部 1 3の表面には、 所定材質でなる^色透明の開口 カバー部 1 4が設けられている一方、 筐体 1 1の内部における撮像開口部 1 3の直下には、 カメラ部 1 5が設けられている。
従って.このハイプリ ッ ド撮像部 2は、 撮像開口部 1 3から筐体 1 1の内 部への異物の流入を防止し、 かつ指 F Gを撮像開口部 1 3に配置すること に起因するカメラ部- 1 5の汚れを未然に防止し得るようになされている。 一方、 このガイ ド溝 1 2の側面には、 近赤外光を血管の撮像光として照 射する 1対の近赤外光光源 1 6 ( 1 6 A及び 1 6 B ) が、 ガイ ド溝 1 2の 短手方向と平行となる状態で撮像開口部 1 3を挟み込むようにして設けら れている。 この近赤外光光源 1 6においては、 血管を通る酸素化へモグロビン及び 脱酸素化ヘモグロビンの双方に波長依存性の有するおよそ 900〜1000 [nm ] の波長域 (以下、 これを血管依存波長域と呼ぶ) の近赤外光を照射する ようになされている。
またこの近赤外光光源 1 6においては、 図 2に示すように、 指腹での表 面反射を低減するために、 カメラ部 1 5における撮像面に対して直行する 方向ではなく、 当該撮像面 F .1 と鋭角ひをなす照射方向 (以下、 これを近. 赤外光照射方向と呼ぶ) i dから近赤外光を照射するようになされている 。 なお、 この場合、 カメラ部 1 5における撮像面と 3 0 ° 〜 6 0 ° をなす 照射方向がより有効となる。
従ってこのハイプリ ヅ ド撮像部 2は、 近赤外光光源 1 6からガイ ド溝 1 2に配置された指 F Gの指腹側部分に近赤外光を照射し得るようになされ ている。 この場合、 この近赤外光は、 その指 F G内方の血管組織において 内在するヘモグロ ビンに吸収されると共に血管組織以外の組織において散 乱するようにして指 F G内方を経由し、 当該指 F Gから血管投影光として 撮像開口部 1 3及び開口カバー部 1 4を順次介してカメラ部 1 5に入射す ることとなる。 この血管投影光は、 指 F Gに内在する毛細血管組織では一 般に酸素化及び脱酸素化双方のへモグロビンが混在するが、 これら双方の ヘモグロビンに波長依存性の有する血管依存波長域の近赤外光が照射され ていることから、 当該指 F Gに内在する毛細血管組織がより反映されたも のとなる。
他方、 このガイ ド溝 1 2の側面には、 可視光を指紋の撮像光として照射 する 1対の可視光光源 1 7 ( 1 7 A及び 1 7 B ) が、 ガイ ド溝 1 2の長手 方向と平行となる状態で撮像開口部 1 3を挟み込むようにして設けられて いる。 この可視光光源 1 7においては、 カメラ部 1 5における撮像面に対 して略直交する照射方向 (以下、 これを可視光照射方向と呼ぶ) から可視 光を照射するようになされている。 従ってこのハイプリ ッ ド撮像部 2は、 可視光光源 1 7からガイ ド溝 1 2 に配置された指 F Gの指腹中央部分に可視光を照射し得るようになされて いる。 この場合、 この可視光は、 その指 F G表面において反射することに より指表面投影光として撮像開口部 1 3及び開口カバー部 1 4を順次介し てカメラ部 1 5に入射することとなる。
このカメラ部 1 5は、 開口カバ一部 1 4から入射する光の光路上に、 マ クロレンズ 2 1 と、 フィルタアレイ 2 2 と、 C C D撮像素子 2 3とを順次 配することにより構成されている。
マクロレンズ 2 1は、 開口カバ一部 1 4から入射する血管投影光及び指 表面投影光をフィルタアレイ 2 2に集光する。
フィルタアレイ 2 2は、 所定の色に対応する波長の光を透過する複数の 画素フィルタを単位 (以下、 これを色分光単位と呼ぶ) として格子状に配 列してなり、 この実施の形態の場合には、 「R」 画素フィル夕、 「G」 画 素フィルタ及び 「B」 画素フィルタを色分光単位として採用している。
この場合、 図 4 ( A ) 及び図 4 ( B ) に示すように、 互いに隣接する 4 個の画素フィルタのうち左上及び右下をおよそ 500〜600 [ nm] の波長域 の光を透過する 「G」 画素フィルタとし、 右上をおよそ 400〜500 [ nm] の波長域の光を透過する 「B」 画素フ ィ ル夕とし、 左下をおよそ 600〜 700 [ nm] の波長域の光を透過する 「R」 画素フィルタとして配列してい る点で、 一般的な R G Bフィル夕アレイ としてフィルタアレイ 2 2が構成 されている。
但し、 このフィル夕アレイ 2 2においては、 「R」 画素フィル夕が血管 依存波長域 (およそ 900〜1000 [ni] ) も透過するようになされている点 で、 一般的な R G Bフィルタアレイとは相違している。
従ってこのフィル夕アレイ 2 2は、 マクロレンズ 2 1から得られる指表 面投影光及び血管投影光を分光し得るようになされている。
C C D撮像素子 2 3は、 画素に対応させて格子状に配された複数の光電 変換素子を撮像面に有し、 当該撮像面に入射する血管投影光及び指表面投 影光を光電変換する。 そして C C D撮像素子 2 3は、 この光電変換結果に よりチャージされる電荷を撮像制御部 3による制御のもとに読み出し、 当 該読み出した電荷を撮像信号 S 1 0 として信号処理部 4に出力するように なされている。
ここで、 開口カバー部 1 4からカメラ部 1 5に入射する近赤外光は、 上 述したように、 指 F Gの内方を経由して得られたもの (血管投影光) の他 に、 主として指 F Gの表面で反射するものも混在している (以下、 指 F G の表面で反射する近赤外光を表面反射近赤外光と呼ぶ) 。 この表面反射近 赤外光は、 主として近赤外光照射方向に対して垂直となる方向から入射す る
一方、 開口カバ一部 1 4からカメラ部 1 5に入射する血管投影光及び指 表面投影光は、 指断面の中央に骨が介在することや照射方向等に起因して 、 撮像面に対して略垂直方向又は垂直方向から入射することが多い。 そこで、 このカメラ部 1 5では、 上述の構成に加えて、 近赤外光照射方 向に対して垂直となる方向と直交する方向に偏光軸を有し、 かつ可視光照 射方向と平行な方向に偏光軸を有する偏光板 2 4が R G Bフィルタアレイ 2 1上に設けられている。
この偏光板 2 4は、 近赤外光照射方向に対して垂直となる方向と直交す る方向に偏光軸を有しているため、 カメラ部 1 5に入射する表面反射近赤 外光を光路上から逸らし、 また可視光照射方向と平行な方向に偏光軸を有 しているため、 撮像面に対して垂直方 となる血管投影光及び指表面投影 光を透過し得るようになされている。
従ってこのカメラ部 1 5においては、 開口カバー部 1 4を介して入射す る血管投影光及び指表面投影光を選択的に C C D撮像素子 2 3の撮像面に 導光するようにして撮像し得るようになされている。
このようにしてこのハイブリ ツ ド撮像部 2は、 指 F G表面を撮像すると 共に、 その内方における血管を撮像することができるようになされている
( 1一 2 ) 撮像制御部の構成
撮像制御部 3 (図 1及び図 3 ) は、 近赤外光光源 1 6、 可視光光源 1 Ί 及び C C D撮像素子 2 3をそれぞれ駆動制御するようになされている。 実際上、 撮像制御部 3は、 この情報処理装置 1に設けられた主電源部 ( 図示せず) から供給される電圧を第 1の電圧レベルでなる近赤外光光源制 御信号 S 2 1 として生成すると共に、 第 2の電圧レベルでなる可視光光源 制御信号 S 2 2 として生成する。 そして撮像制御部 3は、 これら近赤外光 光源制御信号 S 2 1及び可視光光源制御信号 S 2 2を、 対応する近赤外光 光源 1 6及び可視光光源 1 7に印加することにより駆動するよう(こなされ ている。
この結果、 ガイ ド溝 1 2に配置された指 F Gの指腹側部分には近赤外光 照射方向から近赤外光が照射されると同時に、 当該指 F Gの指腹中央部分 には可視光照射方向から可視光が照射されることとなる。
この場合、 C C D撮像率子 2 3の撮像面には、 指 F Gの表面から得られ る指表面投影光と、 当該指 F Gの内方を経由して得られる血管投影光とが 同時期に入射される。
一方、 撮像制御部 3は、 クロック発生部 (図示せず) から供給されるク 口ック信号に基づいて、 所定のデューティ比でなる C C D撮像素子制御信 号 S 2 3を生成し、 これを C C D撮像素子 2 3に対して出力することによ り駆動するようになされている。
こめ結果、 C C D撮像素子 2 3では、 この C C D撮像素子制御信号 S 2 3の立ち下がり (又は立ち上がり) を読み出し時点として、 当該読み出し 時点までに指表面投影光及び血管投影光双方の光電変換結果としてチヤ一 ジされている電荷が撮像信号 S 1 0 として順次信号処理部 4に出力される こととなる。 このようにしてこの撮像制御部 3は、 指 F G表面と血管とを同時に撮像 するようにハイプリ ッ ド撮像部 2を制御することができるようになされて いる。 ―
( 1 - 3 ) 信号処理部の構成
信号処理部 4は、 図 5に示すように、 撮像信号 S 1 0から指表面投影光 に対応する第 1の画像信号成分 (以下、 これを指表面画像成分と呼ぶ) と 、 血管投影光に対応する第 2の画像信号成分 (以下、 これを血管画像成分 と呼ぶ) とを分離する信号分離部 3 1、 指表面画像成分に基づいて血管画 像成分における血管画像に対する位置ずれ検出処理を実行する位置ずれ検 出処理部 3 2及び血管撮像成分に基づいて認証処理を実行する認証処理部 3 3によって構成される。
この信号分離部 3 1は、 C C D撮像素子 2 3から出力される撮像信号 S 1 0に対して A / D (Analog/D igita 変換を施すことにより撮像データを 生成する。
そして信号分離部 3 1は、 この撮像データから例えば 「G」 に対応する 画素デ一夕を色分光単位ごとに抽出し、 これら画素デ一夕群を指表面画像 成分のデータ (以下、 これを指表面画像データと呼ぶ) D 3 1 として位置 ずれ検出処理部 3 2に送出する。
また信号分離部 3 1は、 撮像デ一夕から 「R」 に対応する画素データを 色分光単位ごとに抽出し、 これら画素データ群を血管画像成分のデ一夕 ( 以下、 これを血管画像データと呼ぶ) D 3 2 として認証処理部 3 3に送出 する。
このようにして信号分離部 3 1は、 撮像信号 S 1 0から指表面画像成分 と、 血管投影光に対応する血管画像成分とを分離することができるように なされている。
位置ずれ検出処理部 3 2は、 基準位置に配置された指 F G表面の画像 ( 以下、 これを基準指表面画像と呼ぶ) を保持しており、 この基準指表面画 像と、 指表面画像データ D 3 1の指表面画像との相互相関を算出するよう にして、 当該指表面画像における X方向及び Y方向の位置ずれ状態を検出 する。
そして位置ずれ検出処理部 3 2は、 この検出結果を、 血管画像データ D 3 2の血管画像における位置を補正するためのデータ (以下、 これをど位 置補正データ呼ぶ) D 3 3として認証処理部 3 3に送出するようになされ ている。
このようにしてこの位置ずれ検出処理部 3 2は、 指 F G表面の撮像結果 を対象として撮像時における指 F Gの位置ずれ状態を検出することにより 、 当該生体内方の撮像結果を対象とする場合に比して散乱等に起因する'ノ ィズ成分が少ない分だけ精度よく位置ずれ状態を検出することができるよ うになされている。
この場合、 この位置ずれ検出処理部 3 2は、 指 F G表面の撮像結果とし て、 色分光単位のうち最も光量の多い 「G」 に対応する画素データ (指表 面画像デ'一夕 D 3 1 ) を用いるため、 当該指表面画像の解像度を上げるこ とができ、 この結果、 一段と精度よく位置ずれ状態を検出することができ るようになされている。
認証処理部 3 3は、 血管抽出部 3 3 A及び照合部 3 3 Bからなり、 信号 分離部 3 1から供給される血管画像データ D 3 2 と、 位置ずれ検出処理部 3 2から供給される位置補正データ D 3 3とを血管抽出部 3 3 Aに入力す るようになされている。
血管抽出部 3 3 Aは、 血管画像データ D 3 2に基づく血管画像の位置を 位置補正データ D 3 3に対応する量だけずらすようにして補正し、 当該補 正後の血管画像データ D 3 2に対してメディアンフィル夕処理を施すよう にしてノィズ成分を除去する。
そして血管抽出部 3 3 Aは、 ノイズ成分が除去された血管画像データ D 3 2に対して例えばラプラシアン処理を施すようにして、 当該血管画像デ 一夕 D 3 2に基づく血管画像の血管輪郭を強調するようにして抽出し、 こ のようにして血管輪郭が抽出された血管画像を認証情報 D 3 4 として照合 部 3 3 Bに送出する。
照合部 3 3 Bは、 操作部 (図示せず). から供給されるモ一ド決定信号に 応じて登録モード又は認証モードを実行するようになされており、 当該登 録モード時には、 血管抽出部 3 3 Aから供給される認証情報 D 3 4を登録 認証情報 D 3 5 として登録データベース D Bに登録する。
これに対して照合部 3 3 Bは、 認証モード時には、 血管抽出部 3 3 Aか ら供給される認証情報 D 3 4の血管画像と、 登録データベース D Bに登録 された登録認証情報 D 3 5の血管画像との相互相関を算出するようにして 、 当該血管画像の血管形成パダーンを照合する。
ここで照合部 3 3 Bは、 この照合結果として、 所定の閾値以下となる相 互相関値が得られた場合には、 このときハイプリ ッ ド撮像部 2で撮像した 撮像対象者が登録データベース D Bに登録された登録者ではないと判定す る一方、 当該閾値よりも高い相互相関値が得られた場合には撮像対象者が 登録者本人であると判定し、 この判定結果を判定データ D 3 6 として外部 に送出する。
このようにしてこの認証処理部 3 3は、 生体に内在する血管形成パター ンを対象として認証処理を実行する.ことにより、 当該生体表面に有する指 紋形成パターン等を対象.とする場合に比して生体からの直接的な盗用を防 止できるのみならず、 第三者による登録者への成りすま しをも防止できる ようになされている。
この場合、 認証処理部 3 3は、 認証処理の前処理として血管画像の位置 ずれを補正するため、 撮像時における指 F Gの位置ずれに起因する登録者 の有無の誤判定を回避することができ、 この結果、 当該位置ずれに起因す る認証精度 (照合精度) の低下を未然に防止することができるようになさ れている。 さらにこの場合、 認証処理部 3 3は.、 画質劣化要素が比較的多い指 F G 内方の撮像結果 (血管画像) から位置ずれを検出するのではなく、 当該指 F G内方の撮像結果よりも画質劣化要素が少ない撮像結果 (指紋画像) か ら検出された位置補正データ D 3 3を用いて補正するため、 簡易かつ高精 度で血管画像の位置ずれを補正することができ、 この結果、 認証精度 (照 合精度) の低下を一段と防止することができるようになされている。
( 2 ) 動作及び効果
以上の構成において、 この認証装置 1は、 第 1の光 (可視光) と、 当該 第 1の光どは異なる波長でなる第 2の光 (近赤外光) とを生体に同時期に 照射し、 当該生体より得られる第 1の光 (指表面投影光 (可視光) ) をフ ィル夕アレイ 2 2の主として 「G」 画素フィル夕で透過すると共に、 第 2 の光 (血管投影光 (近赤外光) ) を 「R」 画素フィルタで透過するように して分光する。
そして認証装置 1は、 このようにして分光された第 1の光及び第 2の光 に対する撮像素子での撮像結果として出力される撮像信号 S 1 0から、 第 1の光に対応する第 1の画像信号成分 (指表面画像データ D 3 1 ) と、 第 2の光に対応する第 2の画像信号成分 (血管画像データ D 3 2 ) とを分離 し、 当該第 1の画像信号成分 (指表面画像データ D 3 1 ) に基づいて第 1 の処理 (位置ずれ補正処理) を実行すると共に、 第 2の画像信号成分に基 づいて (血管画像データ D 3 2 ) 第 2の処理 (認証処理) を実行する。 従ってこの認証装置 1では、 '撮像対象を同時期に撮像すると共に、 当該 撮像結果から異なる処理を実行するようにして、 当該撮像対象を 2度撮像 することを省く ことができるため、 撮像時における処理負荷を低減する.こ とができる。
この際、 認証装置 1では、 第 1の画像信号成分と第 2の画像信号成分と の分離を信号処理系のみで行わない分だけ、 複雑な信号処理を採用すると いった事態を回避できるため、 また光学系の制御処理を回避できるため、 一段と撮像時における処理負荷を低減することができる。 さらにこの場合
、 認証装置 1では、 撮像時に光学系を物理的に切り替えるといったことを 回避することができるため、 小型化も実現できる。
またこの認証装置 1は、 第 1の光として可視光を採用すると共に、 第 2 の光として第 1の波長とは異なり、 かつ認証対象となる生体内方の血管に 依存性を有する近赤外光を採用し、 生体の表面より得られる指表面投影光 (可視光) 及び生体の内方を経由して得られる血管投影光 (近赤外光) を 分光する。 従ってこの認証装置 1では、 生体の奥行き方向に異なる性質の ものを同時に得ることができる一方、 当該撮像時における処理負荷を低減 することができる 9
この場合、 この認証装置 1は、 指表面投影光 (可視光) に対応する画像 信号成分に基づいて、 、血管投影光 (近赤外光) に対応する第 2の画像信号 成分における血管画像の位置ずれ状態を検出し、 この検出結果に応じて補 正した第 2の画像信号成分に基づいて認証処理を実行する。
従ってこの認証装置 1では、 画質劣化要素が比較的多い指 F G内方の第 2の成分信号から位置ずれを検出するのではなく、 当該指 F G内方の撮像 結果よりも画質劣化要素が少ない第 1の成分信号から検出した結果を用い て補正するため、 簡易かつ高精度で第 2の成分信号の血管画像の位置ずれ を補正することができ、 この結果、 認証精度の低下を防止することができ る
以上の構成によれば、 第 1の波長でなる第 1の光と、 当該第 1の波長と は異なる波長でなる第 2の光とを生体に照射し、 当該生体より得られる第 1及び第 2の光に対する撮像素子での撮像結果として出力される撮像信号 S 1 0から第 1の に対応する第 1の成分信号と、 第 2の光に対応する第 2の成分信号とを分離した後、 当該第 1の成分信号に基づいて第 1の処理 を実行すると共に、 第 2の成分信号に基づいて第 2の処理を実行するよう にしたことにより、 撮像対象を 2度撮像することを省く ことができるため 、 撮像時における処理負荷を低減することができ、 かく して即時性を向上 し得る情報処理装置を実現することができる。
( 3 ) 他の実施の形態
上述の実施の形態においては、 互いに波長の異なる複数の光を生体に照 射する照射手段として、 可視光と、 認証対象となる血管に依存性を有する 900〜1000 [ nm] の近^外光との 2種類の光を照射するようにした場合に ついて述べたが、 本発明はこれに限らず、 例えば生体内方の病巣に対して 特異性のあるマーカを注入し、 当該可視光と近赤外光とは異なりかつマ一 力に対して依存性の有する波長でなる第 3の光を照射する、 あるいは認証 対象となる血管に依存性を有する近赤外光に代えて、 生体内方に有する認 証対象 (固有構造物) に対して特異性のあるマーカを注入し、 当該可視光 とは異なりかつマーカに対して依存性の有する波長でなる光を照射する等 、 実施の甩途に応じて互いに波長の異なる複数の光を選択し、 これら光を 生体に照射することができる。
また上述の実施の形態においては、 生体より得られる各光を分光する分 光芋段として、 図 4に示した R G B系のフィル夕アレイ 2 2を適用するよ うにした場合について述べたが、 本発明はこれに限らず、 この他種々のフ ィル夕アレイを適用することができる。
例えば、 生体の表面より得られる可視光 (指表面投影光) を 「C y」 、 「Y e」 、 「M g」 及び 「G」 に色分光する補色系のフィル夕アレイを適 用することができる。 この補色系のフィル夕ァレィにおける色分光単位と しては、 様々なものを採用することができる。 この場合、 一般に補色系の フィル夕アレイでは、 「M g」 に対応する画素フ ィル夕が赤外光を透過す るようになっているため、 フィル夕特性を特別に変更することなく適用す ることができるといった利点がある。
また例えば、 「R」 画素フィル夕が血管依存波長域 (およそ 900〜1000 [ nm] ) も透過す.る特性となるように構成されたフィルタアレイ 2 2を適 用したが、 これに代えて、 一般に用いられている R G Bフィルタを適用す るようにしても良い。 この場合、 一般的な R G Bフィルタアレイであって も、 当該 「R」 画素フィル夕は、 「R」 に相当する波長域近くの近赤外光 をカッ トするように厳密には構成されていないため、 当該 「R」 に対応す る画素データを色分光単位ごとに抽出した血管画像データ D 3 2の解像度 は上述の実施の形態に比して劣ることになるが、 認証処理結果に大きく反 映されない。 従ってこの場合であづても上述の実施の形態と.同様の効果を 得ることができる。 なお R G Bフィル夕アレイにおける色分光単位として は、 図 4 ( A ) に示したものに代えて、 様々なものを採用することができ る。
また例えば、 可視光、 近赤外光及び又は第 3の光を透過する画素フ ィル タを色分光単位として構成してなるフィル夕アレイを適用することもでき る。 この場合、 一般に用いられるフィル夕アレイではないため製造コス ト 等がかさむ反面、 照射手段で照射する複数の光を高精度で分光できる利点 がある。 特に、 上述したように生体内方の病巣に対して特異性のあるマー 力を注入し、 当該可視光と近赤外光とは異なりかつマーカに対して依存性 の有する波長でなる第 3の光を照射するような用途等において有効である o
さらに上述の実施の形態においては、 分光手段により分光された各光に 対する撮像素子での撮像結果として出力される撮像信号から当該各光に対 応する複数の画像成分を分離する分離手段として、 「G」 (又は 「R丄 ) に対応する画素デ一夕を色分光単位ごとに抽出する信号分離部 3 1を適用 するようにした場合について述べたが、 この抽出処理手法については、 フ ィル夕アレイにおける色分光単位の画素数や、 フィル夕アレイの種類に応 じて種々のものを採用することができる。
さらに上述の実施の形態においては、 分離手段により分離された各画像 成分に対応する処理をそれそれ実行する信号処理手段として、 指表面投影 光 (可視光) に対応する第 1の画像信号成分に基づいて、 血管投影光 (近 赤外光) に対応する第 2の画像信号成分における血管画像の位置ずれ状態 を検出し、 この検出結果に応じて補正した第 2の画像信号成分に基づいて 認証処理を実行する信号処理部 4を適用するようにした場合について述べ たが、 本発明はこれに限らず、 この他の信号処理部 4を適甩するようにし ても良い。
例えば信号処理部 4は、 指表面投影光 (可視光) に対応する画像信号成 分に基づいて、 血管投影光 (近赤外光) に対応する第 2の画像信号成分に おける血管画像の位置ずれ状態を検出すると共に、 予め登録された指紋画 像との指紋照合処理を実行する。 そして信号処理部 4は、 この指紋照合処 理結果として登録者本人である判定結果が得られた場合に、 かかる検出結 果に応じて補正した第 2の画像信号成分に基づいて認証処理を実行する。 このようにすれば、 認証装置 1における一段と認証精度を向上することが できる。
また、 上述したように生体内方の病巣に対して特異性のあるマーカを注 入し、 当該可視光と近赤外光とは異なりかつマ一力に対して依存性の有す る波長でなる第 3の光を照射するような場合には、 例えば信号処理部 4は 、 この第 3の光に基づいて断層画像デ一夕を生成する。 そして信号処理部 4は、 上述の実施の形態の場合と同様にして位置ずれ検出結果に応じて補 正した第 2の画像信号成分に基づいて認証処理を実行し、 この認証処理結 果として登録者本人である判定結果が得られた場合に、 かかる断層画像デ —夕をデータベースに登録するあるいは表示部に表示する等の処理を実行 する。
このように、 上述した照射手段と同様に、 信号処理手段についても実施 の用途に応じて分離手段により分離された各画像成分に対応する処理を選 択し、 これら処理をそれそれ実行することができる。
さらに上述の実施の形態においては、 撮像素子として、 C C D撮像素子 2 3を適用するようにした場合について述べたが、 本発明はこれに限らず 、 C M 0 S (Complementary Metal Oxide Semiconductor)等のこの他種 々の撮像素子に代替するようにしても良い。 この場合も上述の実施の形態 と同様の効果を得ることができる。
さらに上述の実施の形態においては、 指 F Gの指腹側から近赤外光を照 射し、 その指 F G内方を経由することにより指腹側から得られる血管投影 光を撮像するハイプリ ッ 卜撮像部 2を適用するようにした場合について述 ベたが、 本発明はこれに限らず、 指 F Gの指背側から近赤外光を照射し、 その指 F G内方を経由することによ り指腹側かち得られる血管投影光を撮 像するハイブリ ッ ト撮像部を適用するようにしても良い。 このハイブリ ツ ト撮像部を適用した場合であっても上述の実施の形態と同様の効果を得る ことができる。 なお、 ハイプリ ッ ト撮像部 2は、 図 1及び図 2に示した構 成でなるものを適用したが、 この他種々の構成でなるものを採用するよう にしても良い。 産業上の利用可能性
本発明は、 撮像対象を多面的に観察する場合等に利用可能である。

Claims

1 . 互いに波長の異なる複数の光を生体に照射する照射手段と、 上記生体より得られる各上記光を分光する分光手段と、
上記分光手段により分光された各上記光に対する撮像素子での撮像結果 き口
として出力される撮像信号から、 当該各光に対応する複数の画像成分を分 離する分離手段と、
上記分離手段により分離された各上記画像成分に対応する処理をそれぞ れ実行する信号処理手段と 範
を具える.ことを特徴とする情報処理装置。 囲
2 . 上記照射手段は、
第 1の光と、 当該第 1の光とは異なり、 かつ上記生体の内方に有する認 証対象に依存性を有する波長でなる第 2の光とを生体に照射し、
上記分光手段は、
上記生体の表面より得られる上記第 1の光及び上記生体の内方を経由し て得られる第 2の光を分光し、
上記分離手段は、
上記分光手段により分光された上記第 1の光及び上記第 2の光に対する 撮像素子での撮像結果として出力される撮像信号から、 上記第 1の光に対 応する第 1の画像成分と、 上記第 2の光に対応する第 2の画像成分とを分 離し、
上記信号処理手段は、
上記第 1の画像成分及び上記第 2.の画像成分に対応ずる処理をそれそれ 実行する
ことを特徴とする請求項 1に記載の情報処理装置。
3 . 上記信号処理手段は、 上記第 1の画像成分に基づいて上記第 2の画像成分における画像の位置 ずれ状態を検出し、 当該検出結果に応じて補正した上記第 2の画像成分に 基づいて認証処理を実行する
ことを特徴とする請求項 2に記載の情報処理装置。
PCT/JP2005/015595 2004-09-02 2005-08-22 情報処理装置 WO2006025289A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020067006886A KR101159142B1 (ko) 2004-09-02 2005-08-22 정보 처리 장치
BRPI0506170 BRPI0506170A (pt) 2004-09-02 2005-08-22 aparelho de processamento de imagem
EP05775162.0A EP1785937B1 (en) 2004-09-02 2005-08-22 Information processing device
US10/577,728 US7634116B2 (en) 2004-09-02 2005-08-22 Information processing device
HK07101566A HK1096751A1 (en) 2004-09-02 2007-02-09 Information processing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004256188A JP4556111B2 (ja) 2004-09-02 2004-09-02 情報処理装置
JP2004-256188 2004-09-02

Publications (1)

Publication Number Publication Date
WO2006025289A1 true WO2006025289A1 (ja) 2006-03-09

Family

ID=35999943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015595 WO2006025289A1 (ja) 2004-09-02 2005-08-22 情報処理装置

Country Status (9)

Country Link
US (1) US7634116B2 (ja)
EP (1) EP1785937B1 (ja)
JP (1) JP4556111B2 (ja)
KR (1) KR101159142B1 (ja)
CN (1) CN100478989C (ja)
BR (1) BRPI0506170A (ja)
HK (1) HK1096751A1 (ja)
RU (1) RU2328035C2 (ja)
WO (1) WO2006025289A1 (ja)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7460696B2 (en) 2004-06-01 2008-12-02 Lumidigm, Inc. Multispectral imaging biometrics
US7751594B2 (en) 2003-04-04 2010-07-06 Lumidigm, Inc. White-light spectral biometric sensors
US8229185B2 (en) * 2004-06-01 2012-07-24 Lumidigm, Inc. Hygienic biometric sensors
US8787630B2 (en) * 2004-08-11 2014-07-22 Lumidigm, Inc. Multispectral barcode imaging
CN100577102C (zh) 2004-11-15 2010-01-06 日本电气株式会社 生物体特征输入装置
JP4864511B2 (ja) * 2006-03-31 2012-02-01 富士フイルム株式会社 電子内視鏡装置およびプログラム
JP4182987B2 (ja) 2006-04-28 2008-11-19 日本電気株式会社 画像読取装置
JP5015496B2 (ja) * 2006-06-01 2012-08-29 ルネサスエレクトロニクス株式会社 固体撮像装置、撮像方法および撮像システム
US7995808B2 (en) 2006-07-19 2011-08-09 Lumidigm, Inc. Contactless multispectral biometric capture
US8175346B2 (en) * 2006-07-19 2012-05-08 Lumidigm, Inc. Whole-hand multispectral biometric imaging
US8355545B2 (en) * 2007-04-10 2013-01-15 Lumidigm, Inc. Biometric detection using spatial, temporal, and/or spectral techniques
JP4969206B2 (ja) * 2006-11-01 2012-07-04 京セラ株式会社 生体認証装置
US8027519B2 (en) * 2006-12-13 2011-09-27 Hitachi Maxwell, Ltd. Imaging module for biometrics authentication, biometrics authentication apparatus and prism
JP2008198083A (ja) * 2007-02-15 2008-08-28 Mitsubishi Electric Corp 個人識別装置
FR2913788B1 (fr) * 2007-03-14 2009-07-03 Sagem Defense Securite Procede et installation d'identification d'un individu par capture optique d'une image d'une empreinte corporelle
KR101484566B1 (ko) * 2007-03-21 2015-01-20 루미다임 인크. 국소적으로 일관된 피처를 기초로 하는 생체인식
JP5050644B2 (ja) * 2007-05-15 2012-10-17 ソニー株式会社 登録装置、照合装置、プログラム及びデータ構造
JP5050642B2 (ja) * 2007-05-15 2012-10-17 ソニー株式会社 登録装置、照合装置、プログラム及びデータ構造
JP5034713B2 (ja) * 2007-06-28 2012-09-26 株式会社日立製作所 指静脈認証装置および情報処理装置
JP4910923B2 (ja) * 2007-07-20 2012-04-04 ソニー株式会社 撮像装置、撮像方法及び撮像プログラム
US7787112B2 (en) * 2007-10-22 2010-08-31 Visiongate, Inc. Depth of field extension for optical tomography
US20090159786A1 (en) * 2007-12-19 2009-06-25 Sony Corporation Display apparatus and illumination apparatus
JP5186929B2 (ja) * 2008-01-21 2013-04-24 日本電気株式会社 認証用撮像装置
US20100246902A1 (en) * 2009-02-26 2010-09-30 Lumidigm, Inc. Method and apparatus to combine biometric sensing and other functionality
BR112012004177A2 (pt) * 2009-08-26 2016-03-29 Lumidigm Inc método e sistema biométrico, sistema, método, métodos de localização de objeto, e de discriminação de objeto e de segundo plano, e, prisma multifacetado
EP2500863B1 (en) * 2009-11-10 2023-09-13 Nec Corporation Fake-finger determination device, fake-finger determination method and fake-finger determination program
US8570149B2 (en) 2010-03-16 2013-10-29 Lumidigm, Inc. Biometric imaging using an optical adaptive interface
JP2011197786A (ja) * 2010-03-17 2011-10-06 Sony Corp 情報処理装置および情報処理方法
JP5435746B2 (ja) * 2011-01-24 2014-03-05 富士フイルム株式会社 内視鏡装置
BR112013019253B1 (pt) * 2011-01-27 2021-06-29 Lynxrail Corporation Sistema de visão de máquina para a extração de descontinuidade de profundidade de imagem
KR101517371B1 (ko) * 2012-03-16 2015-05-04 유니버셜 로봇 가부시키가이샤 개인인증방법 및 개인인증장치
TWI536272B (zh) 2012-09-27 2016-06-01 光環科技股份有限公司 生物辨識裝置及方法
US10229257B2 (en) * 2013-01-31 2019-03-12 Nec Corporation Authentication apparatus, prism member for authentication, and authentication method
CN103279733A (zh) * 2013-03-19 2013-09-04 陈威霖 可提高辨识成功率的手指静脉辨识装置
US10254855B2 (en) 2013-06-04 2019-04-09 Wen-Chieh Geoffrey Lee High resolution and high sensitivity three-dimensional (3D) cursor maneuvering device
JP2013225324A (ja) * 2013-06-12 2013-10-31 Hitachi Ltd 個人認証装置、画像処理装置、端末、及びシステム
FR3049089B1 (fr) * 2016-03-21 2018-02-16 Sebastien Jean Serge Dupont Procede permettant de gerer les validations des messages relatifs a une chaine de messages de facon unitaire a travers un reseau de validation decentralise
FR3049090B1 (fr) * 2016-03-21 2021-06-25 Sebastien Jean Serge Dupont Dispositif d'authentification biometrique adaptatif par echographie, photographies en lumiere visible de contraste et infrarouge, sans divulgation, a travers un reseau informatique decentralise
DE102016213111B4 (de) * 2016-07-19 2018-08-09 Koenig & Bauer Ag Inspektionssystem mit mehreren Erfassungsbereichen
EP3657381B1 (en) * 2018-09-25 2022-08-17 Shenzhen Goodix Technology Co., Ltd. Fingerprint recognition apparatus and method, and terminal device
JP7519871B2 (ja) 2020-10-21 2024-07-22 株式会社日立製作所 生体認証装置および生体認証方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11128176A (ja) * 1997-10-29 1999-05-18 Hitachi Ltd 生体光計測装置
JP2003075135A (ja) * 2001-08-31 2003-03-12 Nec Corp 指紋画像入力装置および指紋画像による生体識別方法
JP2003303178A (ja) * 2002-04-12 2003-10-24 Nec Corp 個人識別システム
JP2004054698A (ja) * 2002-07-22 2004-02-19 Io Network:Kk 個人識別装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2565168B2 (ja) * 1986-07-16 1996-12-18 ソニー株式会社 撮像装置
JP2655571B2 (ja) * 1986-12-27 1997-09-24 オリンパス光学工業株式会社 撮像装置
US5246002A (en) * 1992-02-11 1993-09-21 Physio-Control Corporation Noise insensitive pulse transmittance oximeter
US5726443A (en) * 1996-01-18 1998-03-10 Chapman Glenn H Vision system and proximity detector
JPH10289304A (ja) * 1997-02-12 1998-10-27 Nec Corp 指紋画像入力装置
JP3869545B2 (ja) * 1998-01-19 2007-01-17 株式会社日立製作所 指の特徴パターン特徴検出装置及び個人識別装置
JP3658227B2 (ja) * 1999-01-20 2005-06-08 シャープ株式会社 画像読取装置
US6292576B1 (en) * 2000-02-29 2001-09-18 Digital Persona, Inc. Method and apparatus for distinguishing a human finger from a reproduction of a fingerprint
AU2001241925A1 (en) * 2000-02-29 2001-09-12 Digitalpersona, Inc. Method and apparatus for detecting a color change of a live finger
JP3558025B2 (ja) * 2000-09-06 2004-08-25 株式会社日立製作所 個人認証装置及び方法
JP3396680B2 (ja) * 2001-02-26 2003-04-14 バイオニクス株式会社 生体認証装置
JP2003006627A (ja) * 2001-06-18 2003-01-10 Nec Corp 指紋入力装置
JP3617476B2 (ja) * 2001-07-19 2005-02-02 株式会社日立製作所 指認証装置
JP2003050993A (ja) * 2001-08-06 2003-02-21 Omron Corp 指紋読取方法および指紋読取装置
JP3751872B2 (ja) * 2001-10-30 2006-03-01 日本電気株式会社 指紋入力装置
EP1353292B1 (en) * 2002-04-12 2011-10-26 STMicroelectronics (Research & Development) Limited Biometric sensor apparatus and methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11128176A (ja) * 1997-10-29 1999-05-18 Hitachi Ltd 生体光計測装置
JP2003075135A (ja) * 2001-08-31 2003-03-12 Nec Corp 指紋画像入力装置および指紋画像による生体識別方法
JP2003303178A (ja) * 2002-04-12 2003-10-24 Nec Corp 個人識別システム
JP2004054698A (ja) * 2002-07-22 2004-02-19 Io Network:Kk 個人識別装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1785937A4 *

Also Published As

Publication number Publication date
JP4556111B2 (ja) 2010-10-06
CN1879127A (zh) 2006-12-13
HK1096751A1 (en) 2007-06-08
KR20070050860A (ko) 2007-05-16
RU2328035C2 (ru) 2008-06-27
CN100478989C (zh) 2009-04-15
EP1785937A1 (en) 2007-05-16
RU2006114755A (ru) 2007-11-20
BRPI0506170A (pt) 2006-10-31
EP1785937B1 (en) 2015-05-06
KR101159142B1 (ko) 2012-06-22
US20070014437A1 (en) 2007-01-18
US7634116B2 (en) 2009-12-15
EP1785937A4 (en) 2012-03-21
JP2006072764A (ja) 2006-03-16

Similar Documents

Publication Publication Date Title
WO2006025289A1 (ja) 情報処理装置
KR101349892B1 (ko) 다중 생체인식 다중 스펙트럼 이미저
JP4745084B2 (ja) 撮像装置
JP4636140B2 (ja) 静脈撮像装置、静脈撮像方法および静脈認証装置
US20110200237A1 (en) Pattern matching device and pattern matching method
WO2017187718A1 (ja) 撮像装置、認証処理装置、撮像方法、認証処理方法およびプログラム
CN107028602B (zh) 生物体信息测定装置、生物体信息测定方法以及记录介质
KR102560710B1 (ko) 광학적 스펙클을 이용하는 장치 및 방법
TWI403960B (zh) 用來鑑定使用者之成像設備及方法
US20090214083A1 (en) Vein authentication device and vein authentication method
US7835546B2 (en) Pseudorandom number generation apparatus, pseudorandom number generation method and program
JP4281272B2 (ja) 指紋画像撮像方法、指紋画像取得方法、指紋画像撮像装置および個人識別装置
JP4708232B2 (ja) 撮像装置
JP5229489B2 (ja) 生体認証装置
JP3788043B2 (ja) 指紋像入力装置
JP2006288872A (ja) 血管画像入力装置、血管画像構成方法、およびこれらを用いた個人認証システム
US10726283B2 (en) Finger vein authentication device
CN219960739U (zh) 图像传感器、摄像头模组及识别设备
JP5229490B2 (ja) 生体認証装置
JP2007219624A (ja) 血管画像入力装置、及び個人認証システム
JP2008097328A (ja) 画像入力装置、個人認証装置及び電子機器
JP4626801B2 (ja) 撮像装置
JP2007133656A (ja) 指紋照合装置
EP4239586A1 (en) Photographing apparatus and authentication apparatus
US20240161536A1 (en) Biometric information acquiring apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580001260.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 1020067006886

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2005775162

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006114755

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 2007014437

Country of ref document: US

Ref document number: 10577728

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: PI0506170

Country of ref document: BR

WWP Wipo information: published in national office

Ref document number: 10577728

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005775162

Country of ref document: EP