WO2006013915A1 - Method and apparatus for inspecting display panel and method for manufacturing display panel - Google Patents

Method and apparatus for inspecting display panel and method for manufacturing display panel Download PDF

Info

Publication number
WO2006013915A1
WO2006013915A1 PCT/JP2005/014275 JP2005014275W WO2006013915A1 WO 2006013915 A1 WO2006013915 A1 WO 2006013915A1 JP 2005014275 W JP2005014275 W JP 2005014275W WO 2006013915 A1 WO2006013915 A1 WO 2006013915A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
height
display panel
liquid material
measurement
Prior art date
Application number
PCT/JP2005/014275
Other languages
French (fr)
Japanese (ja)
Inventor
Osamu Kuramata
Hiromichi Sasamoto
Yasuki Shimizu
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Priority to JP2006531530A priority Critical patent/JPWO2006013915A1/en
Publication of WO2006013915A1 publication Critical patent/WO2006013915A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/20Manufacture of screens on or from which an image or pattern is formed, picked up, converted or stored; Applying coatings to the vessel
    • H01J9/22Applying luminescent coatings
    • H01J9/227Applying luminescent coatings with luminescent material discontinuously arranged, e.g. in dots or lines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/20Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring contours or curvatures, e.g. determining profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/42Measurement or testing during manufacture

Definitions

  • the present invention relates to a display panel inspection method, inspection apparatus, and manufacturing method, and in particular, in a display panel in which a plurality of liquid materials are applied on a substrate, the liquid material is applied and formed on the substrate with high accuracy.
  • the present invention relates to a state inspection method and inspection device such as means used for the purpose, and a display panel manufacturing method using the method and device.
  • a technique for inspecting the composition state of a phosphor layer is known in a method of applying a plurality of liquid materials on a substrate.
  • the composition state of the phosphor layer is inspected based on the difference between the substrate surface shape before the phosphor composition and the substrate surface shape on which the phosphor layer is constructed after the firing of the phosphor paste.
  • Technology is disclosed.
  • this method increases the manufacturing cost because two measurements are performed on one product.
  • the quality of the product cannot be judged until the second measurement is performed, if a continuous failure occurs in the phosphor paste applicator (and firing furnace), a large number of defective substrates are produced. Will occur
  • Patent Document 1 ultraviolet rays are irradiated to the substrate surface on which the phosphor layer is formed through a baking process after applying the phosphor-pased, and R (red), G (green), B (blue)
  • R red
  • G green
  • B blue
  • a technique for inspecting the configuration state of the phosphor layer by measuring the amount of excited luminescence from each phosphor layer is also disclosed.
  • the quality of the product cannot be determined until the measurement after firing is performed. Therefore, if a defect that causes a continuous defect occurs in the phosphor paste coating apparatus, the substrate that is also a defective product Will occur in large quantities.
  • Patent Document 1 JP-A-9 273913
  • An object of the present invention is to inspect the state of the coating process immediately after the phosphor paste coating process to quickly find defects that cause continuous defects in the coating process, resulting in a defective product and a lossy substrate. It is an object of the present invention to provide a display panel inspection method and inspection apparatus, and a manufacturing method using them, which can minimize the number and quickly restore the process. Another issue is to make it possible to obtain a desired measurement result in a single measurement and to keep the manufacturing cost of the substrate low. Another issue is to manage the surface condition data of the substrate so that it can be used as data for manufacturing products with higher accuracy and quality.
  • a display panel inspection method includes a height measuring unit, and in a direction intersecting with a plurality of liquid materials applied to the substrate at a predetermined interval.
  • the height shape signal obtained by discretely measuring the height of the substrate surface including the liquid material application part while moving the height measuring means, and obtaining an approximate curve of the obtained discrete height shape signal force
  • the height signal for each liquid material is extracted from the height signal and used as an inspection signal, and the coating amount for each liquid material is measured from the inspection signal.
  • the signal of the liquid phosphor coating part is specified from the discrete height shape signal obtained by the height measuring means, and the height shape is determined using the conic curve as an approximate curve from the specified signal.
  • the signal can be determined.
  • the signal of the liquid phosphor coating part is identified from the discrete height shape signal obtained by the height measuring means, and the height shape signal is determined using a circle as the identified signal force approximate curve.
  • the approximate circle diameter signal obtained by connecting the approximate circle diameters corresponding to a plurality of liquid materials can be used as an inspection signal, and the application amount for each liquid material can be measured based on the inspection signal. .
  • a plurality of first partition walls are formed at predetermined intervals in a direction parallel to the longitudinal direction of the liquid material applied at predetermined intervals on the substrate.
  • the present invention can be suitably applied to a substrate having a configuration in which a plurality of second partition walls are formed at predetermined intervals in the direction perpendicular to the longitudinal direction of the liquid material between adjacent first partition walls.
  • a height having a spot-like measurement region as a height measurement means.
  • the shape of the area within ⁇ 35% of the central part between the second partition walls formed in the direction perpendicular to the longitudinal direction of the liquid material is formed over the entire length of the substrate in the direction transverse to the longitudinal direction of the liquid material. Can be measured.
  • the substrate position regulating means for regulating the position of the substrate is further provided, and the shape of the region within ⁇ 35% of the central portion between the second partition walls is formed in a direction crossing the longitudinal direction of the liquid material.
  • the measurement can be performed over the entire length of the substrate.
  • the position of the substrate is regulated (conveyance guide in the case of substrate movement, pre-positioning mechanism in the case of sensor movement) to realize height measurement sensor scanning in the area within ⁇ 35% of the center between the second partition walls Is
  • the method further includes a substrate position recognizing unit for recognizing the position of the substrate and a scanning position correcting unit for correcting the position of the height measuring unit based on the substrate position information.
  • the shape of the region within ⁇ 35% of the central portion in between can be measured over the entire length of the substrate in a direction crossing the longitudinal direction of the liquid material.
  • the board edge position the board tilt and meandering information is obtained, the height measurement sensor position is corrected, and the height measurement sensor scan in the region within ⁇ 35% of the center between the second walls is corrected. Is realized.
  • the above method further comprises two or more height measuring means, position adjusting means, and switching means, and the shape of the region within ⁇ 35% of the central portion between the second partition walls is liquid.
  • the measurement can be performed over the entire length of the substrate in a direction transverse to the longitudinal direction of the material.
  • at least two height measurement sensors are used, and even if the substrate tilts and meandering occurs, at least one height measurement sensor captures data in the region within ⁇ 35% of the center between the second partition walls. It is to be acquired.
  • a height measurement sensor having a measurement region including a second partition wall space formed in a direction perpendicular to the longitudinal direction of the liquid material is used as the height measurement means, and the shape of the substrate surface is changed to the longitudinal direction of the liquid material. It is also possible to measure over the entire length of the substrate in a direction crossing the direction.
  • the above-described display panel inspection method includes substrate back surface height measuring means for measuring the height of the substrate back surface, and the measurement result by the height measuring means is displayed on the back surface of the substrate. It can also be corrected by the height measurement result. That is, measure the back side of the board A second height measuring sensor that measures the vertical movement of the substrate and eliminates the influence of the vertical movement of the substrate from the height measurement data.
  • the measurement position of the height measuring means can be rubbed so as to be arranged at a position where the substrate moving means and the substrate are in contact with each other.
  • the measurement position of the height measuring means is arranged at a position where the substrate transport means and the substrate are in contact with each other to suppress the vertical movement of the substrate.
  • the liquid material applied at a predetermined interval changes the surface shape between the first and second partition walls immediately after the application due to the flow action, and the predetermined time.
  • the height measurement of the substrate surface can be performed after a predetermined time. That is, the inspection is performed after the liquid material is leveled.
  • the liquid material applied at a predetermined interval changes its surface shape between the first and second partition walls immediately after the application due to the flow action, and reaches a steady state after a predetermined time.
  • the height shape signal is corrected using paste leveling characteristic data with respect to the preliminarily measured time.
  • the defect determination threshold for the inspection signal can be automatically adjusted from the moving average signal obtained by performing the moving average process on the inspection signal itself obtained from the inspection target substrate.
  • the height of the substrate surface is continuously measured for a plurality of substrates, and the substrate height and shape information measured before the measurement of the substrate to be inspected is used to determine the substrate to be inspected. It is also possible to automatically adjust the defect determination threshold. In other words, an individual judgment threshold value is automatically set for each liquid material from the measurement results of another substrate that was measured before the measurement of the target substrate.
  • the height measurement is performed on all the substrates on which the liquid material is applied every time the liquid material is applied to the substrate, or a plurality of liquid materials are used.
  • Board It can be applied to all substrates coated with a liquid material after application to a selected representative substrate. For example, for multi-sided substrates, the timing of force inspection, such as the accuracy of inspection, manufacturing tact, and the number of lost substrates when NG (no good) occurs, and the target substrate are selected.
  • the display panel inspection apparatus obtains a height measuring means for discretely measuring the height of the substrate surface including the liquid material application portion, and an obtained discrete height shape signal force approximation curve. And a signal processing means for obtaining a height shape signal.
  • the substrate fixing means for fixing the substrate, and the substrate fixing means is provided with a position correcting function in the rotation direction with the axis perpendicular to the substrate surface as the central axis.
  • a laser displacement meter is used as the height measuring means
  • a linear motor guide having an air bearing is used as the moving means for moving the height measuring means
  • the substrate fixing means for fixing the substrate is perpendicular to the substrate surface. It is possible to adopt a configuration in which a high-precision stage having a position correction function in the rotational direction with a central axis as a central axis is used.
  • a high-precision stage as a substrate fixing means for fixing the substrate can be used in common with the coating apparatus as the substrate fixing means when applying the liquid material.
  • a high-precision stage can be used for general purposes.
  • the inspection apparatus may be configured to further include substrate position regulating means for regulating the position of the substrate.
  • a laser displacement meter can be used as the height measuring means
  • a roller transport machine can be used as the moving means for moving the substrate
  • a position regulation guide can be used as the substrate position regulating means.
  • a laser displacement meter is used as the height measuring means, and the height measuring means is moved. This is achieved by using a single-axis stage as the means and using a positioning mechanism as the substrate position restricting means.
  • the inspection apparatus may further include a position correcting unit for correcting the positions of the substrate edge position measuring unit and the height measuring unit.
  • a laser displacement meter is used as the height measuring means
  • a roller transporter is used as the moving means for moving the substrate
  • a laser position measuring sensor is used as the substrate edge position measuring means
  • a single-axis stage as the position correcting means Can be used.
  • the inspection apparatus may further include at least two or more height measuring units and an installation interval adjusting unit that adjusts an installation interval between the height measuring units.
  • two laser displacement meters can be used as the height measuring means
  • a roller transport machine can be used as the moving means for moving the substrate
  • a single-axis stage can be used as the installation interval adjusting means.
  • Such an inspection apparatus further includes a substrate back surface height measuring means, and a laser displacement meter can be used as a substrate back surface height measuring means.
  • the laser displacement meter as the height measuring means can be configured to measure the position where the substrate moving means and the substrate are in contact with each other.
  • a display panel manufacturing method comprises the above-described inspection method or a method characterized by manufacturing a display panel using the above-described inspection apparatus.
  • the substrate can be corrected using the liquid material correcting means based on the defect information of the substrate.
  • the NG substrate is corrected based on the defect information of the substrate.
  • a defect in the coating process (clogging of the coating nozzle, etc.) can be detected immediately after the occurrence of a defect from the surface shape of the substrate. Can be kept to a minimum.
  • the displacement meter since the displacement meter only needs to be scanned once, an increase in manufacturing costs can be minimized.
  • a high inspection sensitivity can be obtained by estimating the filling amount by the radius of the approximate circle including the surface of the liquid material (especially in the manufacturing specification in which the liquid material is filled in the partition wall).
  • the inspection accuracy Z reliability can be increased.
  • Scanning accuracy can be ensured by a travel guide in the case of substrate movement, and by a substrate positioning mechanism in the case of sensor movement.
  • the accuracy of the inspection can be improved by correcting the measurement data with the leveling characteristic of the paste with respect to time.
  • the individual difference of the coating apparatus and the fixed manufacturing unevenness of the substrate can be automatically eliminated by a spatial moving average process to perform the inspection. It is also possible to perform inspection by automatically eliminating individual differences of coating apparatuses and fixed manufacturing unevenness of the substrate by temporal moving average processing.
  • the inspection timing and the target substrate can be selected from the number of loss substrates when NG occurs, the manufacturing tact, the inspection accuracy, and the like.
  • the surface shape data of the substrate measured for the inspection of the state of the coating process can be managed as a trend and fed back to the control and operation of the coating process to enable stable substrate production.
  • an inspection apparatus can be configured by the height measuring means and the signal processing means.
  • a specific inspection apparatus can be actually configured by including a moving means for moving the height measuring means and an output means for outputting the inspection result.
  • a specific inspection apparatus can be actually configured by including a substrate fixing means having a function of correcting the rotation direction ( ⁇ direction) of the substrate.
  • a substrate moving type device configuration is possible, and a height measuring means moving type device configuration is also possible.
  • the above-described apparatus configuration can further include a substrate edge position measuring unit and a height measuring unit, whereby a practical inspection apparatus can be configured.
  • a substrate moving type device configuration is possible.
  • a substrate movement type apparatus configuration is possible.
  • a more specific inspection apparatus can actually be configured by providing a substrate back surface height measuring means in the apparatus configuration as described above.
  • the yield of the entire process can be increased.
  • FIG. 1 is a schematic configuration diagram showing a configuration of a PDP.
  • FIG. 2 is a process flow diagram showing a PDP back plate manufacturing process.
  • FIG. 3 is a schematic partial perspective view showing a PDP back plate having no phosphor.
  • FIG. 4 is a schematic partial perspective view showing an example of a PDP back plate immediately after applying a phosphor paste.
  • FIG. 5 is a schematic partial perspective view showing an example of a PDP back plate after the phosphor paste is leveled.
  • FIG. 6 is a schematic partial perspective view showing an example of a PDP back plate having a phosphor layer (only for one color).
  • FIG. 7 is a schematic perspective view showing the relationship between the PDP back plate and the height measuring means scanning.
  • FIG. 8 is a schematic diagram showing the relationship between the surface shape of the PDP back plate and the sampling of the height measuring means.
  • FIG. 9 is an explanatory diagram for explaining the definition of the signal approximation method and the height hZ approximate circle radius r.
  • FIG. 10 is an explanatory diagram for explaining a height shape signal, a Z height signal, a Z approximate circle radius signal, and a defect determination threshold value.
  • FIG. 11 is an explanatory diagram illustrating sensitivity characteristics of height signal inspection and approximate circle signal inspection.
  • FIG. 12 is a schematic view showing the surface shape of the PDP back plate application direction and the spot measurement position. ⁇ 13] It is a schematic diagram showing the surface shape of the PDP back plate application direction and the width measurement position.
  • Spot 14 is an explanatory diagram for explaining the relationship between the Z wide measurement position and the inspection sensitivity.
  • ⁇ 16 An explanatory diagram explaining the relationship between the elapsed time after applying the phosphor paste and the surface height.
  • ⁇ 17 An explanatory diagram explaining the fixed threshold and the individual threshold in the inspection signal.
  • FIG. 19 is an explanatory diagram for explaining a difference threshold in a difference processing waveform of an inspection signal.
  • FIG. 20 is a schematic configuration diagram showing an inspection device incorporated in the same body as the coating device.
  • ⁇ 21] It is a schematic plan view showing substrate transport and substrate stop by a roller transport machine.
  • FIG. 22 is a schematic plan view of a roller transporter showing a substrate movement type measuring apparatus provided with a substrate position regulating means.
  • ⁇ 23 It is a schematic plan view of a roller transporter showing a sensor moving type measuring device provided with a substrate position regulating means.
  • FIG. 24 is a schematic plan view of a roller transporter showing an inspection apparatus provided with substrate position recognition means and position correction means.
  • FIG. 25 is a schematic plan view of a roller transporter showing an inspection apparatus provided with two height measuring means and a distance adjusting means.
  • FIG. 26 is a schematic configuration diagram showing an inspection apparatus provided with a substrate back surface height measuring means.
  • FIG. 27 is a schematic configuration diagram showing a detection apparatus in which the measurement point of the height measurement means is installed at the contact point between the substrate and the substrate transfer means.
  • FIG. 28 is a schematic configuration diagram showing an inspection apparatus provided with two height measuring means and an interval adjusting means.
  • FIG. 29 is an explanatory diagram for explaining measurement errors of a discrete height signal and a height signal after correction using a conic curve.
  • FIG. 31 is an explanatory diagram for explaining a measurement error of a discrete height signal, a height signal value after correction by moving average processing, and a height signal after correction by a conic curve.
  • FIG. 32 is an explanatory diagram for explaining measurement results and measurement errors when performing correction using the moving average process and when performing correction using a conical curve.
  • FIG. 1 shows a basic configuration of a display panel, particularly a plasma display panel (hereinafter sometimes abbreviated as PDP), which is an object of the present invention.
  • PDP plasma display panel
  • a dielectric layer 14 having address electrodes 12 disposed thereon is provided on a back glass substrate 13, and a partition wall (vertical rib) 11 is provided on the dielectric layer 14, and an RGB phosphor layer 42r therebetween.
  • 42g, 42b, and a front plate 2 having a dielectric layer 22 on which a display electrode 23 is disposed and a protective film 24 interposed therebetween.
  • the discharge space 15 is filled with a mixed gas such as neon or xenon.
  • a mixed gas such as neon or xenon
  • the display electrode 23 when a voltage is applied between the display electrode 23 and a certain address electrode 12a, plasma 101 is generated in the discharge space 15, and the phosphor at the selected position emits light, and the display light is transmitted through the front plate 2. 102 is emitted.
  • the desired color display is performed by the combination of the light emission of each phosphor.
  • FIG. 2 shows a basic manufacturing flow of the PDP back plate.
  • 31 is a cleaning / drying process
  • 32 is a pattern electrode forming process
  • 33 is a dielectric layer forming process
  • 34 is a partition wall forming process
  • 35 is a phosphor coating process
  • 36 is a coating process state inspection process
  • 37 is The phosphor drying process and 38 are defect correction processes, respectively, and the present invention mainly relates to the coating process state inspection process.
  • FIG. 3 shows a PDP back plate in which no phosphor is configured.
  • Separate ribs (horizontal ribs) 16 are formed in the grooves separated by the barrier ribs (vertical ribs) 11 to form grooves 17 with horizontal ribs.
  • the phosphors are formed at intervals of two for one color along the lateral ribbed groove 17.
  • 18 shows one cell surrounded by the vertical rib 11 and the horizontal rib 16.
  • the groove width of each of the RGB phosphors is different, but the present invention is not limited to this. Further, the present invention can be applied to a PDP back plate in which the partition walls (lateral ribs) 16 are not formed.
  • FIG. 4 shows a state in which the groove 17 with the lateral ribs is filled with a liquid material (hereinafter also referred to as a phosphor paste).
  • a liquid material hereinafter also referred to as a phosphor paste.
  • it corresponds to the lateral rib groove 17 to be filled with the phosphor paste 40b.
  • the phosphor paste generally has a relatively high viscosity, and the shape of the surface changes immediately after filling the groove 17 with the lateral ribs. Finally, as shown in FIG. The bottom and the vicinity of the partition wall (both vertical ribs and horizontal ribs) reach a bowl shape with a high portion and become a steady state. This is called “repelling” and forms a bowl shape as described above unless the filling amount is lowered beyond a certain amount. When the filling amount becomes extremely small or becomes completely zero, the coating is lost 41b ".
  • FIG. 7 shows a method for measuring the shape of the substrate using the height measuring means.
  • the removal of coating due to nozzle clogging continues until the point where coating omission occurs on the substrate up to the point where the coating is completed, and continues to occur in the groove 17 with the lateral ribs on the next substrate.
  • a displacement gauge 50a with a spot-like measurement area (for example, Keyence Corporation, LT8000 series ( ⁇ 2 ⁇ m), Keyence Corporation, LC series (20 X 30 m), etc.), liquid material is applied. It is necessary to scan between adjacent partition walls (lateral ribs) 16 like dl over the entire length of the substrate in a direction crossing all the grooves 17 with transverse ribs. Details will be described later.
  • a spot-like measurement area for example, Keyence Corporation, LT8000 series ( ⁇ 2 ⁇ m), Keyence Corporation, LC series (20 X 30 m), etc.
  • Displacement meter 50b for example, Z300 series, manufactured by OMRON Corporation whose measurement area is one-dimensional wide (Field width lmm), manufactured by Keyence Corporation, LT9000 series (field width within 2mm variable), etc.) force to scan across the entire length of the substrate in the direction across all grooved ribs 17 coated with liquid material
  • LT9000 series field width within 2mm variable
  • cl is the cross-sectional line base point in the transverse rib direction
  • cl ' is the end point of the cross-sectional line in the transverse rib direction
  • c2 is the cross-sectional line in the longitudinal rib direction (normal application)
  • c2' is the cross-sectional line in the longitudinal rib direction (normal application) End point
  • c3 is the longitudinal rib cross-section line (abnormal application) base point
  • c3 ' is the longitudinal rib cross-section line (abnormal application) end point
  • dl is a straight scan example
  • d2 is an oblique scan example
  • swl is the sensor scan width Sw2 indicates the sensor field width.
  • a general displacement sensor operates at a constant response frequency.
  • data on the substrate shape is discretely acquired (sampled).
  • the sampling interval is determined by the sensor response frequency and the sensor scanning speed.
  • FIG. 9 shows the sampling timing and the obtained discrete height shape signal 61 when the portion where the coating amount is reduced due to nozzle clogging is measured.
  • the discrete height shape signal 61 is a signal obtained by connecting height measurement results of the substrate surface obtained by discrete height measurement. As can be seen from Fig. 9, if the lowest part of the liquid material, which is the control index, cannot be measured, it becomes a measurement error (difference from the true value).
  • the cl-cl 'cross-sectional shape of the liquid material filled here depends on the surface tension of the liquid material. It is known from past experiments that a smooth curve is drawn and becomes a part of a conical curve to reach a steady state.
  • the conic curve is a curve that becomes a boundary of a cross section when the cone is cut along an arbitrary plane.
  • a circle a plane that intersects all the generatrix lines and is parallel to the bottom surface).
  • the surface shape of a liquid material can be approximated by a circle, based on the sampling signal inside (approximate area dw) of the peak part (the top of the partition wall) of the two power points in the discrete height signal 61, these are converted into circular arcs.
  • the height shape signal 62 is obtained as shape data close to the actual liquid material surface.
  • the height shape signal 62 is a signal obtained by approximating between discrete height shape signals by an arc of an approximate circle.
  • dw is the approximate region
  • r is the approximate circle radius
  • PL is the paste surface level
  • KL is the reference surface level
  • h is the paste height (PL-KL)
  • 60a is outside the approximate region.
  • Discrete height shape signal 60b is the discrete height shape signal in the approximate region
  • 60c is the approximate circle
  • 60d is the height shape signal in the approximate region (approximated)
  • 61 is the discrete height shape signal (as above) 60a + 60b) and 62 indicate the height shape signals (60a + 60c) as described above.
  • Fig. 10 shows a height shape signal 62 and a height signal 63 (a signal obtained by extracting the bottom height of each liquid material from the height shape signal and connecting them to correspond to each liquid material) and an approximate circle radius signal.
  • 64 A signal obtained by obtaining an approximate circle with the signal portion of each liquid material as an arc from the height shape signal and connecting the diameter of the approximate circle so as to correspond to each liquid material
  • the defect judgment threshold inspection signal
  • a threshold value for determining the presence / absence of a defect is a cross-sectional view of FIG. 8 with a height shape signal 62 superimposed thereon
  • (b) is a waveform in which only the vertical axis is enlarged for easy viewing.
  • the lowest part of the liquid material and the reference surface are considered for each of the plurality of liquid materials applied. Is obtained, and as shown in (c), these are connected for each liquid material to obtain a height signal 63.
  • This height signal 63 is used as an inspection signal (a signal for determining the presence / absence of a defect with a predetermined threshold (including both a height signal and an approximate circle radius signal)), and a defect determination threshold thh is set to set a defect.
  • Part signal 63, 63b "is specified.
  • FIG. 29 and FIG. 30 The effect of approximating the discrete height shape signal by the conic curve will be described in detail using FIG. 29 and FIG. 30 as an example where the cl-cl ′ cross-sectional shape of the liquid material can be approximated by a circle.
  • the minimum part of the liquid material cannot be measured because the discrete measurement interval was widened to shorten the time required for the inspection, the distance between the discrete height measurement signal 60b and the actual minimum part of the liquid material is not measured. Measurement error Em occurs.
  • the discrete height shape signal is approximated by a circle that is a conic curve and the approximated height shape signal 60d is obtained, the height shape signal 60d after approximation is correct! Since the height of the part is obtained, measurement can be performed with little error.
  • Cell 18 composed of partition walls (vertical ribs) 11 with a height of 120 ⁇ m arranged so that the center position of each other is 350 ⁇ m is filled with liquid material, and four discrete times Taking the case of height measurement as an example, conical curve approximation was performed, and the measurement error when no conic curve approximation was performed was calculated theoretically. The results are shown in FIG.
  • the horizontal axis of Fig. 30 is the height m) of the lowest part of the liquid material, and the left vertical axis is the measured value ( ⁇ m) corresponding to the conic curve approximation (a) No Z approximation (b).
  • the right vertical axis represents the measurement error ( ⁇ m) corresponding to the measurement error (c) obtained by subtracting the height of the lowest part of the liquid material from the measured value of the conical curve approximation (b).
  • the surface shape of the liquid material changes depending on the filling rate of the liquid material with respect to the cell capacity. In other words, the higher the liquid material filling rate, that is, the closer the liquid material minimum height is to the partition wall height, the closer the surface shape of the liquid material is to the flat surface. The lower the filling rate, that is, the closer the bottom of the liquid material is to the bottom of the cell, the closer the surface shape of the liquid material is to a circle with a small curvature, so the measurement error Em without a conic curve approximation increases.
  • the cell is filled with the liquid material so that the minimum height of the liquid material is 80 to 100 ⁇ m. It should be noted that if there is a problem with the liquid material filling state in the cell, this will lead to display failure when the panel is commercialized, and the minimum value of the liquid material is the design value as the limit value for good products. On the other hand, it must be within ⁇ 10 m. In other words, the inspection apparatus according to the present invention needs to perform defect generation processing when a liquid material filled with a minimum height exceeding the design value ⁇ 10 m is found. However, as shown in Fig.
  • the noise generated in the measurement signal may include not only the vibration effect of the equipment but also the noise of the measuring equipment itself, such as the power supply of each device and the inverter of the neighboring equipment. In the following, vibration and electrical noise are collectively used as noise.
  • Moving average processing is a kind of frequency filter generally used in the field of signal processing, and signal power is also an effective technique for removing noise of a specific period.
  • the wavelength of the noise to be removed is used, the number of signals corresponding to the distance is selected for the Nth signal Y to be processed and the distance before and after Y is selected. Average the values and replace the obtained average value with the signal value of the Nth signal Y to be processed. Next, the same processing is performed for the (N + 1) th signal Y ' ⁇ , and thereafter, this processing is performed as necessary until the final end of the signal. Repeat the process.
  • the wavelength ⁇ of noise generated in the measurement signal is larger than the width near the lowest part of the liquid material to be measured. Information will also be lost.
  • the discrete height measurement signal 60b is obtained as the measurement signal. It is done.
  • the measurement signal considering that noise is generated in the measurement signal, it is preferable to obtain a height shape signal from the most appropriate approximate circle using as many signals as possible. Furthermore, the measurement signal causing the noise before approximation is discarded, and the approximate curve is made the height shape signal 60d. Since the minimum height of the normal liquid material is obtained from the approximated height shape signal 60d, the influence of noise can be eliminated as a result, and accurate measurement is possible.
  • a bulk material (vertical rib) 11 with a height of 120 ⁇ m is placed in a cell 18 configured so that the distance between the center positions is 350 ⁇ m.
  • m m the theoretical value was calculated for the measurement error when the conical curve approximation was performed and when the moving average correction was performed.
  • the results are shown in FIG.
  • the horizontal axis in Fig. 32 represents the noise wavelength as a multiple (multiple) of the center position interval between the bulkheads (vertical ribs) 11, and the left vertical axis represents when conic curve approximation is performed.
  • the actual minimum height for the design value is 10 m as the limit of quality assurance for filling with liquid material.
  • the noise generated at the actual manufacturing site varies, but if the noise has a wavelength ⁇ that is sufficiently short relative to the width of the lowest part of the liquid material to be measured, the moving average processing is performed by shortening the discrete measurement interval. There are few errors by doing! Measurements can be made. For example, from Fig. 32, if the noise wavelength ⁇ is about 0.15 times the interval between the ribs (longitudinal ribs) 11, the measurement error (f) can be suppressed to within 1 ⁇ m. Is fully practical.
  • Measurement error (f) is 9.5 / zm, which is not suitable for practical use.
  • the conic curve approximation is performed, no measurement error is theoretically generated, so that highly accurate measurement and inspection are possible.
  • the approximate circle radius r obtained when the approximate circle is obtained is calculated for each of the plurality of applied liquid materials, and the approximate circle radius signal 64 is obtained continuously.
  • the approximate circle radius signal basically tends to decrease as the filling amount decreases.
  • the bottom of the groove 17 with the lateral rib is flat. Because it is, it becomes extremely large.
  • FIG. 12 shows the cross section in the same direction (position).
  • FIG. 12 shows the spot measurement displacement sensor 50a, and the scanning direction of the displacement sensor 50a is the front side of the paper surface and the back side.
  • the surface shape of the liquid material becomes a bowl shape in the cell (space divided by the partition wall (vertical rib) 11 and the partition wall (horizontal rib) 16) by leveling.
  • cl-cl takes the shape of an arc of an approximate circle in the direction of the cross-section line, but c2-c2' (c3-c3 ') (Horizontal rib) It becomes a shape that becomes a slope in the vicinity of 16.
  • the height of the lowest part of the liquid material is accurately measured at the cell center ⁇ . Force that can be output A higher value than the actual value is output at the cell edge pi.
  • the cell center ⁇ can accurately measure the height of the lowest part of the liquid material. A higher value than the actual value (normal part height) is output at the end pl and on the side rib p2, which may cause a defect to be overlooked. Therefore, it is necessary that the scanning of the sensor be within the sensor scanning width swl, and it is experimentally shown that the accuracy is preferably within ⁇ 35% with respect to 16 intervals between the partition walls (lateral ribs).
  • a specific method for storing the sensor scan width in swl will be described.
  • a roller transport machine generally used in the process of manufacturing a glass substrate for a display as the substrate moving means 206 when holding the substrate for the main measurement or moving the substrate to realize sensor scanning.
  • the roller transporter is configured such that a plurality of cylindrical rollers 201 are arranged on a rotating shaft 200 at a predetermined pitch so that the cylindrical side faces a direction perpendicular to the longitudinal direction of the shaft.
  • a plurality of core shafts 202 are further installed at a predetermined pitch in a direction in which the substrate traveling direction 203 and the roller axis longitudinal direction are perpendicular to each other.
  • the scanning of the spot displacement sensor 50a is realized by moving the sensor by the sensor moving means 231 while the substrate is stopped on the substrate moving means 206, the sensor is not scanned. Applying force, apply the substrate position restricting means 230 to the four sides of the stopped substrate ⁇ , and restrict the relative position of the substrate to the sensor and the tilt in the rotation direction with the axis perpendicular to the substrate surface as the central axis.
  • the scanning locus 51a of the spot displacement sensor 50a can be stored in sw1.
  • the position regulating means 230 may remain applied to the substrate, or the substrate force may be separated.
  • the position of the height measuring means is determined based on the board position recognition means and the board position information.
  • a method using the scanning position correcting means for correcting will be described. First, as shown in FIG. 24, when the scanning of the spot displacement sensor 50a is realized by moving the substrate Id using the substrate moving means 206, the substrate position recognizing means 240 measures the edge position of the substrate as needed, and the time elapses.
  • Substrate edge position change force accompanying the calculation of the meandering of the substrate and the tilt in the rotation direction with the axis perpendicular to the substrate surface as the central axis, and the position of the swl, which is the measurement region, is determined from the obtained information as needed.
  • the spot displacement sensor 50a can be corrected and moved in the correction direction 203 "so that the scanning locus 51a of the spot displacement sensor 50a is within the swl by the scanning position correcting means 241.
  • the effect of the above-mentioned scanning position correction is that the substrate is stopped on the substrate moving means 206, and the scanning of the spot displacement sensor 50a is not shown!
  • the sensor moving means moves the sensor in the sensor moving direction 203 '. This can also be achieved by moving the substrate position recognizing means 240 by a substrate recognizing means moving means (not shown) in synchronization with the movement of the sensor.
  • a method using two or more height measuring means and a sensor interval adjusting means is used.
  • two height measuring means are used, and scanning of the first spot displacement sensor 50a and the second spot displacement sensor 50a 'is realized by moving the substrate Id using the substrate moving means 206.
  • the interval adjustment means 250 the measurement points of the first spot displacement sensor 50a and the second spot displacement sensor 50a 'are added to the integral multiple of the transverse rib interval and half the transverse rib interval. Adjust in the direction of the distance adjustment direction 203 "'so that it is separated by the distance.
  • the sensors For inspection, it is preferable to install the sensors as close to each other as possible so that the sensor head housings do not interfere with each other. If the sensor position is adjusted as shown in Fig. 2, either one of the sensors must be positioned between the horizontal ribs even if the board meanders geometrically or tilts in the direction of rotation about the axis perpendicular to the board surface. Measure within ⁇ 25% of the center of And thus that can. That given the example of FIG.
  • the region 251a first spot displacement sensor 5 0a scan trajectory 51a is contained within the scanning width swl, region 251b in the second spot displacement sensor
  • the scan trajectory 51a 'of the sensor 50a' is included in the scan width swl '
  • the scan trajectory 51a of the first spot displacement sensor 50a is included in the scan width wl "'.
  • the effect of using the above two sensors is illustrated by the first spot displacement sensor 50a and the second spot displacement sensor 50a while the substrate is stopped on the substrate moving means 206.
  • the same effect can be obtained by moving the sensor and the distance adjusting means 250 in the moving direction 203 ′ with the moving means that does not.
  • the number of sensors is not limited to two.
  • Fig. 13 shows a wide displacement sensor 50b instead of the spot measurement displacement sensor 50a.
  • the scanning direction of the displacement sensor 50b is from the front side to the back side.
  • the wide displacement sensor 50b outputs an average value of the height within the sensor visual field width sw2.
  • the sensor visual field width sw2 is set to one partition (horizontal rib) 16 intervals (adjacent horizontal). (Distance between rib centers), the sensor field of view sw2 is always one cell 18 and one cell even if the sensor measurement position is cell center p0, cell edge pl, and horizontal rib p2.
  • the partition wall (lateral rib) 16 is included. Therefore, there is a difference between the average height of the normal part and the average value of the abnormal part, so that these can be distinguished.
  • the wide sensor 50b outputs a height profile within the sensor visual field width sw2, and the sensor visual field width sw2 is divided into one partition (lateral rib) 16 width + partition (lateral rib) 16 in the same manner as described above.
  • the sensor field of view sw2 always has one cell 18 and one partition wall (horizontal rib) even if the sensor measurement position is cell center p0, cell edge pl, and horizontal rib top p2. ) 1 6 will be included. Therefore, the profile shape force can also specify the cell center and output the measurement result of the cell center. In other words, the cell center ⁇ data can always be acquired, In theory, the cell edge pi and lateral rib p2 data are not used for measurement.
  • FIG. 14 shows a result image when the displacement sensor 50 is scanned with coarse accuracy as shown in FIGS. 12 and 13 (oblique scanning d2).
  • the spot measuring sensor 50a When the spot measuring sensor 50a is used, the normal part can be normally judged.
  • the cell edge part pl and the horizontal rib p2 are overlooked.
  • high-sensitivity measurement can be expected, which is more preferable.
  • a substrate back surface measuring means 50c capable of measuring the height of the substrate back surface as shown in FIG. Fig. 26 (a) shows the measurement system of the lateral force relative to the relative movement directions 203 and 203 'of the substrate Id and the height measuring means 50, and Fig. 26 (b) shows the substrate Id and the height measuring means 50. Relative moving directions 203 and 203 ′ forces are also observed in the measurement system.
  • the fixed height measuring means 50 is the surface information of the substrate.
  • the surface information includes the vertical movement information of the substrate.
  • the back surface height measuring means 50c obtained acquires the back surface information of the substrate, and this back surface information includes only the vertical movement information of the substrate. Therefore, the base obtained by the height measuring means 50 When the substrate back surface information obtained by the back surface height measuring means 50c is subtracted from the plate surface information, only the substrate vertical movement information is removed from the substrate surface shape with high accuracy.
  • the measurement point of the height measuring means 50 and the measurement point of the back surface height measuring means 50c are preferably positioned at the same point on the substrate plane! /.
  • the above effect is obtained by using the height measuring means moving means 260a and the back surface height measuring means moving means 260b to move the substrate Id and the height measuring means 50 relative to each other. This can also be obtained when the measuring means 50c is moved in synchronization with the sensor moving direction 203 '.
  • the vertical movement information of the substrate included in the measurement information of the height measuring means 50 and the back surface height measuring means 50c is mainly due to the deflection of the substrate Id that does not actually vibrate up and down. Become.
  • a space 261 may be provided so that there is no obstacle at the scanning position of the back surface height measuring means 50c.
  • the measurement point of the height measurement sensor 50 is an area where the substrate moving means 206 and the substrate Id are in contact with each other. It is also preferable to install at 262.
  • Fig. 27 (a) is a view of the measurement system observed from the side with respect to the relative movement directions 203 and 203 'of the substrate Id and the height measuring means 50
  • Fig. 27 (b) is the substrate Id and the height measuring means 50. It is the figure which observed the measuring system from relative movement direction 203 and 203 'of the.
  • the relative movement between the substrate Id and the height measuring means 50 is realized by moving the substrate Id in the substrate moving direction 203 using the substrate moving means 206, the fixed height measuring means 50 becomes the substrate moving means.
  • the substrate moving means By performing measurement in the area 262 where the substrate 206 and the substrate Id are in contact, surface information can be acquired in a state in which vertical vibration due to substrate deflection is suppressed.
  • the above effect is obtained by using the height measuring means moving means 260a to move the height measuring means 50 in synchronization with the sensor moving direction 203 'using the relative movement between the substrate Id and the height measuring means 50. It can also be obtained if realized. In this case, it is necessary that the substrate back surface corresponding to the substrate surface scanned by the height measuring means is in contact with the substrate moving means 206 over the entire scanning area. Specifically, the measurement is performed by placing the substrate in contact with a high-precision table. Just do it.
  • roller transport machine As a substrate table when holding the substrate for the main measurement or moving the substrate to realize sensor scanning.
  • scope of application of this technology is not limited to roller transporters.
  • Fig. 15 shows the leveling behavior of the paste.
  • the figure shows the substrate cross-sectional shape (in the same direction as c2-c2 'and c3-c3') immediately after filling with the liquid material and after leveling.
  • the liquid material immediately after filling the liquid material is filled not only in the cells 18 but also on the partition walls (lateral ribs) 16.
  • the liquid material on the partition wall (lateral rib) 16 flows into the cell 18 according to the paste flow 43.
  • the surface height of the liquid material increases immediately after application at the cell central portion ⁇ , which is the measurement portion, and the surface height decreases at p2 on the lateral rib.
  • Figure 16 shows the relationship between time and leveling. As shown in Fig. 16, the surface height of the liquid material increases immediately after application at the cell center ⁇ , which is the measurement part, and the surface height decreases at p2 on the lateral rib, and this leveling phenomenon is completed. The time required to reach steady state is about 5 seconds experimental force. However, if the viscosity of the liquid material is changed or the design of the substrate is changed, it is necessary to re-evaluate the leveling behavior.
  • the variation in cell capacity due to the variation in the width of the partition wall (vertical rib) 11 and the partition wall (lateral rib) 16 due to variations in manufacturing conditions and manufacturing equipment capacity can be considered. Even if the filling amount of the liquid material is filled, the height of the liquid material varies depending on the cell capacity. This characteristic is due to individual differences in the substrate due to the manufacturing process (under certain manufacturing conditions, the partition wall width at the edge of the substrate is always narrower and the partition wall width at the center of the substrate is larger).
  • liquid material height variation due to individual differences in coating nozzles and substrates is not a defect (abnormal coating process) unlike the height variation due to nozzle clogging. .
  • FIG. 17 shows an inspection signal and a fixed threshold value a and a variation threshold value ⁇ for defect determination.
  • s is, for example, M + 3rd paste height (OK), t is M + 6th paste height (OK), t "is M + 6th paste height (NG), u is M + 9th paste height (OK), u "is M + 9th paste height (NG) Yes.
  • This automatic variation threshold y is used as a threshold by calculating a moving average signal of the inspection signal itself (a signal obtained by moving average processing of the inspection signal itself).
  • the difference value between the N + 2 measurement result and the N + 1 measurement result shown in Fig. (E) changes greatly, and if the difference threshold ⁇ is set! / The defect can be detected normally.
  • the reference data that takes the difference from the data to be measured it is also preferable to use the average of the data for multiple sheets rather than the data for only the previous board as described above.
  • the above Z-inspection techniques can be used as they are. Loss when NG occurs. Inspection timing and target substrate can be selected based on the number of substrates, manufacturing tact, and inspection accuracy. In other words, if it is important to reduce the number of lost substrates when NG occurs, the above inspection should be performed on all PDP backplates every time liquid material is applied. If tact-up is aimed at, after applying the liquid material to all the PDP back plates on the mother glass substrate lb, the above-mentioned inspection may be performed only on the representative substrate, or the mother glass substrate lb. After applying the liquid material to all of the upper PDP backplates, multiple displacement sensors are All the substrates may be inspected simultaneously using a sensor. If the inspection accuracy is important, after applying the liquid material to all the PDP back plates on the mother glass substrate lb, the height measurement means 50 is applied to the representative substrate only at high speed at low speed. It is preferable to perform measurement by scanning with low vibration.
  • the surface shape of the substrate is measured for this purpose. Therefore, trend measurement is performed on the surface shape data of all the measured substrates, and the coating process is performed. It is also preferable to use it for nozzle operation. Specifically, for example, if the surface shape of the liquid material changes as a whole, a substrate with better quality can be manufactured by adjusting the coating pressure of the coating apparatus. Also, if the surface height of the liquid material, which cannot be said to be abnormal in the coating process, is decreasing, prepare an alternative nozzle early, and if a defect actually occurs, manufacture an NG substrate. Replace the nozzle before it ends.
  • FIG. 20 is a schematic diagram of an inspection apparatus for realizing the inspection method of the present invention.
  • FIG. 20 shows an example in which six PDP rear plates are manufactured from one mother glass substrate la (lb, lc).
  • the liquid material is sequentially applied by the two application means 74 to the mother glass substrate lb carried in by the substrate carry-in means 75L and fixed on the substrate fixing means 70.
  • the application means fixing means 73 with the application means 74 fixed can be applied while being moved by the moving means 71.
  • the application of one mother glass substrate lb is completed by two application operations three times each. To do. After coating is completed, the mother glass substrate lb is unloaded by the substrate unloading means 75UL.
  • the board fixing means 70 in addition to the XY axis position correction function, corrects the ⁇ direction (rotation direction) with the axis perpendicular to the board surface as the central axis. I also prefer to have more functions.
  • the inspection is performed on the target substrate at the timing described above after coating. That is, for example, the height measuring means moving means 72 is moved onto the substrate to be inspected by the moving means 71, and the height measuring means moving means 72 is used to scan two height measuring means 50 to form the shape of the substrate. Perform the measurement. As a result of inspection, if it is determined that there is an abnormality in the application process, the application process is stopped. , Perform recovery work. If the height measuring means fixing means 76 is provided with three height measuring means 50, the liquid material is applied to all the PDP back plates on the mother glass substrate lb, and then all the substrates are inspected. It can also be performed simultaneously.
  • the sensor scanning mechanism is preferably configured with a mechanism that suppresses vertical movement to the limit.
  • an LM guide with an air bearing and a moving mechanism composed of a linear motor can be considered.
  • FIG. 28 is a schematic view of another example of an inspection apparatus for realizing the inspection method of the present invention, and shows an example in the case of manufacturing one PDP back plate.
  • a fixing means 280 is provided in a transport section that transports the substrate from the previous process to the next process by the substrate moving means 206.
  • the fixing means 280 includes two height measuring means 50a and a height adjusting means 50a held by the interval adjusting means 250. 50a 'is provided.
  • the distance between the height measuring means 50a and 50a ' is the shortest distance at which the sensor housing does not interfere with the distance adjustment means 250, which is an integral multiple of the horizontal rib interval of the substrate to be manufactured plus half the horizontal rib interval. The distance is adjusted with the distance adjustment direction 203 "'.
  • the substrate Id is subjected to the application of the liquid material to the surface in the previous step, and is transferred in the substrate transfer direction 203 to the equipment for the next step by the substrate moving means 206.
  • a part of the surface shape of at least all of the grooves is measured by the height measuring means 50a and 50a ′ over the entire length in the longitudinal direction of the substrate.
  • the vertical vibration during substrate scanning becomes a direct measurement error and becomes a surface for high-accuracy measurement.
  • the vertical vibration effect at the time of substrate scanning is measured.
  • the thickness measuring means 50c and 50c ′ shows an example of sensor installation for the inspection equipment in this case in dotted lines. That is, if the substrate back surface information obtained by the back surface height measuring means 50c and 50c ′ is subtracted from the substrate surface information obtained by the height measuring means 50a and 50a ′, the substrate vertical movement information is accurately obtained from the substrate surface shape. Only will be removed.
  • the measurement points of the height measuring means 50 and 50a ′ and the corresponding measurement points of the back surface height measuring means 50c and 50c ′ should be positioned at the same point with respect to the substrate plane. Is preferred! /.
  • a substrate that has become NG due to a defect in the coating process can be restored as a non-defective product by correcting it with a dispenser that can be manually filled with a liquid material.
  • the PDP back plate to be measured consists of the partition walls (vertical ribs) 11 shown in Fig. 3 divided by the partition walls (lateral ribs) 16 to form cells 18, and each RGB cell with a different groove width is one.
  • One pixel of PDP is formed as a set.
  • the width of the cell 18 divided by the partition walls (lateral ribs) 16 is 950 ⁇ m, and the width of the partition walls (lateral ribs) 16 is 50 ⁇ m (the distance between the partition walls (lateral ribs 16) is 1000 ⁇ m).
  • six PDP rear plates lbl to lb6 are positioned on the mother glass substrate lb with two height measurement scanning directions x three phosphor coating directions.
  • the liquid material to be filled in the groove 17 with the lateral rib is a phosphor paste in which a phosphor material that promotes the color development of each RGB is dissolved in a solvent. In this example 1, no RG phosphor is formed.
  • B phosphor base 40b is applied to the substrate with a filling amount of 75% of the cell capacity.
  • the apparatus shown in Fig. 20 is used as an apparatus for applying the phosphor paste and an apparatus for inspecting the state of the applying apparatus.
  • First, regarding the phosphor-pased coating function Uses two coating nozzles in which a plurality of nozzle holes are arranged one-dimensionally at positions corresponding to the plurality of grooves 17 with lateral ribs to be coated with phosphors.
  • the coating means fixing means 73 for fixing the coating nozzle and the moving means 71 for moving the coating means fixing means 73 in the coating direction 19 a gantry stage having a positioning / correcting function on the XYZ axes is used.
  • the inspection function two triangulation laser displacement meters LC-2430 (manufactured by Keyence Corporation) having a spot measurement field are used as the height measuring means 50.
  • the moving means 71 for positioning the height measuring means moving means 72 and the height measuring means 72 on the substrate to be measured each has a positioning 'correction function on the XYZ axes.
  • the inspection function is configured as described above, the three height measuring means 50 and the height measuring means fixing means 76 shown above the substrate carry-out means 75UL are not necessarily required.
  • a general-purpose high-precision stage was used as the substrate fixing means 70 for positioning the mother glass substrate lb with high accuracy and correcting the positions of the XY and ⁇ axes.
  • a general-purpose co-feed transport mechanism was used as the substrate loading means 75L and the substrate unloading means 75UL for carrying the mother glass substrate la (lb, lc) into and out of the apparatus.
  • the operation of the coating function and the loading and unloading of the mother glass substrate la (lb, lc) into the equipment, the movement of the inspection function, and the scanning are performed centrally in the coating equipment operation section 78, and the height measurement is performed.
  • the processing of the electrical signal obtained by the means is carried out by the inspection device operation unit 77, and the application device operation unit 78 and the inspection device operation unit 77 are not shown in the figure so that they can communicate with each other. It is electrically controlled by PLC.
  • the inspection device operation unit 77 is not shown to perform signal processing !, a general-purpose personal computer as a signal processing means, a keyboard serving as an interface with an operator, a mouse, a monitor for outputting measurement results and inspection results, and the like.
  • An output device is provided.
  • the mother glass substrate lb carried on the high precision stage 70 by the roller transport mechanism 75L is fixed on the high precision stage 70 by vacuum suction, etc., and then the XY and ⁇ axes are finely adjusted. It is adjusted and positioned at a predetermined position.
  • the phosphor coating nozzle 74 is positioned by the gantry 73 and the gantry stage 71 at the coating start position (for example, the end of the PDP rear plate lbl and lb2 in the X axis origin direction direction) and finely adjusted in the XYZ axis direction.
  • the phosphor paste is applied to a predetermined position over the entire length of the substrate by moving continuously toward the application completion position (for example, the opposite end of the PDP back plate lbl and lb2 in the X-axis origin direction).
  • the mother glass substrate lb in FIG. 20 is coated with the phosphor paste on the PDP back plate lbl and lb2 by the coating operation, and the PDP back plates Ib3 to lb6 are in the stage where the phosphor paste is not applied.
  • Example 1 in order to minimize the number of NG substrates that are manufactured when clogging occurs in the coating nozzle, all substrates should be measured and inspected each time. To do.
  • the outline of the operation is as follows: loading of the mother glass substrate lb ⁇ application of PDP rear panel lbl and lb2 ⁇ inspection of PDP rear panel lbl and lb2 ⁇ application of PDP rear panel lb3 and lb4 ⁇ application of PDP rear panel lb3 and lb4 Inspection ⁇ PDP rear plate lb5, lb6 application ⁇ PDP rear plate lb5, lb6 inspection ⁇ Mother glass substrate lb unloading.
  • the substrate manufacturing conditions are set such that the B phosphor paste is applied at a filling amount of 75% of the cell capacity. Therefore, the discrete height shape signal is used as the inspection signal.
  • the height signal obtained from the height shape signal approximated by an approximation method using a parabola that is one of the conic curves is used, and the defect judgment threshold thh is taken into account the variation in the hole diameter of the coating nozzle. , Individual threshold manually adjusted) 8) was applied.
  • the phosphor paste has been smoothly applied to the substrate since the start of production.
  • coating on the substrate carry-out side
  • the Mlth hole of the cloth nozzle was clogged with dust mixed in the nozzle during nozzle assembly, resulting in a decrease in the coating amount.
  • the filling amount of the phosphor paste in the Ml-th lateral rib groove 17 corresponding to the Ml-th hole decreases from about 75% to about 70%, and the surface height h of the lowest part of the paste h Decreased from around 75 ⁇ m to around 65 ⁇ m.
  • the M2 hole of the coating nozzle on the substrate carry-in side is completely coated with dust mixed in the phosphor paste during phosphor paste manufacturing. It became impossible. As a result, the phosphor paste was missed in the M2th groove with lateral ribs 17 corresponding to the M2th hole.
  • the inspection device detected these normally, and once the coating device was stopped and the coating nozzle was replaced quickly, the process could be quickly restored to normal with a minimum number of NG substrate losses. While the coating was being performed smoothly, false detection / overdetection by the inspection device did not occur.
  • Example 1 the manufacturing conditions of the substrate were reset so that the phosphor paste B was applied at a filling amount of 90% with respect to the cell capacity.
  • an approximate circle radius signal obtained using a circle that is one of conic curves is used as an inspection signal to approximate the discrete height shape signal, and the defect determination thresholds thrl and thr2 are determined from both ends of the substrate.
  • the moving average signal of the inspection signal itself is automatically obtained and adjusted based on this
  • the variation threshold ⁇ applied was applied.
  • the relationship of Fig. 16 is used to prevent a drop in inspection accuracy due to the measured force paste leveling operation by starting scanning with a laser displacement meter from the part 2 seconds after application.
  • the height shape signal was corrected by holding and the inspection was carried out.
  • the phosphor paste has been successfully applied to the substrate since the start of production.
  • the third hole of the coating nozzle on the substrate carry-in side is clogged with dust mixed in the phosphor paste during phosphor paste manufacturing, resulting in a decrease in the coating amount. did.
  • the filling amount of the phosphor paste in the third groove 17 with the horizontal rib corresponding to the third hole is reduced to about 90% force 85%, and the approximate circle radius r of the paste surface shape is about 400 m.
  • Inspection device Detected this normally, and stopped the coating device and quickly cleaned the coating nozzle, so that the process could be quickly restored to normal with the minimum number of NG substrate losses. While the coating was performed smoothly, there was no false detection by the inspection device.
  • Substrate unloading means Install a frame with sufficiently high rigidity as height measuring means fixing means 76 on the upper part of 75UL, and as height measuring means 50, the same width as cell 18 and one partition (lateral rib) 16 width 1000
  • Three wide laser displacement meters 50b with m measurement area and set to output the average height in the measurement area were installed.
  • this wide laser displacement meter for example, a triangulation laser shape measurement sensor Z300-S10 (OMRON) having a measurement field of view can be used.
  • the inspection function is configured as described above, the two laser displacement meters and the gantry stage 72 having a spot field as the height measuring means 50 used in the second embodiment are not necessarily required.
  • Example 3 as described above, for the substrate manufacturing tact-up, the mother glass substrate lb is unloaded after all the PDP rear plates lbl to lb6 have been applied on the mother glass substrate lb.
  • the substrate surface of all substrates is measured by a laser displacement meter fixed above and inspection is performed.
  • the outline of the operation is as follows: import of the mother glass substrate lb ⁇ application of the PDP rear panel lbl and lb2 ⁇ application of the PDP rear panel lb3 and lb4 ⁇ application of the PDP rear panel lb5 and lb6 ⁇ export of the mother glass substrate lb ⁇ PDP back plate lbl ⁇ lb6 inspection.
  • Example 3 phosphor paste can be applied to all PDP backplates without waiting for the inspection time, and precise positioning of the sensor scanning trajectory by the gantry stage is not necessary. In addition, all board inspections can be performed together at the same time, making it possible to significantly reduce the board manufacturing tact.
  • the defect determination thresholds thrl and thr2 are measured taking into account the manufacturing condition of the substrate due to the characteristics of the drying furnace, where the partition walls (vertical ribs) 11 tend to gradually increase from both ends of the substrate to the vicinity of the center. Obtain the average value of the inspection signals of the 10 substrates before the measurement of the target substrate, and calculate the difference between the average value of the inspection signal and the inspection signal obtained from the target substrate. The difference threshold ⁇ was applied and the test was carried out.
  • the phosphor paste has been smoothly applied to the substrate since the start of production.
  • the fourth hole of the coating nozzle on the substrate carry-out side was clogged with aggregates generated in the phosphor paste itself, and the coating amount decreased.
  • the filling amount of the phosphor paste in the fourth groove 17 with the lateral rib corresponding to the fourth hole decreased from about 90% to about 80%, and the approximate circular radius r of the paste surface shape was 400 m. It decreased from around to 210 m.
  • the inspection device detected this normally, and the coating device was stopped and the coating nozzle was quickly washed to quickly restore the process to normal. While the coating was being performed smoothly, false detection / overdetection by the inspection device did not occur.
  • Example 1 the surface shape data of the substrate was temporally managed and compared in the order of measurement and inspection. As a result, the entire surface of the substrate was changed at the timing of switching the phosphor paste lot. It was found that the height h of the lowest part of the phosphor paste was increased. It was judged that this was caused by a decrease in paste viscosity due to phosphor paste manufacturing variations, and when the application pressure of the applicator was adjusted, the state before the lot change was restored. Of the two coating nozzles, the surface height h of the lowest part of the paste decreases in the M5th groove 17 with the lateral rib corresponding to the M5th hole of the coating nozzle on the substrate carry-in side. I was strong. On the other hand, clogging of the coating nozzle could be prevented beforehand by cleaning the nozzle hole as soon as possible.
  • Example 6 While applying the phosphor paste to the PDP back plate lb2 on a certain mother glass substrate lb in the form of Example 3 above, the phosphor is applied to the M6th hole of the coating nozzle on the substrate carry-out side.
  • the body paste was manufactured, dust mixed in the phosphor paste was clogged and the coating amount was reduced.
  • the inspection equipment detected this normally, but the PDP back plates lb2, lb4, and lb6 on the substrate carry-out side on the mother glass substrate lb became NG substrates. However, this NG substrate was extracted from the process, fixed on a table for correction, and corrected with a dispenser that can be manually filled with liquid material.
  • the PDP back plate to be measured consists of the partition walls (vertical ribs) 11 shown in Fig. 3 divided by the partition walls (lateral ribs) 16 to form cells 18, and each RGB cell with a different groove width is one.
  • One pixel of PDP is formed as a set.
  • the width of the cell 18 divided by the partition wall (lateral rib) 16 is 900 ⁇ m, and the width of the partition wall (lateral rib) 16 is 50 m.
  • one PDP back plate Id is produced on one glass substrate.
  • the liquid material 40b filled in the groove 17 with the lateral rib is a phosphor paste in which a phosphor material that promotes the color development of each RGB is dissolved in a solvent, and in this Example 6, an RG phosphor is constructed, and the substrate In contrast, consider the case where B phosphor paste is applied at a filling amount of 75% of the cell capacity.
  • a coating device (not shown) is used as a device for applying the phosphor paste, and a device shown in Fig. 28 is used as a device for inspecting the state of the coating device.
  • the height measuring means 50 for the inspection apparatus two triangulation type laser displacement meters LK-G10 (Keyence) having a spot measurement field are used (spot displacement sensors 50a and 50a,). Further, a general-purpose automatic single-axis stage is used as the distance adjusting means 250 for adjusting the distance between the spot displacement sensors 50a and 50a ', and is attached to the sensor frame as the fixing means 280. Further, the field of view of the spot displacement sensors 50a and 50a 'is set on a roller 201 which is a part of a roller transfer machine as the substrate transfer means 206, and the measurement point interval of both sensors is set in advance before the inspection. It is set to 63450 m by adjusting means 250.
  • the electrical signal obtained by the height measuring means 50 is processed by the inspection device operation unit 281.
  • the inspection device operation unit 281 further includes an input / output device such as a general-purpose personal computer (not shown) that performs signal processing, a keyboard that serves as an interface with an operator, a mouse, and a monitor that outputs measurement results and inspection results. Prepare.
  • the phosphor is applied to the substrate surface by a coating machine.
  • a coating machine the potential of a nozzle coating type coating machine with the mechanism described in Example 1 is considered.
  • Example 6 it is assumed that a single substrate is used. It is designed for single-sheet application corresponding to. Specifically, it has only one application nozzle and one sheet Each time a minute application operation is completed, the substrate is discharged and a new substrate is carried in.
  • the substrate Id is transported to the subsequent process by the roller transporting machine 206, which captures the surface shape of the substrate being transported.
  • a height measuring means 50 is installed on the conveyor.
  • the manufacturing condition of the substrate is set so that the phosphor paste B is applied at a filling amount of 75% with respect to the cell capacity. Therefore, the discrete height shape signal is used as the inspection signal.
  • Height shape signal force obtained by approximating method using a parabola that is one of the conic curves The height signal obtained is used, and the defect judgment threshold value thh is manually and individually considered in consideration of the hole diameter variation of the coating nozzle. An adjusted individual threshold of
  • the signal obtained when scanning on the partition wall (lateral rib) 16 is excluded from the signals obtained from the two spot displacement sensors 50a and 50a ', and either of the spot displacement sensors 50a and 50a' is within the scanning width. Implemented signal processing that extracts the signals when scanning and connects them.
  • the phosphor paste has been applied to the substrate smoothly since the start of production.
  • the M7th hole of the application nozzle was clogged with dust mixed in the nozzle during nozzle assembly, resulting in a decrease in coating amount.
  • the filling amount of the phosphor paste in the M7th laterally ribbed groove 17 corresponding to the M7th hole decreased by about 75% force and 60% before and after, and the surface height h of the lowest part of the paste was 75 ⁇ m. It decreased from around 30 to around 32 ⁇ m.
  • the inspection device detected these normally, and stopped the coating device and quickly replaced the coating nozzle, so that the process could be quickly restored to normal with the minimum number of NG substrate losses.
  • no false detection / overdetection by the inspection machine occurred.
  • Example 6 the measurement field of view of the spot displacement sensors 50a and 50a ′ is transferred to the substrate.
  • the force on the roller 201 which is a part of the roller transport machine as the feeding means 206, was also removed, and the configuration was changed so that the substrate could be measured by sandwiching the substrate between the two substrate back surface height measuring means 50c and 50c ′.
  • signal processing that eliminates the substrate vertical motion signal contained in the measurement signal by subtracting the measurement signal obtained by the back surface height measurement means 50c (50c ') from the measurement signal of the spot displacement sensor 50a (50a') was added.
  • force S is considered to apply the B phosphor paste to the substrate on which the RG phosphor is not configured.
  • This is not limited to the B phosphor paste.
  • a phosphor layer of a color other than the phosphor paste to be measured may be formed in another laterally ribbed groove 17.
  • the height h may be calculated on the basis of the height outside the region where the lateral rib groove 17 serving as the measurement region exists, for example, the height of the raw glass surface.
  • the height of the partition wall (vertical rib) 11 is also known as the board design value, it is possible to calculate the height h on the basis of the height of the partition wall (vertical rib) 11.

Abstract

A method and an apparatus for inspecting a display panel are characterized in that a height measuring means is provided, the height of a board plane including a liquid material applied part is discretely measured, while a board or the height measuring means is being shifted in a direction intersecting the liquid material, which is applied in a plurality of strips at prescribed intervals on the board, the height by the liquid material strip is extracted from a height shape signal obtained by making the obtained discrete height shape signals proximate, a series of the height signals are permitted to be inspection signals, and an application quantity of each liquid material strip is measured by the inspection signal. A manufacturing method using the inspection method and the inspection apparatus is also provided. A problem which caused continuous defects generated in an application process is rapidly detected by inspecting the status of the application process immediately after the fluorescent paste applying process to suppress the number of boards to be nonconforming products that cause a loss at minimum, and the process can be immediately recovered.

Description

明 細 書  Specification
ディスプレイパネルの検査方法、検査装置および製造方法  Display panel inspection method, inspection apparatus, and manufacturing method
技術分野  Technical field
[0001] 本発明は、ディスプレイパネルの検査方法、検査装置および製造方法に関し、とく に、液状材料が基板上に複数本塗布されるディスプレイパネルにおいて、液状材料 を基板上に精度良ぐ塗布、形成するために用いる手段等の状態検査方法および検 查装置、並びにそれらの方法および装置を用いたディスプレイパネルの製造方法に 関する。  [0001] The present invention relates to a display panel inspection method, inspection apparatus, and manufacturing method, and in particular, in a display panel in which a plurality of liquid materials are applied on a substrate, the liquid material is applied and formed on the substrate with high accuracy. The present invention relates to a state inspection method and inspection device such as means used for the purpose, and a display panel manufacturing method using the method and device.
背景技術  Background art
[0002] ディスプレイパネルの基板上に蛍光体を構成するために、液状材料を基板上に複 数本塗布する方法にお ヽて、蛍光体層の構成状態を検査する技術が知られて 、る。 例えば特許文献 1には、蛍光体構成前の基板表面形状と蛍光体ペースト塗布後に 焼成工程を経て蛍光体層が構成された基板表面形状との差分から、蛍光体層の構 成状態を検査する技術が開示されている。し力しこの方法では、一つの製品に対し て 2回の測定を行うために、製造コストがかさむ。また、 2回目の測定が実施されるま で製品の良否が判断できないため、蛍光体ペースト塗布装置 (および焼成炉)に連 続的な不具合が発生した場合には、不良品となる基板が大量に発生することになる  [0002] In order to construct a phosphor on a substrate of a display panel, a technique for inspecting the composition state of a phosphor layer is known in a method of applying a plurality of liquid materials on a substrate. . For example, in Patent Document 1, the composition state of the phosphor layer is inspected based on the difference between the substrate surface shape before the phosphor composition and the substrate surface shape on which the phosphor layer is constructed after the firing of the phosphor paste. Technology is disclosed. However, this method increases the manufacturing cost because two measurements are performed on one product. In addition, since the quality of the product cannot be judged until the second measurement is performed, if a continuous failure occurs in the phosphor paste applicator (and firing furnace), a large number of defective substrates are produced. Will occur
[0003] また、上記特許文献 1には、蛍光体ペースド塗布後に焼成工程を経て蛍光体層が 構成された基板表面に紫外線を照射し、 R (赤)、 G (緑)、 B (青)各蛍光体層からの 励起発光量を測定することで蛍光体層の構成状態を検査する技術も開示されている 。し力しこの方法では、焼成後の測定が実施されるまで製品の良否が判断できない ため、蛍光体ペースト塗布装置に連続欠陥の原因となる不具合が発生した場合には 、やはり不良品となる基板が大量に発生することになる。 [0003] In addition, in Patent Document 1 described above, ultraviolet rays are irradiated to the substrate surface on which the phosphor layer is formed through a baking process after applying the phosphor-pased, and R (red), G (green), B (blue) A technique for inspecting the configuration state of the phosphor layer by measuring the amount of excited luminescence from each phosphor layer is also disclosed. However, in this method, the quality of the product cannot be determined until the measurement after firing is performed. Therefore, if a defect that causes a continuous defect occurs in the phosphor paste coating apparatus, the substrate that is also a defective product Will occur in large quantities.
特許文献 1 :特開平 9 273913号公報  Patent Document 1: JP-A-9 273913
発明の開示  Disclosure of the invention
発明が解決しょうとする課題 [0004] 本発明の課題は、蛍光体ペースト塗布工程直後に塗布工程の状態を検査すること で塗布工程に発生した連続欠陥の原因となる不具合を迅速に発見し、不良品となり ロスとなる基板数を最小限に抑え、速やかに工程を復旧させることを可能にするディ スプレイパネルの検査方法および検査装置並びにそれらを用いた製造方法を提供 することにある。また、 1回測定で所望の測定結果を得ることができるようにし、基板の 製造コストを低く抑えることも課題とする。さらに、基板の表面状態のデータを管理し、 より高精度 ·高品質に製品を製造するためのデータとして活用できるようにすることも 課題とする。 Problems to be solved by the invention [0004] An object of the present invention is to inspect the state of the coating process immediately after the phosphor paste coating process to quickly find defects that cause continuous defects in the coating process, resulting in a defective product and a lossy substrate. It is an object of the present invention to provide a display panel inspection method and inspection apparatus, and a manufacturing method using them, which can minimize the number and quickly restore the process. Another issue is to make it possible to obtain a desired measurement result in a single measurement and to keep the manufacturing cost of the substrate low. Another issue is to manage the surface condition data of the substrate so that it can be used as data for manufacturing products with higher accuracy and quality.
課題を解決するための手段  Means for solving the problem
[0005] 上記課題を解決するために、本発明に係るディスプレイパネルの検査方法は、高さ 測定手段を有し、基板に所定の間隔で複数本塗布された液状材料と交差する方向 へ、基板、または高さ測定手段を移動させながら、液状材料塗布部を含む基板面の 高さ測定を離散的に行い、得られた離散高さ形状信号力 近似曲線を求めて得られ た高さ形状信号から液状材料毎の高さを抜き出して連ねた高さ信号を検査信号とし 、検査信号より液状材料毎の塗布量を測定することを特徴とする方法からなる。  [0005] In order to solve the above problems, a display panel inspection method according to the present invention includes a height measuring unit, and in a direction intersecting with a plurality of liquid materials applied to the substrate at a predetermined interval. Alternatively, the height shape signal obtained by discretely measuring the height of the substrate surface including the liquid material application part while moving the height measuring means, and obtaining an approximate curve of the obtained discrete height shape signal force The height signal for each liquid material is extracted from the height signal and used as an inspection signal, and the coating amount for each liquid material is measured from the inspection signal.
[0006] この検査方法においては、高さ測定手段によって得られた離散高さ形状信号から 液状蛍光体塗布部の信号を特定し、特定された信号から近似曲線として円錐曲線を 用いて高さ形状信号を求めるようにすることができる。  [0006] In this inspection method, the signal of the liquid phosphor coating part is specified from the discrete height shape signal obtained by the height measuring means, and the height shape is determined using the conic curve as an approximate curve from the specified signal. The signal can be determined.
[0007] この検査方法においては、高さ測定手段によって得られた離散高さ形状信号から 液状蛍光体塗布部の信号を特定し、特定された信号力 近似曲線として円を用いて 高さ形状信号を求めるとともに、近似円の直径を複数の液状材料に対応するよう〖こ 連ねた近似円直径信号を検査信号とし、検査信号より液状材料毎の塗布量を測定 するよう〖こすることがでさる。  In this inspection method, the signal of the liquid phosphor coating part is identified from the discrete height shape signal obtained by the height measuring means, and the height shape signal is determined using a circle as the identified signal force approximate curve. In addition, the approximate circle diameter signal obtained by connecting the approximate circle diameters corresponding to a plurality of liquid materials can be used as an inspection signal, and the application amount for each liquid material can be measured based on the inspection signal. .
[0008] また、上記検査方法は、基板上には、所定の間隔で塗布される液状材料の長手方 向と平行な方向に所定の間隔で複数の第 1の隔壁が形成されており、更に隣り合つ た第 1の隔壁間に液状材料の長手方向と垂直の方向に別の複数の第 2の隔壁が所 定の間隔で形成されて ヽる形態の基板に好適に適用できる。  [0008] Further, in the above inspection method, a plurality of first partition walls are formed at predetermined intervals in a direction parallel to the longitudinal direction of the liquid material applied at predetermined intervals on the substrate. The present invention can be suitably applied to a substrate having a configuration in which a plurality of second partition walls are formed at predetermined intervals in the direction perpendicular to the longitudinal direction of the liquid material between adjacent first partition walls.
[0009] このような形態の基板に対し、高さ測定手段としてスポット状の測定領域を有する高 さ測定センサを用い、液状材料の長手方向と垂直の方向に形成された第 2の隔壁間 の中央部 ±35%以内の領域の形状を、液状材料の長手方向を横切る方向に基板全 長にわたって測定するようにすることができる。 [0009] With respect to the substrate of such a form, a height having a spot-like measurement region as a height measurement means. Using the height measurement sensor, the shape of the area within ± 35% of the central part between the second partition walls formed in the direction perpendicular to the longitudinal direction of the liquid material is formed over the entire length of the substrate in the direction transverse to the longitudinal direction of the liquid material. Can be measured.
[0010] この方法においては、基板の位置を規制せしめる基板位置規制手段を更に有し、 第 2の隔壁間の中央部 ±35%以内の領域の形状を、液状材料の長手方向を横切る 方向に基板全長にわたって測定するようにすることができる。すなわち、基板の位置 を規制 (基板移動の場合は搬送ガイド、センサ移動の場合は事前位置決め機構)し、 第 2の隔壁間の中央部 ±35%以内領域の高さ測定センサ走査を実現するものである [0010] In this method, the substrate position regulating means for regulating the position of the substrate is further provided, and the shape of the region within ± 35% of the central portion between the second partition walls is formed in a direction crossing the longitudinal direction of the liquid material. The measurement can be performed over the entire length of the substrate. In other words, the position of the substrate is regulated (conveyance guide in the case of substrate movement, pre-positioning mechanism in the case of sensor movement) to realize height measurement sensor scanning in the area within ± 35% of the center between the second partition walls Is
[0011] また、上記方法においては、基板の位置を認識する基板位置認識手段と基板位置 情報をもとに高さ測定手段の位置を補正する走査位置補正手段を更に有し、第 2の 隔壁間の中央部 ±35%以内の領域の形状を、液状材料の長手方向を横切る方向に 基板全長にわたって測定するようにすることができる。すなわち、基板エッジ位置を測 定することで基板の傾き'蛇行情報を得て、高さ測定センサ位置を補正し、第 2の隔 壁間の中央部 ±35%以内領域の高さ測定センサ走査を実現するものである。 [0011] The method further includes a substrate position recognizing unit for recognizing the position of the substrate and a scanning position correcting unit for correcting the position of the height measuring unit based on the substrate position information. The shape of the region within ± 35% of the central portion in between can be measured over the entire length of the substrate in a direction crossing the longitudinal direction of the liquid material. In other words, by measuring the board edge position, the board tilt and meandering information is obtained, the height measurement sensor position is corrected, and the height measurement sensor scan in the region within ± 35% of the center between the second walls is corrected. Is realized.
[0012] さらに、上記方法においては、 2つ以上の高さ測定手段と位置調整手段と切換手段 とを更に有し、第 2の隔壁間の中央部 ±35%以内の領域の形状を、液状材料の長手 方向を横切る方向に基板全長にわたって測定するようにすることができる。すなわち 、少なくとも 2つ以上の高さ測定センサを使用し、基板傾き'蛇行が発生しても少なくと も 1つの高さ測定センサが第 2の隔壁間の中央部 ± 35%以内領域のデータを取得す るものである。  [0012] Further, the above method further comprises two or more height measuring means, position adjusting means, and switching means, and the shape of the region within ± 35% of the central portion between the second partition walls is liquid. The measurement can be performed over the entire length of the substrate in a direction transverse to the longitudinal direction of the material. In other words, at least two height measurement sensors are used, and even if the substrate tilts and meandering occurs, at least one height measurement sensor captures data in the region within ± 35% of the center between the second partition walls. It is to be acquired.
[0013] あるいは、高さ測定手段として液状材料の長手方向と垂直の方向に形成された第 2 の隔壁間隔を含む測定領域を有する高さ測定センサを用い、基板面の形状を液状 材料の長手方向を横切る方向に基板全長にわたって測定するようにすることもできる  Alternatively, a height measurement sensor having a measurement region including a second partition wall space formed in a direction perpendicular to the longitudinal direction of the liquid material is used as the height measurement means, and the shape of the substrate surface is changed to the longitudinal direction of the liquid material. It is also possible to measure over the entire length of the substrate in a direction crossing the direction.
[0014] 上記のような本発明に係るディスプレイパネルの検査方法にぉ 、ては、基板裏面の 高さを測定する基板裏面高さ測定手段を有し、高さ測定手段による測定結果を基板 裏面高さ測定結果で補正するようにすることもできる。すなわち、基板裏面を測定す る第 2の高さ測定センサを有し、基板上下動を測定して高さ測定データから基板上下 動の影響を排除するものである。 [0014] The above-described display panel inspection method according to the present invention includes substrate back surface height measuring means for measuring the height of the substrate back surface, and the measurement result by the height measuring means is displayed on the back surface of the substrate. It can also be corrected by the height measurement result. That is, measure the back side of the board A second height measuring sensor that measures the vertical movement of the substrate and eliminates the influence of the vertical movement of the substrate from the height measurement data.
[0015] また、高さ測定手段の測定位置が、基板移動手段と基板とが接する位置に配置さ れるよう〖こすることもできる。すなわち、高さ測定手段の測定位置を基板搬送手段と 基板の接する位置に配置し、基板上下動を抑制するものである。  [0015] Further, the measurement position of the height measuring means can be rubbed so as to be arranged at a position where the substrate moving means and the substrate are in contact with each other. In other words, the measurement position of the height measuring means is arranged at a position where the substrate transport means and the substrate are in contact with each other to suppress the vertical movement of the substrate.
[0016] また、上記検査方法にお!、ては、所定の間隔で塗布された液状材料は塗布直後か ら流動作用により第 1および第 2の隔壁間での表面形状が変化し、所定時間後に定 常状態に至るものである場合、基板面の高さ測定を所定時間後に実施することがで きる。すなわち、液状材料のレべリングを待って検査を行うのである。  [0016] In addition, according to the above inspection method, the liquid material applied at a predetermined interval changes the surface shape between the first and second partition walls immediately after the application due to the flow action, and the predetermined time. In the case where a steady state is reached later, the height measurement of the substrate surface can be performed after a predetermined time. That is, the inspection is performed after the liquid material is leveled.
[0017] また、所定の間隔で塗布された液状材料は塗布直後から流動作用により第 1およ び第 2の隔壁間での表面形状が変化し、所定時間後に定常状態に至るものである場 合、時間に対する液状材料表面形状の変化情報をもって高さ形状信号を補正するこ ともできる。すなわち、あら力じめ測定しておいた時間に対するペーストレべリング特 性データをもって高さ形状信号を補正するのである。  [0017] In addition, the liquid material applied at a predetermined interval changes its surface shape between the first and second partition walls immediately after the application due to the flow action, and reaches a steady state after a predetermined time. In this case, it is possible to correct the height shape signal with the change information of the liquid material surface shape with respect to time. In other words, the height shape signal is corrected using paste leveling characteristic data with respect to the preliminarily measured time.
[0018] また、上記検査方法では、検査信号に欠陥の有無を判定するための所定の欠陥判 定閾値を設ける信号処理工程にぉ 、て、検査信号における測定対象である複数の 液状材料と対応する領域をそれぞれ特定し、特定された信号部にそれぞれ固有の 欠陥判定閾値を設けるようにすることができる。  [0018] Further, in the inspection method described above, it is possible to cope with a plurality of liquid materials that are measurement targets in an inspection signal, in a signal processing step in which a predetermined defect determination threshold value for determining whether or not there is a defect is included in the inspection signal. Each region to be identified can be identified, and a specific defect determination threshold value can be provided for each identified signal portion.
[0019] この場合、検査対象基板から得られた検査信号自身に対し、移動平均処理を施し て得られた移動平均信号より検査信号に対する欠陥判定閾値を自動で調整すること ができる。  In this case, the defect determination threshold for the inspection signal can be automatically adjusted from the moving average signal obtained by performing the moving average process on the inspection signal itself obtained from the inspection target substrate.
[0020] また、複数枚の基板に対して連続的に基板面の高さ測定を実施し、検査対象とな る基板の測定以前に測定された基板の高さ形状情報より、検査対象基板の欠陥判 定閾値を自動で調整することもできる。すなわち、対象基板の測定以前に行った別 の基板の測定結果から各液状材料毎に個別の判定閾値を自動で設定するのである  [0020] Further, the height of the substrate surface is continuously measured for a plurality of substrates, and the substrate height and shape information measured before the measurement of the substrate to be inspected is used to determine the substrate to be inspected. It is also possible to automatically adjust the defect determination threshold. In other words, an individual judgment threshold value is automatically set for each liquid material from the measurement results of another substrate that was measured before the measurement of the target substrate.
[0021] また、上記検査方法にお!ヽては、高さ測定を、液状材料が基板に塗布される毎に 液状材料が塗布された全ての基板に対して実施、または液状材料が複数枚の基板 に塗布された後に液状材料が塗布された全ての基板に対して、もしくは選択された 代表基板に対して実施することができる。例えば、多面取り基板に対し、検査の精度 や製造タクト、 NG (no good:不良)発生時のロス基板枚数など力 検査のタイミングと 対象基板を選択するのである。 [0021] In addition, according to the above inspection method, the height measurement is performed on all the substrates on which the liquid material is applied every time the liquid material is applied to the substrate, or a plurality of liquid materials are used. Board It can be applied to all substrates coated with a liquid material after application to a selected representative substrate. For example, for multi-sided substrates, the timing of force inspection, such as the accuracy of inspection, manufacturing tact, and the number of lost substrates when NG (no good) occurs, and the target substrate are selected.
[0022] 上記の検査方法においては、複数枚の基板より得られた高さ測定情報を管理し、 塗布装置の制御、運用にフィードバックすることもできる。 [0022] In the above inspection method, height measurement information obtained from a plurality of substrates can be managed and fed back to the control and operation of the coating apparatus.
[0023] 本発明に係るディスプレイパネルの検査装置は、液状材料塗布部を含む基板面の 高さ測定を離散的に行う高さ測定手段と、得られた離散高さ形状信号力 近似曲線 を求めて高さ形状信号を得る信号処理手段を有することを特徴とするものからなる。 [0023] The display panel inspection apparatus according to the present invention obtains a height measuring means for discretely measuring the height of the substrate surface including the liquid material application portion, and an obtained discrete height shape signal force approximation curve. And a signal processing means for obtaining a height shape signal.
[0024] この検査装置においては、基板に所定の間隔で複数本塗布された液状材料と交 差する方向へ、基板、または高さ測定手段を移動させる移動手段と、信号処理手段 による測定結果および検査結果を出力する情報出力手段を更に有する構成とするこ とがでさる。 [0024] In this inspection apparatus, the moving means for moving the substrate or the height measuring means in the direction crossing the liquid material applied to the substrate at a predetermined interval, the measurement result by the signal processing means, and It is possible to further include an information output means for outputting the inspection result.
[0025] さらに、基板を固定する基板固定手段を有し、基板固定手段が基板面に鉛直な軸 を中心軸として回転方向に位置補正機能を備えている構成とすることができる。  [0025] Further, it may be configured to have substrate fixing means for fixing the substrate, and the substrate fixing means is provided with a position correcting function in the rotation direction with the axis perpendicular to the substrate surface as the central axis.
[0026] また、高さ測定手段としてレーザー変位計を用い、高さ測定手段を移動させる移動 手段としてエアベアリングを備えたリニアモータガイドを用い、基板を固定する基板固 定手段として基板面に鉛直な軸を中心軸として回転方向の位置補正機能を有する 高精度ステージを用いて構成される形態とすることができる。 [0026] Further, a laser displacement meter is used as the height measuring means, a linear motor guide having an air bearing is used as the moving means for moving the height measuring means, and the substrate fixing means for fixing the substrate is perpendicular to the substrate surface. It is possible to adopt a configuration in which a high-precision stage having a position correction function in the rotational direction with a central axis as a central axis is used.
[0027] この場合、基板を固定する基板固定手段としての高精度ステージを、液状材料の 塗布を行う際の基板固定手段として塗布装置と共通に使用することができる。高精度 ステージには汎用のものが使用できる。 [0027] In this case, a high-precision stage as a substrate fixing means for fixing the substrate can be used in common with the coating apparatus as the substrate fixing means when applying the liquid material. A high-precision stage can be used for general purposes.
[0028] 上記検査装置は、基板の位置を規制するための基板位置規制手段を更に有して いる構成とすることちでさる。 [0028] The inspection apparatus may be configured to further include substrate position regulating means for regulating the position of the substrate.
[0029] この場合、高さ測定手段としてレーザー変位計を用い、基板を移動させる移動手段 としてコロ搬送機を用い、基板位置規制手段として位置規制ガイドを用いて構成する ことができる。 [0029] In this case, a laser displacement meter can be used as the height measuring means, a roller transport machine can be used as the moving means for moving the substrate, and a position regulation guide can be used as the substrate position regulating means.
[0030] また、高さ測定手段としてレーザー変位計を用い、高さ測定手段を移動させる移動 手段として 1軸ステージを用い、基板位置規制手段として位置決め機構を用いて構 成することちでさる。 [0030] Further, a laser displacement meter is used as the height measuring means, and the height measuring means is moved. This is achieved by using a single-axis stage as the means and using a positioning mechanism as the substrate position restricting means.
[0031] 上記検査装置は、基板エッジ位置測定手段と高さ測定手段の位置を補正するため の位置補正手段を更に有している構成とすることもできる。  [0031] The inspection apparatus may further include a position correcting unit for correcting the positions of the substrate edge position measuring unit and the height measuring unit.
[0032] この場合、高さ測定手段としてレーザー変位計を用い、基板を移動させる移動手段 としてコロ搬送機を用い、基板エッジ位置測定手段としてレーザー位置測定センサを 用い、位置補正手段として 1軸ステージを用いて構成することができる。 [0032] In this case, a laser displacement meter is used as the height measuring means, a roller transporter is used as the moving means for moving the substrate, a laser position measuring sensor is used as the substrate edge position measuring means, and a single-axis stage as the position correcting means Can be used.
[0033] また、上記検査装置は、少なくとも 2つ以上の高さ測定手段と高さ測定手段同士の 設置間隔を調整する設置間隔調整手段を更に有する構成とすることもできる。 [0033] The inspection apparatus may further include at least two or more height measuring units and an installation interval adjusting unit that adjusts an installation interval between the height measuring units.
[0034] この場合、高さ測定手段として 2台のレーザー変位計を用い、基板を移動させる移 動手段としてコロ搬送機を用い、設置間隔調整手段として 1軸ステージを用いて構成 することができる。 [0034] In this case, two laser displacement meters can be used as the height measuring means, a roller transport machine can be used as the moving means for moving the substrate, and a single-axis stage can be used as the installation interval adjusting means. .
[0035] このような検査装置は、基板裏面高さ測定手段を更に有し、基板裏面高さ測定手 段としてレーザー変位計を用いることができる。  Such an inspection apparatus further includes a substrate back surface height measuring means, and a laser displacement meter can be used as a substrate back surface height measuring means.
[0036] また、高さ測定手段としてのレーザー変位計が基板移動手段と基板とが接する位 置を測定できるように構成されることもできる。 [0036] Further, the laser displacement meter as the height measuring means can be configured to measure the position where the substrate moving means and the substrate are in contact with each other.
[0037] 本発明に係るディスプレイパネルの製造方法は、上記のような検査方法、もしくは 上記のような検査装置を用い、ディスプレイパネルを製造することを特徴とする方法 からなる。 [0037] A display panel manufacturing method according to the present invention comprises the above-described inspection method or a method characterized by manufacturing a display panel using the above-described inspection apparatus.
[0038] この製造方法においては、基板の欠陥情報をもとに液状材料の修正手段を用いて 基板を修正するようにすることができる。すなわち、基板の欠陥情報をもとに NG基板 の修正を行うのである。  In this manufacturing method, the substrate can be corrected using the liquid material correcting means based on the defect information of the substrate. In other words, the NG substrate is corrected based on the defect information of the substrate.
発明の効果  The invention's effect
[0039] 本発明によれば、基板の表面形状から塗布工程の不具合 (塗布ノズルの詰まり等) を欠陥発生直後に検出可能であるため、不良品発生によりロスとなる基板 (以下、 N Gロス基板と言うこともある。)の枚数を最小限に抑えることができる。また、測定は変 位計の 1回走査で済むため、製造コスト増も最小限に抑えることができる。  [0039] According to the present invention, a defect in the coating process (clogging of the coating nozzle, etc.) can be detected immediately after the occurrence of a defect from the surface shape of the substrate. Can be kept to a minimum. In addition, since the displacement meter only needs to be scanned once, an increase in manufacturing costs can be minimized.
[0040] 検査に要する時間を短縮するために離散高さ形状信号の間隔を広げたとしても、 近似により高精度に高さ形状信号を得ることができるため、高い測定精度を保つこと ができる。また測定した離散高さ形状信号に低周波のノイズが発生した場合であって も、液状材料表面の形状情報を失わずにノイズを除去でき、高い測定精度を保つこ とがでさる。 [0040] Even if the interval between discrete height shape signals is increased in order to reduce the time required for inspection, Since the height shape signal can be obtained with high accuracy by approximation, high measurement accuracy can be maintained. Even if low-frequency noise is generated in the measured discrete height shape signal, the noise can be removed without losing the shape information on the surface of the liquid material, and high measurement accuracy can be maintained.
[0041] 液状材料表面を含む近似円の半径による充填量推定により(特に隔壁すれすれに 液状材料を充填する製造仕様において)、高い検査感度を得ることができる。  [0041] A high inspection sensitivity can be obtained by estimating the filling amount by the radius of the approximate circle including the surface of the liquid material (especially in the manufacturing specification in which the liquid material is filled in the partition wall).
[0042] 隣り合った第 1の隔壁間に液状材料の長手方向と垂直の方向に別の複数の第 2の 隔壁が所定の間隔で形成されている形態の基板、いわゆる横リブ付き基板であって も、高精度に検査可能である。 [0042] A substrate having a form in which a plurality of second partition walls are formed at predetermined intervals in the direction perpendicular to the longitudinal direction of the liquid material between adjacent first partition walls, that is, a so-called substrate with lateral ribs. Even so, it can be inspected with high accuracy.
[0043] 走査の精度を規定することによって検査の精度 Z信頼性を上げることができる。 [0043] By specifying the scanning accuracy, the inspection accuracy Z reliability can be increased.
[0044] 基板移動の場合は走行ガイド、センサ移動の場合は基板位置決め機構で走査精 度を確保できる。 [0044] Scanning accuracy can be ensured by a travel guide in the case of substrate movement, and by a substrate positioning mechanism in the case of sensor movement.
[0045] 測定視野をセンサに追従させることで走査精度を確保できる。  [0045] By making the measurement visual field follow the sensor, it is possible to ensure scanning accuracy.
[0046] 2つのセンサのどちらかが必ず測定視野を測定することで走査精度を確保できる。  [0046] Either one of the two sensors always measures the measurement field of view, thereby ensuring scanning accuracy.
[0047] 広幅視野内の高さ測定を実施し、視野内平均高さをもって検査を行うことにより、祖 精度走査であっても高精度の検査が可能となる。  [0047] By measuring the height within the wide field of view and performing the inspection with the average height within the field of view, it is possible to perform a high-accuracy inspection even in the case of scanning with high accuracy.
[0048] 高さ信号を基板裏面高さ測定信号で補正することにより、基板上下動ノイズを排除 できる。 [0048] By correcting the height signal with the substrate back surface height measurement signal, the substrate vertical movement noise can be eliminated.
[0049] コ口上に測定視野を設定することで基板上下動を抑え、基板上下動ノイズを排除で きる。  [0049] By setting the measurement visual field on the mouth, it is possible to suppress the vertical movement of the substrate and to eliminate the vertical movement noise of the substrate.
[0050] 液状材料 (ペースト)のレべリングを待って力 検査を行うことで検査の精度を上げ ることがでさる。  [0050] Waiting for the leveling of the liquid material (paste) to perform a force test can improve the accuracy of the test.
[0051] 時間に対するペーストのレべリング特性をもって測定データを補正することにより、 検査の精度を上げることができる。  [0051] The accuracy of the inspection can be improved by correcting the measurement data with the leveling characteristic of the paste with respect to time.
[0052] 塗布装置の個体差、基板の固定製造ムラを手動で排除し、検査を行うことも可能に なる。 [0052] Individual differences between coating apparatuses and fixed production unevenness of the substrate can be manually eliminated to perform inspection.
[0053] 塗布装置の個体差、基板の固定製造ムラを空間的な移動平均処理によって自動 で排除し、検査を行うこともできる。 [0054] 塗布装置の個体差、基板の固定製造ムラを時間的な移動平均処理によって自動 で排除し、検査を行うこともできる。 [0053] The individual difference of the coating apparatus and the fixed manufacturing unevenness of the substrate can be automatically eliminated by a spatial moving average process to perform the inspection. It is also possible to perform inspection by automatically eliminating individual differences of coating apparatuses and fixed manufacturing unevenness of the substrate by temporal moving average processing.
[0055] 多面取り基板に対し、 NG発生時のロス基板枚数や製造タクト、検査の精度などか ら検査のタイミングと対象基板を選択することができる。 [0055] For a multi-sided substrate, the inspection timing and the target substrate can be selected from the number of loss substrates when NG occurs, the manufacturing tact, the inspection accuracy, and the like.
[0056] 塗布工程の状態検査のために測定した基板の表面形状データをトレンド管理して 塗布工程の制御や運用にフィードバックし、安定した基板生産を可能とすることがで きる。 [0056] The surface shape data of the substrate measured for the inspection of the state of the coating process can be managed as a trend and fed back to the control and operation of the coating process to enable stable substrate production.
[0057] そして実際に、高さ測定手段と信号処理手段によって検査装置を構成することがで きる。  [0057] In practice, an inspection apparatus can be configured by the height measuring means and the signal processing means.
[0058] 更に高さ測定手段を移動させる移動手段と検査結果を出力する出力手段を備える ことにより実際に具体的な検査装置を構成することができる。  [0058] Further, a specific inspection apparatus can be actually configured by including a moving means for moving the height measuring means and an output means for outputting the inspection result.
[0059] 更に基板の回転方向( Θ方向)補正機能を備えた基板固定手段を備えることにより 実際に具体的な検査装置を構成することができる。 Further, a specific inspection apparatus can be actually configured by including a substrate fixing means having a function of correcting the rotation direction (Θ direction) of the substrate.
[0060] このように、より具体的な装置構成が可能となる。 As described above, a more specific device configuration is possible.
[0061] また、塗布機内に本検査装置を組み込むことにより、欠陥の発生をより迅速に発見 できる。  [0061] In addition, by incorporating this inspection apparatus in the coating machine, the occurrence of defects can be detected more quickly.
[0062] 上記の装置構成に、更に基板位置規制手段を備えることにより実際により具体的な 検査装置を構成することができる。  [0062] By further including the substrate position regulating means in the above apparatus configuration, a more specific inspection apparatus can be configured in practice.
[0063] この基板位置規制手段を備えた構成では、基板移動型の装置構成が可能となり、 高さ測定手段移動型の装置構成も可能となる。 [0063] In the configuration including the substrate position regulating means, a substrate moving type device configuration is possible, and a height measuring means moving type device configuration is also possible.
[0064] また、上記の装置構成に、更に基板エッジ位置測定手段と高さ測定手段を備えるこ とにより実際により具体的な検査装置を構成することができる。 [0064] In addition, the above-described apparatus configuration can further include a substrate edge position measuring unit and a height measuring unit, whereby a practical inspection apparatus can be configured.
[0065] この基板エッジ位置測定手段と高さ測定手段を備えた構成では、基板移動型の装 置構成が可能となる。 In the configuration including the substrate edge position measuring unit and the height measuring unit, a substrate moving type device configuration is possible.
[0066] また、上記の装置構成において 2台の高さ測定手段を用い、更に高さ測定手段同 士の間隔を調整する間隔調整手段を備えることにより実際により具体的な検査装置 を構成することができる。  [0066] Further, in the apparatus configuration described above, by using two height measuring means and further including an interval adjusting means for adjusting the distance between the height measuring means, a more specific inspection apparatus can be configured in practice. Can do.
[0067] この検査装置においても、基板移動型の装置構成が可能となる。 [0068] さらに、上記のような装置構成に、基板裏面高さ測定手段を備えることにより実際に より具体的な検査装置を構成することができる。 Also in this inspection apparatus, a substrate movement type apparatus configuration is possible. [0068] Furthermore, a more specific inspection apparatus can actually be configured by providing a substrate back surface height measuring means in the apparatus configuration as described above.
[0069] また、上記のような検査装置においては、基板の上下動を抑制可能な構成が可能 となる。 [0069] In addition, in the inspection apparatus as described above, a configuration capable of suppressing the vertical movement of the substrate is possible.
[0070] 液状材料の塗布装置内に本検査装置を組み込むことにより、欠陥の発生をより迅 速に発見できる。  [0070] By incorporating this inspection device into the liquid material application device, the occurrence of defects can be detected more quickly.
[0071] 基板の表面形状から塗布工程不具合 (塗布ノズルの詰まり等)を欠陥発生直後に 検出可能であるため、 NGロス基板の枚数を最小限に抑えることのできる基板の製造 方法、装置を実現でき、また測定は変位計の 1回走査で済むため、ディスプレイパネ ルの製造コスト増も最小限に抑えることができる。  [0071] Since a coating process failure (clogging of the coating nozzle, etc.) can be detected immediately after the occurrence of a defect based on the surface shape of the substrate, a substrate manufacturing method and apparatus capable of minimizing the number of NG loss substrates are realized. In addition, since the measurement only needs to be performed once by the displacement meter, the manufacturing cost of the display panel can be minimized.
[0072] 塗布工程の状態検査のために測定した基板に対し、 NG時の基板を修正工程で修 正することにより、工程全体の収率を上げることが可能になる。  [0072] By correcting the substrate at the time of NG in the correction process with respect to the substrate measured for the inspection of the state of the coating process, the yield of the entire process can be increased.
図面の簡単な説明  Brief Description of Drawings
[0073] [図 1]PDPの構成を示す概略構成図である。 FIG. 1 is a schematic configuration diagram showing a configuration of a PDP.
[図 2]PDP背面板製造工程を示す工程フロー図である。  FIG. 2 is a process flow diagram showing a PDP back plate manufacturing process.
[図 3]蛍光体が未構成である PDP背面板を示す概略部分斜視図である。  FIG. 3 is a schematic partial perspective view showing a PDP back plate having no phosphor.
[図 4]蛍光体ペースト塗布直後の PDP背面板の例を示す概略部分斜視図である。  FIG. 4 is a schematic partial perspective view showing an example of a PDP back plate immediately after applying a phosphor paste.
[図 5]蛍光体ペーストがレべリングした後の PDP背面板の例を示す概略部分斜視図で ある。  FIG. 5 is a schematic partial perspective view showing an example of a PDP back plate after the phosphor paste is leveled.
[図 6]蛍光体層が構成された (1色分のみ) PDP背面板の例を示す概略部分斜視図で ある。  FIG. 6 is a schematic partial perspective view showing an example of a PDP back plate having a phosphor layer (only for one color).
[図 7]PDP背面板と高さ測定手段走査の関係を示す概略斜視図である。  FIG. 7 is a schematic perspective view showing the relationship between the PDP back plate and the height measuring means scanning.
[図 8]PDP背面板表面形状と高さ測定手段のサンプリングの関係を示す概略図である  FIG. 8 is a schematic diagram showing the relationship between the surface shape of the PDP back plate and the sampling of the height measuring means.
[図 9]信号近似方法と高さ hZ近似円半径 rの定義を説明する説明図である。 FIG. 9 is an explanatory diagram for explaining the definition of the signal approximation method and the height hZ approximate circle radius r.
[図 10]高さ形状信号 Z高さ信号 Z近似円半径信号と欠陥判定閾値を説明する説明 図である。  FIG. 10 is an explanatory diagram for explaining a height shape signal, a Z height signal, a Z approximate circle radius signal, and a defect determination threshold value.
[図 11]高さ信号検査と近似円信号検査の感度特性を説明する説明図である。 [図 12]PDP背面板塗布方向表面形状とスポット測定位置を示す概略図である。 圆 13]PDP背面板塗布方向表面形状と広幅測定位置を示す概略図である。 FIG. 11 is an explanatory diagram illustrating sensitivity characteristics of height signal inspection and approximate circle signal inspection. FIG. 12 is a schematic view showing the surface shape of the PDP back plate application direction and the spot measurement position.圆 13] It is a schematic diagram showing the surface shape of the PDP back plate application direction and the width measurement position.
圆 14]スポット Z広幅測定位置と検査感度の関係を説明する説明図である。 [14] Spot 14 is an explanatory diagram for explaining the relationship between the Z wide measurement position and the inspection sensitivity.
圆 15]蛍光体ペーストのレべリング現象を説明する説明図である。 圆 15] It is an explanatory diagram explaining the leveling phenomenon of the phosphor paste.
圆 16]蛍光体ペースト塗布後の経過時間と表面高さの関係を説明する説明図である 圆 17]検査信号における固定閾値と個別閾値を説明する説明図である。 圆 16] An explanatory diagram explaining the relationship between the elapsed time after applying the phosphor paste and the surface height. 圆 17] An explanatory diagram explaining the fixed threshold and the individual threshold in the inspection signal.
圆 18]検査信号における固定閾値と自動変動閾値を説明する説明図である。 圆 18] It is explanatory drawing explaining the fixed threshold value and automatic fluctuation | variation threshold value in a test signal.
[図 19]検査信号の差分処理波形における差分閾値を説明する説明図である。  FIG. 19 is an explanatory diagram for explaining a difference threshold in a difference processing waveform of an inspection signal.
[図 20]塗布装置と同一機体に組み込まれた検査装置を示す概略構成図である。 圆 21]コロ搬送機による基板搬送および基板停止を示す概略平面図である。  FIG. 20 is a schematic configuration diagram showing an inspection device incorporated in the same body as the coating device.圆 21] It is a schematic plan view showing substrate transport and substrate stop by a roller transport machine.
圆 22]基板位置規制手段を備えた基板移動型測定装置を示すコロ搬送機の概略平 面図である。 FIG. 22 is a schematic plan view of a roller transporter showing a substrate movement type measuring apparatus provided with a substrate position regulating means.
圆 23]基板位置規制手段を備えたセンサ移動型測定装置を示すコロ搬送機の概略 平面図である。 圆 23] It is a schematic plan view of a roller transporter showing a sensor moving type measuring device provided with a substrate position regulating means.
[図 24]基板位置認識手段と位置補正手段を備えた検査装置を示すコロ搬送機の概 略平面図である。  FIG. 24 is a schematic plan view of a roller transporter showing an inspection apparatus provided with substrate position recognition means and position correction means.
[図 25]2つの高さ測定手段と間隔調整手段を備えた検査装置を示すコロ搬送機の概 略平面図である。  FIG. 25 is a schematic plan view of a roller transporter showing an inspection apparatus provided with two height measuring means and a distance adjusting means.
[図 26]基板裏面高さ測定手段を備えた検査装置を示す概略構成図である。  FIG. 26 is a schematic configuration diagram showing an inspection apparatus provided with a substrate back surface height measuring means.
圆 27]高さ測定手段の測定ポイントが基板と基板搬送手段の接触点に設置された検 查装置を示す概略構成図である。 [27] FIG. 27 is a schematic configuration diagram showing a detection apparatus in which the measurement point of the height measurement means is installed at the contact point between the substrate and the substrate transfer means.
[図 28]2つの高さ測定手段と間隔調整手段を備えた検査装置を示す概略構成図で ある。  FIG. 28 is a schematic configuration diagram showing an inspection apparatus provided with two height measuring means and an interval adjusting means.
圆 29]離散高さ信号と円錐曲線による補正後の高さ信号の測定誤差を説明する説明 図である。 [29] FIG. 29 is an explanatory diagram for explaining measurement errors of a discrete height signal and a height signal after correction using a conic curve.
圆 30]円錐曲線による補正のあり Zなし時の測定結果および測定誤差を説明する説 明図である。 圆 31]離散高さ信号と移動平均処理による補正後の高さ信号値と円錐曲線による補 正後の高さ信号の測定誤差を説明する説明図である。 [30] This is an explanatory diagram for explaining the measurement results and measurement errors with and without correction by a conic curve. [31] FIG. 31 is an explanatory diagram for explaining a measurement error of a discrete height signal, a height signal value after correction by moving average processing, and a height signal after correction by a conic curve.
圆 32]移動平均処理による補正実施時と円錐曲線による補正実施時の測定結果お よび測定誤差を説明する説明図である。 [32] FIG. 32 is an explanatory diagram for explaining measurement results and measurement errors when performing correction using the moving average process and when performing correction using a conical curve.
符号の説明 Explanation of symbols
1 背面板  1 Back plate
2 前面板  2 Front plate
la 塗布工程前のマザ一ガラス基板 la Mother glass substrate before coating process
lb 塗布工程内のマザ一ガラス基板 lb Mother glass substrate in the coating process
lbl マザ一ガラス内のある PDP背面板 1 lbl PDP back plate in the mother glass 1
lb2 マザ一ガラス内のある PDP背面板 2 lb2 PDP rear plate in the mother glass 2
lb3 マザ一ガラス内のある PDP背面板 3 lb3 PDP back plate in the mother glass 3
lb4 マザ一ガラス内のある PDP背面板 4 lb4 PDP rear plate in the mother glass 4
lb5 マザ一ガラス内のある PDP背面板 5 lb5 PDP back plate in the mother glass 5
lb6 マザ一ガラス内のある PDP背面板 6 lb6 PDP back plate in the mother glass 6
lc 塗布工程後のマザ一ガラス基板 lc glass substrate after coating process
Id 塗布工程後の PDP背面板  PDP back plate after Id coating process
11 隔壁 (縦リブ)  11 Bulkhead (Vertical rib)
12 アドレス電極  12 Address electrode
12a 電極 a  12a Electrode a
13 背面ガラス基板  13 Rear glass substrate
14 誘電体層  14 Dielectric layer
15 放電空間  15 Discharge space
16 隔壁 (横リブ)  16 Bulkhead (lateral rib)
17 横リブ付き溝  17 Groove with lateral rib
17r 横リブ付き R溝  17r R groove with lateral rib
17g 横リブ付き G溝  17g G groove with side rib
17b 横リブ付き B溝 セル 17b B groove with lateral rib cell
塗工方向  Coating direction
前面ガラス基板  Front glass substrate
誘電体層  Dielectric layer
表示電極  Display electrode
保護膜  Protective film
洗浄,乾燥工程  Cleaning and drying process
パターン電極形成工程  Pattern electrode formation process
誘電体層形成工程  Dielectric layer formation process
隔壁形成工程  Partition formation process
蛍光体塗布工程  Phosphor coating process
塗布工程状態検査工程  Application process state inspection process
蛍光体乾燥工程  Phosphor drying process
欠陥修正工程 Defect correction process
b B蛍光体ペースト (正常)b B phosphor paste (normal)
b, B蛍光体ペースト (異常)b, B phosphor paste (abnormal)
b" B塗布抜けb "B application missing
b 乾燥後の B蛍光体 (正常)(レ -ベリング後)b' 乾燥後の B蛍光体 (異常) ( リング後)b" 乾燥後の B塗布抜け(レべリング後)r R蛍光体b B phosphor after drying (normal) (after leveling) b 'B phosphor after drying (abnormal) (after ring) b "B coating missing after drying (after leveling) r R phosphor
g G蛍光体g G phosphor
b 乾燥後の B蛍光体 (正常)b B phosphor after drying (normal)
b' 乾燥後の B蛍光体 (異常)b 'B phosphor after drying (abnormal)
b" 乾燥後の B塗布抜け b "B application missing after drying
ペースト流動  Paste flow
高さ測定手段 Height measurement means
a スポット変位センサ a' 第 2のスポット変位センサa Spot displacement sensor a 'second spot displacement sensor
b 広幅変位センサ b Wide displacement sensor
測定光 Measuring light
a スポット変位センサの走査の軌跡a, 第 2のスポット変位センサの走査の軌跡 サンプリングタイミングa Spot trajectory scanning trajectory a, Second spot displacement sensor scanning trajectory Sampling timing
a 近似領域外の離散高さ形状信号b 近似領域内の離散高さ形状信号c 近似円a Discrete height shape signal outside the approximate region b Discrete height shape signal within the approximate region c Approximation circle
d 近似領域内の高さ形状信号 (近似済み) 離散高さ形状信号 (60a + 60b) 高さ形状信号(60a + 60d) d Height shape signal in approximate region (approximate) Discrete height shape signal (60a + 60b) Height shape signal (60a + 60d)
高さ信号 Height signal
b B蛍光体 (正常)の高さb B phosphor (normal) height
b' B蛍光体 (異常)の高さb 'B phosphor (abnormal) height
b" B蛍光体塗布抜け部の高さ b "B phosphor coating height
近似円直径信号 Approximate circle diameter signal
b B蛍光体 (正常)の近似円半径b, B蛍光体 (異常)の近似円半径b Approximate circle radius of B phosphor (normal) b, Approximate circle radius of B phosphor (abnormal)
b" B蛍光体塗布抜け部の近似円半径 b "Approximate circle radius of B phosphor coating missing part
基板固定手段  Substrate fixing means
移動手段  transportation
高さ測定手段移動手段  Height measuring means Moving means
塗布手段固定手段  Application means fixing means
塗布手段 Application means
L 基板搬入手段L Board loading means
UL 基板搬出手段 UL substrate unloading means
高さ測定手段固定手段 77 検査装置操作部 Height measuring means fixing means 77 Inspection device operation section
78 塗布装置操作部  78 Dispenser operation section
100 PDP  100 PDP
101 プラズマ  101 plasma
102 表示光  102 Display light
200 軸  200 axes
201  201
202 =m軸  202 = m-axis
203 基板搬送方向  203 Board transfer direction
203, センサ移動方向  203, sensor movement direction
203" 補正方向  203 "Correction direction
203" ' 間隔調整方向  203 "'Spacing adjustment direction
204 基板面に鉛直な軸  204 Axis perpendicular to substrate surface
205 回転方向の傾き  205 Rotation direction tilt
206 基板搬送手段  206 Board transfer means
220 基板搬送中の基板位置規制手段 220 Substrate position control means during substrate transfer
230 基板停止中の基板位置規制手段230 Substrate position restricting means while substrate is stopped
240 基板位置認識手段 240 PCB position recognition means
241 走査位置補正手段  241 Scanning position correction means
250 間隔周整  250 interval adjustment
251a 測定領域 a  251a Measurement area a
251b 測定領域 b  251b Measurement area b
251c 測定領域 c  251c Measurement area c
260a 高さ測定手段移動手段  260a Height measuring means Moving means
260b 裏面高さ測定手段移動手段 260b Back surface height measuring means Moving means
261 スペース 261 space
262 基板移動手段と基板の接触する 262 Contact between substrate moving means and substrate
280 固定手段 281 検査装置操作部 280 Fixing means 281 Inspection device operation unit
282 ケーブル  282 cable
cl 横リブ方向断面線基点 cl Horizontal rib cross-section line origin
cl ' 横リブ方向断面線終点 cl 'Cross rib end point
c2 縦リブ方向断面線 (正常塗布)基点 c2 Longitudinal rib direction cross section line (Normal application)
c2' 縦リブ方向断面線 (正常塗布)終点 c2 'Longitudinal rib direction cross section line (Normal application) End point
c3 縦リブ方向断面線 (異常塗布)基点 c3 Longitudinal rib section line (abnormal application)
c3' 縦リブ方向断面線 (異常塗布)終点 c3 'Longitudinal rib section line (abnormal application) end point
dl 直進走査 dl straight scan
d2 斜め走査 d2 Oblique scanning
dw 近似領域 dw approximation region
Em 測定誤差  Em measurement error
h ペースト高さ(PL— KL) h Paste height (PL—KL)
KL 基準面レべノレ  KL reference plane level
PL ペースト面レべノレ  PL paste surface level
PLO セル中央部 (PO)におけるペースト面レベル  PLO paste level at the center of the cell (PO)
PLO' レべリング後のセル中央部(PO)におけるペースト面レベル PLO 'Paste level at the center of the cell (PO) after leveling
PL2 横リブ上(P2)におけるペースト面レベル PL2 Paste level on horizontal rib (P2)
PL2' レべリング後の横リブ上(P2)におけるペースト面レベル ρθ センサ視野中央位置 (セル中央部)  PL2 'Paste level on horizontal rib (P2) after leveling ρθ Sensor field center (cell center)
pi センサ視野中央位置 (セル端部) pi Sensor field center position (cell edge)
p2 センサ視野中央位置 (横リブ上) p2 Sensor field of view center position (on horizontal rib)
r 近似円半径 r Approximate circle radius
s M+3番目のペースト高さ(OK) s M + 3rd paste height (OK)
swl センサ走査幅 swl Sensor scan width
swl ' センサ走査幅 swl 'Sensor scan width
swl" センサ走査幅 swl "sensor scan width
sw2 センサ視野幅 t M+6番目のペースト高さ(OK) sw2 sensor field of view t M + 6th paste height (OK)
t" M+6番目のペースト高さ(NG) t "M + 6th paste height (NG)
thh 高さ信号における閾値 thh Threshold for height signal
thrl 近似円半径における第 1 (下側)の閾値 thrl First (lower) threshold for approximate circle radius
thr2 近似円半径における第 2 (上側)の閾値 thr2 Second (upper) threshold at approximate circle radius
u M+9番目のペースト高さ(OK) u M + 9th paste height (OK)
u" M+9番目のペースト高さ(NG) u "M + 9th paste height (NG)
V N枚目基板の M+3番目のペースト高さ(OK)  V M + 3rd paste height of Nth substrate (OK)
v, N+1枚目基板の M+3番目のペースト高さ(OK) v, M + 3rd paste height of the (N + 1) th substrate (OK)
V" N+2枚目基板の M+3番目のペースト高さ(OK)  V "N + M + 3rd paste height of second board (OK)
w N枚目基板の M+6番目のペースト高さ(OK) w M + 6th paste height of Nth substrate (OK)
w, N+1枚目基板の M+6番目のペースト高さ(OK) w, M + 6th paste height of N + 1st substrate (OK)
w" N+2枚目基板の M+6番目のペースト高さ(NG) w "M + 6th paste height of N + 2nd substrate (NG)
X N枚目基板の M+9番目のペースト高さ(OK)  X M + 9th paste height of Nth substrate (OK)
x, N+1枚目基板の M+9番目のペースト高さ(OK) x, N + 1 M + 9th paste height of the 1st board (OK)
X" N+2枚目基板の M+9番目のペースト高さ(NG)  X "N + M + 9th paste height of second board (NG)
Y 離散測定信号波形における N番目の測定信号  Y Nth measurement signal in discrete measurement signal waveform
Y' 離散測定信号波形における N+1番目の測定信号  Y 'N + 1th measurement signal in discrete measurement signal waveform
(a) 液状材料充填条件変更時の円錐曲線近似あり時の液状材料最低部測定結 果  (a) Results of measurement of the lowest part of the liquid material with conic curve approximation when the liquid material filling condition is changed
(b) 液状材料充填条件変更時の円錐曲線近似なし時の液状材料最低部測定結 果  (b) Measurement result of the lowest part of the liquid material without the conic curve approximation when the liquid material filling condition is changed
(c) 液状材料充填条件変更時の円錐曲線近似なし時の測定誤差  (c) Measurement error without conic curve approximation when changing liquid material filling conditions
(d) ノイズ波長変化時の円錐曲線近似あり時の液状材料最低部測定結果 (d) Measurement result of the lowest part of the liquid material with conic curve approximation at the time of noise wavelength change
(e) ノイズ波長変化時の移動平均近似あり時の液状材料最低部測定結果(e) Measurement result of lowest part of liquid material with moving average approximation when noise wavelength changes
(f) ノイズ波長変化時の移動平均近似あり時の測定誤差 (f) Measurement error with moving average approximation when noise wavelength changes
a 固定閾値 a fixed threshold
β 個別閾値 y 自動変動閾値 β Individual threshold y Automatic variation threshold
Δ 差分閾値  Δ Difference threshold
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0075] 以下に、本発明の望ましい実施の形態を、図面を参照しながら説明する。  Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
まず、図 1に、本発明の対象となるディスプレイパネル、とくにプラズマディスプレイ パネル (以下、 PDPと略称することもある。)の基本的な構成を示す。 PDP100は、背 面ガラス基板 13上に、アドレス電極 12が配置された誘電体層 14が設けられ、該誘電 体層 14上に隔壁(縦リブ) 11が設けられ、その間に RGB蛍光体層 42r、 42g、 42bが塗 着された PDP背面板 1と、表示電極 23が配置された誘電体層 22と保護膜 24が介装さ れた前面板 2とからなる構成を有する。また放電空間 15内にはネオン、キセノンなど の混合ガスが封入されて 、る。ここでプラズマディスプレイの発光原理にっ 、て説明 する。例えば、表示電極 23とあるアドレス電極 12aとの間に電圧を印加すると放電空 間 15内にプラズマ 101が発生し、それによつて選択された位置の蛍光体が発光し、前 面板 2を通して表示光 102が発せられる。各蛍光体の発光の組み合わせにより、所望 の色表示が行われるようになって 、る。  First, FIG. 1 shows a basic configuration of a display panel, particularly a plasma display panel (hereinafter sometimes abbreviated as PDP), which is an object of the present invention. In the PDP 100, a dielectric layer 14 having address electrodes 12 disposed thereon is provided on a back glass substrate 13, and a partition wall (vertical rib) 11 is provided on the dielectric layer 14, and an RGB phosphor layer 42r therebetween. 42g, 42b, and a front plate 2 having a dielectric layer 22 on which a display electrode 23 is disposed and a protective film 24 interposed therebetween. The discharge space 15 is filled with a mixed gas such as neon or xenon. Here, the light emission principle of the plasma display will be explained. For example, when a voltage is applied between the display electrode 23 and a certain address electrode 12a, plasma 101 is generated in the discharge space 15, and the phosphor at the selected position emits light, and the display light is transmitted through the front plate 2. 102 is emitted. The desired color display is performed by the combination of the light emission of each phosphor.
[0076] 図 2は PDP背面板の基本的な製造フローを示す。図において、 31は洗浄 ·乾燥ェ 程、 32はパターン電極形成工程、 33は誘電体層形成工程、 34は隔壁形成工程、 3 5は蛍光体塗布工程、 36は塗布工程状態検査工程、 37は蛍光体乾燥工程、 38は 欠陥修正工程を、それぞれ示しており、本発明は主に塗布工程状態検査工程に関 する。  FIG. 2 shows a basic manufacturing flow of the PDP back plate. In the figure, 31 is a cleaning / drying process, 32 is a pattern electrode forming process, 33 is a dielectric layer forming process, 34 is a partition wall forming process, 35 is a phosphor coating process, 36 is a coating process state inspection process, 37 is The phosphor drying process and 38 are defect correction processes, respectively, and the present invention mainly relates to the coating process state inspection process.
[0077] 図 3は蛍光体が構成されていない PDP背面板を示す。隔壁 (縦リブ) 11で区切られ た溝に別の隔壁 (横リブ) 16が形成されて、横リブ付き溝 17を成している。蛍光体は横 リブ付き溝 17に沿って、ある 1色について 2本間隔毎に形成される。 18は、縦リブ 11と 横リブ 16で囲まれた一つのセルを示している。なお、図では RGB蛍光体それぞれの 溝幅が異なっているが、本発明はこれに限定されるものではない。更に隔壁 (横リブ) 16が形成されていない PDP背面板に対しても本発明は適用可能である。  FIG. 3 shows a PDP back plate in which no phosphor is configured. Separate ribs (horizontal ribs) 16 are formed in the grooves separated by the barrier ribs (vertical ribs) 11 to form grooves 17 with horizontal ribs. The phosphors are formed at intervals of two for one color along the lateral ribbed groove 17. 18 shows one cell surrounded by the vertical rib 11 and the horizontal rib 16. In the figure, the groove width of each of the RGB phosphors is different, but the present invention is not limited to this. Further, the present invention can be applied to a PDP back plate in which the partition walls (lateral ribs) 16 are not formed.
[0078] 図 4は横リブ付き溝 17に液状材料 (以下、蛍光体ペーストと記すこともある。)を充填 した様子を示す。特に、蛍光体ペースト 40bを充填すべき横リブ付き溝 17に対応する 部分に複数の孔を有する塗布ノズルを塗工方向 19の方向へ相対移動させながら塗 工を行った場合、ノズル孔にペースト凝集物や異物'ゴミなどが詰まると、ペーストの 塗出量が低下し、低充填量の蛍光体ペースト 40 となり、ついにはペースト塗出が不 可能となり、塗布抜け 40b"となる。 FIG. 4 shows a state in which the groove 17 with the lateral ribs is filled with a liquid material (hereinafter also referred to as a phosphor paste). In particular, it corresponds to the lateral rib groove 17 to be filled with the phosphor paste 40b. When coating is performed while relatively moving a coating nozzle with multiple holes in the part in the direction of coating 19, if the paste is clogged with paste agglomerates or foreign matter 'dust, the amount of paste applied decreases. As a result, the phosphor paste 40 with a low filling amount is obtained. Finally, the paste cannot be applied, resulting in a coating missing 40b ".
[0079] 塗布ノズルの詰まりは、ー且発生すると自己回復するケースが非常に稀であり、連 続的に不良基板を製造し続けるため、この詰まり欠陥を迅速に発見し、塗布工程を 停止させ (NG基板製造の防止)、速やかに復旧させることが収率向上のポイントとな る。 [0079] When clogging of the coating nozzle occurs, it is very rare that self-healing occurs, and since defective substrates are continuously manufactured, this clogging defect is quickly detected and the coating process is stopped. (Preventing NG substrate production) and prompt recovery is the key to improving yield.
[0080] 蛍光体ペーストは一般的に比較的高粘度であり、横リブ付き溝 17に充填された直 後から表面の形状が変化し、最終的には図 5に示すようにセル中央部が底部、隔壁( 縦リブ、横リブとも)近傍部が高部となるお椀型に至って定常状態となる。これをレペリ ングと称し、充填量がある量を超えて低くならない限りは前述の通りのお椀型を形成 する。充填量が極端に少なくなる、もしくは完全に 0となると塗布抜け 41b"となる。  [0080] The phosphor paste generally has a relatively high viscosity, and the shape of the surface changes immediately after filling the groove 17 with the lateral ribs. Finally, as shown in FIG. The bottom and the vicinity of the partition wall (both vertical ribs and horizontal ribs) reach a bowl shape with a high portion and become a steady state. This is called “repelling” and forms a bowl shape as described above unless the filling amount is lowered beyond a certain amount. When the filling amount becomes extremely small or becomes completely zero, the coating is lost 41b ".
[0081] 蛍光体ペーストを横リブ付き溝 17に充填した後、これを乾燥させて溶媒を除去し、 図 6に示すように蛍光体層を横リブ付き溝 17の底部、側部 (縦リブ、横リブとも)を覆う ように構成する。蛍光体ペーストの充填量が少ない場合には当然、乾燥後の蛍光体 層も薄くなり、最終的にパネルイ匕した際に表示ムラとなる。塗布抜けに関しても同様、 パネルの表示欠陥となる。  [0081] After filling the phosphor paste with grooves 17 with horizontal ribs, this was dried to remove the solvent, and as shown in Fig. 6, the phosphor layer was placed at the bottom and sides (vertical ribs) of the grooves 17 with horizontal ribs. (Both horizontal ribs). When the filling amount of the phosphor paste is small, naturally, the phosphor layer after drying becomes thin, resulting in uneven display when the panel is finally applied. Similarly, it is a display defect of the panel with respect to missing coating.
[0082] 高さ測定手段による基板の形状測定方法を図 7に示す。ノズル詰まりによる塗布抜 けは、基板上の塗布抜け発生地点力 塗布完了地点までに及び、かつ次の基板に おいても同じ横リブ付き溝 17で引き続き発生する。すなわち、ノズル詰まりを発見する ためには基板全面を測定する必要はなぐ基板上の全ての横リブ付き溝 17 (塗布ノズ ルの全孔に対応)を横断的に基板全長にわたつて検査すればよ ヽ。  FIG. 7 shows a method for measuring the shape of the substrate using the height measuring means. The removal of coating due to nozzle clogging continues until the point where coating omission occurs on the substrate up to the point where the coating is completed, and continues to occur in the groove 17 with the lateral ribs on the next substrate. In other words, in order to detect nozzle clogging, it is not necessary to measure the entire surface of the substrate. If all the ribs with lateral ribs 17 (corresponding to all holes in the coating nozzle) are inspected across the entire length of the substrate, Yo ヽ.
[0083] 測定領域がスポット状の変位計 50a (例えばキーエンス社製、 LT8000シリーズ( φ 2 μ m)、キーエンス社製、 LCシリーズ (20 X 30 m)など)を使用する場合、液状材料が 塗布された全ての横リブ付き溝 17を横切る方向に基板全長にわたって、 dlのように 隣り合う隔壁 (横リブ) 16間を走査する必要がある。詳細については後述する。  [0083] When using a displacement gauge 50a with a spot-like measurement area (for example, Keyence Corporation, LT8000 series (φ 2 μm), Keyence Corporation, LC series (20 X 30 m), etc.), liquid material is applied. It is necessary to scan between adjacent partition walls (lateral ribs) 16 like dl over the entire length of the substrate in a direction crossing all the grooves 17 with transverse ribs. Details will be described later.
[0084] 測定領域が 1次元の広幅である変位計 50b (例えばオムロン社製、 Z300シリーズ( 視野幅 lmm)、キーエンス社製、 LT9000シリーズ (視野幅 2mm以内可変)など)を使用 する場合、液状材料が塗布された全ての横溝リブ付き溝 17を横切る方向に基板全長 にわたつて走査する力 視野内の高さを平均して出力することにより、 d2のように隣り 合う隔壁 (横リブ) 16間を走査する必要はない。詳細については後述する。なお、図 7 において、 clは横リブ方向断面線基点、 cl 'は横リブ方向断面線終点、 c2は縦リブ 方向断面線 (正常塗布)基点、 c2'は縦リブ方向断面線 (正常塗布)終点、 c3は縦リ ブ方向断面線 (異常塗布)基点、 c3 'は縦リブ方向断面線 (異常塗布)終点、 dlは直 進走査の例、 d2は斜め走査の例、 swlはセンサ走査幅、 sw2はセンサ視野幅を、そ れぞれ示している。 [0084] Displacement meter 50b (for example, Z300 series, manufactured by OMRON Corporation) whose measurement area is one-dimensional wide (Field width lmm), manufactured by Keyence Corporation, LT9000 series (field width within 2mm variable), etc.) force to scan across the entire length of the substrate in the direction across all grooved ribs 17 coated with liquid material By outputting the average height in the field of view, it is not necessary to scan between adjacent partitions (lateral ribs) 16 as in d2. Details will be described later. In Fig. 7, cl is the cross-sectional line base point in the transverse rib direction, cl 'is the end point of the cross-sectional line in the transverse rib direction, c2 is the cross-sectional line in the longitudinal rib direction (normal application), and c2' is the cross-sectional line in the longitudinal rib direction (normal application) End point, c3 is the longitudinal rib cross-section line (abnormal application) base point, c3 'is the longitudinal rib cross-section line (abnormal application) end point, dl is a straight scan example, d2 is an oblique scan example, and swl is the sensor scan width Sw2 indicates the sensor field width.
[0085] B蛍光体が正常に塗布された部分を 4力所 (41b)、ノズル詰まりによって塗布量が少 なくなった部分を 1力所 (41 )、ノズル詰まりによって完全に塗布抜けとなった部分を 1力所 (41b")含むある基板につ!、て、図 7の cl-cl '断面線と同じ方向(位置)の断面 の様子を図 8に示す。  [0085] The area where B phosphor was normally applied was 4 power points (41b), the area where the amount of application was reduced due to nozzle clogging was 1 power area (41), and the area where application was completely lost due to nozzle clogging Figure 8 shows a cross-section in the same direction (position) as the cl-cl 'cross-section line in Fig. 7!
[0086] 一般的な変位センサは一定の応答周波数で動作し、一定の速度で基板面を走査 すると、離散的に基板形状のデータを取得 (サンプリング)することとなる。サンプリン グの間隔はセンサの応答周波数とセンサの走査速度で決定付けられる。  [0086] A general displacement sensor operates at a constant response frequency. When the substrate surface is scanned at a constant speed, data on the substrate shape is discretely acquired (sampled). The sampling interval is determined by the sensor response frequency and the sensor scanning speed.
[0087] 高精度な測定を実現するためにはなるべく多くのサンプリングを行うことが好ましく( 粗サンプリングでは管理指標のひとつである液状材料最低部を見逃す可能性が高く なる)、このためには、(1)応答周波数の速いセンサを用いる、(2)走査速度を遅くす る、の 2手法がある。しかし、(1)についてはセンサメーカで仕様が決定されており、 ( 2)については検査タクトの増加を招く原因となり、与えられた検査タクト内では充分に 多くのサンプリングを行うことが出来ない場合が往々にして考えられる。  [0087] In order to achieve highly accurate measurement, it is preferable to perform as many samplings as possible (rough sampling increases the possibility of missing the lowest part of the liquid material, which is one of the management indices). There are two methods: (1) using a sensor with a fast response frequency, and (2) reducing the scanning speed. However, the specifications of (1) are determined by the sensor manufacturer, and (2) causes an increase in inspection tact, and sufficient sampling cannot be performed within the given inspection tact. Is often considered.
[0088] 図 9にノズル詰まりによって塗布量が少なくなつた部分を測定した場合のサンプリン グタイミングと得られる離散高さ形状信号 61を示す。この離散高さ形状信号 61は、離 散的な高さ測定によって得られた基板面の高さ測定結果を連ねた信号である。この 図 9からもわ力るように、管理指標となる液状材料最低部を測定できな力つた場合に は、それが測定の誤差 (真値との差)となる。  FIG. 9 shows the sampling timing and the obtained discrete height shape signal 61 when the portion where the coating amount is reduced due to nozzle clogging is measured. The discrete height shape signal 61 is a signal obtained by connecting height measurement results of the substrate surface obtained by discrete height measurement. As can be seen from Fig. 9, if the lowest part of the liquid material, which is the control index, cannot be measured, it becomes a measurement error (difference from the true value).
[0089] ここで充填された液状材料の cl- cl '断面形状は、液状材料の表面張力によってな めらかな曲線を描き、円錐曲線の一部となって定常状態に至ることが過去の実験か ら既知である。なおここで円錐曲線とは、円錐を任意の平面で切断したときの断面の 境界となるような曲線のことであり、本発明においては円(円錐の全ての母線と交わり 、底面に平行な平面で切断)、楕円(円錐の全ての母線と交わり、底面に平行でない 平面で切断)、放物線(円錐の母線に平行な面で切断)、双曲線(円錐の母線に平行 でない面で切断)の 4種類と定義する。充填された液状材料の cl-cl '断面形状が、こ れら 4種類の円錐曲線のうち、どの曲線に最も近似するかはセルの 3次元的な形状 や液状材料の表面張力 ·粘度などの物理条件によって定まるため、最も近似する曲 線を選択して離散高さ形状信号の近似に使用することが好ましい。例えば液状材料 の表面形状が円で近似できる場合、離散高さ形状信号 61の 2力所のピーク部分 (隔 壁頂部)の内側 (近似領域 dw)のサンプリング信号をもとに、これらを円弧に含む近似 円を算出し、離散高さ形状信号力 近似曲線を求めることで実際の液状材料表面に 近い形状データとして高さ形状信号 62が得られる。この高さ形状信号 62は、離散高さ 形状信号の間を近似円の円弧によって近似して得られた信号である。なお、図 9〖こ おいて、 dwは近似領域、 rは近似円半径、 PLはペースト面レベル、 KLは基準面レ ベル、 hはペースト高さ(PL— KL)、 60aは近似領域外の離散高さ形状信号、 60bは 近似領域内の離散高さ形状信号、 60cは近似円、 60dは近似領域内の高さ形状信 号 (近似済)、 61は上記の如く離散高さ形状信号 (60a+ 60b)、 62は上記の如く高 さ形状信号 (60a + 60c)を、それぞれ示している。 [0089] The cl-cl 'cross-sectional shape of the liquid material filled here depends on the surface tension of the liquid material. It is known from past experiments that a smooth curve is drawn and becomes a part of a conical curve to reach a steady state. Here, the conic curve is a curve that becomes a boundary of a cross section when the cone is cut along an arbitrary plane. In the present invention, a circle (a plane that intersects all the generatrix lines and is parallel to the bottom surface). 4): an ellipse (crossed by all planes of the cone and cut by a plane not parallel to the bottom surface), a parabola (cut by a plane parallel to the cone bus), a hyperbola (cut by a plane not parallel to the cone bus) Define as type. Which of these four types of conic curves the cl-cl 'cross-sectional shape of the filled liquid material is closest to depends on the three-dimensional shape of the cell, the surface tension and viscosity of the liquid material, etc. Since it is determined by physical conditions, it is preferable to select the curve that is most approximated and use it for approximation of the discrete height shape signal. For example, when the surface shape of a liquid material can be approximated by a circle, based on the sampling signal inside (approximate area dw) of the peak part (the top of the partition wall) of the two power points in the discrete height signal 61, these are converted into circular arcs. By calculating the approximate circle including the discrete height shape signal force approximate curve, the height shape signal 62 is obtained as shape data close to the actual liquid material surface. The height shape signal 62 is a signal obtained by approximating between discrete height shape signals by an arc of an approximate circle. In Fig. 9, dw is the approximate region, r is the approximate circle radius, PL is the paste surface level, KL is the reference surface level, h is the paste height (PL-KL), and 60a is outside the approximate region. Discrete height shape signal, 60b is the discrete height shape signal in the approximate region, 60c is the approximate circle, 60d is the height shape signal in the approximate region (approximated), 61 is the discrete height shape signal (as above) 60a + 60b) and 62 indicate the height shape signals (60a + 60c) as described above.
[0090] 図 10に高さ形状信号 62と高さ信号 63 (高さ形状信号より液状材料毎の底部高さを 抜き出し、それぞれの液状材料に対応するように連ねた信号)と近似円半径信号 64 ( 高さ形状信号より液状材料毎の信号部を円弧とする近似円を求め、近似円の直径を それぞれの液状材料に対応するように連ねた信号)と欠陥判定閾値 (検査信号に対 して設定し、欠陥の有無を判定するための閾値)の関係を示す。(a)は図 8の断面図 に高さ形状信号 62を重ねたものであり、 (b)はこれを見やすさのために縦軸のみ拡大 して示す波形である。 [0090] Fig. 10 shows a height shape signal 62 and a height signal 63 (a signal obtained by extracting the bottom height of each liquid material from the height shape signal and connecting them to correspond to each liquid material) and an approximate circle radius signal. 64 (A signal obtained by obtaining an approximate circle with the signal portion of each liquid material as an arc from the height shape signal and connecting the diameter of the approximate circle so as to correspond to each liquid material) and the defect judgment threshold (inspection signal) And a threshold value for determining the presence / absence of a defect). (A) is a cross-sectional view of FIG. 8 with a height shape signal 62 superimposed thereon, and (b) is a waveform in which only the vertical axis is enlarged for easy viewing.
[0091] 高さ形状信号 62より、複数本塗布された液状材料毎に液状材料最低部と基準面( 例えば液状材料未塗布の横リブ付き溝 17の底部や測定領域外のガラス面などが考 えられる)の高さ hを算出し、(c)に示すように、これらを液状材料毎に連ねて高さ信号 63を得る。この高さ信号 63を検査信号 (所定の閾値をもって欠陥の有無を判定するた めの信号 (高さ信号と近似円半径信号の両方が含まれる))として欠陥判定閾値 thhを 設定することで欠陥部の信号である 63 、 63b"を特定する。 [0091] From the height shape signal 62, the lowest part of the liquid material and the reference surface (for example, the bottom part of the groove 17 with the lateral ribs not coated with the liquid material, the glass surface outside the measurement region, etc.) are considered for each of the plurality of liquid materials applied. Is obtained, and as shown in (c), these are connected for each liquid material to obtain a height signal 63. This height signal 63 is used as an inspection signal (a signal for determining the presence / absence of a defect with a predetermined threshold (including both a height signal and an approximate circle radius signal)), and a defect determination threshold thh is set to set a defect. Part signal 63, 63b "is specified.
[0092] 以上は液状材料の表面形状が円で近似できる場合を例として円錐曲線による離散 高さ形状信号の近似方法を説明したが、表面形状が他の円錐曲線 (楕円、放物線、 双曲線)で近似できる場合も同様である。ただし、他の円錐曲線 (楕円、放物線、双 曲線)を用いた場合には当然、近似円半径信号 64は求められない。  [0092] The above describes the method of approximating the discrete height shape signal using a conic curve, taking the case where the surface shape of the liquid material can be approximated by a circle, but the surface shape is another conic curve (ellipse, parabola, hyperbola). The same applies when approximation is possible. However, when other conic curves (ellipse, parabola, hyperbola) are used, the approximate circle radius signal 64 cannot be obtained.
[0093] 図 29と図 30を用いて、円錐曲線による離散高さ形状信号の近似の効果を、液状材 料の cl-cl '断面形状が円で近似できる場合を例として詳細に説明する。図 29に示 すとおり、検査に要する時間短縮のために離散測定間隔を広げたために液状材料 最低部を測定できなかった場合、離散高さ測定信号 60bと実際の液状材料最低部高 さとの間に測定誤差 Emが生じる。これに対し円錐曲線である円によって離散高さ形 状信号を近似し、近似後の高さ形状信号 60dを得ると、近似後の高さ形状信号 60dか らは正し!/、液状材料最低部高さが求まるため、誤差の少な 、測定が可能である。  [0093] The effect of approximating the discrete height shape signal by the conic curve will be described in detail using FIG. 29 and FIG. 30 as an example where the cl-cl ′ cross-sectional shape of the liquid material can be approximated by a circle. As shown in Fig. 29, when the minimum part of the liquid material cannot be measured because the discrete measurement interval was widened to shorten the time required for the inspection, the distance between the discrete height measurement signal 60b and the actual minimum part of the liquid material is not measured. Measurement error Em occurs. On the other hand, when the discrete height shape signal is approximated by a circle that is a conic curve and the approximated height shape signal 60d is obtained, the height shape signal 60d after approximation is correct! Since the height of the part is obtained, measurement can be performed with little error.
[0094] 高さが 120 μ mの隔壁(縦リブ) 11が、お互いの中心位置間隔が 350 μ mとなるように 配されて構成されたセル 18に液状材料を充填し、4回の離散高さ測定を実施した場 合を例として円錐曲線近似あり、円錐曲線近似なし時の測定誤差を理論値計算した 。結果を図 30に示す。図 30の横軸には液状材料最低部の高さ m)をとり、左縦軸 には円錐曲線近似あり(a) Z近似なし (b)のそれぞれに対応する測定値 ( μ m)をとり 、右縦軸には円錐曲線近似なし (b)の測定値カゝら液状材料最低部の高さを減算した 測定誤差 (c)に対応する測定誤差( μ m)をとる。なおここで液状材料の表面形状は セル容量に対する液状材料自身の充填率で変化する。すなわち液状材料充填率が 高い、つまり液状材料最低部高さが隔壁高さに近付くほど液状材料の表面形状が平 面に近付くために円錐曲線近似なし時の測定誤差 Emは小さくなるが、液状材料充 填率が低い、つまり液状材料最低部高さがセル底部に近付くほど液状材料の表面 形状が曲率の小さな円に近付くために円錐曲線近似なし時の測定誤差 Emは大きく なる。これは図 30のグラフから明らかである。 [0095] 実際の製造条件としては、液状材料の最低部高さが 80〜100 μ mとなるよう、セルに 液状材料を充填する。なおここでセルへの液状材料充填状態に不具合が生じると、 パネルを製品化した際の表示不良に繋がることがわ力つており、良品の限界値として は液状材料最低部高さが設計値に対して ± 10 m以内におさまつている必要がある 。つまり本発明による検査装置としては、最低部高さが設計値 ± 10 mを越えて充填 された液状材料を発見した場合、欠陥発生処理を行う必要がある。しかし図 30に示 すとおり、円錐曲線近似なし時には 9〜5 mの測定誤差が発生するため、実用に耐 えない。これに対し、円錐曲線近似を行った場合には誤差の少ない測定が可能とな り、高精度な検査によって不良品を確実に発見 ·排除することが可能となる。 [0094] Cell 18 composed of partition walls (vertical ribs) 11 with a height of 120 μm arranged so that the center position of each other is 350 μm is filled with liquid material, and four discrete times Taking the case of height measurement as an example, conical curve approximation was performed, and the measurement error when no conic curve approximation was performed was calculated theoretically. The results are shown in FIG. The horizontal axis of Fig. 30 is the height m) of the lowest part of the liquid material, and the left vertical axis is the measured value (μm) corresponding to the conic curve approximation (a) No Z approximation (b). The right vertical axis represents the measurement error (μm) corresponding to the measurement error (c) obtained by subtracting the height of the lowest part of the liquid material from the measured value of the conical curve approximation (b). Here, the surface shape of the liquid material changes depending on the filling rate of the liquid material with respect to the cell capacity. In other words, the higher the liquid material filling rate, that is, the closer the liquid material minimum height is to the partition wall height, the closer the surface shape of the liquid material is to the flat surface. The lower the filling rate, that is, the closer the bottom of the liquid material is to the bottom of the cell, the closer the surface shape of the liquid material is to a circle with a small curvature, so the measurement error Em without a conic curve approximation increases. This is apparent from the graph of FIG. [0095] As an actual manufacturing condition, the cell is filled with the liquid material so that the minimum height of the liquid material is 80 to 100 µm. It should be noted that if there is a problem with the liquid material filling state in the cell, this will lead to display failure when the panel is commercialized, and the minimum value of the liquid material is the design value as the limit value for good products. On the other hand, it must be within ± 10 m. In other words, the inspection apparatus according to the present invention needs to perform defect generation processing when a liquid material filled with a minimum height exceeding the design value ± 10 m is found. However, as shown in Fig. 30, when there is no conic curve approximation, a measurement error of 9 to 5 m occurs, which is not practical. On the other hand, when conic curve approximation is performed, measurement with less error is possible, and defective products can be reliably detected and eliminated by high-precision inspection.
[0096] 一方、図 31と図 32を用いて、円錐曲線による離散高さ形状信号の近似の更に別 の効果を、液状材料の cl-cl '断面形状が円で近似できる場合を例として詳細に説明 する。なおここでは、例えばコロ搬送機を使用した場合のように、測定手段と基板の 相対移動の際に生じた振動、特に上下動が測定信号に影響を与える場合を考える。 このように設備に振動が発生する場合には、図 31に示すように測定信号自体も振動 に影響され、正しい測定結果を出力することが困難となる。そのため検査に要する時 間を長くしても、なるべく離散測定間隔を短くし、多くの情報を得ることで形状信号と 共に振動情報も得て、測定信号から振動要素を除去する処理を施すことが一般的で ある。なお測定信号に生じるノイズは設備の振動影響だけではなぐ測定機自体のァ ンプゃ各機器の電源、近隣設備のインバータなどカゝら受ける電気的なノイズが含ま れることも考えられる。以下、振動や電気ノイズなどをまとめてノイズとして説明に用い る。  [0096] On the other hand, using FIG. 31 and FIG. 32, another effect of approximating the discrete height shape signal by the conic curve will be described in detail by taking the case where the cl-cl ′ cross-sectional shape of the liquid material can be approximated by a circle as an example. Explain to. Here, let us consider a case where, for example, when a roller transporter is used, vibrations generated when the measuring means and the substrate are moved relative to each other, particularly vertical movements, affect the measurement signal. When the equipment vibrates in this way, as shown in Fig. 31, the measurement signal itself is also affected by the vibration, making it difficult to output correct measurement results. Therefore, even if the time required for inspection is lengthened, it is possible to reduce the discrete measurement interval as much as possible, obtain vibration information along with the shape signal by obtaining a lot of information, and perform processing to remove the vibration element from the measurement signal. It is common. Note that the noise generated in the measurement signal may include not only the vibration effect of the equipment but also the noise of the measuring equipment itself, such as the power supply of each device and the inverter of the neighboring equipment. In the following, vibration and electrical noise are collectively used as noise.
[0097] 一般的に測定信号にノイズが発生した場合、測定信号に移動平均処理を施す。移 動平均処理とは信号処理の分野で一般的に使用される周波数フィルタの一種であり 、信号力も特定の周期のノイズを除去するために有効な手法である。具体的には、除 去したいノイズの波長をえとした場合に、処理しょうとする N番目の信号 Yに対し、 Yの 前後あわせて距離えに相当する個数の信号を選択し、選択した信号の値を平均化 し、得られた平均値を処理対象である N番目の信号 Yの信号値として置き換える。次 に N+1番目の信号 Y'〖こも同様の処理を行い、以降は信号の最終端まで随時この処 理を繰り返す。 [0097] Generally, when noise occurs in a measurement signal, moving average processing is performed on the measurement signal. Moving average processing is a kind of frequency filter generally used in the field of signal processing, and signal power is also an effective technique for removing noise of a specific period. Specifically, when the wavelength of the noise to be removed is used, the number of signals corresponding to the distance is selected for the Nth signal Y to be processed and the distance before and after Y is selected. Average the values and replace the obtained average value with the signal value of the Nth signal Y to be processed. Next, the same processing is performed for the (N + 1) th signal Y '〖, and thereafter, this processing is performed as necessary until the final end of the signal. Repeat the process.
[0098] ただし、移動平均処理を施す場合、平均化する距離以下の波長のノイズを除去で きる半面、平均化する距離以下の有用な情報も失われる。すなわち本発明における 測定信号で考えると、測定信号に生じるノイズの波長 λが、測定したい液状材料最 低部付近の幅に比べて大き 、場合、ノイズ除去に伴って液状材料最低部の高さ情 報も失われることとなる。図 31を参照すると、例えば液状材料表面の離散測定回数 力 S13回であり、ノイズの波長えが離散測定間隔 5回分の長さに相当する場合、測定 信号としては離散高さ測定信号 60bが得られる。この離散高さ測定信号 60bにおいて 、信号 5個分の移動平均処理でノイズを除去しょうとすると、ノイズは除去できたとして も液状材料最低部高さが実際よりも高い値となることが明らかであり、また移動平均 処理の平均信号個数を増やすほど、液状材料最低部高さが実際よりも高い値となつ て測定されることがわ力る。図 31の例では液状材料の最低部高さである N番目の信 号値は移動平均処理により平均後の信号値 60 となり、実際の液状材料最低部高さ との間に測定誤差 Emが生じる。これに対し円錐曲線である円によって離散高さ形状 信号を近似することを考える。この場合、測定信号にノイズが発生していることを考慮 し、なるべく多くの信号を利用して最も適切な近似円より高さ形状信号を求めることが 好ましい。また更に、近似前のノイズを生じている測定信号は破棄し、近似曲線を高 さ形状信号 60dとする。近似後の高さ形状信号 60dからは正 ヽ液状材料最低部高さ が求まるため、結果的にノイズの影響を排除でき、精度の良い測定が可能となる。  However, when moving average processing is performed, noise having a wavelength equal to or less than the distance to be averaged can be removed, but useful information less than the distance to be averaged is lost. In other words, when considering the measurement signal in the present invention, the wavelength λ of noise generated in the measurement signal is larger than the width near the lowest part of the liquid material to be measured. Information will also be lost. Referring to FIG. 31, for example, when the number of discrete measurements on the surface of a liquid material is S13, and the noise wavelength is equivalent to the length of 5 discrete measurement intervals, the discrete height measurement signal 60b is obtained as the measurement signal. It is done. In this discrete height measurement signal 60b, when trying to remove noise by moving average processing for 5 signals, it is clear that even if the noise can be removed, the minimum height of the liquid material is higher than the actual height. In addition, as the average number of moving average processing signals increases, the liquid material minimum height is measured to be higher than the actual value. In the example of Fig. 31, the Nth signal value, which is the minimum height of the liquid material, becomes a signal value 60 after averaging by moving average processing, and a measurement error Em occurs between the actual minimum height of the liquid material. . On the other hand, let us consider approximating a discrete height signal by a circular conical curve. In this case, considering that noise is generated in the measurement signal, it is preferable to obtain a height shape signal from the most appropriate approximate circle using as many signals as possible. Furthermore, the measurement signal causing the noise before approximation is discarded, and the approximate curve is made the height shape signal 60d. Since the minimum height of the normal liquid material is obtained from the approximated height shape signal 60d, the influence of noise can be eliminated as a result, and accurate measurement is possible.
[0099] 高さが 120 μ mの隔壁(縦リブ) 11が、お互いの中心位置間隔が 350 μ mとなるように 配されて構成されたセル 18に液状材料を最低部高さが 80 μ m〖こなるように充填した 場合を例として、円錐曲線近似実施時、移動平均補正実施時の測定誤差を理論値 計算した。結果を図 32に示す。図 32の横軸にはノイズの波長を隔壁 (縦リブ) 11同士 の中心位置間隔に対する倍数 (倍)でとり、左縦軸には円錐曲線近似実施時 (d)Z 移動平均補正実施時 (e)のそれぞれに対応する測定値 ( μ m)をとり、右縦軸には移 動平均補正実施時 (e)の測定値カゝら液状材料最低部の高さを減算した測定誤差 (f) に対応する測定誤差 m)をとる。移動平均処理によってノイズを除去する場合、測 定誤差 Emは平均化する信号の個数相当の距離に影響される。すなわち、ノイズの波 長が短ぐ平均化する距離が短いほど実際の液状材料最低部高さと平均後の信号 値の差が小さいために測定誤差 Emは小さくなるが、ノイズの波長が長ぐ平均化する 距離が長いほど実際の液状材料最低部高さと平均後の信号値の差が大きぐ測定 誤差 Emは大きくなる。これは図 32のグラフから明らかである。 [0099] A bulk material (vertical rib) 11 with a height of 120 μm is placed in a cell 18 configured so that the distance between the center positions is 350 μm. Taking the case of filling as m m as an example, the theoretical value was calculated for the measurement error when the conical curve approximation was performed and when the moving average correction was performed. The results are shown in FIG. The horizontal axis in Fig. 32 represents the noise wavelength as a multiple (multiple) of the center position interval between the bulkheads (vertical ribs) 11, and the left vertical axis represents when conic curve approximation is performed. (D) When Z moving average correction is performed ( The measured value (μm) corresponding to each of e) is taken, and the measurement error (f) is calculated by subtracting the height of the lowest part of the liquid material from the measured value at the time of moving average correction (e) on the right vertical axis. The measurement error m) corresponding to) is taken. When noise is removed by moving average processing, the measurement error Em is affected by the distance corresponding to the number of signals to be averaged. That is, the noise wave The shorter the averaging distance is, the shorter the difference between the actual liquid material minimum height and the signal value after averaging is, so the measurement error Em becomes smaller, but the averaging distance is longer with longer noise wavelengths. The measurement error Em increases as the difference between the actual minimum height of the liquid material and the average signal value increases. This is evident from the graph in FIG.
[0100] 上記したとおり、液状材料の充填に対する品質保証の限界としては、設計値に対す る実際の最低部高さが 10 mである。ここで実際の製造現場において発生するノイズ は様々であるが、測定対象となる液状材料最低部の幅に対して充分に短い波長 λ のノイズであれば、離散測定間隔を短くして移動平均処理を行うことで誤差の少な!、 測定を行うことができる。例えば図 32より、ノイズの波長 λが隔壁 (縦リブ) 11同士の 間隔に対して 0.15倍程度であるなら測定誤差 (f)は 1 μ m以内に抑えられるため、移 動平均処理によるノイズ除去は充分に実用に耐える。し力 更に低周波のノイズが問 題となる場合、移動平均処理によるノイズ除去を行うと測定誤差は 1 μ m以上となり、ノ ィズの波長えが隔壁 (縦リブ) 11同士の間隔の半分にまで至る場合は、測定誤差 (f) は 9.5 /z mとなり、実用には適さない。これに対し、円錐曲線近似を行った場合には、 理論的には測定誤差が発生しないため、高精度な測定および検査が可能となる。  [0100] As mentioned above, the actual minimum height for the design value is 10 m as the limit of quality assurance for filling with liquid material. Here, the noise generated at the actual manufacturing site varies, but if the noise has a wavelength λ that is sufficiently short relative to the width of the lowest part of the liquid material to be measured, the moving average processing is performed by shortening the discrete measurement interval. There are few errors by doing! Measurements can be made. For example, from Fig. 32, if the noise wavelength λ is about 0.15 times the interval between the ribs (longitudinal ribs) 11, the measurement error (f) can be suppressed to within 1 μm. Is fully practical. If there is a problem with low-frequency noise, if noise removal by moving average processing is performed, the measurement error will be 1 μm or more, and the wavelength of the noise will be half of the interval between the bulkheads (vertical ribs) 11 Measurement error (f) is 9.5 / zm, which is not suitable for practical use. On the other hand, when the conic curve approximation is performed, no measurement error is theoretically generated, so that highly accurate measurement and inspection are possible.
[0101] 更に、液状材料の cl-cl '断面形状が円で近似できる場合には、近似円の半径 rを 検査信号として使用することにより、更に別の効果が期待できる。上記の通り、近似円 を求める際に得られる近似円半径 rを複数塗布された液状材料毎に算出し、連ねて 近似円半径信号 64を得る。近似円半径信号としては基本的には充填量が少なくなる に連れて近似円半径 rは小さくなる傾向となるが、完全に塗布抜けが発生した場合に は横リブ付き溝 17の底部が平らであるために極端に大きくなる。この近似円半径信号 64を検査信号として欠陥判定閾値 thrl (下側)、 thr2 (上側)を設定することで欠陥部 の信号である 64 、 64b"を特定する。  [0101] Furthermore, if the cl-cl 'cross-sectional shape of the liquid material can be approximated by a circle, another effect can be expected by using the radius r of the approximate circle as an inspection signal. As described above, the approximate circle radius r obtained when the approximate circle is obtained is calculated for each of the plurality of applied liquid materials, and the approximate circle radius signal 64 is obtained continuously. As the approximate circle radius signal, the approximate circle radius r basically tends to decrease as the filling amount decreases. However, when complete coating omission occurs, the bottom of the groove 17 with the lateral rib is flat. Because it is, it becomes extremely large. By using the approximate circle radius signal 64 as an inspection signal and setting a defect determination threshold value thrl (lower side) and thr2 (upper side), 64 and 64b "which are signals of defective parts are specified.
[0102] ペースト底部高さ hと近似円半径 rのそれぞれについて、液状材料としての蛍光体 ペーストの充填率 (横リブ付き溝 17に満タンに充填した場合を 100%とする)に対する 感度を図 11に示す。一般に計測においては、検出したい物理量 (ペースト充填率) の変化に対し、評価値の変化が大きい方が高感度であるとされる。つまり図 11にお いては、感度特性グラフの傾きが大きい方が高感度であると言える力 ペースト充填 率 80%程度を境に、低充填率ではペースト底部高さ h測定の方力 高充填率において は近似円半径 r測定の方が高感度であることがわかる。つまり、基板の製造条件にあ わせて、より高感度な測定を採用することが好ましい。 [0102] For each of the paste bottom height h and approximate circular radius r, the sensitivity to the filling rate of the phosphor paste as a liquid material (100% when filled into the groove 17 with lateral ribs is filled) is shown. Shown in 11. In general, in the measurement, the larger the change in the evaluation value is, the higher the sensitivity is with respect to the change in the physical quantity (paste filling rate) to be detected. In other words, in Fig. 11, it can be said that the higher the sensitivity characteristic graph, the higher the sensitivity. From the 80% rate, it can be seen that the measurement of the paste bottom height h is low at low filling rates and the approximate circle radius r is more sensitive at high filling rates. In other words, it is preferable to adopt a more sensitive measurement according to the manufacturing conditions of the substrate.
[0103] 横リブ付き溝 17に正常に液状材料が塗布された部分と、ノズル詰まりによって液状 材料の充填量が低下した部分について、図 7の c2-c2 '断面線、 c3-c3 '断面線と同じ 方向(位置)の断面の様子を図 12に示す。図 12には同様にスポット測定変位センサ 50aを示しており、変位センサ 50aの走査方向は紙面表側力 裏側となる。  [0103] The c2-c2 'and c3-c3' cross-sectional lines in Fig. 7 for the part where the liquid material is normally applied to the groove 17 with the lateral ribs and the part where the filling amount of the liquid material is reduced due to nozzle clogging Figure 12 shows the cross section in the same direction (position). Similarly, FIG. 12 shows the spot measurement displacement sensor 50a, and the scanning direction of the displacement sensor 50a is the front side of the paper surface and the back side.
[0104] 上述したように液状材料の表面形状はレべリングによってセル(隔壁(縦リブ) 11と隔 壁 (横リブ) 16で区切られた空間)内でお椀型になる。ただしここで、 cl-cl '断面線の 方向には近似円の円弧となるような形状をとるが、 c2-c2 ' (c3-c3 ' )断面線方向では 中央部は比較的平らで、隔壁 (横リブ) 16付近で斜面となるような形状となる。  [0104] As described above, the surface shape of the liquid material becomes a bowl shape in the cell (space divided by the partition wall (vertical rib) 11 and the partition wall (horizontal rib) 16) by leveling. However, here, cl-cl 'takes the shape of an arc of an approximate circle in the direction of the cross-section line, but c2-c2' (c3-c3 ') (Horizontal rib) It becomes a shape that becomes a slope in the vicinity of 16.
[0105] ここでセンサの測定ポジションについて、正常部の c2-c2 '断面線のセル中央部 ρθと セル端部 piを考えると、セル中央部 ρθでは正確に液状材料最低部の高さを測定でき る力 セル端部 piでは実際よりも高い値を出力することとなる。また異常部の c3-c3 ' 断面線のセル中央部 ρθとセル端部 pl、横リブ上 p2を考えると、セル中央部 ρθでは正 確に液状材料最低部の高さを測定できるが、セル端部 pl、横リブ上 p2では実際よりも 高い値( 正常部高さ)を出力することとなり、欠陥見逃しの原因となる。よってセンサ の走査はセンサ走査幅 swl内であることが必要であり、実験的にその精度は、隔壁( 横リブ) 16間隔に対して ±35%以内が好ましいことがわ力つている。  [0105] Here, regarding the measurement position of the sensor, considering the cell center ρθ and cell edge pi of the c2-c2 'cross section of the normal part, the height of the lowest part of the liquid material is accurately measured at the cell center ρθ. Force that can be output A higher value than the actual value is output at the cell edge pi. Considering the c3-c3 'cross-section cell center ρθ, cell end pl, and horizontal rib p2 on the abnormal part, the cell center ρθ can accurately measure the height of the lowest part of the liquid material. A higher value than the actual value (normal part height) is output at the end pl and on the side rib p2, which may cause a defect to be overlooked. Therefore, it is necessary that the scanning of the sensor be within the sensor scanning width swl, and it is experimentally shown that the accuracy is preferably within ± 35% with respect to 16 intervals between the partition walls (lateral ribs).
[0106] センサ走査幅を swl内で納めるための具体的な方法について説明する。例えば本 測定のために基板を保持、もしくはセンサの走査を実現するために基板を移動させ る場合の基板移動手段 206として、一般的にディスプレイ用ガラス基板を製造する行 程で用いられるコロ搬送機を用いることを考える。  [0106] A specific method for storing the sensor scan width in swl will be described. For example, a roller transport machine generally used in the process of manufacturing a glass substrate for a display as the substrate moving means 206 when holding the substrate for the main measurement or moving the substrate to realize sensor scanning. Consider using.
[0107] コロ搬送機とは、図 21に示すように、回転する軸 200に所定のピッチで複数の円筒 状のコロ 201が円筒側面を軸の長手方向に対して垂直の方向へ向けるように設置さ れたコ口軸 202が、更に所定のピッチで基板進行方向 203とコロ軸長手方向が直行す る向きに複数本設置された構造を備えており、この複数のコロ軸 202が自身の軸 200 を回転軸として回転することにより、コロ 201で保持する基板 Idを進行方向 203へ搬送 するものである。工程内で基板を搬送するという目的に対し、石材のテーブルを使用 したステージやロボットハンドに比べて大幅に安価であることから、工程内での装置 力も装置への基板の移動に頻繁に用いられるものであるが、その構造上、基板移動 時の蛇行および基板面に鉛直な軸 204を中心軸とした回転方向の傾き 205を抑制す ることは難しぐまた搬送時に基板に発生する振動も比較的大きぐ測定や加工など の搬送以外の行程作業には一般的には用いられな 、。 As shown in FIG. 21, the roller transporter is configured such that a plurality of cylindrical rollers 201 are arranged on a rotating shaft 200 at a predetermined pitch so that the cylindrical side faces a direction perpendicular to the longitudinal direction of the shaft. A plurality of core shafts 202 are further installed at a predetermined pitch in a direction in which the substrate traveling direction 203 and the roller axis longitudinal direction are perpendicular to each other. By rotating about the axis 200 as the rotation axis, the substrate Id held by the roller 201 is transferred in the traveling direction 203. To do. Compared to the stage and robot hand using a stone table for the purpose of transporting the substrate in the process, the device force in the process is also frequently used for moving the substrate to the device. However, due to its structure, it is difficult to suppress meandering when moving the substrate and tilt 205 in the rotation direction with the axis 204 perpendicular to the substrate surface as the central axis. In general, it is not used for stroke work other than transport, such as measurement and processing.
[0108] 本測定の場合も、図 21の例に示すようにスポット変位センサ 50aが設置され、その 下方をコロ搬送機によって基板 Idを移動させてセンサの走査を実現した場合、コロ搬 送機単体の構造では回転方向の傾き 205が発生するためにスポット変位センサ 50aの 走査の軌跡 51aを swl内に納めることができない。これは基板移動に蛇行が発生した 場合も同様である。また上記と同様の理由で、基板をコロ搬送機上で停止させた場 合のセンサに対する相対的な位置精度を求めることも難しぐ基板を停止させておい て図示しないセンサ移動機構でスポット変位センサ 50aをセンサ移動方向 203 'へ移 動させてセンサの走査を実現させた場合にも同様の問題が発生する。  [0108] Also in the case of this measurement, when the spot displacement sensor 50a is installed as shown in the example of Fig. 21 and the substrate Id is moved by the roller transporter below it to realize scanning of the sensor, the roller transporter In the single structure, since the tilt 205 in the rotation direction is generated, the scanning locus 51a of the spot displacement sensor 50a cannot be accommodated in the swl. This is the same when meandering occurs in the movement of the substrate. For the same reason as described above, it is also difficult to obtain the relative positional accuracy with respect to the sensor when the substrate is stopped on the roller transporter. The same problem occurs when the sensor scanning is realized by moving 50a in the sensor movement direction 203 ′.
[0109] 以上を鑑み、センサ 50aの走査の軌跡 51aを swl内に納めるための第 1の方法として 、図 22、図 23に示すように、基板位置規制手段を用いる方法を説明する。まず図 22 のようにスポット変位センサ 50aの走査を基板移動手段 206を用いて基板 Idを移動さ せることで実現する場合に、基板搬送方向 203と直角の方向から基板エッジ両端に 基板位置規制手段 220をあてが 、、基板の蛇行および基板面に鉛直な軸を中心軸と した回転方向の傾きを規制することで、スポット変位センサ 50aの走査の軌跡 51aを sw 1内に納めることが可能となる。  In view of the above, as a first method for fitting the scanning locus 51a of the sensor 50a within the swl, a method using substrate position regulating means as shown in FIGS. 22 and 23 will be described. First, as shown in FIG. 22, when the scanning of the spot displacement sensor 50a is realized by moving the substrate Id using the substrate moving means 206, the substrate position restricting means extends from the direction perpendicular to the substrate transport direction 203 to both ends of the substrate edge. By applying 220, it is possible to fit the scan locus 51a of the spot displacement sensor 50a in sw 1 by regulating the meandering of the substrate and the tilt in the rotation direction with the axis perpendicular to the substrate surface as the central axis. Become.
[0110] また図 23に示すように、基板は基板移動手段 206上に停止したまま、スポット変位 センサ 50aの走査をセンサ移動手段 231でセンサを移動させることで実現する場合に 、センサの走査以前にあら力じめ、停止した基板の四辺に基板位置規制手段 230を あて力 ^、、基板のセンサに対する相対的な位置および基板面に鉛直な軸を中心軸と した回転方向の傾きを規制することで、スポット変位センサ 50aの走査の軌跡 51aを sw 1内に納めることが可能となる。なお走査中、位置規制手段 230は基板にあてがった ままでもよいし、基板力も離れていてもよい。 [0111] またセンサ 50aの走査の軌跡 51aを swl内に納めるための第 2の方法として、図 24に 示すように、基板位置認識手段と基板位置情報をもとに高さ測定手段の位置を補正 する走査位置補正手段を用いる方法を説明する。まず図 24のようにスポット変位セン サ 50aの走査を基板移動手段 206を用いて基板 Idを移動させることで実現する場合に 、基板位置認識手段 240が基板のエッジ位置を随時測定し、時間経過に伴う基板ェ ッジ位置の変化力 基板の蛇行および基板面に鉛直な軸を中心軸とした回転方向 の傾きを算出し、得られた情報から随時測定領域である swlの位置を特定する。この s wl位置情報を用い、スポット変位センサ 50aを走査位置補正手段 241でスポット変位 センサ 50aの走査の軌跡 51aが swl内に収まるよう補正方向 203"へ補正移動させるこ とが可能となる。 Further, as shown in FIG. 23, when the scanning of the spot displacement sensor 50a is realized by moving the sensor by the sensor moving means 231 while the substrate is stopped on the substrate moving means 206, the sensor is not scanned. Applying force, apply the substrate position restricting means 230 to the four sides of the stopped substrate ^, and restrict the relative position of the substrate to the sensor and the tilt in the rotation direction with the axis perpendicular to the substrate surface as the central axis. As a result, the scanning locus 51a of the spot displacement sensor 50a can be stored in sw1. During scanning, the position regulating means 230 may remain applied to the substrate, or the substrate force may be separated. [0111] As a second method for placing the scanning trajectory 51a of the sensor 50a in the swl, as shown in FIG. 24, the position of the height measuring means is determined based on the board position recognition means and the board position information. A method using the scanning position correcting means for correcting will be described. First, as shown in FIG. 24, when the scanning of the spot displacement sensor 50a is realized by moving the substrate Id using the substrate moving means 206, the substrate position recognizing means 240 measures the edge position of the substrate as needed, and the time elapses. Substrate edge position change force accompanying the calculation of the meandering of the substrate and the tilt in the rotation direction with the axis perpendicular to the substrate surface as the central axis, and the position of the swl, which is the measurement region, is determined from the obtained information as needed. Using this swl position information, the spot displacement sensor 50a can be corrected and moved in the correction direction 203 "so that the scanning locus 51a of the spot displacement sensor 50a is within the swl by the scanning position correcting means 241.
[0112] また上記走査位置補正による効果は、基板は基板移動手段 206上に停止したまま 、スポット変位センサ 50aの走査を図示しな!、センサ移動手段でセンサをセンサ移動 方向 203 'へ移動させることで実現し、かつセンサの移動と同期して基板位置認識手 段 240を図示しない基板認識手段移動手段で移動させることによつても同様に得られ る。  [0112] Further, the effect of the above-mentioned scanning position correction is that the substrate is stopped on the substrate moving means 206, and the scanning of the spot displacement sensor 50a is not shown! The sensor moving means moves the sensor in the sensor moving direction 203 '. This can also be achieved by moving the substrate position recognizing means 240 by a substrate recognizing means moving means (not shown) in synchronization with the movement of the sensor.
[0113] またセンサ 50aの走査の軌跡 51aを swl内に納めるための第 3の方法として、図 25に 示すように、 2つ以上の高さ測定手段とセンサ同士の間隔調整手段を用いる方法を 説明する。まず図 25のように 2つの高さ測定手段を用い、第 1のスポット変位センサ 5 0aと第 2のスポット変位センサ 50a'の走査を基板移動手段 206を用いて基板 Idを移動 させることで実現する場合に、間隔調整手段 250を用いて第 1のスポット変位センサ 50 aと第 2のスポット変位センサ 50a'の測定ポイント同士が横リブ間隔の整数倍に横リブ 間隔の半分の値を足した距離分だけ離れるように間隔調整方向 203" 'の方向で調整 する。なお検査としては、センサ同士の距離はセンサヘッドの筐体同士が干渉しない なるべく近 、距離に設置することが好ま 、。上記のようにセンサ位置を調整した場 合、幾何学的に考えると基板が蛇行したり、基板面に鉛直な軸を中心軸とした回転 方向に傾いたとしても必ずどちらかのセンサが横リブ間の中央部 ±25%以内を測定で きることとなる。つまり図 25の例を考えれば、領域 251aでは第 1のスポット変位センサ 5 0aの走査の軌跡 51aが走査幅 swl内に含まれ、領域 251bでは第 2のスポット変位セン サ 50a'の走査の軌跡 51a'が走査幅 swl '内に含まれ、領域 251cでは第 1のスポット変 位センサ 50aの走査の軌跡 51aが走査幅 wl" '内に含まれる。つまり測定領域によって 参照する高さ測定手段を切り替えることにより、基板が蛇行したり、基板面に鉛直な 軸を中心軸とした回転方向の傾きが発生したとしても、測定に必要な情報を得ること ができる。 [0113] As a third method for placing the scanning locus 51a of the sensor 50a in the swl, as shown in FIG. 25, a method using two or more height measuring means and a sensor interval adjusting means is used. explain. First, as shown in Fig. 25, two height measuring means are used, and scanning of the first spot displacement sensor 50a and the second spot displacement sensor 50a 'is realized by moving the substrate Id using the substrate moving means 206. When using the interval adjustment means 250, the measurement points of the first spot displacement sensor 50a and the second spot displacement sensor 50a 'are added to the integral multiple of the transverse rib interval and half the transverse rib interval. Adjust in the direction of the distance adjustment direction 203 "'so that it is separated by the distance. For inspection, it is preferable to install the sensors as close to each other as possible so that the sensor head housings do not interfere with each other. If the sensor position is adjusted as shown in Fig. 2, either one of the sensors must be positioned between the horizontal ribs even if the board meanders geometrically or tilts in the direction of rotation about the axis perpendicular to the board surface. Measure within ± 25% of the center of And thus that can. That given the example of FIG. 25, the region 251a first spot displacement sensor 5 0a scan trajectory 51a is contained within the scanning width swl, region 251b in the second spot displacement sensor The scan trajectory 51a 'of the sensor 50a' is included in the scan width swl ', and in the region 251c, the scan trajectory 51a of the first spot displacement sensor 50a is included in the scan width wl "'. By switching the height measurement means to be referred to, information necessary for measurement can be obtained even if the substrate meanders or a tilt in the rotation direction about the axis perpendicular to the substrate surface occurs.
[0114] また上記 2台のセンサを使用することによる効果は、基板は基板移動手段 206上に 停止したまま、第 1のスポット変位センサ 50aおよび第 2のスポット変位センサ 50a,の走 查を図示しない移動手段でセンサと間隔調整手段 250を移動方向 203 'へ移動させる ことで実現することによつても同様に得られる。更にセンサの数は 2台に限定するもの ではない。  [0114] Further, the effect of using the above two sensors is illustrated by the first spot displacement sensor 50a and the second spot displacement sensor 50a while the substrate is stopped on the substrate moving means 206. The same effect can be obtained by moving the sensor and the distance adjusting means 250 in the moving direction 203 ′ with the moving means that does not. Furthermore, the number of sensors is not limited to two.
[0115] 以上までは高さ測定手段としてスポット測定センサ 50aを用いた場合に、走査の軌 跡 51aを測定幅 swl内に納める方法について述べてきた力 必要な測定精度を確保 するために、スポット測定変位センサ 50aに変えて広幅変位センサ 50bを使用する方 法がある。  [0115] So far, when the spot measurement sensor 50a is used as the height measurement means, the force described for the method of placing the scanning trace 51a within the measurement width swl has been described in order to ensure the required measurement accuracy. There is a method of using the wide displacement sensor 50b instead of the measurement displacement sensor 50a.
[0116] 図 12と同様の図として図 13に、スポット測定変位センサ 50aに変えて広幅変位セン サ 50bを示す。図 12と同様に変位センサ 50bの走査方向は紙面表側から裏側となる。  [0116] As a diagram similar to Fig. 12, Fig. 13 shows a wide displacement sensor 50b instead of the spot measurement displacement sensor 50a. As in FIG. 12, the scanning direction of the displacement sensor 50b is from the front side to the back side.
[0117] 広幅変位センサ 50bはセンサ視野幅 sw2内の高さの平均値を出力するものであり、 図 13に示すようにセンサ視野幅 sw2をひとつの隔壁 (横リブ) 16間隔(隣りあう横リブ 中心間の距離)に設定しておくと、センサの測定ポジションがセル中央部 p0、セル端 部 pl、横リブ上 p2となっても、センサ視野 sw2は常にひとつ分のセル 18とひとつ分の 隔壁 (横リブ) 16の幅を含むこととなる。よって正常部高さ平均値と異常部高さ平均値 には差が生じるためにこれらを見分けることが可能となる。  [0117] The wide displacement sensor 50b outputs an average value of the height within the sensor visual field width sw2. As shown in Fig. 13, the sensor visual field width sw2 is set to one partition (horizontal rib) 16 intervals (adjacent horizontal). (Distance between rib centers), the sensor field of view sw2 is always one cell 18 and one cell even if the sensor measurement position is cell center p0, cell edge pl, and horizontal rib p2. The partition wall (lateral rib) 16 is included. Therefore, there is a difference between the average height of the normal part and the average value of the abnormal part, so that these can be distinguished.
[0118] また広幅センサ 50bはセンサ視野幅 sw2内の高さプロファイルを出力するものであり 、上記と同様にセンサ視野幅 sw2をひとつの隔壁 (横リブ) 16幅 +隔壁 (横リブ) 16間 隔に設定しておくと、センサの測定ポジションがセル中央部 p0、セル端部 pl、横リブ 上 p2となっても、センサ視野 sw2は常にひとつ分のセル 18とひとつ分の隔壁(横リブ) 1 6を含むこととなる。よってプロファイル形状力もセル中央部を特定し、セル中央部の 測定結果を出力することができる。つまり常にセル中央部 ρθのデータを取得でき、原 理上、セル端部 pi、横リブ上 p2のデータが測定に使用されることはない。 [0118] Further, the wide sensor 50b outputs a height profile within the sensor visual field width sw2, and the sensor visual field width sw2 is divided into one partition (lateral rib) 16 width + partition (lateral rib) 16 in the same manner as described above. If the sensor measurement position is set to Interval, the sensor field of view sw2 always has one cell 18 and one partition wall (horizontal rib) even if the sensor measurement position is cell center p0, cell edge pl, and horizontal rib top p2. ) 1 6 will be included. Therefore, the profile shape force can also specify the cell center and output the measurement result of the cell center. In other words, the cell center ρθ data can always be acquired, In theory, the cell edge pi and lateral rib p2 data are not used for measurement.
[0119] 以上を図 14にまとめる。図 14は図 12、図 13のように変位センサ 50を粗精度で走査 した場合 (斜め走査 d2)の結果イメージである。スポット測定センサ 50aを使用する場 合には、正常部は正常判定できる力 異常部の判定についてセル端部 pl、横リブ上 p2を走査した場合に見逃しが発生する。ただし上述したように、セル中央部を高精度 に走査 (直進走査 dl)できれば高感度な測定が期待でき、より好まし 、。 [0119] The above is summarized in FIG. FIG. 14 shows a result image when the displacement sensor 50 is scanned with coarse accuracy as shown in FIGS. 12 and 13 (oblique scanning d2). When the spot measuring sensor 50a is used, the normal part can be normally judged. When the abnormal part is judged, the cell edge part pl and the horizontal rib p2 are overlooked. However, as described above, if the center of the cell can be scanned with high precision (straight-line scanning dl), high-sensitivity measurement can be expected, which is more preferable.
[0120] また広幅測定センサ 50bによってセンサ視野幅 sw2内の高さの平均値を出力する場 合には、粗精度走査であっても正常部、異常部ともに正常判定が可能で、見逃しは 発生しない。 [0120] When the average value of the height within the sensor visual field width sw2 is output by the wide-width measuring sensor 50b, it is possible to determine whether the normal part and the abnormal part are normal even in rough scanning, and oversight occurs. do not do.
[0121] また広幅測定センサ 50bによってセンサ視野幅 sw2内の高さプロファイルよりセル中 央部 ρθの高さデータのみを測定に用いる場合には、粗精度走査であっても正常部、 異常部ともに正常判定が可能で、見逃しは発生しない。  [0121] In addition, when only the height data of the cell center ρθ is used for measurement from the height profile in the sensor visual field width sw2 by the wide-width measuring sensor 50b, both normal and abnormal portions are used even in the coarse-precision scanning. Normal judgment is possible and no oversight occurs.
[0122] また上述したとおり、例えば基板の搬送にコロ搬送機を用いた場合、石材を用いた テーブルでの移動に比べ、搬送時に基板に発生する振動も比較的大きい。本検査 においては、高さ測定手段によって基板表面の高さを測定することにより、ペーストの 形状を得るため、基板に発生する振動のうち、特に基板面の上下動は測定の精度に 直結する。  [0122] As described above, for example, when a roller transport machine is used for transporting a substrate, vibration generated on the substrate during transport is relatively large compared to movement on a table using stone. In this inspection, the shape of the paste is obtained by measuring the height of the substrate surface by means of the height measuring means, and therefore the vertical movement of the substrate surface among the vibrations generated in the substrate is directly related to the measurement accuracy.
[0123] 基板面の上下動を測定データ力も抑制するための第 1の方法として、図 26に示す ように、基板裏面の高さを測定できる基板裏面測定手段 50cを設けることも好ま 、。 図 26 (a)は基板 Idと高さ測定手段 50の相対移動方向 203および 203 'に対して側方 力も測定系を観察した図、図 26 (b)は基板 Idと高さ測定手段 50の相対移動方向 203 および 203 '力も測定系を観察した図である。  [0123] As a first method for suppressing the vertical movement of the substrate surface as well as the measurement data force, it is also preferable to provide a substrate back surface measuring means 50c capable of measuring the height of the substrate back surface as shown in FIG. Fig. 26 (a) shows the measurement system of the lateral force relative to the relative movement directions 203 and 203 'of the substrate Id and the height measuring means 50, and Fig. 26 (b) shows the substrate Id and the height measuring means 50. Relative moving directions 203 and 203 ′ forces are also observed in the measurement system.
[0124] 基板 Idと高さ測定手段 50の相対移動を基板移動手段 206を用いて基板 Idを基板 移動方向 203へ移動させて実現した場合、固定された高さ測定手段 50は基板の表面 情報を取得するが、この表面情報には基板の上下動情報も含まれている。これに対 し、同じ期間中に固定  [0124] When the relative movement between the substrate Id and the height measuring means 50 is realized by moving the substrate Id in the substrate moving direction 203 by using the substrate moving means 206, the fixed height measuring means 50 is the surface information of the substrate. The surface information includes the vertical movement information of the substrate. On the other hand, fixed during the same period
された裏面高さ測定手段 50cは基板の裏面情報を取得するが、この裏面情報には基 板の上下動情報のみが含まれている。よって、高さ測定手段 50によって得られた基 板表面情報から裏面高さ測定手段 50cによって得られた基板裏面情報を差し引くと、 基板表面形状から高精度に基板上下動情報のみが除去されることとなる。なお高さ 測定手段 50の測定ポイントと裏面高さ測定手段 50cの測定ポイントは、基板平面に対 してなるベく同一のポイントに位置決めされて 、ることが好まし!/、。 The back surface height measuring means 50c obtained acquires the back surface information of the substrate, and this back surface information includes only the vertical movement information of the substrate. Therefore, the base obtained by the height measuring means 50 When the substrate back surface information obtained by the back surface height measuring means 50c is subtracted from the plate surface information, only the substrate vertical movement information is removed from the substrate surface shape with high accuracy. The measurement point of the height measuring means 50 and the measurement point of the back surface height measuring means 50c are preferably positioned at the same point on the substrate plane! /.
[0125] また以上の効果は、基板 Idと高さ測定手段 50の相対移動を高さ測定手段移動手 段 260aおよび裏面高さ測定手段移動手段 260bを用いて高さ測定手段 50および裏面 高さ測定手段 50cをセンサ移動方向 203'へ同期させて移動させて実現した場合にも 得られる。この場合、高さ測定手段 50および裏面高さ測定手段 50cの測定情報に含 まれる基板の上下動情報は、実際に基板 Idが上下に振動したわけではなぐ基板 Id のたわみが主な成分となる。なお本ケースにおいては裏面高さ測定手段 50cが基板 1 dの長手方向全長にわたって裏面高さ情報の取得が可能となるよう、基板移動手段 の形状を工夫する必要がある。例えば図 26に示すように基板移動手段 206としてコロ 搬送機を用いた場合、裏面高さ測定手段 50cの走査する位置に障害物がないよう、 スペース 261を設けておけばよい。  [0125] Further, the above effect is obtained by using the height measuring means moving means 260a and the back surface height measuring means moving means 260b to move the substrate Id and the height measuring means 50 relative to each other. This can also be obtained when the measuring means 50c is moved in synchronization with the sensor moving direction 203 '. In this case, the vertical movement information of the substrate included in the measurement information of the height measuring means 50 and the back surface height measuring means 50c is mainly due to the deflection of the substrate Id that does not actually vibrate up and down. Become. In this case, it is necessary to devise the shape of the substrate moving means so that the back surface height measuring means 50c can acquire the back surface height information over the entire length in the longitudinal direction of the substrate 1d. For example, as shown in FIG. 26, when a roller transport machine is used as the substrate moving means 206, a space 261 may be provided so that there is no obstacle at the scanning position of the back surface height measuring means 50c.
[0126] 基板面の上下動を測定データ力 抑制するための第 2の方法として、図 27に示す ように、高さ測定センサ 50の測定ポイントを基板移動手段 206と基板 Idの接触する領 域 262に設置することも好ましい。図 27 (a)は基板 Idと高さ測定手段 50の相対移動方 向 203および 203'に対して側方から測定系を観察した図、図 27 (b)は基板 Idと高さ 測定手段 50の相対移動方向 203および 203'から測定系を観察した図である。  [0126] As a second method for suppressing the vertical movement of the substrate surface as a measurement data force, as shown in FIG. 27, the measurement point of the height measurement sensor 50 is an area where the substrate moving means 206 and the substrate Id are in contact with each other. It is also preferable to install at 262. Fig. 27 (a) is a view of the measurement system observed from the side with respect to the relative movement directions 203 and 203 'of the substrate Id and the height measuring means 50, and Fig. 27 (b) is the substrate Id and the height measuring means 50. It is the figure which observed the measuring system from relative movement direction 203 and 203 'of the.
[0127] 基板 Idと高さ測定手段 50の相対移動を基板移動手段 206を用いて基板 Idを基板 移動方向 203へ移動させて実現した場合、固定された高さ測定手段 50が基板移動手 段 206と基板 Idの接触する領域 262で測定を行うことにより、基板のたわみによる上下 方向の振動を抑制した状態で表面情報を取得できる。  [0127] When the relative movement between the substrate Id and the height measuring means 50 is realized by moving the substrate Id in the substrate moving direction 203 using the substrate moving means 206, the fixed height measuring means 50 becomes the substrate moving means. By performing measurement in the area 262 where the substrate 206 and the substrate Id are in contact, surface information can be acquired in a state in which vertical vibration due to substrate deflection is suppressed.
[0128] また以上の効果は、基板 Idと高さ測定手段 50の相対移動を高さ測定手段移動手 段 260aを用いて高さ測定手段 50をセンサ移動方向 203'へ同期させて移動させて実 現した場合にも得られる。なお本ケースにぉ ヽては高さ測定手段の走査する基板表 面に対応する基板裏面が走査エリア全域にわたって基板移動手段 206と接触してい る必要がある。具体的には図示しな 、高精度テーブルに基板を接触静置して測定を 実施すればよい。 [0128] Further, the above effect is obtained by using the height measuring means moving means 260a to move the height measuring means 50 in synchronization with the sensor moving direction 203 'using the relative movement between the substrate Id and the height measuring means 50. It can also be obtained if realized. In this case, it is necessary that the substrate back surface corresponding to the substrate surface scanned by the height measuring means is in contact with the substrate moving means 206 over the entire scanning area. Specifically, the measurement is performed by placing the substrate in contact with a high-precision table. Just do it.
[0129] 以上は説明の便宜上、本測定のために基板を保持、もしくはセンサの走査を実現 するために基板を移動させる場合の基板テーブルとしてコロ搬送機を用いることに注 目して説明を行ったが、本技術の適用範囲はコロ搬送機のみに限定されるものでは ない。  [0129] For the sake of convenience of explanation, the above description will be made by focusing on using a roller transport machine as a substrate table when holding the substrate for the main measurement or moving the substrate to realize sensor scanning. However, the scope of application of this technology is not limited to roller transporters.
[0130] 図 15にペーストのレべリング挙動を示す。図は液状材料充填直後とレべリング後の 基板断面形状 (c2-c2 '、 c3-c3 'と同方向)である。液状材料充填直後の液状材料は 、セル 18内はもちろん、隔壁 (横リブ) 16上にも充填される。ただし隔壁 (横リブ) 16上 の液状材料はペースト流動 43に従ってセル 18内へ流れ込む。この作用によって、測 定部であるセル中央部 ρθでは塗布直後から液状材料の表面高さが高くなり、横リブ 上 p2では表面高さが低くなる。  [0130] Fig. 15 shows the leveling behavior of the paste. The figure shows the substrate cross-sectional shape (in the same direction as c2-c2 'and c3-c3') immediately after filling with the liquid material and after leveling. The liquid material immediately after filling the liquid material is filled not only in the cells 18 but also on the partition walls (lateral ribs) 16. However, the liquid material on the partition wall (lateral rib) 16 flows into the cell 18 according to the paste flow 43. As a result of this action, the surface height of the liquid material increases immediately after application at the cell central portion ρθ, which is the measurement portion, and the surface height decreases at p2 on the lateral rib.
[0131] 時間とレべリングの関係を図 16に示す。図 16のように、測定部であるセル中央部 ρθ では塗布直後から液状材料の表面高さが高くなり、横リブ上 p2では表面高さが低くな り、このレべリング現象が完了して定常状態に至るまでに要する時間は実験力 約 5 秒であることがわ力つている。ただし、液状材料の粘度が変更された場合や基板の設 計が変更された場合はこの限りではなぐレべリング挙動の再評価が必要である。  [0131] Figure 16 shows the relationship between time and leveling. As shown in Fig. 16, the surface height of the liquid material increases immediately after application at the cell center ρθ, which is the measurement part, and the surface height decreases at p2 on the lateral rib, and this leveling phenomenon is completed. The time required to reach steady state is about 5 seconds experimental force. However, if the viscosity of the liquid material is changed or the design of the substrate is changed, it is necessary to re-evaluate the leveling behavior.
[0132] よって高精度な測定を実施するためにはレべリングが完了するまでの 5秒間を待つ ことが好ましい。なぜならば、正常な塗布量で液状材料が充填されたセル 18を測定し たタイミングにレべリングが完了していなければ、見かけ上は低い数値が出力される こととなり、誤検出が発生することが考えられる。  [0132] Therefore, in order to carry out highly accurate measurement, it is preferable to wait for 5 seconds until leveling is completed. This is because if the leveling is not completed at the timing when the cell 18 filled with the liquid material with the normal application amount is measured, an apparently low numerical value is output, and false detection occurs. Can be considered.
[0133] また高精度な測定を実施するために、レべリングを待たずに測定した高さ形状信号 に対し、図 16のようなレべリング特性をカ卩味した補正を施すことも好ましい。  [0133] In order to carry out highly accurate measurement, it is also preferable to perform correction considering the leveling characteristics as shown in Fig. 16 for the height shape signal measured without waiting for leveling. .
[0134] 塗布ノズルや基板にはそれぞれ固有の個体差がある。塗布ノズルの個体差として は孔の大きさばらつきが考えられ、同じ圧力を加えたとしても孔によって塗出量は変 わる。この特性はノズル毎の個体差である(あるノズルは必ず X孔目が塗布量多となり 、あるノズルは必ず Y孔目が塗布量少となる、など)。  [0134] There are inherent individual differences between the coating nozzle and the substrate. As the individual difference between the application nozzles, the size of the holes may vary, and even if the same pressure is applied, the amount of application changes depending on the holes. This characteristic is an individual difference for each nozzle (a certain nozzle always has a large application amount in the X hole, and a certain nozzle always has a small application amount in the Y hole).
[0135] また基板の個体差としては、製造条件や製造装置の能力ばらつきによる隔壁 (縦リ ブ) 11、隔壁 (横リブ) 16の幅ばらつきによるセル容量のばらつきが考えられ、同じ充 填量の液状材料を充填したとしてもセル容量によって液状材料の高さは変わる。この 特性は製造プロセス起因の基板個体差である (ある製造条件では必ず基板端部の 隔壁幅が細くなり、基板中央部の隔壁幅は太くなる、など)。 [0135] In addition, as the individual difference of the substrate, the variation in cell capacity due to the variation in the width of the partition wall (vertical rib) 11 and the partition wall (lateral rib) 16 due to variations in manufacturing conditions and manufacturing equipment capacity can be considered. Even if the filling amount of the liquid material is filled, the height of the liquid material varies depending on the cell capacity. This characteristic is due to individual differences in the substrate due to the manufacturing process (under certain manufacturing conditions, the partition wall width at the edge of the substrate is always narrower and the partition wall width at the center of the substrate is larger).
[0136] ここで重要となるのは、塗布ノズルや基板の個体差起因の液状材料高さばらつきは ノズル詰まりによる高さばらつきとは違って欠陥(塗布工程の異常)ではないと言うこと である。  [0136] What is important here is that the liquid material height variation due to individual differences in coating nozzles and substrates is not a defect (abnormal coating process) unlike the height variation due to nozzle clogging. .
[0137] 一般的に PDPのユーザーとなる人間の視覚は、絶対変化の違いよりも相対変化の 違いを高感度に見分ける特性をもっていると言われている。つまり、ある注目画素を 見たときに、そこの表示輝度がまわりの画素の表示輝度と比べて急激に低ければ (高 ければ)表示ムラと認知する。これに対し、表示輝度がまわりの画素の表示輝度と比 ベて違いはあっても、大きくなければ表示ムラとして認知できない。つまり塗布ノズル や基板の個体差起因の液状材料高さばらつきは製品の表示ムラとして表面化しない 力 ノズル詰まりによる液状材料表面高さの変化は、その周囲の画素との表示輝度 差が急激に大きくなるため、製品は欠陥となる。  [0137] In general, human vision as a PDP user is said to have a characteristic that distinguishes differences in relative changes with higher sensitivity than differences in absolute changes. In other words, when a certain pixel of interest is viewed, if the display brightness there is sharply lower (higher) than the display brightness of surrounding pixels, it is recognized as display unevenness. On the other hand, even if the display brightness is different from the display brightness of surrounding pixels, it cannot be recognized as display unevenness unless it is large. In other words, liquid material height variations caused by individual differences in coating nozzles and substrates do not surface as product display unevenness.Changes in liquid material surface height due to nozzle clogging rapidly increase the display brightness difference with surrounding pixels. Therefore, the product becomes defective.
[0138] 図 17に検査信号と欠陥判定のための固定閾値 aと変動閾値 βを示す。検査信号 について、欠陥がない場合には s、 t、 uの信号をとる力 2力所の欠陥発生にともなつ て tが t"に、 uが u"に変化したとする。欠陥がない場合、液状材料毎に表面高さの違 いはある力 全体的に右側にゆるやかに高くなつていく変化であって製品の欠陥で はない。よって、例えば塗布ノズルの孔径ばらつきによって充填量のばらつきはある ものの塗布工程は正常に動作していると判断する。  FIG. 17 shows an inspection signal and a fixed threshold value a and a variation threshold value β for defect determination. When there is no defect in the inspection signal, it is assumed that t changes to t "and u changes to u" with the occurrence of a defect at the two force points that takes s, t, and u signals. If there is no defect, the difference in surface height for each liquid material is a change that gradually increases to the right side as a whole, not a product defect. Therefore, for example, although there is a variation in the filling amount due to the variation in the hole diameter of the coating nozzle, it is determined that the coating process is operating normally.
[0139] しかし、検査信号に固定閾値 exを設定した場合、正常信号である sを欠陥として誤 検出してしまう。また 2力所の欠陥発生にともなって、 t"、 u"が発生した場合、 t"は検 出できるが u"は見逃してしまう。  [0139] However, when the fixed threshold value ex is set in the inspection signal, s that is a normal signal is erroneously detected as a defect. If t "and u" occur due to the occurrence of a defect at the two power stations, t "can be detected but u" is overlooked.
[0140] これに対し、塗布ノズル毎に固有の孔径ばらつきや製造条件による基板のばらつき をあらかじめ考慮し、個別閾値 |8を設定しておけば、 sを誤検出することなぐ t"、 u"を 正確に検出することができる。図 17において、 sは、例えば、 M+3番目のペースト高さ (OK)、 tは M+6番目のペースト高さ(OK)、 t"は M+6番目のペースト高さ(NG)、 uは M +9番目のペースト高さ(OK)、 u"は M+9番目のペースト高さ(NG)を、それぞれ示して いる。 [0140] On the other hand, if the individual hole diameter variation for each coating nozzle and the substrate variation due to manufacturing conditions are taken into consideration in advance and an individual threshold value | 8 is set, s will not be erroneously detected t ", u" Can be detected accurately. In FIG. 17, s is, for example, M + 3rd paste height (OK), t is M + 6th paste height (OK), t "is M + 6th paste height (NG), u is M + 9th paste height (OK), u "is M + 9th paste height (NG) Yes.
[0141] また、図 18に示すように、図 17と同様の検査信号が得られた際に、自動変動閾値  [0141] Further, as shown in FIG. 18, when an inspection signal similar to that in FIG.
Ύをもって検査を行うことも、誤検出、見逃しがなくなり、好ましい。この自動変動閾値 yは、検査信号自体の移動平均信号 (検査信号自体の移動平均処理により得られる 信号)を算出して閾値として用いるものである。  It is also preferable to perform the inspection with a scissors because there is no false detection or oversight. This automatic variation threshold y is used as a threshold by calculating a moving average signal of the inspection signal itself (a signal obtained by moving average processing of the inspection signal itself).
[0142] また図 19 (a)〜(e)に示すように、測定対象となる基板の判定に際し、それ以前に 測定した基板のデータを参照し、時間的な変化量 (差分値)を求めて、その変化量に 対して差分閾値 Δを設定して検査を行うことも、誤検出、見逃しがなくなり、好ましい。  [0142] Also, as shown in Figs. 19 (a) to 19 (e), when determining the board to be measured, refer to the board data measured before that to obtain the temporal change (difference value). Therefore, it is also preferable to set the difference threshold Δ for the amount of change so as to prevent erroneous detection and oversight.
[0143] 図 19の検査信号について、 N枚目、 N+1枚目の塗工では塗布工程に異常はなぐ 基板にも欠陥が発生していないので N枚目では v、 w、 Xの、 N+1枚目では v,、 w,、 x, の信号をとり、両者に大きな差はない。つまり図(d)に示す N+1枚目の測定結果と N枚 目の測定結果の差分値に対して差分閾値 Δを設定して!、ても欠陥は検出されず、こ れは正常な判定である。しかし N+2枚目の塗工時に塗布工程に 2力所の欠陥が発生 し、 w'力^"に、 x'が X"に変化した。この場合、図(e)に示す N+2枚目の測定結果と N+ 1枚目の測定結果の差分値には大きな変化が生じ、差分閾値 Δを設定して!/、れば 2 力所の欠陥を正常に検出することができる。なお測定対象となるデータとの差分をと る基準データに関しては、上述のように 1枚前の基板のみのデータではなぐ複数枚 分のデータの平均を用いることも好まし 、。  [0143] With regard to the inspection signal in FIG. 19, there is no abnormality in the coating process in the Nth and N + 1th coatings. Since no defects have occurred in the substrate, v, w, X, The N + 1th sheet takes v, w, x, and there is no big difference between them. In other words, even if the difference threshold Δ is set for the difference between the N + 1 measurement result and the Nth measurement result shown in Fig. (D), no defect is detected, which is normal. It is a judgment. However, at the time of coating the N + 2th sheet, two defects occurred in the coating process, and w 'force ^ "and x' changed to X". In this case, the difference value between the N + 2 measurement result and the N + 1 measurement result shown in Fig. (E) changes greatly, and if the difference threshold Δ is set! / The defect can be detected normally. As for the reference data that takes the difference from the data to be measured, it is also preferable to use the average of the data for multiple sheets rather than the data for only the previous board as described above.
[0144] 以上までは 1枚のガラス基板から 1枚の PDP背面板を製造する場合を前提に説明を 行っていた。しかし、タクトアップや基板 1枚あたりの製造コストを抑える目的で 1枚の マザ一ガラス基板 lb力も複数の PDP背面板を製造する場合がある。 [0144] The above description is based on the assumption that one PDP back plate is manufactured from one glass substrate. However, in order to reduce tact-up and manufacturing cost per substrate, a single mother glass substrate lb force may also be used to manufacture multiple PDP back plates.
[0145] 測定 Z検査の技術としては上記のものがそのまま流用できる力 NG発生時のロス 基板枚数や製造タクト、検査の精度などから検査のタイミングと対象基板を選択する ことができる。つまり、 NG発生時のロス基板枚数低減を重視するのであれば、上述の 検査を液状材料塗布回毎に全ての PDP背面板に対して行えばょ ヽ。またタクトアップ を狙うのであれば、マザ一ガラス基板 lb上の PDP背面板全てに液状材料の塗布を行 つた後に、代表基板のみに対して上述の検査を行えばよいし、マザ一ガラス基板 lb 上の PDP背面板全てに液状材料の塗布を行った後に、後述するように複数の変位セ ンサを用いて全ての基板の検査を同時に行っても良い。また検査精度を重視するの であれば、マザ一ガラス基板 lb上の PDP背面板全てに液状材料の塗布を行った後 に、代表基板のみに対して、高さ測定手段 50を低速で高精度、低振動に走査し、測 定を行うことが好ましい。 Measurement [0145] The above Z-inspection techniques can be used as they are. Loss when NG occurs. Inspection timing and target substrate can be selected based on the number of substrates, manufacturing tact, and inspection accuracy. In other words, if it is important to reduce the number of lost substrates when NG occurs, the above inspection should be performed on all PDP backplates every time liquid material is applied. If tact-up is aimed at, after applying the liquid material to all the PDP back plates on the mother glass substrate lb, the above-mentioned inspection may be performed only on the representative substrate, or the mother glass substrate lb. After applying the liquid material to all of the upper PDP backplates, multiple displacement sensors are All the substrates may be inspected simultaneously using a sensor. If the inspection accuracy is important, after applying the liquid material to all the PDP back plates on the mother glass substrate lb, the height measurement means 50 is applied to the representative substrate only at high speed at low speed. It is preferable to perform measurement by scanning with low vibration.
[0146] 塗布工程の異常を発見することが本発明の目的であるが、そのために基板の表面 形状を測定して 、るので、測定した全ての基板の表面形状データをトレンド管理し、 塗布工程やノズルの運用に利用することも好ましい。具体的には、例えば液状材料 の表面形状が全体的に変化してきて 、るのであれば、塗布装置の塗布圧を調整す ることで更に品質の良好な基板を製造することができる。また、未だ塗布工程の異常 とは言えないがある液状材料の表面高さが低下してきているのであれば、早めに代 替ノズルを準備し、実際に欠陥が発生して NG基板を製造してしまう前にノズルを交 換することちでさる。 [0146] Although it is an object of the present invention to find an abnormality in the coating process, the surface shape of the substrate is measured for this purpose. Therefore, trend measurement is performed on the surface shape data of all the measured substrates, and the coating process is performed. It is also preferable to use it for nozzle operation. Specifically, for example, if the surface shape of the liquid material changes as a whole, a substrate with better quality can be manufactured by adjusting the coating pressure of the coating apparatus. Also, if the surface height of the liquid material, which cannot be said to be abnormal in the coating process, is decreasing, prepare an alternative nozzle early, and if a defect actually occurs, manufacture an NG substrate. Replace the nozzle before it ends.
[0147] 図 20は本発明の検査方法を実現するための検査装置の概略図である。図 20では 1枚のマザ一ガラス基板 la (lb、 lc)より、 6枚の PDP背面板を製造する場合の例であ る。  FIG. 20 is a schematic diagram of an inspection apparatus for realizing the inspection method of the present invention. FIG. 20 shows an example in which six PDP rear plates are manufactured from one mother glass substrate la (lb, lc).
[0148] 基板搬入手段 75Lにより搬入され、基板固定手段 70上に固定されたマザ一ガラス 基板 lbに対し、ふたつの塗布手段 74により順次液状材料の塗布を実行する。例えば 塗布手段 74を固定した塗布手段固定手段 73を移動手段 71によって移動させながら 塗布を行うことができ、 2枚ずつ、 3回の塗布動作で 1枚のマザ一ガラス基板 lbの塗 ェが完了する。塗工完了後は基板搬出手段 75ULによってマザ一ガラス基板 lbを搬 出する。  [0148] The liquid material is sequentially applied by the two application means 74 to the mother glass substrate lb carried in by the substrate carry-in means 75L and fixed on the substrate fixing means 70. For example, the application means fixing means 73 with the application means 74 fixed can be applied while being moved by the moving means 71. The application of one mother glass substrate lb is completed by two application operations three times each. To do. After coating is completed, the mother glass substrate lb is unloaded by the substrate unloading means 75UL.
[0149] 高精度な塗工、および測定を可能とするため、基板固定手段 70は XY軸の位置補 正機能に加え、基板面に鉛直な軸を中心軸として Θ方向(回転方向)の補正機能を 更に有して 、ることも好ま 、。  [0149] In order to enable high-precision coating and measurement, the board fixing means 70, in addition to the XY axis position correction function, corrects the Θ direction (rotation direction) with the axis perpendicular to the board surface as the central axis. I also prefer to have more functions.
[0150] 塗工の間をぬつて、上述したタイミングで対象基板に対して検査を実施する。すな わち例えば、高さ測定手段移動手段 72を移動手段 71によって検査対象基板上に移 動し、高さ測定手段移動手段 72により 2個の高さ測定手段 50を走査して基板の形状 測定を実施する。検査の結果、塗布工程に異常ありと判定すれば塗布工程を停止し 、復旧作業を行う。また高さ測定手段固定手段 76に 3個の高さ測定手段 50を設けて おけば、マザ一ガラス基板 lb上の PDP背面板全てに液状材料の塗布を行った後に、 全ての基板の検査を同時に行うことも可能となる。 [0150] The inspection is performed on the target substrate at the timing described above after coating. That is, for example, the height measuring means moving means 72 is moved onto the substrate to be inspected by the moving means 71, and the height measuring means moving means 72 is used to scan two height measuring means 50 to form the shape of the substrate. Perform the measurement. As a result of inspection, if it is determined that there is an abnormality in the application process, the application process is stopped. , Perform recovery work. If the height measuring means fixing means 76 is provided with three height measuring means 50, the liquid material is applied to all the PDP back plates on the mother glass substrate lb, and then all the substrates are inspected. It can also be performed simultaneously.
[0151] 1枚のマザ一ガラス基板 lb力 複数の PDP背面板を製造することを前提とした本検 查のための測定においては、センサを移動させながら基板面の高さ情報を取得する という形態をとるため、高精度な測定にはセンサ走査時の上下震動が直接測定誤差 となって表面化する。そのためセンサ走査機構は上下動を極限まで抑えた機構で構 成することが好ましい。具体的には、エアベアリングを搭載し、移動機構をリニアモー タで構成した LMガイドなどが考えられる。  [0151] One mother glass substrate lb force In the measurement for this test, which is based on the premise that multiple PDP back plates are manufactured, the height information of the substrate surface is acquired while moving the sensor. Because of its shape, vertical vibration during sensor scanning directly becomes a measurement error for high-precision measurements. For this reason, the sensor scanning mechanism is preferably configured with a mechanism that suppresses vertical movement to the limit. Specifically, an LM guide with an air bearing and a moving mechanism composed of a linear motor can be considered.
[0152] 図 28は本発明の検査方法を実現するための検査装置の別の一例の概略図であり 、 1枚の PDP背面板を製造する場合の例を示している。  FIG. 28 is a schematic view of another example of an inspection apparatus for realizing the inspection method of the present invention, and shows an example in the case of manufacturing one PDP back plate.
[0153] 基板移動手段 206によって前工程から次行程へ基板を搬送させる搬送部に、固定 手段 280が設けられ、固定手段 280には間隔調整手段 250によって保持された 2つの 高さ測定手段 50aおよび 50a'が備えられている。高さ測定手段 50aおよび 50a'の間隔 はあらかじめ間隔調整手段 250により、製造する基板の横リブ間隔の整数倍に横リブ 間隔の半分長を加えた距離で、センサの筐体が干渉しない最も短い距離に間隔調 整方向 203"'で調整されている。  [0153] A fixing means 280 is provided in a transport section that transports the substrate from the previous process to the next process by the substrate moving means 206. The fixing means 280 includes two height measuring means 50a and a height adjusting means 50a held by the interval adjusting means 250. 50a 'is provided. The distance between the height measuring means 50a and 50a 'is the shortest distance at which the sensor housing does not interfere with the distance adjustment means 250, which is an integral multiple of the horizontal rib interval of the substrate to be manufactured plus half the horizontal rib interval. The distance is adjusted with the distance adjustment direction 203 "'.
[0154] 基板 Idは前行程で表面への液状材料の塗布を実行され、基板移動手段 206によつ て次行程を行う設備に向カゝつて基板搬送方向 203へ搬送されるが、この際に基板長 手方向全長にわたって、少なくとも全ての溝の表面形状の一部が高さ測定手段 50a および 50a'によって測定される。測定結果をもとに検査を行った結果、塗布工程に異 常ありと判定すれば塗布工程を停止し、復旧作業を行う。  [0154] The substrate Id is subjected to the application of the liquid material to the surface in the previous step, and is transferred in the substrate transfer direction 203 to the equipment for the next step by the substrate moving means 206. In addition, a part of the surface shape of at least all of the grooves is measured by the height measuring means 50a and 50a ′ over the entire length in the longitudinal direction of the substrate. As a result of inspection based on the measurement results, if it is determined that there is an abnormality in the coating process, the coating process is stopped and restoration work is performed.
[0155] 本検査のための測定においても、もうひとつの検査装置の例と同様、高精度な測定 には基板走査時の上下震動が直接測定誤差となって表面化する。ただし本例にお いてはコスト面およびタクト面力 汎用の基板搬送機構を使用することが好ましぐ高 精度なステージを使用せずに所定の検査精度を確保したい。そのため図 28に示す ように基板移動手段 206としてコロ搬送機を用いた場合には高さ測定手段 50aおよび 5 0a'の測定ポイントをコロ軸 202のコロ 201上に設置することも好ましい。なお図 28にお いては、高さ測定手段 50aおよび 50a'の直下にはコロ 201が存在する。 [0155] Also in the measurement for this inspection, as in the case of another inspection device, the vertical vibration during substrate scanning becomes a direct measurement error and becomes a surface for high-accuracy measurement. However, in this example, it is desirable to ensure the specified inspection accuracy without using a high-accuracy stage that favors the use of a general-purpose substrate transport mechanism in terms of cost and tact surface force. Therefore, as shown in FIG. 28, when a roller transport machine is used as the substrate moving means 206, it is also preferable that the measurement points of the height measuring means 50a and 50a ′ are placed on the roller 201 of the roller shaft 202. In Fig. 28 In this case, a roller 201 exists immediately below the height measuring means 50a and 50a ′.
[0156] また汎用の基板搬送手段 206を用いた場合に基板走査時の上下振動影響を測定 データ力 排除するための更に別の方法として、高さ測定手段 50aおよび 50a'に加え 、基板裏面高さ測定手段 50cおよび 50c'を用いることも好ましい。本件による検査装 置のセンサ設置例を点線で図 28中に示す。すなわち、高さ測定手段 50aおよび 50a' によって得られた基板表面情報から裏面高さ測定手段 50cおよび 50c'によって得ら れた基板裏面情報を差し引くと、基板表面形状から高精度に基板上下動情報のみ が除去されることとなる。なお高さ測定手段 50および 50a'の測定ポイントと裏面高さ測 定手段 50cおよび 50c'の対応するそれぞれの測定ポイントは、基板平面に対してなる ベく同一のポイントに位置決めされて 、ることが好まし!/、。 [0156] Further, when using the general-purpose substrate transport means 206, the vertical vibration effect at the time of substrate scanning is measured. As another method for eliminating the data force, in addition to the height measuring means 50a and 50a ', It is also preferable to use the thickness measuring means 50c and 50c ′. Fig. 28 shows an example of sensor installation for the inspection equipment in this case in dotted lines. That is, if the substrate back surface information obtained by the back surface height measuring means 50c and 50c ′ is subtracted from the substrate surface information obtained by the height measuring means 50a and 50a ′, the substrate vertical movement information is accurately obtained from the substrate surface shape. Only will be removed. The measurement points of the height measuring means 50 and 50a ′ and the corresponding measurement points of the back surface height measuring means 50c and 50c ′ should be positioned at the same point with respect to the substrate plane. Is preferred! /.
[0157] また塗布工程に欠陥が生じたために NGとなった基板は、液状材料を手動で充填可 能なディスペンサーなどにより修正を行うことで良品として復活させることも可能である 実施例 [0157] In addition, a substrate that has become NG due to a defect in the coating process can be restored as a non-defective product by correcting it with a dispenser that can be manually filled with a liquid material.
[0158] 以下に本発明の実施例を具体的に示す。ただし本発明の内容はこれに限定される ものではない。  [0158] Examples of the present invention are specifically shown below. However, the content of the present invention is not limited to this.
[0159] 実施例 1 [0159] Example 1
測定の対象となる PDP背面板は図 3に示す隔壁 (縦リブ) 11を隔壁 (横リブ) 16で区 切ってセル 18を形成したものであり、溝幅の異なる RGBのそれぞれのセルが一組で P DPの 1画素を形成するものである。隔壁(横リブ) 16で区切られたセル 18の幅は 950 μ m、隔壁(横リブ) 16の幅は 50 μ m (隔壁(横リブ) 16間隔は 1000 μ m)とする。またマザ 一ガラス基板 lb上には 6枚の PDP背面板 lbl〜lb6が高さ測定走査方向 2枚 X蛍光 体塗布方向 3枚で位置取りされて ヽるものとする。横リブ付き溝 17に充填する液状材 料は、 RGBそれぞれの発色を促す蛍光体材料を溶媒に溶力しこんだ蛍光体ペースト とし、本実施例 1としては、 RG蛍光体が構成されていない基板に対して B蛍光体べ一 スト 40bをセル容量に対して 75%の充填量で塗布するケースを考える。  The PDP back plate to be measured consists of the partition walls (vertical ribs) 11 shown in Fig. 3 divided by the partition walls (lateral ribs) 16 to form cells 18, and each RGB cell with a different groove width is one. One pixel of PDP is formed as a set. The width of the cell 18 divided by the partition walls (lateral ribs) 16 is 950 μm, and the width of the partition walls (lateral ribs) 16 is 50 μm (the distance between the partition walls (lateral ribs 16) is 1000 μm). It is also assumed that six PDP rear plates lbl to lb6 are positioned on the mother glass substrate lb with two height measurement scanning directions x three phosphor coating directions. The liquid material to be filled in the groove 17 with the lateral rib is a phosphor paste in which a phosphor material that promotes the color development of each RGB is dissolved in a solvent. In this example 1, no RG phosphor is formed. Consider the case where B phosphor base 40b is applied to the substrate with a filling amount of 75% of the cell capacity.
[0160] 蛍光体ペーストを塗布する装置、および塗布装置の状態を検査する装置としては 図 20の装置を使用する。まず蛍光体ペースド塗布機能について、塗布手段 74として は蛍光体を塗布すべき複数の横リブ付き溝 17に対応した位置に複数のノズル孔が 1 次元的に配列された塗布ノズルを 2個使用する。また塗布ノズルを固定する塗布手 段固定手段 73、塗布手段固定手段 73を塗工方向 19へ移動する移動手段 71としては 、 XYZ軸に位置決め ·補正機能を有するガントリーステージを使用する。 [0160] The apparatus shown in Fig. 20 is used as an apparatus for applying the phosphor paste and an apparatus for inspecting the state of the applying apparatus. First, regarding the phosphor-pased coating function, Uses two coating nozzles in which a plurality of nozzle holes are arranged one-dimensionally at positions corresponding to the plurality of grooves 17 with lateral ribs to be coated with phosphors. Further, as the coating means fixing means 73 for fixing the coating nozzle and the moving means 71 for moving the coating means fixing means 73 in the coating direction 19, a gantry stage having a positioning / correcting function on the XYZ axes is used.
[0161] 次に検査機能について、高さ測定手段 50としてはスポット測定視野を有する三角測 量方式のレーザー変位計 LC-2430 (キーエンス社製)を 2個使用する。また高さ測定 手段移動手段 72、高さ測定手段 72を測定対象となる基板上に位置決めする移動手 段 71 (塗布ガントリーと共通使用)としては、それぞれ XYZ軸に位置決め'補正機能を 有し、走査中の震動を極力抑えるためにエアベアリングを登載したリニアモータで構 成した LMガイドとガントリーステージを使用することとした。 LMガイド 72によるレーザ 一変位計 50の走査直進能力はセル中心位置 ±300 mとなるよう、装置を設計した。 なお上記のように検査機能を構成する場合、基板搬出手段 75ULの上部に示される 3 個の高さ測定手段 50および高さ測定手段固定手段 76は必ずしも必要ではない。  [0161] Next, regarding the inspection function, two triangulation laser displacement meters LC-2430 (manufactured by Keyence Corporation) having a spot measurement field are used as the height measuring means 50. In addition, as the moving means 71 for positioning the height measuring means moving means 72 and the height measuring means 72 on the substrate to be measured (used in common with the application gantry), each has a positioning 'correction function on the XYZ axes, In order to suppress vibration during scanning as much as possible, we decided to use an LM guide and a gantry stage composed of a linear motor with an air bearing. The device was designed so that the scanning linearity of the laser displacement meter 50 with the LM Guide 72 would be ± 300 m in the cell center position. When the inspection function is configured as described above, the three height measuring means 50 and the height measuring means fixing means 76 shown above the substrate carry-out means 75UL are not necessarily required.
[0162] またマザ一ガラス基板 lbを高精度に位置決めし、 XY軸と Θ軸の位置補正を可能と する基板固定手段 70としては汎用の高精度ステージを用いた。更にマザ一ガラス基 板 la (lb、 lc)の装置内への搬入、搬出を実現する基板搬入手段 75L、基板搬出手 段 75ULとしては汎用のコ口搬送機構を用 ヽた。  [0162] Also, a general-purpose high-precision stage was used as the substrate fixing means 70 for positioning the mother glass substrate lb with high accuracy and correcting the positions of the XY and Θ axes. Furthermore, a general-purpose co-feed transport mechanism was used as the substrate loading means 75L and the substrate unloading means 75UL for carrying the mother glass substrate la (lb, lc) into and out of the apparatus.
[0163] 塗布機能の操作およびマザ一ガラス基板 la (lb、 lc)の装置内への搬入、搬出、検 查機能の移動、走査については塗布装置操作部 78で集中的に行い、高さ測定手段 で得られた電気信号の処理にっ 、ては検査装置操作部 77で行うこととし、塗布装置 操作部 78と検査装置操作部 77はお互いに情報通信が可能となるよう、図示しない汎 用 PLCにて電気的に通信制御されている。また検査装置操作部 77は更に、信号処 理を行う図示しな!、信号処理手段としての汎用パソコン、作業者とのインターフェイス となるキーボード、マウス、測定結果および検査結果を出力するモニタなどの入出力 装置を備える。  [0163] The operation of the coating function and the loading and unloading of the mother glass substrate la (lb, lc) into the equipment, the movement of the inspection function, and the scanning are performed centrally in the coating equipment operation section 78, and the height measurement is performed. The processing of the electrical signal obtained by the means is carried out by the inspection device operation unit 77, and the application device operation unit 78 and the inspection device operation unit 77 are not shown in the figure so that they can communicate with each other. It is electrically controlled by PLC. Further, the inspection device operation unit 77 is not shown to perform signal processing !, a general-purpose personal computer as a signal processing means, a keyboard serving as an interface with an operator, a mouse, a monitor for outputting measurement results and inspection results, and the like. An output device is provided.
[0164] 以降、塗布装置および検査装置の動作に従いながら説明する。  Hereinafter, description will be given while following the operations of the coating apparatus and the inspection apparatus.
まずコロ搬送機構 75Lによって高精度ステージ 70上に搬入されたマザ一ガラス基板 lbは、高精度ステージ 70上に真空吸着などによって固定された後、 XY軸、 Θ軸を微 調整され、所定の位置に位置決めされる。次に蛍光体塗布ノズル 74はガントリー 73と ガントリーステージ 71とによって塗布開始位置 (例えば PDP背面板 lblと lb2の X軸原 点方向端部)に位置決めされ、 XYZ軸方向に微調整される。塗布開始位置に位置決 めされた蛍光体塗布ノズル 74は、ノズル内部を加圧することによって塗液である蛍光 体ペーストを基板面の横リブ付き溝 17に塗出し、この動作をガントリーステージ 71を 塗布完了位置 (例えば PDP背面板 lblと lb2の X軸原点方向逆側端部)に向けて移動 させながら連続的に行うことによって基板全長にわたる所定位置への蛍光体ペースト の塗布を完了する。図 20のマザ一ガラス基板 lbは塗布動作によって PDP背面板 lbl 、 lb2の蛍光体ペースト塗布が完了し、 PDP背面板 Ib3〜lb6は蛍光体ペースト未塗 布の段階のものである。 First, the mother glass substrate lb carried on the high precision stage 70 by the roller transport mechanism 75L is fixed on the high precision stage 70 by vacuum suction, etc., and then the XY and Θ axes are finely adjusted. It is adjusted and positioned at a predetermined position. Next, the phosphor coating nozzle 74 is positioned by the gantry 73 and the gantry stage 71 at the coating start position (for example, the end of the PDP rear plate lbl and lb2 in the X axis origin direction direction) and finely adjusted in the XYZ axis direction. The phosphor application nozzle 74 positioned at the application start position pressurizes the inside of the nozzle to apply the phosphor paste, which is a coating solution, to the groove 17 with the lateral ribs on the substrate surface. The phosphor paste is applied to a predetermined position over the entire length of the substrate by moving continuously toward the application completion position (for example, the opposite end of the PDP back plate lbl and lb2 in the X-axis origin direction). The mother glass substrate lb in FIG. 20 is coated with the phosphor paste on the PDP back plate lbl and lb2 by the coating operation, and the PDP back plates Ib3 to lb6 are in the stage where the phosphor paste is not applied.
[0165] 上記塗布動作を順次 3回繰り返すことにより PDP背面板 lbl〜lb6の全てについて 蛍光体ペーストの塗布が完了し、マザ一ガラス基板 lcはコロ搬送機 75ULにて後工程 へと搬出される。 [0165] By repeating the above coating operation three times in succession, the phosphor paste coating is completed for all of the PDP backplates lbl to lb6, and the mother glass substrate lc is transported to the subsequent process by the roller transporter 75UL. .
[0166] 実施例 1においては、塗布ノズルに詰まりが発生した場合に製造される NG基板の口 ス枚数を最低限に抑えるため、塗布回毎に全ての基板の測定、検査を実施すること とする。つまり、動作の概略としては、マザ一ガラス基板 lbの搬入→PDP背面板 lbl、 lb2の塗布→PDP背面板 lbl、 lb2の検査→PDP背面板 lb3、 lb4の塗布→PDP背面 板 lb3、 lb4の検査→PDP背面板 lb5、 lb6の塗布→PDP背面板 lb5、 lb6の検査→マ ザ一ガラス基板 lbの搬出、となる。  [0166] In Example 1, in order to minimize the number of NG substrates that are manufactured when clogging occurs in the coating nozzle, all substrates should be measured and inspected each time. To do. In other words, the outline of the operation is as follows: loading of the mother glass substrate lb → application of PDP rear panel lbl and lb2 → inspection of PDP rear panel lbl and lb2 → application of PDP rear panel lb3 and lb4 → application of PDP rear panel lb3 and lb4 Inspection → PDP rear plate lb5, lb6 application → PDP rear plate lb5, lb6 inspection → Mother glass substrate lb unloading.
[0167] 上述したとおり、基板の製造条件としては B蛍光体ペーストをセル容量に対して 75% の充填量で塗布するように設定して 、るので、検査信号としては離散高さ形状信号 を円錐曲線のひとつである放物線を用いた近似方法で近似して求めた高さ形状信 号から得られる高さ信号を用い、欠陥判定閾値 thhとしては当該塗布ノズルの孔径ば らっきを考慮し、手動で個別に調整した個別閾値 )8を適用した。またペーストレベリ ング動作による検査精度の低下を防ぐため、塗布されてから 5秒間を経過した部分を 対象にレーザー変位計を走査することとした。  [0167] As described above, the substrate manufacturing conditions are set such that the B phosphor paste is applied at a filling amount of 75% of the cell capacity. Therefore, the discrete height shape signal is used as the inspection signal. The height signal obtained from the height shape signal approximated by an approximation method using a parabola that is one of the conic curves is used, and the defect judgment threshold thh is taken into account the variation in the hole diameter of the coating nozzle. , Individual threshold manually adjusted) 8) was applied. In addition, in order to prevent a decrease in inspection accuracy due to the paste leveling operation, it was decided to scan the laser displacement meter for the part where 5 seconds had elapsed since application.
[0168] その結果、塗布工程においては製造開始より順調に基板への蛍光体ペースト塗布 を継続してきた。しカゝしある時間帯において 2個の塗布ノズルの内、基板搬出側の塗 布ノズルの Ml番目の孔に、ノズル組立の際にノズル内に混入したゴミが詰まって塗 出量が低下した。その結果、 Ml番目の孔に対応する Ml番目の横リブ付き溝 17にお V、て蛍光体ペーストの充填量が 75%前後から 70%前後に減少し、ペースト最低部の表 面高さ hは 75 μ m前後から 65 μ m前後まで低下した。また更に別のある時間帯におい て 2個の塗布ノズルの内、基板搬入側の塗布ノズルの M2番目の孔に、蛍光体ペース ト製造時に蛍光体ペーストに混入したゴミが詰まって完全に塗出不可能となった。そ の結果、 M2番目の孔に対応する M2番目の横リブ付き溝 17において蛍光体ペースト の塗布抜けが発生した。検査装置はこれらを正常に検出し、塗布装置を一旦停止し て速やかに塗布ノズルの交換を行うことで、最低限の NG基板ロス枚数で迅速に工程 を正常に復旧することができた。なお順調に塗布が行われていた間、検査装置によ る誤検出 ·過検出は発生しな力つた。 [0168] As a result, in the coating process, the phosphor paste has been smoothly applied to the substrate since the start of production. Within a certain period of time, of the two coating nozzles, coating on the substrate carry-out side The Mlth hole of the cloth nozzle was clogged with dust mixed in the nozzle during nozzle assembly, resulting in a decrease in the coating amount. As a result, the filling amount of the phosphor paste in the Ml-th lateral rib groove 17 corresponding to the Ml-th hole decreases from about 75% to about 70%, and the surface height h of the lowest part of the paste h Decreased from around 75 μm to around 65 μm. In another time zone, among the two coating nozzles, the M2 hole of the coating nozzle on the substrate carry-in side is completely coated with dust mixed in the phosphor paste during phosphor paste manufacturing. It became impossible. As a result, the phosphor paste was missed in the M2th groove with lateral ribs 17 corresponding to the M2th hole. The inspection device detected these normally, and once the coating device was stopped and the coating nozzle was replaced quickly, the process could be quickly restored to normal with a minimum number of NG substrate losses. While the coating was being performed smoothly, false detection / overdetection by the inspection device did not occur.
[0169] 実施例 2 [0169] Example 2
上記実施例 1の形態において、基板の製造条件が B蛍光体ペーストをセル容量に 対して 90%の充填量で塗布するように再設定された。これを受け、検査信号としては 離散高さ形状信号の近似に円錐曲線のひとつである円を用いて得られた近似円半 径信号を用い、欠陥判定閾値 thrlおよび thr2としては、基板両端部から中央付近に 力けて次第に隔壁 (縦リブ) 11が太くなる傾向があるという乾燥炉特性起因の基板の 製造状態を考慮し、自動で検査信号自身の移動平均信号を求め、これを元に調整 した変動閾値 γを適用した。また検査タクト短縮のために、塗布されてから 2秒後の部 分からレーザー変位計の走査を開始し、測定を行った力 ペーストレべリング動作に よる検査精度の低下を防ぐため、図 16の関係を持って高さ形状信号を補正し、検査 を実施した。  In the form of Example 1 above, the manufacturing conditions of the substrate were reset so that the phosphor paste B was applied at a filling amount of 90% with respect to the cell capacity. In response to this, an approximate circle radius signal obtained using a circle that is one of conic curves is used as an inspection signal to approximate the discrete height shape signal, and the defect determination thresholds thrl and thr2 are determined from both ends of the substrate. Taking into account the manufacturing condition of the substrate due to the characteristics of the drying oven, where the partition walls (vertical ribs) 11 tend to become thicker by focusing near the center, the moving average signal of the inspection signal itself is automatically obtained and adjusted based on this The variation threshold γ applied was applied. In order to shorten the inspection tact, the relationship of Fig. 16 is used to prevent a drop in inspection accuracy due to the measured force paste leveling operation by starting scanning with a laser displacement meter from the part 2 seconds after application. The height shape signal was corrected by holding and the inspection was carried out.
[0170] その結果、塗布工程においては製造開始より順調に基板への蛍光体ペースト塗布 を継続してきた。しカゝしある時間帯において 2個の塗布ノズルの内、基板搬入側の塗 布ノズルの Μ3番目の孔に、蛍光体ペースト製造時に蛍光体ペーストに混入したゴミ が詰まって塗出量が低下した。その結果、 Μ3番目の孔に対応する Μ3番目の横リブ 付き溝 17において蛍光体ペーストの充填量が 90%前後力 85%前後に減少し、ペース ト表面形状の近似円半径 rは 400 m前後から 270 m前後まで低下した。検査装置 はこれを正常に検出し、塗布装置をー且停止して速やかに塗布ノズルの洗浄を行う ことで、最低限の NG基板ロス枚数で迅速に工程を正常に復旧することができた。な お順調に塗布が行われていた間、検査装置による誤検出'過検出は発生しな力つた [0170] As a result, in the coating process, the phosphor paste has been successfully applied to the substrate since the start of production. During a certain period of time, of the two coating nozzles, the third hole of the coating nozzle on the substrate carry-in side is clogged with dust mixed in the phosphor paste during phosphor paste manufacturing, resulting in a decrease in the coating amount. did. As a result, the filling amount of the phosphor paste in the third groove 17 with the horizontal rib corresponding to the third hole is reduced to about 90% force 85%, and the approximate circle radius r of the paste surface shape is about 400 m. To about 270 m. Inspection device Detected this normally, and stopped the coating device and quickly cleaned the coating nozzle, so that the process could be quickly restored to normal with the minimum number of NG substrate losses. While the coating was performed smoothly, there was no false detection by the inspection device.
[0171] 実施例 3 [0171] Example 3
上記実施例 2の形態において、更なる基板製造タクトアップのため、検査装置の改 造工事を行った。基板搬出手段 75ULの上部に高さ測定手段固定手段 76として充分 に剛性の高いフレームを設置し、高さ測定手段 50として、セル 18とひとつの隔壁 (横リ ブ) 16の幅と同じ幅 1000 mの測定領域を有し、測定領域内の平均高さを出力するよ うに設定された広幅のレーザー変位計 50bを 3個設置した。この広幅レーザー変位計 としては例えば、測定視野を有する三角測量方式のレーザー形状計測センサ Z300- S10 (オムロン)が使用できる。なお上記のように検査機能を構成する場合、実施例 実施例 2で使用した高さ測定手段 50としてのスポット視野を有する 2個のレーザー変 位計およびガントリーステージ 72は必ずしも必要ではない。  In the form of Example 2 above, the inspection equipment was remodeled for further substrate manufacturing tact improvement. Substrate unloading means Install a frame with sufficiently high rigidity as height measuring means fixing means 76 on the upper part of 75UL, and as height measuring means 50, the same width as cell 18 and one partition (lateral rib) 16 width 1000 Three wide laser displacement meters 50b with m measurement area and set to output the average height in the measurement area were installed. As this wide laser displacement meter, for example, a triangulation laser shape measurement sensor Z300-S10 (OMRON) having a measurement field of view can be used. When the inspection function is configured as described above, the two laser displacement meters and the gantry stage 72 having a spot field as the height measuring means 50 used in the second embodiment are not necessarily required.
[0172] 実施例 3においては、上述の通り基板製造タクトアップのため、マザ一ガラス基板 lb 上の全ての PDP背面板 lbl〜lb6の塗布が完了した後にマザ一ガラス基板 lbを搬出 しながら、上方に固定されたレーザー変位計によって全ての基板の基板表面を測定 し、検査を実施することとする。つまり、動作の概略としては、マザ一ガラス基板 lbの 搬入→PDP背面板 lbl、 lb2の塗布→PDP背面板 lb3、 lb4の塗布→PDP背面板 lb5、 lb6の塗布→マザ一ガラス基板 lbの搬出→PDP背面板 lbl〜lb6の検査、となる。本 実施例 3の構成により、検査のための時間を待つことなく全ての PDP背面板への蛍光 体ペースト塗布を行うことができ、またガントリーステージによるセンサ走査軌跡の精 密な位置決めが不要となり、かつ全ての基板の検査をまとめて同時刻に実施できる ために、大幅な基板製造タクトの短縮が可能となった。 [0172] In Example 3, as described above, for the substrate manufacturing tact-up, the mother glass substrate lb is unloaded after all the PDP rear plates lbl to lb6 have been applied on the mother glass substrate lb. The substrate surface of all substrates is measured by a laser displacement meter fixed above and inspection is performed. In other words, the outline of the operation is as follows: import of the mother glass substrate lb → application of the PDP rear panel lbl and lb2 → application of the PDP rear panel lb3 and lb4 → application of the PDP rear panel lb5 and lb6 → export of the mother glass substrate lb → PDP back plate lbl ~ lb6 inspection. With the configuration of Example 3, phosphor paste can be applied to all PDP backplates without waiting for the inspection time, and precise positioning of the sensor scanning trajectory by the gantry stage is not necessary. In addition, all board inspections can be performed together at the same time, making it possible to significantly reduce the board manufacturing tact.
[0173] また欠陥判定閾値 thrlおよび thr2としては、基板両端部から中央付近にかけて次 第に隔壁 (縦リブ) 11が太くなる傾向があるという乾燥炉特性起因の基板の製造状態 を考慮し、測定対象となる基板の測定以前の 10枚の基板の検査信号平均値を求め 、この検査信号平均値と検査対象となる基板から得られた検査信号の差分値に対し 、差分閾値 Δを適用し、検査を実施した。 [0173] Also, the defect determination thresholds thrl and thr2 are measured taking into account the manufacturing condition of the substrate due to the characteristics of the drying furnace, where the partition walls (vertical ribs) 11 tend to gradually increase from both ends of the substrate to the vicinity of the center. Obtain the average value of the inspection signals of the 10 substrates before the measurement of the target substrate, and calculate the difference between the average value of the inspection signal and the inspection signal obtained from the target substrate. The difference threshold Δ was applied and the test was carried out.
[0174] その結果、塗布工程においては製造開始より順調に基板への蛍光体ペースト塗布 を継続してきた。しカゝしある時間帯において 2個の塗布ノズルの内、基板搬出側の塗 布ノズルの Μ4番目の孔に、蛍光体ペースト自身に発生した凝集物が詰まって塗出 量が低下した。その結果、 Μ4番目の孔に対応する Μ4番目の横リブ付き溝 17におい て蛍光体ペーストの充填量が 90%前後から 80%前後に減少し、ペースト表面形状の近 似円半径 rは 400 m前後から 210 m前後まで低下した。検査装置はこれを正常に 検出し、塗布装置をー且停止して速やかに塗布ノズルの洗浄を行うことで、迅速にェ 程を正常に復旧することができた。なお順調に塗布が行われていた間、検査装置に よる誤検出 ·過検出は発生しな力つた。  [0174] As a result, in the coating process, the phosphor paste has been smoothly applied to the substrate since the start of production. During a certain period of time, of the two coating nozzles, the fourth hole of the coating nozzle on the substrate carry-out side was clogged with aggregates generated in the phosphor paste itself, and the coating amount decreased. As a result, the filling amount of the phosphor paste in the fourth groove 17 with the lateral rib corresponding to the fourth hole decreased from about 90% to about 80%, and the approximate circular radius r of the paste surface shape was 400 m. It decreased from around to 210 m. The inspection device detected this normally, and the coating device was stopped and the coating nozzle was quickly washed to quickly restore the process to normal. While the coating was being performed smoothly, false detection / overdetection by the inspection device did not occur.
[0175] 実施例 4  [0175] Example 4
上記実施例 1の形態において、基板の表面形状データを測定、検査の順に時間的 に管理して比較していったところ、蛍光体ペーストのロット切り替えのタイミングで、基 板面内で全体的に蛍光体ペースト最低部の高さ hが高くなつたことがわかった。この 原因は蛍光体ペースト製造ばらつきによるペースト粘度の低下であると判断し、塗布 機の塗布圧を調整したところ、ロット切り替え前の状態に復旧した。また 2個の塗布ノ ズルの内、基板搬入側の塗布ノズルの M5番目の孔に対応する M5番目の横リブ付き 溝 17にお 、てペースト最低部の表面高さ hが低下してきて 、ることがわ力つた。これに 対し、早めにノズル孔部の洗浄を実施することにより塗布ノズルの詰まりを未然に防ぐ ことができた。  In the form of Example 1 above, the surface shape data of the substrate was temporally managed and compared in the order of measurement and inspection. As a result, the entire surface of the substrate was changed at the timing of switching the phosphor paste lot. It was found that the height h of the lowest part of the phosphor paste was increased. It was judged that this was caused by a decrease in paste viscosity due to phosphor paste manufacturing variations, and when the application pressure of the applicator was adjusted, the state before the lot change was restored. Of the two coating nozzles, the surface height h of the lowest part of the paste decreases in the M5th groove 17 with the lateral rib corresponding to the M5th hole of the coating nozzle on the substrate carry-in side. I was strong. On the other hand, clogging of the coating nozzle could be prevented beforehand by cleaning the nozzle hole as soon as possible.
[0176] 実施例 5 [0176] Example 5
上記実施例 3の形態にぉ 、て、あるマザ一ガラス基板 lb上の PDP背面板 lb2に対し て蛍光体ペーストの塗布を実行中、基板搬出側の塗布ノズルの M6番目の孔に、蛍 光体ペースト製造時に蛍光体ペーストに混入したゴミが詰まって塗出量が低下した。 検査装置はこれを正常に検出したが、マザ一ガラス基板 lb上の基板搬出側の PDP背 面板 lb2、 lb4、 lb6が NG基板となった。しかしこの NG基板を工程中より抜き出し、修 正専用のテーブルに固定して液状材料を手動で充填可能なディスペンサーにより修 正を行うことで良品として復活させ、収率の低下を防いだ。 [0177] 実施例 6 While applying the phosphor paste to the PDP back plate lb2 on a certain mother glass substrate lb in the form of Example 3 above, the phosphor is applied to the M6th hole of the coating nozzle on the substrate carry-out side. When the body paste was manufactured, dust mixed in the phosphor paste was clogged and the coating amount was reduced. The inspection equipment detected this normally, but the PDP back plates lb2, lb4, and lb6 on the substrate carry-out side on the mother glass substrate lb became NG substrates. However, this NG substrate was extracted from the process, fixed on a table for correction, and corrected with a dispenser that can be manually filled with liquid material. [0177] Example 6
測定の対象となる PDP背面板は図 3に示す隔壁 (縦リブ) 11を隔壁 (横リブ) 16で区 切ってセル 18を形成したものであり、溝幅の異なる RGBのそれぞれのセルが一組で P DPの 1画素を形成するものである。隔壁(横リブ) 16で区切られたセル 18の幅は 900 μ m、隔壁 (横リブ) 16の幅は 50 mとする。また本実施例 6においては 1枚のガラス基板 にっき、 1枚の PDP背面板 Idが生産されるものとする。横リブ付き溝 17に充填する液 状材料 40bは RGBそれぞれの発色を促す蛍光体材料を溶媒に溶かしこんだ蛍光体 ペーストとし、本実施例 6としては RG蛍光体が構成されて 、な 、基板に対して B蛍光 体ペーストをセル容量に対して 75%の充填量で塗布するケースを考える。  The PDP back plate to be measured consists of the partition walls (vertical ribs) 11 shown in Fig. 3 divided by the partition walls (lateral ribs) 16 to form cells 18, and each RGB cell with a different groove width is one. One pixel of PDP is formed as a set. The width of the cell 18 divided by the partition wall (lateral rib) 16 is 900 μm, and the width of the partition wall (lateral rib) 16 is 50 m. In Example 6, one PDP back plate Id is produced on one glass substrate. The liquid material 40b filled in the groove 17 with the lateral rib is a phosphor paste in which a phosphor material that promotes the color development of each RGB is dissolved in a solvent, and in this Example 6, an RG phosphor is constructed, and the substrate In contrast, consider the case where B phosphor paste is applied at a filling amount of 75% of the cell capacity.
[0178] 蛍光体ペーストを塗布する装置としては図示しない塗布装置を用い、塗布装置の 状態を検査する装置としては図 28の装置を使用する。  [0178] A coating device (not shown) is used as a device for applying the phosphor paste, and a device shown in Fig. 28 is used as a device for inspecting the state of the coating device.
[0179] 検査装置について、高さ測定手段 50としてはスポット測定視野を有する三角測量方 式のレーザー変位計 LK-G10 (キーエンス)を 2個(スポット変位センサ 50aおよび 50a, )使用する。またスポット変位センサ 50aと 50a'の間隔を調整する間隔調整手段 250と しては汎用の自動 1軸ステージを用い、固定手段 280としてのセンサフレームに取り 付けられている。更にスポット変位センサ 50aと 50a'の測定視野は基板搬送手段 206 としてのコロ搬送機の一部分であるコロ 201上に設置されており、かつ両センサの測 定ポイント間隔は検査実施前にあらかじめ、間隔調整手段 250によって 63450 mに 設定されている。  [0179] As for the height measuring means 50 for the inspection apparatus, two triangulation type laser displacement meters LK-G10 (Keyence) having a spot measurement field are used (spot displacement sensors 50a and 50a,). Further, a general-purpose automatic single-axis stage is used as the distance adjusting means 250 for adjusting the distance between the spot displacement sensors 50a and 50a ', and is attached to the sensor frame as the fixing means 280. Further, the field of view of the spot displacement sensors 50a and 50a 'is set on a roller 201 which is a part of a roller transfer machine as the substrate transfer means 206, and the measurement point interval of both sensors is set in advance before the inspection. It is set to 63450 m by adjusting means 250.
[0180] 高さ測定手段 50で得られた電気信号の処理にっ 、ては検査装置操作部 281で行う こととする。また検査装置操作部 281は更に、信号処理を行う図示しない信号処理手 段としての汎用パソコン、作業者とのインターフェイスとなるキーボード、マウス、測定 結果および検査結果を出力するモニタなどの入出力装置を備える。  [0180] The electrical signal obtained by the height measuring means 50 is processed by the inspection device operation unit 281. The inspection device operation unit 281 further includes an input / output device such as a general-purpose personal computer (not shown) that performs signal processing, a keyboard that serves as an interface with an operator, a mouse, and a monitor that outputs measurement results and inspection results. Prepare.
[0181] 以降、図示しない塗布装置および検査装置の動作に従いながら説明する。  [0181] The following description will be made in accordance with operations of a coating apparatus and an inspection apparatus (not shown).
まず図示しな 、塗布機によって基板面への蛍光体塗布が実行される。塗布機とし ては実施例 1に記したような仕組みのノズル塗布型の塗布機が考えられる力 上記し たとおり本実施例 6においては 1枚取り基板を想定しているため、塗布機もこれに対 応した 1枚塗布用の仕様となっている。具体的には 1つの塗布ノズルのみを有し、 1枚 分の塗布動作が完了するたびに基板を排出し、新たな基板を搬入する。 First, not shown, the phosphor is applied to the substrate surface by a coating machine. As a coating machine, the potential of a nozzle coating type coating machine with the mechanism described in Example 1 is considered. As described above, in Example 6, it is assumed that a single substrate is used. It is designed for single-sheet application corresponding to. Specifically, it has only one application nozzle and one sheet Each time a minute application operation is completed, the substrate is discharged and a new substrate is carried in.
[0182] 塗布機による基板面への蛍光体ペーストの塗布が完了すると、基板 Idはコロ搬送 機 206により後工程へと搬出されるが、この搬送途上にある基板の表面形状を捉える ベぐコロ搬送機上に高さ測定手段 50が設置されている。  [0182] When the application of the phosphor paste to the substrate surface by the coating machine is completed, the substrate Id is transported to the subsequent process by the roller transporting machine 206, which captures the surface shape of the substrate being transported. A height measuring means 50 is installed on the conveyor.
[0183] 上述したとおり、基板の製造条件としては B蛍光体ペーストをセル容量に対して 75% の充填量で塗布するように設定して 、るので、検査信号としては離散高さ形状信号 を円錐曲線のひとつである放物線を用いた近似方法で求めた高さ形状信号力 得ら れる高さ信号を用い、欠陥判定閾値 thhとしては当該塗布ノズルの孔径ばらつきを考 慮し、手動で個別に調整した個別閾値 |8を適用した。また 2つのスポット変位センサ 5 0aおよび 50a'から得られた信号に対し、隔壁 (横リブ) 16上を走査した場合の信号を 排除し、スポット変位センサ 50aおよび 50a'のどちらかが走査幅内を走査した場合の 信号を抜き出して連ねる信号処理を実装した。  [0183] As described above, the manufacturing condition of the substrate is set so that the phosphor paste B is applied at a filling amount of 75% with respect to the cell capacity. Therefore, the discrete height shape signal is used as the inspection signal. Height shape signal force obtained by approximating method using a parabola that is one of the conic curves The height signal obtained is used, and the defect judgment threshold value thh is manually and individually considered in consideration of the hole diameter variation of the coating nozzle. An adjusted individual threshold of | 8 was applied. In addition, the signal obtained when scanning on the partition wall (lateral rib) 16 is excluded from the signals obtained from the two spot displacement sensors 50a and 50a ', and either of the spot displacement sensors 50a and 50a' is within the scanning width. Implemented signal processing that extracts the signals when scanning and connects them.
[0184] その結果、基板搬送中に、基板が基板面に鉛直な軸に対する回転方向へ基板搬 送方向 203に対して ±4° の傾き、 ±400 μ mの蛇行が発生した力 スポット変位セン サ 50aおよび 50a'力 走査幅内を走査した場合の信号を抜き出して連ねた信号を得 ることで、隔壁 (横リブ) 16上を走査した場合の信号を排除し、確実に全ての溝を所定 の精度で測定できることを確認した。  [0184] As a result, during the substrate transfer, the force is generated when the substrate is inclined by ± 4 ° relative to the substrate transfer direction 203 in the rotation direction with respect to the axis perpendicular to the substrate surface, and the meander of ± 400 μm is generated. 50a and 50a 'force By extracting the signal when scanning within the scanning width and obtaining a continuous signal, the signal when scanning on the partition wall (lateral rib) 16 is eliminated, and all grooves are surely It was confirmed that it can be measured with the specified accuracy.
[0185] 塗布工程にぉ ヽては製造開始より順調に基板への蛍光体ペースト塗布を継続して きた。しかしある時間帯において塗布ノズルの M7番目の孔に、ノズル組立の際にノズ ル内に混入したゴミが詰まって塗出量が低下した。その結果、 M7番目の孔に対応す る M7番目の横リブ付き溝 17において蛍光体ペーストの充填量が 75%前後力 60%前 後に減少し、ペースト最低部の表面高さ hは 75 μ m前後から 32 μ m前後まで低下した 。検査装置はこれらを正常に検出し、塗布装置をー且停止して速やかに塗布ノズル の交換を行うことで、最低限の NG基板ロス枚数で迅速に工程を正常に復旧すること ができた。なお順調に塗布が行われていた間、検査機による誤検出 ·過検出は発生 しなかった。  [0185] For the coating process, the phosphor paste has been applied to the substrate smoothly since the start of production. However, during a certain period of time, the M7th hole of the application nozzle was clogged with dust mixed in the nozzle during nozzle assembly, resulting in a decrease in coating amount. As a result, the filling amount of the phosphor paste in the M7th laterally ribbed groove 17 corresponding to the M7th hole decreased by about 75% force and 60% before and after, and the surface height h of the lowest part of the paste was 75 μm. It decreased from around 30 to around 32 μm. The inspection device detected these normally, and stopped the coating device and quickly replaced the coating nozzle, so that the process could be quickly restored to normal with the minimum number of NG substrate losses. In addition, while the coating was performed smoothly, no false detection / overdetection by the inspection machine occurred.
[0186] 実施例 7  [0186] Example 7
上記実施例 6の形態において、スポット変位センサ 50aと 50a'の測定視野を基板搬 送手段 206としてのコロ搬送機の一部分であるコロ 201上力も外し、更に設けた 2つの 基板裏面高さ測定手段 50cおよび 50c'で基板を挟み込んで測定できるように構成を 変更した。またスポット変位センサ 50a (50a' )の測定信号から裏面高さ測定手段 50c ( 50c' )で得られた測定信号を減算処理することで測定信号に含まれる基板上下動信 号を排除する信号処理を加えた。 In the form of Example 6 above, the measurement field of view of the spot displacement sensors 50a and 50a ′ is transferred to the substrate. The force on the roller 201, which is a part of the roller transport machine as the feeding means 206, was also removed, and the configuration was changed so that the substrate could be measured by sandwiching the substrate between the two substrate back surface height measuring means 50c and 50c ′. Also, signal processing that eliminates the substrate vertical motion signal contained in the measurement signal by subtracting the measurement signal obtained by the back surface height measurement means 50c (50c ') from the measurement signal of the spot displacement sensor 50a (50a') Was added.
[0187] その結果、塗布機が基板 Idへの蛍光体ペーストの塗布を実行中、塗布ノズルの M8 番目の孔に、蛍光体ペースト製造時に蛍光体ペーストに混入したゴミが詰まって塗 出量が 75%前後から 70%前後にまで低下し、ペースト最低部の表面高さ hは 75 m前 後から 65 m前後まで低下した。検査装置はこれを正常に検出し、塗布装置を一旦 停止して速やかに塗布ノズルの洗浄を行うことで、最低限の NG基板ロス枚数で迅速 に工程を正常に復旧することができた。なお順調に塗布が行われていた間、検査機 による誤検出'過検出は発生しな力つた。  [0187] As a result, while the applicator is performing the application of the phosphor paste to the substrate Id, the M8th hole of the application nozzle is clogged with dust mixed in the phosphor paste during the manufacture of the phosphor paste, and the amount of application is reduced. The surface height h of the lowest part of the paste dropped from around 75 m to around 65 m from around 75% to around 70%. The inspection device detected this normally, and once the coating device was stopped and the coating nozzle was washed quickly, the process could be quickly restored to normal with the minimum number of NG substrate losses. In addition, while the coating was being performed smoothly, there was no possibility of false detection or over-detection by the inspection machine.
[0188] 以上、実施例 1〜7については RG蛍光体が構成されていない基板に対して B蛍光 体ペーストを塗布するケースを考えている力 S、これは B蛍光体ペーストに限定するもの ではないし、工程の都合上、既に測定対象となる蛍光体ペースト以外の色の蛍光体 層が別の横リブ付き溝 17に構成されていてもよい。この場合には高さ hは、測定領域 となる横リブ付き溝 17が存在する領域外の高さ、例えば素ガラス面高さを基準として 算出すればよい。また隔壁 (縦リブ) 11の高さは基板設計値力も既知であるので、隔 壁 (縦リブ) 11の高さを基準として高さ hを算出することも可能である。  [0188] As described above, in Examples 1 to 7, force S is considered to apply the B phosphor paste to the substrate on which the RG phosphor is not configured. This is not limited to the B phosphor paste. Alternatively, for the convenience of the process, a phosphor layer of a color other than the phosphor paste to be measured may be formed in another laterally ribbed groove 17. In this case, the height h may be calculated on the basis of the height outside the region where the lateral rib groove 17 serving as the measurement region exists, for example, the height of the raw glass surface. Further, since the height of the partition wall (vertical rib) 11 is also known as the board design value, it is possible to calculate the height h on the basis of the height of the partition wall (vertical rib) 11.

Claims

請求の範囲 The scope of the claims
[1] 高さ測定手段を有し、基板に所定の間隔で複数本塗布された液状材料と交差する 方向へ、基板、または高さ測定手段を移動させながら、液状材料塗布部を含む基板 面の高さ測定を離散的に行い、得られた離散高さ形状信号力 近似曲線を求めて得 られた高さ形状信号カゝら液状材料毎の高さを抜き出して連ねた高さ信号を検査信号 とし、検査信号より液状材料毎の塗布量を測定することを特徴とするディスプレイパネ ルの検査方法。  [1] A substrate surface having height measuring means and including a liquid material application portion while moving the substrate or the height measuring means in a direction intersecting with a plurality of liquid materials applied to the substrate at predetermined intervals. The height signal of each liquid material is extracted from the height shape signal obtained from the discrete height shape signal force approximation curve obtained by discrete measurement of the height of the measured height signal. A display panel inspection method, characterized in that the amount of application for each liquid material is measured from the inspection signal as a signal.
[2] 高さ測定手段によって得られた離散高さ形状信号から液状材料塗布部の信号を特 定し、特定された信号力 近似曲線として円錐曲線を用いて高さ形状信号を求める ことを特徴とする、請求項 1に記載のディスプレイパネルの検査方法。  [2] It is characterized in that the signal of the liquid material application part is identified from the discrete height shape signal obtained by the height measuring means, and the height shape signal is obtained using a conic curve as the specified signal force approximation curve. The method for inspecting a display panel according to claim 1.
[3] 高さ測定手段によって得られた離散高さ形状信号から液状材料塗布部の信号を特 定し、特定された信号力 近似曲線として円を用いて高さ形状信号を求めるとともに 、近似円の直径を複数の液状材料に対応するように連ねた近似円直径信号を検査 信号とし、検査信号より液状材料毎の塗布量を測定することを特徴とする、請求項 2 に記載のディスプレイパネルの検査方法。  [3] The signal of the liquid material application part is identified from the discrete height shape signal obtained by the height measuring means, and the height shape signal is obtained using a circle as the specified signal force approximation curve. 3. The display panel according to claim 2, wherein an approximate circle diameter signal obtained by connecting the diameters of the liquid materials to correspond to a plurality of liquid materials is used as an inspection signal, and an application amount for each liquid material is measured from the inspection signal. Inspection method.
[4] 基板上には、所定の間隔で塗布される液状材料の長手方向と平行な方向に所定 の間隔で複数の第 1の隔壁が形成されており、更に隣り合った第 1の隔壁間に液状 材料の長手方向と垂直の方向に別の複数の第 2の隔壁が所定の間隔で形成されて いることを特徴とする、請求項 1から 3のいずれかに記載のディスプレイパネルの検査 方法。  [4] On the substrate, a plurality of first barrier ribs are formed at predetermined intervals in a direction parallel to the longitudinal direction of the liquid material applied at predetermined intervals, and further between adjacent first barrier ribs. 4. The display panel inspection method according to claim 1, wherein a plurality of second partition walls are formed at predetermined intervals in a direction perpendicular to the longitudinal direction of the liquid material. .
[5] 高さ測定手段としてスポット状の測定領域を有する高さ測定センサを用い、液状材 料の長手方向と垂直の方向に形成された第 2の隔壁間の中央部 ±35%以内の領域 の形状を、液状材料の長手方向を横切る方向に基板全長にわたって測定することを 特徴とする、請求項 4に記載のディスプレイパネルの検査方法。  [5] Using a height measurement sensor having a spot-like measurement area as the height measurement means, the area within ± 35% of the center between the second partition walls formed in the direction perpendicular to the longitudinal direction of the liquid material 5. The display panel inspection method according to claim 4, wherein the shape of the display panel is measured over the entire length of the substrate in a direction crossing the longitudinal direction of the liquid material.
[6] 基板の位置を規制せしめる基板位置規制手段を更に有し、第 2の隔壁間の中央部 士 35%以内の領域の形状を、液状材料の長手方向を横切る方向に基板全長にわた つて測定することを特徴とする、請求項 5に記載のディスプレイパネルの検査方法。  [6] Substrate position regulating means for regulating the position of the substrate is further provided, and the shape of the area within 35% of the central portion between the second partition walls is formed across the entire length of the substrate in the direction transverse to the longitudinal direction of the liquid material. 6. The display panel inspection method according to claim 5, wherein measurement is performed.
[7] 基板の位置を認識する基板位置認識手段と基板位置情報をもとに高さ測定手段の 位置を補正する走査位置補正手段を更に有し、第 2の隔壁間の中央部 ±35%以内の 領域の形状を、液状材料の長手方向を横切る方向に基板全長にわたって測定する ことを特徴とする、請求項 5に記載のディスプレイパネルの検査方法。 [7] The board position recognition means for recognizing the board position and the height measurement means based on the board position information It further has scanning position correction means for correcting the position, and measures the shape of the region within ± 35% of the central portion between the second partition walls over the entire length of the substrate in the direction crossing the longitudinal direction of the liquid material. The method for inspecting a display panel according to claim 5.
[8] 2つ以上の高さ測定手段と位置調整手段と切換手段とを更に有し、第 2の隔壁間の 中央部士 35%以内の領域の形状を、液状材料の長手方向を横切る方向に基板全長 にわたつて測定することを特徴とする、請求項 5に記載のディスプレイパネルの検査 方法。 [8] It further has two or more height measuring means, position adjusting means, and switching means, and the shape of the area within 35% of the central section between the second partition walls is in a direction crossing the longitudinal direction of the liquid material. 6. The display panel inspection method according to claim 5, wherein the measurement is performed over the entire length of the substrate.
[9] 高さ測定手段として液状材料の長手方向と垂直の方向に形成された第 2の隔壁間 隔を含む測定領域を有する高さ測定センサを用い、基板面の形状を液状材料の長 手方向を横切る方向に基板全長にわたって測定することを特徴とする、請求項 4に 記載のディスプレイパネルの検査方法。  [9] A height measurement sensor having a measurement region including a second partition wall formed in a direction perpendicular to the longitudinal direction of the liquid material is used as the height measurement means, and the shape of the substrate surface is adjusted to the length of the liquid material. 5. The display panel inspection method according to claim 4, wherein measurement is performed over the entire length of the substrate in a direction crossing the direction.
[10] 基板裏面の高さを測定する基板裏面高さ測定手段を有し、高さ測定手段による測 定結果を基板裏面高さ測定結果で補正することを特徴とする、請求項 1から 9のいず れかに記載のディスプレイパネルの検査方法。  [10] The substrate back surface height measuring means for measuring the height of the substrate back surface, wherein the measurement result by the height measuring means is corrected by the substrate back surface height measurement result. The display panel inspection method described in any of the above.
[11] 高さ測定手段の測定位置が、基板移動手段と基板とが接する位置に配置されるこ とを特徴とする、請求項 1から 9の 、ずれかに記載のディスプレイパネルの検査方法。  [11] The display panel inspection method according to any one of [1] to [9], wherein the measurement position of the height measuring means is arranged at a position where the substrate moving means and the substrate are in contact with each other.
[12] 所定の間隔で塗布された液状材料は塗布直後から流動作用により第 1および第 2 の隔壁間での表面形状が変化し、所定時間後に定常状態に至るものであり、基板面 の高さ測定を所定時間後に実施することを特徴とする、請求項 1から 11のいずれか に記載のディスプレイパネルの検査方法。  [12] The liquid material applied at a predetermined interval changes the surface shape between the first and second partition walls by a fluid action immediately after application, and reaches a steady state after a predetermined time. 12. The display panel inspection method according to claim 1, wherein the measurement is performed after a predetermined time.
[13] 所定の間隔で塗布された液状材料は塗布直後から流動作用により第 1および第 2 の隔壁間での表面形状が変化し、所定時間後に定常状態に至るものであり、時間に 対する液状材料表面形状の変化情報をもって高さ形状信号を補正することを特徴と する、請求項 1から 11のいずれかに記載のディスプレイパネルの検査方法。  [13] The liquid material applied at a predetermined interval changes its surface shape between the first and second partition walls by a fluid action immediately after application, and reaches a steady state after a predetermined time. 12. The display panel inspection method according to claim 1, wherein the height shape signal is corrected based on change information of the material surface shape.
[14] 検査信号に欠陥の有無を判定するための所定の欠陥判定閾値を設ける信号処理 工程にお!、て、検査信号における測定対象である複数の液状材料と対応する領域 をそれぞれ特定し、特定された信号部にそれぞれ固有の欠陥判定閾値を設けること を特徴とする、請求項 1から 13のいずれかに記載のディスプレイパネルの検査方法。 [14] In the signal processing step of setting a predetermined defect determination threshold value for determining the presence or absence of defects in the inspection signal, each of the regions corresponding to the plurality of liquid materials to be measured in the inspection signal is specified, 14. The display panel inspection method according to claim 1, wherein a specific defect determination threshold value is provided for each identified signal portion.
[15] 検査対象基板から得られた検査信号自身に対し、移動平均処理を施して得られた 移動平均信号より検査信号に対する欠陥判定閾値を自動で調整することを特徴とす る、請求項 14に記載のディスプレイパネルの検査方法。 [15] The defect determination threshold for the inspection signal is automatically adjusted based on the moving average signal obtained by performing the moving average process on the inspection signal itself obtained from the inspection target substrate. The display panel inspection method as described in 1.
[16] 複数枚の基板に対して連続的に基板面の高さ測定を実施し、検査対象となる基板 の測定以前に測定された基板の高さ形状情報より、検査対象基板の欠陥判定閾値 を自動で調整することを特徴とする、請求項 14に記載のディスプレイパネルの検査 方法。 [16] The height of the substrate surface is continuously measured for a plurality of substrates, and the defect determination threshold of the inspection target substrate is determined from the height shape information of the substrate measured before the measurement of the inspection target substrate. 15. The method for inspecting a display panel according to claim 14, wherein the adjustment is automatically performed.
[17] 高さ測定を、液状材料が基板に塗布される毎に液状材料が塗布された全ての基板 に対して実施、または液状材料が複数枚の基板に塗布された後に液状材料が塗布 された全ての基板に対して、もしくは選択された代表基板に対して実施することを特 徴とする、請求項 1から 16のいずれかに記載のディスプレイパネルの検査方法。  [17] Height measurement is performed on all substrates to which the liquid material is applied every time the liquid material is applied to the substrate, or the liquid material is applied after the liquid material is applied to a plurality of substrates. The display panel inspection method according to claim 1, wherein the inspection method is performed on all the substrates or on a selected representative substrate.
[18] 複数枚の基板より得られた高さ測定情報を管理し、塗布装置の制御、運用にフィー ドバックすることを特徴とする、請求項 17に記載のディスプレイパネルの検査方法。  18. The display panel inspection method according to claim 17, wherein height measurement information obtained from a plurality of substrates is managed and fed back to control and operation of the coating apparatus.
[19] 液状材料塗布部を含む基板面の高さ測定を離散的に行う高さ測定手段と、得られ た離散高さ形状信号から近似曲線を求めて高さ形状信号を得る信号処理手段を有 することを特徴とするディスプレイパネルの検査装置。  [19] Height measuring means for discretely measuring the height of the substrate surface including the liquid material application portion, and signal processing means for obtaining an approximate curve from the obtained discrete height shape signal and obtaining the height shape signal A display panel inspection apparatus characterized by comprising:
[20] 基板に所定の間隔で複数本塗布された液状材料と交差する方向へ、基板、または 高さ測定手段を移動させる移動手段と、信号処理手段による測定結果および検査結 果を出力する情報出力手段を更に有することを特徴とする、請求項 19に記載のディ スプレイパネルの検査装置。  [20] Information for outputting a measurement result and an inspection result by the signal processing means and a moving means for moving the substrate or the height measuring means in a direction intersecting with the liquid material applied to the substrate at a predetermined interval. 20. The display panel inspection apparatus according to claim 19, further comprising output means.
[21] 基板を固定する基板固定手段を更に有し、基板固定手段が基板面に鉛直な軸を 中心軸として回転方向に位置補正機能を備えて ヽることを特徴とする、請求項 20に 記載のディスプレイパネルの検査装置。  [21] The apparatus according to claim 20, further comprising substrate fixing means for fixing the substrate, wherein the substrate fixing means has a position correction function in the rotation direction about an axis perpendicular to the substrate surface as a central axis. The display panel inspection apparatus as described.
[22] 高さ測定手段としてレーザー変位計を用い、高さ測定手段を移動させる移動手段と してエアベアリングを備えたリニアモータガイドを用い、基板を固定する基板固定手 段として基板面に鉛直な軸を中心軸として回転方向の位置補正機能を有する高精 度ステージを用いて構成されることを特徴とする、請求項 21に記載のディスプレイパ ネルの検査装置。 [22] A laser displacement meter is used as the height measuring means, a linear motor guide with an air bearing is used as the moving means for moving the height measuring means, and the substrate is fixed vertically as a means for fixing the board. 23. The display panel inspection apparatus according to claim 21, wherein the display panel inspection apparatus is configured using a high-precision stage having a position correction function in a rotational direction with a central axis as a central axis.
[23] 基板を固定する基板固定手段としての高精度ステージを、液状材料の塗布を行う 際の基板固定手段として塗布装置と共通に使用することを特徴とする、請求項 22に 記載のディスプレイパネルの検査装置。 [23] The display panel according to claim 22, wherein a high-precision stage as a substrate fixing means for fixing the substrate is used in common with the coating apparatus as the substrate fixing means when applying the liquid material. Inspection equipment.
[24] 基板の位置を規制するための基板位置規制手段を更に有していることを特徴とす る、請求項 20に記載のディスプレイパネルの検査装置。  24. The display panel inspection apparatus according to claim 20, further comprising substrate position restricting means for restricting the position of the substrate.
[25] 高さ測定手段としてレーザー変位計を用い、基板を移動させる移動手段としてコロ 搬送機を用い、基板位置規制手段として位置規制ガイドを用いて構成されることを特 徴とする、請求項 24に記載のディスプレイパネルの検査装置。  [25] The present invention is characterized in that a laser displacement meter is used as the height measuring means, a roller transporter is used as the moving means for moving the substrate, and a position restricting guide is used as the substrate position restricting means. The display panel inspection apparatus according to 24.
[26] 高さ測定手段としてレーザー変位計を用い、高さ測定手段を移動させる移動手段と して 1軸ステージを用い、基板位置規制手段として位置決め機構を用いて構成され ることを特徴とする、請求項 24に記載のディスプレイパネルの検査装置。  [26] A laser displacement meter is used as the height measuring means, a single-axis stage is used as the moving means for moving the height measuring means, and a positioning mechanism is used as the substrate position regulating means. The display panel inspection apparatus according to claim 24.
[27] 基板エッジ位置測定手段と高さ測定手段の位置を補正するための位置補正手段を 更に有して 、ることを特徴とする、請求項 20に記載のディスプレイパネルの検査装置  27. The display panel inspection apparatus according to claim 20, further comprising position correcting means for correcting the positions of the substrate edge position measuring means and the height measuring means.
[28] 高さ測定手段としてレーザー変位計を用い、基板を移動させる移動手段としてコロ 搬送機を用い、基板エッジ位置測定手段としてレーザー位置測定センサを用い、位 置補正手段として 1軸ステージを用いて構成されることを特徴とする、請求項 27に記 載のディスプレイパネルの検査装置。 [28] A laser displacement meter is used as the height measurement means, a roller transport machine is used as the movement means for moving the substrate, a laser position measurement sensor is used as the substrate edge position measurement means, and a single-axis stage is used as the position correction means. The display panel inspection apparatus according to claim 27, wherein the display panel inspection apparatus is configured as described above.
[29] 少なくとも 2つ以上の高さ測定手段と高さ測定手段同士の設置間隔を調整する設 置間隔調整手段を更に有することを特徴とする、請求項 20に記載のディスプレイパ ネルの検査装置。  [29] The display panel inspection apparatus according to [20], further comprising an installation interval adjusting unit that adjusts an installation interval between at least two height measuring units and the height measuring units. .
[30] 高さ測定手段として 2台のレーザー変位計を用い、基板を移動させる移動手段とし てコロ搬送機を用い、設置間隔調整手段として 1軸ステージを用いて構成されること を特徴とする、請求項 29に記載のディスプレイパネルの検査装置。  [30] Using two laser displacement meters as height measuring means, a roller transport machine as moving means for moving the substrate, and a single-axis stage as installation interval adjusting means 30. The display panel inspection apparatus according to claim 29.
[31] 基板裏面高さ測定手段を更に有し、基板裏面高さ測定手段としてレーザー変位計 を用いることを特徴とする、請求項 24から 30のいずれかに記載のディスプレイパネル の検査装置。  31. The display panel inspection apparatus according to claim 24, further comprising a substrate back surface height measuring unit, wherein a laser displacement meter is used as the substrate back surface height measuring unit.
[32] 高さ測定手段としてのレーザー変位計が基板移動手段と基板とが接する位置を測 定できるように構成されることを特徴とする、請求項 24から 30の 、ずれかに記載のデ イスプレイパネルの検査装置。 [32] The laser displacement meter as the height measuring means measures the position where the substrate moving means and the substrate are in contact. The display panel inspection apparatus according to any one of claims 24 to 30, wherein the display panel inspection apparatus is configured to be configured to be fixed.
[33] 請求項 1から 18のいずれかに記載の検査方法を用い、ディスプレイパネルを製造 することを特徴とする、ディスプレイパネルの製造方法。 [33] A display panel manufacturing method, characterized in that a display panel is manufactured using the inspection method according to any one of claims 1 to 18.
[34] 基板の欠陥情報をもとに液状材料の修正手段を用いて基板を修正することを特徴 とする、請求項 33に記載のディスプレイパネルの製造方法。 34. The method for manufacturing a display panel according to claim 33, wherein the substrate is corrected using liquid material correcting means based on the defect information of the substrate.
[35] 請求項 19から 32のいずれかに記載の検査装置を用い、ディスプレイパネルを製造 することを特徴とする、ディスプレイパネルの製造方法。 [35] A display panel manufacturing method, characterized in that a display panel is manufactured using the inspection apparatus according to any one of claims 19 to 32.
[36] 基板の欠陥情報をもとに液状材料の修正手段を用いて基板を修正することを特徴 とする、請求項 35に記載のディスプレイパネルの製造方法。 36. The method for manufacturing a display panel according to claim 35, wherein the substrate is corrected using a liquid material correcting means based on the defect information of the substrate.
PCT/JP2005/014275 2004-08-05 2005-08-04 Method and apparatus for inspecting display panel and method for manufacturing display panel WO2006013915A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006531530A JPWO2006013915A1 (en) 2004-08-05 2005-08-04 Display panel inspection method, inspection apparatus, and manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004229676 2004-08-05
JP2004-229676 2004-08-05

Publications (1)

Publication Number Publication Date
WO2006013915A1 true WO2006013915A1 (en) 2006-02-09

Family

ID=35787194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014275 WO2006013915A1 (en) 2004-08-05 2005-08-04 Method and apparatus for inspecting display panel and method for manufacturing display panel

Country Status (5)

Country Link
JP (1) JPWO2006013915A1 (en)
KR (1) KR20070057787A (en)
CN (1) CN1993599A (en)
TW (1) TW200617349A (en)
WO (1) WO2006013915A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258140A (en) * 2006-02-22 2007-10-04 Toray Ind Inc Inspection method, inspection device and manufacturing method of display panel

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104588270A (en) * 2014-12-30 2015-05-06 广东旭业光电科技股份有限公司 Method capable of quickly detecting lens missing glue
KR101777290B1 (en) * 2016-01-12 2017-09-14 에스엔유 프리시젼 주식회사 Data evaluating device of optical measuring device and data evaluating method of optical measuring device
JP6822864B2 (en) * 2017-01-31 2021-01-27 アルファーデザイン株式会社 Information processing equipment, information processing methods, programs,
JP2019168315A (en) * 2018-03-23 2019-10-03 三菱電機株式会社 Measurement device, circuit board, display device, and method for measurement

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07311025A (en) * 1994-05-17 1995-11-28 Komatsu Ltd Three-dimensional shape inspection device
JPH1027543A (en) * 1996-05-09 1998-01-27 Fujitsu Ltd Device and method for forming phosphor layer of plasma display panel
JP2003331727A (en) * 2002-05-13 2003-11-21 Hitachi Kokusai Electric Inc Inspection method and inspection device for phosphor substance embedded quantity in rib
JP2003344038A (en) * 2002-05-31 2003-12-03 Toray Ind Inc Method and apparatus for measuring thickness of coating film and manufacturing method for coating film formation member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07311025A (en) * 1994-05-17 1995-11-28 Komatsu Ltd Three-dimensional shape inspection device
JPH1027543A (en) * 1996-05-09 1998-01-27 Fujitsu Ltd Device and method for forming phosphor layer of plasma display panel
JP2003331727A (en) * 2002-05-13 2003-11-21 Hitachi Kokusai Electric Inc Inspection method and inspection device for phosphor substance embedded quantity in rib
JP2003344038A (en) * 2002-05-31 2003-12-03 Toray Ind Inc Method and apparatus for measuring thickness of coating film and manufacturing method for coating film formation member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258140A (en) * 2006-02-22 2007-10-04 Toray Ind Inc Inspection method, inspection device and manufacturing method of display panel

Also Published As

Publication number Publication date
JPWO2006013915A1 (en) 2008-05-01
KR20070057787A (en) 2007-06-07
TW200617349A (en) 2006-06-01
CN1993599A (en) 2007-07-04

Similar Documents

Publication Publication Date Title
JP4325084B2 (en) Coating method and color filter manufacturing method using the same
JP4490779B2 (en) Substrate processing equipment
TWI449928B (en) Circuit pattern inspection device
JP2009175708A (en) Liquid crystal dripping device
WO2006013915A1 (en) Method and apparatus for inspecting display panel and method for manufacturing display panel
KR101571390B1 (en) Apparatus for drilling continuously using laser
JP4841459B2 (en) Paste pattern inspection method
US20050239365A1 (en) Method and apparatus for repairing plasma display electrode
JP2011227049A (en) Method for inspecting end face of light-transmitting rectangular plate and apparatus for inspecting the end face
KR20090032005A (en) Circuit pattern inspection device
JP2008023471A (en) Paste applicator and paste application method
JP2008212921A (en) Coating method, plasma display member manufacturing method and coating machine
JP2006071625A (en) Method and device for inspecting display panel, and method for manufacturing the display panel
JP5050398B2 (en) Display panel inspection method, inspection apparatus, and manufacturing method
KR102167119B1 (en) System and method for manufacturing electrode for secondary battery
JP3987378B2 (en) Substrate processing equipment
JP4002429B2 (en) Exposure apparatus having foreign substance inspection function and foreign substance inspection method in the apparatus
JP2011082230A (en) Substrate coating device
JP2007173387A (en) Substrate processing apparatus
US9285409B2 (en) Apparatus for inspecting static electricity of substrate and method of manufacturing substrate
JP5496930B2 (en) Shaft body processing equipment
JP2004081983A (en) Substrate processing apparatus
JP4587950B2 (en) Substrate processing equipment
JP4091378B2 (en) Substrate processing equipment
JP2003229453A (en) Sticking condition inspector for tape member and tape member sticking apparatus using the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006531530

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580026478.0

Country of ref document: CN

Ref document number: 1020077002842

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase