WO2006018309A1 - 5-ht7 receptor antagonists - Google Patents

5-ht7 receptor antagonists Download PDF

Info

Publication number
WO2006018309A1
WO2006018309A1 PCT/EP2005/008979 EP2005008979W WO2006018309A1 WO 2006018309 A1 WO2006018309 A1 WO 2006018309A1 EP 2005008979 W EP2005008979 W EP 2005008979W WO 2006018309 A1 WO2006018309 A1 WO 2006018309A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
compound
formula
compounds
Prior art date
Application number
PCT/EP2005/008979
Other languages
French (fr)
Inventor
Antoni Torrens Jover
Josep MAS PRIÓ
Susana YENES MÍNGUEZ
Mónica GARCÍA LÓPEZ
Alberto Dordal Zueras
Luz Romero Alonso
Helmut H. Buschmann
Original Assignee
Laboratorios Del Dr. Esteve, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/920,671 external-priority patent/US7211584B2/en
Application filed by Laboratorios Del Dr. Esteve, S.A. filed Critical Laboratorios Del Dr. Esteve, S.A.
Priority to AU2005274261A priority Critical patent/AU2005274261A1/en
Priority to EP05774634A priority patent/EP1778641A1/en
Priority to JP2007526394A priority patent/JP2008509962A/en
Priority to MX2007001992A priority patent/MX2007001992A/en
Priority to BRPI0514463-9A priority patent/BRPI0514463A/en
Priority to US11/658,923 priority patent/US8148397B2/en
Priority to CA002575785A priority patent/CA2575785A1/en
Publication of WO2006018309A1 publication Critical patent/WO2006018309A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
    • C07D513/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/472Non-condensed isoquinolines, e.g. papaverine
    • A61K31/4725Non-condensed isoquinolines, e.g. papaverine containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/02Drugs for disorders of the urinary system of urine or of the urinary tract, e.g. urine acidifiers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/10Drugs for disorders of the urinary system of the bladder
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/06Antimigraine agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/20Hypnotics; Sedatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/22Anxiolytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/24Antidepressants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D217/00Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems
    • C07D217/02Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with only hydrogen atoms or radicals containing only carbon and hydrogen atoms, directly attached to carbon atoms of the nitrogen-containing ring; Alkylene-bis-isoquinolines
    • C07D217/04Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with only hydrogen atoms or radicals containing only carbon and hydrogen atoms, directly attached to carbon atoms of the nitrogen-containing ring; Alkylene-bis-isoquinolines with hydrocarbon or substituted hydrocarbon radicals attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links

Definitions

  • the present invention relates to compounds having pharmacological activity towards the 5-HT7 receptor, and more particularly to some tetrahydroisoquinoline substituted sulfonamide compounds, to processes of preparation of such compounds, to pharmaceutical compositions comprising them, and to their use in therapy, in particular for the treatment and or prophylaxis of a disease in which 5-HT 7 is involved, such as CNS disorders.
  • 5-HT 7 receptors have been cloned from rat, mouse, guinea pig and human cDNA and exhibit a high degree of interspecies homology (approx. 95%), but it is unique in that it has a low sequence homology with other 5-HT receptors (less than 40%). Its expression pattern, in particular structures of the central nervous system (CNS) (highest in hypothalamus (in particular suprachiasmatic nuclei) and thalamus) and other peripheral tissues (spleen, kidney, intestinal, heart and coronary arthery), implicates the 5-HT 7 receptor in a variety of functions and pathologies.
  • CNS central nervous system
  • the 5-HT 7 receptor has also been related with the pathophysiology of migraine through smooth muscle relaxation of cerebral vessels (Schoeffter, P. et al., 1996, Br J Pharmacol, 1 17:993-994; Terr ⁇ n, J.A., 2002, Eur. J. Pharmacol, 439: 1-1 1 "/s the 5-HT 7 receptor involved in the pathogenesis and prophylactic treatment of migraine? ").
  • involvement of 5-HT 7 in intestinal and colon tissue smooth muscle relaxation makes this receptor a target for the treatment of irritable bowel syndrome (De Ponti, F. et al. , 2001, Drugs, 61 :317-332 "'Irritable bowel syndrome. New agents targeting serotonin receptor subtypes ").
  • WO 97/48681 discloses sulfonamide derivatives, which are 5-HT 7 receptor antagonists, for the treatment of CNS disorders.
  • the sulphur atom is linked to an aromatic group and to a N-containing heterocyclic group, optionally containing a further heteroatom selected from oxygen or sulphur.
  • WO 97/29097 describes sulfonamide derivatives for the treatment of disorders in which antagonism of the 5-HT 7 receptor is beneficial.
  • the sulphur atom is linked to an aromatic group and to a CpC 6 alkyl substituted N atom.
  • WO97/49695 describes further sulfonamide derivatives in which the N linked to the sulphur atom is also fully substituted, for example forming part of a piperidine.
  • WO 03/048118 describes another group of 5HT 7 receptor antagonists.
  • aryl and heteroaryl sulfonamide derivatives wherein the sulfonamide group is a substituent on a cycloalkane or cycloalkene ring which additionally bears an amino susbtituent.
  • the N linked to sulphur atom is fully substituted.
  • WO99/24022 discloses tetrahydroisoquinoline derivatives for use against CNS disorders and binding to serotonin receptors, in particular 5-HT 7 .
  • WO 00/00472 refers to compounds which are 5-HT7 receptor antagonists.
  • the compounds contain a N-containing fused heterocycle such as tetrahydroisoquinoline.
  • EP 21580 and EP 76072 describe sulfonamide compounds having antiarrhythmic activity, corresponding to the formula R 2 N(CH 2 ) n -NH-SO 2 Ri, 5-HT 7 activity is not mentioned.
  • the compounds display IC-50 values in the nM range (>10 nM) at human 5-HT7 receptors and exhibit at least 30-fold selectivity for these receptors vs 5-HT1A, 5-HT2A, 5-HT2B, 5-HT2C, 5-HT3, 5-HT4, 5-HT5A, Dl, D2, D3, D4, adrenergic ⁇ lA, ⁇ l B, ⁇ l B, ⁇ l, and ⁇ 2 receptors.
  • the invention is directed to a compound of the formula I:
  • W is a susbtituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, susbtituted or unsubstituted cycloalkyl, susbtituted or unsubstituted aryl, susbtituted or unsubstituted heterocyclyl;
  • R 8 and R 9 are each independently selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted aryl, substituted or unsubstituted heterocyclyl, substituted or unsubstituted alkoxy, substituted or unsubstituted aryloxy, halogen; or a pharmaceutically acceptable salt, isomer, prodrug or solvate thereof.
  • W is aromatic, preferably substituted or unsubstituted aryl, substituted or unsubstituted heterocyclyl, preferably substituted or unsubstituted phenyl Good results were obtained when W is alkyl or halo substituted phenyl.
  • R 5 , R 6 and R 7 are H
  • Ri and R 4 are also H
  • R 2 and R 3 are dlkoxy, in particular methoxy
  • the invention is directed to a pharmaceutical composition which comp ⁇ ses a compound as above defined or a pharmaceutically acceptable salt, isomer, prodrug or solvate thereof, and a pharmaceutically acceptable carrier, adjuvant or vehicle.
  • the invention is directed to the use of a compound as defined above in the manufacture of a medicament for the treatment of a 5-HT 7 mediated disease or condition, 1 c diseases caused by failures in central and peripheral serotonin-controlling functions, such as pain, sleep disorder, shift worker syndrome, jet lag, depression, seasonal affective disorder, migraine, anxiethy, psychosis, schizophrenia, cognition and memory disorders, neuronal degeneration resulting from ischemic events, cardiovascular diseases such as hypertension, irritable bowel syndrome, inflammatory bowel disease, spastic colon or u ⁇ nary incontinence
  • the typical compounds of this invention effectively and selectively module the 5- HT7 receptor activity without inhibition of other 5-HT receptors such as 5-HT1A, 5- HT2A, 5-HT2B, 5-HT2C, 5-HT3, 5-HT4, 5-HT5A, Dl , D2, D3, D4, as well as adrenergic ⁇ lA, ⁇ l B, ⁇ l B, ⁇ l , and ⁇ 2 receptors, Tachykinin NK-I opiate, GABA, estrogen, glutamate, adenosine, nicotinic, muscarinic receptors and calcium, potassium and sodium channels and neurotransmitter transporteis (serotonin, dopamine, norepinephrine, GABA)
  • 5-HT1A 5-HT2A, 5-HT2B, 5-HT2C, 5-HT3, 5-HT4, 5-HT5A, Dl , D2, D3, D4, as well as adrenergic ⁇ lA, ⁇ l B, ⁇ l B, ⁇ l
  • Alkyl refers to a straight or branched hydrocarbon chain radical consisting of carbon and hydrogen atoms, containing no saturation, having one to eight carbon atoms, and which is attached to the rest of the molecule by a single bond, e. g., methyl, ethyl, n- propyl, i-propyl, n-butyl, t-butyl, n-pentyl, etc.
  • Alkyl radicals may be optionally substituted by one or more substituents such as a aryl, halo, hydroxy, alkoxy, carboxy, cyano, carbonyl, acyl, alkoxycarbonyl, amino, nitro, mercapto, alkylthio, etc. If substituted by aryl we have an "Aralkyl” radical, such as benzyl and phenethyl.
  • Alkenyl refers to an alkyl radical having at least 2 C atoms and having one or more unsaturated bonds.
  • Cycloalkyl refers to a stable 3-to 10-membered monocyclic or bicyclic radical which is saturated or partially saturated, and which consist solely of carbon and hydrogen atoms, such as cyclohexyl or adamantyl. Unless otherwise stated specifically in the specification, the te ⁇ n"cycloalkyl” is meant to include cycloalkyl radicals which are optionally substituted by one or more substituents such as alkyl, halo, hydroxy, amino, cyano, nitro, alkoxy, carboxy, alkoxycarbonyl, etc.
  • Aryl refers to single and multiple ring radicals, including multiple ring radicals that contain separate and/or fused aryl groups. Typical aryl groups contain from 1 to 3 separated or fused rings and from 6 to about 18 carbon ring atoms, such as phenyl, naphthyl, indenyl, fenanthryl or anthracyl radical.
  • the aryl radical may be optionally substituted by one or more substituents such as hydroxy, mercapto, halo, alkyl, phenyl, alkoxy, haloalkyl, nitro, cyano, dialkylamino, aminoalkyl, acyl, alkoxycarbonyl, etc.
  • Heterocyclyl refers to a stable 3-to 15 membered ring radical which consists of carbon atoms and from one to five heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur, preferably a 4-to 8-membered ring with one or more heteroatoms, more preferably a 5-or 6-membered ring with one or more heteroatoms.
  • the heterocycle may be a monocyclic, bicyclic or tricyclic ring system, which may include fused ring systems; and the nitrogen, carbon or sulfur atoms in the heterocyclyl radical may be optionally oxidised; the nitrogen atom may be optionally quaternized ; and the heterocyclyl radical may be partially or fully saturated or aromatic.
  • heterocycles include, but are not limited to, azepines, benzimidazole, benzothiazole, furan, isothiazole, imidazole, indole, piperidine, piperazine, purine, quinoline, thiadiazole, tetrahydrofuran, coumarine, morpholine; pyrrole, pyrazole, oxazole, isoxazole, triazole, imidazole, etc.
  • Alkoxy refers to a radical of the formula -ORa where Ra is an alkyl radical as defined above, e. g., methoxy, ethoxy, propoxy, etc.
  • Alkoxycarbonyl refers to a radical of the formula-C (O) ORa where Ra is an alkyl radical as defined above, e. g., methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, etc.
  • Alkylthio refers to a radical of the formula-SRa where Ra is an alkyl radical as defined above, e. g., methylthio, ethylthio, propylthio, etc.
  • Amino refers to a radical of the fo ⁇ nula-NH2, -NHRa or -NRaRb, optionally quaternized.
  • Halo or hal refers to bromo, chloro, iodo or fluoro.
  • references herein to substituted groups in the compounds of the present invention refer to the specified moiety that may be substituted at one or more available positions by one or more suitable groups, e. g., halogen such as fluoro, chloro, bromo and iodo ; cyano; hydroxyl ; nitro ; azido ; alkanoyl such as a Cl -6 alkanoyl group such as acyl and the like; carboxamido; alkyl groups including those groups having 1 to about 12 carbon atoms or from 1 to about 6 carbon atoms and more preferably 1 -3 carbon atoms; alkenyl and alkynyl groups including groups having one or more unsaturated linkages and from 2 to about 12 carbon or from 2 to about 6 carbon atoms; alkoxy groups having one or more oxygen linkages and from 1 to about 12 carbon atoms or 1 to about 6 carbon atoms; aryloxy such as phenoxy; alkylthio groups including those moieties having one or more suitable
  • Particular individual compounds of the invention include the compounds 1-161 in the examples, either as salts or as free bases
  • R 2 and R 3 are alkoxy, preferably methoxy and the rest of the substituents of the tetrahydroisoquinoline (Ri and R 4 to R 7 ) are H In this case it appears that the selectivity is improved
  • the gtoup W linked to the sulfonamide is aromatic, such as substituted or unsubstituted aryl, substituted or unsubstituted heterocyclyl, preferably substituted or unsubstituted phenyl
  • aromatic such as substituted or unsubstituted aryl, substituted or unsubstituted heterocyclyl, preferably substituted or unsubstituted phenyl
  • W is unsubstituted phenyl, or alkyl, alkoxy or halo substituted phenyl
  • halo substituted phenyl having one or more halo substituents being the same or different are preferred
  • the compounds of the invention are also meant to include compounds which differ only in the presence of one or more isotopically en ⁇ ched atoms
  • compounds having the present structures except for the replacement of a hydrogen by a pidum or t ⁇ tium, or the replacement of a carbon by a 13 C- or 14C- en ⁇ ched carbon or l 5 N-en ⁇ ched nitrogen are within the scope of this invention.
  • te ⁇ ii pharmaceutically acceptable salts, solvates, prodrugs
  • pharmaceutically acceptable salts, solvates, prodrugs refers to any pha ⁇ naceutically acceptable salt, ester, solvate, or any other compound which, upon administration to the recipient is capable of providing (directly or indirectly) a compound as desc ⁇ bed herein
  • non-pharmaceutically acceptable salts also fall within the scope of the invention since those may be useful in the preparation of pha ⁇ naceutically acceptable salts
  • the preparation of salts, piodrugs and derivatives can be carried out by methods known in the art
  • pha ⁇ naceutically acceptable salts of compounds provided herein arc synthesized from the parent compound which contains a basic or acidic moiety by conventional chemical methods
  • such salts are, for example, prepared by reacting the free acid or base fo ⁇ ns of these compounds with a stoichiometric amount of the approp ⁇ ate base or acid in water or in an organic solvent or in a mixture of the two
  • nonaqueous media like ether, ethyl acetate, ethanol, isopropanol or acetonit ⁇ le are preferred.
  • the acid addition salts include mineral acid addition salts such as, for example, hydrochloride, hydrobromide, hydroiodidc, sulphate, nitrate, phosphate, and organic acid addition salts such as, for example, acetate, maleate, fumarate, citrate, oxalate, succinate, tartrate, malate, mandelate, methanesulphonate and p- tolucnesulphonate
  • the alkali addition salts include inoiganic salts such as, for example, sodium, potassium, calcium, ammonium, magnesium, aluminium and lithium salts, and organic alkali salts such as, for example, ethylenediamine, ethanolamine, N,N- dialkylenethanolamine, t ⁇ ethanolamine, glucamine and basic aminoacids salts
  • Particularly favored de ⁇ vatives or prodrugs are those that increase the bioavailability of the compounds of this invention when such compounds are administered to a patient (e g., by allowing an orally administered compound to be more readily absorbed into the blood) or which enhance delivery of the parent compound to a biological compartment (e.g., the brain or lymphatic system) relative to the parent species.
  • prodrug is used in its broadest sense and encompasses those derivatives that are converted in vivo to the compounds of the invention.
  • de ⁇ vatives would readily occur to those skilled in the art, and include, depending on the functional groups present in the molecule and without limitation, the following de ⁇ vatives of the present compounds, esters, amino acid esters, phosphate esters, metal salts sulfonate esters, carbamates, and amides
  • the compounds of the invention may be in crystalline form cither as free compounds or as solvates and it is intended that both fo ⁇ ns are within the scope of the present invention
  • Methods of solvation are generally known within the art.
  • Suitable solvates are pharmaceutically acceptable solvates.
  • the solvate is a hydrate
  • the compounds of formula (I) or their salts or solvates are preferably in pharmaceutically acceptable or substantially pure fo ⁇ n.
  • pharmaceutically acceptable form is meant, inter alia, having a pharmaceutically acceptable level of pu ⁇ ty excluding normal pharmaceutical additives such as diluents and earners, and including no mate ⁇ al considered toxic at no ⁇ nal dosage levels
  • Pu ⁇ ty levels for the drug substance are preferably above 50%, more preferably above 70%, most preferably above 90% In a preferred embodiment it is above 95% of the compound of formula (I), or of its salts, solvates or prodrugs
  • the compounds of the present invention represented by the above described formula (I) may include enantiomers depending on the presence of chiral centres or isomers depending on the presence of multiple bonds (e.g. Z, E). The single isomers, enantiomers or diastereoisomers and mixtures thereof fall within the scope of the present invention.
  • the compounds of formula (I) defined above can be obtained by available synthetic procedures. For example, they can be prepared by the coupling of a compound of Formula (II):
  • reaction of compounds of formulas (II) and (III) is preferably carried out in an aprotic solvent, but not limited to, such as dichloromethane in the presence of an organic base, such as diisopropylethylamine or triethylamine.
  • Compounds of Formula (II) can be prepared from compounds of Formula (IV) using the reactions and techniques described below.
  • Compounds of Formula (IV) are commercially available or may be prepared according to known methods.
  • the amine of Formula (IV) is allowed to react with a commercially available N-(3-halopropyl)phtalimide (1 -1) in the presence of an appropriate base and solvent.
  • useful bases include, but are not limited to, metal carbonates such as K 2 CO 3 or Cs 2 CO 3 , metal hydroxides, hindered alkoxides or tertiary organic amines.
  • Typical solvents include polar aprotic liquids such as DMF or THF, or protic liquids such as alcohols.
  • polar aprotic liquids such as DMF or THF
  • protic liquids such as alcohols.
  • buthanol or xylene have been previously described (J. Med. Chem. 1996, 39(5), 1125-1 129, J. Med. Chem. 1999, 42(4), 730-741) but the yield is improved, (from 50% to 90%), with the use of ⁇ VV-dimethylformamide and K 2 CO 3 as the base.
  • acylation of compounds of Formula (IV) with carboxyethylphtalimides derivatives (2-1 ), instead of the alkylation with ⁇ f-(3-halopropyl)phtalimides (1-1), may be convenient in some cases.
  • the base used for acylation could be a tertiary organic amine such as triethylamine or //,./V-diisopropylethylamine and the hydrazinolysis can be performed as cited in Scheme 1.
  • X is an OH
  • a coupling reagent must be used for the activation of carboxy group.
  • a reductive animation with phtalimidoethylaldehydes (3-1 ), following by hydrazinolysis may also be performed.
  • Condensation of the amine (IV) with aldehydes 3-1 can be performed in the presence of an hydride, such as sodium triacethoxyborohydride NaBH(OAc) 3 or sodium cyanoborhydride (NaBH 4 CN) (Bioorg. Med. Chem. Lett. 1999, 9, 179-184).
  • Phtalimide intermediate 3-2 is treated as is described in Schemes 1 and 2 in order to obtain the desired compound of Formula (II).
  • Compounds of Formula (II) can be prepared in a sequential way by treatment of a dialkylating agent (4- 1) with the corresponding amine (IV) in the presence of a base in an appropriate solvent, followed by the alkylation of another amine (4-2).
  • useful alkylating agents (4-1 ) are those where Y is a good to excellent leaving group, such as Br, I, aryl or alkylsulfonate, etc. and X is a good leaving group, such as Br or Cl.
  • Useful bases include, but are not limited to, metal carbonates such as K 2 CO 3 or Cs 2 CO 3 , metal hydroxides, hindered alkoxides or tertiary organic amines.
  • Typical solvents include polar aprotic liquids such as DMF or THF, or protic liquids such as alcohols.
  • the rate of the second alkylation may be enhanced, particulary when X is Cl, by the addition of a catalytic amount of an iodide salt, such as NaI or KI.
  • the required alkylating agents (4-1) are generally commercially available.
  • an acylation with carboxynitriles to form an amide is preferred instead of the alkylation with the corresponding halonitriles (Scheme 6).
  • acylation with compounds 6-1 where X is a good leaving group, such as I, Br, aryl or alkylsulphonate, is carried out in the presence of an appropriate base and solvent, which were described in schemes above.
  • the reduction of cyano an keto group of 6-2 can be performed simultaneously in the presence of an excess of a reducing agent such as LiAlH 4 or borane.
  • a coupling reagent When X is OH, a coupling reagent must also be used for the activation of carboxy group.
  • the coupling reagents used are the same as are cited in Scheme 2.
  • Scheme 6 is also possible when X is an H.
  • Reductive amination is carried out by a condensation of amine of Formula (IV) with aldehyde 6-1 in appropriate base and solvent, to form an imine or enamine intermediate, followed by a reduction with a reducing agent, such an hyd ⁇ de.
  • Amines of Formula (IV) may be alkylated with halopropanamides 7- 1 in an appropriate solvent and base, the same as are cited in Schemes above.
  • Intermediate (7-2) may be reduced in the presence of an hyd ⁇ de, such as LiAlH 4 or borane.
  • reaction products may, if desired, be purified by conventional methods, such as crystallisation, chromatography and trituration.
  • these isomers may be separated by conventional techniques suchas preparative chromatography. If there are chiral centers the compounds may be prepared in racemic form, or individual enantiomers may be prepared either by enantiospecific synthesis or by resolution.
  • One preferred pharmaceutically acceptable form is the crystalline form, including such form in pharmaceutical composition.
  • the additional ionic and solvent moieties must also be non-toxic.
  • the compounds of the invention may present different polymorphic forms, it is intended that the invention encompasses all such forms.
  • Another aspect of this invention relates to a method of treating or preventing an 5- HT 7 mediated disease which method comprises administering to a patient in need of such a treatment a therapeutically effective amount of a compound of formula (I) or a pharmaceutical composition thereof.
  • 5-HT 7 mediated diseases that can be treated are diseases caused by failures in central and peripheral serotonin-controlling functions, such as pain, sleep disorder, shift worker syndrome, jet lag, depression, seasonal affective disorder, migraine, anxiethy, psychosis, schizophrenia, cognition and memory disorders, neuronal degeneration resulting from ischemic events, cardiovascular diseases such as hypertension, irritable bowel syndrome, inflammatory bowel disease, spastic colon or urinary incontinence.
  • the present invention further provides pharmaceutical compositions comprising a compound of this invention, or a pharmaceutically acceptable salt, derivative, prodrug or stereoisomers thereof together with a pharmaceutically acceptable carrier, adjuvant, or vehicle, for administration to a patient.
  • compositions include any solid (tablets, pills, capsules, granules etc.) or liquid (solutions, suspensions or emulsions) composition for oral, topical or parenteral administration.
  • the pharmaceutical compositions are in oral form, either solid or liquid.
  • Suitable dose forms for oral administration may be tablets, capsules, syrops or solutions and may contain conventional excipients known in the art such as binding agents, for example syrup, acacia, gelatin, sorbitol, tragacanth, or polyvinylpyrrolidone; fillers, for example lactose, sugar, maize starch, calcium phosphate, sorbitol or glycine; tabletting lub ⁇ cants, for example magnesium stearate, disintegrants, for example starch, polyvinylpyrrolidone, sodium starch glycollate or microcrystalline cellulose, or pharmaceutically acceptable wetting agents such as sodium lauryl sulfate
  • binding agents for example syrup, acacia, gelatin, sorbitol, tragacanth, or polyvinylpyrrolidone
  • fillers for example lactose, sugar, maize starch, calcium phosphate, sorbitol or
  • the solid oral compositions may be prepared by conventional methods of blending, filling or tabletting Repeated blending operations may be used to distribute the active agent throughout those compositions employing large quantities of fillers Such operations are conventional in the art
  • the tablets may for example be prepared by wet or dry granulation and optionally coated according to methods well known in normal pharmaceutical practice, in particular with an ente ⁇ c coating
  • the pharmaceutical compositons may also be adapted for parenteral administration, such as ste ⁇ le solutions, suspensions or lyophihzed products in the aprop ⁇ ate unit dosage form
  • parenteral administration such as ste ⁇ le solutions, suspensions or lyophihzed products in the aprop ⁇ ate unit dosage form
  • Adequate excipients can be used, such as bulking agents, buffe ⁇ ng agents or surfactants
  • Administration of the compounds or compositions of the present invention may be by any suitable method, such as intravenous infusion, oral prepaiations, and intraperitoneal and intravenous administration Oral administration is preferred because of the convenience for the patient and the chronic character of the diseases to be treated
  • an effective administered amount of a compound of the invention will depend on the relative efficacy of the compound chosen, the seventy of the disorder being treated and the weight of the sufferer
  • active compounds will typically be administered once or more times a day for example 1 , 2, 3 or 4 times daily, with typical total daily doses in the range of from 0 1 to 1000 mg/kg/day
  • the compounds and compositions of this invention may be used with other drugs to provide a combination therapy
  • the other drugs may form part of the same composition, or be provided as a separate composition for administration at the same time or at different time
  • the compounds of general formula (I) were prepared by the coupling of a compound of formula (II) with a compound of formula (III) by means of conventional organic chemistry methods known to those skilled in the art.
  • Radioligand binding assays were performed using the Cloned Human Serotonin Receptor, Subtype 7 (h5HT 7 ), expressed in CHO cells, coated on Flashplate (Basic FlashPlate Cat.: SMP200) from PerkinElmer (Cat.: 6120512).
  • the protocol assay was essentially the recommended protocol in the Technical Data Sheet by PerkinEmer Life and Analytical Sciences.
  • the Mass membrane protein/well was typically 12 ⁇ g and the Receptor/well was about 9-10 fmoles.
  • the Flashplate were let equilibrate at room temperature for one hour before the addition of the components of the assay mixture.
  • the binding buffer was: 50 mM Tris-HCl, pH 7.4, containing 10 mM MgCl 2 , 0.5 mM EDTA and 0.5% BSA.
  • the radioligand was [ 125 I]LSD at a final concentration of 0.82 nM.
  • Nonspecific binding was determined with 50 ⁇ M of Clozapine.
  • the assay volume was 25 ⁇ l.
  • TopSeal-A were applied onto Flashplate microplates and they were incubated at room temperature for 240 minutes in darkness. The radioactivity were quantified by liquid scintillation spectrophotometry (Wallac 1450 Microbeta Trilux) with a count delay of 4 minutes prior to counting and a counting time of 30 seconds per well.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Biomedical Technology (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Psychiatry (AREA)
  • Cardiology (AREA)
  • Urology & Nephrology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Anesthesiology (AREA)
  • Hospice & Palliative Care (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Other In-Based Heterocyclic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)

Abstract

The invention relates to compounds of formula (I) having pharmacological activity towards the 5-HT7 receptor, and more particularly to some tetrahydroisoquinoline propyl sulfonamide compounds, to processes of preparation of such compounds, to pharmaceutical compositions comprising them, and to their use for the treatment and or prophylaxis of a disease in which 5-HT is involved, such as CNS disorders.

Description

5-HT7 RECEPTOR ANTAGONISTS
FIELD OF THE INVENTION
The present invention relates to compounds having pharmacological activity towards the 5-HT7 receptor, and more particularly to some tetrahydroisoquinoline substituted sulfonamide compounds, to processes of preparation of such compounds, to pharmaceutical compositions comprising them, and to their use in therapy, in particular for the treatment and or prophylaxis of a disease in which 5-HT7 is involved, such as CNS disorders.
BACKGROUND OF THE INVENTION
The search for new therapeutic agents has been greatly aided in recent years by better understanding of the structure of proteins and other biomolecules associated with target diseases. One important class of proteins that has been the subject of extensive study is the family of 5-hydroxytryptamine (serotonin, 5-HT) receptors. The 5-HT7 receptor discovered in 1993 belongs to this family and has attracted great interest as a valuable new drug target (Terrόn, J.A. Idrugs, 1998, vol. 1 , no. 3, pages 302-310: "The 5HT7 receptor: A target for novel therapeutic avenues?" ).
5-HT7 receptors have been cloned from rat, mouse, guinea pig and human cDNA and exhibit a high degree of interspecies homology (approx. 95%), but it is unique in that it has a low sequence homology with other 5-HT receptors (less than 40%). Its expression pattern, in particular structures of the central nervous system (CNS) (highest in hypothalamus (in particular suprachiasmatic nuclei) and thalamus) and other peripheral tissues (spleen, kidney, intestinal, heart and coronary arthery), implicates the 5-HT7 receptor in a variety of functions and pathologies. This idea is reinforced by the fact that several therapeutic agents, such as tricyclic antidepressants, typical and atypical antipsychotics and some 5-HT2 receptor antagonists, display moderate to high affinity for both recombinant and functional 5-HT7 receptors. Functionally, the 5-HT7 receptor has been implicated in regulation of circadian rhythms in mammals (Lovenberg, T. W. et al. Neuron, 1993, 1 1 :449-458 11A novel adenylyl cyclase-activating serotonin receptor (5-HTy) implicated in the regulation of circadian rhythms"). It is known that disruption of circadian rhythms is related to a number of CNS disorders including depression, seasonal affective disorder, sleep disorders, shift worker syndrome and jet lag among others.
Distribution and early pharmacological data also suggest that the 5-HT7 receptor is involved in the vasodilatation of blood vessels. This has been demonstrated in vivo (Terrόn, J.A., Br J Pharmacol, 1997, 121 :563-571 "Role of 5-HT7 receptors in the long lasting hypotensive response induced by 5 -hydroxy tryptamine in the rat"). Thus selective 5-HT7 receptor agonists have a potential as novel hypertensive agents.
The 5-HT7 receptor has also been related with the pathophysiology of migraine through smooth muscle relaxation of cerebral vessels (Schoeffter, P. et al., 1996, Br J Pharmacol, 1 17:993-994; Terrόn, J.A., 2002, Eur. J. Pharmacol, 439: 1-1 1 "/s the 5-HT7 receptor involved in the pathogenesis and prophylactic treatment of migraine? "). In a similar manner, involvement of 5-HT7 in intestinal and colon tissue smooth muscle relaxation makes this receptor a target for the treatment of irritable bowel syndrome (De Ponti, F. et al. , 2001, Drugs, 61 :317-332 "'Irritable bowel syndrome. New agents targeting serotonin receptor subtypes "). Recently, it has also been related to urinary incontinence {British J. of Pharmacology, Sept. 2003, 140(1) 53-60: "Evidence for the involvement of central 5HT-7 receptors in the micurition reflex in anaeshetized female rats").
In view of the potential therapeutic applications of agonists or antagonists of the 5HT7 receptor, a great effort has been directed to find selective ligands. Despite intense research efforts in this area, very few compounds with selective 5-HT7 antagonist activity have been reported (Wesolowska, A., Polish J. Pharmacol, 2002, 54: 327-341 , "/« the search for selective ligands of 5-HTs, 5-HTc and 5-HT7 serotonin receptors ").
WO 97/48681 discloses sulfonamide derivatives, which are 5-HT7 receptor antagonists, for the treatment of CNS disorders. The sulphur atom is linked to an aromatic group and to a N-containing heterocyclic group, optionally containing a further heteroatom selected from oxygen or sulphur.
WO 97/29097 describes sulfonamide derivatives for the treatment of disorders in which antagonism of the 5-HT7 receptor is beneficial. The sulphur atom is linked to an aromatic group and to a CpC6 alkyl substituted N atom.
WO97/49695 describes further sulfonamide derivatives in which the N linked to the sulphur atom is also fully substituted, for example forming part of a piperidine.
WO 03/048118 describes another group of 5HT7 receptor antagonists. In this case aryl and heteroaryl sulfonamide derivatives wherein the sulfonamide group is a substituent on a cycloalkane or cycloalkene ring which additionally bears an amino susbtituent. The N linked to sulphur atom is fully substituted.
WO99/24022 discloses tetrahydroisoquinoline derivatives for use against CNS disorders and binding to serotonin receptors, in particular 5-HT7.
WO 00/00472 refers to compounds which are 5-HT7 receptor antagonists. The compounds contain a N-containing fused heterocycle such as tetrahydroisoquinoline.
EP 21580 and EP 76072 describe sulfonamide compounds having antiarrhythmic activity, corresponding to the formula R2N(CH2)n-NH-SO2Ri, 5-HT7 activity is not mentioned.
There is still a need to find compounds that have pharmacological activity towards the receptor 5-HT7, being both effective and selective, and having good "drugability" properties, i.e. good pharmaceutical properties related to administration, distribution, metabolism and excretion.
SUMMARY OF THE INVENTION
We have now found a family of structurally distinct class of sulfonamide compounds which are particularly selective ligands of the 5-HT7 receptor. The compounds present a tetrahydroisoquinoline moiety, linked through a straight three carbon chain with a sulfonamide moiety. We have found that when the N of the sulfonamide is a secondary amine and the linker is -CH2-CH2-CH2- the compounds display IC-50 values in the nM range (>10 nM) at human 5-HT7 receptors and exhibit at least 30-fold selectivity for these receptors vs 5-HT1A, 5-HT2A, 5-HT2B, 5-HT2C, 5-HT3, 5-HT4, 5-HT5A, Dl, D2, D3, D4, adrenergic αlA, αl B, αl B, βl, and β2 receptors.
In one aspect the invention is directed to a compound of the formula I:
Figure imgf000005_0001
(I) wherein
W is a susbtituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, susbtituted or unsubstituted cycloalkyl, susbtituted or unsubstituted aryl, susbtituted or unsubstituted heterocyclyl;
Ri, R2, R3, R4, R5, Re and R7 are each independently selected from the group foπned by hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted aryl, substituted or unsubstituted heterocyclyl, -COR8, -C(O)OR8, -C(O)NR8R9 -C=NR8, -CN, -OR8, -
OC(O)R8, -S(O)1-R8 , -NR8R9, -NR8C(O)R9, -N02, -N=CR8R9 Or halogen, wherein t is 1 , 2 or 3;
R8 and R9 are each independently selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted aryl, substituted or unsubstituted heterocyclyl, substituted or unsubstituted alkoxy, substituted or unsubstituted aryloxy, halogen; or a pharmaceutically acceptable salt, isomer, prodrug or solvate thereof. It is preferred that W is aromatic, preferably substituted or unsubstituted aryl, substituted or unsubstituted heterocyclyl, preferably substituted or unsubstituted phenyl Good results were obtained when W is alkyl or halo substituted phenyl.
It is preferred that in the tetrahydrosioqumohne moiety R5, R6 and R7 are H
In one embodiment Ri and R4 are also H
Good results are obtained when R2 and R3 are dlkoxy, in particular methoxy
In another aspect the invention is directed to a pharmaceutical composition which compπses a compound as above defined or a pharmaceutically acceptable salt, isomer, prodrug or solvate thereof, and a pharmaceutically acceptable carrier, adjuvant or vehicle.
In a further aspect the invention is directed to the use of a compound as defined above in the manufacture of a medicament for the treatment of a 5-HT7 mediated disease or condition, 1 c diseases caused by failures in central and peripheral serotonin-controlling functions, such as pain, sleep disorder, shift worker syndrome, jet lag, depression, seasonal affective disorder, migraine, anxiethy, psychosis, schizophrenia, cognition and memory disorders, neuronal degeneration resulting from ischemic events, cardiovascular diseases such as hypertension, irritable bowel syndrome, inflammatory bowel disease, spastic colon or uπnary incontinence
DETAILED DESCRIPTION OF THE INVENTION
The typical compounds of this invention effectively and selectively module the 5- HT7 receptor activity without inhibition of other 5-HT receptors such as 5-HT1A, 5- HT2A, 5-HT2B, 5-HT2C, 5-HT3, 5-HT4, 5-HT5A, Dl , D2, D3, D4, as well as adrenergic αlA, αl B, αl B, βl , and β2 receptors, Tachykinin NK-I opiate, GABA, estrogen, glutamate, adenosine, nicotinic, muscarinic receptors and calcium, potassium and sodium channels and neurotransmitter transporteis (serotonin, dopamine, norepinephrine, GABA) In the above definition of compounds of formula (I) the following terms have the meaning indicated:
"Alkyl" refers to a straight or branched hydrocarbon chain radical consisting of carbon and hydrogen atoms, containing no saturation, having one to eight carbon atoms, and which is attached to the rest of the molecule by a single bond, e. g., methyl, ethyl, n- propyl, i-propyl, n-butyl, t-butyl, n-pentyl, etc. Alkyl radicals may be optionally substituted by one or more substituents such as a aryl, halo, hydroxy, alkoxy, carboxy, cyano, carbonyl, acyl, alkoxycarbonyl, amino, nitro, mercapto, alkylthio, etc. If substituted by aryl we have an "Aralkyl" radical, such as benzyl and phenethyl.
"Alkenyl" refers to an alkyl radical having at least 2 C atoms and having one or more unsaturated bonds.
"Cycloalkyl" refers to a stable 3-to 10-membered monocyclic or bicyclic radical which is saturated or partially saturated, and which consist solely of carbon and hydrogen atoms, such as cyclohexyl or adamantyl. Unless otherwise stated specifically in the specification, the teπn"cycloalkyl" is meant to include cycloalkyl radicals which are optionally substituted by one or more substituents such as alkyl, halo, hydroxy, amino, cyano, nitro, alkoxy, carboxy, alkoxycarbonyl, etc.
"Aryl" refers to single and multiple ring radicals, including multiple ring radicals that contain separate and/or fused aryl groups. Typical aryl groups contain from 1 to 3 separated or fused rings and from 6 to about 18 carbon ring atoms, such as phenyl, naphthyl, indenyl, fenanthryl or anthracyl radical. The aryl radical may be optionally substituted by one or more substituents such as hydroxy, mercapto, halo, alkyl, phenyl, alkoxy, haloalkyl, nitro, cyano, dialkylamino, aminoalkyl, acyl, alkoxycarbonyl, etc.
"Heterocyclyl" refers to a stable 3-to 15 membered ring radical which consists of carbon atoms and from one to five heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur, preferably a 4-to 8-membered ring with one or more heteroatoms, more preferably a 5-or 6-membered ring with one or more heteroatoms. For the purposes of this invention, the heterocycle may be a monocyclic, bicyclic or tricyclic ring system, which may include fused ring systems; and the nitrogen, carbon or sulfur atoms in the heterocyclyl radical may be optionally oxidised; the nitrogen atom may be optionally quaternized ; and the heterocyclyl radical may be partially or fully saturated or aromatic. Examples of such heterocycles include, but are not limited to, azepines, benzimidazole, benzothiazole, furan, isothiazole, imidazole, indole, piperidine, piperazine, purine, quinoline, thiadiazole, tetrahydrofuran, coumarine, morpholine; pyrrole, pyrazole, oxazole, isoxazole, triazole, imidazole, etc.
"Alkoxy" refers to a radical of the formula -ORa where Ra is an alkyl radical as defined above, e. g., methoxy, ethoxy, propoxy, etc.
"Alkoxycarbonyl" refers to a radical of the formula-C (O) ORa where Ra is an alkyl radical as defined above, e. g., methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, etc.
"Alkylthio" refers to a radical of the formula-SRa where Ra is an alkyl radical as defined above, e. g., methylthio, ethylthio, propylthio, etc.
"Amino" refers to a radical of the foπnula-NH2, -NHRa or -NRaRb, optionally quaternized.
"Halo" or "hal" refers to bromo, chloro, iodo or fluoro.
References herein to substituted groups in the compounds of the present invention refer to the specified moiety that may be substituted at one or more available positions by one or more suitable groups, e. g., halogen such as fluoro, chloro, bromo and iodo ; cyano; hydroxyl ; nitro ; azido ; alkanoyl such as a Cl -6 alkanoyl group such as acyl and the like; carboxamido; alkyl groups including those groups having 1 to about 12 carbon atoms or from 1 to about 6 carbon atoms and more preferably 1 -3 carbon atoms; alkenyl and alkynyl groups including groups having one or more unsaturated linkages and from 2 to about 12 carbon or from 2 to about 6 carbon atoms; alkoxy groups having one or more oxygen linkages and from 1 to about 12 carbon atoms or 1 to about 6 carbon atoms; aryloxy such as phenoxy; alkylthio groups including those moieties having one or more thioether linkages and from 1 to about 12 carbon atoms or from 1 to about 6 carbon atoms; alkylsulfinyl groups including those moieties having one or more sulfinyl linkages and from 1 to about 12 carbon atoms or from 1 to about 6 carbon atoms , alkylsulfonyl groups including those moieties having one or more sulfonyl linkages and from 1 to about 12 carbon atoms or from 1 to about 6 carbon atoms, aminoalkyl groups such as groups having one or more N atoms and from 1 to about 12 carbon atoms or from 1 to about 6 carbon atoms, carbocylic aryl having 6 or more carbons, particularly phenyl or naphthyl and aralkyl such as benzyl Unless otherwise indicated, an optionally substituted group may have a substituent at each substitutable position of the group, and each substitution is independent of the other
Particular individual compounds of the invention include the compounds 1-161 in the examples, either as salts or as free bases
In an embodiment the tetrahydroisoquinoline in the compounds of formula I above is not substituted, R| to R7 are all H Good activity results are obtained with such compounds
In anothei embodiment R2 and R3 are alkoxy, preferably methoxy and the rest of the substituents of the tetrahydroisoquinoline (Ri and R4 to R7) are H In this case it appears that the selectivity is improved
In another embodiment the gtoup W linked to the sulfonamide is aromatic, such as substituted or unsubstituted aryl, substituted or unsubstituted heterocyclyl, preferably substituted or unsubstituted phenyl Good results were obtained when W is unsubstituted phenyl, or alkyl, alkoxy or halo substituted phenyl In particular halo substituted phenyl, having one or more halo substituents being the same or different are preferred
The above embodiments and preferences for W and Ri to R7 can be combined to give further preferred compounds
Representative compounds of the above embodiments which are preferred are Naphthalene- 1 -sulfonic acid [3-(3,4-dihydro-l H-isoquinohn-2-yl)-propyl]-amide hydrochloπde, N-[3-(3,4-Dihydro- 1 H-isoquinohn-2-yl)-propyl]-benzenesulfonamide hydrochloπde, N-[3-(3,4-Dihydro-l H-isoquinolin-2-yl)-propyl]-4-methoxy-2,3,6- tπmethyl-benzenesulfonamide hydrochloπde, 5-Chloro-N-[3-(6,7-dimethoxy-3,4-dihydro- 1 H-isoquinohn-2-yl)-propyl]-2,4-difluoro-benzenesulfonamide Although the hydrochloπde salts or free bases are listed, other salts or the free bases also form part of this group of preferred compounds
Unless otherwise stated, the compounds of the invention are also meant to include compounds which differ only in the presence of one or more isotopically enπched atoms For example, compounds having the present structures except for the replacement of a hydrogen by a deutenum or tπtium, or the replacement of a carbon by a 13C- or 14C- enπched carbon or l 5N-enπched nitrogen are within the scope of this invention.
The teπii "pharmaceutically acceptable salts, solvates, prodrugs" refers to any phaπnaceutically acceptable salt, ester, solvate, or any other compound which, upon administration to the recipient is capable of providing (directly or indirectly) a compound as descπbed herein However, it will be appreciated that non-pharmaceutically acceptable salts also fall within the scope of the invention since those may be useful in the preparation of phaπnaceutically acceptable salts The preparation of salts, piodrugs and derivatives can be carried out by methods known in the art
For instance, phaπnaceutically acceptable salts of compounds provided herein arc synthesized from the parent compound which contains a basic or acidic moiety by conventional chemical methods Generally, such salts are, for example, prepared by reacting the free acid or base foπns of these compounds with a stoichiometric amount of the appropπate base or acid in water or in an organic solvent or in a mixture of the two Generally, nonaqueous media like ether, ethyl acetate, ethanol, isopropanol or acetonitπle are preferred. Examples of the acid addition salts include mineral acid addition salts such as, for example, hydrochloride, hydrobromide, hydroiodidc, sulphate, nitrate, phosphate, and organic acid addition salts such as, for example, acetate, maleate, fumarate, citrate, oxalate, succinate, tartrate, malate, mandelate, methanesulphonate and p- tolucnesulphonate Examples of the alkali addition salts include inoiganic salts such as, for example, sodium, potassium, calcium, ammonium, magnesium, aluminium and lithium salts, and organic alkali salts such as, for example, ethylenediamine, ethanolamine, N,N- dialkylenethanolamine, tπethanolamine, glucamine and basic aminoacids salts
Particularly favored deπvatives or prodrugs are those that increase the bioavailability of the compounds of this invention when such compounds are administered to a patient (e g., by allowing an orally administered compound to be more readily absorbed into the blood) or which enhance delivery of the parent compound to a biological compartment (e.g., the brain or lymphatic system) relative to the parent species.
Any compound that is a prodrug of a compound of formula (I) is within the scope of the invention. The term "prodrug" is used in its broadest sense and encompasses those derivatives that are converted in vivo to the compounds of the invention. Such deπvatives would readily occur to those skilled in the art, and include, depending on the functional groups present in the molecule and without limitation, the following deπvatives of the present compounds, esters, amino acid esters, phosphate esters, metal salts sulfonate esters, carbamates, and amides
The compounds of the invention may be in crystalline form cither as free compounds or as solvates and it is intended that both foπns are within the scope of the present invention Methods of solvation are generally known within the art. Suitable solvates are pharmaceutically acceptable solvates. In a particular embodiment the solvate is a hydrate
The compounds of formula (I) or their salts or solvates are preferably in pharmaceutically acceptable or substantially pure foπn. By pharmaceutically acceptable form is meant, inter alia, having a pharmaceutically acceptable level of puπty excluding normal pharmaceutical additives such as diluents and earners, and including no mateπal considered toxic at noπnal dosage levels Puπty levels for the drug substance are preferably above 50%, more preferably above 70%, most preferably above 90% In a preferred embodiment it is above 95% of the compound of formula (I), or of its salts, solvates or prodrugs The compounds of the present invention represented by the above described formula (I) may include enantiomers depending on the presence of chiral centres or isomers depending on the presence of multiple bonds (e.g. Z, E). The single isomers, enantiomers or diastereoisomers and mixtures thereof fall within the scope of the present invention.
The compounds of formula (I) defined above can be obtained by available synthetic procedures. For example, they can be prepared by the coupling of a compound of Formula (II):
Figure imgf000012_0001
in which R1-R7 are as defined in Formula (I) and n is 3, with a compound of Formula (III):
O
X-S-W Il O
(III) in which W is as defined in Formula (I) and X is an halogen, typically Cl.
The reaction of compounds of formulas (II) and (III) is preferably carried out in an aprotic solvent, but not limited to, such as dichloromethane in the presence of an organic base, such as diisopropylethylamine or triethylamine.
Compounds of Formula (III) are commercially available or can be prepared by conventional methods.
Compounds of Formula (II) can be prepared from compounds of Formula (IV) using the reactions and techniques described below. Compounds of Formula (IV) are commercially available or may be prepared according to known methods.
Figure imgf000013_0001
The reactions are performed in a solvent appropriate to the reagents and materials employed and suitable for the transformations. The functionality present on the molecule should be consistent with the transformations proposed. This will sometimes require a selection of a particular process scheme over another in order to obtain the desired compound of the invention. Preferred methods included, but are not limited to, those described below. References for cited described methods are incorporated.
Compounds of Formula (II) can be prepared by alkylation as shown in Scheme 1.
Scheme 1
Figure imgf000013_0002
In the first step, the amine of Formula (IV) is allowed to react with a commercially available N-(3-halopropyl)phtalimide (1 -1) in the presence of an appropriate base and solvent. Useful bases include, but are not limited to, metal carbonates such as K2CO3 or Cs2CO3, metal hydroxides, hindered alkoxides or tertiary organic amines.
Typical solvents include polar aprotic liquids such as DMF or THF, or protic liquids such as alcohols. The use of buthanol or xylene have been previously described (J. Med. Chem. 1996, 39(5), 1125-1 129, J. Med. Chem. 1999, 42(4), 730-741) but the yield is improved, (from 50% to 90%), with the use of ΛVV-dimethylformamide and K2CO3 as the base.
In a second step, the hydrazinolysis of the alkylated compound 1-2 using hydrazine in a polar protic solvent, such as ethanol, and hydrochloric acid gives the desired compound of Formula (TI).
A similar route to compounds of Formula (II) is illustrated in Scheme 2.
Scheme 2
Figure imgf000015_0001
Figure imgf000015_0002
solvent
Figure imgf000015_0003
The acylation of compounds of Formula (IV) with carboxyethylphtalimides derivatives (2-1 ), instead of the alkylation with Λf-(3-halopropyl)phtalimides (1-1), may be convenient in some cases. When X is a Cl, the base used for acylation could be a tertiary organic amine such as triethylamine or //,./V-diisopropylethylamine and the hydrazinolysis can be performed as cited in Scheme 1. When X is an OH, a coupling reagent must be used for the activation of carboxy group. Many coupling reagents are known in the literature to form amide bonds from carboxylic acids and amines, including DCC, HBTU, TBTU, BOP, PyBOP, etc. Appropriate bases for such coupling reactions include tertiary amines such as 7V,./V-diisopropylethylamine, triethylamine, etc. The activated species are usually not isolated, but are allowed to react in situ with the amine partner (IV).
After the hydrazinolysis of phtalimide 2-2, the reduction of the amide intermediate 2-3 may be performed with a reducing agent, such as borane or lithium aluminum hydride in appropriate solvent, typically THF (J. Med. Chem. 1987, 30, 1186-1 193, Anales Quimica, 1983, 80, 283-290). A similar method to compounds of Formula (II) is illustrated in Scheme 3. Scheme 3
Figure imgf000016_0001
A reductive animation with phtalimidoethylaldehydes (3-1 ), following by hydrazinolysis may also be performed. Condensation of the amine (IV) with aldehydes 3-1 can be performed in the presence of an hydride, such as sodium triacethoxyborohydride NaBH(OAc)3 or sodium cyanoborhydride (NaBH4CN) (Bioorg. Med. Chem. Lett. 1999, 9, 179-184). Phtalimide intermediate 3-2 is treated as is described in Schemes 1 and 2 in order to obtain the desired compound of Formula (II).
In all these Schemes, other protecting groups for the nitrogen atom, instead of the phtalimide, may be used. Some examples include other cyclic imide derivatives, such as maleimides or succinimides, a variety of carbamates, such as BOC; Fmoc, etc. a variety of amides, such as acetamides, and alkyl and aryl amine derivatives, such as /V-benzyl or N- allyl. Additional examples of Nitrogen protecting groups can be found in reference books such as Greene and Wuts1 "Protective Groups in Organic Synthesis", John Wiley & Sons, Inc., New York, 1999.
An alternate sequence for the preparation of some compounds of Formula (II) is illustrated in Scheme 4.
Scheme 4
Figure imgf000017_0001
NHRR1 base 4-2 solvent
Figure imgf000017_0002
(II, R=R'=H)
Compounds of Formula (II) can be prepared in a sequential way by treatment of a dialkylating agent (4- 1) with the corresponding amine (IV) in the presence of a base in an appropriate solvent, followed by the alkylation of another amine (4-2).
Examples of useful alkylating agents (4-1 ) are those where Y is a good to excellent leaving group, such as Br, I, aryl or alkylsulfonate, etc. and X is a good leaving group, such as Br or Cl. Useful bases include, but are not limited to, metal carbonates such as K2CO3 or Cs2CO3, metal hydroxides, hindered alkoxides or tertiary organic amines.
Typical solvents include polar aprotic liquids such as DMF or THF, or protic liquids such as alcohols. The rate of the second alkylation may be enhanced, particulary when X is Cl, by the addition of a catalytic amount of an iodide salt, such as NaI or KI. The required alkylating agents (4-1) are generally commercially available.
Where convenient, compounds of Formula (II) can be prepared as shown in Scheme 5.
Scheme 5
Figure imgf000018_0001
reducing solvent agent
Figure imgf000018_0002
The alkylation of compounds of Foπnula (IV) with commercially available halopropanenitriles (5- 1 ) can be performed in the presence of a variety of bases and solvents cited in schemes above. For the reduction of the cyano group of 5-2, common reducing agents, such as LiAlH4 in THF, can be used. A catalytic hydrogenation with Pd/C in ethanol is also possible {Bioorg. Med. Chem. Lett. 2004, 14, 195-202, J. Med. Chem. 1999, 42(4), 730-741).
In some cases, an acylation with carboxynitriles to form an amide is preferred instead of the alkylation with the corresponding halonitriles (Scheme 6).
Scheme 6
Figure imgf000019_0001
6-2 reducing agent
Figure imgf000019_0002
Figure imgf000019_0003
The acylation with compounds 6-1 , where X is a good leaving group, such as I, Br, aryl or alkylsulphonate, is carried out in the presence of an appropriate base and solvent, which were described in schemes above. The reduction of cyano an keto group of 6-2 can be performed simultaneously in the presence of an excess of a reducing agent such as LiAlH4 or borane. When X is OH, a coupling reagent must also be used for the activation of carboxy group. The coupling reagents used are the same as are cited in Scheme 2.
Scheme 6 is also possible when X is an H. Reductive amination is carried out by a condensation of amine of Formula (IV) with aldehyde 6-1 in appropriate base and solvent, to form an imine or enamine intermediate, followed by a reduction with a reducing agent, such an hydπde.
An alternate sequence for the preparation of some compounds of Formula (II) is illustrated in Scheme 7.
Scheme 7
Figure imgf000020_0001
Amines of Formula (IV) may be alkylated with halopropanamides 7- 1 in an appropriate solvent and base, the same as are cited in Schemes above. Intermediate (7-2) may be reduced in the presence of an hydπde, such as LiAlH4 or borane.
The obtained reaction products may, if desired, be purified by conventional methods, such as crystallisation, chromatography and trituration. Where the above described processes for the preparation of compounds of the invention give rise to mixtures of stereoisomers, these isomers may be separated by conventional techniques suchas preparative chromatography. If there are chiral centers the compounds may be prepared in racemic form, or individual enantiomers may be prepared either by enantiospecific synthesis or by resolution.
One preferred pharmaceutically acceptable form is the crystalline form, including such form in pharmaceutical composition. In the case of salts and solvates the additional ionic and solvent moieties must also be non-toxic. The compounds of the invention may present different polymorphic forms, it is intended that the invention encompasses all such forms.
Another aspect of this invention relates to a method of treating or preventing an 5- HT7 mediated disease which method comprises administering to a patient in need of such a treatment a therapeutically effective amount of a compound of formula (I) or a pharmaceutical composition thereof. Among the 5-HT7 mediated diseases that can be treated are diseases caused by failures in central and peripheral serotonin-controlling functions, such as pain, sleep disorder, shift worker syndrome, jet lag, depression, seasonal affective disorder, migraine, anxiethy, psychosis, schizophrenia, cognition and memory disorders, neuronal degeneration resulting from ischemic events, cardiovascular diseases such as hypertension, irritable bowel syndrome, inflammatory bowel disease, spastic colon or urinary incontinence.
The present invention further provides pharmaceutical compositions comprising a compound of this invention, or a pharmaceutically acceptable salt, derivative, prodrug or stereoisomers thereof together with a pharmaceutically acceptable carrier, adjuvant, or vehicle, for administration to a patient.
Examples of pharmaceutical compositions include any solid (tablets, pills, capsules, granules etc.) or liquid (solutions, suspensions or emulsions) composition for oral, topical or parenteral administration.
In a preferred embodiment the pharmaceutical compositions are in oral form, either solid or liquid. Suitable dose forms for oral administration may be tablets, capsules, syrops or solutions and may contain conventional excipients known in the art such as binding agents, for example syrup, acacia, gelatin, sorbitol, tragacanth, or polyvinylpyrrolidone; fillers, for example lactose, sugar, maize starch, calcium phosphate, sorbitol or glycine; tabletting lubπcants, for example magnesium stearate, disintegrants, for example starch, polyvinylpyrrolidone, sodium starch glycollate or microcrystalline cellulose, or pharmaceutically acceptable wetting agents such as sodium lauryl sulfate
The solid oral compositions may be prepared by conventional methods of blending, filling or tabletting Repeated blending operations may be used to distribute the active agent throughout those compositions employing large quantities of fillers Such operations are conventional in the art The tablets may for example be prepared by wet or dry granulation and optionally coated according to methods well known in normal pharmaceutical practice, in particular with an enteπc coating
The pharmaceutical compositons may also be adapted for parenteral administration, such as steπle solutions, suspensions or lyophihzed products in the apropπate unit dosage form Adequate excipients can be used, such as bulking agents, buffeπng agents or surfactants
The mentioned formulations will be prepared using standard methods such as those described or referred to in the Spanish and US Pharmacopoeias and similar reference texts
Administration of the compounds or compositions of the present invention may be by any suitable method, such as intravenous infusion, oral prepaiations, and intraperitoneal and intravenous administration Oral administration is preferred because of the convenience for the patient and the chronic character of the diseases to be treated
Generally an effective administered amount of a compound of the invention will depend on the relative efficacy of the compound chosen, the seventy of the disorder being treated and the weight of the sufferer However, active compounds will typically be administered once or more times a day for example 1 , 2, 3 or 4 times daily, with typical total daily doses in the range of from 0 1 to 1000 mg/kg/day
The compounds and compositions of this invention may be used with other drugs to provide a combination therapy The other drugs may form part of the same composition, or be provided as a separate composition for administration at the same time or at different time
The following examples are given only as further illustration of the invention, they should not be taken as a definition of the limits of the invention
EXAMPLES
The starting mateπals of general formula (II) were prepared by means of conventional organic chemistry methods known to those skilled in the art The preparation of some of the intermediates of general formulas (II) and (IV) is shown below
Example A:
Synthesis of a compound of general formula (II)
Figure imgf000023_0001
1 ) H2NNH2 I
2) HCI JC
( I I )
a) 2-[3-(6,7-Dimethoxy-3,4-dihydro-lH-isoquinolin-2-yiχ)-propyl]-isoindole-l,3- dione.
A mixture of 6,7-dimethoxy-l ,2,3,4-tetiahydroisoquinohne hydrochloride ( 6 89 g, O 030 mol), yV-(3-bromopropyl)phtalimide (8,04 g, 0 030 mol), potassium carbonate (16 50 g, 0 120 mol) in dry 7V,yV-dimethylformamide (120 mL), was stirred overnight at room temperature The mixture was vacuum concentrated and the residue was dissolved in water ( 120 mL) and extracted with ethyl acetate (3 x 30 mL), washed with water, the organic layer was dried and evaporated to given a product ( 10 85 g, 93% yield) which was used without further purification b) 3-(6,7-Dimethoxy-3,4-dihydro-lH-isoquinolin-2-yl)-propylamine dihydrochloride
A solution of 2-[3-(6,7-dimethoxy-3,4-dihydro-l H-isoquinolin-2-yφ-propyl]-isoindole- 1 ,3-dione. (10.46 g, 0,0275 mol ) and hydrazine hydrate (8,6 mL, 0.275 mol ) in ethanol (250 mL) was refluxed for 1 h. The reaction mixture was cooled down and treated with an additional amount de ethanol (250 mL) and concentrated HCl ( 35 mL). Then the reaction mixture was refluxed for 4 h and left overnight in a refrigerator. The precipitate was filtered off, and the solvent was evaporated. The residue was basified with ammonium hydroxide ( 90 mL ) and was extracted with CH2Cl2 ( 3 x 90 mL), the organic layer was dried over Na2SO4, and evaporated to dryness. The crude was dissolved in 75 mL ethanol. A 2,8 M solution of hydrogen chloride in ethanol (25 mL) was then added. The dihydrochloride formed was collected by filtration and crystallized from methanol and 2- propanol to give a product (6.93 g, 78 % yield) as a white solid .
Melting point: 249-250 0C
IR cm"'( KBr ) : 3437, 2933, 2569, 1523, 1255, 1227, 1 123, 995.
1H NMR (300 MHz, CDCl3) δ ppm 1.72 (qt, .7=7.14 Hz, 2 H), 2.53 (t, J=7.51 Hz, 2 H), 2.68 (t, J=5.13 Hz, 2 H), 2.77 (q, J= 6.96 Hz, 4 H), 3.52 (s, 2 H), 3.80 (s, 3 H), 3.81 (s, 3 H), 6.49 (s, 1 H), 6.56 (s, 1 H)
Example B:
The compounds of general formula (I) were prepared by the coupling of a compound of formula (II) with a compound of formula (III) by means of conventional organic chemistry methods known to those skilled in the art.
5-Chloro-N-[3-(6,7-dimethoxy-3,4-dihydro-lH-isoquinolin-2-yl)-propyl]-2,4-difluoro- benzenesulfonamide (comp.48)
Figure imgf000024_0001
(II) (III) (I)
A solution of 3-(6,7-dimethoxy-3,4-dihydro-l H-isoquinolin-2-yl)-propylamine dihydrochloride (323 mg, 1 mmol), /V,7V-diisopropylethylamine (517 mg, 4 mmol) in
CH2Cl2 (15 mL), was added 3-Chloro-4,6-difluorobenzenesulfonyl chloride ( 259 mg, 1.05 mmol) and was stirred overnight at room temperature. The resulting solution was washed with water (3 x20 mL) and dried over Na2SO4, and evaporated to dryness. The free base was dissolved in 2-propanol (5 mL). The product was crystallized in 2-propanol (5 mL) collected by filtration, and vacuum dried to give a white solid (401 mg, 87%).
Melting point: 1 10-2 °C
IR cm"'(KBr) : 2946, 1598, 1520, 1476, 1466, 1403, 1341, 1257,1130, 1 106, 1019, 894,
628, 546.
IH NMR (300 MHz, DMSO-D6) δ ppm 1.59 (m, 2 H), 2.36 (t, 7=6.81 Hz, 2 H), 2.61 (m, 2
H), 2.93 (t, J=6.74 Hz, 2 H), 3.26 (m, 4 H), 3.66 (s, 6 H), 6.55 (s, 1 H), 6.60 (s, 1 H), 7.79
(t, J=9.59 Hz, 1 H), 7.89 (t, ./=7.69 Hz, 1 H), 8.17 (s, 1 H)
MS (APCI (M+H)+) 461
The spectroscopic data for the identification of some of the sulfonamides compounds of the invention having general formula (1), prepared analogously to the methods described in the above examples, are shown in the following table 1 :
Figure imgf000026_0001
Figure imgf000027_0001
Figure imgf000028_0001
Figure imgf000029_0001
Figure imgf000030_0001
Figure imgf000031_0001
Figure imgf000032_0001
Figure imgf000033_0001
Figure imgf000034_0001
Figure imgf000035_0001
Figure imgf000036_0001
Figure imgf000037_0001
Figure imgf000038_0001
Figure imgf000039_0001
Figure imgf000040_0001
Figure imgf000041_0001
Figure imgf000042_0001
Figure imgf000043_0001
Figure imgf000044_0001
Figure imgf000045_0001
Figure imgf000046_0001
Figure imgf000047_0001
Figure imgf000048_0001
Figure imgf000049_0001
Figure imgf000050_0001
Figure imgf000051_0001
Figure imgf000052_0001
Figure imgf000053_0001
Figure imgf000054_0001
Figure imgf000055_0001
Figure imgf000056_0001
Figure imgf000057_0001
Figure imgf000058_0001
BIOLOGICAL ASSAYS Radioligand binding
Radioligand binding assays were performed using the Cloned Human Serotonin Receptor, Subtype 7 (h5HT7), expressed in CHO cells, coated on Flashplate (Basic FlashPlate Cat.: SMP200) from PerkinElmer (Cat.: 6120512). The protocol assay was essentially the recommended protocol in the Technical Data Sheet by PerkinEmer Life and Analytical Sciences. The Mass membrane protein/well was typically 12 μg and the Receptor/well was about 9-10 fmoles. The Flashplate were let equilibrate at room temperature for one hour before the addition of the components of the assay mixture. The binding buffer was: 50 mM Tris-HCl, pH 7.4, containing 10 mM MgCl2, 0.5 mM EDTA and 0.5% BSA. The radioligand was [125I]LSD at a final concentration of 0.82 nM. Nonspecific binding was determined with 50 μM of Clozapine. The assay volume was 25 μl. TopSeal-A were applied onto Flashplate microplates and they were incubated at room temperature for 240 minutes in darkness. The radioactivity were quantified by liquid scintillation spectrophotometry (Wallac 1450 Microbeta Trilux) with a count delay of 4 minutes prior to counting and a counting time of 30 seconds per well. Competition binding data were analyzed by using the LlGAND program (Munson and Rodbard, LIGAND: A versatile, computerized approach for characterization of ligand-binding systems. Anal. Biochem. 107: 220-239, 1980) and assays were performed in triplicate determinations for each point. Results for representative compounds are given in the table 2 below:
Table 2
Figure imgf000059_0001

Claims

1. A compound of the formula 1:
Figure imgf000060_0001
(I) wherein
W is susbtituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, susbtituted or unsubstituted cycloalkyl, susbtituted or unsubstituted aryl, susbtituted or unsubstituted heterocyclyl;
Ri, R2, R3, R4, R5, Re and R7 are each independently selected from the group formed by hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted aryl, substituted or unsubstituted heterocyclyl, -COR8, -C(O)OR8, -C(O)NR8R9 -C=NR8, -CN, -OR8, -
OC(O)R8, -S(O)1-R8 , -NR8R9, -NR8C(O)R9, -N02, -N=CR8R9 or halogen, wherein t is 1 ,2 or 3;
R8 and R9 are each independently selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted aryl, substituted or unsubstituted heterocyclyl, substituted or unsubstituted alkoxy, substituted or unsubstituted aryloxy, halogen; or a pharmaceutically acceptable salt, isomer, prodrug or solvate thereof.
2. A compound according to claim 1 characterized in that W is an aromatic group selected from substituted or unsubstituted aryl, substituted or unsubstituted heterocyclyl, preferably substituted or unsubstituted phenyl.
3. A compound according to claim 2 characterized in that W is selected from phenyl, or alkyl, alkoxy and/or halo substituted phenyl.
4. A compound according to any of the preceding claims characterized in that R5, R6 and R7 are H.
5. A compound according to any of the preceding claims characterized in that R| and R4 are H.
6. A compound according to claims 4 and 5 wherein R2 and R3 are alkoxy, preferably methoxy.
7. A process for the preparation of a compound of formula (I) or a salt, isomer or solvate thereof as claimed in any of claims 1-6, which comprises the coupling of a compound of Formula (II):
Figure imgf000061_0001
in which n is 3 and R1-R7 are as defined in Foπnula (I), with a compound of Formula (III):
Figure imgf000061_0002
in which W is as defined in Formula (I) and X is an halogen, preferably Cl.
8. A pharmaceutical composition which comprises a compound as defined in any of claims I -6 or a pharmaceutically acceptable salt, isomer, prodrug or solvate thereof, and a pharmaceutically acceptable earner, adjuvant or vehicle.
9. A pharmaceutical composition according to claim 8 for oral administration.
10. Use of a compound as defined in any of claims 1 -6 in the manufacture of a medicament
11. Use according to claim 10 wherein the medicament is for the treatment of a 5-HT7 mediated disease or condition
12. Use according to claim 11 wherein the disease is pain, sleep disorder, shift worker syndrome, jet lag, depression, seasonal affective disorder, migraine, anxiety, psychosis, schizophrenia, cognition and memory disorders, neuronal degeneration resulting from ischemic events, cardiovascular diseases such as hypertension, irritable bowel syndrome, inflammatory bowel disease, spastic colon or urinary incontinence
13. A method for treating or preventing a central nervous disorder comprising administering to a patient in need thereof a therapeutically effective amount of a compound as defined in any of claims 1 -6, or a pharmaceutically acceptable salt, isomer prodrug or solvate thereof
PCT/EP2005/008979 2004-08-18 2005-08-18 5-ht7 receptor antagonists WO2006018309A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU2005274261A AU2005274261A1 (en) 2004-08-18 2005-08-18 5-HT7 receptor antagonists
EP05774634A EP1778641A1 (en) 2004-08-18 2005-08-18 5-ht7 receptor antagonists
JP2007526394A JP2008509962A (en) 2004-08-18 2005-08-18 5-HT7 receptor antagonist
MX2007001992A MX2007001992A (en) 2004-08-18 2005-08-18 5-ht7 receptor antagonists.
BRPI0514463-9A BRPI0514463A (en) 2004-08-18 2005-08-18 5-ht7 receptor antagonists
US11/658,923 US8148397B2 (en) 2004-08-18 2005-08-18 5-HT7 receptor antagonists
CA002575785A CA2575785A1 (en) 2004-08-18 2005-08-18 5-ht7 receptor antagonists

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
EP04380172.9 2004-08-18
ESP200402050 2004-08-18
US10/920,671 US7211584B2 (en) 2004-08-18 2004-08-18 5-HT7 receptor ligands
EP04380172A EP1630159A1 (en) 2004-08-18 2004-08-18 5-HT7 receptor antagonists
US10/920,671 2004-08-18
ES200402050A ES2257168B1 (en) 2004-08-18 2004-08-18 5-HT7 RECEIVER LIGANDS.

Publications (1)

Publication Number Publication Date
WO2006018309A1 true WO2006018309A1 (en) 2006-02-23

Family

ID=35229688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/008979 WO2006018309A1 (en) 2004-08-18 2005-08-18 5-ht7 receptor antagonists

Country Status (11)

Country Link
US (1) US8148397B2 (en)
EP (2) EP1630159A1 (en)
JP (1) JP2008509962A (en)
KR (1) KR20070046879A (en)
CN (1) CN101014573A (en)
AU (1) AU2005274261A1 (en)
BR (1) BRPI0514463A (en)
CA (1) CA2575785A1 (en)
ES (1) ES2257168B1 (en)
MX (1) MX2007001992A (en)
WO (1) WO2006018309A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008000495A1 (en) * 2006-06-29 2008-01-03 Laboratorios Del Dr. Esteve, S.A Use of 5-ht7 receptor agonists for the treatment of pain
WO2009082268A2 (en) 2007-12-21 2009-07-02 Alla Chem, Llc LIGANDS OF α-ADRENOCEPTORS AND OF DOPAMINE, HISTAMINE, IMIDAZOLINE AND SEROTONIN RECEPTORS AND THE USE THEREOF
US7833999B2 (en) 2004-05-25 2010-11-16 Sanofi-Aventis Tetrahydroisoquinoline sulfonamide derivatives, the preparation thereof, and the use of the same in therapeutics
US7872138B2 (en) 2006-08-07 2011-01-18 Janssen Pharmaceutica Nv Process for the preparation of substituted-1,2,3,4-tetrahydroisoquinoline derivatives
JP5336359B2 (en) * 2007-05-28 2013-11-06 セルダー ファーマ インコーポレイテッド Tetrahydroisoquinolin-1-one derivative or salt thereof
US8748615B2 (en) 2010-03-05 2014-06-10 Sanofi Process for the preparation of 2-(cyclohexylmethyl)-N-{2-[(2S)-1-methylpyrrolidin-2-yl]ethyl}-1,2,3,4-tetrahydroisoquinoline-7-sulfonamide
EP3589626A4 (en) * 2017-03-03 2020-10-14 National Taiwan University 8-phenyl-isoquinolines and pharmaceutical composition thereof used in the treatment of irritable bowel syndrome
US11938134B2 (en) 2017-03-10 2024-03-26 Eikonizo Therapeutics, Inc. Metalloenzyme inhibitor compounds

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9140185B2 (en) * 2009-11-24 2015-09-22 Honeywell International Inc. Locating mechanism for turbocharger bearing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997029097A1 (en) * 1996-02-09 1997-08-14 Smithkline Beecham Plc Sulfonamide derivatives as 5ht7 receptor antagonists
WO1997049695A1 (en) * 1996-06-25 1997-12-31 Smithkline Beecham P.L.C. Sulfonamide derivatives as 5ht7 receptor antagonists
WO2003037887A1 (en) * 2001-11-01 2003-05-08 Astrazeneca Ab Therapeutic isoquinoline compounds

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ193654A (en) 1979-05-16 1984-08-24 Wuelfing Johann A Naphthalene sulphonamido-alkyl-piperidines,pyrrolidines or piperazines and pharmaceutical compositions
DE3276313D1 (en) 1981-09-24 1987-06-19 Beecham Wuelfing Gmbh & Co Kg Sulphonamides
US5294621A (en) 1992-10-07 1994-03-15 Ortho Pharmaceutical Corporation Thieno tetrahydropyridines useful as class III antiarrhythmic agents
GB9612884D0 (en) 1996-06-20 1996-08-21 Smithkline Beecham Plc Novel compounds
WO1999024022A2 (en) 1997-11-10 1999-05-20 F. Hoffmann-La Roche Ag Isoquinoline derivatives for treating disorders associated with 5ht7 receptors
WO2000000472A1 (en) 1998-06-30 2000-01-06 Du Pont Pharmaceuticals Company 5-ht7 receptor antagonists
GB0128885D0 (en) 2001-12-03 2002-01-23 Merck Sharp & Dohme Therapeutic agents

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997029097A1 (en) * 1996-02-09 1997-08-14 Smithkline Beecham Plc Sulfonamide derivatives as 5ht7 receptor antagonists
WO1997049695A1 (en) * 1996-06-25 1997-12-31 Smithkline Beecham P.L.C. Sulfonamide derivatives as 5ht7 receptor antagonists
WO2003037887A1 (en) * 2001-11-01 2003-05-08 Astrazeneca Ab Therapeutic isoquinoline compounds

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERIC BON, DENNIS BIGG ET AL: "Aluminium chloride promoted aminolysis of N-Tosyl lactams", JOC, vol. 59, no. 7, 1994, pages 1904 - 1906, XP002314959 *
See also references of EP1778641A1 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7833999B2 (en) 2004-05-25 2010-11-16 Sanofi-Aventis Tetrahydroisoquinoline sulfonamide derivatives, the preparation thereof, and the use of the same in therapeutics
US8273733B2 (en) 2004-05-25 2012-09-25 Sanofi Tetrahydroisoquinoline sulfonamide derivatives, the preparation thereof, and the use of the same in therapeutics
US8524700B2 (en) 2004-05-25 2013-09-03 Sanofi Tetrahydroisoquinoline sulfonamide derivatives, the preparation thereof, and the use of the same in therapeutics
WO2008000495A1 (en) * 2006-06-29 2008-01-03 Laboratorios Del Dr. Esteve, S.A Use of 5-ht7 receptor agonists for the treatment of pain
EP1875899A1 (en) * 2006-06-29 2008-01-09 Laboratorios Del Dr. Esteve, S.A. Use of 5HT7 receptor agonists for the treatment of pain
US7872138B2 (en) 2006-08-07 2011-01-18 Janssen Pharmaceutica Nv Process for the preparation of substituted-1,2,3,4-tetrahydroisoquinoline derivatives
JP5336359B2 (en) * 2007-05-28 2013-11-06 セルダー ファーマ インコーポレイテッド Tetrahydroisoquinolin-1-one derivative or salt thereof
WO2009082268A2 (en) 2007-12-21 2009-07-02 Alla Chem, Llc LIGANDS OF α-ADRENOCEPTORS AND OF DOPAMINE, HISTAMINE, IMIDAZOLINE AND SEROTONIN RECEPTORS AND THE USE THEREOF
US8748615B2 (en) 2010-03-05 2014-06-10 Sanofi Process for the preparation of 2-(cyclohexylmethyl)-N-{2-[(2S)-1-methylpyrrolidin-2-yl]ethyl}-1,2,3,4-tetrahydroisoquinoline-7-sulfonamide
US8779145B2 (en) 2010-03-05 2014-07-15 Sanofi Process for the preparation of 2-(cyclohexylmethyl)-N-{2-[(2S)-1-methylpyrrolidin-2-yl]ethyl}-1,2,3,4-tetrahydroisoquinoline
EP3589626A4 (en) * 2017-03-03 2020-10-14 National Taiwan University 8-phenyl-isoquinolines and pharmaceutical composition thereof used in the treatment of irritable bowel syndrome
US11938134B2 (en) 2017-03-10 2024-03-26 Eikonizo Therapeutics, Inc. Metalloenzyme inhibitor compounds

Also Published As

Publication number Publication date
ES2257168B1 (en) 2007-06-01
US8148397B2 (en) 2012-04-03
BRPI0514463A (en) 2008-06-10
JP2008509962A (en) 2008-04-03
CA2575785A1 (en) 2006-02-23
US20090088450A1 (en) 2009-04-02
KR20070046879A (en) 2007-05-03
EP1778641A1 (en) 2007-05-02
AU2005274261A1 (en) 2006-02-23
ES2257168A1 (en) 2006-07-16
MX2007001992A (en) 2007-05-15
CN101014573A (en) 2007-08-08
EP1630159A1 (en) 2006-03-01

Similar Documents

Publication Publication Date Title
US7345057B2 (en) 5-HT7 receptor antagonists
EP1778641A1 (en) 5-ht7 receptor antagonists
WO2006018308A1 (en) 5-ht7 receptor antagonists
US7211585B2 (en) 5-HT7 receptor antagonists
US7211584B2 (en) 5-HT7 receptor ligands
EP1836172B1 (en) 5-ht7 receptor antagonists
US7928121B2 (en) 5-HT7 receptor antagonists
US7553965B2 (en) 5-HT7 receptor antagonists
ES2257167B1 (en) 5-HT7 RECEIVER INHIBITORS.
Torrens Jover et al. 5-HT 7 receptor antagonists

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005274261

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2575785

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 414/KOLNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 200580027841.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: MX/a/2007/001992

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2007526394

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005774634

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077004113

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2005274261

Country of ref document: AU

Date of ref document: 20050818

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005274261

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2007109790

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2005774634

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0514463

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 11658923

Country of ref document: US