WO2006014592A1 - Graft, stent graft and method for manufacture - Google Patents
Graft, stent graft and method for manufacture Download PDFInfo
- Publication number
- WO2006014592A1 WO2006014592A1 PCT/US2005/024282 US2005024282W WO2006014592A1 WO 2006014592 A1 WO2006014592 A1 WO 2006014592A1 US 2005024282 W US2005024282 W US 2005024282W WO 2006014592 A1 WO2006014592 A1 WO 2006014592A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- graft
- fabric
- yarns
- inches
- denier
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 40
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 239000004744 fabric Substances 0.000 claims abstract description 226
- 239000000463 material Substances 0.000 claims description 153
- 239000000835 fiber Substances 0.000 claims description 46
- 238000000576 coating method Methods 0.000 claims description 34
- 239000011248 coating agent Substances 0.000 claims description 33
- 238000002513 implantation Methods 0.000 claims description 26
- -1 polypropylene Polymers 0.000 claims description 24
- 239000012867 bioactive agent Substances 0.000 claims description 22
- 229920000728 polyester Polymers 0.000 claims description 14
- 229920001059 synthetic polymer Polymers 0.000 claims description 13
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 11
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 11
- 239000012815 thermoplastic material Substances 0.000 claims description 11
- 239000004743 Polypropylene Substances 0.000 claims description 9
- 229920001155 polypropylene Polymers 0.000 claims description 9
- 229920002635 polyurethane Polymers 0.000 claims description 9
- 239000004814 polyurethane Substances 0.000 claims description 9
- 230000035699 permeability Effects 0.000 description 24
- 230000002792 vascular Effects 0.000 description 22
- 206010002329 Aneurysm Diseases 0.000 description 10
- 239000005020 polyethylene terephthalate Substances 0.000 description 9
- 238000011282 treatment Methods 0.000 description 9
- 239000002759 woven fabric Substances 0.000 description 9
- 210000001519 tissue Anatomy 0.000 description 8
- 210000004369 blood Anatomy 0.000 description 7
- 239000008280 blood Substances 0.000 description 7
- 238000007598 dipping method Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000004753 textile Substances 0.000 description 6
- 210000000709 aorta Anatomy 0.000 description 5
- 210000001124 body fluid Anatomy 0.000 description 5
- 239000010839 body fluid Substances 0.000 description 5
- 239000007943 implant Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229920000139 polyethylene terephthalate Polymers 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 230000008961 swelling Effects 0.000 description 5
- 238000009941 weaving Methods 0.000 description 5
- 229920004934 Dacron® Polymers 0.000 description 4
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 4
- 230000000975 bioactive effect Effects 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 229920001477 hydrophilic polymer Polymers 0.000 description 4
- 238000009940 knitting Methods 0.000 description 4
- 239000002356 single layer Substances 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 210000001367 artery Anatomy 0.000 description 3
- 210000004204 blood vessel Anatomy 0.000 description 3
- 235000004879 dioscorea Nutrition 0.000 description 3
- 239000003527 fibrinolytic agent Substances 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 210000002254 renal artery Anatomy 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- IAKHMKGGTNLKSZ-INIZCTEOSA-N (S)-colchicine Chemical compound C1([C@@H](NC(C)=O)CC2)=CC(=O)C(OC)=CC=C1C1=C2C=C(OC)C(OC)=C1OC IAKHMKGGTNLKSZ-INIZCTEOSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 2
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 2
- 208000002223 abdominal aortic aneurysm Diseases 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 239000000560 biocompatible material Substances 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 2
- 238000002224 dissection Methods 0.000 description 2
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 description 2
- 239000000262 estrogen Chemical class 0.000 description 2
- 229940011871 estrogen Drugs 0.000 description 2
- 210000002744 extracellular matrix Anatomy 0.000 description 2
- 229920002313 fluoropolymer Polymers 0.000 description 2
- 230000000004 hemodynamic effect Effects 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- GVJHHUAWPYXKBD-IEOSBIPESA-N α-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 2
- PUDHBTGHUJUUFI-SCTWWAJVSA-N (4r,7s,10s,13r,16s,19r)-10-(4-aminobutyl)-n-[(2s,3r)-1-amino-3-hydroxy-1-oxobutan-2-yl]-19-[[(2r)-2-amino-3-naphthalen-2-ylpropanoyl]amino]-16-[(4-hydroxyphenyl)methyl]-13-(1h-indol-3-ylmethyl)-6,9,12,15,18-pentaoxo-7-propan-2-yl-1,2-dithia-5,8,11,14,17-p Chemical compound C([C@H]1C(=O)N[C@H](CC=2C3=CC=CC=C3NC=2)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(N[C@@H](CSSC[C@@H](C(=O)N1)NC(=O)[C@H](N)CC=1C=C2C=CC=CC2=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(N)=O)=O)C(C)C)C1=CC=C(O)C=C1 PUDHBTGHUJUUFI-SCTWWAJVSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 229940122937 Actin inhibitor Drugs 0.000 description 1
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 1
- 239000005528 B01AC05 - Ticlopidine Substances 0.000 description 1
- 229940127291 Calcium channel antagonist Drugs 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 206010007269 Carcinogenicity Diseases 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- 108010061435 Enalapril Proteins 0.000 description 1
- 208000001750 Endoleak Diseases 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 229940123457 Free radical scavenger Drugs 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 108010007267 Hirudins Proteins 0.000 description 1
- 102000007625 Hirudins Human genes 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 102000012750 Membrane Glycoproteins Human genes 0.000 description 1
- 108010090054 Membrane Glycoproteins Proteins 0.000 description 1
- 229940122255 Microtubule inhibitor Drugs 0.000 description 1
- UBQYURCVBFRUQT-UHFFFAOYSA-N N-benzoyl-Ferrioxamine B Chemical compound CC(=O)N(O)CCCCCNC(=O)CCC(=O)N(O)CCCCCNC(=O)CCC(=O)N(O)CCCCCN UBQYURCVBFRUQT-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 229930012538 Paclitaxel Natural products 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 108010023197 Streptokinase Proteins 0.000 description 1
- 102000019197 Superoxide Dismutase Human genes 0.000 description 1
- 108010012715 Superoxide dismutase Proteins 0.000 description 1
- 101000712605 Theromyzon tessulatum Theromin Proteins 0.000 description 1
- 229940122388 Thrombin inhibitor Drugs 0.000 description 1
- 108090000373 Tissue Plasminogen Activator Proteins 0.000 description 1
- 102000003978 Tissue Plasminogen Activator Human genes 0.000 description 1
- 108090000435 Urokinase-type plasminogen activator Proteins 0.000 description 1
- 102000003990 Urokinase-type plasminogen activator Human genes 0.000 description 1
- 206010047163 Vasospasm Diseases 0.000 description 1
- FPVRUILUEYSIMD-RPRRAYFGSA-N [(8s,9r,10s,11s,13s,14s,16r,17r)-9-fluoro-11-hydroxy-17-(2-hydroxyacetyl)-10,13,16-trimethyl-3-oxo-6,7,8,11,12,14,15,16-octahydrocyclopenta[a]phenanthren-17-yl] acetate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(OC(C)=O)[C@@]1(C)C[C@@H]2O FPVRUILUEYSIMD-RPRRAYFGSA-N 0.000 description 1
- 229960001138 acetylsalicylic acid Drugs 0.000 description 1
- 231100000764 actin inhibitor Toxicity 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000002009 allergenic effect Effects 0.000 description 1
- 229940087168 alpha tocopherol Drugs 0.000 description 1
- 229940044094 angiotensin-converting-enzyme inhibitor Drugs 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 230000000340 anti-metabolite Effects 0.000 description 1
- 230000002927 anti-mitotic effect Effects 0.000 description 1
- 230000001028 anti-proliverative effect Effects 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 229940100197 antimetabolite Drugs 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 229940127218 antiplatelet drug Drugs 0.000 description 1
- 208000007474 aortic aneurysm Diseases 0.000 description 1
- KXNPVXPOPUZYGB-XYVMCAHJSA-N argatroban Chemical compound OC(=O)[C@H]1C[C@H](C)CCN1C(=O)[C@H](CCCN=C(N)N)NS(=O)(=O)C1=CC=CC2=C1NC[C@H](C)C2 KXNPVXPOPUZYGB-XYVMCAHJSA-N 0.000 description 1
- 229960003856 argatroban Drugs 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 239000003124 biologic agent Substances 0.000 description 1
- 238000012925 biological evaluation Methods 0.000 description 1
- 229920001222 biopolymer Polymers 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- OIRCOABEOLEUMC-GEJPAHFPSA-N bivalirudin Chemical compound C([C@@H](C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CC(C)C)C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)CNC(=O)CNC(=O)CNC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 OIRCOABEOLEUMC-GEJPAHFPSA-N 0.000 description 1
- 108010055460 bivalirudin Proteins 0.000 description 1
- 229960001500 bivalirudin Drugs 0.000 description 1
- 229960002802 bromocriptine Drugs 0.000 description 1
- OZVBMTJYIDMWIL-AYFBDAFISA-N bromocriptine Chemical compound C1=CC(C=2[C@H](N(C)C[C@@H](C=2)C(=O)N[C@]2(C(=O)N3[C@H](C(N4CCC[C@H]4[C@]3(O)O2)=O)CC(C)C)C(C)C)C2)=C3C2=C(Br)NC3=C1 OZVBMTJYIDMWIL-AYFBDAFISA-N 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 239000000480 calcium channel blocker Substances 0.000 description 1
- 229960000830 captopril Drugs 0.000 description 1
- FAKRSMQSSFJEIM-RQJHMYQMSA-N captopril Chemical compound SC[C@@H](C)C(=O)N1CCC[C@H]1C(O)=O FAKRSMQSSFJEIM-RQJHMYQMSA-N 0.000 description 1
- 231100000260 carcinogenicity Toxicity 0.000 description 1
- 230000007670 carcinogenicity Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- OEUUFNIKLCFNLN-LLVKDONJSA-N chembl432481 Chemical compound OC(=O)[C@@]1(C)CSC(C=2C(=CC(O)=CC=2)O)=N1 OEUUFNIKLCFNLN-LLVKDONJSA-N 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 229960001338 colchicine Drugs 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- JVHIPYJQMFNCEK-UHFFFAOYSA-N cytochalasin Natural products N1C(=O)C2(C(C=CC(C)CC(C)CC=C3)OC(C)=O)C3C(O)C(=C)C(C)C2C1CC1=CC=CC=C1 JVHIPYJQMFNCEK-UHFFFAOYSA-N 0.000 description 1
- ZMAODHOXRBLOQO-UHFFFAOYSA-N cytochalasin-A Natural products N1C(=O)C23OC(=O)C=CC(=O)CCCC(C)CC=CC3C(O)C(=C)C(C)C2C1CC1=CC=CC=C1 ZMAODHOXRBLOQO-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 229960000958 deferoxamine Drugs 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 229960003957 dexamethasone Drugs 0.000 description 1
- 229960003657 dexamethasone acetate Drugs 0.000 description 1
- 229960002344 dexamethasone sodium phosphate Drugs 0.000 description 1
- PLCQGRYPOISRTQ-FCJDYXGNSA-L dexamethasone sodium phosphate Chemical compound [Na+].[Na+].C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)COP([O-])([O-])=O)(O)[C@@]1(C)C[C@@H]2O PLCQGRYPOISRTQ-FCJDYXGNSA-L 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229960003638 dopamine Drugs 0.000 description 1
- 239000003136 dopamine receptor stimulating agent Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000004924 electrostatic deposition Methods 0.000 description 1
- 229960000873 enalapril Drugs 0.000 description 1
- GBXSMTUPTTWBMN-XIRDDKMYSA-N enalapril Chemical compound C([C@@H](C(=O)OCC)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(O)=O)CC1=CC=CC=C1 GBXSMTUPTTWBMN-XIRDDKMYSA-N 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 230000002949 hemolytic effect Effects 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- WQPDUTSPKFMPDP-OUMQNGNKSA-N hirudin Chemical compound C([C@@H](C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC(OS(O)(=O)=O)=CC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCCN)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@H]1NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@@H]2CSSC[C@@H](C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@H](C(=O)N[C@H](C(NCC(=O)N[C@@H](CCC(N)=O)C(=O)NCC(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)N2)=O)CSSC1)C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]1NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)CNC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=2C=CC(O)=CC=2)NC(=O)[C@@H](NC(=O)[C@@H](N)C(C)C)C(C)C)[C@@H](C)O)CSSC1)C(C)C)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 WQPDUTSPKFMPDP-OUMQNGNKSA-N 0.000 description 1
- 229940006607 hirudin Drugs 0.000 description 1
- 229920003063 hydroxymethyl cellulose Polymers 0.000 description 1
- 229940031574 hydroxymethyl cellulose Drugs 0.000 description 1
- 210000003090 iliac artery Anatomy 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 108091006086 inhibitor proteins Proteins 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 108010021336 lanreotide Proteins 0.000 description 1
- 229960002437 lanreotide Drugs 0.000 description 1
- 229940127554 medical product Drugs 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 231100000782 microtubule inhibitor Toxicity 0.000 description 1
- 238000012978 minimally invasive surgical procedure Methods 0.000 description 1
- 231100001223 noncarcinogenic Toxicity 0.000 description 1
- 230000001453 nonthrombogenic effect Effects 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 229960001592 paclitaxel Drugs 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 229960001511 pergolide mesylate Drugs 0.000 description 1
- UWCVGPLTGZWHGS-ZORIOUSZSA-N pergolide mesylate Chemical compound CS(O)(=O)=O.C1=CC([C@H]2C[C@@H](CSC)CN([C@@H]2C2)CCC)=C3C2=CNC3=C1 UWCVGPLTGZWHGS-ZORIOUSZSA-N 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 239000002510 pyrogen Substances 0.000 description 1
- 239000002516 radical scavenger Substances 0.000 description 1
- 230000003439 radiotherapeutic effect Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000007634 remodeling Methods 0.000 description 1
- 230000003763 resistance to breakage Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 210000000813 small intestine Anatomy 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 229960005202 streptokinase Drugs 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical class O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 1
- 210000004876 tela submucosa Anatomy 0.000 description 1
- 239000003868 thrombin inhibitor Substances 0.000 description 1
- 229960000103 thrombolytic agent Drugs 0.000 description 1
- PHWBOXQYWZNQIN-UHFFFAOYSA-N ticlopidine Chemical compound ClC1=CC=CC=C1CN1CC(C=CS2)=C2CC1 PHWBOXQYWZNQIN-UHFFFAOYSA-N 0.000 description 1
- 229960005001 ticlopidine Drugs 0.000 description 1
- 229960000187 tissue plasminogen activator Drugs 0.000 description 1
- 229960000984 tocofersolan Drugs 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229960005356 urokinase Drugs 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 230000003966 vascular damage Effects 0.000 description 1
- 210000005166 vasculature Anatomy 0.000 description 1
- 229940124549 vasodilator Drugs 0.000 description 1
- 239000003071 vasodilator agent Substances 0.000 description 1
- 239000002076 α-tocopherol Substances 0.000 description 1
- 235000004835 α-tocopherol Nutrition 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2/07—Stent-grafts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/88—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure the wire-like elements formed as helical or spiral coils
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/89—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure the wire-like elements comprising two or more adjacent rings flexibly connected by separate members
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
- A61F2/954—Instruments specially adapted for placement or removal of stents or stent-grafts for placing stents or stent-grafts in a bifurcation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2002/065—Y-shaped blood vessels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2/07—Stent-grafts
- A61F2002/075—Stent-grafts the stent being loosely attached to the graft material, e.g. by stitching
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/848—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents having means for fixation to the vessel wall, e.g. barbs
- A61F2002/8486—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents having means for fixation to the vessel wall, e.g. barbs provided on at least one of the ends
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0002—Two-dimensional shapes, e.g. cross-sections
- A61F2230/0028—Shapes in the form of latin or greek characters
- A61F2230/005—Rosette-shaped, e.g. star-shaped
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0002—Two-dimensional shapes, e.g. cross-sections
- A61F2230/0028—Shapes in the form of latin or greek characters
- A61F2230/0054—V-shaped
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0063—Three-dimensional shapes
- A61F2230/0067—Three-dimensional shapes conical
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0058—Additional features; Implant or prostheses properties not otherwise provided for
- A61F2250/0067—Means for introducing or releasing pharmaceutical products into the body
Definitions
- This invention is directed to grafts for implanting, transplanting, replacing, or repairing a part of a patient and to stent grafts and endoluminal prostheses formed of the graft.
- the present invention is also directed to methods of making the grafts and the stent grafts.
- vascular graft materials should exhibit mechanical stability under continuous stress, should have compliance similar to that of the host tissue, and should be non-thrombogenic.
- graft materials may also provide for endothelialization and have sufficient porosity to allow for capillarization.
- graft materials may provide for a reduced permeability to blood.
- Other preferred properties of graft materials include being non-allergenic and non- carcinogenic. While all of these properties may be specifically designed into a graft material, it is also desirable for the material to be inexpensive to fabricate.
- Synthetic vascular grafts may have a wide variety of configurations and may comprise a wide variety of materials.
- Conventional vascular graft implants include those formed from a biologically compatible material and which retain an open lumen to permit blood to flow there through after implantation.
- Polymeric structures typically used for vascular graft materials and stent procedures may include woven and non-woven textile materials.
- the delivery of vascular implants to a specific location in the vascular tree of a patient is essentially limited by the diameter, tortuosity and access to the vessel to be treated.
- Vascular implants for delivery into relatively large vessels are well- known in the art.
- polyethylene terephthalate fiber fabric arrays have been utilized for such application.
- Polyethylene terephthalate fiber fabrics are manufactured, for example, by the DuPont Company (often known as "DACRON TM" when manufactured by DuPont). Similar fabrics are also manufactured by other companies from various substances.
- Examples of commercially available woven and knitted fabrics of medical grade Dacron fibers include, for example, single and double velour graft fabrics, stretch Dacron graft fabric and Dacron mesh fabrics.
- vascular grafts for implantation into small and tortuous vessels (less than 6 mm diameter).
- Such implantation necessitate that the implant be capable of being collapsed into a sufficiently small diameter delivery system and being expanded at a desired location in a patient while retaining all the desired properties for its intended purpose.
- the present invention is a graft comprising a graft fabric comprising a plurality of yarns, the yarns having a denier of 5 to 50, said graft being packable in an endovascular delivery system having an outer diameter of from about 0.06 inches (5 French) to about 0.27 inches (20 French); preferably from about 0.10 inches (8 French) to about 0.22 inches (17 French); and most preferably from about 0.13 inches (10 French) to about 0.19 inches (14 French).
- the yarns of the graft fabric may have a denier of 5 to 40 or 20 to 40.
- the yarns comprise a synthetic polymer, such as a thermoplastic material.
- the thermoplastic material may comprise at least one of polyester, polypropylene, polyurethane and polytetrafluoroethylene.
- the yarns are made from filaments or fibers having a low denier.
- the filaments or fibers have a denier less than or equal to about 1.4. More preferably, the filaments or fibers have a denier of less than or equal to about 0.7. Most preferably, the filaments or fibers have a denier of less than or equal to about 0.4.
- the yarns comprise a monofilament.
- the yarns may comprise multifilaments.
- the yarns may be textured or non-textured.
- the yarns have a tenacity of about 4 grams per denier or more, more preferably of about 6 grams per denier or more.
- the graft fabric of the graft may further comprise a hydrophilic material.
- the hydrophilic material may be mechanically bonded to a surface of the graft fabric.
- the hydrophilic material may be covalently bonded to the surface of the graft fabric.
- the yarns of the graft fabric may be woven or nonwoven.
- the weave of the graft fabric may be a plain weave, a matt weave, or a combination thereof.
- the weave type of the graft fabric may be uniform or non-uniform.
- the invention is a graft comprising a graft fabric comprising a plurality of yarns, the yarns having a denier of 5 to 50, the yarns being made from filaments or fibers having a denier less than or equal to about 1.4 and comprising a synthetic polymer.
- the graft fabric further comprises a hydrophilic material.
- such graft is packable in an endovascular delivery system having an outer diameter of from about 0.06 inches to about 0.27 inches.
- the invention is an endoluminal prosthesis, comprising a tubular graft comprising a graft fabric comprising a plurality of yarns, the yarns having a denier of 5 to 50; and a stent supporting the graft fabric.
- the endoluminal prosthesis is packable in a delivery system having an outer diameter of from about 0.06 inches (5 French) to about 0.27 inches (20 French), preferably from about 0.10 inches (8 French) to about 0.22 inches (17 French), and most preferably from about 0.13 inches (10 French) to about 0.19 inches (14 French).
- the yarns of the graft fabric may have a denier of 5 to 40 or 20 to 40.
- the yarns of the graft fabric of the endoluminal prosthesis comprise a synthetic polymer.
- the synthetic polymer may be a thermoplastic material comprising at least one of polyester, polypropylene, polyurethane and polytetrafluoroethylene.
- the graft fabric is polyester.
- the yarns of the graft fabric may be made of filaments or fibers having a low denier.
- the filaments or fibers have a denier of less than or equal to about 1.4. More preferably, the filaments or fibers have a denier of less than or equal to about 0.7. Most preferably, the filaments or fibers have a denier of less than or equal to about 0.4.
- the yarns of the graft fabric comprise a monofilament.
- the yarns of the graft fabric may also comprise multifilaments.
- the yarns may be textured or non-textured.
- the yarns of the graft fabric of the endoluminal prosthesis have a tenacity of about 4 grams per denier or more, or about 6 grams per denier or more.
- the graft fabric of the endoluminal prosthesis may further comprise a hydrophilic material.
- the hydrophilic material may be mechanically bonded to the graft fabric.
- the hydrophilic material may be covalently bonded to the graft fabric of the endoluminal prosthesis.
- Hydrophilic material may act as a lubricant for facilitating introduction of the prosthesis inside an endovascular delivery system and delivery of the prosthesis to a precise location within the body of a patient. Also, activation of the hydrophilic material causes swelling of the material and provides, as a result, means to reduce the porosity and the permeability of the graft fabric. Although the hydrophilic material may be often activated before implantation, body fluids in contact with the graft fabric after implantation often tend to maintain the swelling of the hydrophilic material.
- the yarns of the graft fabric of the endoluminal prosthesis may be woven or nonwoven. The weave may be a plain weave, a matt weave, or a combination thereof.
- the weave type of the yarns of the tubular graft fabric of the endoluminal prosthesis may be uniform or non-uniform.
- the number of ends per inch is less than about 152 and the number of picks per inch is less than about 135.
- the tubular graft fabric of the endoluminal prosthesis has, after implantation of the prosthesis into a vascular lumen of a patient, a permeability of about zero ml_/min/cm2 to about 240 mL/min/cm2.
- the tubular graft fabric of the endoluminal prosthesis has, after implantation of the prosthesis into a vascular lumen of a patient, a permeability of about 80 ml_/min/cm2 to about 240 mL/min/cm2.
- the tubular graft fabric of the endoluminal prosthesis has, after implantation of the prosthesis into a vascular lumen of a patient, a permeability of about 160 ml_/min/cm2 to about 240 mL/min/cm2.
- the invention is an endoluminal prosthesis comprising a tubular graft, which comprises a graft fabric and a stent supporting the graft fabric.
- the graft fabric comprises a plurality of yarns, the yams having a denier of 5 to 50, the yarns being made from filaments or fibers having a denier less than or equal to about 1.4, and comprising a synthetic polymer.
- the graft fabric further comprises a hydrophilic material.
- the endoluminal prosthesis is packable in an endovascular delivery system having an outer diameter of from about 0.06 inches to about 0.27 inches.
- the present invention is a method for making an endoluminal graft prosthesis for implantation into a patient.
- the method comprises the steps of providing a graft comprising a graft fabric having a plurality of yarns, the yarns having a denier of form 5 to 50; treating the graft fabric with a hydrophilic material; attaching a stent to the graft fabric to form a stent graft; and inserting the stent graft into an endovascular delivery system.
- the diameter of the endovascular delivery system is preferably from about 0.06 inches (5 French) to about 0.27 inches (20 French), more preferably from about 0.10 inches (8 French) to about 0.22 inches (17 French), and most preferably from about 0.13 inches (10 French) to about 0.19 inches (14 French).
- the yarns of the graft fabric may have a denier of 5 to 40 or 20 to 40.
- the yarns are made from filaments or fibers having a denier less than or equal to about 1.4. More preferably, the yarns are made from filaments or fibers having a denier less than or equal to about 0.7. Most preferably, the yarns are made from filaments or fibers having a denier less than or equal to about 0.4.
- the yarns may comprise a monofilament or multifilaments.
- the yarns may be textured or non-textured.
- the filaments or fibers of the yarns of the graft fabric may comprise a synthetic polymer, such as a thermoplastic material.
- the thermoplastic material preferably comprises at least one material selected from the group consisting of polyester, polypropylene, polyurethane, and polytetrafluoroethylene.
- the yarns of the graft fabric have a tenacity of about 4 grams per denier or more; more preferably, about 6 grams per denier or more.
- the step of treating the graft fabric with the hydrophilic material may comprise positing the hydrophilic material on at least one surface of the graft fabric.
- the step of treating the graft fabric with the hydrophilic material may include mechanically bonding the hydrophilic material to the surface of the graft fabric.
- the step of treating the graft fabric with the hydrophilic material includes covalently bonding the hydrophilic material to the surface of the graft fabric.
- the yarns of the graft fabric may be woven or nonwoven.
- the weave may be one of a plain weave, a matt weave, or a combination thereof.
- the weave type is uniform.
- the weave type may be non uniform.
- the number of ends per inch may be less than about 152 and the number of picks per inch may be less than about 135.
- the step of attaching the graft fabric to a stent further includes attaching the stent prior to the step of treating the graft fabric with the hydrophilic material.
- the step of attaching the graft fabric to a stent further includes attaching the stent after the step of treating the graft fabric with the hydrophilic material.
- Figure 1 is an illustration of exemplary types of weave.
- Figure 2 is a schematic illustration of a fragmentary, perspective view of a single layer of woven fabric showing an exemplary distribution of yarns.
- Figure 3 shows a modular bifurcated aortic endoluminal prosthesis comprising the graft fabric of the present invention, implanted within an aneurysm of the aorta.
- Figure 4 shows a fabric stent graft covered by a layer of hydrophilic material.
- Figure 5 shows a non-bifurcated aortic endoluminal prosthesis comprising the graft fabric of the present invention.
- graft means any replacement for a bodily tissue or for a function of a bodily tissue.
- a graft may be transplanted from a donor to a recipient to repair a part of a body, and in some cases, the patient can be both donor and recipient. For example, a graft may replace tissue that has been destroyed or create new tissue where none exists.
- the term “yarn” refers to a length of a continuous thread or strand of one or more filaments or fibers, with or without twist, suitable for weaving, knitting or otherwise intertwining to form a textile fabric.
- textured yarn refers to a yarn that has been processed to create durable fine distortions along the length of the yarn, such as creases, crimps, coils, loops, spirals, twists or other.
- yarn encompasses yarns, filaments, fibers, threads, strands, and the like.
- fabric refers to a type of graft material.
- the fabric may be a textile.
- the fabric may be woven or nonwoven.
- the woven fabric may be produced by weaving or knitting filaments.
- “Weaving” refers to forming a fabric by interlacing filaments in one direction (warp) with others at a right angle to them (weft, fill or filling).
- a “weave” refers to the pattern of interlacing warp and weft in a woven fabric, which may be for example a plain weave (one up, one down), a matt weave (two up, two down) or a combination thereof.
- a weave may be uniform if the number of ends (Ae. number of yarns, filaments or fibers in the direction of the warp) per inch is equal to the number of picks (i.e. number of yarns, filaments or fibers in the direction of the weft, fill or filling) per inch.
- the term "denier” refers to the mass in grams of 9000 meters of a yarn.
- the term "tenacity” or “tensile strength” refers to the ability of a yarn to resist breaking under tension.
- the tenacity of a fabric may be measured in the direction of the warp or in the direction of the weft.
- the "permeability" of a fabric refers to the amount of water (saline) measured in milliliters that passes through a square centimeter of the fabric in 60 seconds (ml/min/cm2), under physiological pressure (typically 120 mm Hg).
- patient refers to animals, particularly to mammals, and especially to humans.
- the present invention is directed to grafts, comprising graft fabric, and endoluminal prostheses that include the graft fabric, for implanting into small and tortuous vessels. Implantation into small and tortuous vessels necessitate that the grafts and endoluminal prostheses be capable of being collapsed into a sufficiently small diameter endovascular delivery system and capable of being expanded at a desired location in a patient while retaining all the desired properties for its intended purpose.
- the graft fabric comprises plurality of modified yarns having a low denier of 5 to 50. Also the filaments or fibers that make up the graft fabric may have a low denier. A reduced number of filaments per yarn may also be appropriate for such application.
- a graft of this invention may include a graft fabric of biocompatible material.
- biocompatible refers to material that is substantially non-toxic in the in vivo environment of its intended use, and that is not substantially rejected by the patient's physiological or immunological system (i.e. is not antigenic). This can be gauged by the ability of a material to pass biocompatibility tests set forth in International Standards Organization (ISO) Standard No. 10993 and/or the U.S. Pharmacopeia (USP) 23 and/or the U.S. Food and Drug Administration (FDA) blue book memorandum No.
- ISO International Standards Organization
- USP U.S. Pharmacopeia
- FDA U.S. Food and Drug Administration
- G95-1 entitled "Use of International Standard ISO-10993, Biological Evaluation of Medical Devices Part-1 : Evaluation and Testing.” Typically, these tests measure a material's toxicity, infectivity, pyrogenicity, irritation potential, reactivity, hemolytic activity, carcinogenicity and/or immunogenicity.
- a biocompatible material when introduced into a majority of patients, will not cause a significantly adverse, long-lived or escalating biological reaction or response, and is distinguished from a mild, transient inflammation which typically accompanies surgery or implantation of foreign objects into a living organism.
- biocompatible textile fabric materials from which graft fabric of the present invention can be formed include polyesters, such as polypropylene and polyethylene terephthalate; fluorinated polymers, such as polytetrafluoroethylene (PTFE) and fibers of expanded PTFE; and polyurethanes.
- materials that are not inherently biocompatible may be subjected to surface treatments or modifications in order to render the materials biocompatible.
- any fibrous material may be used to form a graft fabric, provided the final graft fabric is biocompatible.
- Polymeric materials that can be formed into fibers suitable for making yarns and fabrics include, for example, polyethylene, polypropylene, polyaramids, polyacrylonitrile, nylons and cellulose, in addition to polyesters, fluorinated polymers, polyurethanes as listed above, and other suitable polymeric materials.
- the fabric is made of one or more polymers that do not require treatment or modification to be biocompatible. More preferably, the fabric is made of biocompatible polyester. Most preferred fabrics include those formed from polyethylene terephthalate and PTFE. These materials are inexpensive, easy to handle, have good physical characteristics and are suitable for clinical application.
- the fabrics may be nonwoven or woven (including knitted) fabrics.
- Nonwoven fabrics are fibrous webs that are held together through bonding of the individual yarns. The bonding can be accomplished through thermal or chemical treatments or through mechanically entangling the yarns. Because nonwoven fabrics are not subject to weaving or knitting, filaments or fibers can be used in a crude form without being converted into a yarn structure.
- Woven fabrics are fibrous webs that have been formed by knitting or weaving.
- the woven fabric structure may be any kind of weave including, for example, a plain weave, a matt weave, a herringbone weave, a satin weave, a pile, a twill, or a basket weave.
- FIG. 1 illustrates plain, satin, pile, and twill weaves.
- the preferred weave for the graft fabric of the present invention include plain weave, matt weave, or a combination thereof.
- the weave type may be uniform, but is preferably non-uniform with a number of yarns in the direction of the warp (ends per inch) that is less than about 152 and a number of yarns in the direction of the weft (picks per inch) that is less than about 135.
- the choice of a weave may depend on the physical properties desired for a graft.
- the choice of weave may depend on the type of weave, the diameter of the spaces between yarns, the shape of the yarns, the finishing techniques, the presence or absence of a coating, such as a hydrophilic coating, and the configuration of the graft fabric (e.g. a single layer or multi-layer graft fabric and relative direction of the yarns, fibers or filaments in the multi-layered graft fabric).
- a graft fabric that has low permeability, preferably of less than 240 mL/min/cm2
- a plain weave 40 denier warp and fill yarn, 100-150 ends per inch, 100-150 picks per inch, and a filament yarn type.
- knitted fabrics include weft knit and warp knit fiber arrays.
- Weft knit fabric structures (including double-knit structures) utilize interlocked fiber loops in a filling-wise, or weft, direction, while warp knit structures utilize fabric loops interlocked in a length wise, or warp, direction.
- Weft knit structures generally are more elastic than warp knit structures, but the resiliency of warp knit fabrics is satisfactory to provide a substantial degree of elasticity, or resiliency, to the fabric structure without substantially relying on tensile fiber elongation for such elasticity.
- Weft knit fabrics generally have two dimensional elasticity (or stretch), while warp knit fabrics generally have unidirectional (width wise) elasticity.
- the different elasticity properties of the various knit or woven structures may be beneficially adapted to the functional requirement of the particular graft fabric application. In some cases, where little elasticity is desired, the fabric may be woven to minimize in plane elasticity but yet provide flexibility.
- the graft fabric of this invention may be a fabric that includes yarns and spaces between the yams.
- the yarns are made up of filaments or fibers that are either woven or nonwoven, as described above.
- the filaments or fibers have a low denier.
- the filaments of fibers making up the yarns may have a size of less than or equal to about 1.4 denier. More preferably, the size of the filaments or fibers may be less than or equal to about 0.7 denier. Most preferably, it may be less than or equal to about 0.4 denier.
- the yarns have a denier of about 5 to about 50.
- yarns have a denier of about 5 to about 40, and most preferably, the yarns have a denier of about 20 to about 40.
- the low denier of filaments and yarns allows for formation of fabric materials that are thin, yet the materials can retain all the desired properties necessary for its use as graft fabric to make the graft and endoluminal prostheses of this invention.
- Preferred denier of the yarns provides for a thin structure that may be easily packable into an endovascular delivery system constructed for delivery of the graft and endoluminal prosthesis into small and torturous vessels.
- the fabrics can be used to form a graft and endoluminal prosthesis packable in an endovascular delivery system having an outer diameter of from about 0.06 inches (5 French) to about 0.27 inches (20 French); more preferably an endovascular delivery system having an outer diameter of from about 0.10 inches (8 French) to about 0.22 inches (17 French); and most preferably, an endovascular delivery system having an outer diameter of from about 0.13 inches (10 French) to about 0.19 inches (14 French).
- the filaments provide a flexible array in sheet or tubular form so that the graft fabric is provided with a predetermined high degree of flexibility.
- the yarns may comprise a monofilament or multifilaments.
- the yarns may be textured or non-textured.
- the spaces between the yarns of the fabric comprise an average diameter from about 1 micron to about 400 microns. More preferably, the spaces between the yarns of the fabric comprise an average diameter from about 1 micron to about 100 microns. Most preferably, the spaces between the yarns of the fabric comprise an average diameter from about 1 micron to about 10 microns.
- graft fabrics Because of the presence of spaces between the yarns of the fabric graft, graft fabrics have a porosity that is related to the type of yarn(s) and the physical characteristics of the yarns (diameter, shape, denier, etc.), the weave pattern and the finishing techniques. Generally speaking, the permeability to water of a fabric material is correlated to the porosity of the material. For example, known graft fabric materials, made of woven polyester and having a twill weave, have a permeability of about 350 ml/min/cm2 (available from VASCUTEK@ Ltd., Renfrewshire, Scotland, UK).
- Woven fabrics for use as graft fabrics to form grafts of this invention may have any desirable size, shape, form, and configuration.
- the filaments forming yarns of woven fabrics may be filled or unfilled. Examples of how the basic unfilled filaments may be manufactured and purchased are indicated in U.S. Pat. No. 3,772,137 by Tolliver.
- Certain physical parameters may be used to further characterize fabric filaments or fibers used in grafts of this invention.
- fibers may be characterized as having a tensile strength (Ae., tenacity) and tensile modulus.
- the fibers making up the yarns of the graft fabric have a tensile strength of at least about 20,000 psi and a tensile modulus of at least about 2x106 psi.
- the yarns have a tenacity of about 4 grams per denier or more.
- the yarns have a tenacity of about 6 grams per denier or more.
- the fabric is made of medical grade synthetic polymeric materials described above.
- the filaments or fibers of the fabric may also have a high degree of axial orientation. Fibers generally used in graft fabrics for medical use may be of a diameter from about 1 micron to about 5 millimeters.
- Graft fabrics in accordance with the present invention, preferably include a plurality of yarns.
- the yarns of the graft fabric may all be formed from the same material (e.g. polyester) or may be formed from yarns of different materials. In the latter case, multiple embodiments are encompassed by the present invention.
- only the yarns in the direction of the warp are made of different materials, whereas the yarns in the direction of the weft are all of the same material.
- only the yarns in the direction of the weft are made of different materials, whereas the yarns in the direction of the warp are all of the same material.
- the yarns of the warp and the weft are made of different materials.
- grafts and endoluminal prostheses that comprise thin graft fabrics are easily collapsable into a small diameter endovascular delivery system and are expandable at a desired location in a patient while retaining all the desired properties for their intended purpose.
- graft fabrics having low porosity may be an inherent property of the graft fabric itself.
- low porosity may be obtained by treating the porous graft fabric, for example by coating with a material that fills the spaces. Such treatment further decreases the inherent porosity of the graft fabric to a desired level.
- the graft fabric of the present invention may be coated with a hydrophilic material that further reduces the porosity of the fabric, especially after activation and swelling of the hydrophilic material.
- the graft fabric of the present invention has preferably a permeability of less than 240 ml/min/cm2, which can be decreased to substantially zero ml/min/cm2 when a suitable hydrophilic material is used in appropriate quantity and layers.
- more yarns per cross section may be provided.
- the type of weave, ends per inch, picks per inch, and yarn cross section may be modified.
- the graft fabric may further include a coating posited over the graft material.
- the coating may include, for example, a biocompatible hydrophilic material, such as hydrophilic polymer.
- Hydrophilic polymers that may be suitable for use as a coating for the graft fabric material of the present invention are readily and commercially available from , for example, Biosearch Medical Products, Sommerville, N.J.; Hydromer Inc. Branchburg, N.J.; Surmodics, Eden Prairie, Wl; and STS Biopolymers, Inc., Henrietta, N. Y.
- hydrophilic polymer may include, but not be limited to, polyethylene oxide, polyvinyl pyrrolidone, polyethylene glycol, carboxylmethyl cellulose, hydroxymethyl cellulose, and other suitable hydrophilic polymers, or a combination thereof.
- the graft fabric may be impregnated or otherwise in contact with the hydrophilic material.
- the hydrophilic material can act as a lubricant to facilitate introduction of the graft, including the graft fabric of the present invention into the endovascular delivery system.
- the hydrophilic coating may also facilitate extrusion of the graft or endoluminal prosthesis from the endovascular delivery system at an implantation site into a vessel of a patient.
- the mere physical presence of the coating of hydrophilic material may serve to provide a barrier to the passage of fluids (e.g. body fluids) through the graft fabric.
- the coating material may also swell once in contact with blood or body fluids. After swelling of the material has occurred, the spaces between the yarns of the fabric may become occluded partially or totally.
- porous fabric material may be coated and/or impregnated with a hydrophilic material to provide the final graft product.
- impregnation means providing for the presence of one or more components inside the porous fabric, in particular in the spaces of the fabric material.
- the coating and/or impregnation may be provided to reduce the porosity of the fabric at the time of implantation by acting as a filler to occlude the spaces between yarns of the graft fabric.
- the hydrophilic material By reducing the diameter of the spaces of a graft fabric, the hydrophilic material causes the graft to be less porous. This reduction in porosity results in lower permeability of the graft fabric to body fluids and blood, therefore minimizing blood loss through the graft.
- the biocompatible hydrophilic coating layer may be posited over an entire surface or part of the surface of the graft fabric.
- the type of bonding between the graft fabric and the hydrophilic coating is preferably mechanical, although covalent bonding is also envisaged.
- Bonding of the hydrophilic material to the graft fabric is such that the hydrophilic material will remain on the graft at least until cells in the immediate vicinity of the graft have colonized the graft after implantation of the graft into a patient. After colonization of the graft by cells, the role of the hydrophilic material becomes secondary.
- the secondary role may be, for example, to lower permeability.
- the graft fabric may be coated, impregnated, or lined with, for example, bioactive agents to achieve desired physiological effects.
- bioactive agents may be incorporated into or mixed with the hydrophilic material in a coating mixture for coating of the graft fabric.
- the bioactive agent may be present in a liquid, a finely divided solid, or any other appropriate physical form.
- bioactive agents may be posited over or under the hydrophilic material.
- the coating mixture may include one or more additives, for example, auxiliary substances, such as diluents, carriers, excipients, stabilizers, or the like.
- bioactive agents include, without limitation, at least one of paclitaxel; estrogen or estrogen derivatives; heparin or another thrombin inhibitor; hirudin, hirulog, argatroban, D-phenylalanyl-L-poly-L- arginyl chloromethyl ketone or another antithrombogenic agent, or mixtures thereof; urokinase, streptokinase, a tissue plasminogen activator, or another thrombolytic agent, or mixtures thereof; a fibrinolytic agent; a vasospasm inhibitor; a calcium channel blocker, a nitrate, nitric oxide, a nitric oxide promoter or another vasodilator; an antimicrobial agent or antibiotic; aspirin, ticlopidine or another anti-platelet agent; colchicine or another antimitotic, or another microtubule inhibitor; cytochalasin or another actin inhibitor; a remodeling inhibitor; deoxyribonu
- the bioactive agents may be released over time from the coating.
- the amount of bioactive agent will be dependent upon a particular bioactive employed and medical condition to be treated. Typically, the amount of the bioactive agent represents about 0.001% to about 70% of the total coating weight, more typically about 0.001% to about 60% of the total coating weight. It is possible that the bioactive agent may represent as little as 0.0001% of the total coating weight.
- Various methods of coating, impregnating, or lining the graft fabric with the bioactive agents may be utilized and are known in the art.
- the bioactive agents may be deposited onto the graft fabric by spraying, dipping, pouring, pumping, brushing, wiping, vacuum deposition, vapor deposition, plasma deposition, electrostatic deposition, epitaxial growth, or any other method known to those skilled in the art.
- Methods for dip coating a medical device are disclosed, for example, in U.S. Patent No. 6,153,252, which is incorporated by reference.
- the type of coating or vehicle utilized to immobilize the bioactive agent to the graft fabric may vary depending on a number of factors, including the type of the medical device, including the graft fabric, the type of bioactive agent, and the rate of release thereof.
- the bioactive agent should preferably remain on the graft fabric during the delivery and implantation of the prosthesis. Accordingly, various materials may be utilized as surface modifications to prevent the bioactive agent from coming off prematurely. These materials are known and commonly used in the art.
- the graft, including a graft fabric, of the present invention may be used to manufacture various medical devices, such as endoluminal graft prostheses.
- the endoluminal graft prosthesis may include endovascular grafts, stents, and combination stent-grafts.
- endovascular grafts include those which comprise knitted or woven fabrics. The latter may be coated or impregnated with a variety of substances, including single or multiple bioactive or non-bioactive substances, as described above.
- the endoluminal prosthesis of this invention includes a tubular graft comprising a graft fabric and a stent supporting the graft fabric.
- the graft fabric further comprises a plurality of yarns, the yarns having a denier of from 5 to 50, 4 to 40, or 20 to 40.
- Such endoluminal prosthesis may be packable in a delivery system having an outer diameter of from about 0.06 inches to about 0.27 inches; more preferably an outer diameter of from about 0.10 inches to about 0.22 inches; and most preferably an outer diameter of from about 0.13 inches to about 0.19 inches.
- the stents of the prosthesis can be of the same type (Ae. self- expandable or balloon-expandable), or at least one stent of a multi-stent device can be of a different type than the remainder of the stents.
- At least one of the supporting stents can be a "hybrid" stent, which combines balloon expandable portion(s) and self-expandable portion(s).
- the graft fabric may be used to cover either the entire internal and/or external surface(s) of one or plurality of stents, or at least portion of the surfaces.
- the devices of the present invention preferably comprise a single layer of graft fabric material. More preferably, the single layer of graft fabric material is seamless. However, if seams are present in fabrics making up the graft fabric of the present invention, the graft fabric may be coated with a hydrophilic material as described above. Hydrophilic materials are capable of swelling and filling the weave of the fabric after its activation upon implantation into a vessel, creating a seal that will substantially minimize and suppress leakage(s) at the seam(s). [0067] The functional vessels of human and animal bodies, such as blood vessels and ducts, occasionally weaken or even rupture.
- the vascular wall can weaken or tear, resulting in dangerous conditions such as aneurysms and dissections. Upon further exposure to hemodynamic forces, such an aneurysm can rupture. Treatment of such conditions can be performed by implanting a prosthesis within the vascular system using minimally invasive surgical procedures.
- bifurcated endoluminal prostheses are used for the treatment of vascular conditions near a branch point because a single, straight section of a tubular prosthesis may not be able to span the aneurysm or dissection and still maintain sufficient contact with healthy vascular tissue to secure the prosthesis and to prevent endoleaks.
- vascular conditions near a branch point
- a single, straight section of a tubular prosthesis may not be able to span the aneurysm or dissection and still maintain sufficient contact with healthy vascular tissue to secure the prosthesis and to prevent endoleaks.
- most abdominal aortic aneurysms occur at or near the iliac bifurcation, and treatment with an endoluminal prosthesis requires the presence of prosthesis material in the main aorta and in the iliac branch arteries (Dietrich, E.B. J. Invasive Cardiol. 13(5):383-390, 2001).
- an endoluminal prosthesis for use near a bifurcation will have a main lumen body, for placement within the aorta, and two branch lumens extending from the main lumen body into the branch arteries.
- bifurcated endoluminal prostheses may be used at or near branch point of small vessels.
- One example of a bifurcated prosthesis in accordance with this invention is a single piece prosthesis.
- Such a unitary structure has a main tubular body and preformed leg extensions.
- the seamless structure provided by this configuration can minimize the probability of leakage within the prosthesis.
- FIG. 1 Another example of a bifurcated prosthesis is a modular system.
- this system one or both of the leg extensions can be attached to a main tubular body to provide the final prosthesis.
- Examples of modular systems are described in PCT Patent Application publication WO98153761 and in U .S. Patent Application publication 2002/0198587 A 1 , which are incorporated herein by reference.
- FIG. 3 shows an example of a modular bifurcated stent graft 10 deployed within an aneurysm of the aorta 12 and both iliac arteries 14.
- the prosthetic modules 16 that make up the stent graft 10 are generally tubular, so that the fluid can flow through the stent graft 10, and are preferably made of a textile 33, such as polyester, poly(ethylene terephthalate), or similar materials.
- the main body 18 extends from the renal arteries 20 to near the bifurcation 22. Multiple Z-stents 11 are sutured along the length of the stent graft 10.
- a suprarenal fixation stent 24 anchors the main body 18 to the healthier, preferably non-aneurysmal tissue 26 near the renal arteries.
- Two iliac extension modules 28 extend from the iliac limbs 30.
- the stent graft 10 will preferably achieve a blood-tight seal at the contact regions 32 on both ends of the aneurysm 12, so that the aneurysm 12 will be excluded.
- the stent graft 10 contacts the vascular tissue below the renal arteries 20, around the bifurcation 22 and at the iliac limbs 30 and extensions 28.
- a seal is preferably achieved that will help exclude the entire aneurysmal region and, as a result, the hemodynamic pressures within the aneurysm 12 may be reduced.
- Figure 4 shows another example of a modular bifurcated stent graft. This figure shows a three-piece modular bifurcated stent graft 100 also designed for deployment into an aorta.
- Figure 5 shows a modular uni-iliac aortic stent graft 70 similar to that described in U.S. patent application Serial No.1011 04,672, filed March 22, 2002, which is incorporated herein by reference.
- a hydrophilic coating is posited on the graft fabric 71 , reducing the diameter of the spaces between the fibers of the graft fabric.
- a method for making an endoluminal graft prosthesis for implantation into a patient comprises the steps of providing a graft comprising a graft fabric having a plurality of yarns, the yarns having a denier of 5 to 50, and treating (coating or otherwise impregnating) the graft fabric with a hydrophilic material.
- the graft fabric may be treated with bioactive agents in addition to the hydrophilic material.
- the graft fabric may be treated with bioactive agents only.
- the method further comprises the step of attaching a stent to the graft fabric to form a stent graft.
- the graft fabric may be sutured or glued to the stent(s).
- the stent can be attached to the graft fabric prior to the step of treating the graft fabric with the hydrophilic material or bioactive agents.
- the stent can be attached to the graft fabric following the step of treating the graft fabric with the hydrophilic material or bioactive agents.
- the method further includes the step of inserting the stent graft into an endovascular delivery system.
- the diameter of the delivery system is preferably from about 0.06 inches to about 0.27 inches, more preferably from about 0.10 inches to about 0.22 inches, and most preferably from about 0.13 inches to about 0.19 inches.
- the hydrophilic material is applied to the graft fabric in any manner capable of coating the fabric.
- Hydrophilic material may be added to the porous graft fabric after preparation of the graft, for example by soaking, dipping, spraying, painting or otherwise applying the hydrophilic material to the graft. Dipping may be the preferred coating method.
- the graft fabric is dipped into a bath containing the hydrophilic material, causing the hydrophilic material to coat and, to some extent, impregnate the graft fabric.
- the coated graft fabric is then removed from the bath and allowed to dry.
- the thickness of the coating posited on the graft can be increased by repeating the dipping operation.
- the steps of dipping and drying are repeated until tests for permeability show the graft fabric to be sufficiently impervious to liquids.
- a permeability that is substantially equal to zero ml/min/cm2 is ideal, whereas for other applications, the permeability requirements may be less stringent, such as less than about 240 ml/min/cm2.
- bioactive materials to the graft fabric, in addition to the hydrophilic material, this can be done before or after dipping, again depending on the desired clinical application.
- Another method of applying hydrophilic coating may be by knife over roll techniques known to those skilled in the art.
- the graft fabric Either before or after the graft fabric has been coated with the hydrophilic material and optional bioactive agents, standard methods can be used to affix the graft fabric to a supporting stent(s).
- the graft material may be, for example, sutured or glued on the stent(s).
- a small diameter endoluminal graft prosthesis such as a stent graft within a tortuous and small diameter vessel of a patient requires that the stent graft be packable into a suitably small delivery system that has sufficient pushability, trackability and lateral flexibility.
- the prosthesis is delivered to the treatment site by endovascular insertion.
- the endovascular delivery system is sufficiently rigid to enable the health practitioner performing the implantation procedure to push the delivery system deep into the vascular tree of a patient, but not so rigid as to cause vascular damage during the implantation procedure.
- the delivery system would have enough lateral flexibility to allow tracking of the path of any one of the blood vessels leading to the implantation site.
- a delivery system typically comprises a cannula or a catheter, having a variety of shapes according to the intended clinical application and implantation site.
- the graft or endoluminal prosthesis of this invention may be radially collapsed and inserted into the catheter or cannula using conventional methods.
- various other components may need to be provided in order to obtain a delivery system that is optimally suited for its intended purpose.
- these include and are not limited to various outer sheaths, pushers, stoppers, guidewires, sensors, etc.
- suitable delivery system were previously described and are known in the art.
- an apparatus and methods of placing bifurcated stents have been described in U.S. Patent No. 6,669,718.
- U.S. Patent Application Publication Nos. 2005/0004663 and US20030149467A1 which are incorporated herein in their entirety, provide additional examples of available delivery systems.
- Another example of delivery system and method of delivering endoluminal devices, including extensions was previously described in U.S. Patent No. 6,695,875 B2, which is incorporated in its entirety.
- an endovascular delivery system can deliver the graft, wherein the graft comprises a graft fabric comprising a plurality of yarns, the yarns having a denier of 5 to 50, 5 to 40, or 5 to 20.
- a preferred endovascular delivery system would have an outer diameter of about 0.13 inches to about 0.19 inches, more preferably an outer diameter of about 0.10 inches to about 0.22 inches, and most preferably an outer diameter of about 0.06 inches to about 0.27 inches (about 10 French to about 14 French).
- the delivery system can deliver the endoluminal prosthesis of the present invention, wherein the endoluminal prosthesis comprises the graft comprising a graft fabric.
- the graft fabric comprises a plurality of yarns, the yarns having a denier of from about 5 to about 50. More preferably, the yarns have a denier of from about 5 to about 40. Most preferably, the yarns have a denier of from about 20 to about 40.
- the endoluminal device may further comprise a stent supporting the graft fabric.
- the endoluminal device may comprise a plurality of stents.
- the endoluminal prosthesis to be packable in a small delivery system, for example, having diameter of about 0.06 inches to about 0.27 inches (about 10 French to about 14 French), it is preferable that at least most of the filaments or fibers making up the yarns of the graft fabric have a size of less than or equal to about 1.4 denier. More preferably, the size of the filaments or fibers less than or equal to about 0.7 denier, and most preferably, it is less than or equal to about 0.4 denier. [0086]
- such small yarns possess sufficient resistance to breakage in order to fulfill their role as an implant or transplant in the replacement or repair of blood vessel walls.
- the tenacity of a yarn which is an expression of the ability of a yarn or fabric to resist breaking under tension, is preferably about 4 g per denier, or more preferably about 6 g per denier or more.
- the prosthesis Once the prosthesis is deployed within a vessel, it expands and it can remain in place indefinitely, acting as a substitute vessel for the flow of blood or other fluids. Alternatively, if the prosthesis is intended for temporary treatment, it can be removed after a desired period of time from within the patient by conventional means.
- the invention is directed to a method for treating endovascular disease, such as aneurysm, and more specifically, an abdominal aortic aneurysm.
- the method comprises delivering an endoluminal implantable medical device comprising a stent; a tubular graft comprising a graft fabric supported by the stent.
- the graft fabric comprises a plurality of yarns, the yarns having a denier of from about 5 to about 50. More preferably, the yarns have a denier of from about 5 to about 40. Most preferably, the yarns have a denier of from about 20 to about 40.
- the present invention is a graft material comprising a plurality of yarns, most of the yarns having a denier sufficient to form a graft packable in a delivery system having an outer diameter of from about 0.06 inches to about 0.27 inches, more preferably having an outer diameter from about 0.10 inches to about 0.22 inches, most preferably, having an outer diameter from about 0.13 inches to about 0.19 inches.
- the yarns have a denier of 5 to 50, 5 to 40, or 20 to 40.
- the filaments of the yarns have a denier less than or equal to about 1.4; less than or equal to about 0.7; or less than or equal to about 0.4.
- at least one of the yarns comprises a monofilament.
- At least one of the yarns comprises multifilaments.
- at least one of the yarns is textured or non-textured.
- the yarns comprise a synthetic polymer, such as a thermoplastic material.
- the thermoplastic material comprises at least one of polyester, polypropylene, polyurethane and polytetrafluoroethylene.
- the yarns have a tenacity of about 4 grams per denier or more, about 6 grams per denier or more.
- the graft material may further comprise hydrophilic material posited on at least one surface of the graft.
- the hydrophilic material may be mechanically bonded to the surface of the graft.
- the hydrophilic material may be covalently bonded to the surface of the graft.
- the yarns of the graft material are woven or nonwoven.
- the weave of the graft material may be a plain weave, a matt weave or a combination thereof.
- the weave type of the graft material may be uniform or non-uniform.
- the number of ends per inch is less than about 152 and the number of picks per inch is less than about 135.
- the invention is an endoluminal prosthesis, comprising a tubular graft material and a stent supporting the graft material.
- the graft material comprises a plurality of yarns, each yarn having a denier sufficient to form a graft packable in a delivery system having an outer diameter of from about 0.06 inches to about 0.27 inches, preferably from about 0.10 inches to about 0.22 inches, and most preferably, from about 0.13 inches to about 0.19 inches.
- the yarns of the graft have a denier of 5 to 50, 5 to 40, or 20 to 40.
- the filaments of the yarns have a denier less than or equal to about 1.4; less than or equal to about 0.7; or less than or equal to about 0.4.
- at least one of the yarns of the graft is a monofilament or multifilament.
- at least one of the yams is textured or non- textured.
- the yarns of the tubular graft of the endoluminal prosthesis comprise a synthetic polymer.
- the synthetic polymer is a thermoplastic material comprising at least one of polyester, polypropylene, polyurethane and polytetrafluoroethylene.
- the yarns of the tubular graft of the endoluminal prosthesis have a tenacity of about 4 grams per denier or more, or about 6 grams per denier or more.
- the endoluminal prosthesis may further comprise a hydrophilic material posited on at least one surface of the graft.
- the hydrophilic material may be mechanically bonded to the surface of the graft.
- the hydrophilic material may be covalently bonded to the surface of the graft of the endoluminal prosthesis.
- the yarns of the tubular graft of the endoluminal prosthesis may be woven or nonwoven.
- the weave may be a plain weave, a matt weave, or a combination thereof.
- the weave type of the yarns of the tubular graft of the endoluminal prosthesis is uniform or non-uniform.
- the number of ends per inch is less than about 152 and the number of picks per inch is less than about 135.
- the tubular graft material of the endoluminal prosthesis has, after implantation of the prosthesis into a vascular lumen of a patient, a permeability of about zero mL/min/cm2 to about 240 ml_/min/cm2.
- the tubular graft material of the endoluminal prosthesis has, after implantation of the prosthesis into a vascular lumen of a patient, a permeability of about 80 ml_/min/cm2 to about 240 ml_/min/cm2. Most preferably, the tubular graft material of the endoluminal prosthesis has, after implantation of the prosthesis into a vascular lumen of a patient, a permeability of about 160 ml_/min/cm2 to about 240 mL/min/cm2.
- the present invention is a method for making a endoluminal graft prosthesis for implantation into a patient.
- the method comprises the steps of providing a graft material, providing a hydrophilic material, and coating the graft material with the hydrophilic material.
- the method further comprises the steps of supporting the coated graft material with a stent to form a stent graft, and inserting the stent graft into a delivery system.
- the diameter of the delivery system is preferably from about 0.06 inches to about 0.27 inches; more preferably from about 0.10 inches to about 0.22 inches; most preferably, from about 0.13 inches to about 0.19 inches.
- the yarns of the graft material have a denier of 5 to 50, 5 to 40, or 20 to 40. Most preferably, the yarns have a denier less than or equal to about 1.4; less than or equal to about 0.7. Preferably, the filaments of the yarns have a denier less than or equal to about 0.4. Preferably, at least one of the yarns comprises a monofilament or multifilaments. Preferably, the yarns are textured or non textured. Preferably, the yarns have filaments comprising a synthetic polymer, such as a thermoplastic material. The thermoplastic material preferably comprises at least one material selected from the group consisting of polyester, polypropylene, polyurethane, and polytetrafluoroethylene.
- the yarns have a tenacity of about 4 grams per denier or more; more preferably, about 6 grams per denier or more.
- the step of coating the graft material with the hydrophilic material comprises positing the hydrophilic material on at least one surface of the graft material.
- the step of coating the graft material with the hydrophilic material includes mechanically bonding the hydrophilic material to the surface of the graft.
- the step of coating the graft material with the hydrophilic material includes covalently bonding the hydrophilic material to the surface of the graft.
- the yarns are woven or non woven.
- the weave is one of a plain weave, a matt weave, or a combination thereof.
- the weave type is uniform.
- the weave type may be non uniform.
- the number of ends per inch may be less than about 152 and the number of picks per inch is less than about 135.
Landscapes
- Health & Medical Sciences (AREA)
- Gastroenterology & Hepatology (AREA)
- Pulmonology (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Prostheses (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05771055A EP1768612A1 (en) | 2004-07-07 | 2005-07-07 | Graft, stent graft and method for manufacture |
JP2007520541A JP2008505713A (en) | 2004-07-07 | 2005-07-07 | Graft, stent graft, and manufacturing method |
CA002570142A CA2570142A1 (en) | 2004-07-07 | 2005-07-07 | Graft, stent graft and method for manufacture |
AU2005269864A AU2005269864B2 (en) | 2004-07-07 | 2005-07-07 | Graft, stent graft and method for manufacture |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US58603604P | 2004-07-07 | 2004-07-07 | |
US60/586,036 | 2004-07-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006014592A1 true WO2006014592A1 (en) | 2006-02-09 |
Family
ID=35134801
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2005/024282 WO2006014592A1 (en) | 2004-07-07 | 2005-07-07 | Graft, stent graft and method for manufacture |
Country Status (6)
Country | Link |
---|---|
US (1) | US20060009835A1 (en) |
EP (1) | EP1768612A1 (en) |
JP (1) | JP2008505713A (en) |
AU (1) | AU2005269864B2 (en) |
CA (1) | CA2570142A1 (en) |
WO (1) | WO2006014592A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8911856B2 (en) | 2009-12-18 | 2014-12-16 | Atex Technologies, Inc. | Ultra-thin fabric, devices, and methods |
WO2015005105A1 (en) | 2013-07-10 | 2015-01-15 | テルモ株式会社 | Biological lumen graft substrate, production method for biological lumen graft substrate, and biological lumen graft made using biological lumen graft substrate |
US10363153B2 (en) | 2012-03-13 | 2019-07-30 | Asahi Kasei Fibers Corporation | Superfine polyester fiber and tubular seamless fabric |
WO2020036206A1 (en) | 2018-08-16 | 2020-02-20 | Terumo Kabushiki Kaisha | Cell culture substrate |
Families Citing this family (82)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8038708B2 (en) * | 2001-02-05 | 2011-10-18 | Cook Medical Technologies Llc | Implantable device with remodelable material and covering material |
WO2006119142A2 (en) * | 2005-04-29 | 2006-11-09 | Kassab Ghassan S | Tissue engineering of blood vessels |
US8961586B2 (en) | 2005-05-24 | 2015-02-24 | Inspiremd Ltd. | Bifurcated stent assemblies |
EP3556319A1 (en) | 2005-05-24 | 2019-10-23 | Inspire M.D Ltd. | Stent apparatuses for treatment via body lumens |
US8043323B2 (en) | 2006-10-18 | 2011-10-25 | Inspiremd Ltd. | In vivo filter assembly |
WO2007016251A2 (en) * | 2005-07-28 | 2007-02-08 | Cook Incorporated | Implantable thromboresistant valve |
EP1965732B1 (en) * | 2005-12-29 | 2010-05-05 | Med Institute, Inc. | Endoluminal device including a mechanism for proximal or distal fixation, and sealing and methods of use thereof |
EP2076212B1 (en) | 2006-10-18 | 2017-03-29 | Inspiremd Ltd. | Knitted stent jackets |
US9622888B2 (en) | 2006-11-16 | 2017-04-18 | W. L. Gore & Associates, Inc. | Stent having flexibly connected adjacent stent elements |
EP3292837B1 (en) | 2006-11-22 | 2022-11-09 | Inspire M.D Ltd | Optimized stent jacket |
US8177834B2 (en) | 2007-03-12 | 2012-05-15 | Cook Medical Technologies Llc | Woven fabric with shape memory element strands |
US20100070020A1 (en) | 2008-06-11 | 2010-03-18 | Nanovasc, Inc. | Implantable Medical Device |
US8597342B2 (en) * | 2007-08-24 | 2013-12-03 | Cook Medical Technologies Llc | Textile graft for in situ fenestration |
US8518099B2 (en) * | 2007-10-10 | 2013-08-27 | C. R. Bard, Inc. | Low friction vascular implant delivery device |
US20090143815A1 (en) | 2007-11-30 | 2009-06-04 | Boston Scientific Scimed, Inc. | Apparatus and Method for Sealing a Vessel Puncture Opening |
US8187316B2 (en) * | 2007-12-27 | 2012-05-29 | Cook Medical Technologies Llc | Implantable graft device having treated yarn and method for making same |
US8834552B2 (en) * | 2007-12-27 | 2014-09-16 | Cook Medical Technologies Llc | Stent graft having floating yarns |
US20090171451A1 (en) * | 2007-12-27 | 2009-07-02 | Cook Incorporated | Implantable device having composite weave |
US8926688B2 (en) * | 2008-01-11 | 2015-01-06 | W. L. Gore & Assoc. Inc. | Stent having adjacent elements connected by flexible webs |
US20090312832A1 (en) * | 2008-06-13 | 2009-12-17 | Cook Incorporated | Slip layer delivery catheter |
US8353943B2 (en) * | 2008-08-29 | 2013-01-15 | Cook Medical Technologies Llc | Variable weave graft with metal strand reinforcement for in situ fenestration |
US20100131051A1 (en) * | 2008-11-24 | 2010-05-27 | Medtronic Vascular, Inc. | Systems and Methods for Treatment of Aneurysms Using Zinc Chelator(s) |
US9308070B2 (en) * | 2008-12-15 | 2016-04-12 | Allergan, Inc. | Pliable silk medical device |
US9204953B2 (en) * | 2008-12-15 | 2015-12-08 | Allergan, Inc. | Biocompatible surgical scaffold with varying stretch |
JP5653931B2 (en) * | 2008-12-15 | 2015-01-14 | アラーガン、インコーポレイテッドAllergan,Incorporated | Prosthetic device and manufacturing method thereof |
US9326840B2 (en) * | 2008-12-15 | 2016-05-03 | Allergan, Inc. | Prosthetic device and method of manufacturing the same |
US9204954B2 (en) * | 2008-12-15 | 2015-12-08 | Allergan, Inc. | Knitted scaffold with diagonal yarn |
US20120150204A1 (en) * | 2008-12-15 | 2012-06-14 | Allergan, Inc. | Implantable silk prosthetic device and uses thereof |
US9265633B2 (en) * | 2009-05-20 | 2016-02-23 | 480 Biomedical, Inc. | Drug-eluting medical implants |
WO2011028397A1 (en) | 2009-08-24 | 2011-03-10 | Cook Incorporated | Textile-reinforced high-pressure balloon |
US8016872B2 (en) * | 2009-12-22 | 2011-09-13 | Cook Medical Technologies Llc | Deployment and dilation with an expandable roll sock delivery system |
EP2519190B1 (en) * | 2009-12-28 | 2016-02-10 | Cook Medical Technologies LLC | Thoracic graft having yarn modifications |
JP5437480B2 (en) * | 2010-03-23 | 2014-03-12 | テルモ株式会社 | Repair material for living body lumen |
JP2011245282A (en) * | 2010-04-28 | 2011-12-08 | Toray Ind Inc | Base cloth for stent graft, and stent graft |
US9260805B2 (en) | 2010-04-28 | 2016-02-16 | Toray Industries, Inc. | Base fabric for stent graft, and stent graft |
JP5729111B2 (en) * | 2010-04-28 | 2015-06-03 | 東レ株式会社 | Stent graft base fabric and stent graft |
JP2011229713A (en) * | 2010-04-28 | 2011-11-17 | Toray Ind Inc | Basic fabric for stent graft, and stent graft |
US8833402B2 (en) * | 2010-12-30 | 2014-09-16 | Cook Medical Technologies Llc | Woven fabric having composite yarns for endoluminal devices |
AU2011265360B2 (en) * | 2010-12-30 | 2014-03-06 | Cook Medical Technologies Llc | Composite woven fabric for endoluminal devices |
US10166128B2 (en) | 2011-01-14 | 2019-01-01 | W. L. Gore & Associates. Inc. | Lattice |
US9839540B2 (en) * | 2011-01-14 | 2017-12-12 | W. L. Gore & Associates, Inc. | Stent |
US9243353B2 (en) | 2011-01-26 | 2016-01-26 | Asahi Kasei Fibers Corp. | Stent grafts |
US8686484B2 (en) | 2011-06-10 | 2014-04-01 | Everspin Technologies, Inc. | Spin-torque magnetoresistive memory element and method of fabricating same |
DE102012008656A1 (en) * | 2011-12-29 | 2013-07-04 | Nonwotecc Medical Gmbh | Structure with fibers glued together in places |
JP2015091279A (en) * | 2012-02-27 | 2015-05-14 | テルモ株式会社 | Method for manufacturing graft for organism lumen |
US9283072B2 (en) | 2012-07-25 | 2016-03-15 | W. L. Gore & Associates, Inc. | Everting transcatheter valve and methods |
US10376360B2 (en) | 2012-07-27 | 2019-08-13 | W. L. Gore & Associates, Inc. | Multi-frame prosthetic valve apparatus and methods |
US9931193B2 (en) | 2012-11-13 | 2018-04-03 | W. L. Gore & Associates, Inc. | Elastic stent graft |
US9144492B2 (en) | 2012-12-19 | 2015-09-29 | W. L. Gore & Associates, Inc. | Truncated leaflet for prosthetic heart valves, preformed valve |
US9968443B2 (en) | 2012-12-19 | 2018-05-15 | W. L. Gore & Associates, Inc. | Vertical coaptation zone in a planar portion of prosthetic heart valve leaflet |
US10279084B2 (en) | 2012-12-19 | 2019-05-07 | W. L. Gore & Associates, Inc. | Medical balloon devices and methods |
US9101469B2 (en) | 2012-12-19 | 2015-08-11 | W. L. Gore & Associates, Inc. | Prosthetic heart valve with leaflet shelving |
CN105682608B (en) | 2013-11-29 | 2018-02-06 | 东丽株式会社 | Artificial blood vessel |
US10842918B2 (en) | 2013-12-05 | 2020-11-24 | W.L. Gore & Associates, Inc. | Length extensible implantable device and methods for making such devices |
DE102014107113A1 (en) * | 2014-05-20 | 2015-11-26 | Acandis Gmbh & Co. Kg | Medical device and system |
US20150361599A1 (en) * | 2014-06-16 | 2015-12-17 | W. L. Gore & Associates, Inc. | Woven Fabrics Containing Expanded Polytetrafluoroethylene Fibers |
US9827094B2 (en) | 2014-09-15 | 2017-11-28 | W. L. Gore & Associates, Inc. | Prosthetic heart valve with retention elements |
US10299948B2 (en) | 2014-11-26 | 2019-05-28 | W. L. Gore & Associates, Inc. | Balloon expandable endoprosthesis |
CN111134899B (en) | 2015-02-12 | 2022-06-10 | 赫莫迪纳克斯科技有限公司 | Aortic implant |
US11136697B2 (en) * | 2015-03-16 | 2021-10-05 | W. L. Gore & Associates, Inc. | Fabrics containing conformable low density fluoropolymer fiber blends |
US11008676B2 (en) * | 2015-12-16 | 2021-05-18 | Edwards Lifesciences Corporation | Textured woven fabric for use in implantable bioprostheses |
WO2017184153A1 (en) | 2016-04-21 | 2017-10-26 | W. L. Gore & Associates, Inc. | Diametrically adjustable endoprostheses and associated systems and methods |
US10568752B2 (en) | 2016-05-25 | 2020-02-25 | W. L. Gore & Associates, Inc. | Controlled endoprosthesis balloon expansion |
CN109952076B (en) | 2016-08-12 | 2022-03-29 | 赫默丹奈科斯科技有限公司 | Aortic implant |
CN110520076B (en) * | 2017-02-21 | 2022-06-03 | 丝路医疗公司 | Vascular implant |
US10959842B2 (en) | 2017-09-12 | 2021-03-30 | W. L. Gore & Associates, Inc. | Leaflet frame attachment for prosthetic valves |
WO2019067219A1 (en) | 2017-09-27 | 2019-04-04 | W. L. Gore & Associates, Inc. | Prosthetic valve with expandable frame and associated systems and methods |
CA3072781C (en) | 2017-09-27 | 2022-07-05 | W.L. Gore & Associates, Inc. | Prosthetic valves with mechanically coupled leaflets |
EP3694445B1 (en) | 2017-10-13 | 2024-07-10 | Edwards Lifesciences Corporation | Telescoping prosthetic valve and delivery system |
JP7052032B2 (en) | 2017-10-31 | 2022-04-11 | ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド | Medical valves and valve membranes that promote inward tissue growth |
CN111587097B (en) | 2017-11-15 | 2023-12-08 | 赫默丹奈科斯科技有限公司 | Aortic pressure loss reduction apparatus and method |
US10939990B2 (en) * | 2017-11-28 | 2021-03-09 | Medtronic Vascular, Inc. | Graft material having selectively advanced permeability structure and method |
KR20200112812A (en) | 2018-01-30 | 2020-10-05 | 도레이 카부시키가이샤 | Plain weave, its manufacturing method and stent graft |
CA3090254A1 (en) * | 2018-01-31 | 2019-08-08 | The Secant Group, Llc | Ultra-low profile woven, knitted, and braided textiles and textile composites made with high tenacity yarn |
JP2021513616A (en) * | 2018-01-31 | 2021-05-27 | ザ・セカント・グループ・エルエルシー | Woven graft composites with varying densities |
US20190247051A1 (en) * | 2018-02-15 | 2019-08-15 | Fareed Siddiqui | Active textile endograft |
JPWO2019208262A1 (en) * | 2018-04-26 | 2021-03-18 | 東レ株式会社 | Cylindrical fabric and medical base material using it |
US11684498B2 (en) | 2018-10-19 | 2023-06-27 | Inspire M.D Ltd. | Methods of using a self-adjusting stent assembly and kits including same |
WO2020113039A1 (en) * | 2018-11-30 | 2020-06-04 | The Secant Group, Llc | Medical textile having low denier per filament yarn |
US11497601B2 (en) | 2019-03-01 | 2022-11-15 | W. L. Gore & Associates, Inc. | Telescoping prosthetic valve with retention element |
CA3133857A1 (en) | 2019-03-20 | 2020-09-24 | inQB8 Medical Technologies, LLC | Aortic dissection implant |
US11744702B1 (en) * | 2020-07-01 | 2023-09-05 | Aortic Innovations, Llc | Transcatheter aortic valve repair and replacement |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0815805A2 (en) * | 1996-06-26 | 1998-01-07 | Cordis Corporation | Endoprosthesis assembly for percutaneous deployment and method of deploying same |
US5824047A (en) * | 1996-10-11 | 1998-10-20 | C. R. Bard, Inc. | Vascular graft fabric |
EP0923912A2 (en) * | 1997-12-18 | 1999-06-23 | Schneider (Usa) Inc. | Stent-graft with bioabsorbable structural support |
US6478813B1 (en) * | 1997-08-01 | 2002-11-12 | Peter T. Keith | Method for joining grafts in a common body passageway |
WO2002091956A1 (en) * | 2001-05-16 | 2002-11-21 | Dias Maues, Christiane | Stent comprising a drug release coating thereon and delivering system thereof |
Family Cites Families (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2127903A (en) * | 1936-05-05 | 1938-08-23 | Davis & Geck Inc | Tube for surgical purposes and method of preparing and using the same |
US3772137A (en) * | 1968-09-30 | 1973-11-13 | Du Pont | Polyester pillow batt |
SE392582B (en) * | 1970-05-21 | 1977-04-04 | Gore & Ass | PROCEDURE FOR THE PREPARATION OF A POROST MATERIAL, BY EXPANDING AND STRETCHING A TETRAFLUORETENE POLYMER PREPARED IN AN PASTE-FORMING EXTENSION PROCEDURE |
US4861830A (en) * | 1980-02-29 | 1989-08-29 | Th. Goldschmidt Ag | Polymer systems suitable for blood-contacting surfaces of a biomedical device, and methods for forming |
US4675361A (en) * | 1980-02-29 | 1987-06-23 | Thoratec Laboratories Corp. | Polymer systems suitable for blood-contacting surfaces of a biomedical device, and methods for forming |
US4473665A (en) * | 1982-07-30 | 1984-09-25 | Massachusetts Institute Of Technology | Microcellular closed cell foams and their method of manufacture |
US4502159A (en) * | 1982-08-12 | 1985-03-05 | Shiley Incorporated | Tubular prostheses prepared from pericardial tissue |
US5037377A (en) * | 1984-11-28 | 1991-08-06 | Medtronic, Inc. | Means for improving biocompatibility of implants, particularly of vascular grafts |
JPS61263448A (en) * | 1985-04-24 | 1986-11-21 | 宇部興産株式会社 | Blood vessel prosthesis |
US4718907A (en) * | 1985-06-20 | 1988-01-12 | Atrium Medical Corporation | Vascular prosthesis having fluorinated coating with varying F/C ratio |
WO1988000813A1 (en) * | 1986-08-05 | 1988-02-11 | St. Jude Medical, Inc. | Braided polyester vascular prosthesis and method |
US5017664A (en) * | 1987-06-03 | 1991-05-21 | Wisconsin Alumni Research Foundation | Biocompatible polyurethane devices wherein polyurethane is modified with lower alkyl sulfonate and lower alkyl carboxylate |
US4816028A (en) * | 1987-07-01 | 1989-03-28 | Indu Kapadia | Woven vascular graft |
US5160674A (en) * | 1987-07-29 | 1992-11-03 | Massachusetts Institute Of Technology | Microcellular foams of semi-crystaline polymeric materials |
US4902508A (en) * | 1988-07-11 | 1990-02-20 | Purdue Research Foundation | Tissue graft composition |
US4956178A (en) * | 1988-07-11 | 1990-09-11 | Purdue Research Foundation | Tissue graft composition |
US5024671A (en) * | 1988-09-19 | 1991-06-18 | Baxter International Inc. | Microporous vascular graft |
US5478813A (en) * | 1990-05-11 | 1995-12-26 | Banyu Pharmaceutical Co., Ltd. | Antitumor substance BE-13793C derivatives |
US5281422A (en) * | 1991-09-24 | 1994-01-25 | Purdue Research Foundation | Graft for promoting autogenous tissue growth |
US5683448A (en) * | 1992-02-21 | 1997-11-04 | Boston Scientific Technology, Inc. | Intraluminal stent and graft |
EP0630432B1 (en) * | 1992-03-13 | 1999-07-14 | Atrium Medical Corporation | Controlled porosity expanded fluoropolymer (e.g. polytetrafluoroethylene) products and fabrication |
US5589563A (en) * | 1992-04-24 | 1996-12-31 | The Polymer Technology Group | Surface-modifying endgroups for biomedical polymers |
US5562725A (en) * | 1992-09-14 | 1996-10-08 | Meadox Medicals Inc. | Radially self-expanding implantable intraluminal device |
US5275826A (en) * | 1992-11-13 | 1994-01-04 | Purdue Research Foundation | Fluidized intestinal submucosa and its use as an injectable tissue graft |
US5609627A (en) * | 1994-02-09 | 1997-03-11 | Boston Scientific Technology, Inc. | Method for delivering a bifurcated endoluminal prosthesis |
US5554389A (en) * | 1995-04-07 | 1996-09-10 | Purdue Research Foundation | Urinary bladder submucosa derived tissue graft |
US5711969A (en) * | 1995-04-07 | 1998-01-27 | Purdue Research Foundation | Large area submucosal tissue graft constructs |
US5733337A (en) * | 1995-04-07 | 1998-03-31 | Organogenesis, Inc. | Tissue repair fabric |
US5713948A (en) * | 1995-07-19 | 1998-02-03 | Uflacker; Renan | Adjustable and retrievable graft and graft delivery system for stent-graft system |
WO1997025002A1 (en) * | 1996-01-05 | 1997-07-17 | Medtronic, Inc. | Expansible endoluminal prostheses |
US5718159A (en) * | 1996-04-30 | 1998-02-17 | Schneider (Usa) Inc. | Process for manufacturing three-dimensional braided covered stent |
US6666892B2 (en) * | 1996-08-23 | 2003-12-23 | Cook Biotech Incorporated | Multi-formed collagenous biomaterial medical device |
CZ54899A3 (en) * | 1996-08-23 | 1999-08-11 | Cook Biotech, Incorporated | Graft prosthesis, materials connected therewith and processes for producing thereof |
US5851229A (en) * | 1996-09-13 | 1998-12-22 | Meadox Medicals, Inc. | Bioresorbable sealants for porous vascular grafts |
EP0961595B1 (en) * | 1996-12-10 | 2003-09-10 | Purdue Research Foundation | Tubular submucosal graft constructs |
JP4638562B2 (en) * | 1996-12-10 | 2011-02-23 | パーデュー・リサーチ・ファウンデーション | Biological material derived from vertebrate liver tissue |
US5957974A (en) * | 1997-01-23 | 1999-09-28 | Schneider (Usa) Inc | Stent graft with braided polymeric sleeve |
CA2321117C (en) * | 1998-02-27 | 2014-07-15 | Purdue Research Foundation | Submucosa gel compositions |
US6153252A (en) * | 1998-06-30 | 2000-11-28 | Ethicon, Inc. | Process for coating stents |
US6156064A (en) * | 1998-08-14 | 2000-12-05 | Schneider (Usa) Inc | Stent-graft-membrane and method of making the same |
US6197049B1 (en) * | 1999-02-17 | 2001-03-06 | Endologix, Inc. | Articulating bifurcation graft |
US6287335B1 (en) * | 1999-04-26 | 2001-09-11 | William J. Drasler | Intravascular folded tubular endoprosthesis |
WO2001035715A2 (en) * | 1999-11-18 | 2001-05-25 | Petrus Besselink | Method for placing bifurcated stents |
US6702849B1 (en) * | 1999-12-13 | 2004-03-09 | Advanced Cardiovascular Systems, Inc. | Method of processing open-celled microcellular polymeric foams with controlled porosity for use as vascular grafts and stent covers |
WO2002015951A2 (en) * | 2000-08-23 | 2002-02-28 | Thoratec Corporation | Coated vascular grafts and methods of use |
US6965875B1 (en) * | 2000-11-14 | 2005-11-15 | Robert Levine | Method and system for customizing a distribution network based on market conditions |
-
2005
- 2005-07-07 WO PCT/US2005/024282 patent/WO2006014592A1/en not_active Application Discontinuation
- 2005-07-07 CA CA002570142A patent/CA2570142A1/en not_active Abandoned
- 2005-07-07 EP EP05771055A patent/EP1768612A1/en not_active Withdrawn
- 2005-07-07 JP JP2007520541A patent/JP2008505713A/en active Pending
- 2005-07-07 US US11/176,570 patent/US20060009835A1/en not_active Abandoned
- 2005-07-07 AU AU2005269864A patent/AU2005269864B2/en not_active Ceased
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0815805A2 (en) * | 1996-06-26 | 1998-01-07 | Cordis Corporation | Endoprosthesis assembly for percutaneous deployment and method of deploying same |
US5824047A (en) * | 1996-10-11 | 1998-10-20 | C. R. Bard, Inc. | Vascular graft fabric |
US6478813B1 (en) * | 1997-08-01 | 2002-11-12 | Peter T. Keith | Method for joining grafts in a common body passageway |
EP0923912A2 (en) * | 1997-12-18 | 1999-06-23 | Schneider (Usa) Inc. | Stent-graft with bioabsorbable structural support |
WO2002091956A1 (en) * | 2001-05-16 | 2002-11-21 | Dias Maues, Christiane | Stent comprising a drug release coating thereon and delivering system thereof |
Non-Patent Citations (1)
Title |
---|
See also references of EP1768612A1 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE48469E1 (en) | 2008-12-20 | 2021-03-16 | Atex Technologies, Inc | Ultra-thin fabric, devices, and methods |
US8911856B2 (en) | 2009-12-18 | 2014-12-16 | Atex Technologies, Inc. | Ultra-thin fabric, devices, and methods |
USRE46779E1 (en) | 2009-12-18 | 2018-04-10 | Atex Technologies, Inc. | Ultra-thin fabric, devices, and methods |
USRE49354E1 (en) | 2009-12-18 | 2023-01-03 | Atex Technologies, Inc. | Ultra-thin fabric, devices, and methods |
US10363153B2 (en) | 2012-03-13 | 2019-07-30 | Asahi Kasei Fibers Corporation | Superfine polyester fiber and tubular seamless fabric |
WO2015005105A1 (en) | 2013-07-10 | 2015-01-15 | テルモ株式会社 | Biological lumen graft substrate, production method for biological lumen graft substrate, and biological lumen graft made using biological lumen graft substrate |
US9968435B2 (en) | 2013-07-10 | 2018-05-15 | Terumo Kabushiki Kaisha | Body lumen graft base, production method of body lumen graft base, and body lumen graft using the same |
WO2020036206A1 (en) | 2018-08-16 | 2020-02-20 | Terumo Kabushiki Kaisha | Cell culture substrate |
Also Published As
Publication number | Publication date |
---|---|
EP1768612A1 (en) | 2007-04-04 |
CA2570142A1 (en) | 2006-02-09 |
AU2005269864A1 (en) | 2006-02-09 |
JP2008505713A (en) | 2008-02-28 |
US20060009835A1 (en) | 2006-01-12 |
AU2005269864B2 (en) | 2011-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2005269864B2 (en) | Graft, stent graft and method for manufacture | |
US10159560B2 (en) | Prosthesis having pivoting fenestration | |
US10188503B2 (en) | Prosthesis having pivoting fenestration | |
EP1472994B1 (en) | Stent-graft-membrane and method of making same | |
EP2749252B1 (en) | Prosthesis system | |
AU2008343762B2 (en) | Implantable device | |
AU2013273687B2 (en) | Prosthesis having pivoting fenestration | |
US8702786B2 (en) | Prosthesis having pivoting fenestration | |
US8187316B2 (en) | Implantable graft device having treated yarn and method for making same | |
CA2525577A1 (en) | Improved sealable attachment on endovascular stent to graft | |
EP2709556A1 (en) | Prosthesis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
DPEN | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2005771055 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2570142 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005269864 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007520541 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: DE |
|
ENP | Entry into the national phase |
Ref document number: 2005269864 Country of ref document: AU Date of ref document: 20050707 Kind code of ref document: A |
|
WWP | Wipo information: published in national office |
Ref document number: 2005269864 Country of ref document: AU |
|
WWP | Wipo information: published in national office |
Ref document number: 2005771055 Country of ref document: EP |