WO2006021906A1 - Semiconductor device and method of manufacturing such a semiconductor device - Google Patents
Semiconductor device and method of manufacturing such a semiconductor device Download PDFInfo
- Publication number
- WO2006021906A1 WO2006021906A1 PCT/IB2005/052646 IB2005052646W WO2006021906A1 WO 2006021906 A1 WO2006021906 A1 WO 2006021906A1 IB 2005052646 W IB2005052646 W IB 2005052646W WO 2006021906 A1 WO2006021906 A1 WO 2006021906A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conducting material
- compound
- metal
- layer
- oxygen
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
- H01L21/823828—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
- H01L21/823842—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes gate conductors with different gate conductor materials or different gate conductor implants, e.g. dual gate structures
Definitions
- the invention relates to a semiconductor device with a substrate and a semiconductor body comprising a first field effect transistor with a first source and drain region and a first channel of a first conductivity type and with separated from the first channel by a first dielectric region a first gate region comprising a first conducting material and a second field effect transistor with a second source and drain region and a second channel of a second, opposite to the first, conductivity type and with separated from the second channel by a second dielectric region a second gate region comprising a second conducting material different from the first conducting material, wherein the first and second conducting material comprise a compound containing both a metal and a further element.
- CMOS Complimentary Metal Oxide Semiconductor
- CMOS complementary metal-oxide-semiconductor
- metals or metal alloys that are suitable for the former of which the workfunction is about 4.2 eV are Ru, Zr, Nb, Ta, MoSi and TaSi.
- Ru, Zr, Nb, Ta, MoSi and TaSi having a workfunction of about 5.2 eV Ni, RuO2, MoN and TaN are suitable material among others.
- a drawback of the known conducting materials is that they are not always very compatible with existing IC technology. This includes the requirement that the materials should be compatible with the materials of the gate stack comprising the materials of the gate dielectric, the capping layer and the spacers. It is therefore an object of the present invention to avoid the above drawbacks and to provide a device which is very compatible with IC technology and easy to manufacture.
- a device of the type mentioned in the opening paragraph is characterized in that the first and second conducting material both comprise a compound containing as the metal a metal selected from the group comprising molybdenum and tungsten and both comprise as the further element an element selected from the group comprising carbon, oxygen and the chalcogenides, the latter comprising S, Se and Te.
- the material contains a metal that is very common in present IC technology, e.g. for conduction tracks and in particular for use a connection between conduction tracks at different levels.
- the further elements in a device according to the invention provide several advantages. Firstly, they allow for a full coverage of the workfunction range desired, i.e. from about 4.1 eV to about 5.2 eV.
- the metal in common for both the first and the second transistor which simplifies the manufacture.
- the conducting material may be formed using gaseous compounds of the further elements mentioned, e.g. CH4, O2 and H2Se.
- both the first and second conducting material comprise a compound of molybdenum and carbon or oxygen. These compounds are very suitable to obtain the objectives of the invention.
- the first conductivity type comprises the n-type and the first conducting material comprises a compound of molybdenum and carbon and the second conducting material comprises a compound of molybdenum and oxygen.
- the first conducting material comprises a compound of molybdenum and oxygen with a higher oxygen content and in that the second conducting material comprises a compound of molybdenum and oxygen with a lower oxygen content.
- a material is chosen comprising a compound of molybdenum and carbon or oxygen.
- a first modification is characterized in that on the first and second dielectric regions a layer of the metal is formed which is at the location of the first dielectric region made to react with a gaseous compound of the further element while the layer of the metal at the location of the second dielectric region is protected against the gaseous compound by a mask and which after removal of the mask is at the location of the second dielectric region made to react with a gaseous compound of the further element while the layer of the metal at the location of the first dielectric region is protected against the gaseous compound by a further mask.
- oxygen can be used to locally transfer the metal in the compound with the desired workfunction while the other gate region is protected by a mask which is impermeable for such a gaseous compound.
- a suitable material for the latter is TiN or MoN. While it is preferred to do the reaction with the gaseous compound at the layer stage, it also may be done if the gate regions already have been formed from a layer (structure) by etching.
- Another modification is characterized in that on the first and second dielectric regions a layer of the first conducting material is deposited which is at the location of the second dielectric region made to react with a gaseous compound of the further element while the layer of the first conducting material at the location of the first dielectric region is protected against the gaseous compound by a mask.
- the layer of the first conducting material is formed by depositing a layer of the metal and reacting the metal layer with a gaseous compound of the further element.
- the metal layer has a porous structure or forms a very thin film (e.g. with a thickness ⁇ IOnm), it may easily react with gasses like CH4 or 02 or the like.
- Figs. 1 through 4 are sectional views of a first example of a semiconductor device according to the invention at various stages in the manufacture of the device by means of a first embodiment of a method in accordance with the invention
- Figs. 5 through 7 are sectional views of a second example of a semiconductor device according to the invention at various stages in the manufacture of the device by means of a second embodiment of a method in accordance with the invention
- Figs. 1 through 4 are sectional views of a first example of a semiconductor device according to the invention at various stages in the manufacture of the device by means of a first embodiment of a method in accordance with the invention
- Figs. 5 through 7 are sectional views of a second example of a semiconductor device according to the invention at various stages in the manufacture of the device by means of a second embodiment of a method in accordance with the invention
- Fig. 8 is a sectional views of a third example of a semiconductor device according to the invention at a relevant stage in the manufacture of the device by means of a third embodiment of a method in accordance with the invention.
- Figs. 1 through 4 show sectional views of a first example of a semiconductor device according to the invention at various stages in the manufacture of the device by means of a first embodiment of a method in accordance with the invention.
- the (nearly) finished device 10 (see Fig. 4) comprises a semiconductor body 12, here of p-type silicon which here is formed by a substrate 11 and in which a first transistor 1 is formed as an NMOST. In a N- well region 33 a second transistor 2 is formed as a PMOST.
- the transistors 1,2 comprise source and drain regions 1A,1B,2A,2B, respectively of the n- and p-type conductivity, dielectric regions 1C,2C, here comprising silicondioxide, and gate regions 1D,2D.
- isolation regions 25 are formed, here in the form of trenches filled with silicondioxide (or with another gate dielectric ,e.g. a metal oxide).
- the gate region ID of the NMOST 1 comprises in this example a compound comprising Mo and C and with a composition Of MoC x where x ⁇ 1. e.g. Mo 2 C, of which the work function is about 3.6 to 3.8 eV and thus close to the optimal value of about 4.2 eV.
- the gate region 2D of the PMOST 2 comprises in this example a compound comprising Mo and O and with a composition OfMoO x , where x ⁇ 2, e.g. MoO 2 , of which the work function is about 4.6 to 5.5 eV and thus can be tuned to the optimal value of about 5.2 eV.
- a mask 15 is formed at the location of the PMOST 2 and the metal layer 22 is under heating to T > 250 degrees Celsius exposed to a gaseous compound 30 comprising C, here CH4, preferably also aided by plasma.
- the metal layer 22 is at the location of the NMOST 1 converted to the desired compound Mo 2 C, or to a compound with a composition in the range indicated before, which will form later on the gate region ID.
- the mask 15 comprises here TiN and is formed by deposition of a TiN layer which is patterned using photolithography and etching. Hereinafter, a similar procedure is done (see Fig. 3) for the PMOST 2.
- the NMOST 1 is protected by a mask 16 and the Mo layer 22 is exposed to a gaseous compound comprising O, here 02 under heating to T > 250 degrees Celsius.
- a gaseous compound comprising O, here 02 under heating to T > 250 degrees Celsius.
- the conditions are such that the Mo layer 22 is locally converted to MoO 2 (or to a compound with a composition in the range indicated before) which will form the gate region 2D of the PMOST 2.
- gate stacks are formed by photolithography and etching. Formation of shallow parts of the source and drain regions 1A,1B,2A,2B is followed by the formation of spacers 44 and the deep source and drain implantations. Further steps like the deposition of pre-metal dielectric, patterning thereof, contact metal deposition and patterning thereof are not shown in the drawing.
- Figs. 5 through 7 are sectional views of a second example of a semiconductor device according to the invention at various stages in the manufacture of the device by means of a second embodiment of a method in accordance with the invention.
- the device 10 of this example is identical to that of the previous example.
- the first step (see Fig. 5) is the same as described above.
- the metal layer 22 comprising porous Mo is completely exposed to the treatment with the gaseous compound 30 comprising CH4. In this way the metal layer 22 is converted in both transistors 1,2 to Mo 2 C.
- a mask 17 is formed in the region of the NMOST 1 and the Mo 2 C layer is treated with a gaseous compound 40 comprising oxygen and converted to MoO 2 .
- the C atoms in the gate region 2D are converted to a gaseous compound of C and O and released from the gate region 2D.
- the manufacturing is continued as described in the first example.
- Fig. 8 is a sectional views of a third example of a semiconductor device according to the invention at a relevant stage in the manufacture of the device by means of a third embodiment of a method in accordance with the invention.
- both gate regions 1D,2D comprise a compound of Mo and O.
- the gate region ID of the NMOST 1 comprises MoO 3 which has a work function of 3.9 to 4.1 eV and thus is nearly optimal for this transistor.
- the gate region 2D of the PMOST 2 comprises MoO 2 as in the previous examples.
- the manufacture starts as shown in Fig. 5 and described above.
- the Mo layer 22 then is then (see Fig. 6) converted into MoO 2 layer 23 using the treatment with gaseous compound 40 containing O.
- the PMOST 2 area is protected by mask 18 and the MoO 2 layer 23 is locally - at the location of the NMOST 1 - further oxidized to MOO 3 , the latter material having a workfunction of about 3.9 to 4.1 eV which is nearly optimal for the latter transistor 1.
- the manufacture then continues as described before.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05773559A EP1784857B1 (en) | 2004-08-24 | 2005-08-10 | Cmos semiconductor device |
US11/574,245 US7763944B2 (en) | 2004-08-24 | 2005-08-10 | Semiconductor device and method of manufacturing such a semiconductor device |
CN2005800282011A CN101019225B (en) | 2004-08-24 | 2005-08-10 | Semiconductor device and method of manufacturing such a semiconductor device |
JP2007529059A JP2008515173A (en) | 2004-08-24 | 2005-08-10 | Semiconductor device and method for manufacturing such semiconductor device |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP04104056.9 | 2004-08-24 | ||
EP04104056 | 2004-08-24 | ||
EP04104489.2 | 2004-09-16 | ||
EP04104489 | 2004-09-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006021906A1 true WO2006021906A1 (en) | 2006-03-02 |
Family
ID=35285280
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2005/052646 WO2006021906A1 (en) | 2004-08-24 | 2005-08-10 | Semiconductor device and method of manufacturing such a semiconductor device |
Country Status (6)
Country | Link |
---|---|
US (1) | US7763944B2 (en) |
EP (1) | EP1784857B1 (en) |
JP (1) | JP2008515173A (en) |
CN (1) | CN101019225B (en) |
TW (1) | TW200620558A (en) |
WO (1) | WO2006021906A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008072203A1 (en) | 2006-12-15 | 2008-06-19 | Nxp B.V. | Semiconductor device and method of manufacture |
WO2009072611A1 (en) * | 2007-12-07 | 2009-06-11 | Waseda University | Metal electrode and semiconductor element using the same |
EP1976002A3 (en) * | 2007-03-30 | 2009-07-08 | Panasonic Corporation | Semiconductor device and method for manufacturing the same |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8802522B2 (en) * | 2010-09-10 | 2014-08-12 | Applied Materials, Inc. | Methods to adjust threshold voltage in semiconductor devices |
US9099661B2 (en) | 2011-04-07 | 2015-08-04 | The Trustees Of Columbia University In The City Of New York | OFET including PVDF-TRFE-CFE dielectric |
FR3072687B1 (en) * | 2017-10-20 | 2024-05-10 | Thales Sa | METHOD FOR PRODUCING AT LEAST ONE SINGLE LAYER OF A TWO-DIMENSIONAL MATERIAL AND ASSOCIATED DEVICE |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0198229A (en) * | 1987-10-09 | 1989-04-17 | Fujitsu Ltd | Manufacture of semiconductor device |
US6091122A (en) * | 1996-10-30 | 2000-07-18 | International Business Machines Corporation | Fabrication of mid-cap metal gates compatible with ultra-thin dielectrics |
US6121094A (en) * | 1998-07-21 | 2000-09-19 | Advanced Micro Devices, Inc. | Method of making a semiconductor device with a multi-level gate structure |
US20010039107A1 (en) * | 1997-11-28 | 2001-11-08 | Kabushiki Kaisha Toshiba | Semiconductor device and method of manufacture thereof |
US6512296B1 (en) * | 1999-07-29 | 2003-01-28 | International Business Machines Corporation | Semiconductor structure having heterogenous silicide regions having titanium and molybdenum |
WO2003079444A1 (en) * | 2002-03-15 | 2003-09-25 | Nec Corporation | Semiconductor device and its manufacturing method |
US20040124492A1 (en) * | 2002-09-12 | 2004-07-01 | Kouji Matsuo | Semiconductor device and method of manufacturing the same |
US20040132239A1 (en) * | 2001-10-18 | 2004-07-08 | Chartered Semiconductor Manufacturing Ltd. | Methods to form dual metal gates by incorporating metals and their conductive oxides |
JP2004207481A (en) * | 2002-12-25 | 2004-07-22 | Renesas Technology Corp | Semiconductor device and its manufacturing method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6171910B1 (en) * | 1999-07-21 | 2001-01-09 | Motorola Inc. | Method for forming a semiconductor device |
US6967131B2 (en) * | 2003-10-29 | 2005-11-22 | International Business Machines Corp. | Field effect transistor with electroplated metal gate |
US7067379B2 (en) * | 2004-01-08 | 2006-06-27 | Taiwan Semiconductor Manufacturing Company, Ltd. | Silicide gate transistors and method of manufacture |
US20060084217A1 (en) * | 2004-10-20 | 2006-04-20 | Freescale Semiconductor, Inc. | Plasma impurification of a metal gate in a semiconductor fabrication process |
-
2005
- 2005-08-10 CN CN2005800282011A patent/CN101019225B/en active Active
- 2005-08-10 JP JP2007529059A patent/JP2008515173A/en not_active Withdrawn
- 2005-08-10 WO PCT/IB2005/052646 patent/WO2006021906A1/en active Application Filing
- 2005-08-10 EP EP05773559A patent/EP1784857B1/en active Active
- 2005-08-10 US US11/574,245 patent/US7763944B2/en active Active
- 2005-08-19 TW TW094128308A patent/TW200620558A/en unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0198229A (en) * | 1987-10-09 | 1989-04-17 | Fujitsu Ltd | Manufacture of semiconductor device |
US6091122A (en) * | 1996-10-30 | 2000-07-18 | International Business Machines Corporation | Fabrication of mid-cap metal gates compatible with ultra-thin dielectrics |
US20010039107A1 (en) * | 1997-11-28 | 2001-11-08 | Kabushiki Kaisha Toshiba | Semiconductor device and method of manufacture thereof |
US6121094A (en) * | 1998-07-21 | 2000-09-19 | Advanced Micro Devices, Inc. | Method of making a semiconductor device with a multi-level gate structure |
US6512296B1 (en) * | 1999-07-29 | 2003-01-28 | International Business Machines Corporation | Semiconductor structure having heterogenous silicide regions having titanium and molybdenum |
US20040132239A1 (en) * | 2001-10-18 | 2004-07-08 | Chartered Semiconductor Manufacturing Ltd. | Methods to form dual metal gates by incorporating metals and their conductive oxides |
WO2003079444A1 (en) * | 2002-03-15 | 2003-09-25 | Nec Corporation | Semiconductor device and its manufacturing method |
US20050110098A1 (en) * | 2002-03-15 | 2005-05-26 | Takuya Yoshihara | Semiconductor device and its manufacturing method |
US20040124492A1 (en) * | 2002-09-12 | 2004-07-01 | Kouji Matsuo | Semiconductor device and method of manufacturing the same |
JP2004207481A (en) * | 2002-12-25 | 2004-07-22 | Renesas Technology Corp | Semiconductor device and its manufacturing method |
Non-Patent Citations (3)
Title |
---|
OHJUFI S-I ET AL: "OXYGEN-DOPED MOLYBDENUM FILMS FOR MOS GATE APPLICATION", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, ELECTROCHEMICAL SOCIETY. MANCHESTER, NEW HAMPSHIRE, US, vol. 131, no. 2, February 1984 (1984-02-01), pages 446 - 450, XP001073829, ISSN: 0013-4651 * |
PATENT ABSTRACTS OF JAPAN vol. 013, no. 338 (E - 795) 28 July 1989 (1989-07-28) * |
PATENT ABSTRACTS OF JAPAN vol. 2003, no. 12 5 December 2003 (2003-12-05) * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008072203A1 (en) | 2006-12-15 | 2008-06-19 | Nxp B.V. | Semiconductor device and method of manufacture |
US8269286B2 (en) | 2006-12-15 | 2012-09-18 | Nxp B.V. | Complementary semiconductor device with a metal oxide layer exclusive to one conductivity type |
EP1976002A3 (en) * | 2007-03-30 | 2009-07-08 | Panasonic Corporation | Semiconductor device and method for manufacturing the same |
WO2009072611A1 (en) * | 2007-12-07 | 2009-06-11 | Waseda University | Metal electrode and semiconductor element using the same |
Also Published As
Publication number | Publication date |
---|---|
EP1784857A1 (en) | 2007-05-16 |
US20080211032A1 (en) | 2008-09-04 |
CN101019225B (en) | 2011-01-26 |
CN101019225A (en) | 2007-08-15 |
EP1784857B1 (en) | 2012-07-11 |
TW200620558A (en) | 2006-06-16 |
US7763944B2 (en) | 2010-07-27 |
JP2008515173A (en) | 2008-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6130123A (en) | Method for making a complementary metal gate electrode technology | |
US7229873B2 (en) | Process for manufacturing dual work function metal gates in a microelectronics device | |
EP1872407B1 (en) | Using metal/metal nitride bilayers as gate electrodes in self-aligned aggressively scaled cmos devices | |
US8178433B2 (en) | Methods for the formation of fully silicided metal gates | |
KR101036771B1 (en) | Semiconductor device and method for manufacturing same | |
US20080113480A1 (en) | Method of manufacturing semiconductor device | |
US8269286B2 (en) | Complementary semiconductor device with a metal oxide layer exclusive to one conductivity type | |
US20060051915A1 (en) | Semiconductor device and manufacturing method thereof | |
US7763944B2 (en) | Semiconductor device and method of manufacturing such a semiconductor device | |
US5998284A (en) | Method for manufacturing semiconductor device | |
JP2006060046A (en) | Semiconductor device | |
US20070063295A1 (en) | Gate electrode, method of forming the same, transistor having the gate electrode, method of manufacturing the same, semiconductor device having the gate electrode and method of manufacturing the same | |
WO2006021907A1 (en) | Semiconductor device and method of manufacturing such a semiconductor device | |
US20070026596A1 (en) | Gate electrode structure and method of forming the same, and semiconductor transistor having the gate electrode structure and method of manufacturing the same | |
JP2001102583A (en) | Using silicon-germanium and other alloy as substitution gate for manufacturing mosfet | |
US7361597B2 (en) | Semiconductor device and method of fabricating the same | |
CN101010796A (en) | Semiconductor device and method of manufacturing such a semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2005773559 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200580028201.1 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007529059 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWP | Wipo information: published in national office |
Ref document number: 2005773559 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11574245 Country of ref document: US |