WO2006006501A1 - 燃料電池システム及び電極用組成物 - Google Patents

燃料電池システム及び電極用組成物 Download PDF

Info

Publication number
WO2006006501A1
WO2006006501A1 PCT/JP2005/012593 JP2005012593W WO2006006501A1 WO 2006006501 A1 WO2006006501 A1 WO 2006006501A1 JP 2005012593 W JP2005012593 W JP 2005012593W WO 2006006501 A1 WO2006006501 A1 WO 2006006501A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
electrode
fuel cell
general formula
oxygen
Prior art date
Application number
PCT/JP2005/012593
Other languages
English (en)
French (fr)
Inventor
Masashi Ito
Takao Maruyama
Original Assignee
Nissan Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005157449A external-priority patent/JP4910310B2/ja
Priority claimed from JP2005172229A external-priority patent/JP4830357B2/ja
Application filed by Nissan Motor Co., Ltd. filed Critical Nissan Motor Co., Ltd.
Priority to EP05758348A priority Critical patent/EP1788650A1/en
Priority to US11/571,865 priority patent/US7799485B2/en
Publication of WO2006006501A1 publication Critical patent/WO2006006501A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/70Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by fuel cells
    • B60L50/72Constructional details of fuel cells specially adapted for electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a fuel cell system and an electrode composition, and more specifically, a fuel cell system, an electrode composition, an electrode, an air electrode composition, an air electrode for a fuel cell, a fuel cell, and a fuel.
  • the present invention relates to a battery vehicle.
  • a fuel cell is one that converts the chemical energy of the fuel directly into electrical energy and extracts it by electrochemically oxidizing the fuel such as hydrogen, methanol, or other hydrocarbons in the cell. For this reason, fuel cells generate NO, SO, etc. due to fuel combustion in internal combustion engines such as thermal power generation and automobiles.
  • PEFC polymer electrolyte fuel cells
  • a typical example is a two-electron reduction reaction of oxygen, and active oxygen such as hydrogen peroxide shown in formula (A2) is generated by the two-electron reduction reaction of oxygen (new energy, industrial technology R & D Agency, consignment) Previous graduate School of Engineering, Kyoto University, “2001 Annual Report, Solid Height Research and development of molecular fuel cells, research on degradation factors of polymer electrolyte fuel cells, basic research on degradation factors (1) Electrode catalyst Z electrolyte interface degradation factors ", March 2002, P.27).
  • Platinum used as a catalyst catalyzes the electrochemical reaction of the fuel cell, that is, the four-electron reduction reaction from oxygen to water, near the normal temperature where the electrochemical charge voltage is lower than other metals. It is the only metal that can mediate. However, exposure to high potentials and high temperatures during the start / stop operation may increase the platinum particle size and decrease the catalytic activity.
  • naphthoion is generally a perfluorosulfonic acid cation exchange membrane.
  • Perfluorosulfonic acid polymer has been developed as a membrane resistant to active oxygen generated at the air electrode of a fuel cell, that is, the positive electrode.
  • the cause is the generation of hydrogen peroxide and hydrogen by the two-electron reduction of oxygen at the air electrode.
  • Peroxyhydrogen is weak but is stable and has a long life.
  • Hydrogen peroxide is decomposed according to the reaction formulas (A3) and (A4), and radicals such as hydroxy radicals ( ⁇ OH) and hydroperoxy radicals ( ⁇ OOH) are generated.
  • radicals especially hydroxy radicals have strong and oxidizing power, and even perfluorosulfonated polymers used as electrolyte membranes may be decomposed by long-term use.
  • the hydrogen peroxide may change into hydroxy radicals in the electrolyte membrane due to the Harbor Weiss reaction, which may cause deterioration of the electrolyte membrane.
  • a catalyst using a cobalt salen compound Japanese Patent Laid-Open No. 2000-251906
  • a catalyst using tungsten carbide Japanese Patent Laid-Open No. 2003-117 398
  • a method for inhibiting acid oxidation of the electrolyte membrane due to hydroxy radicals for example, there is a method in which a compound having a phenolic hydroxyl group is added to the electrolyte membrane, and the peroxide radicals are trapped to be inactive. It has been proposed (Japanese Patent Laid-Open No. 2000-223135).
  • the electrolyte membrane is changed from a cation exchange membrane such as a naphthion (registered trademark) membrane to a cation exchange membrane.
  • a cation exchange membrane such as a naphthion (registered trademark) membrane
  • tungsten carbide has not yet reached a level that exceeds the performance of platinum, and it is difficult to use it as a four-electron reduction reaction catalyst instead of platinum.
  • oxygen and platinum as an electrode catalyst are present in the vicinity of the three-phase interface of the air electrode where there is a high possibility of generating hydroxy radicals. If the electrolyte membrane only contains a compound that prevents oxidation, the compound may be oxidized and lost regardless of the presence or absence of hydroxy radicals, which is inefficient. In addition, the compound may become unstable radicals or peroxides by reaction with hydroxy radicals and become a new initiator for oxidation reaction, which may cause electrolyte membrane degradation.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a fuel cell system having excellent durability and an electrode including a catalyst that replaces platinum.
  • a fuel cell system includes a fuel cell including an electrode and an antioxidant that is in contact with or in contact with the electrode and inactivates active oxygen.
  • the electrode composition according to the second invention acts as a reducing agent at a potential lower than the oxidation-reduction potential of oxygen and serves as an oxidizing agent at a potential higher than the acid-reduction potential of hydrogen and hydrogen ions. It is characterized by containing a compound having a redox cycle that works as an oxygen reduction catalyst.
  • the electrode according to the third invention is characterized by having the electrode composition according to the second invention.
  • composition for an air electrode according to the fourth invention is characterized by having the composition for an electrode according to the second invention.
  • a fuel cell air electrode according to a fifth aspect of the invention has the air electrode composition according to the fourth aspect of the invention.
  • a fuel cell according to a sixth aspect of the invention includes the electrode according to the third aspect of the invention.
  • a fuel cell vehicle according to a seventh invention is characterized in that the fuel cell system according to the first invention is mounted.
  • FIG. 1 is a schematic explanatory diagram illustrating an embodiment of a fuel cell system according to the present invention.
  • FIG. 2 is an exploded perspective view showing a single cell of the fuel cell constituting the fuel cell system according to the present invention.
  • FIG. 3 is an explanatory diagram for explaining the movement of a substance in a membrane electrode assembly constituting a single cell.
  • FIG. 4 is a schematic diagram showing a three-phase interface in the air electrode.
  • FIG. 5 is an explanatory view showing a mechanism for inactivating active oxygen by NHPI.
  • FIG. 6 is an explanatory view showing a mechanism for inactivating active oxygen by NHGI.
  • FIG. 7 is a schematic diagram showing an example of a compound.
  • FIG. 8 is a schematic diagram showing an example of a compound.
  • FIG. 9 is a schematic diagram showing an example of a compound.
  • FIG. 10 is a schematic diagram showing an example of a compound.
  • FIG. 11 is an explanatory diagram showing a mechanism for deactivating active oxygen by TEMPO.
  • FIG. 12 is an explanatory diagram showing a redox potential when oxygen, active oxygen, hydrogen or the like acts as an oxidizing agent or a reducing agent.
  • FIG. 13 is a schematic diagram showing the oxygen reduction mechanism of NHPI in the fuel cell positive electrode.
  • FIG. 14 is a cyclic voltammogram in the NHPI electrode reaction.
  • FIG. 15 is a schematic diagram showing an NHGI oxygen reduction mechanism in a fuel cell positive electrode.
  • FIG. 16 is a schematic diagram showing the oxygen reduction mechanism of TEMPO in the fuel cell positive electrode.
  • FIG. 17 is a cyclic voltammogram in the electrode reaction of TEMPO.
  • FIG. 18 is a graph showing an initial value of a current-voltage curve of a start-stop repeated endurance test of a single fuel cell produced in Example 1 and a current-voltage curve after endurance.
  • FIG. 19 is a schematic diagram showing initial values of current-potential curves and judgment criteria for power generation state superiority and inferiority when a fuel cell is manufactured using the single cells obtained in Example 13 and Comparative Example 3. is there
  • FIG. 20 is a graph showing the results of NHPI and TEMPO stability tests.
  • FIG. 21 is a reaction formula showing that (a) NHPI is hydrolyzed. (b) It is a figure which shows that PROXYL does not hydrolyze. (C) It is a figure which shows that TEMPO does not hydrolyze.
  • FIG. 22 is a graph showing the results of a single cell accelerated durability test.
  • a fuel cell system includes a fuel cell having an electrode and an antioxidant that is in contact with or in contact with the electrode and inactivates active oxygen.
  • a solid polymer electrolyte type fuel cell system using a solid polymer electrolyte membrane as an electrolyte membrane is given.
  • FIG. 1 is a schematic explanatory view illustrating an embodiment of a fuel cell system according to the present invention. As shown in FIG. 1, the fuel cell system according to the present embodiment is disposed outside the fuel cell 1 and the fuel cell 1, and the fuel cell 1 has an antioxidant that deactivates active oxygen.
  • An antioxidant supply system 11 for supplying an agent to the fuel cell 1 and contacting the electrode of the fuel cell 1 is generally configured.
  • the fuel cell 1 constituting the fuel cell system is configured by laminating a plurality of single cells 2 serving as a basic unit for generating power by an electrochemical reaction.
  • the fuel cell stack includes a fuel cell stack (not shown) configured by disposing end flanges (not shown) at both ends after stacking and fastening the outer periphery with fastening bolts (not shown).
  • the single cell 2 includes a solid polymer electrolyte membrane 4, an air electrode 5 and a fuel electrode 6 sandwiching the solid polymer electrolyte membrane 4.
  • a membrane electrode assembly 3 provided with an air electrode side separator 7 which is disposed on the air electrode 5 side of the membrane electrode assembly 3 and defines an air flow path 8 between the membrane electrode assembly 3 and the membrane electrode
  • a fuel electrode side separator 9 that is disposed on the surface of the assembly 3 on the fuel electrode 6 side and that defines the fuel gas channel 10 between the assembly 3 and the membrane electrode assembly 3 is provided.
  • a perfluorocarbon polymer membrane having a sulfonic acid group (trade name; Nafion (registered trademark) 112, DuPont, USA) can be used.
  • a catalyst layer of platinum catalyst-carrying carbon is bonded to one surface of the solid polymer electrolyte membrane 4 as an air electrode 5 and the other surface as a fuel electrode 6 to form a membrane electrode assembly 3.
  • the air electrode side separator 7 and the fuel electrode side separator 9 are formed by forming carbon or metal into a plate shape, and having a gas channel and a cooling water channel formed on the surface thereof.
  • the air flow path 8 is formed between the air electrode 5 and the air electrode side separator 7, and supplies air as a reaction gas to the air electrode 5.
  • the fuel gas passage 10 is formed between the fuel electrode 6 and the fuel electrode side separator 9, and supplies hydrogen as a reaction gas to the fuel electrode 6.
  • the fuel gas channel 10 functions as a water supply passage by humidifying the fuel gas, and the air channel 8 also functions as a generated water removal passage.
  • a gas diffusion layer formed of, for example, carbon paper or carbon non-woven fabric is appropriately disposed between the separators 7 and 9 and the electrodes 5 and 6.
  • the reaction at the air electrode 5 is the generation of water by the four-electron reduction of molecular oxygen (O 2).
  • Active oxygen such as syradical ( ⁇ ⁇ ) is generated.
  • the generation mechanism of each active oxygen is assumed to be a complex reaction via multiple elementary reaction processes shown in equations ( ⁇ 3) to ( ⁇ 7), respectively.
  • is expressed by a normal oxidation reduction potential (Normal Hydrogen Electrode; NHE).
  • hydroxy radicals which have a high redox potential of 2.85 V and a strong acidity. Hydroxyl radicals are the most reactive of active oxygen and have a very short lifetime of one millionth of a second. In addition, acid squid is strong. For this reason, hydroxyl radicals react with other molecules unless they are reduced rapidly. It is presumed that this hydroxyl radical is the cause of most of the degradation of acid and acid which has become a problem in fuel cells. This hydroxy radical continues to be generated via the formulas (B3) to (B7) while the fuel cell is generating electricity.
  • hydroperoxy radicals and hydrogen peroxides are weaker in acidity than hydroxy radicals, but they may pass through hydroxyl radicals in the process of being reduced to water.
  • the generation of hydroxy radicals is half as long as power is generated by the solid polymer electrolyte fuel cell. It will last forever. For this reason, unless the compound that inactivates the hydroxy radical is continuously supplied to the solid polymer electrolyte fuel cell, the solid polymer electrolyte membrane may be deteriorated by the hydroxy radical that continues to be generated.
  • the antioxidant supply system 11 provided outside the fuel cell 1 supplies the antioxidant to the polymer electrolyte fuel cell 1, so that the fuel cell 1 continues to generate power.
  • the antioxidant should be continuously supplied as an antioxidant solution, as much as possible at the air electrode or the fuel. Is more effective.
  • the fuel cell 1 is preferably supplied from the fuel electrode 9 side.
  • an antioxidant supply system 11 is connected to an antioxidant solution tank 12 containing an antioxidant solution and an antioxidant.
  • a liquid feed pump 13 for supplying an oxidant solution to the fuel electrode 6 side of the fuel cell 1 an antioxidant solution conduit 14 connecting the antioxidant solution tank 12 and the liquid feed pump 13, a liquid feed pump 13,
  • An antioxidant supply pipe 15 is connected to the fuel gas flow path 10.
  • the air flow path 8 and the fuel gas flow path 10 for supplying air or hydrogen as a reaction gas.
  • Each reactant gas is humidified by a bubbler (not shown) as shown in the exploded view of the single cell of the fuel cell constituting the fuel cell system shown in FIG. Pass through.
  • the antioxidant solution is supplied from the antioxidant solution tank 12 to the fuel gas channel 10 through the antioxidant solution line 14 and the solution supply line 15 by the driving force of the liquid feed pump 13.
  • the anti-oxidant solution supplied to the fuel gas flow path 10 is solid from the fuel electrode 6 side as shown in the explanatory diagram for explaining the movement of substances in the membrane electrode assembly constituting the single cell shown in FIG. It diffuses into the molecular electrolyte membrane 4 and moves to the air electrode 5 side. Then, the antioxidant is uniformly dispersed in the air electrode 5 according to the concentration gradient. [0035] As described above, it is preferable to supply the antioxidant as the antioxidant solution from the fuel electrode 6 side. The reason is that there is a high possibility that active oxygen such as hydroxy radicals is generated. The vicinity of the three-phase interface. As shown in the schematic diagram showing the three-phase interface in the air electrode shown in FIG.
  • the vicinity of the three-phase interface of the air electrode is an environment where oxygen in the air and platinum as an electrode catalyst exist and are very easily oxidized. For this reason, when an antioxidant is also introduced at the air pressure, the antioxidant itself may be oxidized and disappeared at the three-phase interface of the air electrode regardless of the presence or absence of hydroxy radicals. The efficiency may decrease.
  • the air flow path 8 of the air electrode side separator 7 also functions as a removal path for the generated water. For this reason, antioxidants that have been supplied excessively and become unnecessary, or antioxidants that have become in an oxidant form by deactivating active oxygen, are oxidized by a catalyst on the three-phase interface to form CO, HO, N, etc. Later, it is discharged from the discharge pipe 16 shown in Fig.
  • the antioxidant solution When the antioxidant solution is prepared, it may be slightly soluble in order to uniformly disperse it in the air electrode, but it is important that it is dissolved in a solvent. In the case of insolubility, hydrogen radicals cannot enter and exit, and the effect of deactivating active oxygen is not sufficiently exhibited. For this reason, it is necessary to select a solvent in which the antioxidant is dissolved. If necessary, an organic solvent alone or a mixed solvent of an organic solvent and water is used. And when using an organic solvent, it is necessary to confirm beforehand that it does not affect a power generation performance. For this reason, it is preferable from the viewpoint of power generation performance to use an aqueous solution if the antioxidant can be dissolved.
  • the antioxidant is preferably a hydrocarbon compound composed of four elements of carbon, oxygen, nitrogen and hydrogen. Other elements than carbon, oxygen, nitrogen and hydrogen can poison the platinum in the electrode and hinder the power generation performance of the fuel cell. In the case of base metal elements, there is a possibility of promoting the generation of hydroxy radicals. Furthermore, considering the case where the antioxidant is exhausted by oxidizing it at the air electrode, it is a hydrocarbon compound that is composed of only four elements of carbon, oxygen, nitrogen and hydrogen and decomposes into CO, HO and N. is there It is preferable. Since the acid-reduction potential of hydroxy radicals is very high, most of the hydrocarbon compounds that are composed of the above four element forces are considered to act thermodynamically as reducing agents for hydroxy radicals.
  • Each compound is considered to have a difference in reducing ability in terms of kinetics.
  • the inactivation reaction of the antioxidant is faster in terms of kinetics.
  • the stability of the acid compound obtained by oxidizing the antioxidant that is, the compound obtained by oxidation with active oxygen is also important. This is because if the oxidant of the antioxidant is unstable, the oxidized substance becomes an initiator for a new side reaction and may promote deterioration of the electrolyte membrane.
  • a relatively kinetically fast acid complex is a chemically stable compound, for example, a secondary alcohol compound having a hydroxyl group such as isopropanol, 2-butanol or cyclohexanol, phenol.
  • Aromatic compounds having hydroxyl groups such as phenol, cresol, picric acid, naphthol, hydroquinone, ether compounds such as dioxane, tetrahydrofuran, benzylmethyl ether, propylamine, jetylamine, acetamide, alin, N-hydroxy And nitrogen-containing compounds such as compounds.
  • the compound has stability, durability, and heat resistance.
  • the stability and durability of the compound is of utmost importance in the sense that the active oxygen will continue to be inactivated and the fuel cell will be used for a long time.
  • the hydrolyzate of the oxidized oxidant is also chemically stable.
  • the stability of the antioxidant it is possible to obtain an effect of deactivating active oxygen if it is stable while the antioxidant is supplied to the fuel electrode and discharged from the air electrode.
  • the antioxidant hydrolyzate is stable without generating radicals, considering that it is discharged simultaneously with the generated water.
  • the antioxidant has heat resistance that is stable up to a temperature of about 120 ° C. There is a need.
  • the compound that inactivates active oxygen is preferably a compound having an oxidation potential of 2.85 V or less that is at least rapidly oxidized by a hydroxy radical. More preferably, the oxidized oxidant is not simply oxidized but is returned to its original form by reduction. Those having redox reversibility with a redox cycle are preferred.
  • the redox potential is preferably greater than 0.68V (NHE) and less than 1.77V (NHE). 0. 68V (NHE) is a potential at which hydrogen peroxide is acting as a reducing agent, and when this potential is exceeded, the oxidant of the compound oxidizes hydrogen peroxide and the compound returns to its original form.
  • NHE 1.77V
  • the redox potential is 1. OOV or less.
  • the potential of the fluorine-based electrolyte membrane to receive acid is 2.5 V or more. 1. With 77V oxidizing power, the electrolyte membrane is not oxidized and there is no problem.
  • the hydrocarbon electrolyte membrane may be oxidized if the acid-oxidation reduction potential of the compound to be added is higher than 1. OOV. As a substitute for a typical organic compound, benzene is oxidized at 2.
  • toluene is 1.93 V
  • xylene is 1.58 V
  • RHE Real Hydrogen Electrode
  • the compound When the compound exhibits reversible acid-oxidizing ability, it is regenerated using, for example, hydrogen peroxide as a reducing agent to form a reductant, and again has a function as an antioxidant. Is this perspective Furthermore, when the compound supplied as the antioxidant has a reversible redox ability, the supply amount of the antioxidant can be reduced. In addition, if an antioxidant has a reversible oxidation-reduction capability, a method of inactivating hydrogen peroxide without passing through hydroxy radicals by aggressively electrooxidizing, that is, indirect electrolysis of hydrogen peroxide. Therefore, there is a possibility that the active oxygen can be inactivated more effectively.
  • the antioxidant is preferably a compound represented by the following general formula (I). Furthermore, R1 and R2 are bonded to each other to form a double bond, an aromatic ring, or a non-aromatic It is preferable to form a sex ring.
  • R1 and R2 represent the same or different arbitrary substituents, and X represents an oxygen atom or a hydroxyl group.
  • this antioxidant is an imido compound represented by the following general formula (II).
  • the ring Y1 represents a V ring or one kind of ring among aromatic or non-aromatic 5- to 12-membered rings having a double bond.
  • N-oxyl radicals (> ⁇ ⁇ ) generated by hydrogen supply draw hydrogen radicals from hydrogen peroxide and recover to the original hydroxyimide (> ⁇ ) form.
  • Fig. 5 shows ⁇ -hydroxyphthalimide ( ⁇ ) as a representative example of a compound having a hydroxyimide group, and phthalimide ⁇ -oxyl (PINO) as an oxidant of ⁇ ⁇ ⁇ ⁇ radicalized with active oxygen. Describes the mechanism for deactivating certain hydroxy radicals and hydrogen peroxides.
  • NHPI acts as a reducing agent for hydroxy radicals to produce PINO and water
  • PINO reacts with hydrogen peroxide to return to NHPI.
  • PINO acts as an oxidizing agent for hydrogen peroxide and inactivates hydrogen peroxide to oxygen.
  • the acid reduction cycle between NHPI and PINO can be used as many times as an antioxidant, it is possible to deactivate active oxygen over a long period of time, It is possible to realize a fuel cell system that maintains durability. Furthermore, due to the cycle of acid reduction, the antioxidant does not become an initiator that causes a new side reaction after the hydroxy radical is reduced.
  • the compound is preferably an imide compound represented by the general formula (III).
  • R3 and R4 are the same or different and each represents a hydrogen atom, a halogen atom, an alkyl group, an aryl group, a cycloalkyl group, a hydroxyl group, an alkoxyl group, a carboxyl group, an alkoxycarbo group or an acyl group, Represents an oxygen atom or a hydroxyl group, and n represents an integer of 1 to 3.
  • the halogen atom is examples include iodine, bromine, chlorine and fluorine.
  • the alkyl group include straight chain having about 1 to 10 carbon atoms such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec butyl, t-butyl, pentyl, hexyl, heptyl, octyl, and decyl groups. And a branched alkyl group.
  • Preferred is a lower alkyl group having about 1 to 6 carbon atoms, more preferably about 1 to 4 carbon atoms.
  • Examples of the aryl group include a phenyl group and a naphthyl group.
  • Examples of the cycloalkyl group include a cyclopentyl, cyclohexyl, and cyclooctyl groups.
  • alkoxy group for example, methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, t-butoxy, pentyloxy, hexyloxy group, etc., about 1 to 10 carbon atoms, preferably about 1 to 6 carbon atoms, more preferably Examples include lower alkoxy groups having about 1 to 4 carbon atoms.
  • alkoxycarbonyl group examples include, for example, methoxycarbol, ethoxycarbol, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl, tbutoxycarbonyl, pentyloxycarbonyl, hexyloxycarbo- Examples thereof include alkoxycarbonyl groups having about 1 to 10 carbon atoms in the alkoxy moiety such as a ruthenium group. Preferred is a lower alkoxycarbo group having an alkoxy moiety having about 1 to 6 carbon atoms, more preferably about 1 to 4 carbon atoms.
  • acyl group examples include an acyl group having about 1 to 6 carbon atoms such as formyl, acetyl, propiol, butyryl, isobutyryl, valeryl, isovaleryl, and a bivaloyl group.
  • R3 and R4 may be the same or different.
  • R3 and R4 may be bonded to each other to form a double bond, an aromatic ring, or a non-aromatic ring.
  • the aromatic ring or the non-aromatic ring is preferably about 6 to 10 membered ring, more preferably forming any one of 5 to 12 membered rings.
  • Examples of such rings include non-aromatic hydrocarbon rings such as cycloalkane rings such as cyclohexane rings, cycloalkene rings such as cyclohexene rings, and 5-norbornene rings.
  • Non-aromatic bridge rings such as bridging hydrocarbon rings such as benzene rings and naphthalene rings.
  • these rings may have a substituent.
  • R3 and R4 are more preferable compounds from the viewpoints of stability, durability, and solubility in the electrolyte membrane. Those bonded to each other to form an aromatic or non-aromatic 5- to 12-membered ring, R3 and R4 bonded to each other, having a substituent, cycloalkane ring, or having a substituent It is possible to use a cycloalkene ring, one having a substituent, a bridged hydrocarbon ring, or one having a substituent.
  • the compound represented by the general formula (III) is a compound represented by any of the formulas (IVa) to (IVf) particularly from the viewpoint of stability, durability, and solubility in the electrolyte membrane. It is better to be.
  • R3 to R6 are the same or different and are each a hydrogen atom, a halogen atom, an alkyl group, a hydroxyl group, an alkoxyl group, a carboxyl group, an alkoxycarbonyl group, an acyl group, a nitro group, a cyano group or an amino group.
  • the alkyl group includes an alkyl group similar to the alkyl group described above, particularly an alkyl group having about 1 to 6 carbon atoms, and the alkoxy group includes the same alkoxy group as in the previous method. Among them, a lower alkoxy group having about 1 to 4 carbon atoms is mentioned. Examples thereof include lower alkoxycarbonyl groups having about 1 to 4 carbon atoms.
  • examples of the acyl group include acyl groups having about 1 to 6 carbon atoms, among the same acyl groups as described above.
  • examples of the halogen atom include fluorine, chlorine and bromine atoms.
  • the substituents R3 to R6 are usually a hydrogen atom, a lower alkyl group having about 1 to 4 carbon atoms, a carboxyl group, a nitro group, or a halogen atom in many cases.
  • imido compounds are N-hydroxysuccinimide, N-hydroxymaleimide, N-hydroxyhexane from the viewpoints of availability of compounds, ease of synthesis, and cost.
  • It can be prepared by ring-opening the acid anhydride group and then ring-closing and imidizing.
  • the compound represented by these may be used.
  • X represents an oxygen atom or a hydroxyl group.
  • R1 to R6 are the same or different, and each represents a hydrogen atom, a halogen atom, an alkyl group, an aryl group, a cycloalkyl group, a hydroxy group.
  • a silyl group, an alkoxy group, a carboxyl group, a substituted oxycarbonyl group, an acyl group or an acyloxy group is represented.
  • at least two of R1 to R6 may be bonded to each other to form a double bond, or an aromatic or non-aromatic ring. At least one of the rings may have an N-substituted cyclic imide group!
  • both the 5-membered and 6-membered rings are hydrolyzed as shown in the formula (B13) and the following formula (B14), but the 6-membered ring is more hydrolyzed than the 5-membered ring. Slow hydrolysis resistance is high.
  • the compound having an N-substituted cyclic imide skeleton is a 6-membered cyclic imide, it can be used as an acid reduction catalyst many times. It will be possible.
  • the alkyl group includes, for example, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, t-butyl, pentyl, hexyl, heptyl, octyl, decyl, and the like.
  • Examples of the aryl group include a phenyl group and a naphthyl group, and examples of the cycloalkyl group include a cyclopentyl group, a cyclohexyl group, a cyclooctyl group, and the like.
  • Examples of the alkoxy group include methoxy, ethoxy, propoxy, isopropoxy, butoxy.
  • a lower alkoxy group having about 1 to 10 carbon atoms, preferably about 1 to 6 carbon atoms, more preferably about 1 to 4 carbon atoms, such as isobutoxy, t-butoxy, pentyloxy and hexyloxy groups.
  • alkoxycarbonyl group examples include, for example, methoxycarbol, ethoxycarbol, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl, t-butoxycarbonyl, pentyloxycarbonyl, hexyloxycarbo- Examples thereof include alkoxycarbonyl groups having about 1 to 10 carbon atoms in the alkoxy moiety such as a ruthenium group. Preferred is a lower alkoxycarbo group having an alkoxy moiety having about 1 to 6 carbon atoms, more preferably about 1 to 4 carbon atoms.
  • acyl group examples include an acyl group having about 1 to 6 carbon atoms such as formyl, acetyl, propiol, butyryl, isobutyryl, valeryl, isovaleryl, and a bivaloyl group.
  • the aromatic ring or the non-aromatic ring is preferably a 6 to 10 membered ring, more preferably a ring of any one of 5 to 12 membered rings. May be a heterocycle or a fused heterocycle.
  • Examples of such a ring include a non-aromatic hydrocarbon ring such as a cycloalkane ring represented by a cyclohexane ring, a cycloalkene ring such as a cyclohexene ring, and a bridging force represented by a 5-norbornene ring.
  • Non-aromatic bridged rings such as burned hydrocarbon rings, aromatic rings such as benzene rings and naphthalene rings. These rings may have a substituent.
  • the compound represented by the general formula (V) is preferably a compound represented by the general formula (Via) or (VIb) from the viewpoints of stability and durability of the compound. .
  • R7 to R12 are the same or different and each represents a hydrogen atom, an alkyl group, a hydroxyl group, an alkoxyl group, a carboxyl group, an alkoxycarbonyl group, an acyl group, a nitro group, a cyan group or an amino group. .
  • Decalin tetracarboxylic imide and ⁇ , ⁇ ', ⁇ '—trihydroxyisocyanuric acid power is preferably a group power of at least one imide compound selected.
  • the 6-membered cyclic imide is subjected to a conventional imidization reaction, for example, by reacting a corresponding 6-membered acid anhydride with hydroxylamine ⁇ ⁇ to open the acid anhydride group, and then closing the ring.
  • This 6-membered cyclic imide like the 5-membered cyclic imide, coexists in the electrolyte membrane, whereby the elementary reactions represented by the formulas (B15) and (B16) proceed. Only when hydroxy radicals or peroxyhydrogen enters the electrolyte membrane, the 6-membered imide ring supplies hydrogen radicals, efficiently reducing peroxyhydrogen to oxidize the electrolyte membrane. Suppress.
  • the oxyl radical (> ⁇ ⁇ ) generated by the supply of hydrogen is extracted from the original hydroxyimide by hydrogen or hydrogen peroxide by the basic reaction represented by the formulas ( ⁇ 17) to ( ⁇ 19). Restores to the shape of (> ⁇ ).
  • Figure 6 shows ⁇ -hydroxytaltalic acid imide (NHGI) as a representative example of a compound having a hydroxyimide group, and glutamic acid ⁇ -oxyl (GINO) as an oxidized form of NHGI radicalized by NHGI.
  • NHGI ⁇ -hydroxytaltalic acid imide
  • GINO glutamic acid ⁇ -oxyl
  • It represents a mechanism that eliminates hydroxyl radicals and hydrogen peroxide over a long period by cycling between NHGI's hydroxyimide group and GINO's N-oxyl radical. That is, NHGI acts as a reducing agent for hydroxy radicals or hydrogen peroxide, and reduces hydroxy radicals or hydrogen peroxide to water.
  • GINO acts as an oxidizing agent for hydrogen peroxide and oxidizes hydrogen peroxide to oxygen.
  • the oxidation-reduction cycle starts between NHGI and GINO, and at the same time, the peracid, oxygen and hydroxy radicals disappear.
  • the 6-membered ring is slower to hydrolyze than the 5-membered ring, and the hydrolysis resistance is higher. Therefore, the compound having the N-substituted cyclic imide skeleton is a 6-membered cyclic skeleton.
  • the amount of catalyst used can be further reduced.
  • Compound Power Represented by General Formula (I) A compound represented by general formula (VII) may be used.
  • R13 and R14 are an alkyl group or an alkyl group partially substituted with an arbitrary group, and R13 and R14 may be linear, cyclic, or branched. R13 and R14 may be bonded to each other to form a ring or may contain oxygen and nitrogen atoms.
  • examples of the substituents R13 and R14 include methyl, ethyl, propyl, iso Examples thereof include linear or branched alkyl groups having about 1 to 10 carbon atoms such as propyl, butyl, isobutyl, sec-butyl, t-butyl, pentyl, hexyl, heptyl, octyl and decyl groups.
  • Preferred is a lower alkyl group having about 1 to 6 carbon atoms, more preferably about 1 to 4 carbon atoms.
  • the compound represented by the general formula (VII) is preferably a compound represented by the general formula (VIII).
  • R13 to R16 are an alkyl group or an alkyl group partially substituted with an arbitrary group, and R13 to R16 may be linear, cyclic, or branched. Further, R13 and R14, or R15 and R16 may be bonded to each other, and may contain oxygen and nitrogen atoms.
  • examples of the substituents R13 to R16 include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, t-butyl, pentyl, hexyl, heptyl, octyl, Examples thereof include a linear or branched alkyl group having about 1 to 10 carbon atoms such as a decyl group. Preferred is a lower alkyl group having about 1 to 6 carbon atoms, more preferably about 1 to 4 carbon atoms.
  • Rl 3 and R14 are bonded to form either a 5-membered ring or a 6-membered ring.
  • a non-aromatic hydrocarbon ring such as a cycloalkane ring typified by a cyclohexane ring, a cycloalkene ring typified by a cyclohexene ring, and a bridge typified by a 5 norbornene ring.
  • Aromatic rings such as non-aromatic bridged rings such as formula hydrocarbon rings, benzene rings, and naphthalene rings are included. These rings may have a substituent.
  • the compound represented by the general formula (IX) is preferably a compound represented by the general formula (X).
  • Z is selected from the group consisting of an alkyl group, an aryl group, an alkoxy group, a carboxyl group, an alkoxy group, a phenyl group, a cyano group, a hydroxyl group, a nitro group, an amino group, and a hydrogen atom-containing substituent.
  • oxygen and nitrogen may be partially or partially chain-like, cyclic or branched, even if the alkyl group is partially substituted with an arbitrary group. It may contain atoms.
  • Z When Z is an aryl group, it may be an aryl group that is partially substituted with an arbitrary group, or may contain oxygen and nitrogen atoms. Since the compound represented by the general formula (X) is difficult to hydrolyze, continuously supplying this compound to the fuel cell makes it possible to continuously generate active oxygen. It becomes inactive and it becomes possible to suppress the acidity of the electrolyte membrane.
  • the alkyl group includes an alkyl group similar to the above-described alkyl group, particularly an alkyl group having about 1 to 6 carbon atoms, and the aryl group is a phenyl group. And naphthyl group.
  • the alkoxy group include alkoxy groups having about 1 to 6 carbon atoms, among the same alkoxy groups as the above-described alkyl group, and examples of the carboxyl group include a carboxyl group having about 1 to 4 carbon atoms.
  • alkoxy carbo yl group examples include methoxy carbo yl, ethoxy carbo yl, propoxy carbo yl, isopropoxy carbonyl, butoxy carbonyl, isobutoxy carbonyl, t butoxy carbo yl, pentyloxy carbo yl, Examples thereof include alkoxycarbonyl groups having about 1 to 10 carbon atoms in the alkoxy moiety such as a xyloxycarbonyl group. Preferred is a lower alkoxycarbonyl group having an alkoxy moiety having a carbon number of about ⁇ 6, more preferably about 1 to 4 carbon atoms.
  • FIG. 7 shows a schematic diagram of an example of a compound represented by TEMPO and general formula (X).
  • TEMPO shown in 0 is a compound having a reversible redox cycle, and finally inactivates active oxygen.
  • the compound represented by the general formula (IX) may be a compound represented by the general formula (XI).
  • Z is selected from the group consisting of an alkyl group, an aryl group, an alkoxy group, a carboxyl group, an alkoxy group, a phenyl group, a cyano group, a hydroxyl group, a nitro group, an amino group, and a hydrogen atom-containing substituent.
  • Z is an alkyl group, a part of the group may be a chain, a ring, or a part of the alkyl group substituted with an arbitrary group. May be branched or contain oxygen and nitrogen atoms.
  • Z When Z is an aryl group, it may be an aryl group that is partially substituted with an arbitrary group, or may contain oxygen and nitrogen atoms.
  • the compound represented by the general formula (IX) may be a compound represented by the general formula (XII).
  • Z is selected from the group consisting of an alkyl group, an aryl group, an alkoxy group, a carboxyl group, an alkoxy group, a phenyl group, a cyano group, a hydroxyl group, a nitro group, an amino group, and a substituent containing a hydrogen atom.
  • oxygen and nitrogen may be partially or partially chain-like, cyclic or branched, even if the alkyl group is partially substituted with an arbitrary group. It may contain atoms.
  • Z When Z is an aryl group, it may be an aryl group that is partially substituted with an arbitrary group, or may contain oxygen and nitrogen atoms. Since these compounds are also difficult to hydrolyze similarly to the compounds represented by the general formula (X), continuous supply of this compound inactivates the active oxygen generated, and the electrolyte membrane It becomes possible to suppress acidity.
  • the compound is represented by general formula (XI) or general formula (XII)
  • the same substituents as those of the compound represented by general formula (X) can be used.
  • FIGS. 8 to 10 show schematic diagrams of examples of the compounds represented by the general formulas (XI) and (XII).
  • Examples of compounds represented by general formula (XI) and general formula (XII) include PROXYL (2,2,5,5-tetramethylpyrrolidine-1-oxyl) and DOXYL (4,4-dimethyloxazozo). Lysine-3-oxyl). These compounds also have a reversible acid-reduction cycle similar to TEMPO and inactivate active oxygen.
  • FIG. 11 shows the oxidation-reduction mechanism in another example of the compound used in the fuel cell system according to the present embodiment.
  • TEMP Shows the redox cycle of O, and shows the mechanism of deactivation of hydrogen peroxide and hydroxy radicals by TEMPO.
  • hydrogen peroxide has a higher oxidation-reduction potential than hydrogen peroxide and acts as a reducing agent for substances, while it is more oxidized than hydrogen peroxide. It is known to act as an oxidant for substances with low reduction potential.
  • TEMPO is an N-hydroxyimide derivative having a reversible redox cycle. It is oxidized and reduced by the elementary reactions shown in the following formulas (B21) and (B22), and its redox potential is 0.81V.
  • the redox potential of TEMPO is lower than the redox potential of hydroxy radical, which is higher than the redox potential of hydrogen peroxide.
  • the N-oxyl radical of TEMPO which is a reductant, acts as a reducing agent on the hydroxy radicals, supplying electrons (e_) to the hydroxy radicals generated in the electrolyte membrane and reducing them to OH-.
  • the oxidant ⁇ + acts as an oxidant for hydrogen peroxide and acts as an oxidant for hydrogen peroxide to extract hydrogen, thereby converting hydrogen peroxide to oxygen to oxygen. Then ⁇ + recovers to the reduced form.
  • TEMPO reduces hydroxy radicals again after recovering to the reduced form. In this way, TEMPO initiates a redox cycle between the reductant and the oxidant, and at the same time inactivates hydroxy radicals and oxygen peroxide to prevent oxidation of the electrolyte.
  • TEMPO When TEMPO is supplied as much as possible in the fuel cell, a part of TEMPO may undergo electrolytic oxidation represented by the formula (B22) on the fuel electrode catalyst, and may diffuse into the electrolyte as oxidant TEMPO +. is there. Even in this case, TEMP O, which has a reversible acid-oxygen reduction cycle, recovers to the original reduced form TEMPO using hydrogen peroxide as a reducing agent, and again as an oxidizing agent that can reduce the hydroxyl radical. It has the function of. Reversible acid In the case of a compound having no reduction cycle, the antioxidant function is lost when the hydroxy radical is reduced, and the compound does not function as an oxidant any more. In some cases, the function as an antioxidative agent can be sustained to some extent by having a reversible redox cycle.
  • the fuel cell system includes a fuel cell having an electrode and an antioxidant that contacts the electrode and inactivates active oxygen, and further includes an antioxidant.
  • an antioxidant supply system that supplies gas from the air electrode side or the fuel electrode side of the fuel cell, it is possible to realize a fuel cell system that can reliably inactivate and eliminate active oxygen Can do.
  • the fuel cell in the fuel cell system according to the present embodiment, can be used in any of the hydrogen type, direct methanol type, and direct hydrocarbon type.
  • the fuel cell system according to the present embodiment can be mounted on a fuel cell vehicle as its application.
  • the fuel cell vehicle equipped with the fuel cell system according to this embodiment can withstand continuous operation for a long time.
  • the fuel cell system according to the embodiment of the present invention is not limited to a fuel cell vehicle as its application, but is a fuel cell cordage neseration power generation system, a fuel cell home appliance, a fuel cell portable device, and a fuel cell transport device. It is possible to apply to.
  • the electrode composition according to the present embodiment functions as a reducing agent at a potential lower than the oxidation-reduction potential of oxygen, and acts as an oxidizing agent at a potential higher than the acid-reduction potential of hydrogen and hydrogen ions. It is characterized by containing a compound having a redox cycle as an oxygen reduction catalyst.
  • Negative electrode (fuel electrode): H ⁇ 2H + + 2e_ E ° 0. OOV ⁇ ⁇ ⁇ ⁇ (CI)
  • Equation (C4) shows a reaction in which hydrogen peroxide and hydrogen receive hydrogen ions and electrons at the air electrode and are reduced to water. Equation (C5) is based on H, which crosses the membrane over the air electrode as much as possible.
  • Equation (C6) shows a reaction in which two molecules of hydrogen peroxide react to generate water and oxygen.
  • one hydrogen peroxide is acting as an oxidant, and the other hydrogen peroxide is acting as a reducing agent to give water and oxygen as shown in the following formula (C7). generate.
  • peroxyhydrogen acts as an oxidant for substances having a higher oxidation-reduction potential than hydrogen peroxide, while it oxidizes more than hydrogen peroxide. It is known to act as a reducing agent for substances with low reduction potential.
  • the formula (C4) is the sum of the elementary reaction represented by the formula (C5) and the elementary reaction represented by the formula (C1).
  • Formula (C6) is the sum of the elementary reaction represented by formula (C5) and the elementary reaction represented by formula (C7). is there.
  • a substance with a high redox potential acts as an oxidizing agent
  • a substance with a low redox potential acts as a reducing agent.
  • the reaction proceeds when ⁇ ⁇ of the whole system is positive.
  • the standard oxidation reduction potential of oxygen is 1.23 V, and the standard oxidation reduction potential of hydrogen or peptone is 0. OOV. Therefore, in the positive electrode, oxygen acts as an oxidant for hydrogen, and the reaction of the above formula (C2) or formula (C3) proceeds.
  • the standard oxidation-reduction potential of hydrogen peroxide produced by the reaction of formula (C3) is 1.77V as shown in formula (C4) when acting as an oxidant, which is based on the standard acid-reduction potential of hydrogen. Is also expensive. For this reason, hydrogen peroxide acts as an oxidizing agent for hydrogen, and the reaction of the above formula (C4) or formula (C5) proceeds. Since the standard oxidation-reduction potential when hydrogen peroxide acts as a reducing agent is 0.68 V, two molecules of hydrogen peroxide react to generate water and oxygen according to the above formula (C6).
  • the platinum-supported carbon used in the positive electrode is oxidized by the hydrogen peroxide generated at the positive electrode, the carbon is consumed and the performance of the fuel cell gradually deteriorates.
  • the oxygen activation rate decreases.
  • the generation of hydrogen peroxide increases with the deterioration of platinum. Therefore, in the electrode composition, an acid that acts as a reducing agent at a potential lower than the oxidation-reduction potential of oxygen and that acts as an oxidizing agent at a potential higher than the standard acid reduction potential of hydrogen and hydrogen ions.
  • this compound When there is a compound having a reduction cycle, this compound first acts as a reducing agent at a potential lower than the standard oxidation-reduction potential of oxygen when in the reduced form, so that oxygen is a 4-electron represented by the formula (C2). Reduction reaction is promoted. In this process, this compound is oxidized. After this compound is oxidized to an oxidized form, the compound receives hydrogen ions and electrons from the positive electrode and is again reduced.
  • this compound acts reversibly as a redox catalyst by repeating the redox cycle.
  • the compound functions as a four-electron reduction reaction catalyst that promotes the reduction of oxygen by the reversible acid-acid reduction cycle of this compound, so that proton ( ⁇ +) reacts with molecular oxygen ( ⁇ ).
  • ⁇ + proton
  • molecular oxygen
  • a four-electron reduction reaction that reduces to water is promoted.
  • this compound functions as a four-electron reduction reaction catalyst that promotes oxygen reduction, the amount of platinum used in the electrode composition can be reduced.
  • this compound acts as a redox catalyst by repeating the oxidation-reduction cycle, and can be used as a catalyst many times, so that the amount of catalyst used can be further reduced.
  • the standard oxidation-reduction potential force of this compound is preferably in the range of 0. OOV to 140 V (NHE).
  • NHE 0. OOV to 140 V
  • the reduction of oxygen is promoted and acts as an oxidizing agent for hydrogen and hydrogen ions.
  • the standard acid reduction potential of the compound is more preferably in the range of 0.68 V to 1. OOV.
  • the oxidized form and reduced form of this compound are relatively stable compounds. Since the actual acid reduction potential (RHE) of each compound varies depending on various conditions such as pH and temperature, it is preferable to use a compound in a range corresponding to it.
  • the compound used for the electrode composition according to the present embodiment is an organic compound composed only of carbon, hydrogen, oxygen, and nitrogen. Is preferred.
  • the compound is preferably a compound represented by the general formula (I).
  • R1 and R2 represent the same or different arbitrary substituents, and X represents an oxygen atom or a hydroxyl group.
  • R1 and R2 are alkyl group, aryl group, alkoxy group, and a group of substituent groups including a hydrogen atom
  • R1 and R2 are alkyl groups or alkoxy groups.
  • an alkyl group or an alkoxyl group partially substituted with an arbitrary group, an unsaturated alkyl group or an alkoxy group may be used, and these groups may be chain, cyclic or branched.
  • R1 and R2 may contain oxygen and nitrogen atoms.
  • R1 and R2 are aryl groups, they may be aryl groups that are partially substituted with arbitrary groups, or they may contain oxygen and nitrogen atoms. Absent. Also, in the above general formula (I), it is more preferable for R1 and R2 to be bonded to each other to form a double bond, an aromatic ring, or a non-aromatic ring in order to promote oxygen activity.
  • the compound power is preferably an imido compound represented by the general formula (II).
  • the ring Y1 represents a ring having one double bond or an aromatic or non-aromatic 5- to 12-membered ring.
  • the above compound is preferably an imide compound represented by the general formula (III) from the viewpoint of chemical stability and catalytic activity.
  • R3 and R4 are the same or different and each represents a hydrogen atom, a halogen atom, an alkyl group, an aryl group, a cycloalkyl group, a hydroxyl group, an alkoxyl group, a carboxyl group, an alkoxycarbo group or an acyl group.
  • X represents an oxygen atom or a hydroxyl group, and n represents an integer of 1 to 3.
  • the halogen atom in the substituents R3 and R4 includes iodine, bromine, chlorine and fluorine.
  • the alkyl group include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, t-butyl, A straight chain or branched chain alkyl group having 1 to about carbon atoms such as pentyl, hexyl, heptyl, octyl, decyl group and the like is included.
  • Preferred alkyl groups include, for example, lower alkyl groups having about 1 to 6 carbon atoms, particularly about 1 to 4 carbon atoms.
  • Examples of the aryl group include a phenyl group and a naphthyl group, and examples of the cycloalkyl group include a cyclopentyl, cyclohexyl, and cyclooctyl groups.
  • Examples of the alkoxy group include, for example, methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, t-butoxy, pentyloxy, hexyloxy groups and the like, preferably about 1 to 10 carbon atoms, preferably about 1 to 6 carbon atoms, particularly Examples include lower alkoxy groups having about 1 to 4 carbon atoms.
  • alkoxycarbonyl group examples include, for example, methoxycarbol, ethoxycarbole, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl, t-butoxycarbonyl, pentyloxycarbonyl, hexyloxycarbonyl.
  • alkoxycarbonyl groups having about 1 to 10 carbon atoms in the alkoxy moiety such as an -l group.
  • the alkoxycarbo yl group includes a lower alkoxy carbo yl group having an alkoxy moiety having about 1 to 6 carbon atoms, particularly about 1 to 4 carbon atoms.
  • acyl group examples include an acyl group having about 1 to 6 carbon atoms such as formyl, acetyl, propiol, butyryl, isobutyryl, valeryl, isovaleryl, and a bivaloyl group.
  • R3 and R4 may be bonded to each other to form a double bond, an aromatic ring, or a non-aromatic ring.
  • the aromatic ring or non-aromatic ring is preferably about 6 to 10 membered ring, more preferably forming any one kind of 5 to 12 membered ring,
  • a heterocyclic ring or a condensed heterocyclic ring may be used, but a hydrocarbon ring is preferred.
  • Examples of such a ring include non-aromatic hydrocarbon rings such as a cycloanolene ring typified by a cyclohexane ring and a cycloalkene ring typified by a cyclohexene ring, and 5-norbornene.
  • Non-aromatic bridge rings such as bridged hydrocarbon rings represented by rings, and aromatic rings such as benzene rings and naphthalene rings are included. These rings may have a substituent.
  • preferred imide compounds are preferably compounds represented by the formulas (IVa) to (IVf).
  • R3 to R6 are the same or different and are each a hydrogen atom, a halogen atom, an alkyl group, a hydroxyl group, an alkoxyl group, a carboxyl group, an alkoxycarbo yl group, an acyl group, a nitro group, a cyano group or an amino group Represents a group, and n represents an integer of 1 to 3.
  • examples of the alkyl group include the same alkyl groups as those exemplified above, particularly alkyl groups having about 1 to 6 carbon atoms.
  • examples of the alkoxy group include the same alkoxy groups as described above, particularly lower alkoxy groups having about 1 to 4 carbon atoms, and the alkoxycarbo group includes the same alkoxycarbo groups as described above, particularly the carbon of the alkoxy moiety.
  • a lower alkoxycarbonyl group having a number of 1 to 4 can be used.
  • acyl group examples include the same acyl groups as described above, particularly those having about 1 to 6 carbon atoms, and examples of the halogen atom include fluorine, chlorine and bromine atoms.
  • substituents R3 to R6 they are usually a hydrogen atom, a lower alkyl group having about 1 to 4 carbon atoms, a carboxyl group, a nitro group, or a halogen atom.
  • X represents an oxygen atom or a hydroxyl group
  • n is usually about 1 to 3, preferably 1 or 2.
  • the compounds represented by the general formula (III) can be used alone or in combination of two or more in the oxygen reduction reaction.
  • the acid anhydrides corresponding to the compounds represented by the general formula (III) include, for example, saturated or unsaturated aliphatic dicarboxylic acid anhydrides such as succinic anhydride and maleic anhydride, and tetrahydroanhydrides.
  • Saturated or unsaturated non-aromatic such as phthalic acid, hexahydrophthalic anhydride (1,2-cyclohexanedicarboxylic acid anhydride), 1, 2, 3, 4-cyclohexanetetracarboxylic acid 1,2-anhydride
  • Aliphatic cyclic polycarboxylic acid anhydrides alicyclic polyhydric carboxylic acid anhydrides
  • bridged cyclic polycarboxylic acid anhydrides such as anhydrous hetic acid and anhydrous hymic acid (alicyclic polyhydric carboxylic acids)
  • Acid anhydrides for example, phthalic anhydride, tetrabromophthalic anhydride, tetrachlorophthalic anhydride, -trophthalic anhydride, trimellitic anhydride, methylcyclohexene tricarboxylic anhydride, pyromellitic anhydride, And aromatic polyvalent carboxylic anhydrides such as 1,8; 4,5-na
  • preferable imide compounds include, for example, N-hydroxysuccinimide, N-hydroxymaleimide, N-hydroxyhexahydrophthalimide, N, N'-dihydroxycyclohexanetetracarboxylic Acid imide, N-hydroxyphthalic acid imide, N-hydroxytetrabromophthalic acid imide, N-hydroxytetrachlorophthalic acid imide, N-hydroxyhetic acid imide, N-hydroxyhymic acid imide, N-hydroxytrimethyl Mellitic acid imide, N, N ′ —dihydroxypyromellitic imide, N, N ′ —dihydroxynaphthalene tetracarboxylic imide and the like.
  • a preferred compound is an alicyclic polycarboxylic acid anhydride, and particularly an N-hydroxyimide compound derived from an aromatic polycarboxylic acid anhydride, such as N-hydroxyphthalimide.
  • FIG. 12 shows an oxidation reduction potential (ORP) when oxygen, active oxygen, hydrogen or the like acts as an oxidizing agent or a reducing agent.
  • ORP oxidation reduction potential
  • the right column of this figure shows the half-reaction equation of the reducing agent
  • the left column shows the half-reaction equation of the oxidizing agent.
  • the vertical axis shows the standard acid reduction potential, and it becomes higher as it goes up. In other words, the higher the position, the harder it is to oxidize.
  • the numerical value shown in parentheses after the half-reaction equation is the standard redox potential of a compound that acts as an oxidizing agent or a reducing agent.
  • the redox potential is Because it is affected by pH and temperature, Fig. 12 shows the standard redox potential corrected for the standard hydrogen electrode (NHE).
  • FIG. 13 shows the redox mechanism of the compound contained in the electrode composition in the present embodiment.
  • N-hydroxyphthalimide abbreviated as NHPI
  • NHPI N-hydroxyphthalimide
  • FIG. 13 shows the redox mechanism of the compound contained in the electrode composition in the present embodiment.
  • NHPI N-hydroxyphthalimide
  • FIG. 13 shows the redox mechanism of the compound contained in the electrode composition in the present embodiment.
  • NHPI N-hydroxyphthalimide
  • PINO phthalimido-N-oxyl
  • NHPI and PINO have a 1.34V redox potential as shown in formulas (C8) and (C9).
  • the reaction represented by the above formula (C2) is a complex reaction composed of a plurality of elementary reactions represented by the formulas (C10) to (C14).
  • the oxygen molecule in the air is called triplet oxygen, and the ground state is a triplet radical molecule.
  • hydrogen is easily extracted from the N-hydroxyl group of NHPI at room temperature and pressure.
  • Peroxy radicals have a high reduction potential of 1.50 V, and are more active than oxygen. Therefore, hydrogen is extracted from other NHPIs as shown in formula (C11).
  • Peroxyhydrogen is not a radical but reactive, and its reduction potential is 1.77V, which is a species that flew more actively than oxygen, so hydrogen as compared to other NHPIs as shown in formula (C12). Pull out the atom.
  • the hydrogen peroxide-derived hydrogen peroxide generates water and hydroxy radicals ( ⁇ ⁇ ) as shown in formula (C16). [0140] HO + H + + e " ⁇ H 0+ -OH ⁇ ⁇ ⁇ ⁇ Equation (C16)
  • this hydroxy radical is a species that has a large reduction potential of 2.85 V and is active, it draws hydrogen from NHPI as shown in formula (C13) to produce PINO and water.
  • PINO is also a species that has been activated, and as shown in equation (C14), it receives electrons (e_) from the positive electrode of the fuel cell in cooperation with protons and is regenerated into NHPI.
  • the acid reduction potential of NHPI was measured using glassy carbon as the working electrode, platinum as the counter electrode, a saturated calomel electrode (SCE) as the reference electrode, and 1M sulfuric acid as the electrolyte.
  • Figure 14 shows the cyclic voltammogram of NHPI measured under these conditions. Under this condition (SCE), the oxidation-reduction potential of NHPI is in the vicinity of 1.10V.
  • SCE saturated calomel electrode
  • NHE standard potential E °
  • the redox potential of NHPI is around 1.34V. This potential is a level that acts as a reducing agent for oxygen, although the acid reduction potential of NHPI is slightly higher than the acid reduction potential of oxygen.
  • NHPI is a compound that functions reversibly as an oxidizing agent or a reducing agent, and NHPI is higher than the acid-reducing potential of hydrogen and hydrogen ions, and acts as an oxidizing agent at a potential.
  • a compound having a cycle Thus, NHPI has a four-electron reduction function of oxygen in terms of potential, and NHPI continues to function as an oxygen reduction catalyst for a long time.
  • the 4-electron reduction reaction of oxygen by NHPI is a reaction that occurs at normal temperature and normal pressure, and exhibits a low-temperature activity superior to that of platinum. Therefore, it is possible to reduce the amount of platinum used in the electrode catalyst of a fuel cell.
  • the compound represented by the general formula (II) may be a compound represented by the general formula (V) having a 6-membered N-substituted cyclic imide skeleton.
  • X represents an oxygen atom or a hydroxyl group.
  • R1 to R6 are the same or different, and each represents a hydrogen atom, a halogen atom, an alkyl group, an aryl group, a cycloalkyl group, a hydroxyl group, an alkoxy group, a carboxyl group, a substituted oxycarbonyl group, an acyl group, or an acyloxy group.
  • at least two of R1 to R6 may be bonded to each other to form a double bond or an aromatic or non-aromatic ring. At least one of the rings may have an N-substituted cyclic imide group! /.
  • a compound having an N-substituted cyclic imide skeleton hydrolyzes both 5-membered and 6-membered rings as shown in formula (C18) and formula (C19).
  • the 6-membered ring is more hydrolyzed than the 5-membered ring. Slow hydrolysis resistance is high.
  • the compound having a ⁇ -substituted cyclic imide skeleton is a 6-membered cyclic imide, it can be used as an acid reduction catalyst many times. It will be possible.
  • alkyl group examples include methyl, ethyl, propyl, isopropyl, butyl, and isobutyl.
  • alkyl groups examples include linear or branched alkyl groups having about 1 to 10 carbon atoms such as til, sec butyl, t-butyl, pentyl, hexyl, heptyl, octyl and decyl groups.
  • Preferred is a lower alkyl group having about 1 to 6 carbon atoms, more preferably about 1 to 4 carbon atoms.
  • Examples of the aryl group include a phenyl group and a naphthyl group.
  • Examples of the cycloalkyl group include a cyclopentyl group, a cyclohexyl group, a cyclooctyl group, and the like.
  • alkoxy group for example, methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, t-butoxy, pentyloxy, hexyloxy group and the like have about 1 to 10 carbon atoms, preferably about 1 to 6 carbon atoms, more preferably Is a lower alkoxy group having about 1 to 4 carbon atoms.
  • alkoxycarbonyl group examples include, for example, methoxycarbol, ethoxycarbol, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl, t-butoxycarbonyl, pentyloxycarbonyl, hexyloxycarbo- Examples thereof include alkoxycarbonyl groups having about 1 to 10 carbon atoms in the alkoxy moiety such as a ruthenium group. Preferred is a lower alkoxycarbo group having an alkoxy moiety having about 1 to 6 carbon atoms, more preferably about 1 to 4 carbon atoms.
  • acyl group examples include an acyl group having about 1 to 6 carbon atoms such as formyl, acetyl, propiol, butyryl, isobutyryl, valeryl, isovaleryl, and a bivaloyl group.
  • At least two of R1 to R6 may be bonded to each other to form a double bond or an aromatic ring or a non-aromatic ring, But ⁇ .
  • the aromatic ring or the non-aromatic ring is preferably a 6 to 10 membered ring, more preferably a ring of any one of 5 to 12 membered rings. May be a heterocycle or a fused heterocycle.
  • FIG. 15 shows examples of other compounds contained in the electrode composition in the present embodiment, and shows the mechanism of acid reduction of the compounds.
  • N-hydroxydaltaric acid imide in which R1 to R6 are all hydrogen atoms and has a reversible oxidation reduction cycle is given. Shows oxygen activation mechanism, oxygen reduction mechanism, and reaction with protons.
  • NHGI is oxidized to glutarimide N-oxyl (GINO).
  • GINO glutarimide N-oxyl
  • NHGI and GINO have an oxidation-reduction potential of 1.39 V as shown in formulas (C20) and (C21).
  • the reaction represented by the above formula (C2) is a complex reaction composed of a plurality of elementary reactions represented by the formulas (C22) to (C26).
  • the oxygen molecule in the air is called triplet oxygen, and the ground state is a triplet radical molecule.
  • hydrogen is easily extracted from the N-hydroxyl group of NHGI at room temperature and pressure. , Produces GINO and peroxyl radical ( ⁇ ⁇ ). Peroxy radicals have a high reduction potential of 1.50 V, and are more active than oxygen. Therefore, hydrogen is extracted from other NHGI as shown in formula (C23).
  • hydrogen peroxide is not a radical, it is reactive and has a reduction potential of 1.77 V, which is higher than oxygen, so it is a species that flew more actively than other oxygen atoms, as shown in formula (C24). Pull out.
  • the hydrogen peroxide-derived hydrogen peroxide generates water and hydroxy radicals ( ⁇ ⁇ ) as shown in formula (C28).
  • NHGI is a compound having an acid reduction cycle that acts as an oxidizing agent at a potential higher than the acid reduction potential of hydrogen and hydrogen ions.
  • NHGI has a four-electron reduction function of oxygen in terms of potential, and NHGI will continue to function as an oxygen reduction catalyst for a long time.
  • These four-electron reduction reactions of oxygen are reactions that occur at room temperature and pressure, and exhibit low-temperature activity superior to that of platinum. Therefore, the amount of platinum used in fuel cell electrode catalysts can be reduced.
  • NHGI is a 6-membered cyclic imide, and its hydrolysis resistance is slow compared to the case of 5-membered ring, and its hydrolysis resistance is high. For this reason, when the compound having an N-substituted cyclic imide skeleton is a 6-membered cyclic imide, it can be used as an acid-reduction catalyst for a long period of time. It becomes possible.
  • the compound represented by the general formula (V) is preferably a compound represented by the general formula (Via) or (VIb) from the viewpoints of stability and durability of the compound. .
  • R7 to R12 are the same or different and each represents a hydrogen atom, an alkyl group, a hydroxyl group, an alkoxyl group, a carboxyl group, an alkoxycarbonyl group, an acyl group, a nitro group, a cyan group or an amino group. .
  • the compound represented by the general formula (I) may be a compound represented by the general formula (VII).
  • R13 and R14 are an alkyl group or an alkyl group partially substituted with an arbitrary group, and R13 and R14 may be linear, cyclic, or branched. R13 and R14 may be bonded to each other to form a ring or may contain oxygen and nitrogen atoms.
  • the compound represented by the general formula (VII) is used, the redox potential is low and the oxygen reduction reaction is further promoted.
  • examples of the substituents R13 and R14 include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec butyl, t-butyl, pentyl, hexyl, heptyl, octyl.
  • a linear or branched alkyl group having about 1 to 10 carbon atoms such as a decyl group.
  • Preferred is a lower alkyl group having about 1 to 6 carbon atoms, more preferably about 1 to 4 carbon atoms.
  • the compound power represented by the general formula (VII) is a compound represented by the general formula (VIII) Is preferred.
  • R13 to R16 are an alkyl group or an alkyl group partially substituted with an arbitrary group, and R13 to R16 may be linear, cyclic, or branched. Further, R13 and R14, or R15 and R16 may be bonded to each other, and may contain oxygen and nitrogen atoms.
  • examples of the substituents R13 to R16 include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, t-butyl, pentyl, hexyl, heptyl, octyl, Examples thereof include a linear or branched alkyl group having about 1 to 10 carbon atoms such as a decyl group. Preferred is a lower alkyl group having about 1 to 6 carbon atoms, more preferably about 1 to 4 carbon atoms.
  • the compound represented by the general formula (VIII) is preferably a compound represented by the general formula (IX).
  • R13 and R14 are bonded to form either a 5-membered ring or a 6-membered ring.
  • a non-aromatic hydrocarbon ring such as a cycloanolene ring typified by a cyclohexane ring, a cycloalkene ring typified by a cyclohexene ring,
  • Non-aromatic bridged ring such as bridged hydrocarbon ring represented by 5-norbornene ring, Aromatic rings such as benzene ring and naphthalene ring are included. These rings may have a substituent.
  • the compound represented by the general formula (IX) is preferably a compound represented by the general formula (X).
  • Z is selected from the group consisting of an alkyl group, an aryl group, an alkoxy group, a carboxyl group, an alkoxy group, a phenyl group, a cyano group, a hydroxyl group, a nitro group, an amino group and a hydrogen atom-containing substituent.
  • a kind of substituent In the case where Z is an alkyl group, oxygen and nitrogen may be partially or partially chain-like, cyclic or branched, even if the alkyl group is partially substituted with an arbitrary group. It may contain atoms. When Z is an aryl group, it may be an aryl group that is partially substituted with an arbitrary group, or may contain oxygen and nitrogen atoms. Since the compound represented by the general formula (X) is difficult to hydrolyze, it can be used for a long time when used as an oxidation-reduction catalyst, and the amount of catalyst used can be further reduced.
  • the alkyl group includes an alkyl group similar to the above-described alkyl group, particularly an alkyl group having about 1 to 6 carbon atoms, and the aryl group includes a phenyl group and a naphthyl group.
  • the alkoxy group include alkoxy groups having about 1 to 6 carbon atoms, among the same alkoxy groups as the above-described alkyl group, and examples of the carboxyl group include a carboxyl group having about 1 to 4 carbon atoms.
  • alkoxy carbo yl group examples include methoxy carbo yl, ethoxy carbo yl, propoxy carbo yl, isopropoxy carbonyl, butoxy carbonyl, isobutoxy carbonyl, t butoxy carbo yl, pentyloxy carbo yl, Alcohols such as xyloxycarbonyl groups Examples thereof include alkoxycarbonyl groups having about 1 to 10 carbon atoms in the xy moiety. Preferred is a lower alkoxycarbonyl group having an alkoxy moiety having a carbon number of about ⁇ 6, more preferably about 1 to 4 carbon atoms.
  • TEMPO 2, 2, 6, 6-tetramethylpiperidine 1-oxyl
  • Examples of compounds represented by TEMPO and general formula (X) are shown in FIG. FIG. 7 (TEMPO shown in 0 is a compound having a reversible redox cycle, and finally deactivates active oxygen.
  • the compound represented by the general formula (IX) may be a compound represented by the general formula (XI).
  • Z is selected from the group consisting of an alkyl group, an aryl group, an alkoxy group, a carboxyl group, an alkoxy group, a phenyl group, a cyano group, a hydroxyl group, a nitro group, an amino group and a hydrogen atom-containing substituent.
  • oxygen and nitrogen may be partially or partially chain-like, cyclic or branched, even if the alkyl group is partially substituted with an arbitrary group. It may contain atoms.
  • Z When Z is an aryl group, it may be an aryl group that is partially substituted with an arbitrary group, or may contain oxygen and nitrogen atoms.
  • the compound represented by the general formula (IX) may be a compound represented by the general formula (XII).
  • Z is selected from the group consisting of an alkyl group, an aryl group, an alkoxy group, a carboxyl group, an alkoxy group, a phenyl group, a cyano group, a hydroxyl group, a nitro group, an amino group and a substituent containing a hydrogen atom.
  • a kind of substituent In the case where Z is an alkyl group, oxygen and nitrogen may be partially or partially chain-like, cyclic or branched, even if the alkyl group is partially substituted with an arbitrary group. It may contain atoms. When Z is an aryl group, it may be an aryl group that is partially substituted with an arbitrary group, or may contain oxygen and nitrogen atoms.
  • Examples of compounds represented by general formula (XI) and general formula (XII) are shown in FIGS.
  • Examples of the compounds represented by the general formula (XI) and the general formula (XII) include PROXYL (2,2,5,5-tetramethylpyrrolidine-: L-oxyl) and DOXYL (4,4-dimethyloxaxene). Zolidine-3-oxyl). These compounds also have a reversible acid reduction cycle similar to TEMPO and inactivate active oxygen.
  • FIG. 16 shows a redox mechanism in another example of the compound contained in the electrode composition in the present embodiment.
  • TEMPO is taken as an example to show the oxygen activation mechanism and the oxygen reduction mechanism.
  • TEMPO is oxidized and reduced by the elementary reactions represented by the formulas (C29) and (C30), and its acid reduction potential is 0.81V.
  • the oxygen reduction mechanism is a complex reaction consisting of multiple elementary reactions represented by formulas (C31) to (C36). Yes.
  • Oxygen molecules in the air are called triplet oxygen, and the ground state is a triplet radical molecule.
  • electrons are exchanged between TEMPO and oxygen at room temperature and normal pressure.
  • charge transfer complex CT complex
  • the nitrogen atom of TEMPO is quaternized to N +, so TEMPO becomes TEMPO T , and oxygen becomes active in the form of superoxide (O-).
  • Active superoxide
  • Peroxy radicals Reacts quickly with hydrogen ions to form peroxy radicals ( ⁇ ⁇ ).
  • Peroxy radicals have a high reduction potential of 1.50 V and are more active than oxygen. Therefore, hydrogen peroxide is generated by the reaction shown in formula (C33).
  • Peroxyhydrogen is not a radical, but is reactive in the presence of a catalyst and has a reduction potential of 1.77V higher than oxygen, so it is more active than other TEMPOs as shown in formula (C34). Receives electrons and produces water and hydroxyl radicals ( ⁇ ⁇ ). TEMPO is activated and becomes ⁇ +.
  • the generated hydroxyl radical is a species that has a large reduction potential of 2.85 V and is active, so it accepts electrons from another TEMPO and generates water as shown in formula (C35).
  • the elementary reactions shown in formulas (C31) to (C35) lead to the four-electron reduction of oxygen, producing four molecules of TE MPO +.
  • TEMPO + is also an active species. As shown in formula (C36), it receives electrons (e_) from the positive electrode of the fuel cell and regenerates it into TEMPO.
  • the redox potential of TEMPO is measured in 1M sulfuric acid aqueous solution by SCE, the cyclic voltammogram shown in Fig. 17 is obtained. Under this condition, the redox potential of TEMPO is around 0.57V (SCE). When corrected to NHE, the redox potential is 0.81 V (SCE). From this potential, the oxidation-reduction potential of TEMPO is lower than the oxidation-reduction potential of oxygen, and is a level that sufficiently acts as a reducing agent. In addition to being a compound that functions as a reducing agent, it is a compound having an acid reduction cycle that acts as an oxidizing agent at a potential higher than the acid reduction potential of hydrogen and hydrogen ions.
  • TEMPO also has a 4-electron reduction function of oxygen in terms of potential, and TEMPO continues to function as an oxygen reduction catalyst for a long period of time. These four-electron reduction reactions of oxygen occur at normal temperature and pressure, and exhibit low-temperature activity superior to that of platinum, so the amount of platinum used in the fuel cell electrode catalyst can be reduced. In addition, since TEMPO does not hydrolyze, it can be used for a long time when used as an acid reduction catalyst, and the amount of catalyst used can be further reduced.
  • the concentration of the oxygen reduction catalyst present in the white metal-supported carbon formed after the drying treatment is in the range of 0.001 to 30 wt%. It is preferable to add in. When the amount is less than 001 wt%, the effect of the oxygen reduction catalyst may not be fully exhibited. This is not desirable because it may induce a reaction. When added, it is important that this compound is uniformly dispersed in the platinum-supported carbon. Therefore, the solvent in which the compound is dispersed can be water or an organic solvent as long as it increases the solubility of the compound, and may be a mixed solution of water and an organic solvent.
  • ichigo compound has a sufficient function as an oxygen reduction catalyst even when used alone, it assists the exchange of electrons with other electrodes as necessary to increase the reaction rate.
  • a cocatalyst may be used in combination.
  • Applicable materials include lanthanoid elements, V (vanadium), Mo (molybden), W (tungsten), Fe (iron), Ru (ruthenium), Co (cobalt), Rh (rhodium), Ni (nickel), Cu (Copper), Ag (silver), Ir (iridium), Pd (palladium), Pt (platinum), A u (gold), or oxides, organic acid salts, inorganic acid salts containing these elements It is possible to use at least one kind or a combination of two or more kinds, which also selects the group power that can be a group, a heterogeneous acid, a heterogeneous acid, a heteropolyacid and a heteropolyacid salt.
  • the electrode composition according to the embodiment of the present invention is used in such a manner that the compound is supported on a carrier.
  • conductive carbon black such as acetylene black, or carbon
  • nanostructure carbon typified by a tube.
  • a method for impregnating the carrier a solution obtained by dissolving the above compound in a solvent is poured onto the carrier, the catalyst is adsorbed on carbon, and then the carbon is filtered and dried.
  • the electrode composition according to the embodiment of the present invention functions as a reducing agent at a potential lower than the oxidation-reduction potential of oxygen, and is higher than the acid-oxidation reduction potential of hydrogen and hydrogen ions.
  • a compound having a redox cycle that acts as an oxidant at a high potential this compound acts as a reductant at a potential lower than the redox potential of oxygen, and after being oxidized, hydrogen It acts reversibly as an oxidant at a potential higher than the acid-reduction potential of hydrogen ions.
  • the amount of platinum used can be reduced. Furthermore, an air electrode electrode composition having an electrode composition according to an embodiment of the present invention or an air electrode electrode having the air electrode electrode composition of the present invention is used as an air electrode electrode for a fuel cell. It is possible to use. In this case, the reaction between protons and oxygen is also promoted in the electrode reaction at the air electrode, and the amount of platinum used can be reduced.
  • This fuel cell can be used in a fuel cell system using a proton conducting polymer electrolyte membrane, and its use is not limited to a fuel cell vehicle, a fuel cell cogeneration power generation system, It can be applied to fuel cell home appliances, fuel cell portable devices, and fuel cell transport devices.
  • a 175 m thick DuPont Nafion (registered trademark) 11 7 membrane was cut into an lcm square and used.
  • Pretreatment of Nafion (registered trademark) membrane was carried out according to NEDO P EFC R & D project standard treatment, boiled in 3% hydrogen peroxide-hydrogen water for 1 hour, then boiled in distilled water for 1 hour, Boiled for 1 hour and finally boiled in distilled water for 1 hour.
  • the Nafion (registered trademark) membrane was subjected to ion exchange treatment after pretreatment.
  • the ion exchange treatment the pretreated Nafion (registered trademark) membrane is immersed in a lOOmM FeSO aqueous solution for more than one night and then distilled.
  • the counterion of Nafion (registered trademark) was exchanged from H + to Fe 2+ by removing the ions adhering to the membrane using ultrasonic cleaning for 15 minutes in water.
  • the reagent used was Wako Pure Chemicals special grade F eSO ⁇ 7 ⁇ .
  • MEA membrane-one electrode assembly
  • the fabricated MEA was incorporated into a single cell to form a single cell for PEFC.
  • the single cell was a 5 cm 2 single cell.
  • 70 ° C humidified hydrogen gas atmospheric pressure
  • 70 ° C humidified oxygen gas atmospheric pressure
  • an NHPI aqueous solution of ImM as an antioxidant that inactivates active oxygen was fed to the fuel gas passage at a flow rate of lcm 3 Z using a feed pump.
  • the single cell was controlled to maintain 70 ° C.
  • Example 2 As an antioxidant, an N-hydroxymaleimide (NHMI) aqueous solution was used instead of the NHPI aqueous solution, and the same treatment as in Example 1 was carried out as Example 2.
  • NHMI N-hydroxymaleimide
  • Example 3 As an antioxidant, N hydroxysuccinimide (NHSI) aqueous solution was used instead of NHPI aqueous solution, and the same treatment as in Example 1 was carried out as Example 3.
  • NHSI N hydroxysuccinimide
  • Example 4 As an antioxidant, an N hydroxydaltaric imide (NHGI) aqueous solution was used instead of the NHPI aqueous solution, and the same treatment as in Example 1 was carried out as Example 4.
  • NHGI N hydroxydaltaric imide
  • Example 5 As an antioxidant, an N, ⁇ ', "-trihydroxyisocyanuric acid (THICA) aqueous solution was used instead of the NHPI aqueous solution, and the same treatment as in Example 1 was carried out as Example 5.
  • THICA trihydroxyisocyanuric acid
  • Example 1 Comparative Example 1 was used when the antioxidant aqueous solution was not poured.
  • S-PES sulfone polyether sulfone
  • a membrane electrode assembly was prepared.
  • the produced MEA was incorporated into a single cell to form a single cell for PEFC.
  • the single cell was a 5 cm 2 single cell.
  • 70 ° C humidified hydrogen gas (atmospheric pressure) as fuel electrode side gas and 70 ° C humidified oxygen gas (atmospheric pressure) as air electrode gas were supplied via a bubbler to a single cell maintained at 70 ° C.
  • ImM's TEMPO-OH aqueous solution as an antioxidant that inactivates active oxygen was fed into the fuel gas channel at a flow rate of lcm 3 Z using a feed pump.
  • the single cell was controlled to maintain 70 ° C.
  • Example 8 As an antioxidant, a TEMPO-COOH (Aldrich) aqueous solution was used instead of the TEMPO-OH aqueous solution, and the same treatment as in Example 6 was carried out as Example 7. [0198] (Example 8)
  • Example 8 As an antioxidant, a TEMPO (Aldrich) aqueous solution was used instead of the TEMPO-OH aqueous solution, and the same treatment as in Example 6 was performed, and Example 8 was designated.
  • TEMPO Aldrich
  • Example 10 was prepared by using a PROXYL-COOH (Aldrich) aqueous solution instead of the TEMPO-OH aqueous solution and carrying out the same treatment as in Example 6.
  • Example 11 The same treatment as in Example 6 was carried out using an aqueous solution of 3-strength rubamoyl-2,2,5,5-tetramethylpyrroline-1-yloxy (Aldrich) instead of TEMPO-OH aqueous solution as an antioxidant.
  • Aldrich 3-strength rubamoyl-2,2,5,5-tetramethylpyrroline-1-yloxy
  • Example 12 was prepared by using an aqueous solution of tert-butyl nitroxide (DT BN: Aldrich) in place of the TEMPO-OH aqueous solution and performing the same treatment as in Example 6.
  • DT BN tert-butyl nitroxide
  • Example 6 Comparative Example 2 was used when the antioxidant aqueous solution was not poured!
  • the acid reduction potential of the compounds used in the examples was measured using glassy carbon as the working electrode, platinum as the counter electrode, a saturated calomel electrode (SCE) as the reference electrode, and 1M sulfuric acid as the electrolyte.
  • SCE saturated calomel electrode
  • Examples of measurement of NHPI, which is a typical imide compound, and TEMPO, which is a typical TEMPO compound, are as shown in FIGS.
  • the standard potential ⁇ ( ⁇ ) is corrected to match the redox potential of each substance.
  • the oxidation-reduction potential of NHPI is around 1.10V (SCE)
  • SCE oxidation-reduction potential of TEMPO
  • NHPI and TEM PO is a compound that functions as a reducing agent for hydroxy radicals and a compound that functions as an oxidizing agent for hydrogen peroxide, and is a compound suitable for this purpose. I understand.
  • FIG. 18 shows, as an example, a graph of the initial value of the current-voltage curve of the start-stop repeated endurance test of the single fuel cell fabricated in Example 1 and the current-voltage curve after endurance. In this graph, the number of times that the voltage when generated at the current density of ImAZcm 3 is 0.4 V or less is the number of repeated start and stop times.
  • Degradation analysis of the membrane is performed by measuring the fluoride ion concentration and sulfate ion concentration that occur with the decomposition of the naphthion (registered trademark) membrane, and the sulfate ion concentration that occurs with the decomposition of the S-PES membrane. It was.
  • the liquid discharged from the air electrode was collected and measured by ion chromatography.
  • the ion chromatograph manufactured by Dioneck (model name CX-120) was used.
  • gas generated at the air electrode was measured with a gas chromatograph mass spectrometer.
  • a gas chromatograph mass spectrometer manufactured by Shimadzu Corporation (GCMS-QP5050) was used.
  • Tables 1 and 2 show the types of electrolyte membranes in Examples 1 to 12 and Comparative Examples 1 to 2, the antioxidant used, the oxidation-reduction potential of the antioxidant, the number of repeated start and stop, Indicates whether or not fluoride ions, sulfate ions and carbon dioxide are generated at the air electrode.
  • the acid reduction potential of the compounds used in Examples 1 to 12 is 0.668 V (NHE) at which hydrogen peroxide serves as a reducing agent, and hydrogen peroxide serves as an oxidizing agent.
  • the potential range is 1.77V (NHE), and it was found that the compound is suitable for this purpose.
  • the oxidant deactivates the active oxygen, it is oxidized at the air electrode and CO
  • Tables 3 and 4 show the compounds used and their redox potentials.
  • the redox potential of the compound used in each example was measured using glassy carbon as a working electrode, platinum as a counter electrode, a saturated calomel electrode (SCE) as a reference electrode, and 1M sulfuric acid as an electrolyte.
  • SCE saturated calomel electrode
  • 1M sulfuric acid as an electrolyte.
  • NHE standard potential E
  • platinum-supporting carbon 20 wt% Pt / Vulcan XC-72 manufactured by Cabot was used. First, a 0.5 mM NHPI aqueous solution as an oxygen reduction catalyst was added to platinum-supported carbon and stirred sufficiently, and then allowed to stand for 12 hours to impregnate the platinum-supported carbon with NHPI. Thereafter, platinum-supported carbon impregnated with NHPI was recovered by filtration to obtain an electrode composition. Next, the obtained electrode composition was applied to one side of the naphthion (registered trademark) membrane on the air electrode side so as to have lmgZcm 2, impregnated with NHPI, and platinum-supported carbon was added to the fuel electrode.
  • the naphthion registered trademark
  • a membrane-electrode assembly was prepared by applying to the other side, lmg / cm 2 .
  • the formed MEA was incorporated into a single cell and used for evaluation as a single cell for PEFC.
  • the single cell was adjusted to be a 5 cm 2 single cell.
  • a 175 / zm DuPont Nafion (registered trademark) 117 membrane was used as the polymer solid electrolyte membrane used in MEA.
  • Example 14 As an oxygen reduction catalyst, 0.5 mM N-hydroxymaleic acid instead of NHPI aqueous solution Example 14 was the same as Example 13 except that an aqueous imide solution was used.
  • Example 15 was the same as Example 13 except that 0.5 mM N-hydroxysuccinimide aqueous solution was used as the oxygen reduction catalyst instead of NHPI aqueous solution.
  • Example 16 was the same as Example 13 except that 0.5 mM N-hydroxytrimellitic acid imide aqueous solution was used instead of NHPI aqueous solution as the oxygen reduction catalyst.
  • Example 17 was the same as Example 13 except that 0.5 mM N, N′-dihydroxypyromellitic imide aqueous solution was used in place of NHPI aqueous solution as the oxygen reduction catalyst.
  • Example 18 was prepared by using a 0.5 mM N-hydroxyglutarimide (NHGI) aqueous solution in place of the NHPI aqueous solution and carrying out the same treatment as in Example 13.
  • NHGI N-hydroxyglutarimide
  • Example 19 As an oxygen reduction catalyst, an aqueous solution of 0.5 mM N-hydroxy-1,8-naphthalenedicarboxylic imide (NHNDI) was used instead of the NHPI aqueous solution, and the same treatment as in Example 13 was carried out as Example 19.
  • NHNDI N-hydroxy-1,8-naphthalenedicarboxylic imide
  • Example 20 A 20 mM N-hydroxy-1,8-decalin dicarboxylic imide (NHDDI) aqueous solution was used as the oxygen reduction catalyst in place of the NHPI aqueous solution, and the same treatment as in Example 13 was carried out as Example 20.
  • NHDDI N-hydroxy-1,8-decalin dicarboxylic imide
  • Example 21 As an oxygen reduction catalyst, 0.5 mM N, N′-dihydroxy-1,8; 4,5-naphthalenetetracarboxylic imide (NHNTI) aqueous solution was used instead of NHPI aqueous solution, and the same treatment as in Example 13 was performed. This was designated as Example 21.
  • NHNTI 4,5-naphthalenetetracarboxylic imide
  • Example 22 As an oxygen reduction catalyst, 0.5 mM N, N′-dihydroxy 1,8; 4,5 decalin tetracarboxylic imide (NHDTI) aqueous solution was used instead of NHPI aqueous solution, and the same treatment as in Example 13 was performed. This was designated Example 22.
  • Example 23 was prepared by using a 0.5 mM N ,, ', ⁇ "-trihydroxyisocyanuric acid (THICA) aqueous solution instead of NHPI aqueous solution and subjected to the same treatment as Example 13.
  • THICA trihydroxyisocyanuric acid
  • Example 24 As an oxygen reduction catalyst, Example 24 was used in which a 0.5 mM TEMPO aqueous solution shown in FIG.
  • Example 25 A 25 mM 4-hydroxy TEMPO aqueous solution shown in FIG. 7 (ii) was used as the oxygen reduction catalyst in place of the NHPI aqueous solution and treated in the same manner as in Example 13 to give Example 25.
  • Example 26 was prepared by using a 0.5 mM 4-carboxy-TEMPO aqueous solution shown in FIG. 7 (iii) in place of NHPI aqueous solution and subjected to the same treatment as Example 13.
  • Example 27 As an oxygen reduction catalyst, a 0.5 mM 3-carbamoyl-PROXYL aqueous solution shown in FIG. 8 (xiii) was used in place of the NHPI aqueous solution and treated in the same manner as in Example 13 to give Example 27.
  • a 0.5 mM 3-carboxy PROXYL aqueous solution shown in FIG. 8 (xiv) was used in place of the NHPI aqueous solution, and the same treatment as in Example 13 was carried out.
  • Example 29 was subjected to the same treatment as in Example 13.
  • aqueous solution As an oxygen reduction catalyst, 0.5 g of 3 [mM] shown in Fig. 8 (xx) is used instead of NHPI aqueous solution.
  • Example 30 was treated with the same treatment as in Example 13 using an aqueous solution of -butyl nitroxide (DTBN).
  • DTBN -butyl nitroxide
  • Example 13 The platinum-supported carbon used in Example 13 was impregnated with NHPI, and this was designated as Comparative Example 3.
  • MEA was formed by applying platinum-supporting carbon so that the fuel electrode side of the naphthion (registered trademark) membrane and the air electrode side were lmg / cm 2 respectively, and the formed MEA was incorporated into a single cell and evaluated. Used for.
  • Comparative Example 4 was obtained by using 25 wt% Pt / Vulcan XC-72 as the platinum-supporting carbon and performing the same treatment as Comparative Example 3.
  • Comparative Example 5 was obtained by using 30 wt% Pt / Vulcan XC-72 as the platinum-supporting carbon and performing the same treatment as Comparative Example 3.
  • the single cell incorporating the MEA obtained by the above method was evaluated by the following power generation test.
  • FIG. 19 shows the initial values of the current-potential curves of Example 13 and Comparative Example 3.
  • Tables 5 to 7 show the open circuit voltages and power generation in Examples 13 to 30 and Comparative Examples 3 to 5. The result of a test is shown.
  • Example 13 Comparing the open circuit voltages of Example 13 and Comparative Example 3, the open circuit voltage of Example 13 was increased by about 10%. This was thought to be because the oxygen overvoltage decreased and the reaction of the air electrode was activated, promoting oxygen reduction. This phenomenon was observed not only in Example 13 but also in Examples 13 to 30 in which an oxygen reduction catalyst was added, and for each Comparative Example in which no oxygen reduction catalyst was added. ⁇ ; About 10% higher.
  • Example 13 In the power generation test, the voltage when power was generated at a current density of ImAZcm 3 was used as a guide. In Example 1, the voltage when power was generated at a current density of ImAZcm 3 was 0.6 V or more, which proved that a sufficient voltage could be obtained. Also. According to the comparison between Example 13 and Comparative Example 3, it was found that Example 13 with NHPI added had a higher circuit voltage at the time of discharge, the reaction of the air electrode was activated, and oxygen reduction was promoted. it was thought. Further, comparing Comparative Example 5 using 30 wt% Pt / Vulcan XC-72 with Example 13, Example 13 is more in comparison with Comparative Example 5 carrying a large amount of platinum. As a result, the circuit voltage during discharge slightly decreased. However, the circuit voltage during discharge was higher in Example 13 than in Comparative Example 4 using 25 wt% Pt / Vulcan XC-72. From these results, it was suggested that the amount of platinum added can be reduced by adding NHPI.
  • Example 23 From the results of Example 13 to Example 30, when a compound different from NHPI was used as the catalyst as the oxygen reduction catalyst, the 4-electron reduction reaction of oxygen at the air electrode was promoted, and platinum It was suggested that the amount added could be reduced.
  • the THICA used in Example 23 is effective as an oxygen reduction catalyst because of its small molecular weight and trifunctionality, and the open circuit voltage and discharge voltage were higher than those of the other examples.
  • a force obtained by impregnating white metal-supported carbon with an oxygen reduction catalyst as a 0.5 mM aqueous solution The concentration of the aqueous solution of the oxygen reduction catalyst is not particularly limited. Absent. When used, it is important that this compound is uniformly dispersed in the platinum-supporting carbon. Here, water is used as a solvent, but an organic solvent can be used as needed as long as the solvent increases the solubility of the oxygen reduction catalyst.
  • the concentration of the oxygen reduction catalyst present in the platinum-supported carbon formed after the drying treatment is preferably in the range of 0.001 to 30 wt%. When the amount is less than 001 wt%, the effect of the oxygen reduction catalyst may not be fully exhibited. It is not preferable because it may cause a side reaction.
  • each compound was dissolved in 0.5 M sulfuric acid at a concentration of 1. OmM and then kept at 80 ° C., and the disappearance state of the compounds was quantified by liquid chromatography.
  • FIG. 20 shows a graph of the results of the stability test of NHPI and TEMPO.
  • NHPI was hydrolyzed by the reaction shown in FIG. 21 (a), so the concentration decreased with time, and the NHPI concentration after 96 hours decreased to about 0.6 mM.
  • TEMPO did not change in concentration even after 96 hours.
  • the PROXYL compound, TEMPO compound and DTBN did not show the hydrolysis seen in the imide compound, and the amount of disappearance of the compound was small compared to the S imide compound. Can It was.
  • TEC10E50E manufactured by Tanaka Kikinzoku was used as the platinum-supporting carbon, and a 5 wt% Nafion (registered trademark) solution manufactured by Dubon was used as the electrolyte binder.
  • the electrolyte binder was covered, and isopropyl alcohol was covered to disperse the platinum-supporting carbon and the electrolyte binder in isopropyl alcohol. Thereafter, the mixture was homogenized for 3 hours with a homogenizer and then homogenized, and then defoamed to obtain a catalyst ink. Thereafter, catalyst ink was applied to a Teflon (registered trademark) sheet so that the amount of platinum was 0.4 mgZcm 3 to obtain catalyst sheet A.
  • Teflon registered trademark
  • TEC10E50E made by Tanaka Kikinzoku as platinum-supported carbon and 5 wt% Nafion (registered trademark) solution made by DuPont as electrolyte binder were used, and the platinum-supported carbon was sufficiently moistened with water.
  • 1. 8wt% NHPI was added and isopropyl alcohol was added to disperse platinum-supported carbon, electrolyte binder, and NHPI in isopropyl alcohol. Then, it was mixed for 3 hours with a homogenizer and homogenized, and then defoamed to obtain a catalyst ink. Thereafter, catalyst ink was applied to a Teflon (registered trademark) sheet so that the amount of platinum was 0.4 mgZcm 3 to obtain catalyst sheet B.
  • Teflon registered trademark
  • a catalyst sheet A produced in the same manner as in Example 31 was converted into a naphthion (registered trademark) 211 membrane. Place catalyst sheet B on the power side (fuel electrode side) on the power sword side (air electrode side) and hot-press the catalyst sheet A and B for 10 minutes at 2 MPa, 132 ° C, respectively.
  • CCM was obtained by transferring to 211 membranes and forming an electrode catalyst layer. After sandwiching the CCM to the gas diffusion layer, nipping by separator over data and the current collector plate, the catalyst area is to prepare a single cell of 5 X 5 cm 2.
  • TEC10E50E manufactured by Tanaka Kikinzoku was used as the platinum-supporting carbon, and a 5 wt% Nafion (registered trademark) solution manufactured by Dubon was used as the electrolyte binder.
  • the platinum-supporting carbon was sufficiently moistened with water, the electrolyte binder was covered, and isopropyl alcohol was covered to disperse the platinum-supporting carbon and the electrolyte binder in isopropyl alcohol. After that, the mixture was homogenized for 3 hours with a homogenizer and homogenized, and then defoamed to obtain a catalyst ink. Thereafter, two catalyst sheets were prepared by applying catalyst ink to a Teflon (registered trademark) sheet so that the amount of platinum was 0.4 mgZcm 3 .
  • the catalyst sheet is placed on the fuel electrode side and the air electrode side of the naphthion (registered trademark) 211 membrane, respectively, and hot pressed at 2 MPa, 132 ° C for 10 minutes to form the catalyst sheet on the naphthion (registered trademark) 211 membrane.
  • CCM was obtained by transferring the electrode catalyst layer. After sandwiching the gas diffusion layer CCM, nipping separators and collector plates, the catalyst area is to prepare a single cell of 5 X 5 cm 2.
  • FIG. 22 shows the results of the single cell accelerated durability test.
  • OCV was about 0.95 V after the start of the test, and OC V dropped to about 0.9 V after 5 hours.
  • Comparative Example 6 in which NHPI was not added to the electrocatalyst layer, the OCV decreased after 18 hours from the start of the test, and although it was not shown in FIG.
  • Example 31 in which NHPI was added to the fuel electrode side, the OCV was maintained at about 0.9 V until 29 hours, and power generation continued until 80 hours.
  • Example 32 with NHPI on the air electrode side the OCV was maintained at about 0.9 V until 22 hours passed, and power generation continued until 50 hours.
  • NHPI acts as a redox catalyst by repeating the acid-oxidation reduction cycle, and by removing the redox cycle, intermediate organisms such as hydrogen peroxide generated at the electrode are removed. This is thought to have led to improvements in This effect is more prominent in Example 31 where NHPI was added to the fuel electrode side. It was. As described above, it was proved that the combined use of platinum with a compound having a redox cycle can improve the power generation durability time.
  • the amount of NHPI added to adjust NHPI to 1.8 wt% is not particularly limited.
  • any compound having a redox action is not limited to NHPI, and other compounds can be used. When used, it is important that this compound is uniformly dispersed in the platinum-supported carbon.
  • any solvent that increases the solubility of the powerful oxygen reduction catalyst using isopropyl alcohol as a solvent for dispersing the compound is not limited to isopropyl alcohol, and other organic solvents can be used.
  • the concentration of the oxygen reduction catalyst present in the platinum-supported carbon formed after the drying treatment is preferably in the range of 0.001 to 30 wt%. When the amount is less than 001 wt%, the effect of the oxygen reduction catalyst may not be fully exhibited. This is preferable because of the induction of side reactions.
  • Japanese Patent Application No. 2004-203147 (Application No .: July 9, 2004), Japanese Patent Application No. 2004-258507 (Application Date: September 6, 2004), Japanese Patent Application No. 2004-355268 (Application Date: December 8, 2004), Japanese Patent Application No. 2005-157449 (Application Date: May 30, 2005) and Japanese Patent Application No. 2005-172229 (Application Date: June 13, 2005) Incorporated.
  • the amount of platinum used for the electrode is used because the antioxidant present in or in contact with the electrode functions as a catalyst for promoting the four-electron reduction reaction of oxygen. Can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

 本発明の燃料電池システムは、電極5、6と、この電極5、6に内在もしくは接触し、活性酸素を不活性化する抗酸化剤と、を有する燃料電池1を備えることを特徴とする。

Description

明 細 書
燃料電池システム及び電極用組成物
技術分野
[0001] 本発明は、燃料電池システム及び電極用組成物に関し、より詳細には、燃料電池 システム、電極用組成物、電極、空気極用組成物、燃料電池用空気極、燃料電池及 び燃料電池車両に関する。
背景技術
[0002] 昨今のエネルギー資源問題、 CO排出に伴う地球温暖化問題の解決する手段とし
2
て、燃料電池技術が注目されている。燃料電池は電池内で水素、メタノール、または その他の炭化水素等の燃料を電気化学的に酸化することにより、燃料の化学エネル ギーを直接電気エネルギーに変換して取り出すものである。このため、燃料電池は、 火力発電、自動車等の内燃機関において、燃料の燃焼による NOや SOなどの発
X X
生がな!、ため、クリーンな電気エネルギー源として注目されて 、る。
[0003] 燃料電池にはいくつかの種類がある力 中でも固体高分子型燃料電池 (PEFC)が 最も注目され開発が進められている。 PEFCは、(1)低温作動性であるため起動-停 止が容易、(2)理論電圧や理論変換効率が高い、(3)電解質に液相が存在しないた めセル構造が縦型等の柔軟な設計が可能である、(4)イオン交換膜 Z電極界面で は三相界面の制御により電流を多く取り出せることができ高出力密度が得られる、等 の利点を有している。
[0004] 燃料電池の作動原理は、燃料極 (負極)での H酸化と、式 (A1)に示す空気極で
2
の分子状酸素(O )の 4電子還元による水の生成と 、う 2つの電気化学的過程力 成
2
り立っている。
[0005] O +4H+ + 4e"→2H O · · ·式 (A1)
2 2
この反応は 100[%]の収率で起こるわけではなぐ副反応が同時に起こっている。 その代表的なものは酸素の 2電子還元反応であり、酸素の 2電子還元反応により例 えば式 (A2)に示す過酸化水素等の活性酸素が発生する (新エネルギー,産業技術 総合開発機構 委託先 京都大学工学研究科, 「平成 13年度成果報告書、固体高 分子形燃料電池の研究開発、固体高分子形燃料電池の劣化要因に関する研究、 劣化要因に関する基礎研究(1)電極触媒 Z電解質界面の劣化要因」,平成 14年 3 月, P.27)。
[0006] O + 2H+ + 2e"→H O · · ·式 (A2)
2 2 2
酸素の 2電子還元反応により活性酸素が発生すると、空気極で使われている白金 担持カーボンが活性酸素により酸ィ匕されるため、空気極のカーボンが消費されて、触 媒である白金上での酸素の活性ィ匕速度が低下する可能性がある。
[0007] 触媒として使用している白金は、他の金属に比べて電気化学的荷電圧が低ぐ常 温付近から燃料電池の電気化学反応、即ち酸素の水までへの 4電子還元反応を触 媒することができる唯一の金属である。しかし、起動停止操作における高電位や高温 にさらされることにより、白金の粒子径が増大して触媒活性が低下する可能性もある。
[0008] PEFCでは、一般的にパーフルォロスルホン酸系カチオン交換膜であるナフイオン
(登録商標)膜が使用されている。パーフルォロスルホン酸系ポリマーは、燃料電池 の空気極、すなわち、正極で発生する活性酸素に対して耐性をもつ膜として開発さ れた経緯がある。しかし、長期に渡る耐久試験の結果によると、まだ十分な耐性があ るとは言えな 、状況である。その原因として前述の空気極における酸素の 2電子還元 による過酸ィ匕水素の生成があげられる。過酸ィ匕水素は酸ィ匕カは弱いが、安定してい て寿命が長い。そして、過酸化水素は反応式 (A3)、 (A4)に従って分解し、分解す る際に、例えばヒドロキシラジカル( · OH)、ヒドロペルォキシラジカル( · OOH)などの ラジカルが発生する。これらのラジカルの中でも特にヒドロキシラジカルは強 、酸化力 を有しており、長期の使用により電解質膜として使用されているパーフルォロスルホ ン化ポリマーでさえも分解する可能性がある。
[0009] H O→2 · OH · · ·式 (A3)
2 2
Η Ο→·Η+ ·ΟΟΗ …式 (Α4)
2 2
電解質膜中に Fe2+、 Ti3+、 Cu+などの遷移金属の低原子価のイオンが存在する場 合には、過酸ィ匕水素がこれらの金属イオンにより 1電子還元されて、ヒドロキシラジカ ルを生じるハーバーワイス(Haber-Weiss)反応が起こる。ヒドロキシラジカルは、活性 酸素の中で最も反応性に富み、酸ィ匕力が非常に強いことが知られている。なお、金 属イオンが鉄イオンの場合には、ハーバーワイス反応は式 (A5)に示すフェントン (Fe nton)反応として知られて!/、る。
[0010] Fe2+ + H O→Fe3+ + OH— + ·ΟΗ · · ·式 (Α5)
2 2
電解質膜中に金属イオンが混入すると、ハーバーワイス反応により電解質膜の中で 過酸ィ匕水素がヒドロキシラジカルへと変化し、このヒドロキシラジカルにより電解質膜 が劣化するおそれがある。
[0011] 電解質膜は酸性であるため、触媒として使用する元素は化学的に安定な貴金属を 用いないと PEFCが成立しない。また、 4電子還元反応では最も高い電位で酸素を 還元することになるため、ここで使用する触媒は酸ィ匕力の強い酸化剤である必要が ある。これらの理由により、触媒である白金を代替するのは困難とされている。しかし、 白金は高価である上、現状の燃料電池システムでは lkW当たり lgの白金が必要とさ れている。このため、仮に排気量 2000cc級の自動車の出力を lOOkWとし、これ相 当の燃料電池自動車 (FCV)を例に換算すると、 FCV1台あたり lOOgの白金が必要 となりコストがかかる (太田健一郎、他 1名監修, 「燃料電池自動車の開発と材料」,株 式会社シーエムシー出版, 2002年 12月, p.21)。このように、電極に使用する白金 量の低減または白金の代替触媒の開発は重要である。
[0012] 白金の代わりに使用する触媒として、例えばコバルトサレン化合物を使用した触媒( 特開 2000 - 251906号公報)、炭化タングステンを使用した触媒 (特開 2003— 117 398号公報)が提案されている。また、ヒドロキシラジカルによる電解質膜の酸ィ匕を阻 止する方法として、例えば、フエノール性水酸基を有する化合物を電解質膜に配合し 、過酸ィ匕物ラジカルをトラップして不活性ィ匕する方法が提案されている(特開 2000— 223135号公報)。また、電解質膜に、フエノール化合物、アミンィ匕合物、ィォゥ化合 物、燐化合物等を酸化防止剤として配合することにより、発生したラジカルを消去す る方法が提案されている(特開 2004— 134269号公報)。更に、電解質膜の炭素— フッ素結合より小さい結合エネルギーを有する分子を電解質膜に隣接するように配 置された触媒層に含有させ、この分子がヒドロキシラジカルに対して優先的に反応す ることにより電解質膜を保護する方法が提案されている (特開 2003— 109623号公 報)。 発明の開示
[0013] し力しながら、コバルトサレンィ匕合物を使用した触媒は酸性媒体中では活性が低下 するため、電解質膜をナフイオン (登録商標)膜等のカチオン交換膜からァ-オン交 換膜へ変更しなければならない。また、炭化タングステンは未だ白金の性能を超える レベルには達しておらず、白金の代わりに 4電子還元反応触媒として使用することは 困難である。
[0014] また、ヒドロキシラジカルが発生する可能性が高い空気極の三相界面付近には酸 素及び電極触媒である白金が存在して化合物が酸化されやす 、環境であるため、 上記のように電解質膜に酸化を防止する化合物を含有させるだけの方法では、その 化合物もヒドロキシラジカルの有無に関わらず酸化されて消失する可能性があり効率 が悪い。また、化合物がヒドロキシラジカルとの反応により不安定なラジカルまたは過 酸化物となって新たな酸化反応の開始剤となり、電解質膜劣化を引き起こす可能性 がある。
[0015] 本発明は上記問題点に鑑みてなされたものであり、その目的は、耐久性に優れた 燃料電池システム、及び、白金の代替となる触媒を含む電極用を提供することにある
[0016] 第 1の発明である燃料電池システムは、電極と、前記電極に内在もしくは接触し、活 性酸素を不活性化する抗酸化剤と、を有する燃料電池を備えることを特徴とする。
[0017] 第 2の発明である電極用組成物は、酸素の酸化還元電位よりも低い電位で還元剤 として働き、かつ、水素及び水素イオンの酸ィ匕還元電位よりも高い電位で酸化剤とし て働く酸化還元サイクルを有する化合物を酸素還元触媒として含有することを特徴と する。
[0018] 第 3の発明である電極は、第 2の発明である電極用組成物を有することを特徴とす る。
[0019] 第 4の発明である空気極用組成物は、第 2の発明である電極用組成物を有すること を特徴とする。
[0020] 第 5の発明である燃料電池用空気極は、第 4の発明である空気極用組成物を有す ることを特徴とする。 [0021] 第 6の発明である燃料電池は、第 3の発明である電極を備えることを特徴とする。
[0022] 第 7の発明である燃料電池車輛は、第 1の発明である燃料電池システムが搭載され たことを特徴とする。
図面の簡単な説明
[0023] [図 1]図 1は、本発明に係る燃料電池システムの実施の形態を説明する概略的な説 明図である。
[図 2]図 2は、本発明に係る燃料電池システムを構成する燃料電池の単セルを示す 分解斜視図である。
[図 3]図 3は、単セルを構成する膜電極接合体における物質の移動を説明する説明 図である。
[図 4]図 4は、空気極における三相界面を示す模式図である。
[図 5]図 5は、 NHPIにより活性酸素を不活性ィ匕するメカニズムを表す説明図である。
[図 6]図 6は、 NHGIにより活性酸素を不活性ィ匕するメカニズムを表す説明図である。
[図 7]図 7は、化合物の一例を示す模式図である。
[図 8]図 8は、化合物の一例を示す模式図である。
[図 9]図 9は、化合物の一例を示す模式図である。
[図 10]図 10は、化合物の一例を示す模式図である。
[図 11]図 11は、 TEMPOにより活性酸素を不活性ィ匕するメカニズムを表す説明図で ある。
[図 12]図 12は、酸素、活性酸素、水素等が、酸化剤又は還元剤として働くときの酸化 還元電位を示す説明図である。
[図 13]図 13は、 NHPIの、燃料電池正極における酸素還元メカニズムを表す模式図 である。
[図 14]図 14は、 NHPIの電極反応におけるサイクリックボルタモグラムである。
[図 15]図 15は、 NHGIの、燃料電池正極における酸素還元メカニズムを表す模式図 である。
[図 16]図 16は、 TEMPOの、燃料電池正極における酸素還元メカニズムを表す模式 図である。 [図 17]図 17は、 TEMPOの電極反応におけるサイクリックボルタモグラムである。
[図 18]図 18は、実施例 1で作製した燃料電池単セルの起動停止繰り返し耐久試験 の電流 電圧曲線の初期値と、耐久後の電流 電圧曲線を示すグラフである。
[図 19]図 19は、実施例 13及び比較例 3で得られた単セルを用 、て燃料電池を作製 した時の電流 電位曲線の初期値と発電状態優劣の判定基準を表す模式図である
[図 20]図 20は、 NHPI及び TEMPOの安定性試験の結果を表すグラフである。
[図 21]図 21は、(a) NHPIが加水分解することを示す反応式である。 (b) PROXYL が加水分解しな ヽことを示す図である。(c) TEMPOが加水分解しな ヽことを示す図 である。
[図 22]図 22は、単セル促進耐久性試験の結果を表すグラフである。
発明を実施するための最良の形態
[0024] 以下、本発明に係る燃料電池システム及び電極用組成物の詳細を実施の形態に 基づいて説明する。
[0025] (燃料電池システム)
本発明の実施の形態にカゝかる燃料電池システムは、電極と、この電極に内在もしく は接触し、活性酸素を不活性化する抗酸化剤と、を有する燃料電池を備えることを特 徴とする。本発明の一例として、電解質膜に固体高分子電解質膜を使用した固体高 分子電解質型の燃料電池システムをあげる。図 1は本発明に係る燃料電池システム の実施の形態を説明する概略的な説明図である。本実施の形態に係る燃料電池シ ステムは、図 1に示すように、燃料電池 1と、燃料電池 1の外部に配置されており、この 燃料電池 1に活性酸素を不活性ィ匕する抗酸化剤を燃料電池 1に供給して燃料電池 1 の電極に接触させる抗酸化剤供給系 11とから大略構成されて 、る。
[0026] 図 1に示すように、本実施の形態に係る燃料電池システムを構成する燃料電池 1は 、電気化学反応により発電を行う基本単位となる単セル 2を複数積層して構成されて おり、積層後に両端部にエンドフランジ (不図示)を配置し、外周部を締結ボルト (不 図示)により締結して構成された燃料電池スタック(不図示)を含む。単セル 2は、固 体高分子電解質膜 4と、固体高分子電解質膜 4を挟持する空気極 5及び燃料極 6と を備えた膜電極接合体 3と、この膜電極接合体 3の空気極 5側に配置され膜電極接 合体 3との間に空気流路 8を画成する空気極側セパレータ 7と、膜電極接合体 3の燃 料極 6側の面に配置され、膜電極接合体 3との間に燃料ガス流路 10を画成する燃料 極側セパレータ 9と、を備えている。
[0027] 単位セル 2に用いる固体高分子電解質膜 4としては、スルホン酸基を有するパーフ ルォロカーボン重合体膜 (商品名;ナフイオン (登録商標) 112、米国デュポン社)な どを使用することができる。そして、固体高分子電解質膜 4の一方の面に空気極 5、 他方の面に燃料極 6として白金触媒担持カーボンの触媒層がそれぞれ接合されて膜 電極接合体 3が形成されて ヽる。
[0028] 空気極側セパレータ 7及び燃料極側セパレータ 9は、カーボンや金属をプレート状 に成形し、その表面にガス流路及び冷却水流路が形成されたものである。空気流路 8は空気極 5と空気極側セパレータ 7との間に形成されており、空気極 5に反応ガスで ある空気の供給を行う。燃料ガス流路 10は燃料極 6と燃料極側セパレータ 9との間に 形成されており、燃料極 6に反応ガスである水素の供給を行う。なお、燃料ガス流路 1 0は燃料ガスを加湿することにより水分の補給通路として、また、空気流路 8は生成し た水の除去通路としても機能する。なお、各セパレータ 7、 9と各電極 5、 6との間には 、例えばカーボンぺーパやカーボン不織布等により形成されたガス拡散層を適宜配 置する。
[0029] 上記構成の固体高分子電解質型燃料電池 1の各単セル 2において、空気流路 8及 び燃料ガス流路 10に空気及び水素ガスが各々供給されると、空気及び水素ガスが それぞれ空気極 5及び燃料極 6側に供給され、式 (B1)及び (B2)反応が起こる。
[0030] 燃料極側: H →2H+ + 2e" · · ·式(Bl)
2
空気極側:(1Z2)0 + 2H+ + 2e"→H O · · ·式(B2)
2 2
図 3に示すように、燃料極 6側に水素ガスが供給されると、式 (B1)の反応が進行し て H+ (プロトン)と e— (電子)とが生成する。 H+は、水和状態で固体高分子電解質膜 4 内を移動して空気極 5側に流れ、空気極 5側では、 H+と e—と供給された空気中の酸素 ガスとにより式 (B2)の反応が進行して水が生成する。この際に、燃料極 6で生成した 電子が図 3に示す外部回路 17を介して空気極 5へ移動することにより起電力が得ら れる。
[0031] このように、空気極 5での反応は、分子状酸素(O )の 4電子還元による水の生成で
2
ある。この酸素の 4電子還元の他に副反応が同時に起こり、酸素の 1電子還元体であ るスーパーォキシド(O _)、スーパーォキシドの共役酸であるヒドロペルォキシラジカ
2
ル(·ΟΟΗ)、 2電子還元体である過酸ィ匕水素(H Ο ) , 3電子還元体であるヒドロキ
2 2
シラジカル(·ΟΗ)などの活性酸素が発生する。各活性酸素の発生メカニズムは、そ れぞれ式 (Β3)〜(Β7)に示す複数の素反応過程を経由する複合反応と推察される
[0032] O +e"→0 " · · ·式(B3)
2 2
O " + Η+→·ΟΟΗ …式(Β4)
2
O + 2H+ + 2e"→H O …式(B5)
2 2 2
H O +H+ + e"→H 0+ -OH · · '式(B6)
2 2 2
H O→2·ΟΗ · · ·式(Β7)
2 2
発生した活性酸素は、式 (Β8)〜(Β10)の素反応過程を経由し、最終的には水に 還元されると推察される。なお、 Εは標準酸化還元電位 (Normal Hydrogen Electrod e ;NHE)で表している。
[0033] -OOH + H+ + e"→H O E°= l. 50V · · ·式(B8)
2 2
H O + 2H+ + 2e"→2H O E°= l. 77V · · ·式(B9)
2 2 2
•OH + H+ + e"→H O E° = 2. 85V …式(BIO)
2
ここで問題となるのは、酸化還元電位が 2. 85Vと高く、酸ィ匕力の強いヒドロキシラジ カルである。ヒドロキシラジカルは、活性酸素の中で最も反応性が高く寿命が百万分 の一秒と非常に短い。また、酸ィ匕カも強い。このため、速やかに還元しないとヒドロキ シラジカルは他の分子と反応する。燃料電池で問題となって 、る酸ィ匕劣化のほとんど 力 このヒドロキシラジカルが原因であると推察されている。このヒドロキシラジカルは、 燃料電池が発電している間、式 (B3)〜(B7)を経由して発生し続ける。一方、ヒドロ ペルォキシラジカル及び過酸ィ匕水素は、ヒドロキシラジカルと比較すると酸ィ匕力が弱 いが、水に還元される過程でヒドロキシラジカルを経由する可能性がある。このように 、ヒドロキシラジカルの発生は、固体高分子電解質型燃料電池で発電している限り半 永久的に続くものである。このため、ヒドロキシラジカルを不活性ィ匕する化合物を連続 的に固体高分子電解質型燃料電池に供給しなければ、発生し続けるヒドロキシラジ カルにより固体高分子電解質膜が劣化するおそれがある。本実施の形態に係る燃料 電池システムでは、燃料電池 1の外部に設けた抗酸化剤供給系 11により、抗酸化剤 を固体高分子型燃料電池 1に供給するため、燃料電池 1で発電を続け、活性酸素が 発生し続けている状態であっても、燃料電池の外部から燃料として働く水素、または 水素イオンとは別に燃料電池反応に関与しない抗酸化剤により確実に活性酸素を不 活性化して消去することができるため、固体高分子電解質膜の劣化を防ぐことができ る。また、抗酸化剤が酸化されやすい環境であっても外部から抗酸化剤を供給する ため活性酸素を不活性化する効率が落ちな ヽ。
活性酸素の発生は、固体高分子電解質型の燃料電池で発電している限り半永久 的に続くため、抗酸化剤は、空気極又は燃料極力ゝら抗酸化剤溶液として連続的に供 給することがより効果的である。望ましくは、燃料電池 1の燃料極 9側から供給すること が好ましい。抗酸化剤を燃料極 9側力も供給する場合には、例えば、図 1に示すよう に、抗酸化剤供給系 11を、抗酸化剤溶液が封入されている抗酸化剤溶液タンク 12 と、抗酸化剤溶液を燃料電池 1の燃料極 6側へ供給する送液ポンプ 13と、抗酸化剤 溶液タンク 12と送液ポンプ 13とを接続する抗酸化剤溶液管路 14と、送液ポンプ 13と 燃料ガス流路 10とを接続するた抗酸化剤供給管路 15とから構成する。上記したよう に、燃料電池 1の空気極側セパレータ 7及び燃料極側セパレータ 9の表面には、反 応ガスである空気や水素の供給を行うための空気流路 8及び燃料ガス流路 10がそ れぞれ形成されている。各反応ガスは、図 2に示す燃料電池システムを構成する燃 料電池の単セルの分解斜視図のように、バブラ (不図示)により加湿された状態で空 気流路 8及び燃料ガス流路 10を通過する。この際に、抗酸化剤溶液を、送液ポンプ 13の駆動力により抗酸化剤溶液タンク 12から抗酸化剤溶液管路 14及び溶液供給 管路 15を介して燃料ガス流路 10に供給する。燃料ガス流路 10に供給された抗酸ィ匕 剤溶液は、図 3に示す単セルを構成する膜電極接合体における物質の移動を説明 する説明図のように、燃料極 6側から固体高分子電解質膜 4に拡散して空気極 5側に 移動する。そして、抗酸化剤は濃度勾配に従って均一に空気極 5に分散される。 [0035] このように、抗酸化剤を抗酸化剤溶液として燃料極 6側カゝら供給する方が好ま ヽ 理由としては、ヒドロキシラジカル等の活性酸素が発生する可能性が高いのは空気 極の三相界面付近であることがあげられる。図 4に示す空気極における三相界面を 示す模式図のように、空気極の三相界面付近は、空気中の酸素及び電極触媒であ る白金が存在する非常に酸化されやすい環境である。このため、抗酸化剤を空気極 力も導入した場合には、抗酸化剤自体が空気極の三相界面でヒドロキシラジカルの 有無にかかわらず酸化されて消失する可能性があり、活性酸素の不活性ィ匕効率が 低下する可能性がある。
[0036] また、上記したように、空気極側セパレータ 7の空気流路 8は生成した水の除去通 路としても機能する。このため、過剰に供給され不用となった抗酸化剤や、活性酸素 を不活性化して酸化体となった抗酸化剤を三相界面上の触媒によって酸化させて C O、 H Oまたは N等とした後に、生成水と同時に図 1に示す排出管 16より排出させ
2 2 2
ることができる。このため、抗酸化剤が活性酸素との反応により酸化体、不安定なラジ カルまたは過酸ィ匕物となり、新たな酸ィ匕反応の開始剤となって電解質膜劣化を引き 起こすことを防ぐことができる。
[0037] なお、抗酸化剤溶液を調整する際には、空気極に均一に分散させるために難溶で もかまわないが溶媒に溶解することが重要である。不溶の場合には、水素ラジカルの 出入りが不可能となり活性酸素を不活性ィ匕する効果が十分に発揮されない。このた め、抗酸化剤が溶解する溶媒を選ぶことが必要であり、必要に応じて有機溶媒単独 、または有機溶媒と水との混合溶媒を用いる。そして、有機溶媒を使用する場合には 、発電性能に影響を与えないことを予め確認する必要がある。このため、抗酸化剤が 溶解可能であれば水溶液とすることが発電性能の点から好ましい。
[0038] また、抗酸化剤は、炭素、酸素、窒素及び水素の 4元素から構成される炭化水素系 化合物であることが好ましい。炭素、酸素、窒素及び水素以外の他の元素は、電極 中の白金を被毒して燃料電池の発電性能を阻害する可能性がある。また、卑金属元 素の場合には、ヒドロキシラジカルの発生を促進させる可能性がある。さらに、抗酸ィ匕 剤を空気極で酸化させて排出させる場合を考慮すると、炭素、酸素、窒素及び水素 の 4元素のみ力 構成され、 CO、 H Oや Nに分解される炭化水素系化合物である ことが好ましい。ヒドロキシラジカルの酸ィ匕還元電位は非常に高いため、上記 4元素 力も構成される炭化水素系化合物の大部分は、熱力学的にヒドロキシラジカルに対し て還元剤として働くと考えられる。また、各化合物は、速度論的に還元能力に差があ ると考えられる。そして、ヒドロキシラジカルの高い反応性を考慮すると、抗酸化剤の 不活性化反応は速度論的に速い方が好ましい。また、抗酸化剤が酸化された酸ィ匕 体、すなわち、活性酸素により酸化されて得られる化合物の安定性も重要である。抗 酸化剤の酸化体が不安定であると、酸化された物質が新たな副反応の開始剤となり 、電解質膜の劣化を促進する可能性があるためである。このため、比較的速度論的 に速ぐ酸ィ匕体が化学的に安定な化合物として、例えばイソプロパノール、 2—ブタノ ール、シクロへキサノール等ヒドロキシル基を有する第二級アルコール系化合物、フ ェノール類、フエノール、クレゾール、ピクリン酸、ナフトール、ヒドロキノン等ヒドロキシ ル基を有する芳香族、ジォキサン、テトラヒドロフラン、ベンジルメチルエーテル等の エーテル系化合物、プロピルァミン、ジェチルァミン、ァセトアミド、ァ-リン、 N—ヒド 口キシ系化合物等の含窒素系化合物があげられる。
[0039] このような化合物を選択するにあたり重要なことは、化合物が安定性、耐久性、耐 熱性を有することである。特に、化合物の安定性及び耐久性は、活性酸素を不活性 化し続けて燃料電池を長期にわたって使用する意味において最も重要である。また 、抗酸化剤の酸化体の加水分解物も化学的に安定であることがより好ましい。抗酸化 剤の安定性は、抗酸化剤を燃料極に供給して空気極で排出される間安定であれば 活性酸素を不活性ィ匕する効果を得ることが可能である。一方、上記したように活性酸 素を不活性ィ匕して不用となった場合に生成水と同時に排出させることを考慮すると、 抗酸化剤の加水分解物がラジカルを生成することがなく安定している方がシステムを 長期間運転させる上で好ましい。また、燃料電池の定常状態の運転温度が 80〜90 °C、将来電解質膜の耐熱性が向上することを考慮すると、抗酸化剤は 120°C位の温 度まで安定である耐熱性を有する必要がある。
[0040] 活性酸素を不活性ィ匕する化合物としては、少なくとも速やかにヒドロキシラジカルに より酸化される酸化電位 2. 85V以下の化合物であることが好ましい。より好ましくは 酸化されるだけではなぐ酸化された酸化体が還元されることにより元の形に戻る酸 化還元サイクルを有する酸化還元可逆性を示すものが好ま Uヽ。その酸化還元電位 は、 0. 68V (NHE)より大きくかつ 1. 77V (NHE)より小さいことが好ましい。 0. 68V (NHE)は過酸ィ匕水素が還元剤として働く電位であり、この電位以上とすることにより 化合物の酸化体が過酸化水素を酸化して化合物は元の形に戻る。一方、 1. 77V( NHE)は、過酸化水素が酸化剤として働く電位であり、これ以上の高い酸ィ匕電位の 場合には化合物の酸化体が新たな酸化剤として作用し、電解質膜等を酸化する場 合がある。
[0041] 化合物の酸化力を低減させるため酸化還元電位が 1. OOV以下であることがより好 ましい場合がある。電解質膜としてフッ素系膜を使用する場合は、フッ素系電解質膜 が酸ィ匕を受ける電位は 2. 5V以上であるため 1. 77Vの酸化力では電解質膜は酸化 されず問題はない。一方、電解質膜として炭化水素系電解質膜を使用する場合には 、添加する化合物の酸ィ匕還元電位が 1. OOVより高くなると炭化水素系電解質膜を 酸化される可能性がある。代表的な有機化合物で代用して考えてみると、ベンゼンは 2. OOV、トルエンは 1. 93V、キシレンは 1. 58Vで酸化され、フッ素系電解質膜に比 較すると低い酸化還元電位で酸化される。このため、酸化還元電位を 1. OOV以下と することにより、炭化水素系膜を使用した場合にも電解質膜が酸化されることがなく長 期に渡って使用が可能となる。なお、実際の酸ィ匕還元電位 (Real Hydrogen Electrod e ;RHE)は pH、温度などの諸条件によって変化するので、それに合わせた範囲のも のを用いることが好ましい。
[0042] 酸化還元可逆性を有することは、次の理由により重要である。燃料電池で発電しな がら酸化防止を行う場合、電解酸化も考慮しなければならない。活性酸素を水へ還 元する化合物を抗酸化物質として電極側から電解質へ供給すると、抗酸化物質は電 極で電解酸化され、電解質内に酸化された状態で入る可能性がある。特に、固体高 分子型燃料電池の理論電圧である 1. 23V (NHE)以下の化合物は、電解質に入る 前に電解酸化される可能性が大きい。可逆的な酸ィ匕還元能を示さない化合物の場 合には、この化合物が電解酸化された時点で抗酸化物質としての機能を失うことにな る。化合物が可逆的な酸ィ匕還元能を示す場合には、例えば過酸化水素を還元剤と して再生されて還元体となり、再び抗酸化物質としての機能を有する。こうした観点か らも、抗酸化剤として供給する化合物が可逆的な酸化還元能を有する場合には、抗 酸化剤の供給量を低減することが可能となる。また、可逆的な酸化還元能を有する 抗酸化剤であれば、積極的に電解酸化させることにより、過酸化水素をヒドロキシラジ カル経由せずに不活性化する手法、つまり過酸化水素の間接電解も成立し、活性酸 素をより効果的に不活性ィ匕できる可能性もある。
[0043] 抗酸化剤は、次の一般式 (I)で表される化合物であることが好ましぐ更には、 R1及 び R2は互いに結合して二重結合、芳香環、又は非芳香族性の環を形成していること が好ましい。
[化 1]
R1
\
N-X
/
R2
(I)
[0044] ただし、 R1及び R2は同一又は異なる任意の置換基を、 Xは酸素原子又はヒドロキシ ル基を表す。
[0045] さらに、この抗酸化剤が、次のの一般式 (II)で表されるイミドィ匕合物であることが好 ましい。
[化 2]
, ·■· ··《0
: Yi N
、·"·♦
(II)
[0046] ただし、環 Y1は、二重結合を有する、芳香族性又は非芳香族性の 5〜12員環のうち Vヽずれか一種類の環を表す。
[0047] 上記した化合物を抗酸化剤として固体高分子型燃料電池に供給すると、式 (B11) に示す素反応により、効率的にヒドロキシラジカルを水へと還元して電解質膜の酸ィ匕 を抑制する。
[0048] >ΝΟΗ+ ·ΟΗ→>ΝΟ · +Η Ο · · ·式(Bl l)
2
また、水素供給により発生した N—ォキシルラジカル(>ΝΟ·)は、過酸化水素から 水素ラジカルを引き抜き、元のヒドロキシイミド(>ΝΟΗ)の形に回復する。
[0049] 2 ( >ΝΟ·) +Η Ο→2 ( >ΝΟΗ) +0 · · ·式(B12)
2 2 2
図 5に、ヒドロキシイミド基を有する化合物の代表例として Ν—ヒドロキシフタルイミド( ΝΗΡΙ)を、また、 ΝΗΡΙがラジカル化した ΝΗΡΙの酸化体としてフタルイミド Ν—ォキ シル (PINO)を示し、活性酸素であるヒドロキシラジカル及び過酸ィ匕水素を不活性ィ匕 するメカニズムを表す。図 5に示すように、 NHPIはヒドロキシラジカルに対して還元剤 として作用して PINOと水を生成し、 PINOは過酸ィ匕水素と反応して NHPIに戻る。こ の際、 PINOは過酸ィ匕水素に対して酸化剤として作用して、過酸化水素を酸素に不 活性化する。このように、 NHPIと PINOとの間で酸ィ匕還元サイクルが回ることにより、 抗酸化剤として何度でも使用することができるため、長期に渡り活性酸素を不活性ィ匕 することができ、耐久性能が維持された燃料電池システムを実現することが可能とな る。さらには、酸ィ匕還元サイクルが回ることにより、ヒドロキシラジカルを還元した後に 抗酸化剤が新たな副反応を引き起こす開始剤となることがない。
[0050] さらに、上記化合物は、一般式 (III)で表されるイミド化合物であることが好ましい。
[化 3]
Figure imgf000016_0001
[0051] ただし、 R3及び R4は同一又は異なり、それぞれ水素原子、ハロゲン原子、アルキル 基、ァリール基、シクロアルキル基、ヒドロキシル基、アルコキシル基、カルボキシル基 、アルコキシカルボ-ル基又はァシル基を、 Xは酸素原子又はヒドロキシル基を、 nは 1〜3の整数を表す。
[0052] 一般式 (III)で表される化合物において、置換基 R3及び R4のうちハロゲン原子は、 ヨウ素、臭素、塩素及びフッ素があげられる。アルキル基には、例えば、メチル、ェチ ル、プロピル、イソプロピル、ブチル、イソブチル、 sec ブチル、 tーブチル、ペンチ ル、へキシル、ヘプチル、ォクチル、デシル基などの炭素数 1〜10程度の直鎖状又 は分岐鎖状アルキル基があげられる。好ましくは炭素数 1〜6程度、より好ましくは炭 素数 1〜4程度の低級アルキル基があげられる。
[0053] また、ァリール基としては、例えばフエニル基、ナフチル基などがあげられ、シクロア ルキル基としては、シクロペンチル、シクロへキシル、シクロォクチル基などがあげら れる。アルコキシ基としては、例えば、メトキシ、エトキシ、プロポキシ、イソプロポキシ、 ブトキシ、イソブトキシ、 t—ブトキシ、ペンチルォキシ、へキシルォキシ基などの炭素 数 1〜10程度、好ましくは炭素数 1〜6程度、より好ましくは炭素数 1〜4程度の低級 アルコキシ基があげられる。
[0054] アルコキシカルボ-ル基としては、例えば、メトキシカルボ-ル、エトキシカルボ-ル 、プロポキシカルボニル、イソプロポキシカルボニル、ブトキシカルボニル、イソブトキ シカルボニル、 t ブトキシカルボニル、ペンチルォキシカルボニル、へキシルォキシ カルボ-ル基などのアルコキシ部分の炭素数が 1〜10程度のアルコキシカルボ-ル 基があげられる。好ましくはアルコキシ部分の炭素数が 1〜6程度、より好ましくは炭 素数が 1〜4程度の低級アルコキシカルボ-ル基があげられる。
[0055] ァシル基としては、例えば、ホルミル、ァセチル、プロピオ-ル、ブチリル、イソブチリ ル、バレリル、イソバレリル、ビバロイル基などの炭素数 1〜6程度のァシル基があげら れる。
[0056] なお、置換基 R3及び R4は、同一であっても又は異なって 、てもよ 、。また、上記一 般式 (III)で表される化合物において、 R3及び R4は互いに結合して二重結合、芳香 環、又は非芳香族性の環を形成していてもよい。そのうち、芳香環、又は非芳香族性 の環は、 5〜12員環のうちいずれか一種類の環を形成していることが好ましぐより好 ましくは 6〜10員環程度であり、複素環又は縮合複素環であってもよいが、炭化水素 環である場合が好ましい。
[0057] このような環としては、例えば、シクロへキサン環などのシクロアルカン環、シクロへ キセン環などのシクロアルケン環などの非芳香族性炭化水素環、 5—ノルボルネン環 などの橋力ゝけ式炭化水素環など非芳香族性橋かけ環、ベンゼン環、ナフタレン環な どの芳香環があげられる。なお、これらの環は、置換基を有していても良い。
[0058] また、一般式 (III)で表される化合物において、特に化合物の安定性、耐久性、電 解質膜への溶解性の観点から、より好ましいィ匕合物として、 R3及び R4が互いに結合 して芳香族性又は非芳香族性の 5〜12員環を形成したもの、 R3及び R4が互いに結 合して、置換基を有したもの、シクロアルカン環、置換基を有したもの、シクロアルケン 環、置換基を有したもの、橋かけ式炭化水素環、置換基を有したものを用いることが 可能である。
[0059] さらに、一般式 (III)で表される化合物は、特に化合物の安定性、耐久性、電解質 膜への溶解性の観点から、式 (IVa)〜 (IVf)で表される化合物であることがより好まし い。
[化 4]
Figure imgf000018_0001
(IVd)
[0060] ただし、 R3〜R6は同一又は異なって、それぞれ水素原子、ハロゲン原子、アルキル 基、ヒドロキシル基、アルコキシル基、カルボキシル基、アルコキシカルボ-ル基、ァ シル基、ニトロ基、シァノ基又はアミノ基を示し、 nは 1〜3の整数を表す。
[0061] 置換基 R3〜R6において、アルキル基には前述のアルキル基と同様のアルキル基 のうち特に炭素数 1〜6程度のアルキル基があげられ、アルコキシ基には前術と同様 のアルコキシ基のうち特に炭素数 1〜4程度の低級アルコキシ基があげられ、アルコ キシカルボ-ル基には前術と同様のアルコキシカルボ-ル基のうち特にアルコキシ 部分の炭素数が 1〜4程度の低級アルコキシカルボニル基があげられる。
[0062] また、ァシル基としては、前述と同様のァシル基のうち特に炭素数 1〜6程度のァシ ル基があげられる。ハロゲン原子としては、フッ素、塩素、臭素原子があげられる。な お、置換基 R3〜R6は、通常、水素原子、炭素数 1〜4程度の低級アルキル基、カル ボキシル基、ニトロ基、ハロゲン原子である場合が多い。
[0063] さらに、より好ましいイミドィ匕合物の形態としては、化合物の入手性、合成の容易性 、コストの観点から、 N—ヒドロキシコハク酸イミド、 N—ヒドロキシマレイン酸イミド、 N —ヒドロキシへキサヒドロフタル酸イミド、 N, N' —ジヒドロキシシクロへキサンテトラ力 ルボン酸イミド、 N—ヒドロキシフタル酸イミド、 N—ヒドロキシテトラブロモフタル酸イミ ド、 N—ヒドロキシテトラクロロフタル酸イミド、 N—ヒドロキシへット酸イミド、 N—ヒドロキ シハイミック酸イミド、 N—ヒドキシトリメリット酸イミド、 N, N' —ジヒドロキシピロメリット 酸イミド及び N, N' —ジヒドロキシナフタレンテトラカルボン酸イミドカ なる群力 選 択される少なくとも一種のイミド化合物であることが好ましぐこの化合物を触媒として 電解質膜中に共存させて用いることができる。なお、これらのイミド化合物は、慣用の イミド化反応、例えば、対応する酸無水物とヒドロキシルァミン NH OHとを反応させ
2
て酸無水物基を開環した後、閉環してイミドィ匕することにより調製することができる。
[0064] 一般式 (II)で表される化合物力 6員環の N—置換環状イミド骨格を有する一般式
(V)
で表される化合物でも良い。
[化 5]
Figure imgf000019_0001
[0065] ただし、 Xは酸素原子又はヒドロキシル基を表す。 R1〜R6は同一又は異なり、それ ぞれ水素原子、ハロゲン原子、アルキル基、ァリール基、シクロアルキル基、ヒドロキ シル基、アルコキシ基、カルボキシル基、置換ォキシカルボ-ル基、ァシル基又はァ シルォキシ基を表す。また、 R1〜R6のうち少なくとも二つが互いに結合して二重結 合、又は芳香族性若しくは非芳香族性の環を形成してもよい。この環のうち少なくとも 一つが N—置換環状イミド基を有して!/、ても良!、。
N—置換環状イミド骨格において、式 (B13)及び下式 (B14)に示すように 5員環及 び 6員環共に加水分解するが、 5員環よりも 6員環の方が加水分解が遅ぐ耐加水分 解'性が高い。
[化 6]
+ NH2OH …式(B13)
Figure imgf000020_0001
[化 7]
NH2OH …式(B14)
Figure imgf000020_0002
[0067] このため、 N—置換環状イミド骨格を有する化合物が 6員環の環状イミドの場合には、 酸ィ匕還元触媒として何度も使用可能であるため、さらに触媒使用量を減らすことが可 能となる。
[0068] なお、アルキル基には、例えば、メチル、ェチル、プロピル、イソプロピル、ブチル、 イソブチル、 sec—ブチル、 tーブチル、ペンチル、へキシル、ヘプチル、ォクチル、デ シル基などの炭素数 1〜10程度の直鎖状又は分岐鎖状アルキル基があげられる。 好ましくは炭素数 1〜6程度、より好ましくは炭素数 1〜4程度の低級アルキル基があ げられる。
[0069] また、ァリール基としては、フエニル基、ナフチル基などがあげられ、シクロアルキル 基としては、シクロペンチル、シクロへキシル、シクロォクチル基などがあげられる。ァ ルコキシ基としては、例えば、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ 、イソブトキシ、 t—ブトキシ、ペンチルォキシ、へキシルォキシ基などの炭素数 1〜10 程度、好ましくは炭素数 1〜6程度、より好ましくは炭素数 1〜4程度の低級アルコキ シ基があげられる。
[0070] アルコキシカルボ-ル基としては、例えば、メトキシカルボ-ル、エトキシカルボ-ル 、プロポキシカルボニル、イソプロポキシカルボニル、ブトキシカルボニル、イソブトキ シカルボニル、 t ブトキシカルボニル、ペンチルォキシカルボニル、へキシルォキシ カルボ-ル基などのアルコキシ部分の炭素数が 1〜10程度のアルコキシカルボ-ル 基があげられる。好ましくはアルコキシ部分の炭素数が 1〜6程度、より好ましくは炭 素数が 1〜4程度の低級アルコキシカルボ-ル基があげられる。
[0071] ァシル基としては、例えば、ホルミル、ァセチル、プロピオ-ル、ブチリル、イソブチリ ル、バレリル、イソバレリル、ビバロイル基などの炭素数 1〜6程度のァシル基があげら れる。
[0072] また、上記一般式 (V)で表される化合物において、 R1〜R6のうち少なくとも二つが 互 ヽに結合して二重結合又は芳香環若しくは非芳香族性の環を形成して 、てもよ ヽ 。そのうち、芳香環又は非芳香族性の環は、 5〜12員環のうちいずれか一種類の環 を形成していることが好ましぐより好ましくは 6〜10員環程度であり、この環は複素環 又は縮合複素環であってもよい。このような環としては、例えば、シクロへキサン環に 代表されるシクロアルカン環、シクロへキセン環などのシクロアルケン環などの非芳香 族性炭化水素環、 5—ノルボルネン環に代表される橋力ゝけ式炭化水素環など非芳香 族性橋かけ環、ベンゼン環、ナフタレン環などの芳香環があげられる。なお、これらの 環は、置換基を有していても良い。
[0073] また、一般式 (V)で表される化合物は、特に化合物の安定性、耐久性などの観点 から、一般式 (Via)又は (VIb)で表される化合物であることが好ま 、。
[化 8]
Figure imgf000022_0001
(Via) (VIb)
[0074] ただし、 R7〜R12は同一又は異なって、水素原子、アルキル基、ヒドロキシル基、ァ ルコキシル基、カルボキシル基、アルコキシカルボ-ル基、ァシル基、ニトロ基、シァ ノ基又はアミノ基を表す。
[0075] 一般式 (V)、 (Via)、又は (VIb)で表される化合物力 N ヒドロキシダルタル酸イミ ド、 N ヒドロキシ一 1, 8 ナフタレンジカルボン酸イミド、 N ヒドロキシ一 1, 8 デ カリンジカノレボン酸イミド、 N, N, 一ジヒドロキシ 1, 8;4, 5 ナフタレンテトラ力ノレ ボン酸イミド、 N, Ν'—ジヒドロキシ— 1, 8;4, 5 デカリンテトラカルボン酸イミド及び Ν, Ν', Ν"—トリヒドロキシイソシァヌル酸力 なる群力 選択される少なくとも一種 のイミド化合物であることが好まし 、。
[0076] 6員環の環状イミドは、慣用のイミド化反応、例えば、対応する 6員環の酸無水物とヒ ドロキシルァミン ΝΗ ΟΗとを反応させて酸無水物基を開環した後、閉環してイミドィ匕
2
することにより調製することができる。この 6員環の環状イミドは、 5員環の環状イミドと 同様に、電解質膜内に共存させることにより、式 (B15)、 (B16)に示す素反応が進 む。そして、ヒドロキシラジカルや過酸ィ匕水素が電解質膜内に進入した場合にのみ、 6員イミド環が水素ラジカルを供給し、効率的に過酸ィ匕水素を還元して電解質膜の酸 化を抑制する。
[0077] >ΝΟΗ+·ΟΗ→>ΝΟ·+Η Ο · · '式(B15)
2
2(>ΝΟΗ)+Η Ο →2(>ΝΟ·)+2Η Ο ···式(B16)
2 2 2
また、水素供給により発生した Ν ォキシルラジカル(>ΝΟ·)は、式 (Β17)〜(Β1 9)に示す素反応により、水素または過酸ィ匕水素力も水素イオンを引き抜き、元のヒド ロキシイミド( >ΝΟΗ)の形に回復する。
[0078] 2(>ΝΟ·)+Η → 2(>ΝΟΗ) ···式(B17) >ΝΟ· +Η +e"→>NOH · · ·式(B18)
2 ( >ΝΟ·) +Η Ο→2 ( >ΝΟΗ) +0 · · ·式(B19)
2 2 2
図 6に、ヒドロキシイミド基を有する化合物の代表例として Ν—ヒドロキダルタル酸イミ ド(NHGI)を、また、 NHGIがラジカル化した NHGIの酸化型としてグルタル酸イミド Ν—ォキシル(GINO)を示し、 NHGIのヒドロキシイミド基と、 GINOの N—ォキシルラ ジカルとの間でサイクルが回ることにより、長期に渡りヒドロキシラジカルや過酸ィ匕水 素を消失させるメカニズムを表す。すなわち、 NHGIは、ヒドロキシラジカルまたは過 酸化水素に対して還元剤として作用し、ヒドロキシラジカルまたは過酸ィ匕水素を水へ 還元する。一方、 GINOは過酸ィ匕水素に対して酸化剤として作用して、過酸化水素 を酸素へと酸化する。このようにして、 NHGIが GINOとの間で酸化還元サイクルがま わると同時に、過酸ィ匕酸素ゃヒドロキシラジカルが消失する。そして、 N—置換環状ィ ミド骨格において、 5員環よりも 6員環の方が加水分解が遅ぐ耐加水分解性が高い ため、 N—置換環状イミド骨格を有する化合物が 6員環の環状イミドの場合には、さら に触媒使用量を減らすことが可能となる。
[0079] 一般式 (I)で表される化合物力 一般式 (VII)で表される化合物であっても良い。
[化 9]
R1 NJ ,R14
C
\
N二 X
/
R2 (vii)
[0080] ただし、 R13及び R14はアルキル基、又は一部が任意の基で置換されたアルキル基 であり、 R13及び R14は鎖状、環状、又は分岐状でもよい。 R13及び R14が互いに 結合して環を形成していてもよぐ酸素及び窒素原子含んでもかまわない。一般式 (V II)で表される化合物を連続的に燃料電池に供給することにより、連続的に発生する 活性酸素を不活性化し、電解質膜の酸化を抑制する。この一般式 (VII)で表される化 合物において、置換基 R13及び R14として、例えば、メチル、ェチル、プロピル、イソ プロピル、ブチル、イソブチル、 sec—ブチル、 tーブチル、ペンチル、へキシル、ヘプ チル、ォクチル、デシル基などの炭素数 1〜10程度の直鎖状又は分岐鎖状アルキ ル基があげられる。好ましくは炭素数 1〜6程度、より好ましくは炭素数 1〜4程度の低 級アルキル基があげられる。
[0081] 一般式 (VII)で表される化合物が、一般式 (VIII)で表される化合物であることが好ま しい。
[化 10] l3
Ri \ I ノ Ri4
C \
N = X
/
C
ノ I \
R2 l5 Rl 6 (VIII)
[0082] ただし、 R13〜R16はアルキル基、又は一部が任意の基で置換されたアルキル基で あり、 R13〜R16は鎖状、環状、又は分岐状であってもよい。また、 R13と R14、又は R15と R16とが互いに結合して環を形成していてもよぐ酸素及び窒素原子含んでも かまわない。この一般式 (VII)で表される化合物において、置換基 R13〜R16として、 例えば、メチル、ェチル、プロピル、イソプロピル、ブチル、イソブチル、 sec—ブチル 、 tーブチル、ペンチル、へキシル、ヘプチル、ォクチル、デシル基などの炭素数 1〜 10程度の直鎖状又は分岐鎖状アルキル基があげられる。好ましくは炭素数 1〜6程 度、より好ましくは炭素数 1〜4程度の低級アルキル基があげられる。
[0083] 一般式 (VIII)で表される化合物力 一般式 (IX)で表される化合物であることが好まし い。
[化 11]
Figure imgf000025_0001
[0084] ただし、環 Y2は、 Rl 3と R14とが結合して 5員環又は 6員環のいずれかの環を形成し ている。このような環としては、例えばシクロへキサン環に代表されるシクロアルカン環 、シクロへキセン環に代表されるシクロアルケン環などの非芳香族性炭化水素環、 5 ノルボルネン環に代表される橋かけ式炭化水素環など非芳香族性橋かけ環、ベン ゼン環、ナフタレン環などの芳香環が含まれる。なお、これらの環は、置換基を有して いても良い。
[0085] 一般式 (IX)で表される化合物が、一般式 (X)で表される化合物であることが好ましい
[化 12]
Figure imgf000025_0002
[0086] ただし、 Zはアルキル基、ァリール基、アルコキシ基、カルボキシル基、アルコキシ力 ルポ二ル基、シァノ基、ヒドロキシル基、ニトロ基、アミノ基及び水素原子を含む置換 基からなる群から選択される一種の置換基を示す。 Zがアルキル基の場合には、一 部が任意の基で置換されたアルキル基であってもよぐ一部の基が鎖状、環状、また は分岐状であってもよぐ酸素及び窒素原子含んでもかまわない。 Zがァリール基の 場合には、一部が任意の基で置換されたァリール基であってもよぐ酸素及び窒素 原子含んでも力まわない。一般式 (X)で表される化合物は加水分解しにくいため、こ の化合物を燃料電池に連続的に供給することにより、連続的に発生する活性酸素を 不活性化し、電解質膜の酸ィ匕を抑制することが可能となる。
[0087] 置換基 Zにお!/、て、アルキル基には前述のアルキル基と同様のアルキル基のうち 特に炭素数 1〜6程度のアルキル基があげられ、ァリール基としてはフエ二ル基、ナフ チル基があげられる。アルコキシ基としては、前述のアルキル基と同様のアルコキシ 基のうち特に炭素数 1〜6程度のアルコキシ基があげられ、カルボキシル基としては、 例えば、炭素数 1〜4程度のカルボキシル基があげられる。アルコキシカルボ-ル基 としては、例えば、メトキシカルボ-ル、エトキシカルボ-ル、プロポキシカルボ-ル、 イソプロポキシカルボニル、ブトキシカルボニル、イソブトキシカルボニル、 t ブトキシ カルボ-ル、ペンチルォキシカルボ-ル、へキシルォキシカルボ-ル基などのアルコ キシ部分の炭素数が 1〜10程度のアルコキシカルボ-ル基があげられる。好ましくは アルコキシ部分の炭素数力^〜 6程度、より好ましくは炭素数が 1〜4程度の低級アル コキシカルボ-ル基があげられる。
[0088] この一般式 (X)で表される化合物の一例として、 TEMPO (2, 2, 6, 6—テトラメチル ピぺリジン 1ーォキシル)があげられる。 TEMPO及び一般式 (X)で表される化合物 の一例の模式図を図 7に示す。図 7(0に示す TEMPOは、可逆的な酸化還元サイク ルを有する化合物であり、最終的には活性酸素を不活性化する。
[0089] 一般式 (IX)で表される化合物が、一般式 (XI)で表される化合物であってもよい。
[化 13]
Figure imgf000026_0001
[0090] ただし、 Zはアルキル基、ァリール基、アルコキシ基、カルボキシル基、アルコキシ力 ルポ二ル基、シァノ基、ヒドロキシル基、ニトロ基、アミノ基及び水素原子を含む置換 基からなる群から選択される一種の置換基を表す。 Zがアルキル基の場合には、一 部が任意の基で置換されたアルキル基であってもよぐ一部の基が鎖状、環状、また は分岐状であってもよぐ酸素及び窒素原子含んでもかまわない。 Zがァリール基の 場合には、一部が任意の基で置換されたァリール基であってもよぐ酸素及び窒素 原子含んでも力まわな 、。 一般式 (IX)で表される化合物が、一般式 (XII)で表 される化合物であってもよ 、。
[化 14]
Figure imgf000027_0001
(XII)
[0091] ただし、 Zはアルキル基、ァリール基、アルコキシ基、カルボキシル基、アルコキシ力 ルポ二ル基、シァノ基、ヒドロキシル基、ニトロ基、アミノ基及び水素原子を含む置換 基からなる群から選択される一種の置換基を表す。 Zがアルキル基の場合には、一 部が任意の基で置換されたアルキル基であってもよぐ一部の基が鎖状、環状、また は分岐状であってもよぐ酸素及び窒素原子含んでもかまわない。 Zがァリール基の 場合には、一部が任意の基で置換されたァリール基であってもよぐ酸素及び窒素 原子含んでも力まわない。これらの化合物も一般式 (X)で表される化合物と同様に加 水分解しにくいため、この化合物を連続的に供給することにより、連続的に発生する 活性酸素を不活性化し、電解質膜の酸ィ匕を抑制することが可能となる。化合物が一 般式 (XI)又は一般式 (XII)で表される場合、各置換基は上記一般式 (X)で表される化 合物の置換基と同様のものが使用可能である。
[0092] 一般式 (XI)及び一般式 (XII)で表される化合物の一例の模式図を図 8〜図 10に示 す。一般式 (XI)及び一般式 (XII)で表される化合物の一例として、 PROXYL (2,2,5,5 -テトラメチルピロリジン- 1-ォキシル)や、 DOXYL (4, 4-ジメチルォキサゾリジン- 3- ォキシル)があげられる。これらの化合物も TEMPO同様に可逆的な酸ィ匕還元サイク ルを有し、活性酸素を不活性化する。
[0093] 図 11に、本実施の形態における燃料電池システムで使用する化合物の別の例に おける酸化還元のメカニズムを示す。ここでは、上記化合物の代表例として、 TEMP Oの酸化還元サイクルを示し、 TEMPOにより過酸化水素及びヒドロキシラジカルの 不活性ィ匕するメカニズムを示す。
[0094] 過酸化水素は式 (B9)及び式 (B20)に示すように、過酸化水素よりも酸化還元電 位の高 、物質に対しては還元剤として働く一方、過酸化水素よりも酸化還元電位の 低 、物質に対しては酸化剤として働くことが知られて 、る。
[0095] H O→0 + 2H+ + 2e" E°=0. 68V · · ·式(B20)
2 2 2
TEMPOは、可逆的な酸化還元サイクルを有する N—ヒドロキシイミド誘導体であり、 下式 (B21)、(B22)に示す素反応により酸化還元し、その酸化還元電位は 0. 81V である。
[0096] TEMPO+ + e"→TEMPO E° = 0. 81V' · ·式(B21)
TEMPO→TEMPO+ + e" E° = 0. 81V · · ·式(B22)
TEMPOの酸化還元電位は過酸化水素の酸化還元電位より高ぐヒドロキシラジ力 ルの酸化還元電位より低い。このため、還元体である TEMPOの N—ォキシルラジ力 ル体はヒドロキシラジカルに対して還元剤として作用して電解質膜内で発生したヒドロ キシラジカルに電子(e_)を供給して OH—へ還元する。
[0097] TEMPO + ·ΟΗ→ΤΕΜΡΟ+ + ΟΗ_ · · ·式(Β22)
一方、酸化体である ΤΕΜΡΟ+は過酸化水素に対して酸化剤として作用して過酸ィ匕 水素に対して酸化剤として作用して水素を引き抜き、過酸ィ匕水素を酸素へと酸ィ匕し て ΤΕΜΡΟ+は還元体の形に回復する。
[0098] 2ΤΕΜΡΟ+ +Η Ο→2ΤΕΜΡΟ + 2Η+ + 0 · · ·式(Β23)
2 2 2
TEMPOは還元体に回復した後再びヒドロキシラジカルを還元する。このようにして、 TEMPOが還元体と酸化体との間で酸化還元サイクルがまわると同時に、ヒドロキシ ラジカルや過酸化酸素を不活性化し、電解質の酸化を防止する。
[0099] TEMPOを燃料電池の燃料極力 供給すると、 TEMPOの一部は燃料極触媒上 で式 (B22)に示す電解酸化が起こり、酸化体である TEMPO+となって電解質内に 拡散する可能性がある。この場合でも、可逆的な酸ィ匕還元サイクルを有する TEMP Oは、過酸ィ匕水素を還元剤として元の還元体である TEMPOの形に回復し、再びヒド ロキシラジカルを還元できる酸化剤としての機能を有することになる。可逆的な酸ィ匕 還元サイクルを有しな 、ィ匕合物の場合には、ヒドロキシラジカルを還元した時点で抗 酸化機能がなくなり、これ以上酸化剤として機能しなくなるが、可逆的な酸化還元サ イタルを有する化合物の場合には、可逆的な酸化還元サイクルを有することで抗酸 ィ匕剤としての機能をある程度持続させることができる。
[0100] このように、本実施の形態に係る燃料電池システムは、電極と、この電極に接触し、 活性酸素を不活性化する抗酸化剤と、を有する燃料電池を備え、さらに抗酸化剤を 燃料電池の空気極側又は燃料極側から供給する抗酸化剤供給系と、を備えることに より、確実に活性酸素を不活性ィ匕して消去することができる燃料電池システムを実現 することができる。
[0101] なお、本実施の形態に係る燃料電池システムでは、燃料電池が、水素型、ダイレク トメタノール型、及びダイレクト炭化水素型の 、ずれでも使用することが可能である。
[0102] また、本実施の形態に係る燃料電池システムは、その用途として燃料電池車両に 搭載することが可能である。本実施の形態に係る燃料電池システムを搭載した燃料 電池車両では長時間の連続運転に耐える。本発明の実施の形態に係る燃料電池シ ステムは、その用途として燃料電池車両に限定されることは無ぐ燃料電池コージヱ ネレーシヨン発電システム、燃料電池家電機器、燃料電池携帯機器、燃料電池輸送 用機器に適用することが可能である。
[0103] (電極用組成物)
以下、本発明に係る電極用組成物の詳細を実施の形態に基づいて説明する。本 実施の形態に係る電極用組成物は、酸素の酸化還元電位よりも低 ヽ電位で還元剤 として働き、かつ、水素及び水素イオンの酸ィ匕還元電位よりも高い電位で酸化剤とし て働く酸化還元サイクルを有する化合物を酸素還元触媒として含有することを特徴と する。
[0104] 固体高分子電解質型燃料電池では、次式で表される反応が進行する。
[0105] 負極 (燃料極): H→2H+ + 2e_ E° = 0. OOV · · ·式(CI)
2
正極(空気極): O +4H+ +4e"→2H Ο Ε°= 1. 23ν· ·式(C2)
2 2
燃料極では、水素を含有する燃料ガスが供給されて式 (C1)の反応が進行し、水素 イオンが生成する。水素イオンは固体高分子電解質膜中に含まれる水分により、水 和状態となって固体高分子膜内を移動して空気極に至る。空気極では、移動した水 素イオンが正極に供給された酸ィ匕ガス中の酸素と反応して式 (C2)の反応が進行し、 水が生成する。この際に、燃料極で生成した電子が外部回路を介して空気極へ移動 することにより起電力が発生する。なお、 Eは標準酸ィ匕還元電位 (NHE)で表してい る。
[0106] このような空気極で起こる酸ィヒ還元反応では、式 (C2)に示す酸素の 4電子還元反 応により最終生成物としての水が生成する。また、電位が低い場合や、触媒である白 金に不純物が付着した場合などでは、式 (C2)の反応に加えて、酸素の 2電子還元 反応により過酸化水素が生成することが知られて!/、る。
[0107] O + 2H+ + 2e"→H O E°=0. 68V · · ·式(C3)
2 2 2
PEFCでは、電極の触媒に白金を用いているため、主反応である式 (C2)の反応と 副反応である式 (C3)の反応が競争反応として同時に進行する。そして、式 (C3)で 発生した過酸ィ匕水素は、式 (C4)〜(C6)に示す反応で消失すると考えられている。
[0108] H O +H→2H O · · ·式(C4)
2 2 2 2
H O + 2H+ + 2e"→2H O E°= l. 77V …式(C5)
2 2 2
2H O→2H O + O · · '式(C6)
2 2 2 2
式 (C4)は、過酸ィ匕水素が空気極で水素イオンと電子を受け取り、水に還元される 反応を示している。式 (C5)は、燃料極力 空気極に膜をクロスオーバーした Hによ
2 り、過酸化水素が水に還元される反応を示している。式 (C6)は、 2分子の過酸化水 素が反応して水と酸素を発生させる反応を示している。式 (C6)では、一方の過酸ィ匕 水素が酸化剤として働き、もう一方の過酸ィ匕水素は以下に示す式 (C7)のように、還 元剤として働 ヽて水と酸素を発生させる。
[0109] H O →0 + 2H+ + 2e" E°=0. 68V · · ·式(C7)
2 2 2
なお、過酸ィ匕水素は、式 (C5)、 (C7)に示すように、過酸化水素よりも酸化還元電 位の高い物質に対しては酸化剤として働く一方、過酸化水素よりも酸化還元電位の 低 、物質に対しては還元剤として働くことが知られて 、る。
[0110] ここで、式 (C4)は、式 (C5)で表される素反応と、式 (C1)で表される素反応との和 である。式 (C6)は、式 (C5)で表される素反応と、式 (C7)で表される素反応との和で ある。熱力学的には、酸化還元電位の高い物質が酸化剤として働き、酸化還元電位 の低い物質が還元剤として働く。そして、基本的には、系全体の Δ Εが正の値のとき に反応が進む。ただし、各物質の Εは各物質の平均値を表しており、実際の酸化還 元電位はある範囲を持っているため、 Δ Ε =— 0. 15V程度の負の値でも反応が進 行する場合がある。
[0111] 上記式 (C2)に示すように酸素の標準酸ィヒ還元電位は 1. 23Vであり、水素又はプ 口トンの標準酸化還元電位は 0. OOVである。このため、正極では、酸素が水素に対 する酸化剤として作用し、上記式 (C2)又は式 (C3)の反応が進行する。式 (C3)の 反応により生成した過酸化水素の標準酸化還元電位は、酸化剤として作用する場合 には式 (C4)に示すように 1. 77Vであり、水素の標準酸ィ匕還元電位よりも高い。この ため、過酸化水素は水素に対する酸化剤として作用し、上記式 (C4)又は式 (C5)の 反応が進行する。なお、過酸化水素が還元剤として作用する場合の標準酸化還元 電位は 0. 68Vであるため、上記式 (C6)により、 2分子の過酸化水素が反応して水と 酸素が発生する。
[0112] そして、正極で発生する過酸ィ匕水素により、正極で使われている白金担持カーボン が酸化されるため、カーボンが消費されて燃料電池の性能が徐々に低下し、白金上 での酸素の活性化速度が低下する。また、白金の劣化に伴い、過酸化水素の発生 が増加する。そこで、電極用組成物中に、酸素の酸化還元電位よりも低い電位で還 元剤として働き、かつ、水素及び水素イオンの標準酸ィ匕還元電位よりも高い電位で 酸化剤として働く酸ィ匕還元サイクルを有する化合物がある場合には、この化合物は、 まず還元型のときに酸素の標準酸化還元電位よりも低い電位で還元剤として作用す るため、酸素は式 (C2)に示す 4電子還元反応が促進される。その際、この化合物は 酸化される。この化合物が酸化され、酸化型となった後、この化合物は正極から水素 イオンと電子を受け取り再び還元型となる。
[0113] このように、この化合物は、酸化還元サイクルが繰り返されることで酸化還元触媒と して可逆的に働く。そして、この化合物の可逆的な酸ィ匕還元サイクルにより、化合物 が酸素の還元を促進する 4電子還元反応触媒として機能するため、プロトン (Η+)と 分子状酸素 (Ο )とを反応させて水に還元する 4電子還元反応が促進される。このよ うに、この化合物が酸素の還元を促進する 4電子還元反応触媒として機能するため、 電極用組成物中の白金の使用量を減らすことが可能となる。また、この化合物は、酸 化還元サイクルが繰り返されることで酸化還元触媒として作用し、何度も触媒として使 用可能であるため、さらに触媒使用量を減らすことが可能となる。
[0114] 具体的には、この化合物の標準酸化還元電位力 0. OOV〜l. 40V (NHE)の範 囲にあることが好ましい。この場合には、酸素の還元が促進され、かつ、水素及び水 素イオンに対する酸化剤として作用する。また、化合物の標準酸ィ匕還元電位が、 0. 68V〜1. OOVの範囲にあることがより好ましい。さらに、この化合物の酸化体及び還 元体が、比較的安定な化合物であればより好ましい。なお、各化合物の実際の酸ィ匕 還元電位 (RHE)は pH、温度などの諸条件によって変化するので、それに合わせた 範囲のものを用いることが好ましい。ただし、電極に用いられている白金への被毒を 考慮すると、本実施の形態に係る電極用組成物に用いる化合物は、炭素、水素、酸 素及び窒素のみで構成された有機化合物であることが好ましい。
[0115] なお、上記化合物は、一般式 (I)で表される化合物であることが好ましい。
[化 15]
Ri
\
N-X
/
R2
(I)
[0116] ただし、 R1及び R2は同一又は異なる任意の置換基を、 Xは酸素原子又はヒドロキシ ル基を表す。この一般式(I)において、 R1及び R2はそれぞれアルキル基、ァリール 基、アルコキシ基及び水素原子を含む置換基力 なる群力 選択さる一種の置換基 であり、 R1及び R2がアルキル基又はアルコキシ基の場合には一部が任意の基で置 換されたアルキル基又はアルコキシル基、不飽和アルキル基又はアルコキシ基であ つてもよく、これらの基は鎖状、環状又は分岐状であってもよぐ R1及び R2が酸素及 び窒素原子含んでもよぐ R1及び R2がァリール基の場合には一部が任意の基で置 換されたァリール基であっても良ぐ酸素及び窒素原子含んでもかまわない。また、 上記一般式 (I)において、 R1及び R2は互いに結合して二重結合、芳香環、又は非 芳香族性の環を形成していることが、酸素活性ィ匕の促進のためより好ましい。
[0117] さらに、この化合物力 一般式 (II)で表されるイミドィ匕合物であることが好ましい。
[化 16]
Figure imgf000033_0001
[0118] ただし、環 Y1は、二重結合を有する又は芳香族性若しくは非芳香族性の 5〜12員 環のうちいずれか一種類の環を表す。イミド化合物を含む組成物を、燃料電池の空 気極電極に用いることにより、酸素活性化が促進され、さらには常温、常圧において も酸素還元を促進させる触媒効果がある。
[0119] また、上記化合物は、一般式 (III)で表されるイミド化合物であることが、化学的安定 性、触媒活性の点で好ましい。
[化 17]
Figure imgf000033_0002
(III)
[0120] ただし、 R3及び R4は同一又は異なり、それぞれ水素原子、ハロゲン原子、アルキル 基、ァリール基、シクロアルキル基、ヒドロキシル基、アルコキシル基、カルボキシル基 、アルコキシカルボ-ル基又はァシル基を表す。 Xは酸素原子又はヒドロキシル基を 、 nは 1〜3の整数を表す。
[0121] なお、一般式 (III)で表される化合物において、置換基 R3及び R4のうちハロゲン原 子には、ヨウ素、臭素、塩素およびフッ素が含まれる。アルキル基には、例えば、メチ ル、ェチル、プロピル、イソプロピル、ブチル、イソブチル、 sec—ブチル、 tーブチル、 ペンチル、へキシル、ヘプチル、ォクチル、デシル基などの炭素数 1〜: L0程度の直 鎖状又は分岐鎖状アルキル基が含まれる。好ましいアルキル基としては、例えば、炭 素数 1〜6程度、特に炭素数 1〜4程度の低級アルキル基があげられる。
[0122] ァリール基には、フエ-ル基、ナフチル基などがあげられ、シクロアルキル基には、 シクロペンチル、シクロへキシル、シクロォクチル基などがあげられる。アルコキシ基 には、例えば、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ 、 t—ブトキシ、ペンチルォキシ、へキシルォキシ基などの炭素数 1〜10程度、好まし くは炭素数 1〜6程度、特に炭素数 1〜4程度の低級アルコキシ基があげられる。
[0123] アルコキシカルボ-ル基には、例えば、メトキシカルボ-ル、エトキシカルボ-ル、プ 口ポキシカルボニル、イソプロポキシカルボニル、ブトキシカルボニル、イソブトキシカ ルボニル、 t ブトキシカルボニル、ペンチルォキシカルボニル、へキシルォキシカル ボ-ル基などのアルコキシ部分の炭素数が 1〜10程度のアルコキシカルボ-ル基が あげられる。好まし 、アルコキシカルボ-ル基にはアルコキシ部分の炭素数が 1〜6 程度、特に 1〜4程度の低級アルコキシカルボ-ル基があげられる。
[0124] ァシル基としては、例えば、ホルミル、ァセチル、プロピオ-ル、ブチリル、イソブチリ ル、バレリル、イソバレリル、ビバロイル基などの炭素数 1〜6程度のァシル基があげら れる。
[0125] なお、置換基 R3及び R4は、同一であっても異なって 、てもよ 、。また、上記一般式
(III)で表される化合物において、 R3及び R4は互いに結合して二重結合、芳香環、 又は非芳香族性の環を形成していてもよい。そのうち、芳香環又は非芳香族性の環 は、 5〜12員環のうちいずれか一種類の環を形成していることが好ましぐより好まし くは 6〜10員環程度であり、複素環又は縮合複素環であってもよいが、炭化水素環 である場合が好ましい。
[0126] このような環としては、例えばシクロへキサン環に代表されるシクロアノレカン環、シク 口へキセン環に代表されるシクロアルケン環などの非芳香族性炭化水素環、 5—ノル ボルネン環に代表される橋かけ式炭化水素環など非芳香族性橋かけ環、ベンゼン 環、ナフタレン環などの芳香環が含まれる。なお、これらの環は、置換基を有していて も良い。 また、好ましいイミド化合物には、式 (IVa)〜(IVf)で表される化合物であることが好 ましい。
[化 18]
Figure imgf000035_0001
(IV a) (IV b) (IV c)
Figure imgf000035_0002
[0128] ただし、 R3〜R6は同一又は異なって、それぞれ水素原子、ハロゲン原子、アルキル 基、ヒドロキシル基、アルコキシル基、カルボキシル基、アルコキシカルボ-ル基、ァ シル基、ニトロ基、シァノ基又はアミノ基を示し、 nは 1〜3の整数を表す。
[0129] ここで、置換基 R3〜R6において、アルキル基としては、上記に例示のアルキル基 と同様のアルキル基、特に炭素数 1〜6程度のアルキル基があげられる。アルコキシ 基としては、上記と同様のアルコキシ基、特に炭素数 1〜4程度の低級アルコキシ基 があげられ、アルコキシカルボ-ル基としては、上記と同様のアルコキシカルボ-ル 基、特にアルコキシ部分の炭素数が 1〜4程度の低級アルコキシカルボニル基があ げられる。また、ァシル基としては、上記と同様のァシル基、特に炭素数 1〜6程度の ァシル基があげられ、ハロゲン原子としては、フッ素、塩素、臭素原子をあげられる。 置換基 R3〜R6の場合には、通常、水素原子、炭素数 1〜4程度の低級アルキル基 、カルボキシル基、ニトロ基、ハロゲン原子である場合が多い。
[0130] また、上記一般式 (III)で表される化合物において、 Xは酸素原子又はヒドロキシル 基を表し、 nは、通常 1〜3程度であり、好ましくは 1又は 2である。また、上記一般式 (I II)で表される化合物は、酸素還元反応にぉ 、て一種又は二種以上使用することが できる。 [0131] なお、上記一般式 (III)で表される化合物に対応する酸無水物には、例えば、無水 コハク酸、無水マレイン酸などの飽和又は不飽和脂肪族ジカルボン酸無水物、テトラ ヒドロ無水フタル酸、へキサヒドロ無水フタル酸(1, 2—シクロへキサンジカルボン酸 無水物)、 1, 2, 3, 4ーシクロへキサンテトラカルボン酸 1, 2—無水物などの飽和又 は不飽和非芳香族性環状多価カルボン酸無水物 (脂環族多価カルボン酸無水物)、 例えば無水へット酸、無水ハイミック酸などの橋かけ環式多価カルボン酸無水物 (脂 環族多価カルボン酸無水物)、例えば、無水フタル酸、テトラブロモ無水フタル酸、テ トラクロ口無水フタル酸、無水-トロフタル酸、無水トリメリット酸、メチルシクロへキセン トリカルボン酸無水物、無水ピロメリット酸、無水メリト酸、 1, 8 ;4, 5—ナフタレンテトラ カルボン酸二無水物などの芳香族多価カルボン酸無水物があげられる。
[0132] さらに、好ましいイミド化合物としては、例えば、 N—ヒドロキシコハク酸イミド、 N—ヒ ドロキシマレイン酸イミド、 N—ヒドロキシへキサヒドロフタル酸イミド、 N, N' —ジヒドロ キシシクロへキサンテトラカルボン酸イミド、 N—ヒドロキシフタル酸イミド、 N—ヒドロキ シテトラブロモフタル酸イミド、 N—ヒドロキシテトラクロロフタル酸イミド、 N—ヒドロキシ へット酸イミド、 N—ヒドロキシハイミック酸イミド、 N—ヒドロキシトリメリット酸イミド、 N, N' —ジヒドロキシピロメリット酸イミド及び N, N' —ジヒドロキシナフタレンテトラカル ボン酸イミドなどがあげられる。その中でも好ましい化合物は脂環族多価カルボン酸 無水物であり、特に芳香族多価カルボン酸無水物力 誘導される N—ヒドロキシイミド 化合物、例えば、 N—ヒドロキシフタル酸イミドなどがあげられる。
[0133] また、上記イミドィ匕合物としては、慣用のイミドィ匕反応、例えば、対応する酸無水物と ヒドロキシルァミン (NH OH)とを反応させて酸無水物基を開環した後、閉環してイミ
2
ドィ匕すること〖こより調製することができる。
[0134] ここで、図 12に、酸素、活性酸素、水素等が、酸化剤又は還元剤として働くときの 酸化還元電位(ORP ; Oxidation Reduction Potential)を示す。この図の右欄は還元 剤の酸化半反応式を示し、左欄は酸化剤の還元半反応式を示す。縦軸は標準酸ィ匕 還元電位を示し、上に行くほど高くなつている。つまり、上に位置するほど酸化され難 いことを示している。なお、半反応式の後の括弧内に示されている数値は、酸化剤又 は還元剤として作用する化合物の標準酸化還元電位である。また、酸化還元電位は pHや温度によって影響を受けるため、図 12では標準水素電極 (NHE)に補正した 標準酸化還元電位を記載して!/、る。
[0135] 図 13に、本実施の形態における電極用組成物に含有される化合物の酸化還元の メカニズムを示す。ここでは、上記化合物の代表例として、 N—ヒドロキシフタルイミド( NHPIと略記)を例に酸素の活性化メカニズム、酸素の還元メカニズム、およびプロト ンとの反応を示す。 NHPIは酸化されると PINO (フタルイミドー N—ォキシル)となる 。 NHPI及び PINOは、式(C8)、(C9)に示すように、 1. 34Vの酸化還元電位を有 している。
[0136] NHPI→PINO + H+ + e" E°= l. 34V · · ·式(C8)
PINO + H+ + e"→NHPI E°= l. 34V …式(C9)
上記式 (C2)に示す反応は、式 (C10)〜式 (C14)に示す複数の素反応から成る 複合反応である。
[0137] NHPI + O→ΡΙΝΟ+ ·ΟΟΗ · · ·式(C10)
2
NHPI + - OOH→PINO + H O · · '式(C11)
2 2
NHPI + H O→PINO + H 0+ -OH …式(C12)
2 2 2
NHPI + - OH→PINO + H O · · ·式(C13)
2
4PINO + 4H" +4e"→4NHPI …式(C14)
空気中の酸素分子は三重項酸素と呼ばれ、基底状態が三重項ラジカル分子であり 、式(C10)〖こ示すように、常温、常圧において NHPIの N—ヒドロキシル基から容易 に水素を引き抜き、 PINOとペルォキシラジカル(·ΟΟΗ)を生成する。ペルォキシラ ジカルは還元電位が 1. 50Vと高く、酸素以上に活性種にとんでいるため、式 (C11) に示すように他の NHPIから水素を引き抜く。
[0138] また、式 (C15)に示すように、ペルォキシラジカルは過酸ィ匕水素となる。
[0139] -OOH+H+ + e"→H O E°= l. 50V · · ·式(C15)
2 2
過酸ィヒ水素はラジカルではないが反応性があり、還元電位が 1. 77Vと高ぐ酸素以 上に活性に飛んだ種であるため、式 (C12)に示すように他の NHPIより水素原子を 引き抜く。水素を引き抜いた過酸ィ匕水素は、式 (C16)に示すように、水とヒドロキシラ ジカル(·ΟΗ)を生成する。 [0140] H O +H+ + e"→H 0+ -OH · · ·式(C16)
2 2 2
このヒドロキシラジカルは 2. 85Vという大きな還元電位を持ち活性にとんでいる種の ため、式 (C13)に示すように NHPIより水素を引き抜き、 PINOと水を生成する。式( C10)〜式(C13)の素反応により酸素の 4電子還元が進み、 4分子の PINOが生成 する。 PINOも活性に飛んだ種であり、式 (C14)に示すように、燃料電池の正極から プロトンと共同で電子(e_)を受け取り、 NHPIに再生される。
[0141] 参考として、 NHPIの酸ィ匕還元電位を、作用極にグラッシ一カーボン、対極に白金 、参照極に飽和カロメル電極(SCE)を用い、電解液に 1M硫酸を用いて測定した。 本条件で測定した NHPIのサイクリックボルタモグラムを図 14に示す。本条件(SCE) における NHPIの酸化還元電位は 1. 10V付近に存在するが、図 12、特許請求の範 囲及び明細書中では、各物質の酸ィ匕還元電位と合わせるために式 (C17)に示す式 により標準電位 E° (NHE)に補正して表示する。
[0142] E° (NHE) =E° (SCE) + 0. 24 V · · ·式(C17)
NHEに補正すると、 NHPIの酸化還元電位は 1. 34V付近に存在する。この電位は 、 NHPIの酸ィ匕還元電位は酸素の酸ィ匕還元電位よりも若干高いが酸素に対して十 分還元剤として働くレベルである。このため、 NHPIは可逆的に酸化剤又は還元剤と して機能する化合物であるとともに、 NHPIは水素及び水素イオンの酸ィ匕還元電位よ りも高 、電位で酸化剤として働く酸ィ匕還元サイクルを有する化合物である。このように 、 NHPIは電位的にも酸素の 4電子還元機能を有し、 NHPIは長期に渡り、酸素還元 触媒として機能を持ち続けることになる。 NHPIによる酸素の 4電子還元反応は常温 、常圧で起こる反応であり、白金より優れた低温活性を示すため、燃料電池の電極触 媒において白金の使用量を低減することが可能である。
[0143] また、一般式 (II)で表される化合物が、 6員環の N—置換環状イミド骨格を有する一 般式 (V)で表される化合物でも良!、。
[化 19]
Figure imgf000039_0001
[0144] ただし、 Xは酸素原子又はヒドロキシル基を表す。 R1〜R6は同一又は異なり、それ ぞれ水素原子、ハロゲン原子、アルキル基、ァリール基、シクロアルキル基、ヒドロキ シル基、アルコキシ基、カルボキシル基、置換ォキシカルボ-ル基、ァシル基又はァ シルォキシ基を表す。また、 R1〜R6のうち少なくとも二つが互いに結合して二重結 合又は芳香族性若しくは非芳香族性の環を形成してもよ ヽ。この環のうち少なくとも 一つが N—置換環状イミド基を有して!/、ても良い。 N—置換環状イミド骨格を有する 化合物は、式 (C18)及び式 (C19)に示すように 5員環及び 6員環共に加水分解する 力 5員環よりも 6員環の方が加水分解が遅ぐ耐加水分解性が高い。
[化 20] o
ΝΟΗ + 2Η20 + ΝΗ2ΟΗ …式(G18)
Figure imgf000039_0002
[化 21]
+ ΝΗ2ΟΗ …式 (C19)
Figure imgf000039_0003
[0145] このため、 Ν—置換環状イミド骨格を有する化合物が 6員環の環状イミドの場合には、 酸ィ匕還元触媒として何度も使用可能であるため、さらに触媒使用量を減らすことが可 能となる。
[0146] アルキル基には、例えば、メチル、ェチル、プロピル、イソプロピル、ブチル、イソブ チル、 sec ブチル、 tーブチル、ペンチル、へキシル、ヘプチル、ォクチル、デシル 基などの炭素数 1〜10程度の直鎖状又は分岐鎖状アルキル基があげられる。好まし くは炭素数 1〜6程度、より好ましくは炭素数 1〜4程度の低級アルキル基があげられ る。
[0147] ァリール基としては、フエニル基、ナフチル基などがあげられ、シクロアルキル基とし ては、例えばシクロペンチル、シクロへキシル、シクロォクチル基などがあげられる。ァ ルコキシ基としては、例えば、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ 、イソブトキシ、 t—ブトキシ、ペンチルォキシ、へキシルォキシ基などの炭素数 1〜10 程度、好ましくは炭素数 1〜6程度、より好ましくは炭素数 1〜4程度の低級アルコキ シ基があげられる。
[0148] アルコキシカルボ-ル基としては、例えば、メトキシカルボ-ル、エトキシカルボ-ル 、プロポキシカルボニル、イソプロポキシカルボニル、ブトキシカルボニル、イソブトキ シカルボニル、 t ブトキシカルボニル、ペンチルォキシカルボニル、へキシルォキシ カルボ-ル基などのアルコキシ部分の炭素数が 1〜10程度のアルコキシカルボ-ル 基があげられる。好ましくはアルコキシ部分の炭素数が 1〜6程度、より好ましくは炭 素数が 1〜4程度の低級アルコキシカルボ-ル基があげられる。
[0149] ァシル基としては、例えば、ホルミル、ァセチル、プロピオ-ル、ブチリル、イソブチリ ル、バレリル、イソバレリル、ビバロイル基などの炭素数 1〜6程度のァシル基があげら れる。
[0150] また、上記一般式 (V)で表される化合物において、 R1〜R6のうち少なくとも二つが 互 ヽに結合して二重結合又は芳香環若しくは非芳香族性の環を形成して 、てもよ ヽ 。そのうち、芳香環又は非芳香族性の環は、 5〜12員環のうちいずれか一種類の環 を形成していることが好ましぐより好ましくは 6〜10員環程度であり、この環は複素環 又は縮合複素環であってもよい。このような環としては、例えば、シクロへキサン環に 代表されるシクロアルカン環、シクロへキセン環などのシクロアルケン環などの非芳香 族性炭化水素環、 5—ノルボルネン環に代表される橋力ゝけ式炭化水素環など非芳香 族性橋かけ環、ベンゼン環、ナフタレン環などの芳香環が含まれる。なお、これらの 環は、置換基を有していても良い。 [0151] 次に、図 15に、本実施の形態における電極用組成物に含有される他の化合物の 例をあげ、その化合物の酸ィ匕還元のメカニズムを示す。ここでは、上記一般式 (V)で 表される化合物の代表例として、 R1〜R6が全て水素原子であり、可逆的な酸化還 元サイクルを有する N—ヒドロキシダルタル酸イミド(NHGI)をあげ、酸素の活性化メ 力二ズム、酸素の還元メカニズム、およびプロトンとの反応を示す。 NHGIは酸化され るとグルタル酸イミド N—ォキシル(GINO)となる。なお、 NHGI及び GINOは、式(C 20)、(C21)に示すように、 1.39 Vの酸化還元電位を有している。
[0152] NHGI→GINO + H+ + e" E°=l.39V ···式(C20)
GINO + H+ + e"→NHGI E°=l.39V …式(C21)
上記式 (C2)に示す反応は、式 (C22)〜式 (C26)に示す複数の素反応から成る 複合反応である。
[0153] NHGI + O→GINO+-OOH ···式(C22)
2
NHGI + - OOH→GINO + H O · ·,式(C23)
2 2
NHGI + H O→GINO + H 0+-OH ···式(C24)
2 2 2
NHGI + - OH→GINO + H O · · ·式(C25)
2
4PINO+4H++4e_→4GINO ···式(C26)
空気中の酸素分子は三重項酸素と呼ばれ、基底状態が三重項ラジカル分子であり 、式(C22)〖こ示すように、常温、常圧において NHGIの N—ヒドロキシル基から容易 に水素を引き抜き、 GINOとペルォキシラジカル(·ΟΟΗ)を生成する。ペルォキシラ ジカルは還元電位が 1.50Vと高く、酸素以上に活性種にとんでいるため、式 (C23) に示すように他の NHGIから水素を引き抜く。
[0154] また、式 (C27)に示すように、ペルォキシラジカルは過酸ィ匕水素となる。
[0155] -OOH + H+ + e"→H O E°=l.50V ···式(C27)
2 2
過酸ィヒ水素はラジカルではないが反応性があり、還元電位が 1.77Vと高ぐ酸素以 上に活性に飛んだ種であるため、式 (C24)に示すように他の NHGIより水素原子を 引き抜く。水素を引き抜いた過酸ィ匕水素は、式 (C28)に示すように、水とヒドロキシラ ジカル(·ΟΗ)を生成する。
[0156] H O +H+ + e"→H 0+-OH ···式(C28) このヒドロキシラジカルは 2. 85Vという大きな還元電位を持ち活性にとんでいる種の ため、式 (C22)に示すように NHGIより水素を引き抜き、 GINOと水を生成する。式( C22)〜式(C25)の素反応により酸素の 4電子還元が進み、 4分子の GINOが生成 する。 GINOも活性に飛んだ種であり、式 (C26)に示すように、燃料電池の正極から プロトンと共同で電子(e_)を受け取り、 NHGIに再生される。
[0157] なお、 SCEで NHGIの酸化還元電位を 1M硫酸水溶液中で測定すると、図 14とほ ぼ同様なサイクリックボルタモグラムが得られ、この結果より、本条件における NHGI の酸化還元電位は 1. 15V付近に存在する。なお、 NHEに修正すると 1. 39Vである 。この電位により、 NHGIの酸ィ匕還元電位は酸素の酸ィ匕還元電位よりも若干高いが 十分還元剤として働くレベルであり、 NHGIは、可逆的に酸化剤又は還元剤として機 能する化合物であるとともに、水素及び水素イオンの酸ィ匕還元電位よりも高い電位で 酸化剤として働く酸ィ匕還元サイクルを有する化合物である。このように、 NHGIは電位 的にも酸素の 4電子還元機能を有し、 NHGIは長期に渡り、酸素還元触媒として機 能を持ち続けることになる。これらの酸素の 4電子還元反応は常温、常圧で起こる反 応であり、白金より優れた低温活性を示すため、燃料電池の電極触媒において白金 の使用量を低減することが可能である。また、 NHGIは 6員環の環状イミドであり、 5員 環の場合と比較して加水分解が遅ぐ耐加水分解性が高い。このため、 N—置換環 状イミド骨格を有する化合物が 6員環の環状イミドの場合には、酸ィ匕還元触媒として より長期に渡って使用可能であるため、さらに触媒使用量を減らすことが可能となる。
[0158] また、一般式 (V)で表される化合物は、特に化合物の安定性、耐久性などの観点 から、一般式 (Via)又は (VIb)で表される化合物であることが好ま 、。
[化 22]
Figure imgf000042_0001
[0159] ただし、 R7〜R12は同一又は異なって、水素原子、アルキル基、ヒドロキシル基、ァ ルコキシル基、カルボキシル基、アルコキシカルボ-ル基、ァシル基、ニトロ基、シァ ノ基又はアミノ基を表す。
[0160] さらに、一般式 (V)、 (Via)又は (VIb)で表される化合物力 N ヒドロキシダルタル 酸イミド、 N ヒドロキシ 1, 8 ナフタレンジカルボン酸イミド、 N ヒドロキシ 1, 8 ーデカリンジカノレボン酸イミド、 N, N,一ジヒドロキシ 1, 8 ;4, 5 ナフタレンテトラ カルボン酸イミド、 N, N,一ジヒドロキシ一 1, 8 ;4, 5 デカリンテトラカルボン酸イミド 及び N, Ν' , Ν"—トリヒドロキシイソシァヌル酸力 なる群力 選択される少なくとも 一種のイミド化合物(6員イミド環)であることが好ま 、。
[0161] また、一般式 (I)で表される化合物が、一般式 (VII)で表される化合物であっても良い
[化 23]
Figure imgf000043_0001
c
\
/
(vii)
[0162] ただし、 R13及び R14はアルキル基、又は一部が任意の基で置換されたアルキル基 であり、 R13及び R14は鎖状、環状、又は分岐状でもよい。 R13及び R14が互いに 結合して環を形成していてもよぐ酸素及び窒素原子含んでもかまわない。一般式 (V II)で表される化合物を用いた場合には、酸化還元電位が低く酸素の還元反応がより 促進される。この一般式 (VII)で表される化合物において、置換基 R13及び R14とし て、例えば、メチル、ェチル、プロピル、イソプロピル、ブチル、イソブチル、 sec ブ チル、 tーブチル、ペンチル、へキシル、ヘプチル、ォクチル、デシル基などの炭素数 1〜10程度の直鎖状又は分岐鎖状アルキル基があげられる。好ましくは炭素数 1〜 6程度、より好ましくは炭素数 1〜4程度の低級アルキル基があげられる。
[0163] さらに、一般式 (VII)で表される化合物力 一般式 (VIII)で表される化合物であること が好ましい。
[化 24]
Rl3
Ri \ I / RH
C \
N = X
/
C
z I \
R2 Rl5 Rl6 (VIII)
[0164] ただし、 R13〜R16はアルキル基、又は一部が任意の基で置換されたアルキル基で あり、 R13〜R16は鎖状、環状、又は分岐状であってもよい。また、 R13と R14、又は R15と R16とが互いに結合して環を形成していてもよぐ酸素及び窒素原子含んでも かまわない。この一般式 (VII)で表される化合物において、置換基 R13〜R16として、 例えば、メチル、ェチル、プロピル、イソプロピル、ブチル、イソブチル、 sec—ブチル 、 tーブチル、ペンチル、へキシル、ヘプチル、ォクチル、デシル基などの炭素数 1〜 10程度の直鎖状又は分岐鎖状アルキル基があげられる。好ましくは炭素数 1〜6程 度、より好ましくは炭素数 1〜4程度の低級アルキル基があげられる。
[0165] また、一般式 (VIII)で表される化合物が、一般式 (IX)で表される化合物であることが 好ましい。
[化 25]
Figure imgf000044_0001
[0166] 環 Y2は、 R13と R14とが結合して 5員環又は 6員環のいずれかの環を形成している。
このような環としては、例えば、例えばシクロへキサン環に代表されるシクロアノレカン 環、シクロへキセン環に代表されるシクロアルケン環などの非芳香族性炭化水素環、
5—ノルボルネン環に代表される橋かけ式炭化水素環など非芳香族性橋かけ環、ベ ンゼン環、ナフタレン環などの芳香環が含まれる。なお、これらの環は、置換基を有し ていても良い。
さらに、一般式 (IX)で表される化合物が、一般式 (X)で表される化合物であることが 好ましい。
[化 26]
Figure imgf000045_0001
[0168] ただし、 Zはアルキル基、ァリール基、アルコキシ基、カルボキシル基、アルコキシ力 ルポ二ル基、シァノ基、ヒドロキシル基、ニトロ基、アミノ基及び水素原子を含む置換 基からなる群から選択される一種の置換基を示す。 Zがアルキル基の場合には、一 部が任意の基で置換されたアルキル基であってもよぐ一部の基が鎖状、環状、また は分岐状であってもよぐ酸素及び窒素原子含んでもかまわない。 Zがァリール基の 場合には、一部が任意の基で置換されたァリール基であってもよぐ酸素及び窒素 原子含んでも力まわない。一般式 (X)で表される化合物は加水分解しにくいため、酸 化還元触媒として使用した場合には長期に渡って使用可能であり、さらに触媒使用 量を減らすことが可能となる。
[0169] 置換基 Zにおいて、アルキル基には前述のアルキル基と同様のアルキル基のうち 特に炭素数 1〜6程度のアルキル基があげられ、ァリール基としてはフエ二ル基、ナフ チル基があげられる。アルコキシ基としては、前述のアルキル基と同様のアルコキシ 基のうち特に炭素数 1〜6程度のアルコキシ基があげられ、カルボキシル基としては、 例えば、炭素数 1〜4程度のカルボキシル基があげられる。アルコキシカルボ-ル基 としては、例えば、メトキシカルボ-ル、エトキシカルボ-ル、プロポキシカルボ-ル、 イソプロポキシカルボニル、ブトキシカルボニル、イソブトキシカルボニル、 t ブトキシ カルボ-ル、ペンチルォキシカルボ-ル、へキシルォキシカルボ-ル基などのアルコ キシ部分の炭素数が 1〜10程度のアルコキシカルボ-ル基があげられる。好ましくは アルコキシ部分の炭素数力^〜 6程度、より好ましくは炭素数が 1〜4程度の低級アル コキシカルボ-ル基があげられる。
[0170] この一般式 (X)で表される化合物の一例として、 TEMPO (2, 2, 6, 6—テトラメチル ピぺリジン 1ーォキシル)があげられる。 TEMPO及び一般式 (X)で表される化合物 の例を図 7に示す。図 7(0に示す TEMPOは、可逆的な酸化還元サイクルを有する 化合物であり、最終的には活性酸素を不活性化する。
[0171] また、一般式 (IX)で表される化合物が、一般式 (XI)で表される化合物であってもよ
[化 27]
Figure imgf000046_0001
[0172] ただし、 Zはアルキル基、ァリール基、アルコキシ基、カルボキシル基、アルコキシ力 ルポ二ル基、シァノ基、ヒドロキシル基、ニトロ基、アミノ基及び水素原子を含む置換 基からなる群から選択される一種の置換基を表す。 Zがアルキル基の場合には、一 部が任意の基で置換されたアルキル基であってもよぐ一部の基が鎖状、環状、また は分岐状であってもよぐ酸素及び窒素原子含んでもかまわない。 Zがァリール基の 場合には、一部が任意の基で置換されたァリール基であってもよぐ酸素及び窒素 原子含んでもかまわない。一般式 (IX)で表される化合物が、一般式 (XII)で表される 化合物であってもよい。
[化 28]
Figure imgf000047_0001
(XII)
[0173] ただし、 Zはアルキル基、ァリール基、アルコキシ基、カルボキシル基、アルコキシ力 ルポ二ル基、シァノ基、ヒドロキシル基、ニトロ基、アミノ基及び水素原子を含む置換 基からなる群から選択される一種の置換基を示す。 Zがアルキル基の場合には、一 部が任意の基で置換されたアルキル基であってもよぐ一部の基が鎖状、環状、また は分岐状であってもよぐ酸素及び窒素原子含んでもかまわない。 Zがァリール基の 場合には、一部が任意の基で置換されたァリール基であってもよぐ酸素及び窒素 原子含んでも力まわない。これらの化合物も一般式 (X)で表される化合物と同様に加 水分解しにくいため、酸ィ匕還元触媒として使用した場合には長期に渡って使用可能 であり、さらに触媒使用量を減らすことが可能となる。化合物が一般式 (XI)又は一般 式 (XII)で表される場合、各置換基は上記一般式 (X)で表される化合物の置換基と同 様のものが使用可能である。
[0174] 一般式 (XI)及び一般式 (XII)で表される化合物の例を図 8〜図 10に示す。一般式 (X I)及び一般式 (XII)で表される化合物の一例として、 PROXYL (2,2,5,5-テトラメチル ピロリジン-: L-ォキシル)や、 DOXYL (4, 4-ジメチルォキサゾリジン- 3-ォキシル)が あげられる。これらの化合物も TEMPO同様に可逆的な酸ィ匕還元サイクルを有し、活 性酸素を不活性化する。
[0175] 図 16に、本実施の形態における電極用組成物に含有される化合物の別の例にお ける酸化還元のメカニズムを示す。ここでは、上記化合物の代表例として、 TEMPO を例に酸素の活性化メカニズム、酸素の還元メカニズムを示す。 TEMPOは式(C29 ) , (C30)に示す素反応により酸化還元し、その酸ィ匕還元電位は 0. 81Vである。
[0176] TEMPO→TEMPO+ + e" E° = 0. 81V · · ·式(C29)
TEMPO+ + e"→TEMPO E° = 0. 81V …式(C30)
酸素還元メカニズムは、式 (C31)〜式 (C36)に示す複数の素反応から成る複合反 応である。
[0177] TEMPO + 0→TEMPO+ + 0 " · · ·式(C31)
2 2
O " +Η+→ΗΟΟ· · · ·式(C32)
2
TEMPO + ·ΟΟΗ + Η+→ΤΕΜΡΟ+ + Η Ο · ·,式(C33)
2 2
TEMPO + Η Ο +Η+→ΤΕΜΡΟ+ +Η 0+ ·ΟΗ …式(C34)
2 2 2
TEMPO + · OH + Η+→ΤΕΜΡΟ+ +Η Ο …式(C35)
2
4ΤΕΜΡΟ+ +4e"→4TEMPO …式(C36)
空気中の酸素分子は 3重項酸素と呼ばれ、基底状態が三重項ラジカル分子であり 、式(C31)に示すように、常温、常圧において TEMPOと酸素との間で電子の授受 が行われ、電荷移動錯体 (チャージトランスファー錯体 =CT錯体)を形成する。この とき、 TEMPOの窒素原子は 4級化して N+となるため TEMPOは TEMPOTとなり、 酸素はスーパーォキシド (O―)の形となり活性ィ匕する。活性ィ匕したスーパーォキシド
2
は、速やかに水素イオンと反応し、ペルォキシラジカル(·ΟΟΗ)を生成する。ペルォ キシラジカルは還元電位が 1. 50Vと高く、酸素以上に活性種にとんでいるため、式( C33)に示す反応により過酸化水素が生成する。過酸ィ匕水素はラジカルではないが 触媒存在下では反応性があり、還元電位が 1. 77V高ぐ酸素以上に活性にとんだ 種であるため、式(C34)に示すように他の TEMPOより電子を受け取り、水とヒドロキ シラジカル(·ΟΗ)を生成する。 TEMPOは活性化して ΤΕΜΡΟ+となる。
[0178] 発生したヒドロキシラジカルは 2. 85Vという大きな還元電位を持ち活性にとんでい る種のため、式(C35)に示すように別の TEMPOより電子を受け取り、水を生成する 。式 (C31)〜式 (C35)に示した素反応により酸素の 4電子還元が進み、 4分子の TE MPO+が生成する。 TEMPO+も活性にとんだ種であり、式 (C36)に示すように、燃 料電池の正極から電子(e_)を受け取り、 TEMPOに再生される。
[0179] なお、 SCEで TEMPOの酸化還元電位を 1M硫酸水溶液中で測定すると、図 17 に示すサイクリックボルタモグラムが得られる。本条件における TEMPOの酸化還元 電位は 0. 57V (SCE)付近に存在する。なお、 NHEに修正すると酸化還元電位は 0 . 81V(SCE)である。この電位より、 TEMPOの酸化還元電位は酸素の酸化還元電 位よりも低く十分還元剤として働くレベルであり、 TEMPOは、可逆的に酸化剤又は 還元剤として機能する化合物であるとともに、水素及び水素イオンの酸ィ匕還元電位よ りも高 、電位で酸化剤として働く酸ィ匕還元サイクルを有する化合物である。このように 、 TEMPOは電位的にも酸素の 4電子還元機能を有し、 TEMPOは長期に渡り、酸 素還元触媒として機能を持ち続けることになる。これらの酸素の 4電子還元反応は常 温、常圧で起こる反応であり、白金より優れた低温活性を示すため、燃料電池の電極 触媒において白金の使用量を低減することが可能である。また、 TEMPOは加水分 解しないため、酸ィ匕還元触媒として使用した場合には長期に渡って使用可能であり 、さらに触媒使用量を減らすことが可能となる。
[0180] 上記化合物を酸ィ匕還元触媒として添加する場合には、乾燥処理後に製膜された白 金担持カーボン中に存在する酸素還元触媒の濃度が 0. 001〜30wt%となるような 範囲で添加されることが好ましい。 0. 001wt%以下では、酸素還元触媒の効果が十 分に発揮されないことが考えられ、 30wt%以上では触媒被毒による発電性能低下、 イオン伝導度低下、膜強度変化への影響、新たな副反応の誘発等が考えられ好まし くない。また、添加する場合には、この化合物が均一に白金担持カーボンに分散され ることが重要となる。このため、化合物を分散する溶媒は、化合物の溶解度を上げる 溶媒であれば水又は有機溶媒を使用することが可能であり、水と有機溶媒の混合溶 液であっても良い。
[0181] 以上示したィヒ合物は単独で用いても十分に酸素還元触媒としての機能を有するが 、反応速度を上げる等の必要に応じて、他の電極との電子の授受を補助する助触媒 を併用しても良い。該当する材料として、ランタノイド元素、 V (バナジウム)、 Mo (モリ ブデン)、 W (タングステン)、 Fe (鉄)、 Ru (ルテニウム)、 Co (コバルト)、 Rh (ロジウム )、 Ni (ニッケル)、 Cu (銅)、 Ag (銀)、 Ir (イリジウム)、 Pd (パラジウム)、 Pt (白金)、 A u (金)から選ばれる元素、又はこれらの元素を含む酸化物、有機酸塩、無機酸塩、 ノ、ロゲンィ匕物、錯体、ヘテロポリ酸及びへテロポリ酸塩力もなる群力も選択さる少なく とも一種又は二種以上を組み合わせて使用することが可能である。
[0182] また、本発明の実施の形態に係る電極用組成物を使用する形態としては上記化合 物を担体に担持して用いることによる。そして、燃料電池用電極として適用する場合 は、担体としてアセチレンブラック等の導電性カーボンブラック、またはカーボンナノ チューブに代表されるナノストラクチャーカーボンを使用することが好適である。担体 への含浸方法としては、上記化合物を溶媒に溶かした溶液を担体に流し込み、カー ボンに触媒を吸着させ、その後カーボンを濾過し、乾燥することにより容易に得ること ができる。
[0183] このように、本発明の実施の形態に係る電極用組成物では、酸素の酸化還元電位 よりも低い電位で還元剤として働き、かつ、水素及び水素イオンの酸ィ匕還元電位より も高い電位で酸化剤として働く酸化還元サイクルを有する化合物を酸素還元触媒と して含有することにより、この化合物が、酸素の酸化還元電位よりも低い電位で還元 剤として働き、酸化された後には水素及び水素イオンの酸ィ匕還元電位よりも高い電 位で酸化剤として可逆的に働く。その際に、プロトン (H+)と分子状酸素 (O )とを反
2 応させて水に還元する 4電子還元反応が促進される。このように、この化合物が酸素 の還元を促進する 4電子還元反応触媒として機能するため、電極用組成物中の白金 の使用量を減らすことが可能となる。また、この化合物は、酸ィ匕還元サイクルが繰り返 されることで酸化還元触媒として作用し、何度も触媒として使用可能であるため、さら に触媒使用量を減らすことが可能となる。
[0184] なお、本発明の実施の形態にカゝかる電極用組成物を含有する電極では、白金の使 用量を低減させることが可能となる。さらに、本発明の実施の形態に力かる電極用組 成物を有する空気極電極用組成物、又は本発明の空気極電極用組成物を有する空 気極電極を、燃料電池用空気極電極として使用することが可能である。この場合、空 気極における電極反応においてもプロトンと酸素との反応が促進され、白金の使用 量を低減することが可能である。
[0185] これらの電極を備えた燃料電池では、白金の使用量を低減することが可能である。
この燃料電池は、プロトン伝導型の高分子電解質膜を用いる燃料電池システムに用 いることが可能であり、その用途としては、燃料電池車両に限定されることはなぐ燃 料電池コージェネレーション発電システム、燃料電池家電機器、燃料電池携帯機器 、燃料電池輸送用機器に適用することが可能である。
実施例
[0186] 以下、実施例 1〜実施例 12及び比較例 1〜比較例 2により本発明に係る燃料電池 システムを更に具体的に説明する力 本発明の範囲はこれらに限定されるものでは ない。これらの実施例は、本発明に係る燃料電池システムの有効性を調べたもので あり、異なる抗酸化剤を用いた燃料電池システムの例を示したものである。
[0187] <試料の調製 >
(実施例 1)
固体高分子電解質膜として厚さ 175 mのデュポン社のナフイオン (登録商標) 11 7膜を lcm角に切り出して用いた。ナフイオン (登録商標)膜の前処理は、 NEDO P EFC R&Dプロジェクト標準処理に従い、 3%過酸ィ匕水素水中で 1時間煮沸した後 、蒸留水中 1時間煮沸し、続いて、 1M硫酸水溶液中で 1時間煮沸し、最後に蒸留水 中で 1時間煮沸の順に行った。
[0188] 次に、耐久試験において劣化防止判断を容易にするため、前処理した後にナフィ オン (登録商標)膜にイオン交換処理を施した。イオン交換処理は、前処理を施した ナフイオン (登録商標)膜を lOOmMの FeSO水溶液に一晩以上浸漬した後、蒸留
4
水中で 15分間超音波洗浄を用い、膜に付着したイオンを取り除くことにより、ナフィォ ン (登録商標)の対イオンを H+から Fe2+に交換した。なお、試薬は、和光純薬特級 F eSO · 7Η Οを用いた。
4 2
[0189] 次に、イオン交換処理電解質膜の両面に白金担持カーボン(Cabot社製 20wt%Pt /Vulcan XC-72)を lmgZcm2となるように塗布して膜一電極接合体 (MEA)を作製 した。そして、作製した MEAを単セルの中に組み込み、 PEFC用単セルとした。なお 、単セルは 5cm2単セルとした。そして、燃料極側ガスとして 70°C加湿水素ガス(大気 圧)を、空気極ガスとして 70°C加湿酸素ガス(大気圧)をバブラ経由で 70°Cに保った 単セルに供給した。また、活性酸素を不活性ィ匕する抗酸化剤として ImMの NHPI水 溶液を送液ポンプを用いて燃料ガス流路に流速 lcm3Z分の速さで送液した。単セ ルは 70°Cを保つよう制御した。
[0190] (実施例 2)
抗酸化剤として、 NHPI水溶液の代わりに N—ヒドロキシマレイン酸イミド(NHMI) 水溶液を用い、実施例 1と同様の処理を施したものを実施例 2とした。
[0191] (実施例 3) 抗酸化剤として、 NHPI水溶液の代わりに N ヒドロキシコハク酸イミド (NHSI)水 溶液を用い、実施例 1と同様の処理を施したものを実施例 3とした。
[0192] (実施例 4)
抗酸化剤として、 NHPI水溶液の代わりに N ヒドロキシダルタル酸イミド (NHGI) 水溶液を用い、実施例 1と同様の処理を施したものを実施例 4とした。
[0193] (実施例 5)
抗酸化剤として、 NHPI水溶液の代わりに N, Ν' , Ν"—トリヒドロキシイソシァヌル 酸 (THICA)水溶液を用い、実施例 1と同様の処理を施したものを実施例 5とした。
[0194] (比較例 1)
実施例 1にお ヽて、抗酸化剤水溶液を流さな ヽ場合を比較例 1とした。
[0195] 実施例 6〜実施例 11では、高分子固体電解質膜としてスルホンィ匕ポリエーテルス ルホン (S— PES)膜を用いた。 S— PES膜については、新エネルギー '産業技術総 合開発機構 平成 14年度成果報告書「固体高分子形燃料電池システム技術開発事 業 固体高分子形燃料電池要素技術開発等事業 固体高分子形燃料電池用高耐 久性炭化水素系電解質膜の研究開発」 P31に記載されて ヽる相当品を入手し、これ を用いた。
[0196] (実施例 6)
厚さ 170 /z mの S— PES膜を lcm角に切り出し、 S— PES膜の両面に白金担持力 一ボン(Cabot社製 20wt%Pt/Vulcan XC-72)を lmgZcm2となるように塗布して膜 電極接合体 (MEA)を作製した。そして、作製した MEAを単セルの中に組み込み 、 PEFC用単セルとした。なお、単セルは 5cm2単セルとした。そして、燃料極側ガス として 70°C加湿水素ガス(大気圧)を、空気極ガスとして 70°C加湿酸素ガス(大気圧 )をバブラ経由で 70°Cに保った単セルに供給した。また、活性酸素を不活性化する 抗酸化剤として ImMの TEMPO— OH水溶液を送液ポンプを用 、て燃料ガス流路 に流速 lcm3Z分の速さで送液した。単セルは 70°Cを保つよう制御した。
[0197] (実施例 7)
抗酸化剤として、 TEMPO - OH水溶液の代わりに TEMPO - COOH (Aldrich社 )水溶液を用い、実施例 6と同様の処理を施したものを実施例 7とした。 [0198] (実施例 8)
抗酸化剤として、 TEMPO— OH水溶液の代わりに TEMPO (Aldrich社)水溶液を 用い、実施例 6と同様の処理を施したものを実施例 8とした。
[0199] (実施例 9)
抗酸化剤として、 TEMPO— OH水溶液の代ゎりにPROXYL— CONH (Aldrich
2 社)水溶液を用い、実施例 6と同様の処理を施したものを実施例 9とした。
[0200] (実施例 10)
抗酸化剤として、 TEMPO— OH水溶液の代わりに PROXYL— COOH (Aldrich 社)水溶液を用い、実施例 6と同様の処理を施したものを実施例 10とした。
[0201] (実施例 11)
抗酸化剤として、 TEMPO— OH水溶液の代わりに 3—力ルバモイルー 2, 2, 5, 5 —テトラメチルピロリン— 1—ィルォキシ (Aldrich社)水溶液を用い、実施例 6と同様の 処理を施したものを実施例 11とした。
[0202] (実施例 12)
抗酸化剤として、 TEMPO— OH水溶液の代わりにジー t ブチルニトロキシド(DT BN: Aldrich社)水溶液を用い、実施例 6と同様の処理を施したものを実施例 12とし た。
[0203] (比較例 2)
実施例 6にお ヽて、抗酸化剤水溶液を流さな!/ヽ場合を比較例 2とした。
[0204] ここで、上記方法にて得られた試料は、以下に示す方法によって評価した。
[0205] <酸化還元電位の測定 >
実施例に用いる化合物の酸ィ匕還元電位は、作用極にグラッシ一カーボン、対極に 白金、参照極に飽和カロメル電極(SCE)を用い、電解液に 1M硫酸を用いて測定し た。イミド系の代表的化合物である NHPIと TEMPO系の代表的な化合物である TE MPOの測定例は図 14、図 17に示した通りである。図 14、図 17では、各物質の酸化 還元電位と合わせるために標準電位 Ε (ΝΗΕ)に補正して表示した。図 14に示すよ うに、 NHPIの酸化還元電位は 1. lOV(SCE)付近に存在し、図 17より TEMPOの 酸化還元電位は 0. 57V (SCE)付近に存在する。この電位により、 NHPI及び TEM POは、ヒドロキシラジカルに対して還元剤として機能する化合物であり、かつ、過酸 化水素に対して酸化剤として機能する化合物であることが示され、本目的に適した化 合物であることが分かる。
[0206] <起動停止繰り返し耐久試験 >
燃料極側を開回路状態で 30分保持した後、試験を開始した。試験は、単セルに流 速 300dm3Z分のガスを流し、放電開回路状態から電流密度を増加させ、端子電圧 が 0. 3V以下になるまで放電を行った。そして、端子電圧が 0. 3V以下になった後、 再び開回路状態として 5分間保持した。この操作を繰り返し行い、 ImAZcm3の電流 密度で発電したときの電圧が 0. 4V以下になった回数をもって耐久性能を比較した。 図 18に、一例として実施例 1で作製した燃料電池単セルの起動停止繰り返し耐久試 験の電流 電圧曲線の初期値と、耐久後の電流 電圧曲線のグラフを示す。このグ ラフにおいて、 ImAZcm3の電流密度で発電したときの電圧が 0. 4V以下になった 回数が起動停止繰り返し回数である。
[0207] <空気極で発生する物質の解析 >
膜の劣化解析は、ナフイオン (登録商標)膜では膜の分解に伴 、発生するフッ化物 イオン濃度及び硫酸イオン濃度を、 S— PES膜では分解に伴い発生する硫酸イオン 濃度を測定することにより行なった。溶出イオンの検出は、空気極より排出された液 体を回収しイオンクロマトグラフで測定した。イオンクロマトグラフは、ダイォネック社製 (機種名 CX— 120)を用いた。具体的な試験方法としては、各実施例、比較例共に 、上記起動停止試験において、 100回終了時に空気極力 排出された液体を採取し 比較した。また、空気極で発生したガスをガスクロマトグラフ質量分析計で測定した。 ガスクロマトグラフ質量分析計は、島津製作所製 (GCMS-QP5050)を用いた。
[0208] 表 1及び表 2に実施例 1〜実施例 12及び比較例 1〜比較例 2における電解質膜の 種類、使用した抗酸化剤、抗酸化剤の酸化還元電位、起動停止繰り返し回数、フッ 化物イオン、硫酸イオン及び二酸化炭素の空気極での発生の有無を示す。
[表 1] 電解質膜 抗酸化剤 抗酸化剤の 起動停止 フッ化物 硫酸 c o 2 酸化還元 繰り返し イオン イオン 電位 回数
実施例 ナフイオン NHPI 1. 34V 1250回 無し 無し 有り
1
実施例 ナフイオン 匪 I 1. 34V 1170回 無し 無し 有り
2
実施例 ナフイオン NHSI 1.36V 1210回 無し 無し 有り 3
実施例 ナフイオン NHGI 1. 38V 1430回 無し 無し 有り 4
実施例 ナフイオン THICA 1.40V 1450回 無し 無し 有り 5
比較例 ナフイオン 無添加 ― 120回 有り 有り 無し 1
[表 2] 電解質膜 抗酸化剤 抗酸化剤の 起動停止 フッ化物 硫酸 c o 2
酸化還元 繰り返し イオン イオン
電位 回数
実施例 S - PES TEMPO-OH 0. 81V 740回 ― Λし 有り
6
実施例 S-PES TEMPO" 0. 81V 760回 ― 無し 有り
7 C00H
実施例 S-PES TEMPO 0. 8 IV 730回 ― 無し 有り
8
実施例 S-PES PROXYL - 0. 8SV 730回 ― 無し 有り
9 C0NH2
実施例 S-PES PR0XYL- 0. 86V 730回 ― し 有り
10 COOH
例 S-PES 3-カルハモイ 0. 95V 610回 無し 有り
11 ル -2,2,5,5
—テトラ
ピ 1- シ
実施例 S-PES DTBN 0. 80V 650回 ― 無し 有り
12
比較例 S-PES 無添カロ ― 80回 ― 有り 無し
2 [0209] 実施例 1〜実施例 12に用いたィ匕合物の酸ィ匕還元電位は、過酸化水素が還元剤と なる電位 0. 68V(NHE)、かつ過酸化水素が酸化剤として働く電位 1. 77V (NHE) の範囲であり、本目的に適したィ匕合物であることが分力つた。
[0210] 起動停止繰り返し耐久試験の結果、抗酸化剤を供給していない比較例 1では、起 動停止繰り返し回数が 120回で、 ImAZcm3の電流密度で発電したときの電圧が 0 . 4V以下に低下した。これに対し、抗酸化剤を供給した実施例 1〜実施例 5ではい ずれも起動停止繰り返し回数 1200回前後で電圧が 0. 4V以下となり、抗酸化剤を 添加したことにより固体高分子電解質膜の劣化が抑制され、耐久性が向上しているこ とが確認された。実施例 6〜実施例 12では、起動停止繰り返し回数 600回以上で電 圧が 0. 4V以下となり、電解質膜の劣化抑制による耐久性向上が確認された。
[0211] また、イオンクロマトグラフでの分析結果より、比較例 1ではフッ化物イオン及び硫酸 イオンが検出され、比較例 2では硫酸イオンが検出され電解質膜が分解により劣化し たことが確認された。これに対し、実施例 1〜実施例 5で発生したフッ化物イオン及び 硫酸イオンは検出限界以下であり、抗酸化剤を導入したことによりナフイオン (登録商 標)膜の分解が抑制されたことが確認された。また、実施例 6〜実施例 12で発生した 硫酸イオンは検出限界以下であり、抗酸化剤を導入したことにより S— PES膜の分解 が抑制されたことが確認された。ガスクロマトグラフ質量分析計の結果を見ると、抗酸 ィ匕剤を導入した実施例 1〜実施例 12では COが検出され、燃料極から導入した抗
2
酸化剤が活性酸素を不活性ィ匕した後、空気極で酸化されて CO
2として排出されてい ることが確認された。
[0212] 以上示したように、現在最も広く使われて!/、る電解質膜であるナフイオン (登録商標 )膜に代表されるパーフルォロスルホン酸系ポリマー及び S— PESに示されるハイド 口カーボン系ポリマーは、燃料電池の空気極で発生する活性酸素により十分な耐性 があるとは言えない状況であった力 上記化合物を抗酸化剤として供給することによ り、連続的に発生する活性酸素を不活性化して電解質膜の劣化を防止することが可 能となり、燃料電池の耐久性能が向上可能となった。
[0213] 次に、実施例 13〜実施例 32及び比較例 3〜比較例 6により本発明に係る電極用 組成物をさらに具体的に説明するが、本発明の範囲はこれらに限定されるものでは ない。これらの実施例は、本発明に係る電極用組成物の有効性を調べたものであり、 異なる原料にて調整した電極用組成物の例を示したものである。
使用した化合物とその酸化還元電位を表 3及び表 4に示す。ここで、各実施例で用 いる化合物の酸化還元電位は、作用極にグラッシ一カーボン、対極に白金、参照極 に飽和カロメル電極 (SCE)を用い、電解液に 1M硫酸を用いて測定した。各物質の 酸化還元電位と合わせるために、得られた値を標準電位 E (NHE)に補正した。
[表 3]
Figure imgf000057_0001
[表 4]
化合物種 化合物の酸化
還元電位 (V)
実施例 24 TEMPO 0. 81
実施例 25 TEMPO— OH 0. 81
実施例 26 TEMPO 0. 81
一 COOH
実施例 27 PROXYL 0. 85
-CONH2
実施例 28 PROXYL 0. 86
-COOH
実施例 29 3—力ルバモイル一 0. 95
2, 2, 5, 5—テト
ラメチレピロリン一 1
—ィルォキシ
実施例 30 DTBN 0. 80
[0215] 各試料は以下の方法で調整した。
[0216] <試料の調製 >
(実施例 13)
白金担持カーボンとして、 Cabot社製 20wt%Pt/Vulcan XC- 72を用いた。まず、白金 担持カーボンに、酸素還元触媒として 0.5mMの NHPI水溶液を加え十分攪拌した 後、 12時間放置し、 NHPIを白金担持カーボンに含浸させた。その後、 NHPIを含 浸させた白金担持カーボンをろ過により回収し、電極用組成物を得た。次に、得られ た電極用組成物をナフイオン (登録商標)膜の空気極側となる一方の面に lmgZcm 2となるように塗布し、 NHPIを含浸して 、な 、白金担持カーボンを燃料極側となるもう 一方の面に lmg/cm2となるように塗布して膜—電極接合体 (MEA)を作製した。そ して、形成した MEAを単セルの中に組み込み、 PEFC用単セルとして評価に用いた 。なお、本発明の電極、電極用組成物を評価するために、単セルは 5cm2単セルとな るように調整した。また、 MEAに用いる高分子固体電解質膜として、厚さ 175 /zmの デュポン社のナフイオン (登録商標) 117膜を使用した。
[0217] (実施例 14)
酸素還元触媒として、 NHPI水溶液の代わりに 0.5mMの N—ヒドロキシマレイン酸 イミド水溶液を用い、実施例 13と同様の処理を施したものを実施例 14とした。
[0218] (実施例 15)
酸素還元触媒として、 NHPI水溶液の代わりに 0. 5mMの N—ヒドロキシコハク酸ィ ミド水溶液を用い、実施例 13と同様の処理を施したものを実施例 15とした。
[0219] (実施例 16)
酸素還元触媒として、 NHPI水溶液の代わりに 0. 5mMの N—ヒドロキシトリメリット 酸イミド水溶液を用い、実施例 13と同様の処理を施したものを実施例 16とした。
[0220] (実施例 17)
酸素還元触媒として、 NHPI水溶液の代わりに 0. 5mMの N, N' —ジヒドロキシピ ロメリット酸イミド水溶液を用い、実施例 13と同様の処理を施したものを実施例 17とし た。
[0221] (実施例 18)
酸素還元触媒として、 NHPI水溶液の代わりに 0. 5mMの N—ヒドロキシグルタル 酸イミド (NHGI)水溶液を用い、実施例 13と同様の処理を施したものを実施例 18と した。
[0222] (実施例 19)
酸素還元触媒として、 NHPI水溶液の代わりに 0. 5mMの N—ヒドロキシー 1, 8— ナフタレンジカルボン酸イミド (NHNDI)水溶液を用い、実施例 13と同様の処理を施 したものを実施例 19とした。
[0223] (実施例 20)
酸素還元触媒として、 NHPI水溶液の代わりに 0. 5mMの N—ヒドロキシー 1, 8— デカリンジカルボン酸イミド (NHDDI)水溶液を用い、実施例 13と同様の処理を施し たものを実施例 20とした。
[0224] (実施例 21)
酸素還元触媒として、 NHPI水溶液の代わりに 0. 5mMの N, N'—ジヒドロキシー 1 , 8 ;4, 5—ナフタレンテトラカルボン酸イミド (NHNTI)水溶液を用い、実施例 13と 同様の処理を施したものを実施例 21とした。
[0225] (実施例 22) 酸素還元触媒として、 NHPI水溶液の代わりに 0. 5mMの N, N'—ジヒドロキシ 1 , 8 ;4, 5 デカリンテトラカルボン酸イミド (NHDTI)水溶液を用い、実施例 13と同 様の処理を施したものを実施例 22とした。
[0226] (実施例 23)
酸素還元触媒として、 NHPI水溶液の代わりに 0. 5mMの N, Ν' , Ν"—トリヒドロ キシイソシァヌル酸 (THICA)水溶液を用い、実施例 13と同様の処理を施したものを 実施例 23とした。
[0227] (実施例 24)
酸素還元触媒として、 NHPI水溶液の代わりに図 7(0に示す 0. 5mMの TEMPO 水溶液を用い、実施例 13と同様の処理を施したものを実施例 24とした。
[0228] (実施例 25)
酸素還元触媒として、 NHPI水溶液の代わりに図 7(ii)に示す 0. 5mMの 4ーヒドロ キシ一 TEMPO水溶液を用い、実施例 13と同様の処理を施したものを実施例 25とし た。
[0229] (実施例 26)
酸素還元触媒として、 NHPI水溶液の代わりに図 7(iii)に示す 0. 5mMの 4 カル ボキシ— TEMPO水溶液を用い、実施例 13と同様の処理を施したものを実施例 26 とした。
[0230] (実施例 27)
酸素還元触媒として、 NHPI水溶液の代わりに図 8(xiii)に示す 0. 5mMの 3—カル バモイル一 PROXYL水溶液を用い、実施例 13と同様の処理を施したものを実施例 27とした。
[0231] (実施例 28)
酸素還元触媒として、 NHPI水溶液の代わりに図 8(xiv)に示す 0. 5mMの 3—カル ボキシ PROXYL水溶液を用 、、実施例 13と同様の処理を施したものを実施例 28 とした。
[0232] (実施例 29)
酸素還元触媒として、 NHPI水溶液の代わりに図 8(xv)に示す 0. 5mMの 3—カル バモイルー 2, 2, 5, 5—テトラメチルピロリン一 1—ィルォキシ水溶液を用い、実施例
13と同様の処理を施したものを実施例 29とした。
[0233] (実施例 30)
酸素還元触媒として、 NHPI水溶液の代わりに図 8(xx)に示す 0. 5[mM]の 3ジー t
-ブチルニトロキシド (DTBN)水溶液を用い、実施例 13と同様の処理を施したもの を実施例 30とした。
[0234] (比較例 3)
実施例 13で使用した白金担持カーボンに NHPIを含浸させて ヽな 、ものを、比較 例 3とした。つまり、ナフイオン (登録商標)膜の燃料極側及びを空気極側にそれぞれ lmg/cm2となるように白金担持カーボン塗布して MEAを形成し、形成した MEAを 単セルの中に組み込み、評価に用いた。
[0235] (比較例 4)
白金担持カーボンとして 25wt%Pt/Vulcan XC- 72を用い、比較例 3と同様の処理を 施したものを比較例 4とした。
[0236] (比較例 5)
白金担持カーボンとして 30wt%Pt/Vulcan XC- 72を用い、比較例 3と同様の処理を 施したものを比較例 5とした。
[0237] ここで、上記方法にて得られた MEAを組み込んだ単セルは、以下に示す発電試 験によって評価された。
[0238] <発電試験 >
燃料極には 70°Cに加湿した水素ガス(大気圧)を、空気極には 70°Cに加湿した酸 素ガス (大気圧)を、それぞれ 70°Cの温度に保った単セルに供給し、開回路状態で 5 分保持した。その後、単セルに流速 300dm3Z分のガスを流し、開回路電圧を測定 し酸素過電圧の変化を測定した。また、単セルに流速 300dm3Z分のガスを流したま ま、電流 電位曲線を測定した。発電特性は、 ImAZcm2の電流を流したときの電 位をもって優劣を判断した。
[0239] 実施例 13と比較例 3の電流 電位曲線の初期値を図 19に示す。また、表 5〜表 7 に実施例 13〜実施例 30及び比較例 3〜比較例 5における開回路電圧、及び発電 試験の結果を示す。
[表 5]
Figure imgf000062_0001
[表 6] 白金担持 酸素還元触媒 開回路電圧 放電時回路電圧 カーボン (V) (V) 実施例 2 Owt%Pt NHG I 0. 93 0. 63
18 /Vulcan
XC-72
実施例 2 Owt%Pt NHND I 0. 92 0. 62 19 /Vulcan
XC-72
実施例 2 Owt%Pt NHDD I 0. 93 0. 63 20 /Vulcan
XC-72
実施例 2 O t%Pt NHNT I 0. 91 0. 61 21 /Vulcan
XC-72
実施例 2 Owt%Pt NHDT I 0. 91 0. 60 22 /Vulcan
XC-72
実施例 2 Owt%Pt TH I CA 0. 94 0. 65 23 /Vulcan
XC-72
[表 7]
白金担持カー 酸素還元触媒 開回路電圧 放電時回路電圧
ボン (V) (V)
実施例 2 Owt%Pt TEMPO 0. 92 0. 64
24 /Vulcan
XC-72
実施例 20wt%Pt TEMPO 0. 90 0. 62 25 /Vulcan -OH
XC-72
実施例 2 Owt%Pt TEMPO 0. 92 0. 64 26 /Vulcan -COOH
XC-72
実施例 2 Owt%Pt PROXYL 0. 92 0. 64 27 /Vulcan -CONH2
XC-72
実施例 20 t%Pt PROXYL 0. 92 0. 64 28 /Vulcan -COOH
XC-72
実施例 2 Owt%Pt 3—カノレバモイノレ一 0. 88 0. 60 29 /Vulcan 2, 2, 5, 5—テ
XC-72 トラメチルピロリン
1ーィルォキシ
実施例 20 wt%Pt DTBN 0. 89 0. 61 30 /Vulcan
XC-72
[0240] 実施例 13と比較例 3について開回路電圧を比較すると、実施例 13の開回路電圧 が約 10%程度高くなつていた。これは、酸素過電圧が減少したため空気極の反応が 活性化され、酸素還元が促進されていると考えられた。この現象は、実施例 13だけ ではなく酸素還元触媒を添加した実施例 13〜30の 、ずれの実施例にお 、ても観測 され、酸素還元触媒を添加していない各比較例に対して 5〜; 10%程度高くなつた。
[0241] 発電試験では、 ImAZcm3の電流密度で発電したときの電圧を目安とした。実施 例 1では、 ImAZcm3の電流密度で発電したときの電圧が 0.6V以上であり、十分な 電圧が得られることがわ力つた。また。実施例 13と比較例 3の比較により、 NHPIを添 カロした実施例 13の方が放電時回路電圧が高くなつており、空気極の反応が活性ィ匕 され、酸素還元が促進されていると考えられた。また、 30wt%Pt/Vulcan XC- 72を用い た比較例 5と実施例 13を比べると、実施例 13は白金を多く担持した比較例 5に対し て、僅かながら放電時回路電圧が低下した。し力し、 25wt%Pt/Vulcan XC- 72を用い た比較例 4に対しては、放電時回路電圧は実施例 13の方が上回った。これらの結果 より、 NHPIを添加することにより白金添加量の低減が可能であることが示唆された。
[0242] また、実施例 13〜実施例 30の結果より、酸素還元触媒として NHPIと異なる化合 物を触媒として用いた場合にぉ 、ても空気極における酸素の 4電子還元反応が促進 され、白金添加量を低減する可能性があることが示唆された。なお、実施例 23で用 いた THICAは、分子量も小さく 3官能性を有するため酸素還元触媒として効果的で あり、開放電圧、放電時の電圧も他の実施例よりも更に高いデータを示した。
[0243] 実施例 13〜実施例 30では、いずれも酸素還元触媒を 0. 5mMの水溶液として白 金担持カーボンへ含浸する手法を行った力 酸素還元触媒の水溶液の濃度は特に 限定されるものではない。使用する場合には、この化合物が均一に白金担持カーボ ンに分散することが重要となる。ここでは溶媒として水を用いたが、酸素還元触媒の 溶解度を上げる溶媒であれば必要に応じて有機溶媒を用いることも可能である。また 、乾燥処理後に製膜された白金担持カーボン中に存在する酸素還元触媒の濃度は 、 0. 001〜30wt%の範囲が好ましい。 0. 001wt%以下では、酸素還元触媒の効 果が十分に発揮されないことが考えられ、 30wt%以上では、触媒被毒による発電性 能低下、イオン伝導度低下、膜強度変化への影響、新たな副反応の誘発等が考えら れ好ましくない。
[0244] <安定性試験 >
化合物の安定性については、 0. 5M硫酸にそれぞれの化合物を 1. OmMの濃度 で溶解した後、 80°Cに保って化合物の消失の状態を液体クロマトグラフィーにて定 量化した。
[0245] 図 20に NHPI及び TEMPOの安定性試験の結果のグラフを示す。図 20に示すよ うに、 NHPIは図 21 (a)に示す反応により加水分解するため、経時で濃度が下がり、 96時間後の NHPIの濃度は約 0. 6mMに減少していた。これに対し、 TEMPOは、 96時間後であってもほとんど濃度が変化していな力つた。図 21 (b)、(c)に示すよう に、 PROXYL系化合物、 TEMPO系化合物及び DTBNは、イミド系化合物で見ら れる加水分解は見られず、化合物の消失量力 Sイミド系に比べて少な 、ことが分かつ た。
[0246] <単セル促進耐久性試験 >
セノレ温度 90°Cの開回路放置試験を行い、 OCV (open circuit voltage)をモニターし て化合物を電極に添加したことによる単セルの耐久性を調べた。燃料極には 30%に 加湿した水素ガスを、空気極には 30%に加湿した酸素ガスをそれぞれ流速 500ml Z分で供給し、ガスを流したまま OCVを測定した。
[0247] (実施例 31)
白金担持カーボンとして田中貴金属製 TEC10E50Eを、電解質バインダとしてデュ ボン社製 5wt%ナフイオン (登録商標)溶液を用いた。白金担持カーボンを水で十分 湿らせた後電解質バインダをカ卩え、イソプロピルアルコールをカ卩えてイソプロピルアル コールに白金担持カーボンと電解質バインダを分散させた。その後、ホモジナイザー で 3時間混合して均一化処理し、その後脱泡処理をして触媒インクとした。その後、 白金量が 0. 4mgZcm3となるように触媒インクをテフロン (登録商標)シートに塗布し て触媒シート Aとした。
[0248] 同様に白金担持カーボンとして田中貴金属製 TEC10E50Eを、電解質バインダとし てデュポン社製 5wt%ナフイオン (登録商標)溶液を用い、白金担持カーボンを水で 十分湿らせた後、電解質バインダとカーボン比 1. 8wt%の NHPI加え、イソプロピル アルコールを加えてイソプロピルアルコールに白金担持カーボン、電解質バインダ及 び NHPIを分散させた。その後、ホモジナイザーで 3時間混合して均一化処理し、そ の後脱泡処理をして触媒インクとした。その後、白金量が 0. 4mgZcm3となるように 触媒インクをテフロン (登録商標)シートに塗布して触媒シート Bとした。
[0249] 触媒シート Aをナフイオン (登録商標) 211膜の空気極側に、触媒シート Bを燃料極 側に配置し、 2MPa、 132°C、 10分間ホットプレスして触媒シート A、 Bをそれぞれナ フイオン(登録商標) 211膜に転写して電極触媒層とし、 CCM (catalyst coated memb rane)を得た。 CCMをガス拡散層に挟んだ後、セパレータと集電板で挟みこみ、触媒 エリアが 5 X 5cm2の単セルを作製した。
[0250] (実施例 32)
実施例 31と同様にして作製した触媒シート Aをナフイオン (登録商標) 211膜のァノ ード側 (燃料極側)に、触媒シート Bを力ソード側(空気極側)に配置し、 2MPa、 132 °C、 10分間ホットプレスして触媒シート A、 Bをそれぞれナフイオン (登録商標) 211膜 に転写して電極触媒層とし、 CCMを得た。 CCMをガス拡散層に挟んだ後、セパレ ータと集電板で挟みこみ、触媒エリアが 5 X 5cm2の単セルを作製した。
(比較例 6)
白金担持カーボンとして田中貴金属製 TEC10E50Eを、電解質バインダとしてデュ ボン社製 5wt%ナフイオン (登録商標)溶液を用いた。白金担持カーボンを水で十分 湿らせた後電解質バインダをカ卩え、イソプロピルアルコールをカ卩えてイソプロピルアル コールに白金担持カーボンと電解質バインダを分散させた。その後、ホモジナイザー で 3時間混合して均一化処理し、その後脱泡処理をして触媒インクとした。その後、 白金量が 0. 4mgZcm3となるように触媒インクをテフロン (登録商標)シートに塗布し て触媒シートを 2枚作製した。
[0251] 触媒シートをナフイオン (登録商標) 211膜の燃料極側及び空気極側にそれぞれに 配置し、 2MPa、 132°C、 10分間ホットプレスして触媒シートをナフイオン (登録商標) 211膜に転写して電極触媒層とし、 CCMを得た。 CCMをガス拡散層に挟んだ後、 セパレータと集電板で挟みこみ、触媒エリアが 5 X 5cm2の単セルを作製した。
[0252] 図 22に、単セル促進耐久性試験の結果を表す。実施例 31、実施例 32及び比較 例 6のいずれにおいても試験開始後は OCVが 0. 95V程度であり、 5時間後には OC Vが 0. 9V程度に低下した。電極触媒層に NHPIが添加されていない比較例 6では、 試験開始 18時間後力も OCVが低下し、図 22には示されていないが、 40時間で発 電不能となった。これに対し、燃料極側に NHPIを添加した実施例 31では 29時間経 過するまで OCVが 0. 9V程度に保たれ、 80時間まで発電が継続した。また、空気極 側に NHPIを添カ卩した実施例 32では 22時間経過するまで OCVが 0. 9V程度に保 たれ、 50時間まで発電が継続した。このように、電極触媒層に NHPIを添加すること により単セルの耐久性が向上した。これは、 NHPIが酸ィ匕還元サイクルを繰り返すこ とにより酸化還元触媒として作用し、酸化還元サイクルを繰り返すことで電極で発生 する過酸化水素等の中間性生物を除去し、この現象が耐久時間の向上につながつ たと考えられる。この効果は燃料極側に NHPIを添加した実施例 31でより顕著に見ら れた。このように、酸化還元サイクルを有する化合物と白金を併用することにより、発 電耐久時間が改善されることがわ力つた。
[0253] なお、実施例 31及び実施例 32では、 NHPIを 1. 8wt%となるようにカ卩えた力 NH PIの添加量は特に限定されるものではない。また、酸化還元作用がある化合物であ れば NHPIに限らず他の化合物であっても使用可能である。使用する場合には、こ の化合物が均一に白金担持カーボンに分散することが重要となる。ここでは、化合物 を分散する溶媒としてイソプロピルアルコールを用いた力 酸素還元触媒の溶解度を 上げる溶媒であればイソプロピルアルコールに限定されず他の有機溶媒を使用する ことが可能である。また、乾燥処理後に製膜された白金担持カーボン中に存在する 酸素還元触媒の濃度は、 0. 001〜30wt%の範囲が好ましい。 0. 001wt%以下で は、酸素還元触媒の効果が十分に発揮されないことが考えられ、 30wt%以上では、 触媒被毒による発電性能低下、イオン伝導度低下、膜強度変化への影響、新たな副 反応の誘発等が考えられ好ましくな ヽ。
[0254] 以上示したように、固体高分子電解質型燃料電池において、上記化合物を含む電 極用組成物を白金と併用することにより、電極用組成物中の白金の使用量を減らす ことが可能となることが分力つた。また、この化合物は、酸化還元サイクルが繰り返さ れることで酸化還元触媒として作用し、何度も触媒として使用可能であるため、さらに 触媒使用量を減らすことが可能となることが分力 た。
[0255] 特願 2004— 203147号(出願曰:2004年 7月 9曰)、特願 2004— 258507号(出 願日:2004年 9月 6日)、特願 2004— 355268号(出願日:2004年 12月 8日)、 特 願 2005— 157449号(出願曰: 2005年 5月 30曰)及び特願 2005— 172229号(出 願日: 2005年 6月 13日)の全内容はここに援用される。
[0256] 以上、実施の形態及び実施例に沿って本発明の内容を説明したが、本発明はこれ らの記載に限定されるものではなぐ種々の変形及び改良が可能であることは、当業 者には自明である。
産業上の利用の可能性
[0257] 本発明の燃料電池システムでは、電極に内在もしくは接触する抗酸化剤が酸素の 4電子還元反応を促進する触媒として機能するため、電極に使用する白金の使用量 を減らすことが可能となる。

Claims

請求の範囲
[1] 電極と、
前記電極に内在もしくは接触し、活性酸素を不活性化する抗酸化剤と、を有する燃 料電池を備えることを特徴とする燃料電池システム。
[2] 固体高分子電解質膜と、前記固体高分子電解質膜を挟持する空気極及び燃料極 とを備え、前記空気極及び燃料極の一方が前記電極を構成して ヽる膜電極接合体 と、前記膜電極接合体の前記空気極側に配置され、前記膜電極接合体との間に空 気流路を画成する空気極側セパレータと、前記膜電極接合体の前記燃料極側の面 に配置され、前記膜電極接合体との間に燃料ガス流路を画成する燃料極側セパレ ータと、を備えた単セルを複数積層した燃料電池と、
前記抗酸化剤を前記燃料電池に供給して前記電極に接触させる抗酸化剤供給系 と、
を備えることを特徴とする請求項 1に記載の燃料電池システム。
[3] 固体高分子電解質膜と、前記固体高分子電解質膜を挟持する空気極及び燃料極 とを備え、前記空気極及び燃料極の一方が前記電極を構成して ヽる膜電極接合体 と、前記膜電極接合体の前記空気極側に配置され、前記膜電極接合体との間に空 気流路を画成する空気極側セパレータと、前記膜電極接合体の前記燃料極側の面 に配置され、前記膜電極接合体との間に燃料ガス流路を画成する燃料極側セパレ ータと、を備えた単セルを複数積層した燃料電池と、
前記抗酸化剤を前記燃料電池に供給して前記電極に接触させる抗酸化剤供給手 段と、
を備えることを特徴とする請求項 1に記載の燃料電池システム。
[4] 前記抗酸化剤を、抗酸化剤溶液として連続的に前記燃料極へ供給することを特徴 とする請求項 2に記載の燃料電池システム。
[5] 前記抗酸化剤溶液は、水溶液であることを特徴とする請求項 4に記載の燃料電池 システム。
[6] 前記抗酸化剤供給系は、前記抗酸化剤溶液が封入されて!ヽる抗酸化剤溶液タン クと、前記抗酸化剤溶液を前記燃料極へ供給する送液ポンプと、前記抗酸化剤溶液 タンクと前記送液ポンプとを接続する抗酸化剤溶液管路と、前記送液ポンプと前記 燃料ガス流路とを接続するた抗酸化剤溶液管路と、を有することを特徴とする請求項
4に記載の燃料電池システム。
[7] 前記抗酸化剤は、炭素、酸素、窒素及び水素の 4元素から構成される炭化水素系 化合物であることを特徴とする請求項 2に記載の燃料電池システム。
[8] 前記抗酸化剤の酸化体の加水分解された加水分解物が化学的に安定であること を特徴とする請求項 2に記載の燃料電池システム。
[9] 前記抗酸化剤は可逆的な酸化還元能を有し、前記抗酸化剤の酸化体は化学的に 安定であることを特徴とする請求 2に記載の燃料電池システム。
[10] 不用となった抗酸化剤又は前記抗酸化剤の酸化体を、前記空気極に含有させた 触媒により酸化して CO、 H O又は Nとして排出させることを特徴とする請求項 9に
2 2 2
記載の燃料電池システム。
[11] 前記抗酸化剤は、標準酸化還元電位が 0. 68Vより大きくかつ 1. 77Vより小さいこ とを特徴とする請求項 2に記載の燃料電池システム。
[12] 前記抗酸化剤は、次の一般式 (I)で表される化合物であることを特徴とする請求項
2に記載の燃料電池システム:
[化 1]
Ri
\
N二 X
/
R2
(I) ただし、 R1及び R2は同一又は異なる任意の置換基を、 Xは酸素原子又はヒドロキシ ル基を表す。
[13] 前記 R1及び R2は互いに結合して二重結合、芳香環、又は非芳香族性の環を形 成していること特徴とする請求項 12に記載の燃料電池システム。
[14] 前記抗酸化剤は、次の一般式 (II)で表されるイミドィ匕合物であることを特徴とする請 求項 13に記載の燃料電池システム: [化 2] o
, ·〜· *
( Yl N
ただし、環 Ylは、二重結合を有する、芳香族性又は非芳香族性の 5〜12員環のうち Vヽずれか一種類の環を表す。
前記抗酸化剤は、次の一般式 (III)で表されるイミドィ匕合物であることを特徴とする 請求項 14に記載の燃料電池システム:
[化 3]
Figure imgf000072_0001
(III) ただし、 R3及び R4は同一又は異なり、それぞれ水素原子、ハロゲン原子、アルキル 基、ァリール基、シクロアルキル基、ヒドロキシル基、アルコキシル基、カルボキシル基 、アルコキシカルボ-ル基又はァシル基を、 Xは酸素原子又はヒドロキシル基を、 nは 1〜3の整数を表す。
[16] 前記 R3及び R4は互いに結合して二重結合、芳香環、又は非芳香族性の環を形 成して 、ること特徴とする請求項 15に記載の燃料電池システム。
[17] 前記 R3及び R4が互いに結合して芳香族性又は非芳香族性の 5〜12員環のうち V、ずれか一種類の環を形成して!/ヽることを特徴とする請求項 15に記載の燃料電池シ ステム。
[18] 前記 R3及び R4が互いに結合して、シクロアルカン、シクロアルケン、橋かけ式炭化 水素環、芳香環、及びそれらの置換体力 なる群力 選択さる少なくとも一種の環を 形成して!/ヽることを特徴とする請求項 15に記載の燃料電池システム。 前記イミド化合物が、次の一般式 (IVa)〜(IVf)で表されるイミドィ匕合物であることを 特徴とする請求項 15に記載の燃料電池システム。
[化 4]
Figure imgf000073_0001
〕η
(IV a) (IV b) (IVc)
Figure imgf000073_0002
(IVd) (IVe) (IVf) ただし、 R3〜R6は同一又は異なって、それぞれ水素原子、ハロゲン原子、アルキル 基、ヒドロキシル基、アルコキシル基、カルボキシル基、アルコキシカルボ-ル基、ァ シル基、ニトロ基、シァノ基又はアミノ基を表し、 nは 1〜3の整数を表す。
[20] 前記イミド化合物が、 N—ヒドロキシコハク酸イミド、 N—ヒドロキシマレイン酸イミド、 N—ヒドロキシへキサヒドロフタル酸イミド、 N, N' —ジヒドロキシシクロへキサンテトラ カルボン酸イミド、 N—ヒドロキシフタルイミド、 N—ヒドロキシテトラブロモフタル酸イミド 、 N—ヒドロキシテトラクロロフタル酸イミド、 N—ヒドロキシへット酸イミド、 N—ヒドロキ シハイミック酸イミド、 N—ヒドキシトリメリット酸イミド、 N, N' —ジヒドロキシピロメリット 酸イミド及び N, N' —ジヒドロキシナフタレンテトラカルボン酸イミドカ なる群力 選 択されるイミド化合物であることを特徴とする請求項 15に記載の燃料電池システム。
[21] 前記一般式 (II)で表される化合物力 次の一般式 (V)で表される化合物であること を特徴とする請求項 14に記載の燃料電池システム:
[化 5]
Figure imgf000074_0001
ただし、 Xは酸素原子又はヒドロキシル基を表し、 R1〜R6は同一又は異なり、それぞ れ水素原子、ハロゲン原子、アルキル基、ァリール基、シクロアルキル基、ヒドロキシ ル基、アルコキシ基、カルボキシル基、置換ォキシカルボ-ル基、ァシル基又はァシ ルォキシ基を表し、 R1〜R6のうち少なくとも二つが互いに結合して二重結合、又は 芳香族性若しくは非芳香族性の環を形成してもよぐこの環のうち少なくとも一つが N 置換環状イミド基を有して 、ても良 、。
前記一般式 (V)で表される化合物が、次の式 (Via)又は (VIb)で表される化合物で あることを特徴とする請求項 21に記載の燃料電池システム:
[化 6]
Figure imgf000074_0002
(Via) (VIb) ただし、 R7〜R12は同一又は異なって、水素原子、アルキル基、ヒドロキシル基、ァ ルコキシル基、カルボキシル基、アルコキシカルボ-ル基、ァシル基、ニトロ基、シァ ノ基又はアミノ基を表す。
[23] 前記一般式 (V)、 (Via)、又は (VIb)で表される化合物力 N ヒドロキシダルタル 酸イミド、 N ヒドロキシ 1, 8 ナフタレンジカルボン酸イミド、 N ヒドロキシ 1, 8 ーデカリンジカノレボン酸イミド、 N, N, 一ジヒドロキシ 1, 8 ;4, 5 ナフタレンテトラ カルボン酸イミド、 N, N,—ジヒドロキシ— 1, 8 ;4, 5—デカリンテトラカルボン酸イミド 及び N, Ν' , Ν"—トリヒドロキシイソシァヌル酸力 なる群力 選択されるイミド化合 物であることを特徴とする請求項 22に記載の燃料電池システム。
[24] 前記抗酸化剤は、酸化還元電位が 0. 68Vより大きくかつ 1. OOVより小さいことを 特徴とする請求項 2に記載の燃料電池システム。
[25] 前記一般式 (I)で表される化合物が、次の一般式 (VII)で表される化合物であること を特徴とする請求項 12に記載の燃料電池システム:
[化 7]
Figure imgf000075_0001
C
\
/
R2 (VII) ただし、 R13及び R14はアルキル基、又は一部が任意の基で置換されたアルキル基 であり、 R13及び R14は鎖状、環状、又は分岐状でもよぐ R13及び R14が互いに結 合して環を形成していてもよぐ酸素及び窒素原子含んでも力まわない。
[26] 前記一般式 (VII)で表される化合物が、次の一般式 (VIII)で表される化合物であるこ とを特徴とする請求項 25に記載の燃料電池システム:
[化 8]
Rl3
Ri \ I ノ Ri4
C \
N = X
/
C
z I \
R2 Rl5 Rl6 (VIII) ただし、 R13〜R16はアルキル基、又は一部が任意の基で置換されたアルキル基で あり、 R13〜R16は鎖状、環状、又は分岐状であってもよぐ R13と R14、又は R15と R16とが互いに結合して環を形成していてもよぐ酸素及び窒素原子含んでも力まわ ない。
前記一般式 (VIII)で表される化合物が、次の一般式 (IX)で表される化合物である とを特徴とする請求項 26に記載の燃料電池システム:
[化 9]
Figure imgf000076_0001
ただし、環 Y2は、 R13と R14とが結合して 5員環又は 6員環のいずれかの環を形成し ている。
前記一般式 (IX)で表される化合物が、次の一般式 (X)で表される化合物であること を特徴とする請求項 27に記載の燃料電池システム:
[化 10]
Figure imgf000076_0002
ただし、 Zはアルキル基、ァリール基、アルコキシ基、力ルポキシル基、アルコキシ力 ルポ二ル基、シァノ基、ヒドロキシル基、ニトロ基、アミノ基及び水素原子を含む置換 基からなる群から選択される置換基を表す。 Zがアルキル基の場合には、一部が任 意の基で置換されたアルキル基であってもよぐ一部の基が鎖状、環状、または分岐 状であってもよぐ酸素及び窒素原子含んでもかまわない。 Zがァリール基の場合に は、一部が任意の基で置換されたァリール基であってもよぐ酸素及び窒素原子含 んでもかまわない。
前記一般式 (IX)で表される化合物が、次の一般式 (XI)で表される化合物であること を特徴とする請求項 27に記載の燃料電池システム:
[化 11]
Figure imgf000077_0001
ただし、 Zはアルキル基、ァリール基、アルコキシ基、カルボキシル基、アルコキシ力 ルポ二ル基、シァノ基、ヒドロキシル基、ニトロ基、アミノ基及び水素原子を含む置換 基からなる群から選択される一種の置換基を表す。 Zがアルキル基の場合には、一 部が任意の基で置換されたアルキル基であってもよぐ一部の基が鎖状、環状、また は分岐状であってもよぐ酸素及び窒素原子含んでもかまわない。 Zがァリール基の 場合には、一部が任意の基で置換されたァリール基であってもよぐ酸素及び窒素 原子含んでもかまわない。
前記一般式 (IX)で表される化合物が、次の一般式 (XII)で表される化合物であること を特徴とする請求項 27に記載の燃料電池システム:
[化 12]
Figure imgf000077_0002
ただし、 Zはアルキル基、ァリール基、アルコキシ基、カルボキシル基、アルコキシ力 ルポ二ル基、シァノ基、ヒドロキシル基、ニトロ基、アミノ基及び水素原子を含む置換 基からなる群から選択される一種の置換基を表す。 Zがアルキル基の場合には、一 部が任意の基で置換されたアルキル基であってもよぐ一部の基が鎖状、環状、また は分岐状であってもよぐ酸素及び窒素原子含んでもかまわない。 Zがァリール基の 場合には、一部が任意の基で置換されたァリール基であってもよぐ酸素及び窒素 原子含んでもかまわない。
[31] 前記燃料電池が水素型、ダイレクトメタノール型、及びダイレクト炭化水素型の中か ら選択されるいずれか一種であることを特徴とする請求項 2に記載の燃料電池システ ム。
[32] 前記抗酸化剤は、酸素の酸化還元電位よりも低 、電位で還元剤として働き、かつ、 水素及び水素イオンの酸ィ匕還元電位よりも高い電位で酸化剤として働く酸ィ匕還元サ イタルを有する化合物からなり、前記電極は、前記化合物を酸化還元触媒として含有 することを特徴とする請求項 1に記載の燃料電池システム。
[33] 酸素の酸化還元電位よりも低 、電位で還元剤として働き、かつ、水素及び水素ィォ ンの酸化還元電位よりも高い電位で酸化剤として働く酸化還元サイクルを有する化 合物を酸素還元触媒として含有することを特徴とする電極用組成物。
[34] 前記化合物は、標準酸化還元電位が 0. OOV〜l. 40Vの範囲にあることを特徴と する請求項 33に記載の電極用組成物。
[35] 前記化合物は、標準酸化還元電位が 0. 68V〜1. OOVの範囲にあることを特徴と する請求項 33に記載の電極用組成物。
[36] 前記化合物は、次の一般式 (I)で表される化合物であることを特徴とする請求項 33 に記載の電極用組成物:
[化 13]
Ri
\
N二 X
/
R2
(I) ただし、 R1及び R2は同一又は異なる任意の置換基を、 Xは酸素原子又はヒドロキシ ル基を表す。 R1及び R2は、それぞれアルキル基、ァリール基、アルコキシ基及び水 素原子を含む置換基力 なる群力 選択さる一種の置換基であってもよぐ R1及び R2は、アルキル基又はアルコキシ基の場合には一部が任意の基で置換されたアル キル基又はアルコキシル基、不飽和アルキル基又はアルコキシ基であってもよぐこ れらの基は鎖状、環状又は分岐状であってもよぐ R1及び R2が酸素及び窒素原子 含んでもよい。 R1及び R2がァリール基の場合には一部が任意の基で置換されたァ リール基であっても良ぐ酸素及び窒素原子含んでもかまわな!/、。
[37] 前記 R1及び R2は互いに結合して二重結合、芳香環、又は非芳香族性の環を形 成していること特徴とする請求項 36に記載の電極用組成物。
[38] 前記化合物は、次の一般式 (II)で表されるイミドィ匕合物であることを特徴とする請求 項 37に記載の電極用組成物:
[化 14]
Figure imgf000079_0001
ただし、環 Y1は、二重結合を有する又は芳香族性若しくは非芳香族性の 5〜12員 環のうち 、ずれか一種類の環を表す。
[39] 前記一般式 (II)で表される化合物は、次の一般式 (III)で表されるイミドィ匕合物であ ることを特徴とする請求項 38に記載の電極用組成物:
[化 15]
Figure imgf000079_0002
(III) ただし、 R3及び R4は同一又は異なり、それぞれ水素原子、ハロゲン原子、アルキル 基、ァリール基、シクロアルキル基、ヒドロキシル基、アルコキシル基、カルボキシル基 、アルコキシカルボ-ル基又はァシル基を表す。 Xは酸素原子又はヒドロキシル基を 、 nは 1〜3の整数を表す。
[40] 前記 R3及び R4は互いに結合して二重結合、芳香環、又は非芳香族性の環を形 成していること特徴とする請求項 39に記載の電極用組成物。
[41] 前記 R3及び R4が互 ヽに結合して芳香族性又は非芳香族性の 5〜 12員環のうち いずれか一種類の環を形成していることを特徴とする請求項 39に記載の電極用組 成物。
[42] 前記 R3及び R4が互いに結合して、シクロアルカン、シクロアルケン、橋かけ式炭化 水素環、芳香環、及びそれらの置換体からなる群から選択さる少なくとも一種を形成 していることを特徴とする請求項 39に記載の電極用組成物。
[43] 前記イミド化合物が、次の一般式 (IVa)〜(IVf)で表されるイミドィ匕合物であることを 特徴とする請求項 39に記載の電極用組成物:
[化 16]
Figure imgf000080_0001
(IV a) (IV b) (IVc)
Figure imgf000080_0002
ただし、 R3〜R6は同一又は異なって、それぞれ水素原子、ハロゲン原子、アルキル 基、ヒドロキシル基、アルコキシル基、カルボキシル基、アルコキシカルボ-ル基、ァ シル基、ニトロ基、シァノ基又はアミノ基を示し、 nは 1〜3の整数を表す。
[44] 前記イミド化合物が、 N—ヒドロキシコハク酸イミド、 N—ヒドロキシマレイン酸イミド、 N—ヒドロキシへキサヒドロフタルイミド、 N, N' —ジヒドロキシシクロへキサンテトラ力 ルボン酸イミド、 N—ヒドロキシフタルイミド、 N—ヒドロキシテトラブロモフタル酸イミド、 N—ヒドロキシテトラクロロフタル酸イミド、 N—ヒドロキシへット酸イミド、 N—ヒドロキシ ハイミック酸イミド、 N—ヒドキシトリメリット酸イミド、 N, N' —ジヒドロキシピロメリット酸 イミド及び N, N' —ジヒドロキシナフタレンテトラカルボン酸イミドカ なる群力 選択 されるイミド化合物であることを特徴とする請求項 39に記載の電極用組成物。
前記一般式 (II)で表される化合物力 次の一般式 (V)で表される化合物であること を特徴とする請求項 38に記載の電極用組成物:
[化 17]
Figure imgf000081_0001
ただし、 Xは酸素原子又はヒドロキシル基を表す。 R1〜R6は同一又は異なり、それ ぞれ水素原子、ハロゲン原子、アルキル基、ァリール基、シクロアルキル基、ヒドロキ シル基、アルコキシ基、カルボキシル基、置換ォキシカルボ-ル基、ァシル基又はァ シルォキシ基を表す。また、 R1〜R6のうち少なくとも二つが互いに結合して二重結 合、又は芳香族性若しくは非芳香族性の環を形成してもよい。この環のうち少なくとも 一つが N—置換環状イミド基を有して!/、ても良!、。
前記一般式 (V)で表される化合物が、次の式 (Via)又は (VIb)で表される化合物で あることを特徴とする請求項 45に記載の電極用組成物:
[化 18]
Figure imgf000081_0002
ただし、 R7〜R12は同一又は異なって、水素原子、アルキル基、ヒドロキシル基、ァ ルコキシル基、カルボキシル基、アルコキシカルボ-ル基、ァシル基、ニトロ基、シァ ノ基又はアミノ基を表す。
[47] 前記一般式 (V)、 (Via)、又は (VIb)で表される化合物力 N ヒドロキシダルタル 酸イミド、 N ヒドロキシ 1, 8 ナフタレンジカルボン酸イミド、 N ヒドロキシ 1, 8 ーデカリンジカノレボン酸イミド、 N, N,一ジヒドロキシ 1, 8 ;4, 5 ナフタレンテトラ カルボン酸イミド、 N, N,一ジヒドロキシ一 1, 8 ;4, 5 デカリンテトラカルボン酸イミド 及び N, Ν' , Ν"—トリヒドロキシイソシァヌル酸力 なる群力 選択されるイミド化合 物であることを特徴とする請求項 46に記載の電極用組成物。
[48] 前記一般式 (I)で表される化合物が、次の一般式 (VII)で表される化合物であること を特徴とする請求項 36に記載の電極用組成物:
[化 19]
Figure imgf000082_0001
C
\
Ν=Χ
/
R2 evil) ただし、 R13及び R14はアルキル基、又は一部が任意の基で置換されたアルキル基 であり、 R13及び R14は鎖状、環状、又は分岐状でもよい。 R13及び R14が互いに 結合して環を形成して!/、てもよく、酸素及び窒素原子含んでもかまわな 、。
[49] 前記一般式 (VII)で表される化合物が、次の一般式 (VIII)で表される化合物であるこ とを特徴とする請求項 48に記載の電極用組成物:
[化 20]
Figure imgf000082_0002
N = X
/
C
R2 Rl5 Rl6 (VIII) ただし、 R13〜R16はアルキル基、又は一部が任意の基で置換されたアルキル基で あり、 R13〜R16は鎖状、環状、又は分岐状であってもよい。また、 R13と R14、又は R15と R16とが互いに結合して環を形成していてもよぐ酸素及び窒素原子含んでも かまわない。
前記一般式 (VIII)で表される化合物が、次の一般式 (IX)で表される化合物であるこ とを特徴とする請求項 49に記載の電極用組成物:
[化 21]
Figure imgf000083_0001
ただし、環 Y2は、 R13と R14とが結合して 5員環又は 6員環のいずれかの環を形成し ている。
[51] 前記一般式 (IX)で表される化合物が、次の一般式 (X)で表される化合物であること を特徴とする請求項 50に記載の電極用組成物:
[化 22]
Figure imgf000083_0002
ただし、 Zはアルキル基、ァリール基、アルコキシ基、カルボキシル基、アルコキシ力 ルポ二ル基、シァノ基、ヒドロキシル基、ニトロ基、アミノ基及び水素原子を含む置換 基からなる群から選択される一種の置換基を示す。 Zがアルキル基の場合には、一 部が任意の基で置換されたアルキル基であってもよぐ一部の基が鎖状、環状、また は分岐状であってもよぐ酸素及び窒素原子含んでもかまわない。 Zがァリール基の 場合には、一部が任意の基で置換されたァリール基であってもよぐ酸素及び窒素 原子含んでもかまわない。
前記一般式 (IX)で表される化合物が、次の一般式 (XI)で表される化合物であること を特徴とする請求項 50に記載の電極用組成物:
[化 23]
Figure imgf000084_0001
ただし、 Zはアルキル基、ァリール基、アルコキシ基、カルボキシル基、アルコキシ力 ルポ二ル基、シァノ基、ヒドロキシル基、ニトロ基、アミノ基及び水素原子を含む置換 基からなる群から選択される一種の置換基を示す。 Zがアルキル基の場合には、一 部が任意の基で置換されたアルキル基であってもよぐ一部の基が鎖状、環状、また は分岐状であってもよぐ酸素及び窒素原子含んでもかまわない。 Zがァリール基の 場合には、一部が任意の基で置換されたァリール基であってもよぐ酸素及び窒素 原子含んでもかまわない。
前記一般式 (IX)で表される化合物が、次の一般式 (XII)で表される化合物であること を特徴とする請求項 50に記載の電極用組成物:
[化 24]
Figure imgf000084_0002
ただし、 Zはアルキル基、ァリール基、アルコキシ基、カルボキシル基、アルコキシ力 ルポ二ル基、シァノ基、ヒドロキシル基、ニトロ基、アミノ基及び水素原子を含む置換 基からなる群から選択される一種の置換基を示す。 Zがアルキル基の場合には、一 部が任意の基で置換されたアルキル基であってもよぐ一部の基が鎖状、環状、また は分岐状であってもよぐ酸素及び窒素原子含んでもかまわない。 Zがァリール基の 場合には、一部が任意の基で置換されたァリール基であってもよぐ酸素及び窒素 原子含んでもかまわない。
[54] さらに、前記化合物の酸化を促進する助触媒を有することを特徴とする請求項 33 に記載の電極用組成物。
[55] 前記助触媒は、ランタノイド元素、 V、 Mo、 W、 Fe、 Ru、 Co、 Rh、 Ni、 Cu、 Ag、 Ir 、 Pd、 Pt及び Auカゝら選ばれる元素、又はこれらの元素を含む酸ィ匕物、有機酸塩、無 機酸塩、ハロゲン化物、錯体、ヘテロポリ酸及びへテロポリ酸塩力 なる群力 選択さ れる少なくとも一種であることを特徴とする請求項 54に記載の電極用組成物。
[56] 前記化合物と前記助触媒とを担持する担体は、導電性カーボン又はナノストラクチ ヤーカーボン力もなることを特徴とする請求項 55に記載の電極用組成物。
[57] 前記導電性カーボンはアセチレンブラックであり、前記ナノストラクチャーカーボン はカーボンナノチューブであることを特徴とする請求項 56に記載の電極用組成物。
[58] 請求項 33に記載された電極用組成物を有する電極。
[59] 請求項 33に記載された電極用組成物を有する空気極用組成物。
[60] 請求項 59に記載された空気極用組成物を有する燃料電池用空気極。
[61] 請求項 58に記載された電極を備える燃料電池。
[62] 請求項 1に記載の燃料電池システムが搭載された燃料電池車輛。
PCT/JP2005/012593 2004-07-09 2005-07-07 燃料電池システム及び電極用組成物 WO2006006501A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05758348A EP1788650A1 (en) 2004-07-09 2005-07-07 Fuel cell system and composition for electrode
US11/571,865 US7799485B2 (en) 2004-07-09 2005-07-07 Fuel cell system and composition for electrode

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2004203147 2004-07-09
JP2004-203147 2004-07-09
JP2004258507 2004-09-06
JP2004-258507 2004-09-06
JP2004355268 2004-12-08
JP2004-355268 2004-12-08
JP2005157449A JP4910310B2 (ja) 2004-07-09 2005-05-30 電極用組成物、電極、空気極用組成物、燃料電池用空気極、燃料電池、燃料電池システム及び燃料電池車両
JP2005-157449 2005-05-30
JP2005-172229 2005-06-13
JP2005172229A JP4830357B2 (ja) 2004-09-06 2005-06-13 固体高分子型燃料電池システム及び燃料電池車両

Publications (1)

Publication Number Publication Date
WO2006006501A1 true WO2006006501A1 (ja) 2006-01-19

Family

ID=35783845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012593 WO2006006501A1 (ja) 2004-07-09 2005-07-07 燃料電池システム及び電極用組成物

Country Status (3)

Country Link
US (1) US7799485B2 (ja)
EP (1) EP1788650A1 (ja)
WO (1) WO2006006501A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006079917A (ja) * 2004-09-09 2006-03-23 Nissan Motor Co Ltd 燃料電池用mea、および、これを用いた燃料電池
JP2006244814A (ja) * 2005-03-02 2006-09-14 Toyota Central Res & Dev Lab Inc 燃料電池システム及び固体高分子型燃料電池の運転方法
JP2007073230A (ja) * 2005-09-05 2007-03-22 Nissan Motor Co Ltd 燃料電池システム、燃料電池車両、携帯機器及び輸送用機器
WO2007069504A1 (en) * 2005-12-15 2007-06-21 Nissan Motor Co., Ltd. Fuel, fuel cell system, fuel cell vehicle and operating method for fuel cell system
JP2007257965A (ja) * 2006-03-22 2007-10-04 Toyota Central Res & Dev Lab Inc 固体高分子型燃料電池及び燃料電池システム
FR2912554A1 (fr) * 2007-02-12 2008-08-15 Arkema France Electrode comprenant au moins un nitroxyde et des nanotubes de carbone

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006006502A1 (ja) * 2004-07-09 2006-01-19 Nissan Motor Co., Ltd. 燃料電池システム及び固体高分子電解質膜
JP5233069B2 (ja) * 2005-12-15 2013-07-10 日産自動車株式会社 燃料電池システム及び燃料電池車両
JP4832929B2 (ja) * 2006-03-15 2011-12-07 本田技研工業株式会社 内燃機関
FR2924443B1 (fr) * 2007-11-30 2011-08-26 Univ Paris Sud Cellule pour electrolyse de l'eau avec electrolyte solide contenant peu ou pas de metaux nobles
US7989115B2 (en) 2007-12-14 2011-08-02 Gore Enterprise Holdings, Inc. Highly stable fuel cell membranes and methods of making them
US8082890B2 (en) * 2008-11-25 2011-12-27 Common Sense Technologies, LLC Method and apparatus for efficient generation of hydrogen
US20110094878A1 (en) * 2009-09-11 2011-04-28 Geo Firewall Sarl Product gas generator for producing a substantially stoichiometric mix of hydrogen and oxygen
US20110094458A1 (en) * 2009-09-11 2011-04-28 Geo Firewall Sarl System to dynamically vary the volume of product gas introduced into a hydrocarbon combustion process
US20110094457A1 (en) * 2009-09-11 2011-04-28 Geo Firewall Sarl System for regulating a hydrocarbon combustion process using a substantially stoichiometric mix of hydrogen and oxygen
US20110100803A1 (en) * 2009-09-11 2011-05-05 Geo Firewall Sarl System for producing a substantially stoichiometric mix of hydrogen and oxygen using a plurality of electrolytic cells
US20110094459A1 (en) * 2009-09-11 2011-04-28 Geo Firewall Sarl Regulating a hydrocarbon combustion process using a set of data indicative of hydrocarbon fuel consumed corresponding to a monitored engine operating characteristic
US20110094456A1 (en) * 2009-09-11 2011-04-28 Geo Firewall Sarl System for increasing the level of completion of diesel engine hydrocarbon combustion
KR101135578B1 (ko) * 2009-11-30 2012-04-17 현대자동차주식회사 표면개질제를 사용하여 결정성 탄소의 친수성을 증가시키는 방법 및 이를 이용한 백금 담지 촉매의 제조방법
JP6065859B2 (ja) * 2014-03-05 2017-01-25 ブラザー工業株式会社 セパレータ及びこれを備えた燃料電池
KR20200082007A (ko) * 2018-12-28 2020-07-08 현대자동차주식회사 연료 전지용 산화방지제, 상기 산화방지제를 포함하는 막 전극 접합체 및 상기 산화방지제의 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001118591A (ja) * 1999-10-19 2001-04-27 Toyota Central Res & Dev Lab Inc 高耐久性固体高分子電解質
JP2003503510A (ja) * 1998-08-28 2003-01-28 フオスター・ミラー・インコーポレイテツド 電気化学的用途での使用に好適な新規なイオン伝導性材料およびそれに関連する方法
JP2003086188A (ja) * 2001-06-27 2003-03-20 Basf Ag 燃料電池
JP2003201352A (ja) * 2002-01-08 2003-07-18 Honda Motor Co Ltd 高分子電解質膜、該高分子電解質膜を備える膜電極構造体及び該膜電極構造体を備える固体高分子型燃料電池
JP2005190752A (ja) * 2003-12-25 2005-07-14 Nissan Motor Co Ltd 燃料電池用膜電極接合体及びそれを用いた固体高分子形燃料電池

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59185787A (ja) 1983-04-06 1984-10-22 Masaichiro Masui 電極酸化反応メデイエイタ−および酸化方法
ATE215097T1 (de) * 1998-05-07 2002-04-15 Tno Verfahren zur selektiven oxidierung von primären alkoholen
JP2000223135A (ja) 1999-01-27 2000-08-11 Aisin Seiki Co Ltd 固体高分子電解質膜および燃料電池
ID26858A (id) * 1999-02-08 2001-02-15 Daicel Chem Proses memproduksi hidrogen peroksida
JP3766861B2 (ja) 1999-03-01 2006-04-19 独立行政法人産業技術総合研究所 固体高分子電解質膜を用いたバイポーラ膜型燃料電池
CA2396568A1 (en) * 2000-01-14 2001-07-19 North Carolina State University Substrates carrying polymers of linked sandwich coordination compounds and methods of use thereof
WO2002093676A2 (en) * 2001-05-15 2002-11-21 Ballard Power Systems Inc. Ion-exchange materials with improved ion conductivity
JP2003109623A (ja) 2001-09-28 2003-04-11 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池
JP2003117398A (ja) 2001-10-12 2003-04-22 Toyota Motor Corp Wc担持触媒及びその製造方法
JP2003226743A (ja) 2001-11-30 2003-08-12 Sanyo Chem Ind Ltd 導電性高分子の製造方法
JP3925382B2 (ja) 2002-10-11 2007-06-06 トヨタ自動車株式会社 高耐久性高分子電解質、同組成物、および燃料電池
WO2006006502A1 (ja) * 2004-07-09 2006-01-19 Nissan Motor Co., Ltd. 燃料電池システム及び固体高分子電解質膜

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003503510A (ja) * 1998-08-28 2003-01-28 フオスター・ミラー・インコーポレイテツド 電気化学的用途での使用に好適な新規なイオン伝導性材料およびそれに関連する方法
JP2001118591A (ja) * 1999-10-19 2001-04-27 Toyota Central Res & Dev Lab Inc 高耐久性固体高分子電解質
JP2003086188A (ja) * 2001-06-27 2003-03-20 Basf Ag 燃料電池
JP2003201352A (ja) * 2002-01-08 2003-07-18 Honda Motor Co Ltd 高分子電解質膜、該高分子電解質膜を備える膜電極構造体及び該膜電極構造体を備える固体高分子型燃料電池
JP2005190752A (ja) * 2003-12-25 2005-07-14 Nissan Motor Co Ltd 燃料電池用膜電極接合体及びそれを用いた固体高分子形燃料電池

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006079917A (ja) * 2004-09-09 2006-03-23 Nissan Motor Co Ltd 燃料電池用mea、および、これを用いた燃料電池
JP2006244814A (ja) * 2005-03-02 2006-09-14 Toyota Central Res & Dev Lab Inc 燃料電池システム及び固体高分子型燃料電池の運転方法
JP2007073230A (ja) * 2005-09-05 2007-03-22 Nissan Motor Co Ltd 燃料電池システム、燃料電池車両、携帯機器及び輸送用機器
WO2007069504A1 (en) * 2005-12-15 2007-06-21 Nissan Motor Co., Ltd. Fuel, fuel cell system, fuel cell vehicle and operating method for fuel cell system
US9112196B2 (en) 2005-12-15 2015-08-18 Nissan Motor Co., Ltd. Fuel, fuel cell system, fuel cell vehicle and operating method for fuel cell system
JP2007257965A (ja) * 2006-03-22 2007-10-04 Toyota Central Res & Dev Lab Inc 固体高分子型燃料電池及び燃料電池システム
FR2912554A1 (fr) * 2007-02-12 2008-08-15 Arkema France Electrode comprenant au moins un nitroxyde et des nanotubes de carbone
WO2008104683A1 (fr) * 2007-02-12 2008-09-04 Arkema France Electrode comprenant au moins un nitroxyde et des nanotubes de carbone

Also Published As

Publication number Publication date
US7799485B2 (en) 2010-09-21
US20080050631A1 (en) 2008-02-28
EP1788650A1 (en) 2007-05-23

Similar Documents

Publication Publication Date Title
WO2006006501A1 (ja) 燃料電池システム及び電極用組成物
WO2006006502A1 (ja) 燃料電池システム及び固体高分子電解質膜
JP5233069B2 (ja) 燃料電池システム及び燃料電池車両
Wei et al. A CeO2 modified phenylenediamine-based Fe/N/C with enhanced durability/stability as non-precious metal catalyst for oxygen reduction reaction
JP6483623B2 (ja) アノード触媒層の使用
JP5205694B2 (ja) 燃料、燃料電池システム及び燃料電池車輌
EP2499692A2 (en) Composite proton conducting membrane with low degradation and membrane electrode assembly for fuel cells
JP2013538420A (ja) 鉄酸化還元対を用いたカソード電極を含む燃料電池
JP4830357B2 (ja) 固体高分子型燃料電池システム及び燃料電池車両
JP4910310B2 (ja) 電極用組成物、電極、空気極用組成物、燃料電池用空気極、燃料電池、燃料電池システム及び燃料電池車両
JP4876389B2 (ja) 固体高分子型燃料電池用電解質、固体高分子型燃料電池、固体高分子型燃料電池システム及び燃料電池車両
US8114538B2 (en) Electrocatalyst for electrochemical cell, method for producing the electrocatalyst, electrochemical cell, single cell of fuel cell, and fuel cell
ZA200300070B (en) Electrochemical cell.
JP4876407B2 (ja) 固体高分子型燃料電池用電解質、固体高分子型燃料電池、固体高分子型燃料電池システム及び燃料電池車両
JP2006172817A (ja) 固体高分子型燃料電池
JP5023475B2 (ja) 電極システム、燃料電池、燃料電池システム、家電機器、携帯機器及び輸送用機器
JP5002928B2 (ja) 燃料電池システム
JP2007227126A (ja) 燃料電池システム、燃料電池の触媒層の製造方法、家電機器、携帯機器及び輸送用機器
WO2011073723A1 (en) Electrolytic apparatus including an active layer using fullerenes combined with a metal as a catalytic system
CN117996090A (zh) 一种直接甲酸燃料电池阳极以及膜电极的制备方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11571865

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

REEP Request for entry into the european phase

Ref document number: 2005758348

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005758348

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005758348

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11571865

Country of ref document: US