WO2006022133A1 - Electroless plating apparatus - Google Patents

Electroless plating apparatus Download PDF

Info

Publication number
WO2006022133A1
WO2006022133A1 PCT/JP2005/014445 JP2005014445W WO2006022133A1 WO 2006022133 A1 WO2006022133 A1 WO 2006022133A1 JP 2005014445 W JP2005014445 W JP 2005014445W WO 2006022133 A1 WO2006022133 A1 WO 2006022133A1
Authority
WO
WIPO (PCT)
Prior art keywords
electroless plating
temperature
fluid
substrate
temperature adjusting
Prior art date
Application number
PCT/JP2005/014445
Other languages
French (fr)
Japanese (ja)
Inventor
Kenichi Hara
Miho Jomen
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Publication of WO2006022133A1 publication Critical patent/WO2006022133A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1619Apparatus for electroless plating
    • C23C18/1628Specific elements or parts of the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1619Apparatus for electroless plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • H01L21/76846Layer combinations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • H01L21/76849Barrier, adhesion or liner layers formed in openings in a dielectric the layer being positioned on top of the main fill metal

Definitions

  • the present invention relates to an electroless plating apparatus for supplying an electroless plating solution onto a substrate to bond a substrate surface, for example, a wiring metal surface of a semiconductor substrate.
  • a multilayered structure of a semiconductor device is configured by stacking layers in which wiring is embedded in an interlayer insulating film in multiple stages. Strong against electoric migration, preferably U, for example, copper is used as the wiring material.
  • a method of forming the wiring a recess including a groove is formed in the interlayer insulating film, and copper is embedded in the recess. Later, a damascene process was used to polish excess copper by a polishing method called CMP.
  • CMP polishing method
  • a barrier film called a protective film or a cap metal is formed on the buried copper. It needs to be formed.
  • This noria film also has a function as a stagger when etching the next interlayer insulating film, and silicon nitride, silicon carbide, silicon carbonitride, and the like have been conventionally used as the material.
  • the present inventor forms an electroless plating film such as CoWP (cono-tungsten phosphorus) on the copper wiring, and forms a barrier film on the electroless plating film so that the adhesion between the copper and the barrier film is improved. We are studying technology to ensure this.
  • CoWP cono-tungsten phosphorus
  • FIG. 10 is a diagram showing a structure in which the copper wiring 101 is formed in the interlayer insulating film 100.
  • the force electroless plating film 102 grows isotropically and spreads laterally as the film grows.
  • dl between adjacent copper wirings 101 becomes extremely small, for example, 65 nm
  • d2 approaches between them and there is a concern of leakage.
  • Patent Document 1 (FIG. 1, paragraph 0021, paragraph 002 6 and paragraph 0030 of Japanese Patent Application Laid-Open No. 2004-107747), as shown in the schematic diagram of FIG.
  • a wafer (hereinafter referred to as a wafer) is provided with an upper surface plate 201 and a lower surface plate 202 that are opposed to the upper and lower sides of W, respectively, and the upper surface plate 201 is provided with a heater such as a heating wire and an external force is applied at a predetermined temperature, for example, room temperature to 60 ° C The electroless plating solution heated to a preset temperature until is supplied to the wafer surface via the upper surface plate 201.
  • a heater such as a heating wire and an external force is applied at a predetermined temperature, for example, room temperature to 60 ° C
  • the electroless plating solution heated to a preset temperature until is supplied to the wafer surface via the upper surface plate 201.
  • pure water heated to the above set temperature is supplied onto the lower surface plate 202 so as to perform electroless plating while maintaining the wafer W at a predetermined temperature. Good thing is described.
  • the tanks 203 and 204 for the electroless plating solution and pure water are immersed in a common heating tank 205.
  • a heater such as a heating wire provided in the upper surface plate 201 while being pressed is subject to a rapid temperature fluctuation and a large amount of the fluctuation.
  • the temperature fluctuation of the electrolytic plating solution is also large.
  • the temperature fluctuation of pure water is large.
  • the thickness of the electroless plating film becomes too large. There is a concern that a part where a sufficient film thickness cannot be secured may occur. When the film thickness becomes too large, this film grows isotropically, so that the distance d2 (see Fig.
  • the present invention has been made under such circumstances, and an object of the present invention is to prepare an electroless plating film on a substrate and to form it with a high film thickness and high uniformity. It is to provide an electroless plating apparatus.
  • the present invention includes a substrate holding unit for holding a substrate;
  • An upper temperature adjustment body that faces the surface of the substrate held by the substrate holding section and whose inside forms a flow chamber for the temperature adjustment fluid
  • a first supply passage for the temperature adjustment fluid connected to the upper temperature adjustment body and a first discharge passage for the temperature adjustment fluid
  • the electroless plating solution is for forming a plating film on the surface of a wiring material formed by being embedded in a recess of an insulating film on a substrate, for example.
  • the present invention provides a temperature adjusting fluid reservoir provided between the temperature adjusting fluid first supply path and the temperature adjusting fluid first discharge path, and the temperature adjusting fluid storing section.
  • Set the temperature of the conditioning fluid A temperature adjusting means for maintaining the temperature, and a pump for circulatingly supplying the temperature adjusting fluid in the reservoir into the upper temperature adjusting body through the first supply path of the temperature adjusting fluid.
  • the pump is preferably provided in the first discharge path of the temperature adjusting fluid.
  • the present invention is directed to a lower temperature adjusting body that is opposed to the back surface of the substrate held by the substrate holding portion and whose inside forms a flow chamber for the temperature adjusting fluid, and for supplying the lower temperature adjusting body to the back side of the substrate
  • a back side fluid that is provided through the flow chamber to exchange heat between the back side fluid and the temperature regulating fluid in the lower temperature regulating body, and has a discharge port formed on the upper surface of the lower temperature regulating body.
  • the second supply path for the temperature adjusting fluid is configured to supply the temperature adjusting fluid in the reservoir, and the second temperature adjusting fluid is supplied to the second temperature adjusting fluid.
  • the discharge path can include an embodiment configured to collect the temperature adjusting fluid in the storage section.
  • a pump in the second discharge path of the temperature adjustment fluid may also be used as a pump for circulating the temperature adjusting fluid in the upper temperature adjusting body.
  • the temperature adjusting fluid is allowed to flow through the upper temperature adjusting body and heat is exchanged with the electroless plating solution, the temperature of the electroless plating solution is adjusted.
  • the temperature change of the plating solution becomes gradual, and even if the temperature of the electroless plating solution is set to a high temperature within the allowable processing temperature, it will not be overheated.
  • the electroless plating liquid is filled between the upper temperature control body through which the temperature control fluid flows and the surface of the substrate, and therefore, the surface temperature of the substrate is high at a predetermined temperature with high in-plane uniformity.
  • the deposition rate of the electroless plating film is stable at each site, so that the film thickness of the electroless plating film is planned to be high and with high in-plane uniformity. Therefore, even between the substrates, the uniformity of the film thickness (uniformity between surfaces) is increased.
  • a lower temperature adjusting body is provided on the back side of the substrate, and a temperature adjusting fluid is allowed to flow therethrough.
  • heat exchange with the back side fluid is performed to control the temperature of the back side fluid. back
  • the temperature of the substrate becomes more stable and the in-plane uniformity becomes higher, so that the electroless plating process can be performed more satisfactorily.
  • the temperature adjusting fluid of the upper temperature adjusting body is circulated and the temperature adjusting fluid of the lower temperature adjusting body is also circulated, and a common reservoir is provided in the circulation path, and the temperature of the temperature adjusting fluid is set here.
  • FIG. 1 is a longitudinal sectional view showing the overall configuration of an embodiment of an electroless plating apparatus according to the present invention.
  • FIG. 2 is a schematic perspective view showing a main part of the electroless plating apparatus.
  • FIG. 3 is a longitudinal sectional view showing a main part of the above electroless plating apparatus.
  • FIG. 4A, FIG. 4B, and FIG. 4C are explanatory views showing the surface structure of the substrate used for the electroless plating process in order.
  • FIGS. 5A, 5B, and 5C are explanatory views showing step by step how the substrate is processed by the electroless plating apparatus, and FIG. FIG. 5B shows the cleaning, and FIG. 5C shows the plating process.
  • FIGS. 6A, 6B, and 6C are explanatory views showing in stages the processing when the substrate is processed by the electroless plating apparatus, and FIG. 6B shows post-cleaning and FIG. 6C shows spin drying.
  • FIG. 7 is a longitudinal sectional view showing a modification of the upper temperature adjusting body in the apparatus of FIG. 1.
  • FIG. 8 is a schematic longitudinal sectional view showing the configuration of another aspect of the electroless plating apparatus.
  • FIG. 9 is a longitudinal sectional view showing a nozzle portion used in the apparatus of FIG.
  • FIG. 10 is an explanatory diagram for indicating a problem of electroless plating on a copper wiring in a semiconductor wafer.
  • FIG. 11 is a schematic perspective view showing a conventional technique of an electroless plating apparatus.
  • FIG. 1 is a diagram showing an overall configuration diagram of an embodiment of an electroless plating apparatus according to the present invention.
  • reference numeral 11 denotes a wafer chuck that forms a flat cylindrical substrate holding portion having an open top.
  • a step portion 12 that holds the peripheral portion of the wafer as the substrate is formed on the entire peripheral edge of the upper end of the wafer chuck 11.
  • a cylindrical rotating shaft 13 is provided at the center of the wafer chuck 11, and this rotating shaft 13 is connected to a rotation drive unit such as a hollow motor 14.
  • the wafer chuck 11 is configured to be rotatable around the vertical axis while supporting the wafer W.
  • the hollow motor 14 is fixed to a base 15, and this base 15 is attached to a tilt mechanism 16 so that it can tilt.
  • a cup body 21 for receiving liquid is provided outside the wafer chuck 11 so as to surround the wafer chuck 11, and the cup body 21 can be moved up and down with respect to the base 15 by a lifting mechanism (not shown). It is configured.
  • the upper end portion of the side peripheral surface of the cup body 21 is bent inward so that the liquid sprinkled off when the wafer W is rotated rebounds.
  • An opening 22 is formed at the center of the bottom surface of the cup body 21, and the rotating shaft 13 passes through the opening 22, and the portion close to the periphery of the bottom surface spills from the wafer W.
  • a drain discharge part 23 is provided for discharging the liquid as a drain.
  • a hole that cannot be seen in the figure is formed even on the bottom surface of the wafer chuck 11 where the central force is removed, so that the liquid spilled into the wafer chuck 11 flows down into the cup body 21.
  • An upper temperature adjustment body 3 is provided above the wafer chuck 11 so as to face the surface of the wafer W held by the wafer chuck 11.
  • the upper temperature adjusting body 3 is moved between a processing position where an electroless plating solution is supplied to the wafer W by a lifting mechanism 30 which is a moving mechanism and a standby position which is located above the processing position. It is configured to move up and down.
  • the detailed structure of the upper temperature adjustment body 3 will be described later, and the lower temperature adjustment body 4 will be described first.
  • the lower temperature adjustment body 4 is disposed in the wafer chuck 11 so as to face the back surface of the wafer W held by the wafer chuck 11, and has a support shaft 40 penetrating through the rotary shaft 13!
  • the elevating mechanism 30 of the upper temperature adjustment body 3 and the elevating mechanism (not shown) of the lower temperature adjustment body 4 are fixed to the base 15, and therefore the upper temperature adjustment body 3, the wafer W and the lower temperature adjustment are adjusted by the tilt mechanism 16.
  • Body 4 will tilt physically.
  • the purpose of inclining these is to The purpose is to remove the bubbles mixed in the treatment liquid such as the electroless plating solution between the temperature adjustment body 3 and the wafer W by moving them upward.
  • the upper temperature adjustment body 3 has a cylindrical shape and is slightly larger than the wafer W and is sized.
  • the inside of the upper temperature adjustment body 3 is configured as a flow chamber 31 through which a heat control fluid such as temperature control fluid such as pure water flows. ing. In addition to pure water, it is preferable to use a liquid with a large specific heat as the heating medium.
  • a first heat medium supply pipe 32 corresponding to the first supply path of the temperature adjustment fluid is connected to the vicinity of the outer edge portion on the upper surface of the upper temperature adjustment body 3.
  • a first heat medium discharge pipe 33 corresponding to the first discharge path for the temperature adjusting fluid is connected to a position symmetrical to the medium supply pipe 32.
  • the heating medium is supplied from the upper surface of the upper temperature adjustment body 3 and the upper surface force is also discharged, but one of the heating medium supply pipe 32 and the first heating medium discharge pipe 33 is connected to the upper temperature adjustment body 33. Even if it is inserted near the bottom of the body 3, the layout should be designed according to the height of the flow chamber 31 and the flow rate of the heat medium so that the heat medium can flow efficiently.
  • the heat medium supply pipe 32 and the heat medium discharge pipe 33 form a heat medium circulation path, and a heat medium tank 34 as a heat medium storage section is provided in the middle of the circulation path. . That is, one end side of the heat medium supply pipe 32 is inserted to the vicinity of the bottom of the heat medium tank 34, and one end side of the heat medium discharge pipe 33 is positioned above, for example, the liquid level of the heat medium tank 34.
  • a heater 35 having a resistance heating linear force as a heating means is disposed at the bottom, and a temperature detection unit 36 is provided so as to be immersed in the heat medium. .
  • a control unit 37 has a function of controlling the heat generation of the heater 35 based on the temperature detected by the temperature detection unit 36 and the set temperature.
  • the heater 35, the temperature detector 36, and the controller 37 constitute a temperature adjusting means for maintaining the temperature of the heat medium at a set temperature.
  • the heat medium discharge pipe 33 is provided with a pump P1. Since the pump P1 is a factor that changes the temperature of the heat medium, it is desirable to install it downstream from the upper temperature adjustment body 3.Also, by installing in this way, the driving force of the heat medium is negative pressure. Therefore, even if leakage occurs in the upper temperature regulator 3 or the heat medium piping (32, 33), only air enters the piping and there is no risk of the heat medium leaking outside. .
  • an electroless plating liquid supply pipe 51 which is a supply path for the electroless plating liquid, is inserted in the center of the upper surface of the upper temperature adjusting body 3, and this electroless plating liquid supply pipe 51 is arranged, for example, in the form of a coil so that heat is exchanged between the electroless plating solution and the heat medium in the upper temperature adjusting body 3, that is, in the flow chamber 31.
  • an opening 52 is formed on the lower surface of the upper temperature adjusting body 3 to form an electroless plating liquid discharge port 52.
  • the material of the electroless plating liquid supply pipe 51 located in the upper temperature adjusting body 3 it is preferable to use a material that is inert to the electroless plating liquid and has a good thermal conductivity. It is possible to use glass or a metal whose inner surface is coated with a coating material that is inert to the non-electrolytic solution.
  • the other end of the electroless plating liquid supply pipe 51 is connected to a chemical tank 53 via a valve VI and a pump P2, as shown in FIG.
  • the other end of the electroless plating solution supply pipe 51 is branched halfway and connected to a supply path 54 of pure water, which is a cleaning liquid, and pure water in the pure water tank 55 is not supplied via the pump P3 and the valve V2. It is configured to be discharged from the discharge outlet 52 through the electrolytic plating solution supply pipe 51.
  • the electroless plating solution a metal salt containing a component that forms an adhesion layer (electroless plating film) between the copper wiring and the barrier layer (in the case of an alloy, the first metal salt).
  • the second metal salt a complexing agent for complexing the metal such that the metal ion does not precipitate as a hydroxide under strong alkalinity, and the metal ion is catalytically reduced and deposited. It contains a reducing agent for adjusting the pH of the solution and a pH adjusting agent for adjusting the pH of the solution.
  • the metal salt, complexing agent, reducing agent and pH adjuster is selected as the metal salt, complexing agent, reducing agent and pH adjuster, and a solvent such as purely specified Adjust by adding at the ratio of.
  • cobalt sulfate, salt-cobalt, nickel sulfate, nickel chloride-nickel, and the second metal salt may be selected from, for example, tungstic acid and ammonium tungstate.
  • complexing agents that can be selected include citrate, sodium citrate, and sodium hydroxide and TMAH (tetramethyl ammonium hydroxide) as pH adjusters.
  • citrate, sodium citrate, and sodium hydroxide and TMAH (tetramethyl ammonium hydroxide) as pH adjusters.
  • the components listed are examples, and these components are not necessarily used.
  • it can be treated with an oxidizing agent (acid copper cuprate if the plating film is copper).
  • Stabilizers to prevent spontaneous decomposition of the fluid such as bivirdil, cyanide, thiourea, 0-phenantorin, neoproin can be added, and pH change when the substitution reaction proceeds is suppressed
  • boric acid, carbonic acid, or oxycarboxylic acid may be added.
  • additives such as thiosulfuric acid and 2-MBT may be added for promoting or suppressing precipitation of the plating film and modifying the plating film.
  • a surfactant such as polyalkylene glycol or polyethylene glycol may be added to reduce the surface tension of the solution so that the plating solution is uniformly disposed on the surface of the wafer W.
  • the lower temperature adjustment body 4 has a structure similar to that of the upper temperature adjustment body 3, that is, a structure in which the upper temperature adjustment body 3 is turned upside down. Similarly, pure water as a back side fluid is contained therein. Supply channel is arranged. That is, the lower temperature adjustment body 4 has a cylindrical outer shape and is slightly larger than the wafer W. The inside of the lower temperature adjustment body 4 is configured as a flow chamber 41 through which a temperature control fluid such as pure water flows. Has been.
  • the lower temperature adjustment body 4 includes a second heat medium supply pipe 42 corresponding to the second supply path for the temperature adjustment fluid, and a second heat medium discharge pipe 43 corresponding to the second discharge path for the temperature adjustment fluid. Is connected.
  • the heat medium supply pipe 42 and the heat medium discharge pipe 43 form a heat medium circulation path, and the second heat medium supply pipe 42 is branched from the first heat medium supply pipe 32, and The second heat medium discharge pipe 43 is connected to the first heat medium supply pipe 32 on the upstream side of the pump P1.
  • the present invention is not limited to sharing a part of the first and second heating medium supply pipes 32 and 42 and sharing a part of the first and second heating medium discharge pipes 33 and 43 as in this example.
  • the heating medium of the upper temperature adjustment body 3 and the lower temperature adjustment body 4 may be circulated through independent circulation paths.
  • a pure water supply pipe 61 which is a supply path for the back side fluid, for example, pure water, is inserted.
  • it is arranged in a coil shape so that heat is exchanged between the pure water and the heat medium in the body 4, that is, in the flow chamber 41, and its tip is at the bottom as shown in FIG.
  • a pure water discharge port 62 is formed in the upper surface of the temperature control body 4.
  • the pure water supply pipe 61 is connected to the support shaft 40, and the other end is connected to a pure water tank 63 via a valve V3 and a pump P4 as shown in FIG.
  • the backside fluid here is a fluid for controlling the temperature of the wafer W from the backside, but is distinguished from the fluid flowing through the lower temperature adjusting body 4 in the upper temperature adjusting body 3. These names are used for convenience.
  • pure water which is the back side fluid, also serves as a back side rinse.
  • the upper temperature adjustment body 3 and the lower temperature adjustment body 4 are smaller in size than the wafer W and need only be larger than the effective area (integrated circuit formation area) of the wafer W. Because it forms an integrated circuit as close as possible to the edge, it is preferred that it be the same as or larger than the size of the wafer W!
  • the electroless plating apparatus includes a plurality of nozzles movable between a fluid supply position and a standby position above the wafer W held by the wafer chuck 11. It has.
  • two nozzles 17 and 18 are shown for convenience.
  • the nozzle 17 is for supplying a replacement squeezing solution to the surface of the wafer W before the electroless squeezing solution, and is connected to a supply source of the replacement staking solution through a pipe not shown.
  • the nozzle 18 is for supplying a drying gas, for example, an inert gas, and is connected to a drying gas supply source through a pipe shown in the figure.
  • nozzles 17 and 18 are, for example, provided with a slit-like discharge port having a length equal to or greater than the radius of Ueno, W, and are configured to be movable up and down and laterally movable by a driving mechanism (not shown).
  • the upper temperature adjustment body 3 is made to stand by at the standby position and the wafer chuck 11 is lowered, and the surface of the wafer W is sucked and conveyed to the upper side of the wafer chuck 11 by a conveying means (not shown), and the wafer chuck 11 is raised. Then, the wafer W of the transfer means is transferred to the wafer chuck 11 (the state shown in FIG. 1). Further, as shown in FIG. 4A, the surface of the wafer W is in a state where, for example, the copper wiring 302 is embedded in the concave portion of the interlayer insulating film 301.
  • Reference numeral 303 denotes a barrier film for preventing copper in the recess from diffusing into the insulating film 301.
  • the nozzle 17 is moved onto the wafer W, and the pretreatment liquid is supplied onto the wafer W while rotating the wafer W via the wafer chuck 11.
  • This pretreatment liquid is, for example, a substitution liquid for performing palladium substitution, and this substitution liquid dissolves a palladium salt made of palladium sulfate or salty palladium in an acid solution such as sulfuric acid or hydrochloric acid. Can be used.
  • This replacement sachet is tempered to a selected temperature within the range of room temperature to 60 ° C, for example. As shown in FIG.
  • the nozzle 18 is also retracted from the upward force of the wafer W, the upper temperature adjusting body 3 is lowered, and the distance between the lower surface and the surface of the wafer W is, for example, 0.1 lmn! Set the position to be ⁇ 2mm.
  • the lower temperature adjustment body 4 is also raised so that the distance from the back surface of the wafer W is, for example, 0. Set the position to be ⁇ 2mm.
  • the heat exchange with the heat medium flowing through the lower temperature adjusting body 4 is performed.
  • the heat medium passes through the heat medium tank 34 and is heated there to a set temperature selected from the range of, for example, 60 ° C. to 90 ° C., which is the processing temperature of the electroless plating solution.
  • the heated pure water flows into the wafer chuck 11 while being filled in the gap between the lower temperature adjusting body 4 and the back surface of the wafer W, and flows into the cup 21 through the hole, which is not visible in the figure.
  • the UE and W are heated from the back surface side and are maintained at the tacking treatment temperature. In this way, after the UENO and W are heated for a predetermined time, for example, 10 seconds, an electroless plating solution that is a chemical solution is sent out by the pump P2.
  • the electroless plating solution enters the upper temperature adjustment body 3 and flows into the upper temperature adjustment body 3 while flowing through the coiled flow path (electroless plating supply pipe 51). Heat exchange is performed with the heating medium. Further, since the heat medium in the upper temperature adjustment body 3 is circulated and supplied via the heat medium tank 34 and heated to the set temperature, the electroless plating solution is not discharged until the discharge port 52 is discharged. It will be heated to the set temperature.
  • the heated electroless plating solution flows into the cup body 21 while being supplied and filled in the gap between the upper temperature control body 3 and the surface of the wafer W at a flow rate of, for example, 30 to LOOmlZ,
  • the lower surface of the temperature adjustment body 3 also tends to be maintained at the set temperature by the heat medium.
  • FIG. 5C shows this state.
  • the wafer W is subjected to an electroless plating process while the temperature of both front and back surfaces of the wafer W is adjusted.
  • the palladium deposited on the surface of the wafer W in the previous step acts as a catalyst to cause a reaction between the electroless plating solution and copper, and selectively occurs on the surface of the copper wiring 302 as shown in FIG. 4C.
  • An electroless adhesive film 305 made of an adhesive layer having a thickness of 100 to 200 A, such as NiP, CoWP, NiP, or CoP, made of an alloy containing phosphorus (P) is formed.
  • the tilting mechanism 16 is used to tilt the wafer W, the upper temperature adjustment body 3 and the lower temperature adjustment body 4 so as to remove the bubbles that have entered the gaps and remove the electroless adhesion liquid force. It may be. Such treatment is effective when gas is generated by the reaction between the electroless plating solution and copper.
  • valves VI and V2 shown in Fig. 1 are switched, and pure water is supplied from the discharge port 52 of the upper temperature adjusting body 3 through the electroless plating liquid supply pipe 51 by the pump P3.
  • the electroless plating solution on the surface of the wafer W is replaced with pure water as shown in FIG. 6A.
  • the post-cleaning liquid is supplied onto the rotating wafer W, and the surface of the wafer W is post-cleaned. Even at this time, pure water is supplied as a back rinse to the back side of Ueno and W.
  • Post-cleaning is performed to reduce the leakage current between lines, and organic acid and hydrofluoric acid aqueous solution are used as the post-cleaning liquid.
  • the supply of pure water after the electroless plating process may be performed by the nozzle 18 with the upper temperature adjusting body 3 raised.
  • the nozzle of the nozzle group described above (for the sake of convenience, 18) is also used with pure water that is a cleaning liquid.
  • Supply to the surface of the rotating wafer W then stop discharging the cleaning liquid, rotate the wafer W at high speed and dry it as shown in Fig. 6C.
  • drying may be accelerated by spraying a dry gas such as an inert gas from the nozzles of the nozzle group described above onto the surface of the wafers W and W.
  • a dry gas such as an inert gas
  • the heating medium is caused to flow through the upper temperature adjusting body 3, and the temperature of the electroless plating solution is adjusted by heat exchange with the electroless plating solution.
  • the temperature change of the electroless plating solution becomes gradual and the temperature stabilizes.
  • An electroless plating solution is filled between the upper temperature adjustment body 3 through which the heat medium flows and the wafer W surface, and a lower temperature adjustment body 4 is provided on the back side of the wafer W.
  • a heating medium is passed through this, heat-exchanged with pure water here to control the temperature of the pure water, and this pure water fills the space between Ueno, W back surface and lower temperature control body 4.
  • the temperature of the surface of the wafer W is stabilized at a predetermined temperature with high in-plane uniformity, and as a result, the deposition rate of the electroless plating film is stable at each site. Therefore, the thickness of the electroless plating film can be obtained with a predetermined film thickness and high in-plane uniformity. Therefore, the film thickness uniformity (inter-surface uniformity) between wafers W is also increased. As a result, since the film thickness of the electroless plating film can be controlled with high accuracy even when the distance between the wirings to be electrolessly plated is shortened, the film's wide area due to the isotropic growth of the electroless plating film S It is possible to suppress the occurrence of leaks due to the leakage.
  • the heating medium of the upper temperature adjustment body 3 and the heating medium of the lower temperature adjustment body 4 are circulated, and a common heating medium tank 34 is provided in the circulation path to adjust the temperature of the heating medium. Therefore, each temperature control of each heat medium, electroless plating solution and pure water which is the back surface fluid can be managed at one power. For this reason, since the temperature of the heating medium of the upper temperature adjustment body 3 and the temperature of the heating medium of the lower temperature adjustment body 4 are the same, the temperature of the electroless plating process is extremely stable, and the film of the electroless plating film High in-plane uniformity and inter-plane uniformity can be obtained with respect to the thickness.
  • a plate-like heater using a heating wire is used as shown in FIG. 11 described in the prior art, for example, without providing the lower temperature adjusting body 4 using a heating medium on the back side of the wafer W. Even if a unit (bottom plate) is provided and pure water that has been temperature-controlled in advance is supplied between the heater unit and the back surface of the wafer W, the upper temperature adjusting body 3 works to achieve electroless plating with high in-plane uniformity. Processing can be performed.
  • the discharge port for discharging the electroless plating solution from the upper temperature adjusting body 3 to the wafer W is not limited to being provided at one place as in the above-described example, but for example, as shown in FIG.
  • a buffer chamber 56 is formed on the lower side of the body 3, and the lower end of the electroless plating liquid supply pipe 51 is connected to the buffer chamber 56, and a number of discharge ports are formed over the entire lower surface of the notch chamber 56. Try to form 57.
  • reference numeral 71 denotes a wafer chuck, which is configured by a cylindrical body that is rotatable about the vertical axis by a rotating mechanism that does not have a force schematically illustrated in the figure, and has a wafer W on its upper edge.
  • a supporting step 72 is formed.
  • a heater 73 as a heating means and a liquid heating mechanism 74 are provided above and below each other, and the liquid heated by the liquid heating mechanism 74, for example, Pure water is supplied to the gap between the heater 73 and the wafer W through the central portion of the heater 73.
  • the liquid heating mechanism 74 is configured like the lower temperature adjustment body 4 in the previous embodiment.
  • the pure water introduced into the liquid heating mechanism 74 from the liquid supply pipe 75a and heated there is supplied to the back side of the wafer W through the liquid supply pipe 75b which is a liquid supply path.
  • a nozzle portion 8 for supplying an electroless plating solution onto the wafer W is provided, for example, vertically movable and horizontally movable by a moving mechanism (not shown).
  • the nozzle unit 8 is configured by providing a base 81 with a liquid heating mechanism 82 and a valve 83.
  • the liquid heating mechanism 82 includes a liquid supply pipe 92 that is a liquid supply path in a longitudinal direction of the hollow body 91 in a horizontally long hollow body 91 that forms a heat medium flow chamber.
  • a heat medium supply path 93 and a heat medium discharge path 94 are connected to one end and the other end of the flow chamber, respectively.
  • the heat medium supply path 93 and the heat medium discharge path 94 form a circulation path, and the heat medium is circulated and supplied to the hollow body 91 via a circulation tank (not shown) as in the previous embodiment. It is composed.
  • the nozzle 83 has a liquid blocking function and is connected to the outlet side of the liquid supply pipe 92 in the liquid heating mechanism 82.
  • the discharge port 84 which is the tip of the liquid supply pipe 92 on the downstream side of the valve 83, is located in the immediate vicinity of the valve 83!
  • the nozzle 83 is located in the vicinity of the discharge port 84 and the liquid is added. Since it is located downstream of the temperature mechanism 82, dripping from the discharge port 84 can be prevented by its suck back function. Further, since the liquid heating mechanism 82 is provided immediately before the discharge port 84, the heated electroless plating liquid is supplied onto the wafer W before the cooling is substantially caused. Thus, electroless plating can be performed, and as a result, high uniformity in the surface can be obtained by the electroless plating film.

Abstract

An upper temperature controller providing a circulation chamber for temperature control fluid is disposed opposite a surface of substrate held on a substrate holding part. In the upper temperature controller, a supply channel for electroless plating solution is drawn round so as to effect heat exchange between the temperature control fluid and the electroless plating solution. The electroless plating solution is discharged from a bottom side of the upper temperature controller so as to fill the interstice between the upper temperature controller and the substrate. Further, a lower temperature controller is disposed on a back side of the substrate, and a temperature control fluid is circulated therein. In the lower temperature controller, heat exchange with a fluid for back side, for example, pure water is carried out. Thus, the temperature control of pure water is accomplished, and the interstice between the back side of the substrate and the lower temperature controller is filled with the pure water. Consequently, in parts of the process for producing a semiconductor device, for example, electroless plating treatment conducted on a surface of wiring material embedded in an interlayer insulating film, it becomes feasible to form an electroless plating film at intended film thickness with high in-plane homogeneity and inter-plane homogeneity.

Description

明 細 書  Specification
無電解めつき装置  Electroless plating device
技術分野  Technical field
[0001] 本発明は、基板上に無電解めつき液を供給して基板表面、例えば半導体基板の配 線金属の表面をめつきするための無電解めつき装置に関するものである。  TECHNICAL FIELD [0001] The present invention relates to an electroless plating apparatus for supplying an electroless plating solution onto a substrate to bond a substrate surface, for example, a wiring metal surface of a semiconductor substrate.
背景技術  Background art
[0002] 半導体デバイスの多層化構造は、層間絶縁膜に配線を埋め込んだ層を多段に積 層して構成される。エレクト口マイグレーションに強 、好ま U、配線材料としては例え ば銅が用いられており、その配線を形成する手法としては、層間絶縁膜に溝を含む 凹部を形成し、この凹部に銅を埋め込んだ後、余剰の銅を CMPと呼ばれる研磨法 により研磨するダマシンプロセスが採用されている。ところで銅配線の上にそのまま次 段の層間絶縁膜を形成すると銅が当該層間絶縁膜の中に拡散するので、埋め込ま れた銅の上に保護膜やキャップメタルなどと呼ばれているバリア膜を形成する必要が ある。このノリア膜は、次段の層間絶縁膜をエッチングするときのストツバとしての機 能も合わせ持っており、その材質としては従来から窒化シリコン、炭化シリコン、炭化 窒化シリコンなどが用いられてきた。  A multilayered structure of a semiconductor device is configured by stacking layers in which wiring is embedded in an interlayer insulating film in multiple stages. Strong against electoric migration, preferably U, for example, copper is used as the wiring material. As a method of forming the wiring, a recess including a groove is formed in the interlayer insulating film, and copper is embedded in the recess. Later, a damascene process was used to polish excess copper by a polishing method called CMP. By the way, when the next interlayer insulating film is formed on the copper wiring as it is, copper diffuses into the interlayer insulating film. Therefore, a barrier film called a protective film or a cap metal is formed on the buried copper. It needs to be formed. This noria film also has a function as a stagger when etching the next interlayer insulating film, and silicon nitride, silicon carbide, silicon carbonitride, and the like have been conventionally used as the material.
[0003] し力しながら上記のバリア膜と銅との密着性が十分に大きくはないので、この間に空 隙が形成されやすぐそのためエレクト口マイグレーションにより断線が起こりやすくな り、この現象はパターンが微細化してくると顕著になってくる。そこで本発明者は、銅 配線の上に例えば CoWP (コノ レトタングステンリン)などの無電解めつき膜を形成し 、その上にバリア膜を形成することで銅とバリア膜との間の密着性を確保する技術を 検討している。  [0003] Since the adhesion between the barrier film and copper is not sufficiently large, however, a gap is formed immediately between the barrier film and copper, which easily causes disconnection due to electoric port migration. As it becomes smaller, it becomes more prominent. Therefore, the present inventor forms an electroless plating film such as CoWP (cono-tungsten phosphorus) on the copper wiring, and forms a barrier film on the electroless plating film so that the adhesion between the copper and the barrier film is improved. We are studying technology to ensure this.
[0004] この無電解めつき膜は上記の密着性という点では有用な手法である力 ノターンが 微細化し、配線間の離間距離が小さくなると、配線間でリークするおそれが出てくる。 図 10は層間絶縁膜 100に銅配線 101が形成されている構造を示す図である力 無 電解めつき膜 102は等方成長するため、膜の成長に伴って横に広がってしまう。今後 、互いに隣接する銅配線 101間の離間距離 dlが例えば 65nmと極めて小さくなると、 各無電解めつき膜 102が広がることによりそれらの間 d2が可成り接近することになり、 リークする懸念がある。これを避けるためには、無電解めつき膜の厚さを小さく抑える しかなぐそのためには無電解めつき処理における処理温度を厳密に管理する必悪 がある。何故ならば無電解めつき液の温度が 1°C異なると、成膜速度が例えば 10% 程度変わってしまうからである。 [0004] This electroless adhesive film, which is a useful technique in terms of the above-mentioned adhesion, is likely to leak between wirings if the force pattern is miniaturized and the distance between the wirings becomes small. FIG. 10 is a diagram showing a structure in which the copper wiring 101 is formed in the interlayer insulating film 100. The force electroless plating film 102 grows isotropically and spreads laterally as the film grows. In the future, when the separation distance dl between adjacent copper wirings 101 becomes extremely small, for example, 65 nm, As each electroless plating film 102 spreads, d2 approaches between them and there is a concern of leakage. In order to avoid this, it is necessary to keep the thickness of the electroless plating film small. To that end, it is necessary to strictly control the processing temperature in the electroless plating process. This is because, when the temperature of the electroless plating solution differs by 1 ° C, the film formation rate changes by, for example, about 10%.
[0005] こうした背景から、特許文献 1 (特開 2004— 107747の図 1、段落 0021、段落 002 6及び段落 0030)では、図 11の概略図に示すように、保持部に保持された半導体ゥ ェハ(以下ウェハという) Wの上下に対向して夫々上面プレート 201及び下面プレー ト 202を設け、上面プレート 201には電熱線などのヒータを設けると共に外部力も所 定温度例えば室温から 60°Cまでの間の設定温度に加熱された無電解めつき液をこ の上面プレート 201を介してウェハ表面に供給するようにして 、る。また下面プレート 202上には上記の設定温度に加熱された純水を供給し、ウェハ Wを所定温度に維 持しながら無電解めつきを行うようにしており、下面プレート 202を加熱してもよいこと が記載されている。そして無電解めつき液及び純水の各タンク 203、 204は、共通の 加温槽 205に浸漬されている。  [0005] Against this background, in Patent Document 1 (FIG. 1, paragraph 0021, paragraph 002 6 and paragraph 0030 of Japanese Patent Application Laid-Open No. 2004-107747), as shown in the schematic diagram of FIG. A wafer (hereinafter referred to as a wafer) is provided with an upper surface plate 201 and a lower surface plate 202 that are opposed to the upper and lower sides of W, respectively, and the upper surface plate 201 is provided with a heater such as a heating wire and an external force is applied at a predetermined temperature, for example, room temperature to 60 ° C The electroless plating solution heated to a preset temperature until is supplied to the wafer surface via the upper surface plate 201. In addition, pure water heated to the above set temperature is supplied onto the lower surface plate 202 so as to perform electroless plating while maintaining the wafer W at a predetermined temperature. Good thing is described. The tanks 203 and 204 for the electroless plating solution and pure water are immersed in a common heating tank 205.
[0006] し力しながら上面プレート 201内に設けられた電熱線などのヒータは、温度変動が 急激に起こりしかもその変動分が大きいので、上面プレート 201とウェハ Wとの間に 供給される無電解めつき液の温度変動も大きい。また下面プレート 202についても加 熱する場合には同様のことが言え、純水の温度変動が大きい。こうしたことから、ゥェ ハ面内にぉ 、てもウェハ間にお 、ても高 、温度の均一性を確保することが難しく、こ の結果、無電解めつき膜の膜厚が大きくなりすぎたり、十分な膜厚を確保できない部 位は発生する懸念がある。膜厚が大きくなりすぎる場合には、この膜は等方成長する ことから互いに隣接する無電解めつき膜の離間距離 d2 (図 10参照)が小さくなつて、 配線間でリークする懸念が生じてくるし、膜厚が小さすぎる場合には銅配線とその上 のノリア材との密着機能を十分に発揮できなくなるおそれがある。そして無電解めつ き液の設定温度は、高いスループットを得るためには高い方が得策であるが、そうす ると無電解めつき液が設定温度を越えて過加熱されることにより自己分解してパーテ イタルになるおそれもある。 [0007] 更にまた、以上のことから装置側の部品について見れば、上面プレート 201におけ るヒータの発熱につ 、て高 、面内均一性を確保することが要求され、そのためヒータ の価格が高価になる。特にウェハのサイズが例えば 12インチサイズあるいはそれ以 上になると、発熱について高い面内均一性を確保することが難しくなるので、ヒータの 価格は益々高価になる。このことは下面プレート 202についても同様である。そしてま た上面プレート 201、下面プレート 202及び加温槽 205の各々においてヒータ及び 温度センサを設けて温度調整しているので、構造及び配線が複雑になり、装置の価 格を高騰させる要因の一つになる。 [0006] A heater such as a heating wire provided in the upper surface plate 201 while being pressed is subject to a rapid temperature fluctuation and a large amount of the fluctuation. The temperature fluctuation of the electrolytic plating solution is also large. The same can be said for the case of heating the bottom plate 202, and the temperature fluctuation of pure water is large. For this reason, even within the wafer plane, even between wafers, it is difficult to ensure temperature uniformity, and as a result, the thickness of the electroless plating film becomes too large. There is a concern that a part where a sufficient film thickness cannot be secured may occur. When the film thickness becomes too large, this film grows isotropically, so that the distance d2 (see Fig. 10) between the electroless plating films adjacent to each other becomes small, and there is a concern of leakage between wirings. If the film thickness is too small, there is a possibility that the adhesion function between the copper wiring and the noria material on the copper wiring cannot be sufficiently exhibited. In order to obtain a high throughput, the higher setting temperature of the electroless plating solution is better. However, if the electroless plating solution is overheated above the set temperature, self-decomposition will occur. There is also a risk of becoming part-time. [0007] Furthermore, from the above, in view of the parts on the apparatus side, it is required to ensure high in-plane uniformity with respect to the heat generation of the heater in the upper surface plate 201. Therefore, the price of the heater is reduced. It becomes expensive. In particular, when the wafer size is, for example, 12 inches or more, it becomes difficult to ensure high in-plane uniformity with respect to heat generation, so the price of the heater becomes more expensive. The same applies to the bottom plate 202. In addition, since each of the upper surface plate 201, the lower surface plate 202, and the heating tank 205 is provided with a heater and a temperature sensor to adjust the temperature, the structure and wiring become complicated, which is one of the factors that increase the price of the apparatus. Become one.
[0008] 本発明はこのような事情の下になされたものであり、その目的は、基板上に無電解 めっき膜を予定して 、る膜厚でかつ高 、均一性をもって形成することのできる無電解 めっき装置を提供することにある。  [0008] The present invention has been made under such circumstances, and an object of the present invention is to prepare an electroless plating film on a substrate and to form it with a high film thickness and high uniformity. It is to provide an electroless plating apparatus.
発明の開示  Disclosure of the invention
[0009] 本発明は、基板を保持する基板保持部と、 [0009] The present invention includes a substrate holding unit for holding a substrate;
この基板保持部に保持された基板の表面に対向すると共に、その内部が温調用流 体の通流室をなす上部温調体と、  An upper temperature adjustment body that faces the surface of the substrate held by the substrate holding section and whose inside forms a flow chamber for the temperature adjustment fluid,
前記温調用流体と無電解めつき液との間で熱交換するために前記上部温調体内 を通して設けられ、前記上部温調体の下面に吐出口が形成された無電解めつき液の 供給路と、  Supply path for an electroless plating solution provided through the upper temperature adjusting body for exchanging heat between the temperature adjusting fluid and the electroless plating solution, and having a discharge port formed on the lower surface of the upper temperature adjusting member When,
前記上部温調体に接続された温調用流体の第 1の供給路及び温調用流体の第 1 の排出路と、  A first supply passage for the temperature adjustment fluid connected to the upper temperature adjustment body and a first discharge passage for the temperature adjustment fluid;
前記基板保持部に保持された基板の表面と上部温調体との間の隙間に前記吐出 口から無電解めつき液を供給して満たすための処理位置と、この処理位置から離れ た待機位置との間で、上部温調体を前記基板保持部に対して相対的に移動するた めの移動機構と、を備えたことを特徴とする。  A processing position for supplying the electroless plating solution from the discharge port to fill the gap between the surface of the substrate held by the substrate holding unit and the upper temperature control body, and a standby position away from the processing position And a moving mechanism for moving the upper temperature adjusting member relative to the substrate holding part.
[0010] 無電解めつき液は、例えば基板上の絶縁膜の凹部に埋め込まれて形成された配線 材料の表面にめっき膜を形成するためのものである。 [0010] The electroless plating solution is for forming a plating film on the surface of a wiring material formed by being embedded in a recess of an insulating film on a substrate, for example.
[0011] 本発明は、温調用流体の第 1の供給路及び温調用流体の第 1の排出路との間に設 けられた温調用流体の貯留部と、この貯留部に設けられ、温調用流体の温度を設定 温度に維持するための温度調節手段と、前記貯留部内の温調用流体を温調用流体 の第 1の供給路を介して前記上部温調体内に循環供給するためのポンプと、を備え た構成としてもよい。この場合、ポンプは、前記温調用流体の第 1の排出路に設けら れていることが好ましい。 [0011] The present invention provides a temperature adjusting fluid reservoir provided between the temperature adjusting fluid first supply path and the temperature adjusting fluid first discharge path, and the temperature adjusting fluid storing section. Set the temperature of the conditioning fluid A temperature adjusting means for maintaining the temperature, and a pump for circulatingly supplying the temperature adjusting fluid in the reservoir into the upper temperature adjusting body through the first supply path of the temperature adjusting fluid. Also good. In this case, the pump is preferably provided in the first discharge path of the temperature adjusting fluid.
[0012] 更に本発明は、基板保持部に保持された基板の裏面に対向すると共に、その内部 が温調用流体の通流室をなす下部温調体と、基板の裏面側に供給するための裏面 側用流体と前記下部温調体内の温調用流体との間で熱交換するために前記通流室 内を通して設けられ、前記下部温調体の上面に吐出口が形成された裏面側用流体 の供給路と、前記下部温調体に接続された温調用流体の第 2の供給路及び温調用 流体の第 2の排出路と、を備え、基板を裏面側から温調するために下部温調体の上 面と基板の裏面との間に裏面側用流体を満たす構成とすることが好ましい。  [0012] Further, the present invention is directed to a lower temperature adjusting body that is opposed to the back surface of the substrate held by the substrate holding portion and whose inside forms a flow chamber for the temperature adjusting fluid, and for supplying the lower temperature adjusting body to the back side of the substrate A back side fluid that is provided through the flow chamber to exchange heat between the back side fluid and the temperature regulating fluid in the lower temperature regulating body, and has a discharge port formed on the upper surface of the lower temperature regulating body. Supply path, a second supply path for the temperature adjustment fluid connected to the lower temperature adjustment body, and a second discharge path for the temperature adjustment fluid, and the lower temperature for controlling the temperature of the substrate from the back side. It is preferable that the back side fluid be filled between the upper surface of the body and the back side of the substrate.
[0013] 本発明のより具体的な態様としては、前記温調用流体の第 2の供給路は、前記貯 留部内の温調用流体を供給するように構成され、また前記温調用流体の第 2の排出 路は、前記貯留部内に温調用流体を回収するように構成されている態様を挙げるこ とができる。この場合、温調用流体を循環させるためには、温調用流体の第 2の排出 路にポンプを設けることが好ましい。このポンプは、上部温調体内の温調用流体を循 環するためのポンプと兼用するようにしてもよい。  [0013] As a more specific aspect of the present invention, the second supply path for the temperature adjusting fluid is configured to supply the temperature adjusting fluid in the reservoir, and the second temperature adjusting fluid is supplied to the second temperature adjusting fluid. The discharge path can include an embodiment configured to collect the temperature adjusting fluid in the storage section. In this case, in order to circulate the temperature adjustment fluid, it is preferable to provide a pump in the second discharge path of the temperature adjustment fluid. This pump may also be used as a pump for circulating the temperature adjusting fluid in the upper temperature adjusting body.
[0014] 本発明によれば、上部温調体に温調用流体を通流させ、ここで無電解めつき液と 熱交換して当該無電解めつき液を温調しているため、無電解めつき液の温度変化が 緩やかになり、無電解めつき液の温度を許容処理温度内において高い温度に設定 する場合にぉ ヽても過加熱されな ヽ。また温調用流体が通流して ヽる上部温調体と 基板の表面との間に無電解めつき液を満たしており、これらのことから基板の表面の 温度が高い面内均一性をもって所定温度に安定し、この結果無電解めつき膜の析出 レートが各部位にぉ 、て安定するので、無電解めつき膜の膜厚を予定して 、る膜厚 でかつ高 、面内均一性をもって得られ、そのため基板間にお 、ても膜厚の均一性( 面間均一性)が高くなる,  [0014] According to the present invention, since the temperature adjusting fluid is allowed to flow through the upper temperature adjusting body and heat is exchanged with the electroless plating solution, the temperature of the electroless plating solution is adjusted. The temperature change of the plating solution becomes gradual, and even if the temperature of the electroless plating solution is set to a high temperature within the allowable processing temperature, it will not be overheated. In addition, the electroless plating liquid is filled between the upper temperature control body through which the temperature control fluid flows and the surface of the substrate, and therefore, the surface temperature of the substrate is high at a predetermined temperature with high in-plane uniformity. As a result, the deposition rate of the electroless plating film is stable at each site, so that the film thickness of the electroless plating film is planned to be high and with high in-plane uniformity. Therefore, even between the substrates, the uniformity of the film thickness (uniformity between surfaces) is increased.
そして基板の裏面側に下部温調体を設けてこの中に温調用流体を通流させ、ここ で裏面側用流体と熱交換して当該裏面側用流体を温調し、この流体により基板の裏 面と下部温調体との間を満たすようにすれば、基板の温度がより安定しかつ一層面 内均一性が高くなることから、無電解めつき処理をより一層良好に行うことができる。 Then, a lower temperature adjusting body is provided on the back side of the substrate, and a temperature adjusting fluid is allowed to flow therethrough. Here, heat exchange with the back side fluid is performed to control the temperature of the back side fluid. back By satisfying the space between the surface and the lower temperature adjusting body, the temperature of the substrate becomes more stable and the in-plane uniformity becomes higher, so that the electroless plating process can be performed more satisfactorily.
[0015] 更にまた上部温調体の温調用流体を循環させると共に下部温調体の温調用流体 についても循環させ、それらの循環路中に共通の貯留部を設けてここに温調用流体 の温度を設定温度に維持するための温度調節手段を設けるようにすれば、各温調用 流体、無電解めつき液及び裏面用流体の温調を一力所で管理できる。  [0015] Further, the temperature adjusting fluid of the upper temperature adjusting body is circulated and the temperature adjusting fluid of the lower temperature adjusting body is also circulated, and a common reservoir is provided in the circulation path, and the temperature of the temperature adjusting fluid is set here. By providing temperature control means for maintaining the temperature at the set temperature, it is possible to manage the temperature control of each temperature adjusting fluid, electroless plating liquid and back surface fluid at one power.
図面の簡単な説明  Brief Description of Drawings
[0016] [図 1]図 1は、本発明に係る無電解めつき装置の実施の形態の全体構成を示す縦断 面図である。  FIG. 1 is a longitudinal sectional view showing the overall configuration of an embodiment of an electroless plating apparatus according to the present invention.
[図 2]図 2は、上記の無電解めつき装置の要部を示す概略斜視図である。  FIG. 2 is a schematic perspective view showing a main part of the electroless plating apparatus.
[図 3]図 3は、上記の無電解めつき装置の要部を示す縦断面図である。  FIG. 3 is a longitudinal sectional view showing a main part of the above electroless plating apparatus.
[図 4]図 4A、図 4B、図 4Cは、無電解めつき処理に用いられる基板の表面構造を順 を追って示す説明図である。  FIG. 4A, FIG. 4B, and FIG. 4C are explanatory views showing the surface structure of the substrate used for the electroless plating process in order.
[図 5]図 5A、図 5B、図 5Cは、上記の無電解めつき装置により基板に対して処理を行 うときの様子を段階的に示す説明図であって、図 5Aは前処理、図 5Bは洗浄、図 5C はメツキ処理を示す。  [FIG. 5] FIGS. 5A, 5B, and 5C are explanatory views showing step by step how the substrate is processed by the electroless plating apparatus, and FIG. FIG. 5B shows the cleaning, and FIG. 5C shows the plating process.
[図 6]図 6A、図 6B、図 6Cは、上記の無電解めつき装置により基板に対して処理を行 うときの様子を段階的に示す説明図であって、図 6Aは洗浄、図 6Bは後洗浄、図 6C はスピン乾燥を示す。  [FIG. 6] FIGS. 6A, 6B, and 6C are explanatory views showing in stages the processing when the substrate is processed by the electroless plating apparatus, and FIG. 6B shows post-cleaning and FIG. 6C shows spin drying.
[図 7]図 7は、図 1の装置において、上部温調体の変形例を示す縦断面図である。  FIG. 7 is a longitudinal sectional view showing a modification of the upper temperature adjusting body in the apparatus of FIG. 1.
[図 8]図 8は、無電解めつき装置の他の態様の構成を示す概略縦断面図である。  FIG. 8 is a schematic longitudinal sectional view showing the configuration of another aspect of the electroless plating apparatus.
[図 9]図 9は、図 8の装置に用いられるノズル部を示す縦断面図である。  FIG. 9 is a longitudinal sectional view showing a nozzle portion used in the apparatus of FIG.
[図 10]図 10は、半導体ウェハにおける銅配線上の無電解めつきの問題点を指摘す るための説明図である。  [FIG. 10] FIG. 10 is an explanatory diagram for indicating a problem of electroless plating on a copper wiring in a semiconductor wafer.
[図 11]図 11は、無電解めつき装置の従来技術を示す概略斜視図である。  FIG. 11 is a schematic perspective view showing a conventional technique of an electroless plating apparatus.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 図 1は、本発明の無電解めつき装置の実施の形態の全体構成図を示す図である。 FIG. 1 is a diagram showing an overall configuration diagram of an embodiment of an electroless plating apparatus according to the present invention.
図 1中 11は、上部が開口している扁平な円筒状の基板保持部をなすウェハチャック であり、このウェハチャック 11の上端の周縁部には基板であるウェハの周縁部を保 持する段部 12が全周に亘つて形成されて 、る。このウェハチャック 11の中央部には 筒状の回転軸 13が設けられており、この回転軸 13は回転駆動部例えば中空モータ 14に接続されて!、る。この中空モータ 14によりウェハチャック 11はウェハ Wを支持し た状態で鉛直軸周りに回転可能なように構成されて 、る。中空モータ 14はベース 15 に固定され、このベース 15は、傾斜機構 16に取り付けられていて傾斜できるようにな つている。 In FIG. 1, reference numeral 11 denotes a wafer chuck that forms a flat cylindrical substrate holding portion having an open top. A step portion 12 that holds the peripheral portion of the wafer as the substrate is formed on the entire peripheral edge of the upper end of the wafer chuck 11. A cylindrical rotating shaft 13 is provided at the center of the wafer chuck 11, and this rotating shaft 13 is connected to a rotation drive unit such as a hollow motor 14. By this hollow motor 14, the wafer chuck 11 is configured to be rotatable around the vertical axis while supporting the wafer W. The hollow motor 14 is fixed to a base 15, and this base 15 is attached to a tilt mechanism 16 so that it can tilt.
[0018] ウェハチャック 11の外側には、当該ウェハチャック 11を囲むように液受け用のカツ プ体 21が設けられており、カップ体 21は図示しない昇降機構によりベース 15に対し て昇降できるように構成されている。前記カップ体 21の側周面の上端部は内方側に 屈曲して、ウェハ Wを回転させたときに振り切られる液を跳ね返すようになって 、る。 またカップ体 21の底面中央部には開口部 22が形成されていて、この開口部 22内に 前記回転軸 13が貫通していると共に、前記底面の周縁に近い部位にはウェハ Wか らこぼれ落ちた液をドレインとして排出するためのドレイン排出部 23が設けられてい る。またウェハチャック 11における中央力も外れた底面においても図では見えない孔 部が形成されて 、て、ウェハチャック 11内にこぼれ落ちた液がカップ体 21内に流れ 落ちるようになつている。  A cup body 21 for receiving liquid is provided outside the wafer chuck 11 so as to surround the wafer chuck 11, and the cup body 21 can be moved up and down with respect to the base 15 by a lifting mechanism (not shown). It is configured. The upper end portion of the side peripheral surface of the cup body 21 is bent inward so that the liquid sprinkled off when the wafer W is rotated rebounds. An opening 22 is formed at the center of the bottom surface of the cup body 21, and the rotating shaft 13 passes through the opening 22, and the portion close to the periphery of the bottom surface spills from the wafer W. A drain discharge part 23 is provided for discharging the liquid as a drain. In addition, a hole that cannot be seen in the figure is formed even on the bottom surface of the wafer chuck 11 where the central force is removed, so that the liquid spilled into the wafer chuck 11 flows down into the cup body 21.
[0019] 前記ウェハチャック 11の上方側には、このウェハチャック 11に保持されるウェハ W の表面に対向するように上部温調体 3が設けられている。この上部温調体 3は、移動 機構である昇降機構 30により、ウェハ Wに対して無電解めつき液を供給する処理位 置とこの処理位置カゝら上方に離れた待機位置との間で昇降できるように構成されて いる。この上部温調体 3の詳細構造については後述することにして、先に下部温調体 4について記載しておく。下部温調体 4は、ウェハチャック 11に保持されるウェハ W の裏面に対向するようにウェハチャック 11内に配置されており、前記回転軸 13内を 貫通して!/ヽる支持軸 40を介して図示しな 、昇降機構により昇降できるように構成され ている。上部温調体 3の昇降機構 30及び下部温調体 4の図示しない昇降機構は、ベ ース 15に固定されており、従って傾斜機構 16により上部温調体 3、ウェハ W及び下 部温調体 4がー体的に傾くこととなる。これらを傾斜させる目的は、後述のように上部 温調体 3とウェハ Wとの間に無電解めつき液などの処理液を満たしたときにその中に 混入する気泡を上部側に移動させて取り除くことにある。 An upper temperature adjustment body 3 is provided above the wafer chuck 11 so as to face the surface of the wafer W held by the wafer chuck 11. The upper temperature adjusting body 3 is moved between a processing position where an electroless plating solution is supplied to the wafer W by a lifting mechanism 30 which is a moving mechanism and a standby position which is located above the processing position. It is configured to move up and down. The detailed structure of the upper temperature adjustment body 3 will be described later, and the lower temperature adjustment body 4 will be described first. The lower temperature adjustment body 4 is disposed in the wafer chuck 11 so as to face the back surface of the wafer W held by the wafer chuck 11, and has a support shaft 40 penetrating through the rotary shaft 13! It is configured to be lifted and lowered by a lifting mechanism (not shown). The elevating mechanism 30 of the upper temperature adjustment body 3 and the elevating mechanism (not shown) of the lower temperature adjustment body 4 are fixed to the base 15, and therefore the upper temperature adjustment body 3, the wafer W and the lower temperature adjustment are adjusted by the tilt mechanism 16. Body 4 will tilt physically. The purpose of inclining these is to The purpose is to remove the bubbles mixed in the treatment liquid such as the electroless plating solution between the temperature adjustment body 3 and the wafer W by moving them upward.
[0020] ここで図 1〜図 3を参照しながら上部温調体 3及び下部温調体 4に関して詳述する。  Here, the upper temperature adjustment body 3 and the lower temperature adjustment body 4 will be described in detail with reference to FIGS.
上部温調体 3は、外形が円柱状でウェハ Wよりも少し大き 、サイズに作られており、 その内部が温調用流体例えば純水などの熱媒が通流する通流室 31として構成され ている。熱媒としては、比熱の大きい液体を用いることが好ましぐ純水の他に油脂類 などであってもよ!/、。上部温調体 3の上面における外縁部付近には温調用流体の第 1の供給路に相当する第 1の熱媒供給管 32が接続され、また例えば上部温調体 3の 中心部について前記熱媒供給管 32と対称な位置には、温調用流体の第 1の排出路 に相当する第 1の熱媒排出管 33が接続されている。図では上部温調体 3の上面から 熱媒を供給して上面力も排出するように記載されているが、熱媒供給管 32及び第 1 の熱媒排出管 33のうちの一方を上部温調体 3の底部付近まで差し込むようにしても よぐ要は熱媒が効率よく通流するように通流室 31の高さや熱媒の流量などに応じて そのレイアウトを設計すればよい。  The upper temperature adjustment body 3 has a cylindrical shape and is slightly larger than the wafer W and is sized. The inside of the upper temperature adjustment body 3 is configured as a flow chamber 31 through which a heat control fluid such as temperature control fluid such as pure water flows. ing. In addition to pure water, it is preferable to use a liquid with a large specific heat as the heating medium. A first heat medium supply pipe 32 corresponding to the first supply path of the temperature adjustment fluid is connected to the vicinity of the outer edge portion on the upper surface of the upper temperature adjustment body 3. A first heat medium discharge pipe 33 corresponding to the first discharge path for the temperature adjusting fluid is connected to a position symmetrical to the medium supply pipe 32. In the figure, it is shown that the heating medium is supplied from the upper surface of the upper temperature adjustment body 3 and the upper surface force is also discharged, but one of the heating medium supply pipe 32 and the first heating medium discharge pipe 33 is connected to the upper temperature adjustment body 33. Even if it is inserted near the bottom of the body 3, the layout should be designed according to the height of the flow chamber 31 and the flow rate of the heat medium so that the heat medium can flow efficiently.
[0021] 熱媒供給管 32及び熱媒排出管 33は熱媒の循環路を形成するものであり、この循 環路の途中には熱媒貯留部である熱媒タンク 34が設けられている。即ち熱媒供給管 32の一端側は熱媒タンク 34の底部付近まで挿入されており、また熱媒排出管 33の 一端側は熱媒タンク 34の例えば液面よりも上方に位置している。熱媒タンク 34内に は、図 2に示すように底部に加熱手段である抵抗発熱線力もなるヒータ 35が配置され ると共に、熱媒に浸漬されるように温度検出部 36が設けられている。 37は制御部で あり、温度検出部 36で検出された温度と設定温度とに基づいてヒータ 35の発熱を制 御する機能を有している。この例では、ヒータ 35、温度検出部 36及び制御部 37によ り熱媒の温度を設定温度に維持するための温度調節手段が構成される。また熱媒排 出管 33には、ポンプ P1が設けられている。ポンプ P1は熱媒の温度を変化させる要 因になるため、上部温調体 3よりも下流側に設置することが望ましぐまたこのように設 置することにより熱媒の駆動力は陰圧 (負圧)になり、このため上部温調体 3や熱媒の 配管(32、 33)に漏れが生じても配管内に空気が混入するだけとなり、熱媒が外へ漏 れるおそれはない。 [0022] 上部温調体 3の上面の中央部には、無電解めつき液の供給路である無電解めつき 液供給管 51の一端側が挿入されており、この無電解めつき液供給管 51は、上部温 調体 3内つまり通流室 31内にて無電解めつき液と熱媒との間で熱交換が行われるよ うに例えばコイル状に引き回されて配置され、その先端部は図 3に示すように上部温 調体 3の下面に開口して無電解めつき液の吐出口 52を形成している。上部温調体 3 内に位置する無電解めつき液供給管 51の材質は、無電解めつき液に対して不活性 な材質でかつ熱伝導率の良好なものを用いることが好ましぐ例えばガラスや、無電 解めつき液に対して不活性なコーティング材料により内面がコーティングされた金属 などを用いることができる。 [0021] The heat medium supply pipe 32 and the heat medium discharge pipe 33 form a heat medium circulation path, and a heat medium tank 34 as a heat medium storage section is provided in the middle of the circulation path. . That is, one end side of the heat medium supply pipe 32 is inserted to the vicinity of the bottom of the heat medium tank 34, and one end side of the heat medium discharge pipe 33 is positioned above, for example, the liquid level of the heat medium tank 34. In the heat medium tank 34, as shown in FIG. 2, a heater 35 having a resistance heating linear force as a heating means is disposed at the bottom, and a temperature detection unit 36 is provided so as to be immersed in the heat medium. . A control unit 37 has a function of controlling the heat generation of the heater 35 based on the temperature detected by the temperature detection unit 36 and the set temperature. In this example, the heater 35, the temperature detector 36, and the controller 37 constitute a temperature adjusting means for maintaining the temperature of the heat medium at a set temperature. The heat medium discharge pipe 33 is provided with a pump P1. Since the pump P1 is a factor that changes the temperature of the heat medium, it is desirable to install it downstream from the upper temperature adjustment body 3.Also, by installing in this way, the driving force of the heat medium is negative pressure. Therefore, even if leakage occurs in the upper temperature regulator 3 or the heat medium piping (32, 33), only air enters the piping and there is no risk of the heat medium leaking outside. . [0022] One end side of an electroless plating liquid supply pipe 51, which is a supply path for the electroless plating liquid, is inserted in the center of the upper surface of the upper temperature adjusting body 3, and this electroless plating liquid supply pipe 51 is arranged, for example, in the form of a coil so that heat is exchanged between the electroless plating solution and the heat medium in the upper temperature adjusting body 3, that is, in the flow chamber 31. As shown in FIG. 3, an opening 52 is formed on the lower surface of the upper temperature adjusting body 3 to form an electroless plating liquid discharge port 52. For the material of the electroless plating liquid supply pipe 51 located in the upper temperature adjusting body 3, it is preferable to use a material that is inert to the electroless plating liquid and has a good thermal conductivity. It is possible to use glass or a metal whose inner surface is coated with a coating material that is inert to the non-electrolytic solution.
[0023] 無電解めつき液供給管 51の他端側は、図 1に示すようにバルブ VI及びポンプ P2 を介して薬液タンク 53に接続されている。またこの無電解めつき液供給管 51の他端 側は途中分岐されて洗浄液である純水の供給路 54に接続され、純水タンク 55内の 純水がポンプ P3及びバルブ V2を介して無電解めつき液供給管 51を通じて前記吐 出口 52から吐出されるように構成されて 、る。  [0023] The other end of the electroless plating liquid supply pipe 51 is connected to a chemical tank 53 via a valve VI and a pump P2, as shown in FIG. The other end of the electroless plating solution supply pipe 51 is branched halfway and connected to a supply path 54 of pure water, which is a cleaning liquid, and pure water in the pure water tank 55 is not supplied via the pump P3 and the valve V2. It is configured to be discharged from the discharge outlet 52 through the electrolytic plating solution supply pipe 51.
[0024] ここで無電解めつき液としては、銅配線とバリア層との間の密着層(無電解めつき膜 )を形成する成分を含む金属塩 (合金の場合には第 1の金属塩及び第 2の金属塩)、 強アルカリ性下にお 、て金属イオンが水酸ィ匕物として沈殿しな 、ように、金属を錯体 化するための錯化剤、金属イオンを触媒的に還元析出させるための還元剤、液の p Hを調整するための pH調整剤を含んでいる。そして形成しょうとする密着層の種類 にもよるが、金属塩、錯化剤、還元剤及び pH調整剤として例えば以下に列記する成 分の中から少なくとも一種類を選択し、溶媒例えば純粋に所定の比率で添加すること により調整する。  [0024] Here, as the electroless plating solution, a metal salt containing a component that forms an adhesion layer (electroless plating film) between the copper wiring and the barrier layer (in the case of an alloy, the first metal salt). And the second metal salt), a complexing agent for complexing the metal such that the metal ion does not precipitate as a hydroxide under strong alkalinity, and the metal ion is catalytically reduced and deposited. It contains a reducing agent for adjusting the pH of the solution and a pH adjusting agent for adjusting the pH of the solution. Depending on the type of adhesion layer to be formed, at least one of the components listed below is selected as the metal salt, complexing agent, reducing agent and pH adjuster, and a solvent such as purely specified Adjust by adding at the ratio of.
[0025] 即ち、第 1の金属塩として例えば硫酸コバルト,塩ィ匕コバルト,硫酸ニッケル,塩ィ匕 ニッケル、第 2の金属塩としては例えばタングステン酸,タングステン酸アンモ-ゥム を選択することができ、また錯化剤としては例えばクェン酸、クェン酸ナトリウム, pH 調整剤として水酸化ナトリウム, TMAH (テトラメチルアンモ -ゥムハイド口オキサイド) を選択することができる。なお、列記した成分は一例であり、必ずしもこれらの成分を 用いなくてもよい。更には、酸化剤(めっき膜が銅の場合には酸ィ匕第二銅)によりめつ き液の自然分解を防止するための安定剤例えばビビルジル、シアン化合物、チォ尿 素、 0—フエナント口リン、ネオプロインを添加してもよぐまた置換反応が進んだときの pHの変化を抑制するための安定剤例えば、ホウ酸、炭酸、ォキシカルボン酸を添カロ するようにしてもよい。更にめつき膜の析出の促進又は抑制、めっき膜の改質をする ための添加剤例えば、チォ硫酸、 2— MBTを添カ卩してもよい。更には液の表面張力 を低下させ、ウェハ Wの面上にめっき液が均一に配置されるようにするための界面活 性剤例えばポリアルキレングリコール、ポリエチレングリコールを添カ卩してもょ 、。 That is, for example, cobalt sulfate, salt-cobalt, nickel sulfate, nickel chloride-nickel, and the second metal salt may be selected from, for example, tungstic acid and ammonium tungstate. Examples of complexing agents that can be selected include citrate, sodium citrate, and sodium hydroxide and TMAH (tetramethyl ammonium hydroxide) as pH adjusters. The components listed are examples, and these components are not necessarily used. In addition, it can be treated with an oxidizing agent (acid copper cuprate if the plating film is copper). Stabilizers to prevent spontaneous decomposition of the fluid such as bivirdil, cyanide, thiourea, 0-phenantorin, neoproin can be added, and pH change when the substitution reaction proceeds is suppressed For example, boric acid, carbonic acid, or oxycarboxylic acid may be added. Furthermore, additives such as thiosulfuric acid and 2-MBT may be added for promoting or suppressing precipitation of the plating film and modifying the plating film. Furthermore, a surfactant such as polyalkylene glycol or polyethylene glycol may be added to reduce the surface tension of the solution so that the plating solution is uniformly disposed on the surface of the wafer W.
[0026] 一方、下部温調体 4は上部温調体 3と同様の構造つまり上部温調体 3を上下逆にし た構造になっており、同様にその内部に裏面側流体である純水の供給路が配置され ている。即ち、下部温調体 4は、外形が円柱状でウェハ Wよりも少し大きいサイズに 作られており、その内部が温調用流体例えば純水などの熱媒が通流する通流室 41 として構成されている。また下部温調体 4には温調用流体の第 2の供給路に相当する 第 2の熱媒供給管 42と温調用流体の第 2の排出路に相当する第 2の熱媒排出管 43 とが接続されている。これら熱媒供給管 42及び熱媒排出管 43は熱媒の循環路を形 成するものであり、第 2の熱媒供給管 42は前記第 1の熱媒供給管 32から分岐され、 また第 2の熱媒排出管 43は前記ポンプ P1の上流側にて第 1の熱媒供給管 32に接 続されている。なおこの例のように第 1及び第 2の熱媒供給管 32、 42の一部を共通 化しかつ第 1及び第 2の熱媒排出管 33、 43の一部を共通化することに限られず、上 部温調体 3及び下部温調体 4の各熱媒を独立した循環路により循環するようにしても よい。 On the other hand, the lower temperature adjustment body 4 has a structure similar to that of the upper temperature adjustment body 3, that is, a structure in which the upper temperature adjustment body 3 is turned upside down. Similarly, pure water as a back side fluid is contained therein. Supply channel is arranged. That is, the lower temperature adjustment body 4 has a cylindrical outer shape and is slightly larger than the wafer W. The inside of the lower temperature adjustment body 4 is configured as a flow chamber 41 through which a temperature control fluid such as pure water flows. Has been. The lower temperature adjustment body 4 includes a second heat medium supply pipe 42 corresponding to the second supply path for the temperature adjustment fluid, and a second heat medium discharge pipe 43 corresponding to the second discharge path for the temperature adjustment fluid. Is connected. The heat medium supply pipe 42 and the heat medium discharge pipe 43 form a heat medium circulation path, and the second heat medium supply pipe 42 is branched from the first heat medium supply pipe 32, and The second heat medium discharge pipe 43 is connected to the first heat medium supply pipe 32 on the upstream side of the pump P1. Note that the present invention is not limited to sharing a part of the first and second heating medium supply pipes 32 and 42 and sharing a part of the first and second heating medium discharge pipes 33 and 43 as in this example. The heating medium of the upper temperature adjustment body 3 and the lower temperature adjustment body 4 may be circulated through independent circulation paths.
[0027] 下部温調体 4の下面の中央部には、裏面側流体例えば純水の供給路である純水 供給管 61の一端側が挿入されており、この純水供給管 61は、下部温調体 4内つまり 通流室 41内にて純水と熱媒との間で熱交換が行われるように例えばコイル状に引き 回されて配置され、その先端部は図 3に示すように下部温調体 4の上面に開口して 純水の吐出口 62を形成している。純水供給管 61は支持軸 40内に配管されており、 その他端側は、図 1に示すようにバルブ V3及びポンプ P4を介して純水タンク 63に接 続されている。なおここでいう裏面側流体は、ウェハ Wを裏面側から温調するための 流体であるが、上部温調体 3ある 、は下部温調体 4内を流れる流体と区別するため にこのような名称を便宜上用いている。またこの実施の形態では、裏面側流体である 純水は裏面側リンス液としての役割も有して 、る。 [0027] At the center of the lower surface of the lower temperature adjusting body 4, one end side of a pure water supply pipe 61, which is a supply path for the back side fluid, for example, pure water, is inserted. For example, it is arranged in a coil shape so that heat is exchanged between the pure water and the heat medium in the body 4, that is, in the flow chamber 41, and its tip is at the bottom as shown in FIG. A pure water discharge port 62 is formed in the upper surface of the temperature control body 4. The pure water supply pipe 61 is connected to the support shaft 40, and the other end is connected to a pure water tank 63 via a valve V3 and a pump P4 as shown in FIG. The backside fluid here is a fluid for controlling the temperature of the wafer W from the backside, but is distinguished from the fluid flowing through the lower temperature adjusting body 4 in the upper temperature adjusting body 3. These names are used for convenience. In this embodiment, pure water, which is the back side fluid, also serves as a back side rinse.
[0028] なお上部温調体 3及び下部温調体 4は、ウェハ Wより小さいサイズであって、ウェハ Wの有効領域 (集積回路の形成領域)より大きければよいが、近年ではウェハ Wの周 縁に可成り近 、ところまで集積回路を形成することから、ウェハ Wのサイズと同じかあ るいはそれよりも大き!/、ことが好ま U、。  [0028] The upper temperature adjustment body 3 and the lower temperature adjustment body 4 are smaller in size than the wafer W and need only be larger than the effective area (integrated circuit formation area) of the wafer W. Because it forms an integrated circuit as close as possible to the edge, it is preferred that it be the same as or larger than the size of the wafer W!
[0029] ここで図 1に戻って、この無電解めつき装置は、ウェハチャック 11に保持されたゥェ ハ Wの上方における流体の供給位置と待機位置との間で移動自在な複数のノズル を備えている。図 1では便宜上 2つのノズル 17、 18を示してある。例えばノズル 17は 、無電解めつき液の前に置換めつき液をウェハ Wの表面に供給するためのものであ り、図示していない配管を通じて置換めつき液の供給源に接続されている。またノズ ル 18は乾燥用ガス例えば不活性ガスを供給するためのものであり、図示して ヽな ヽ 配管を通じて乾燥用ガスの供給源に接続されている。これらノズル 17、 18は、例え ばウエノ、 Wの半径以上の長さの例えばスリット状の吐出口を備え、図示しない駆動機 構により昇降自在かつ横方向に移動自在例えば旋回自在に構成されて 、る。  Here, referring back to FIG. 1, the electroless plating apparatus includes a plurality of nozzles movable between a fluid supply position and a standby position above the wafer W held by the wafer chuck 11. It has. In FIG. 1, two nozzles 17 and 18 are shown for convenience. For example, the nozzle 17 is for supplying a replacement squeezing solution to the surface of the wafer W before the electroless squeezing solution, and is connected to a supply source of the replacement staking solution through a pipe not shown. . The nozzle 18 is for supplying a drying gas, for example, an inert gas, and is connected to a drying gas supply source through a pipe shown in the figure. These nozzles 17 and 18 are, for example, provided with a slit-like discharge port having a length equal to or greater than the radius of Ueno, W, and are configured to be movable up and down and laterally movable by a driving mechanism (not shown). The
[0030] 次に上述実施の形態の作用について説明する。先ず上部温調体 3を待機位置に て待機させると共にウェハチャック 11を下降させ、図示しない搬送手段によりウェハ Wの表面を吸着してウェハチャック 11の上方まで搬送し、ウェハチャック 11を上昇さ せて搬送手段のウェハ Wをウェハチャック 11に受け渡す(図 1の状態)。またウェハ Wの表面は図 4Aに示すように例えば層間絶縁膜 301の凹部に銅配線 302が埋め 込まれて 、る状態である。 303は凹部内の銅が絶縁膜 301に拡散しな 、ようにするた めのバリア膜である。  Next, the operation of the above embodiment will be described. First, the upper temperature adjustment body 3 is made to stand by at the standby position and the wafer chuck 11 is lowered, and the surface of the wafer W is sucked and conveyed to the upper side of the wafer chuck 11 by a conveying means (not shown), and the wafer chuck 11 is raised. Then, the wafer W of the transfer means is transferred to the wafer chuck 11 (the state shown in FIG. 1). Further, as shown in FIG. 4A, the surface of the wafer W is in a state where, for example, the copper wiring 302 is embedded in the concave portion of the interlayer insulating film 301. Reference numeral 303 denotes a barrier film for preventing copper in the recess from diffusing into the insulating film 301.
[0031] 続いて図 5Aに示すように例えばノズル 17がウェハ W上に移動し、ウェハチャック 1 1を介してウェハ Wを回転させながら前処理液をウェハ W上に供給して前処理液の パドルを形成する。この前処理液は例えばパラジウム置換めつきを行うための置換め つき液であり、この置換めつき液は、硫酸パラジウムあるいは塩ィ匕パラジウムなどから なるパラジウム塩を硫酸や塩酸などの酸溶液に溶解させたものを用いることができる 。この置換めつき液は例えば室温から 60°Cの範囲内で選択された温度に温調されて ウエノ、 W表面に供給され、これにより図 4Bに示すように銅配線 302と置換めつき液と の界面においてパラジウムよりも酸ィ匕還元電位が卑な銅がパラジウムに電子を受け 渡して溶解し、電子を受け取ったパラジウムカゝらなる触媒層 304が銅配線 302の表 面に選択的に析出する。この触媒層 304は、後工程における無電解めつき処理の触 媒として作用するものである力 無電解めつき液によっては触媒を必要としないものも あり、その場合ノズル 17から有機酸溶液をウェハ Wに供給して前処理が行われる場 合もある。その後、図 5Bに示すようにウェハ Wを回転させながらノズル 18力も洗浄液 例えば純水をウェハ W上に供給し、上記の前処理液を除去する。 Subsequently, as shown in FIG. 5A, for example, the nozzle 17 is moved onto the wafer W, and the pretreatment liquid is supplied onto the wafer W while rotating the wafer W via the wafer chuck 11. Form a paddle. This pretreatment liquid is, for example, a substitution liquid for performing palladium substitution, and this substitution liquid dissolves a palladium salt made of palladium sulfate or salty palladium in an acid solution such as sulfuric acid or hydrochloric acid. Can be used. This replacement sachet is tempered to a selected temperature within the range of room temperature to 60 ° C, for example. As shown in FIG. 4B, copper having a lower acid-potential reduction potential than palladium at the interface between the copper wiring 302 and the squeezing solution is transferred to palladium and dissolved. Then, the catalyst layer 304 made of palladium which has received the electrons is selectively deposited on the surface of the copper wiring 302. This catalyst layer 304 acts as a catalyst for an electroless plating process in a later process. Some electroless plating solutions do not require a catalyst. In some cases, W is supplied to W for pretreatment. Thereafter, as shown in FIG. 5B, while the wafer W is rotated, the cleaning liquid such as pure water, for example, pure water is supplied onto the wafer W while removing the pretreatment liquid.
[0032] し力る後、ノズル 18をウェハ Wの上方力も退避させ、上部温調体 3を下降させてそ の下面とウェハ Wの表面との距離が例えば 0. lmn!〜 2mmとなる位置に設定する。 このとき下部温調体 4も上昇させてウェハ Wの裏面との距離が例えば 0. lmn!〜 2m mとなる位置に設定する。そして先ず裏面側用流体である純水はポンプ P4により送 水されると、純水供給管 61を介して下部温調体 4内に入り、コイル状の流路 (純水供 給管 61)を流れる間に、下部温調体 4内に通流する熱媒との間で熱交換が行われる 。熱媒は、熱媒タンク 34を経由しそこで無電解めつき液の処理温度である例えば 60 °Cから 90°Cの範囲から選択された設定温度に加熱され、下部温調体 4内(通流室 4 1)に循環供給されている。従って下部温調体 4内で熱交換が行われた純水は、吐出 口 62から吐出されるときまでには前記設定温度に加熱されている。  [0032] After the force is applied, the nozzle 18 is also retracted from the upward force of the wafer W, the upper temperature adjusting body 3 is lowered, and the distance between the lower surface and the surface of the wafer W is, for example, 0.1 lmn! Set the position to be ~ 2mm. At this time, the lower temperature adjustment body 4 is also raised so that the distance from the back surface of the wafer W is, for example, 0. Set the position to be ~ 2mm. First, when pure water, which is a fluid for the back side, is fed by the pump P4, it enters the lower temperature adjusting body 4 via the pure water supply pipe 61 and enters the coiled flow path (pure water supply pipe 61). While flowing through, the heat exchange with the heat medium flowing through the lower temperature adjusting body 4 is performed. The heat medium passes through the heat medium tank 34 and is heated there to a set temperature selected from the range of, for example, 60 ° C. to 90 ° C., which is the processing temperature of the electroless plating solution. Circulation chamber 4 1) Circulating supply. Therefore, the pure water that has undergone heat exchange in the lower temperature adjusting body 4 is heated to the set temperature until it is discharged from the discharge port 62.
[0033] 加熱された純水は下部温調体 4とウェハ Wの裏面との間の隙間に満たされながらゥ ェハチャック 11内に流れ落ち、図では見えな 、孔部を介してカップ 21内に流れ落ち る。また下部温調体 4の上面も熱媒により前記設定温度に維持されようとするので、ゥ エノ、 Wが裏面側から加熱されてめつき処理温度に維持されようとする。このようにして ウエノ、 Wを所定時間例えば 10秒加熱した後、ポンプ P2により薬液である無電解めつ き液を送り出す。  [0033] The heated pure water flows into the wafer chuck 11 while being filled in the gap between the lower temperature adjusting body 4 and the back surface of the wafer W, and flows into the cup 21 through the hole, which is not visible in the figure. The Further, since the upper surface of the lower temperature adjusting body 4 is also maintained at the set temperature by the heat medium, the UE and W are heated from the back surface side and are maintained at the tacking treatment temperature. In this way, after the UENO and W are heated for a predetermined time, for example, 10 seconds, an electroless plating solution that is a chemical solution is sent out by the pump P2.
[0034] これにより無電解めつき液は、上部温調体 3内に入り、コイル状の流路(無電解めつ き供給管 51)を流れる間に、上部温調体 3内に通流する熱媒との間で熱交換が行わ れる。また上部温調体 3内の熱媒は熱媒タンク 34を経由して循環供給されて前記設 定温度に加熱されるので、無電解めつき液は吐出口 52から吐出されるときまでには 前記設定温度に加熱されることとなる。加熱された無電解めつき液は、上部温調体 3 とウェハ Wの表面との間の隙間に例えば 30〜: LOOmlZ分の流量で供給されて満た されながらカップ体 21内に流れ落ち、また上部温調体 3の下面も熱媒により前記設 定温度に維持されようとする。図 5Cはこの状態を示しており、この結果ウェハ Wは表 裏両面力も温度調整されながら、無電解めつき処理が行われることになる。即ち前ェ 程にてウェハ Wの表面に析出したパラジウムが触媒として作用して無電解めつき液と 銅との間で反応が起こり、図 4Cに示すように銅配線 302の表面に選択的にリン (P) を含む合金からなる例えば NiP, CoWP, NiP, CoPなどの例えば膜厚 100〜200 Aの密着層をなす無電解めつき膜 305が形成される。 [0034] As a result, the electroless plating solution enters the upper temperature adjustment body 3 and flows into the upper temperature adjustment body 3 while flowing through the coiled flow path (electroless plating supply pipe 51). Heat exchange is performed with the heating medium. Further, since the heat medium in the upper temperature adjustment body 3 is circulated and supplied via the heat medium tank 34 and heated to the set temperature, the electroless plating solution is not discharged until the discharge port 52 is discharged. It will be heated to the set temperature. The heated electroless plating solution flows into the cup body 21 while being supplied and filled in the gap between the upper temperature control body 3 and the surface of the wafer W at a flow rate of, for example, 30 to LOOmlZ, The lower surface of the temperature adjustment body 3 also tends to be maintained at the set temperature by the heat medium. FIG. 5C shows this state. As a result, the wafer W is subjected to an electroless plating process while the temperature of both front and back surfaces of the wafer W is adjusted. In other words, the palladium deposited on the surface of the wafer W in the previous step acts as a catalyst to cause a reaction between the electroless plating solution and copper, and selectively occurs on the surface of the copper wiring 302 as shown in FIG. 4C. An electroless adhesive film 305 made of an adhesive layer having a thickness of 100 to 200 A, such as NiP, CoWP, NiP, or CoP, made of an alloy containing phosphorus (P) is formed.
[0035] このときウェハ Wの裏面側には洗浄水を兼ねた純水が供給されているので、この純 水によりいわゆるバックリンスがなされ、無電解めつき液がウェハ Wの裏面側に回り込 むことを防止しして 、る。なお処理中にウェハチャック 11を介してウェハ Wを回転さ せ、ウェハ Wの面内温度均一性をより高めるようにしてもょ 、。  [0035] At this time, pure water that also serves as cleaning water is supplied to the back side of the wafer W. Therefore, so-called back rinsing is performed by the pure water, and the electroless plating solution wraps around the back side of the wafer W. To prevent it from coming off. It is also possible to rotate the wafer W through the wafer chuck 11 during processing to further increase the in-plane temperature uniformity of the wafer W.
[0036] この工程にぉ 、ては、傾斜機構 16を用いてウェハ W、上部温調体 3及び下部温調 体 4を傾斜させて前記隙間に入り込んだ気泡を無電解めつき液力 取り除くようにし てもよい。こうした処理は、無電解めつき液と銅との反応によりガスが発生する場合な どにおいて有効である。  [0036] During this process, the tilting mechanism 16 is used to tilt the wafer W, the upper temperature adjustment body 3 and the lower temperature adjustment body 4 so as to remove the bubbles that have entered the gaps and remove the electroless adhesion liquid force. It may be. Such treatment is effective when gas is generated by the reaction between the electroless plating solution and copper.
[0037] 次いで図 1に示すバルブ VI及び V2を切替えてポンプ P3により純水を無電解めつ き液供給管 51を通じて上部温調体 3の吐出口 52からウェハ Wと上部温調体 3との間 に供給し、図 6Aに示すようにウェハ Wの表面の無電解めつき液を純水により置換す る。しカゝる後、上部温調体 3を上昇させ、ノズル 17、 18により代表して示されるノズル 群の中のノズル (便宜上 18を付してある)を用いて、図 6Bに示すように後洗浄液を回 転しているウェハ W上に供給し、ウェハ Wの表面を後洗浄する。このときにおいても ウエノ、 Wの裏面側には純水がバックリンスとして供給されている。後洗浄は線間リー ク電流減少のために行われ、後洗浄液としては例えば有機酸およびフッ酸系水溶液 が用いられる。なお無電解めつき処理の後に行われる純水の供給は、上部温調体 3 を上昇させてノズル 18により行ってもよい。  [0037] Next, the valves VI and V2 shown in Fig. 1 are switched, and pure water is supplied from the discharge port 52 of the upper temperature adjusting body 3 through the electroless plating liquid supply pipe 51 by the pump P3. The electroless plating solution on the surface of the wafer W is replaced with pure water as shown in FIG. 6A. After that, raise the upper temperature adjustment body 3 and use the nozzles (indicated by 18 for convenience) in the nozzle group represented by the nozzles 17 and 18 as shown in FIG. 6B. The post-cleaning liquid is supplied onto the rotating wafer W, and the surface of the wafer W is post-cleaned. Even at this time, pure water is supplied as a back rinse to the back side of Ueno and W. Post-cleaning is performed to reduce the leakage current between lines, and organic acid and hydrofluoric acid aqueous solution are used as the post-cleaning liquid. The supply of pure water after the electroless plating process may be performed by the nozzle 18 with the upper temperature adjusting body 3 raised.
[0038] 続 、て既述のノズル群のノズル (便宜上 18を付してある)力も洗浄液である純水を 回転しているウェハ Wの表面に供給し、その後、洗浄液の吐出を止めて図 6Cに示 すようにウェハ Wを高速回転させて乾燥させる。このとき既述のノズル群のノズルから ウエノ、 Wの表面に不活性ガスなどの乾燥ガスを吹き付けて乾燥を促進するようにして もよい。こうして一連の工程が終了した後、図示しない搬送手段によりウェハ Wの表 面を吸着してウェハチャック 11から当該ウエノ、 Wを搬出する。 [0038] Next, the nozzle of the nozzle group described above (for the sake of convenience, 18) is also used with pure water that is a cleaning liquid. Supply to the surface of the rotating wafer W, then stop discharging the cleaning liquid, rotate the wafer W at high speed and dry it as shown in Fig. 6C. At this time, drying may be accelerated by spraying a dry gas such as an inert gas from the nozzles of the nozzle group described above onto the surface of the wafers W and W. After the series of steps is completed in this way, the surface of the wafer W is sucked by a transfer means (not shown) and the wafer and W are unloaded from the wafer chuck 11.
[0039] 上述の実施の形態によれば、上部温調体 3に熱媒を通流させ、ここで無電解めつき 液と熱交換して当該無電解めつき液を温調しているため、無電解めつき液の温度変 化が緩やかになり、温度が安定する。そして熱媒が通流している上部温調体 3とゥェ ハ Wの表面との間に無電解めつき液を満たしており、更にまたウェハ Wの裏面側に 下部温調体 4を設けてこの中に熱媒を通流させ、ここで純水と熱交換して当該純水を 温調し、この純水によりウエノ、 Wの裏面と下部温調体 4との間を満たすようにしている ので、これらのことが相侯って、ウェハ Wの表面の温度が高い面内均一性をもって所 定温度に安定し、この結果無電解めつき膜の析出レートが各部位にぉ 、て安定する ので、無電解めつき膜の膜厚を予定している膜厚でかつ高い面内均一性をもって得 られ、そのためウェハ W間においても膜厚の均一性 (面間均一性)が高くなる。この 結果無電解めつき処理される配線間の距離が短くなつても、無電解めつき膜の膜厚 を高い精度でコントロールできることから、無電解めつき膜の等方成長による膜の広 力 Sりに起因するリークの発生を抑えることができる。  [0039] According to the above-described embodiment, the heating medium is caused to flow through the upper temperature adjusting body 3, and the temperature of the electroless plating solution is adjusted by heat exchange with the electroless plating solution. In addition, the temperature change of the electroless plating solution becomes gradual and the temperature stabilizes. An electroless plating solution is filled between the upper temperature adjustment body 3 through which the heat medium flows and the wafer W surface, and a lower temperature adjustment body 4 is provided on the back side of the wafer W. A heating medium is passed through this, heat-exchanged with pure water here to control the temperature of the pure water, and this pure water fills the space between Ueno, W back surface and lower temperature control body 4. As a result, the temperature of the surface of the wafer W is stabilized at a predetermined temperature with high in-plane uniformity, and as a result, the deposition rate of the electroless plating film is stable at each site. Therefore, the thickness of the electroless plating film can be obtained with a predetermined film thickness and high in-plane uniformity. Therefore, the film thickness uniformity (inter-surface uniformity) between wafers W is also increased. As a result, since the film thickness of the electroless plating film can be controlled with high accuracy even when the distance between the wirings to be electrolessly plated is shortened, the film's wide area due to the isotropic growth of the electroless plating film S It is possible to suppress the occurrence of leaks due to the leakage.
[0040] また無電解めつき液の温度変化が緩やかであるから、無電解めつき液の温度を許 容処理温度内において高い温度に設定する場合においても過加熱されにくぐ自己 分解によるパーティクルの発生のおそれもな 、。  [0040] In addition, since the temperature change of the electroless plating solution is gradual, even when the temperature of the electroless plating solution is set to a high temperature within the allowable processing temperature, the particles of self-decomposed that are not overheated easily are decomposed. There is no risk of it occurring.
[0041] 更にまた上部温調体 3の熱媒及び下部温調体 4の熱媒を各々循環させると共に、 それらの循環路中に共通の熱媒タンク 34を設けてここで熱媒の温度調整を行ってい るので、各熱媒、無電解めつき液及び裏面用流体である純水の各温調を一力所で管 理できる。このため、上部温調体 3の熱媒及び下部温調体 4の熱媒の温度が同じに なるので、このこと力 無電解めつき処理の温度が極めて安定し、無電解めつき膜の 膜厚について高い面内均一性及び面間均一性が得られる。そして一力所で温度管 理を行うことから、配線を少なくすることができて装置を簡素化することができ、また安 価なシステムを構築できる。更にまた上部温調体 3及び下部温調体 4がウェハ Wの表 面あるいは裏面の直ぐ近くに位置して 、るので、無電解めつき液及び裏面側流体で ある純水の温度が熱交換部を出た後、流路を流れる間に変化するということがない。 [0041] Further, the heating medium of the upper temperature adjustment body 3 and the heating medium of the lower temperature adjustment body 4 are circulated, and a common heating medium tank 34 is provided in the circulation path to adjust the temperature of the heating medium. Therefore, each temperature control of each heat medium, electroless plating solution and pure water which is the back surface fluid can be managed at one power. For this reason, since the temperature of the heating medium of the upper temperature adjustment body 3 and the temperature of the heating medium of the lower temperature adjustment body 4 are the same, the temperature of the electroless plating process is extremely stable, and the film of the electroless plating film High in-plane uniformity and inter-plane uniformity can be obtained with respect to the thickness. And since temperature management is performed at a central location, wiring can be reduced, the equipment can be simplified, and safety can be reduced. A valuable system can be constructed. Furthermore, since the upper temperature adjustment body 3 and the lower temperature adjustment body 4 are located in the immediate vicinity of the front surface or the back surface of the wafer W, the temperatures of the electroless plating solution and the pure water that is the back surface fluid are heat exchanged. It does not change while flowing through the flow path after leaving the section.
[0042] 本発明では、ウェハ Wの裏面側においては熱媒を用いた下部温調体 4を設けなく とも、例えば従来技術にて説明した図 11のように電熱線を用いたプレート状のヒータ ユニット(下面プレート)を設け、予め温調した純水をヒータユニットとウェハ Wの裏面 との間に供給しても、上部温調体 3の働きにより、面内均一性の高い無電解めつき処 理を行うことができる。 In the present invention, a plate-like heater using a heating wire is used as shown in FIG. 11 described in the prior art, for example, without providing the lower temperature adjusting body 4 using a heating medium on the back side of the wafer W. Even if a unit (bottom plate) is provided and pure water that has been temperature-controlled in advance is supplied between the heater unit and the back surface of the wafer W, the upper temperature adjusting body 3 works to achieve electroless plating with high in-plane uniformity. Processing can be performed.
[0043] 上部温調体 3から無電解めつき液をウェハ Wに吐出させるための吐出口は上述の 例のように一力所に設けることに限らず、例えば図 7に示すように上部温調体 3の下 部側にバッファ室 56を形成し、このバッファ室 56に無電解めつき液供給管 51の下端 部を接続すると共に、ノ ッファ室 56の下面全体に亘つて多数の吐出口 57を形成す るようにしてちょい。  [0043] The discharge port for discharging the electroless plating solution from the upper temperature adjusting body 3 to the wafer W is not limited to being provided at one place as in the above-described example, but for example, as shown in FIG. A buffer chamber 56 is formed on the lower side of the body 3, and the lower end of the electroless plating liquid supply pipe 51 is connected to the buffer chamber 56, and a number of discharge ports are formed over the entire lower surface of the notch chamber 56. Try to form 57.
[0044] ここで無電解めつき装置の他の例について図 8及び図 9を参照しながら説明してお く。図 8において、 71はウェハチャックであり、図では略解的に記載してある力 図示 されて 、ない回転機構により鉛直軸回りに回転自在な筒状体により構成され、その上 縁にウェハ Wを支持する段部 72が形成されて 、る。ウェハチャック 71に保持された ウエノ、 Wの下部側には、加熱手段であるヒータ 73及び液加温機構 74が互いに上下 に位置して設けられ、液加温機構 74で加温された液例えば純水がヒータ 73の中央 部を通ってヒータ 73及びウェハ Wの間の隙間に供給されるようになっている。液加温 機構 74は、先の実施の形態における下部温調体 4の如く構成されている。また液供 給管 75aから液加温機構 74に導入されそこで加熱された純水は液供給路である液 供給管 75bを通ってウェハ Wの裏面側に供給される。  Here, another example of the electroless plating apparatus will be described with reference to FIG. 8 and FIG. In FIG. 8, reference numeral 71 denotes a wafer chuck, which is configured by a cylindrical body that is rotatable about the vertical axis by a rotating mechanism that does not have a force schematically illustrated in the figure, and has a wafer W on its upper edge. A supporting step 72 is formed. On the lower side of the wafers W held by the wafer chuck 71, a heater 73 as a heating means and a liquid heating mechanism 74 are provided above and below each other, and the liquid heated by the liquid heating mechanism 74, for example, Pure water is supplied to the gap between the heater 73 and the wafer W through the central portion of the heater 73. The liquid heating mechanism 74 is configured like the lower temperature adjustment body 4 in the previous embodiment. The pure water introduced into the liquid heating mechanism 74 from the liquid supply pipe 75a and heated there is supplied to the back side of the wafer W through the liquid supply pipe 75b which is a liquid supply path.
[0045] 一方ウェハチャック 71の上方には、無電解めつき液をウェハ W上に供給するため のノズル部 8が図示しない移動機構により例えば昇降自在及び水平移動自在に設け られている。このノズル部 8は、基体 81に液加温機構 82とバルブ 83とが設けられて 構成されている。液加温機構 82は、図 9に示すように、熱媒の通流室を形成する横 長の空洞体 91内に、液供給路である液供給管 92を当該空洞体 91の長さ方向にコ ィル状に配管して構成され、通流室の一端及び他端側には、夫々熱媒供給路 93及 び熱媒排出路 94が接続されている。これら熱媒供給路 93及び熱媒排出路 94は、循 環路をなし、先の実施の形態のように図示しな 、循環タンクを介して熱媒が空洞体 9 1に循環供給するように構成されて 、る。 On the other hand, above the wafer chuck 71, a nozzle portion 8 for supplying an electroless plating solution onto the wafer W is provided, for example, vertically movable and horizontally movable by a moving mechanism (not shown). The nozzle unit 8 is configured by providing a base 81 with a liquid heating mechanism 82 and a valve 83. As shown in FIG. 9, the liquid heating mechanism 82 includes a liquid supply pipe 92 that is a liquid supply path in a longitudinal direction of the hollow body 91 in a horizontally long hollow body 91 that forms a heat medium flow chamber. To A heat medium supply path 93 and a heat medium discharge path 94 are connected to one end and the other end of the flow chamber, respectively. The heat medium supply path 93 and the heat medium discharge path 94 form a circulation path, and the heat medium is circulated and supplied to the hollow body 91 via a circulation tank (not shown) as in the previous embodiment. It is composed.
[0046] 前記ノ レブ 83は液の遮断機能を有しており、液加温機構 82における液供給管 92 の出口側に接続されている。バルブ 83の下流側における液供給管 92の先端である 吐出口 84は当該バルブ 83の直ぐ近くに位置して!/、る。  The nozzle 83 has a liquid blocking function and is connected to the outlet side of the liquid supply pipe 92 in the liquid heating mechanism 82. The discharge port 84, which is the tip of the liquid supply pipe 92 on the downstream side of the valve 83, is located in the immediate vicinity of the valve 83!
[0047] このようなノズル部 8によれば、無電解めつき液が加温により膨張して吐出口 84から 押し出されようとしても、ノ レブ 83が吐出口 84の近傍に位置しかつ液加温機構 82の 下流側に位置しているため、そのサックバック機能により吐出口 84からの液だれを防 止できる。また吐出口 84の直ぐ手前に液加温機構 82が設けられているため、加熱さ れた無電解めつき液の冷却が実質起こらないうちにウェハ W上に供給されるので、 目 的の温度で無電解めつきを行うことができ、その結果無電解めつき膜にっ 、て高 ヽ 面内均一性が得られる。  According to such a nozzle portion 8, even if the electroless plating solution expands due to heating and is pushed out from the discharge port 84, the nozzle 83 is located in the vicinity of the discharge port 84 and the liquid is added. Since it is located downstream of the temperature mechanism 82, dripping from the discharge port 84 can be prevented by its suck back function. Further, since the liquid heating mechanism 82 is provided immediately before the discharge port 84, the heated electroless plating liquid is supplied onto the wafer W before the cooling is substantially caused. Thus, electroless plating can be performed, and as a result, high uniformity in the surface can be obtained by the electroless plating film.

Claims

請求の範囲 The scope of the claims
[1] 基板を保持する基板保持部と、  [1] a substrate holding unit for holding a substrate;
この基板保持部に保持された基板の表面に対向すると共に、その内部が温調用流 体の通流室をなす上部温調体と、  An upper temperature adjustment body that faces the surface of the substrate held by the substrate holding section and whose inside forms a flow chamber for the temperature adjustment fluid,
前記温調用流体と無電解めつき液との間で熱交換するために前記上部温調体内 を通して設けられ、前記上部温調体の下面に吐出口が形成された無電解めつき液の 供給路と、  Supply path for an electroless plating solution provided through the upper temperature adjusting body for exchanging heat between the temperature adjusting fluid and the electroless plating solution, and having a discharge port formed on the lower surface of the upper temperature adjusting member When,
前記上部温調体に接続された温調用流体の第 1の供給路及び温調用流体の第 1 の排出路と、  A first supply passage for the temperature adjustment fluid connected to the upper temperature adjustment body and a first discharge passage for the temperature adjustment fluid;
前記基板保持部に保持された基板の表面と上部温調体との間の隙間に前記吐出 口から無電解めつき液を供給して満たすための処理位置と、この処理位置から離れ た待機位置との間で、上部温調体を前記基板保持部に対して相対的に移動するた めの移動機構と、  A processing position for supplying the electroless plating solution from the discharge port to fill the gap between the surface of the substrate held by the substrate holding unit and the upper temperature control body, and a standby position away from the processing position A moving mechanism for moving the upper temperature adjuster relative to the substrate holder,
を備えたことを特徴とする無電解めつき装置。  An electroless plating apparatus characterized by comprising:
[2] 温調用流体の第 1の供給路及び温調用流体の第 1の排出路との間に設けられた温 調用流体の貯留部と、  [2] A temperature control fluid reservoir provided between the temperature control fluid first supply path and the temperature control fluid first discharge path;
この貯留部に設けられ、温調用流体の温度を設定温度に維持するための温度調 節手段と、  A temperature adjusting means provided in the reservoir for maintaining the temperature of the temperature adjusting fluid at a set temperature;
前記貯留部内の温調用流体を温調用流体の第 1の供給路を介して前記上部温調 体内に循環供給するためのポンプと、  A pump for circulating and supplying the temperature adjusting fluid in the reservoir to the upper temperature adjusting body through the first supply path of the temperature adjusting fluid;
を備えたことを特徴とする請求の範囲第 1項記載の無電解めつき装置。  The electroless plating apparatus according to claim 1, further comprising:
[3] 前記ポンプは、前記温調用流体の第 1の排出路に設けられていることを特徴とする 請求の範囲第 2項記載の無電解めつき装置。 [3] The electroless plating apparatus according to claim 2, wherein the pump is provided in a first discharge path of the temperature adjusting fluid.
[4] 基板保持部に保持された基板の裏面に対向すると共に、その内部が温調用流体 の通流室をなす下部温調体と、 [4] A lower temperature adjusting body facing the back surface of the substrate held by the substrate holding portion, and the inside of which forms a flow chamber for the temperature adjusting fluid,
基板の裏面側に供給するための裏面側用流体と前記下部温調体内の温調用流体 との間で熱交換するために前記通流室内を通して設けられ、前記下部温調体の上 面に吐出口が形成された裏面側用流体の供給路と、 前記下部温調体に接続された温調用流体の第 2の供給路及び温調用流体の第 2 の排出路と、を備え、 Provided through the flow chamber to exchange heat between the backside fluid to be supplied to the backside of the substrate and the temperature adjusting fluid in the lower temperature adjusting body, and is discharged to the upper surface of the lower temperature adjusting body. A supply path for the back side fluid in which the outlet is formed; A second supply path for the temperature adjustment fluid connected to the lower temperature adjustment body, and a second discharge path for the temperature adjustment fluid,
基板を裏面側から温調するために下部温調体の上面と基板の裏面との間に裏面 側用流体を満たすことを特徴とする請求の範囲第 1項記載の無電解めつき装置。  2. The electroless plating apparatus according to claim 1, wherein a back side fluid is filled between the upper surface of the lower temperature control body and the back side of the substrate in order to control the temperature of the substrate from the back side.
[5] 前記温調用流体の第 2の供給路は、前記貯留部内の温調用流体を供給するように 構成され、また前記温調用流体の第 2の排出路は、前記貯留部内に温調用流体を 回収するように構成されて ヽることを特徴とする請求の範囲第 4項記載の無電解めつ き装置。 [5] The second supply path for the temperature adjustment fluid is configured to supply the temperature adjustment fluid in the storage section, and the second discharge path for the temperature adjustment fluid is provided in the storage section. 5. The electroless plating apparatus according to claim 4, wherein the electroless plating apparatus is configured to collect water.
[6] 無電解めつき液は、基板上の絶縁膜の凹部に埋め込まれて形成された配線材料 の表面にめっき膜を形成するためのものであることを特徴とする請求の範囲第 1項記 載の無電解めつき装置。  [6] The electroless plating solution is for forming a plating film on the surface of the wiring material formed by being embedded in the recess of the insulating film on the substrate. The electroless plating device described.
PCT/JP2005/014445 2004-08-23 2005-08-05 Electroless plating apparatus WO2006022133A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-242905 2004-08-23
JP2004242905A JP2006057171A (en) 2004-08-23 2004-08-23 Electroless plating apparatus

Publications (1)

Publication Number Publication Date
WO2006022133A1 true WO2006022133A1 (en) 2006-03-02

Family

ID=35967351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014445 WO2006022133A1 (en) 2004-08-23 2005-08-05 Electroless plating apparatus

Country Status (2)

Country Link
JP (1) JP2006057171A (en)
WO (1) WO2006022133A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4571208B2 (en) * 2008-07-18 2010-10-27 東京エレクトロン株式会社 Semiconductor manufacturing equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59161895A (en) * 1983-03-07 1984-09-12 株式会社 プランテツクス Apparatus for producing both-side wiring printed board by electroless copper plating
JPH05171451A (en) * 1991-12-19 1993-07-09 Taiho Kogyo Co Ltd Electroless plating method
JP2003129251A (en) * 2001-10-17 2003-05-08 Ebara Corp Plating apparatus
JP2004107747A (en) * 2002-09-19 2004-04-08 Tokyo Electron Ltd Electroless plating apparatus and electroless plating method
JP2004128016A (en) * 2002-09-30 2004-04-22 Ebara Corp Substrate processing apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59161895A (en) * 1983-03-07 1984-09-12 株式会社 プランテツクス Apparatus for producing both-side wiring printed board by electroless copper plating
JPH05171451A (en) * 1991-12-19 1993-07-09 Taiho Kogyo Co Ltd Electroless plating method
JP2003129251A (en) * 2001-10-17 2003-05-08 Ebara Corp Plating apparatus
JP2004107747A (en) * 2002-09-19 2004-04-08 Tokyo Electron Ltd Electroless plating apparatus and electroless plating method
JP2004128016A (en) * 2002-09-30 2004-04-22 Ebara Corp Substrate processing apparatus

Also Published As

Publication number Publication date
JP2006057171A (en) 2006-03-02

Similar Documents

Publication Publication Date Title
KR100751102B1 (en) Electroless plating apparatus and method
JP3960774B2 (en) Electroless plating apparatus and method
US6716330B2 (en) Electroless plating apparatus and method
US20040234696A1 (en) Plating device and method
US6908512B2 (en) Temperature-controlled substrate holder for processing in fluids
JP4547016B2 (en) Semiconductor manufacturing apparatus and semiconductor manufacturing method
US9255331B2 (en) Apparatus for plating process
JP3495033B1 (en) Electroless plating apparatus and electroless plating method
JP3985858B2 (en) Plating equipment
JP4571208B2 (en) Semiconductor manufacturing equipment
JP2003129250A (en) Plating apparatus and plating method
JP2005048209A (en) Electroless plating method, electroless plating device, method of fabricating semiconductor device, and fabrication device therefor
TW544744B (en) Semiconductor device and method for manufacturing the same
US10138556B2 (en) Plating method, plating apparatus, and storage medium
JP2004124235A (en) Electroless plating method and electroless plating apparatus
WO2006022133A1 (en) Electroless plating apparatus
JP2004115885A (en) Electroless plating method
JP2002285343A (en) Electroless plating apparatus
JP3824567B2 (en) Substrate processing equipment
JP4189876B2 (en) Substrate processing equipment
JP2011001633A (en) Semiconductor manufacturing method
JP3985857B2 (en) Electroless plating apparatus and electroless plating method
JP3886383B2 (en) Plating apparatus and plating method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP