WO2006011113A1 - A control unit for a lamp driver providing smooth transition between operation modes - Google Patents
A control unit for a lamp driver providing smooth transition between operation modes Download PDFInfo
- Publication number
- WO2006011113A1 WO2006011113A1 PCT/IB2005/052391 IB2005052391W WO2006011113A1 WO 2006011113 A1 WO2006011113 A1 WO 2006011113A1 IB 2005052391 W IB2005052391 W IB 2005052391W WO 2006011113 A1 WO2006011113 A1 WO 2006011113A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lamp
- mode
- control unit
- current
- lamp driver
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B41/00—Circuit arrangements or apparatus for igniting or operating discharge lamps
- H05B41/14—Circuit arrangements
- H05B41/26—Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
- H05B41/28—Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
- H05B41/288—Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps without preheating electrodes, e.g. for high-intensity discharge lamps, high-pressure mercury or sodium lamps or low-pressure sodium lamps
- H05B41/2881—Load circuits; Control thereof
- H05B41/2882—Load circuits; Control thereof the control resulting from an action on the static converter
- H05B41/2883—Load circuits; Control thereof the control resulting from an action on the static converter the controlled element being a DC/AC converter in the final stage, e.g. by harmonic mode starting
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B41/00—Circuit arrangements or apparatus for igniting or operating discharge lamps
- H05B41/14—Circuit arrangements
- H05B41/26—Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
- H05B41/28—Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
- H05B41/288—Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps without preheating electrodes, e.g. for high-intensity discharge lamps, high-pressure mercury or sodium lamps or low-pressure sodium lamps
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B41/00—Circuit arrangements or apparatus for igniting or operating discharge lamps
- H05B41/14—Circuit arrangements
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B41/00—Circuit arrangements or apparatus for igniting or operating discharge lamps
- H05B41/14—Circuit arrangements
- H05B41/24—Circuit arrangements in which the lamp is fed by high frequency ac, or with separate oscillator frequency
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B41/00—Circuit arrangements or apparatus for igniting or operating discharge lamps
- H05B41/14—Circuit arrangements
- H05B41/36—Controlling
- H05B41/38—Controlling the intensity of light
- H05B41/382—Controlling the intensity of light during the transitional start-up phase
- H05B41/388—Controlling the intensity of light during the transitional start-up phase for a transition from glow to arc
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
Definitions
- a control unit for a lamp driver providing smooth transition between operation modes
- the present invention relates to a control unit for a lamp driver, in particular a lamp driver for an ultra-high performance (UHP) light source, e.g. comprised in a projection system.
- the control unit of the present invention is particularly useful in high pressure mercury (HPM) or high-intensity discharge (HID) lamps.
- Ignition mode lamp is ignited generating a voltage of approximately 5 kV, a constant current is flowing through the lamp.
- Run-up mode lamp voltage is slowly rising due to a limited current sent through the lamp, the down-converter is switching with a very low duty cycle). 5. Normal operation mode (after the lamp has reached a certain voltage, the power control algorithm is entered).
- Idle mode is re-entered if 'lamp off command is issued, if too high lamp voltage is detected, or if too low lamp current is detected.
- US patent application No. US 2003/0127993 discloses a high frequency electronic ballast.
- the high frequency ballast establishes a lamp current for a gas discharge lamp during starting operation of the gas discharge lamp.
- the voltage level is maintained substantially constant during an electrode heating phase, corresponding to an ignition mode.
- an arc tube heating phase corresponding to a run-up mode, the voltage is increased in order to reach an operating ampere level of the lamp.
- An operating ampere level of the lamp current which is greater than or equal to a run-up ampere level is established.
- a disadvantage of this is that the switching behavior of the down-converter is bad and the lamp does not run-up smoothly.
- Another disadvantage is that the transition between various operation modes of the lamp driver is not smooth.
- control unit for a lamp driver being adapted to control the operation of a lamp during at least an ignition mode, a run-up mode and a normal operation mode, the control unit comprising:
- the above and other objects are fulfilled by providing a method for controlling a lamp driver during at least an ignition mode, a run-up mode and a normal operation mode, the method comprising the steps of: - providing, initially in an ignition mode, a predetermined start value of current to the lamp, subsequently in the ignition mode increasing the provided current to a predetermined maximum value.
- the lamp starts up smoothly and even warms up already in ignition mode, leading to higher lamp voltage. Furthermore, the switching behavior of the lamp is improved.
- the predetermined start value of the current to the lamp is preferably between 0.1 A and 0.5 A, depending on the lamp specifications.
- the predetermined maximum value of the provided current is preferably between 3.5 A and 4.0 A, depending on the lamp specifications. Most preferably, the predetermined maximum value of the provided current is approximately 3.7 A.
- the increasing means is preferably adapted to increase the current at least substantially linearly. This is an advantage because electronic devices in general switch more smoothly to the end value. Furthermore, the life time of the lamp may be improved.
- the lamp driver may comprise a down-converter and an alternator.
- the control unit is further adapted to change the duty cycle of the down- converter in order to obtain commutation of the current. Thereby the lamp current amplitude and direction of current through the lamp are controlled. Thereby, an even better switching behavior of the down-converter is obtained during the run-up phase.
- the duty cycle of the down-converter may be changed by changing the output of a digital-to-analog converter (DAC) to change the set level to the right duty cycle.
- DAC digital-to-analog converter
- the down-converter as well as the alternator are switching.
- the alternator is switching at a relatively high frequency, which is preferably above 100 kHz, in order to generate an ignition voltage.
- a lamp current will flow, which will be controlled by the down-converter.
- the alternator will normally decrease from the high frequency to a relatively low frequency, which is preferably below 1 kHz, and the lamp driver will enter the run-up mode.
- the down-converter has to realize very low and high duty cycles outside its normal frequency range in order to control the lamp current.
- the duty cycle of the down-converter is changed in such a way that the output voltage of the down-converter is below or above the average voltage present at the commutation side.
- the average voltage at the commutation side depends on the duty cycle of the switching cycle, assuming the frequency is sufficiently high.
- the control unit may further be adapted to control the alternator to maintain running at high frequency (i.e. preferably above 100 kHz) during run-up mode, and to cause the frequency to decrease when a measured lamp voltage is equal to a predetermined value.
- high frequency i.e. preferably above 100 kHz
- the alternator is only running at high frequency for a specific fixed time, i.e. during the ignition mode.
- the high frequency is maintained during the run-up mode.
- the decreasing of the frequency must be made dependent on the ending of the run-up mode, rather than being dependent on a specific time interval.
- the end of the run-up mode can be detected by measuring the lamp voltage.
- the run-up mode is ended and the normal operation mode is entered.
- the down- converter side needs to be corrected accordingly. This can be achieved by changing the duty cycle to obtain the right lamp current for the new output voltage of the down-converter. This output voltage changes due to the change of voltage at commutation side and the zener property of the lamp when lit.
- the control unit may advantageously be implemented in a lamp driver, which may in turn be inserted in a projection system, which also comprises an ultra-high performance (UHP) light source.
- the UHP light source may, e.g., be a high pressure mercury (HPM) or a high-intensity discharge (HID) lamp.
- the lamp driver may be implemented in an illumination system, a luminaire or a display system, e.g. a projection display system.
- a display system comprising a lamp driver as described may also be employed in a direct view LCD system.
- the control unit and/or the lamp driver may be used in any other suitable apparatus.
- FIG. 1 shows a circuit diagram for a lamp driver according to the invention.
- Fig. 1 shows a circuit diagram for a lamp driver according to the invention.
- the right side of the circuit operates as a down-converter 1 and the left side of the circuit operates as an alternator 2.
- the down-converter 1 comprises a first capacitor 3, a second capacitor 4, an inductive coil 5, a first field effect transistor (FET) 6 and a second FET 7.
- the duty cycle of the down-converter 1 determines the output current, which is the current of induction coil 5.
- the alternator 2 comprises a capacitor 8, an inductive coil 9, a first field effect transistor (FET) 10, and a second FET 11.
- FET field effect transistor
- the second alternator-FET 11 When the second alternator-FET 11 is conducting, the voltage applied to the lamp is the voltage applied to capacitor 3.
- the first alternator-FET 10 When, on the other hand, the first alternator-FET 10 is conducting, the lamp current changes direction, and the voltage applied to the lamp is the supply voltage minus the voltage applied to capacitor 3.
- the right side of the circuit has two functions. It generates the ignition voltage to ignite the lamp, and it functions as an alternator at low frequency after ignition mode has ended.
- Capacitor 8 and induction coil 9 together form a resonant circuit.
- the ignition mode and the run-up mode are separately defined.
- a start value of the down-converter 1 is chosen, realizing a relatively low current through the lamp when the lamp is ignited.
- the down-converter 1 As well as the alternator 2 are switching.
- the alternator 2 is switching in a high frequency mode, preferably with a frequency which is larger than 100 kHz, in order to generate an ignition voltage on capacitor 8.
- a lamp current When the lamp extinguishes a lamp current will flow, which will be controlled by the down-converter 1.
- the alternator 2 After the ignition mode the alternator 2 will decrease its switching frequency from the high frequency to a relatively low frequency, preferably below 1 kHz, and the lamp driver will go into a run-up mode.
- the alternator 2 is kept switching at a relatively high frequency after the ignition mode. This has the effect that the midpoint at commutation side is approximately half the rail voltage. Commutation of the lamp current can be realized by changing the duty cycle of the down-converter 1 in such a way that the voltage on capacitor 3 is below or above half the rail voltage. Thereby the current is commutating. This has the advantage that the switching behavior of the down-converter during run-up of the lamp is even further improved. Furthermore, the down-converter 1 will always be switching above the oscillation frequency of the alternator resonant circuit 8, 9 in this embodiment. Finally, no low times for switching devices are required in this embodiment.
- the high frequency switching of the commutation side must be ended depending on the end of the run-up mode. This instant can be detected by measuring the lamp voltage. When the lamp voltage reaches a specific level the run-up mode has ended and the lamp enters the normal operation mode. The lamp voltage can be easily measured by subtracting half of the rail voltage from the voltage on capacitor 3. Furthermore, the down- converter 1 side needs to be corrected by adjusting a reference current, I ref , which is applied at 12 during the run-up mode. This can be achieved by changing the duty cycle of the down- converter 1 to get the right lamp current for the new output voltage. The duty cycle may be changed by changing the output of a digital-to-analog converter (DAC).
- DAC digital-to-analog converter
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Circuit Arrangements For Discharge Lamps (AREA)
- Control Of Eletrric Generators (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05764020A EP1772043A1 (en) | 2004-07-21 | 2005-07-18 | A control unit for a lamp driver providing smooth transition between operation modes |
JP2007522104A JP2008507821A (en) | 2004-07-21 | 2005-07-18 | Control unit for a lamp driver providing a smooth transition between operating modes |
US11/572,226 US20080122386A1 (en) | 2004-07-21 | 2005-07-18 | Control Unit for a Lamp Driver Providing Smooth Transition Between Operation Modes |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP04103491 | 2004-07-21 | ||
EP04103491.9 | 2004-07-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006011113A1 true WO2006011113A1 (en) | 2006-02-02 |
Family
ID=34973193
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2005/052391 WO2006011113A1 (en) | 2004-07-21 | 2005-07-18 | A control unit for a lamp driver providing smooth transition between operation modes |
Country Status (7)
Country | Link |
---|---|
US (1) | US20080122386A1 (en) |
EP (1) | EP1772043A1 (en) |
JP (1) | JP2008507821A (en) |
KR (1) | KR20070044027A (en) |
CN (1) | CN101019470A (en) |
TW (1) | TW200610447A (en) |
WO (1) | WO2006011113A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010052630A1 (en) * | 2008-11-07 | 2010-05-14 | Koninklijke Philips Electronics N.V. | Lamp driver |
CN101242693B (en) * | 2007-02-08 | 2011-04-20 | 联创汽车电子有限公司 | Car lamp control method and control circuit |
JP4994520B1 (en) * | 2009-03-25 | 2012-08-08 | アメリカン ステリライザー カンパニー | Lighting control method having light output start-up function |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050259424A1 (en) | 2004-05-18 | 2005-11-24 | Zampini Thomas L Ii | Collimating and controlling light produced by light emitting diodes |
US7766511B2 (en) | 2006-04-24 | 2010-08-03 | Integrated Illumination Systems | LED light fixture |
US7729941B2 (en) | 2006-11-17 | 2010-06-01 | Integrated Illumination Systems, Inc. | Apparatus and method of using lighting systems to enhance brand recognition |
US8013538B2 (en) | 2007-01-26 | 2011-09-06 | Integrated Illumination Systems, Inc. | TRI-light |
US8742686B2 (en) | 2007-09-24 | 2014-06-03 | Integrated Illumination Systems, Inc. | Systems and methods for providing an OEM level networked lighting system |
US8255487B2 (en) | 2008-05-16 | 2012-08-28 | Integrated Illumination Systems, Inc. | Systems and methods for communicating in a lighting network |
US8585245B2 (en) | 2009-04-23 | 2013-11-19 | Integrated Illumination Systems, Inc. | Systems and methods for sealing a lighting fixture |
JP5035304B2 (en) * | 2009-06-18 | 2012-09-26 | 株式会社村田製作所 | Discharge lamp lighting device |
DE102009054377A1 (en) * | 2009-11-24 | 2011-05-26 | Osram Gesellschaft mit beschränkter Haftung | Circuit arrangement and method for operating a discharge lamp |
US9066381B2 (en) | 2011-03-16 | 2015-06-23 | Integrated Illumination Systems, Inc. | System and method for low level dimming |
US9967940B2 (en) | 2011-05-05 | 2018-05-08 | Integrated Illumination Systems, Inc. | Systems and methods for active thermal management |
US8894437B2 (en) | 2012-07-19 | 2014-11-25 | Integrated Illumination Systems, Inc. | Systems and methods for connector enabling vertical removal |
US9379578B2 (en) | 2012-11-19 | 2016-06-28 | Integrated Illumination Systems, Inc. | Systems and methods for multi-state power management |
US9420665B2 (en) | 2012-12-28 | 2016-08-16 | Integration Illumination Systems, Inc. | Systems and methods for continuous adjustment of reference signal to control chip |
US9485814B2 (en) | 2013-01-04 | 2016-11-01 | Integrated Illumination Systems, Inc. | Systems and methods for a hysteresis based driver using a LED as a voltage reference |
US10060599B2 (en) | 2015-05-29 | 2018-08-28 | Integrated Illumination Systems, Inc. | Systems, methods and apparatus for programmable light fixtures |
US10030844B2 (en) | 2015-05-29 | 2018-07-24 | Integrated Illumination Systems, Inc. | Systems, methods and apparatus for illumination using asymmetrical optics |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6552498B1 (en) * | 2001-09-28 | 2003-04-22 | Osram Sylvania Inc. | Method and circuit for controlling current in a high pressure discharge lamp |
US20030127993A1 (en) * | 2002-01-10 | 2003-07-10 | Erhardt Robert A. | High frequency electronic ballast |
US20030160576A1 (en) | 2001-06-08 | 2003-08-28 | Toshio Suzuki | Discharge lamp igniter device and projector device |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4305020A (en) * | 1978-09-20 | 1981-12-08 | Westinghouse Electric Corp. | Fail-safe switch which renders HID lamp inoperative upon breakage of outer envelope |
JP3500815B2 (en) * | 1995-06-29 | 2004-02-23 | 株式会社デンソー | Discharge lamp lighting device |
JP3829507B2 (en) * | 1997-12-12 | 2006-10-04 | 松下電工株式会社 | Electronic ballast and HID lamp control circuit |
US5973943A (en) * | 1998-01-05 | 1999-10-26 | International Rectifier Corporation | Non zero-voltage switching protection circuit |
US6495971B1 (en) * | 1998-06-13 | 2002-12-17 | Hatch Transformers, Inc. | High intensity discharge lamp ballast |
US6392577B1 (en) * | 1999-10-05 | 2002-05-21 | Stmicroelectronics, Inc. | System and method for regulating an alternator |
JP2003203792A (en) * | 2002-01-07 | 2003-07-18 | Sony Corp | Lamp driving device and projection type display device |
JP2003217888A (en) * | 2002-01-17 | 2003-07-31 | Matsushita Electric Works Ltd | Discharge lamp lighting device |
JP2004166445A (en) * | 2002-11-15 | 2004-06-10 | Rohm Co Ltd | Dc-ac converter and its controller ic |
-
2005
- 2005-07-18 CN CNA2005800245351A patent/CN101019470A/en active Pending
- 2005-07-18 WO PCT/IB2005/052391 patent/WO2006011113A1/en active Application Filing
- 2005-07-18 EP EP05764020A patent/EP1772043A1/en not_active Withdrawn
- 2005-07-18 KR KR1020077004022A patent/KR20070044027A/en not_active Application Discontinuation
- 2005-07-18 JP JP2007522104A patent/JP2008507821A/en active Pending
- 2005-07-18 US US11/572,226 patent/US20080122386A1/en not_active Abandoned
- 2005-07-19 TW TW094124321A patent/TW200610447A/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030160576A1 (en) | 2001-06-08 | 2003-08-28 | Toshio Suzuki | Discharge lamp igniter device and projector device |
US6552498B1 (en) * | 2001-09-28 | 2003-04-22 | Osram Sylvania Inc. | Method and circuit for controlling current in a high pressure discharge lamp |
US20030127993A1 (en) * | 2002-01-10 | 2003-07-10 | Erhardt Robert A. | High frequency electronic ballast |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101242693B (en) * | 2007-02-08 | 2011-04-20 | 联创汽车电子有限公司 | Car lamp control method and control circuit |
WO2010052630A1 (en) * | 2008-11-07 | 2010-05-14 | Koninklijke Philips Electronics N.V. | Lamp driver |
JP4994520B1 (en) * | 2009-03-25 | 2012-08-08 | アメリカン ステリライザー カンパニー | Lighting control method having light output start-up function |
Also Published As
Publication number | Publication date |
---|---|
TW200610447A (en) | 2006-03-16 |
CN101019470A (en) | 2007-08-15 |
JP2008507821A (en) | 2008-03-13 |
US20080122386A1 (en) | 2008-05-29 |
KR20070044027A (en) | 2007-04-26 |
EP1772043A1 (en) | 2007-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2006011113A1 (en) | A control unit for a lamp driver providing smooth transition between operation modes | |
US6975077B2 (en) | High intensity discharge lamp ballast apparatus | |
JP4720828B2 (en) | Dimmable electronic ballast and lighting fixture for electrodeless discharge lamp | |
JP4171285B2 (en) | High pressure discharge lamp lighting method and lighting device | |
JP4853638B2 (en) | High pressure discharge lamp lighting device | |
JP3844046B2 (en) | High pressure discharge lamp lighting device | |
JPH10511220A (en) | Circuit device | |
JP2005235445A (en) | Light source device | |
JP4324974B2 (en) | High pressure discharge lamp lighting device | |
KR100429047B1 (en) | Circuit arrangement | |
JP2001210485A (en) | Discharge lamp lifhting device | |
JPH11102790A (en) | Discharge lamp lighting device | |
JP3201981B2 (en) | Discharge lamp lighting device and method | |
EP1472912B1 (en) | Device and method for controlling a gas discharge lamp, and lighting system with gas discharge lamp and control device | |
JP4273834B2 (en) | AC lighting type ultra high pressure mercury lamp lighting device and lighting method | |
JP3925307B2 (en) | High pressure discharge lamp lighting device and lighting device | |
JP2010080137A (en) | High pressure discharge lamp lighting device and luminaire | |
WO2005099317A1 (en) | Discharge lamp operating device | |
US8917036B1 (en) | Method and apparatus for dimming high intensity discharge lamps | |
US7154231B2 (en) | Gas discharge lamp dimming control method | |
WO2010052630A1 (en) | Lamp driver | |
JP2002352990A (en) | Lighting equipment for electric discharger lamp | |
JPH09167693A (en) | Discharge lamp lighting device | |
KR200320775Y1 (en) | Instantaneous electornic ballast stabilizer of Metal Halide Discharge Lamp having takeover current circuit | |
JP2010055915A (en) | High pressure discharge lamp lighting device, light source device, and starting method of high pressure discharge lamp |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005764020 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2007522104 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 11572226 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200580024535.1 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020077004022 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2005764020 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 11572226 Country of ref document: US |