WO2006005246A1 - Dispositif de mesure destine a la diffraction de rayons x a longueur d'onde courte et procede correspondant - Google Patents

Dispositif de mesure destine a la diffraction de rayons x a longueur d'onde courte et procede correspondant Download PDF

Info

Publication number
WO2006005246A1
WO2006005246A1 PCT/CN2005/000950 CN2005000950W WO2006005246A1 WO 2006005246 A1 WO2006005246 A1 WO 2006005246A1 CN 2005000950 W CN2005000950 W CN 2005000950W WO 2006005246 A1 WO2006005246 A1 WO 2006005246A1
Authority
WO
WIPO (PCT)
Prior art keywords
detector
goniometer
wavelength
short
ray
Prior art date
Application number
PCT/CN2005/000950
Other languages
English (en)
French (fr)
Inventor
Lin Zheng
Changguang He
Zhengkun Peng
Original Assignee
Southwest Technology & Engineering Institute Of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Technology & Engineering Institute Of China filed Critical Southwest Technology & Engineering Institute Of China
Priority to US11/572,128 priority Critical patent/US7583788B2/en
Priority to JP2007520648A priority patent/JP2008506127A/ja
Priority to EP05759557A priority patent/EP1767928A4/en
Publication of WO2006005246A1 publication Critical patent/WO2006005246A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/207Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials

Definitions

  • the present invention relates to a measurement of X-ray diffraction, and more particularly to a short-wavelength X-ray diffraction scanning measuring apparatus and method for a sample or workpiece of a crystalline material having a lower atomic number.
  • X-ray diffraction analysis of substances has been widely used in many fields, for example, it can be used to determine the structure of crystalline substances (such as phase analysis), and structural changes of crystalline substances (such as measuring residual stress).
  • an X-ray tube using Cu, Cr, Fe, and Mo materials as anode targets is used. Since the X-ray tube emits a long X-ray wavelength, materials such as magnesium, aluminum, and silicon are used.
  • the penetration depth in the medium is not more than 1 (T 4 m), so X-ray diffraction analysis can only be performed on the surface of such material samples or workpieces.
  • the patent CN1049496C discloses an "X-ray residual stress measuring device and method, and the device of the patent is in the existing X-ray residual. Based on the stress measuring device, the X-ray tube is changed to a short-wavelength X-ray tube, and the tube voltage is high, and the receiving slit used is a limit receiving slit. The method for performing X-ray diffraction measurement in the patent is determined in the existing device.
  • the short-wavelength identification X-ray is used, so that the measured point is located at the center of the goniometer, and the slit is received through the limit, and only the diffraction line of the measured point is allowed to enter the radiation detector, and the other part from the workpiece is ⁇ "
  • the ray and scattered line shielding can measure the residual stress at any point inside the workpiece under the X-ray penetration depth.
  • the X-ray stress analyzer can measure the residual stress at another point of the workpiece, and the residual stress is solved. Three-dimensional distribution measurement of workpieces such as niobium alloys.
  • the shorter the X-ray wavelength and the lower the atomic number of the material used to illuminate the workpiece the deeper the penetration depth of incident X-rays. In this way, it is possible to detect diffraction lines from different parts of different depths of thicker workpieces.
  • the X-ray stress analyzer uses X-ray diffraction back reflection to collect the diffraction spectrum, the X-ray propagates a long path in the workpiece, and the intensity of the outgoing light passing through the workpiece increases with the propagation path in the workpiece. And weaken, its principle, as shown
  • the incident light intensity is I.
  • the exit light intensity I I 0 xe ⁇ . It can be seen from the above formula that the intensity of the emitted light of the X-ray depends on the nature of the workpiece and the incident light intensity, and also varies with the distance the light travels in the workpiece. If the propagation distance is longer (ie, the incident X-ray and the diffraction line are The longer the sum of the paths traveled in the workpiece, the greater the loss of light intensity, and the smaller the intensity of the emitted light (diffracted light intensity).
  • the object of the present invention is to provide a short-wavelength X-ray analysis of a sample or workpiece of a crystalline material mainly used for lower atomic number such as aluminum, magnesium, silicon, etc., so that the measurable depth or thickness of the workpiece is increased by about 10 times.
  • Tomography device a short-wavelength X-ray analysis of a sample or workpiece of a crystalline material mainly used for lower atomic number such as aluminum, magnesium, silicon, etc.
  • Another object of the present invention is to provide a short-wavelength X-ray diffraction measuring method using the above apparatus which is simple in operation and short in detection time.
  • the present invention is based on this principle, using X-ray diffraction transmission instead of The X-ray diffraction back reflection method greatly reduces the sum of the distances of the incident X-rays and the diffraction lines in the workpiece, thereby reducing the energy loss of the diffracted rays in the workpiece to be measured, so that the emitted light intensity is increased.
  • the signal-to-noise ratio of the detector received signal is increased, which in turn enhances the sensitivity of the entire diffraction measuring device. Therefore, X-ray diffraction lines from different thicknesses of thicker workpieces can be collected to achieve non-destructive X-ray diffraction analysis of the entire workpiece, thereby measuring the phase, Three-dimensional distribution of stresses, etc.
  • a short-wavelength X-ray diffraction measuring apparatus comprising an X-ray tube, an entrance pupil, a stage, a receiving slit, a goniometer, a detector, an energy analyzer, and the X-ray
  • the tube and the detector are located on both sides of the table.
  • the receiving slit and the detector are fixed on the goniometer, and the synchronous winding is rotated by the measuring point of the workpiece to be tested on the working table, and the measured point is located on the rotating shaft of the goniometer; the goniometer is fixed on a platform.
  • the workbench is either fixed on the goniometer or fixed on the platform; the X-ray tube is either fixed to the goniometer or fixed on the platform; the entrance pupil is fixed on the goniometer or fixed on the platform , or a fixture fixed to the X-ray tube; the entrance of the entrance pupil is either on the circumference of the goniometer or in the circumference of the goniometer; the workpiece on the table or the X, ⁇ , ⁇ are translated in three dimensions with the table Or turn around the angle of the goniometer shaft or make X, ⁇ , ⁇ ,
  • the receiving slit in the present invention also functions to allow only the diffraction line of the workpiece to be measured to enter the detector to shield the scattered line from the diffraction line from other portions of the workpiece.
  • the anode target of the X-ray tube is made of a heavy metal material such as tungsten, gold or silver, and emits short-wavelength X-rays having a wavelength of 0.01 nm to 0.07 nm, which is relatively low in atomic number (Z ⁇ 20)
  • Metal, non-metallic materials and ceramic materials can penetrate the depth of the order of one centimeter by centimeter;
  • the tube voltage is 120-350KV, the tube current is 2-10mA, and it is continuously adjustable;
  • the detector is either a radiation detector or a position sensitive detector or a one-dimensional semiconductor detector array;
  • the incident pupil is an incident collimating aperture;
  • the receiving slit is a parallel limiting receiving slit, or is taper Limiting the receiving slit to shield the scattered X-rays incident to the detector and the diffraction lines from other parts of the workpiece;
  • the energy analyzer is either a single-channel energy analyzer or a multi-channel energy analyzer, and the output
  • the distance between the center of the X-ray tube and the goniometer circle is equal to or equal to the distance from the detector to the center of the goniometer circle, and the distance is adjustable; the distance from the center of the goniometer circle to the radiation detector or the position sensitive detector It is 200-800mm.
  • the center of the goniometer circle of the present invention is a measuring angle The intersection of the axis of rotation of the instrument with the plane of rotation of the radiation detector or the position sensitive detector, the incident X-ray is on the plane of rotation of the radiation detector or the position sensitive detector and passes through the center of the goniometer circle, located at the round of the goniometer The part of the workpiece to be measured at the center of the circle is the part to be tested.
  • the incident collimation pupil is either a circular aperture incident collimation aperture or a rectangular aperture incident collimation aperture; the incident collimation aperture is a lead material or a heavy metal stronger than lead absorption X-rays, such as gold. Wait.
  • the parallel limit receiving slit adopts a circular aperture incident collimation aperture or a rectangular aperture incident collimation aperture, and the parallel limit receiving slit and the radiation detection Linkage.
  • the circular aperture incident collimating aperture has an inner diameter of 0.1-2 mm and a length of 50-200 mm; the rectangular aperture incident collimating aperture is composed of two or more apertures, each of which is parallel and parallel The center line overlaps, each of the aperture shielding material thickness is > 4mm, and the spacing is 20-200mm.
  • the aperture size of each aperture is (1-4) x (0.1-0.8)mm, and the entire rectangular aperture is incident on the collimated aperture.
  • the total thickness of the shielding material is not less than 15mm.
  • the above radiation detector or position sensitive detector is shielded from X-rays with a lead of more than 2 mm thick or a heavy metal sheath that is more resistant to X-rays than lead, leaving only the holes that receive the slit window and the lead wires.
  • the taper of the above-mentioned taper limit receiving slit is determined by the limited angle detectable by the position sensitive detector.
  • the outer casing is covered by lead leather with a thickness of more than 2 mm, and 3-10 pieces of tungsten or molybdenum sheets are embedded therein, and the taper limit receiving narrow is evenly distributed.
  • the taper of the slit; the large-mouth size of the slit coincides with the effective size of the position sensitive detector and is fixedly connected with the position sensitive detector, and the tapered surface of the tapered limit receiving slit and the extension of the embedded tungsten or molybdenum sheet intersect
  • the shaft of the goniometer; the taper limit receiving slit and the position sensitive detector are linked.
  • the receiving slit adopts a taper limit receiving slit.
  • the position sensitive detectors mentioned herein also include a one-dimensional detector array.
  • a short-wavelength X-ray diffraction measurement method for implementing the above apparatus, which employs a short-wavelength X-ray diffraction transmission method, (1) selecting radiation and diffraction test parameters, including tube voltage , tube current, aperture and slit system and the distance from the center of the goniometer circle to the radiation detector or position sensitive detector; (2) by computer Control to place the measured point of the workpiece on the center of the goniometer circle; (3) Computer controlled measurement of the diffraction spectrum;
  • the computer controls the worktable to move X, ⁇ , ⁇ in three-dimensional direction or rotate around the goniometer shaft, and the diffraction spectrum of any point in the workpiece and any corner thereof can be measured;
  • the data is processed by a computer to obtain the phase, residual stress parameters and their distribution at each point.
  • Select radiation and diffraction test parameters use WK cc, Au ⁇ ⁇ , Ag Kc short-wavelength X-ray radiation; ⁇ X-ray diffraction transmission method; use parallel limit receiving slit or taper limit receiving slit, only allowed to be tested The diffraction line of the point enters the detector and blocks the remaining rays.
  • the measured point of the workpiece is placed in the center of the goniometer circle by computer control; the measured point is the workpiece surface or any point inside the workpiece within the measurable thickness range.
  • the workpiece When measuring the diffraction spectrum, the workpiece can be controlled by the computer to rotate the table to move the X, Y, and ⁇ three-dimensional directions according to the needs.
  • the step is 0.1-2 mm and rotate around the goniometer shaft to measure any point in the workpiece. And any diffraction spectrum of the angle of rotation of the low-angle shaft around the angle of measurement.
  • the device of the invention can measure X-rays of different thicknesses of different parts of the workpiece with thicker thickness without destroying the workpiece of crystal material composed of elements such as aluminum, magnesium, silicon, carbon, nitrogen and oxygen with low atomic number. Diffraction spectrum.
  • the invention overcomes the inertial thinking constraint that the short-wavelength X-ray is not suitable for the X-ray diffraction analysis field, and uses the short-wavelength X-ray radiation + X-ray diffraction transmission method to make the measurable workpiece thickness about the device and method described in the prior art CN1049496C It can measure about 10 times of the thickness of the workpiece, especially for SiC, aluminum, magnesium and other materials.
  • the measurable thickness of the workpiece can reach the order of centimeters per minute. It can measure the X-ray diffraction spectrum of different parts of the workpiece at different depths, and then obtain the phase.
  • the present invention also breaks through the existing X-ray diffractometer and its method, and can only perform X-ray diffraction analysis on the surface of the sample by several tens of micrometers without destroying the sample. Limitations; Moreover, the operation is simple, the detection time is not long, and the measured X-ray diffraction spectrum is true and reliable.
  • DRAWINGS Figure 1 is a schematic view of an X-ray passing through a substance
  • FIG. 2 is a block diagram of the device of the present invention.
  • Figure 3 is a cross-sectional view of a circular aperture incident collimating aperture structure used in the present invention
  • Figure 4 is an A-direction view of Figure 3;
  • Figure 5 is a cross-sectional view of a rectangular aperture incident collimating aperture structure used in the present invention
  • Figure 6 is a view taken along line A of Figure 5;
  • Figure 7 is a cross-sectional view showing the structure of the taper limit receiving slit used in the present invention, wherein the upper end 14 is a large opening and the lower end 15 is a small opening;
  • Figure 8 is a plan view of Figure 7;
  • FIG. 9 is a schematic diagram of workpiece movement measurement in a specific embodiment of the present invention.
  • Figure 10 is a block diagram of measurement and calculation used in the present invention.
  • Figure 11 shows the "" spectrum of the inner center of a 25mm thick magnesium alloy workpiece.
  • 1 is an X-ray tube
  • 2 is an incident collimating diaphragm
  • 3 is a workpiece
  • 4 is a table
  • 5 is a receiving slit
  • 6 is a detector
  • 7 is a goniometer
  • 8 is an X-ray generator power source
  • 9 is the energy analyzer
  • 10 is the computer
  • 11 is the data output device
  • 12 is the regulated power supply
  • 13 is the fixed platform of the measuring device
  • 14 is the upper end of the taper limit receiving slit
  • 15 is the taper limit receiving slit The lower end of the mouth.
  • Embodiment 1 Referring to the above drawings: A short-wavelength X-ray radiation measuring apparatus comprising an X-ray tube 1, an entrance pupil 2, a table 4, a receiving slit 5, a goniometer 7, a detector 6, and an energy
  • the analyzer 9, the X-ray tube 1 and the detector 6 are located on both sides of the table 4, that is, on both sides of the workpiece to be tested.
  • the receiving slit 5 and the detector 6 are fixed on the goniometer 7, and the synchronous winding is rotated by the measured point of the workpiece 3 on the working table 4, and the measured point is located on the rotating shaft of the goniometer 7;
  • the instrument 7 is fixed on a platform 13;
  • the table 4 is fixed on the goniometer 7 or fixed on the platform 13;
  • the X-ray tube 1 is fixed on the goniometer 7 or fixed on the platform 13; 2 or fixed to the goniometer 7, or fixed to the platform 13, or fixed to the X-ray tube 1; the entrance of the entrance pupil 2 or on the circumference of the goniometer 7, or on the circumference of the goniometer 7
  • the workpiece 3 on the table 4 or the platform 13 is X, Y, ⁇ in three-dimensional direction or rotated around the angle of the goniometer 7 or X, ⁇ , ⁇ , ⁇ linkage.
  • the anode target of the X-ray tube 1 is made of a heavy metal material such as tungsten, gold or silver.
  • the tube voltage is 320 KV
  • the tube current is 5 mA
  • the wavelength is continuously adjustable, so that the wavelength at which the penetrating ability is strong is 0.01.
  • the short wavelength of nm-0.07nm identifies X-rays, and the low atomic number (Z ⁇ 20) metal, non-metallic materials and ceramic materials, such as aluminum, magnesium, silicon, etc., can penetrate depths on the order of centimeters per centimeter.
  • the detector 6 is a position sensitive detector; the entrance pupil 2 is an incident collimator diaphragm; the receiving slit 5 is a taper limit receiving slit, shielding scattered X-rays incident on the detector 6 and other workpieces from the workpiece
  • the diffraction line of the part that is, only the diffraction line of the measured point is allowed to enter the detector, and the remaining rays are blocked;
  • the energy analyzer 9 is a multi-channel energy analyzer; the above table 4 is controlled by the computer 10 as X, Y
  • the ⁇ is moved in three dimensions, rotated about the axis of the goniometer 7, and the signal of the multi-channel energy analyzer 9 is input to the computer 10.
  • the distance between the center of the X-ray tube 1 and the goniometer 7 is equal to or different from the center distance of the detector 6 to the circle of the goniometer 7 and the distance is adjustable; the center of the goniometer circle is to the radiation detector or the position sensitive The distance of the detector is 600mm.
  • the incident collimating aperture is either a circular aperture incident collimating aperture or a rectangular aperture incident collimating aperture; the incident collimating aperture is a blocking material or a heavy metal that is more capable of absorbing X-rays than lead;
  • the parallel limit receiving slit adopts a circular hole incident collimating aperture or a rectangular aperture incident collimating aperture.
  • the circular aperture incident collimating aperture has an inner diameter of 0.1-2 mm and a length of 50-200 mm; the rectangular aperture incident collimating aperture is composed of two or more apertures, each of which is parallel and parallel The center line overlaps, each of the pupil shielding material has a thickness of 5 mm and a spacing of 180 mm, and the aperture size of each aperture is (1-4) x (0.1-0.8) mm, and the total shielding material of the collimating aperture of the entire rectangular aperture is incident.
  • the thickness is not less than 15mm.
  • the above-mentioned radiation detector or position sensitive detector is shielded from X-rays by a lead metal larger than 2 mm thick or a heavy metal skin which is more resistant to lead X-ray absorption, leaving only the window for receiving the slit 5 and the small hole for the lead wire.
  • the taper of the above-mentioned taper limit receiving slit is determined by the limited angle detectable by the position sensitive detector.
  • the outer casing is covered by lead leather with a thickness of more than 2 mm, and 3-10 pieces of tungsten or molybdenum sheets are embedded therein, and the taper limit receiving narrow is evenly distributed.
  • the receiving slit adopts a taper limit receiving slit.
  • a short-wavelength X-ray diffraction measurement method for implementing the above apparatus which uses a short-wavelength X-ray diffraction transmission method, (1) selecting radiation and diffraction test parameters including tube voltage, tube current, aperture and slit system, and angle measurement (2)
  • the point at which the workpiece is measured is placed in the center of the goniometer circle by computer control; (3) computer controlled measurement of the diffraction spectrum; (4) Need, the computer control table for X, ⁇ , ⁇ three-dimensional movement or rotation around the goniometer shaft, you can measure the diffraction spectrum of any point in the workpiece and any corners of the workpiece; (5) data processing by computer Find the phase, residual stress parameters and their distribution at each point.
  • Select radiation and diffraction test parameters use W Ko, Au K oc, Ag K a short-wavelength X-ray radiation; use X-ray diffraction transmission method; use parallel limit receiving slit or taper limit receiving slit, only allowed to be tested The diffraction line of the point enters the detector and blocks the remaining rays.
  • the workpiece is measured by the computer control table to be placed at the center of the goniometer circle, and the workpiece thickness is at any measured point inside the workpiece within the measurable thickness range.
  • the workpiece 3 on the table 4 in FIG. 9 is controlled by the computer to perform three-dimensional motion in space, and the step length is 0.1-2 mm.
  • the computer can also be used by the computer.
  • the workpiece 3 to be tested on the table 4 in Fig. 9 is rotated by a certain angle around the goniometer shaft.
  • the computer processes the measured data, and the output device outputs the parameters such as the phase and residual stress of the points inside the workpiece to be measured and their distribution.
  • Embodiment 2 Referring to Figure 9, the device and method used in this example are the same as those in Embodiment 1, except that the parameters are selected:
  • This example uses W ⁇ ⁇ radiation, the tube voltage is 280KV, and the tube current is 3 mA.
  • the distance from the center of the square of the angle meter to the radiation detector is 220mm soil 1.0, the Nal scintillation counter 6 is connected to the multi-channel energy analyzer 9, and the incident collimating diaphragm is incident on the circular aperture with an inner diameter of 2mm ⁇ 0.1 and a length of 120mm ⁇ 0.5.
  • the P-position receiving slit adopts a circular aperture incident collimating aperture with an inner diameter of 0.5 mm ⁇ 0.1 and a length of 120 mm ⁇ 0.5, and the Nal scintillation counter 6 is shielded with a lead of 8 mm ⁇ 0.1 thick.
  • a magnesium alloy casting 3 having a thickness of 25 mm ⁇ 0.5 is placed on the table 4, and the table 4 is adjusted so that the center of the magnesium alloy casting 3 is located at the center of the goniometer circle, as indicated by the broken line in Fig. 9.
  • the actual position of the magnesium alloy casting 3, the center of the goniometer circle is inside the magnesium alloy casting 3 and is 12.5 mm ⁇ 0.1. 2 ⁇ from the surface of the scan range of 2-10 °, step length 0.05 °, each step
  • the measurement time is 10s.
  • the measured X-ray diffraction spectrum is shown in Fig. 11.
  • Embodiment 3 The device and method used in this example are the same as those in Embodiment 1, except that the parameters are selected: this example uses WK oc radiation, the tube voltage is 320KV, the tube current is 6 mA, and the center of the goniometer circle is The distance of the radiation detector is 500mm ⁇ 1.0, the Nal scintillation counter 6 is connected to the multi-channel energy analyzer 9, and the incident collimator diaphragm has an inner diameter of lmm ⁇ 0.1 and a length. A circular aperture of 150mm ⁇ 0.5 is incident on the collimator diaphragm.
  • the P-position receiving slit adopts a circular aperture incident collimating aperture with an inner diameter of 0.8mm and a length of 120mm ⁇ 0.5.
  • the Nal scintillation counter 6 uses 10mm ⁇ 0.1 thick lead. Leather shielding.
  • the workpiece 3 is placed on the table 4, and the table 4 is adjusted so that the center of the workpiece 3 is located at the center of the goniometer circle, and the center of the goniometer circle is inside the workpiece 3.
  • the scanning range of 2 ⁇ is 2-10°
  • the step length is 0.05°
  • the measuring time per step is 10 s.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

短波长 X射线衍射测量装置和方法 技术领域
本发明涉及一种 X射线衍射的测量, 特别是一种用于较低原子 序数的晶体材料试样或工件的短波长 X射线衍射扫描测量装置和方 法。 背景技术
目前对物质进行 X射线衍射分析在很多领域都有广泛的应用, 比如, 可以用于测定晶体物质的结构 (如物相分析), 以及晶体物质 的结构变化(如测定残余应力)等。 现有技术在 X射线衍射分析时, 常用 Cu、 Cr、 Fe、 Mo材料作为阳极靶的 X射线管, 由于这种 X射 线管发出的标识 X射线波长较长, 在镁、 铝、 硅等材料中的穿透深 度不大于 l(T4m, 所以至今只能对这类材料试样或工件的表面进行 X 射线衍射分析。
针对上述由于 X射线波长较长引起的 X射线的穿透能力不强的 缺陷, 专利 CN1049496C公开了一种 "X射线残余应力测定装置和方 法,,, 该专利的装置是在现有 X射线残余应力测定装置的基础上将 X 射线管改为短波长 X射线管, 且管电压高, 所用接收狭缝为限位接 收狭缝。 该专利进行 X射线衍射测量的方法是在现有装置的测定方 法中采用短波长标识 X射线, 使被测点位于测角仪圆圆心, 且通过 限位接收狭缝, 只允许被测点的衍射线进入辐射探测器, 而将来自工 件其它部位的^"射线和散射线屏蔽, 可测定 X射线穿透深度范围内 的被测工件内部任意一点的残余应力; 平移工件, X射线应力分析仪 就可测定工件的另一点的残余应力,解决了残余应力在铍合金等材料 工件的三维分布测定。 另外, 由于该方法采用 X射线波长越短及被 照射工件所用材料原子序数越低, 入射 X射线的穿透深度越深, 因 此, 可以探测来自更厚工件不同深度不同部位的衍射线。
但是由于 X射线应力分析仪是采用 X射线衍射背反射法来收集 衍射谱, 其 X射线在工件中传播的路径较长, 另外由于经过工件的 出射光线的强度随着在工件中传播路线的加长而减弱, 其原理, 如图
1所示, 设入射光强为 I。的 X射线经过线吸收系数 cc、 厚度为 t的工 件后, 出射光强 I, 其中 I= I0 x e^ 。 由上式可知, X射线的出射光 强度除了取决于工件的本身属性和入射光强外,还随着光线在工件中 传播的距离变化, 如果传播距离越长(即入射 X射线与衍射线在工 件中传播的路程之和越长), 光强损失越大, 出射光强度(衍射光强 度)越小。 由于衍射光强度的减弱将导致测量信噪比的降低, 影响了 对 X射线 ί射的测量。 因此, 利用该专利技术, 没能充分利用短波 长 X射线强穿透能力, 导致被测工件的可测深度较小。 发明内容
本发明的目的在于提供一种主要用于铝、镁、硅等较低原子序数 的晶体材料试样或工件, 使得工件的可测深度或厚度提高 10倍左右 的短波长 X射线^ "射分析的断层扫描装置。
本发明的另一目的在于提供一种操作简便、检测时间短的采用上 述装置的短波长 X射线衍射测量方法。
众所周知, X射线波长越短, 被辐射工件所用的材料原子序数越 小, 入射 X射线的穿透工件的厚度就越大, 本发明正是基于这一原 理, 采用 X射线衍射透射法, 而不是 X射线衍射背反射法, 将使得 入射 X射线与衍射线在工件中走过的路程之和大大减小, 从而减小 了衍射光线在被测工件中的能量损耗, 使得出射光强增大,提高了探 测器接收信号的信噪比, 进而增强了整个衍射测量装置的灵敏度。 因 此可收集来自厚度更厚的工件不同深度不同部位的 X射线衍射线, 以实现对整个工件内部进行无损地 X射线衍射分析, 从而测得物相、 应力等的三维分布。
本发明的目的是这样实现的: 一种短波长 X射线衍射测量装置, 包括 X射线管、 入射光阑、 工作台、 接收狭缝、 测角仪、 探测器、 能量分析器, 所述 X射线管与所述探测器位于所述工作台两侧。
上述接收狭缝、探测器固定在测角仪上, 同步绕以工作台上被测 工件被测点为圓心转动, 此被测点位于测角仪的转轴上; 测角仪固定 在一个平台上; 工作台或固定在测角仪上, 或固定在平台上; X射线 管或固定于测角仪上,或固定于平台上;入射光阑或固定于测角仪上, 或固定于平台上, 或固定于 X射线管上的夹具; 入射光阑出口或在 测角仪圓周上, 或在测角仪圆周内; 工作台上的工件或随工作台分别 作 X、 Υ、 Ζ三维方向平移或绕测角仪转轴转动 Ψ角度或作 X、 Υ、 ζ、
Ψ联动。 另外, 本发明中的接收狭缝还起着只允许工件被测点的衍射 线进入探测器而将散射线和来自工件其它部位的衍射线屏蔽的作用。
上述 X射线管的阳极靶的材质为钨、 金、 银等重金属材料, 使 其发出穿透能力强的波长为 0.01nm-0.07nm的短波长标识 X射线,对 原子序数比较低的(Z < 20 )金属、 非金属材料和陶瓷材料等(如铝、 镁、硅等),可以穿透厘米一分米数量级的深度;管电压为 120-350KV, 管电流为 2-10mA, 连续可调; 上述探测器或为辐射探测器或为位敏 探测器或为一维半导体探测器阵列; 上述入射光阑为入射准直光阑; 上述接收狭缝或为平行限位接收狭缝, 或为锥度限位接收狭缝, 以屏 蔽入射到探测器的散射 X射线和来自工件其他部位的衍射线; 上述 能量分析器或为单道能量分析器, 或为多道能量分析器, 其输出信号 输入计算机; 上述工作台由计算机控制, 作 X、 Υ、 Ζ三维方向平行 移动或绕测角仪转轴转动。
上述 X射线管到测角仪圆的圓心距离与探测器到测角仪圓的圆 心距离相等或不等, 且距离可调; 测角仪圓的圆心到辐射探测器或位 敏探测器的距离为 200-800mm。本发明所述的测角仪圓的圓心是测角 仪的转轴与辐射探测器或位敏探测器的转动平面的交点, 入射的 X 射线在辐射探测器或位敏探测器的转动平面上且经过测角仪圆的圆 心, 位于测角仪圓的圆心的被测工件部位就是被测部位。
上述入射准直光阑或为圓孔入射准直光阑,或为矩形孔入射准直 光阑; 入射准直光阑的遮挡材料为铅或者比铅吸收 X射线能力更强 的重金属, 比如金等。 当釆用闪烁计数器等单点辐射探测器扫描收集 衍射谱时,平行限位接收狭缝采用圆孔入射准直光阑或矩形孔入射准 直光阑, 且平行限位接收狭缝与辐射探测器联动。
上述圆孔入射准直光阑的内径尺寸为 0.1-2mm , 长度为 50-200mm; 上述矩形孔入射准直光阑由 2个或 2个以上光阑构成, 每个光阑互相同向平行且中心线重合, 每个光阑遮挡材料厚度 > 4mm, 且间距 20-200mm, 每个光阑内孔尺寸为(1-4) x (0.1-0.8)mm, 整个矩形孔入射准直光阑的遮挡材料总厚度不小于 15mm。
上述辐射探测器或位敏探测器用大于 2mm厚的铅皮或者比铅吸 收 X射线能力更强的重金属皮封闭来屏蔽 X射线, 只留正对接收狭 缝的窗口和引出电线的小孔。
上述锥度限位接收狭缝的锥度由位敏探测器可探测的有限角度 决定, 外壳由厚度大于 2mm的铅皮包覆, 内镶 3-10片钨或钼片且均 分锥度限位接收狭缝的锥度;该狭缝的大口尺寸与位敏探测器的有效 尺寸吻合且与位敏探测器固定连接,锥度限位接收狭缝的锥面和内镶 的钨或钼片的延伸均相交于测角仪的转轴;锥度限位接收狭缝和位敏 探测器联动。 当采用位敏探测器收集衍射谱时,接收狭缝采用锥度限 位接收狭缝。 本文中提到的位敏探测器也包括一维探测器阵列。
本发明的另一目的是这样实现的:一种实施上述装置的短波长 X 射线衍射测量方法, 它采用的是短波长 X射线衍射透射法, (1 )选 择辐射和衍射测试参数, 包括管电压、 管电流、 光阑和狭缝系统以及 测角仪圓的圆心到辐射探测器或位敏探测器的距离等; (2 )由计算机 控制将工件被测点置于测角仪圆的圓心; ( 3 )计算机控制测量衍射谱;
( 4 )根据需要, 由计算机控制工作台作 X、 Υ、 έ三维方向移动或绕 测角仪转轴转动, 便可测得工件内任意一点及其任一转角的衍射谱;
( 5 ) 由计算机进行数据处理, 求得各点物相、 残余应力参量及其分 布。
选择辐射和衍射测试参数: 采用 W K cc、 Au Κ α、 Ag Kc短波 长 X射线辐射; 釆用 X射线衍射透射法; 采用平行限位接收狭缝或 锥度限位接收狭缝, 只允许被测点的衍射线进入探测器, 而将其余射 线遮挡。
由计算机控制将工件被测点置于测角仪圓的圓心;被测点就是工 件厚度在可测厚度范围内的工件表面或工件内部的任一点。
测衍射谱时, 可根据需要, 由计算机控制被测工件位移转动台作 X、 Y、 Ζ三维方向移动, 其步长为 0.1-2mm和绕测角仪转轴转动, 以测得工件内任意一点及其任一绕测角低度转轴转动角度的衍射谱。
本发明所述装置在不破坏原子序数较低的铝、 镁、 硅、 碳、 氮、 氧等元素构成的晶体材料工件的前提下,能测得厚度更厚的工件不同 深度不同部位的 X射线衍射谱。本发明克服了短波长 X射线不适用于 X 射线衍射分析领域的惯性思维束縛,采用短波长 X射线辐射 +X射线衍 射透射法, 使得可测工件厚度约为现有技术 CN1049496C所述装置和 方法可测工件厚度的 10倍左右, 特别是对硅、 铝、 镁等材料工件的可 测厚度达到厘米一分米数量级, 能测得工件不同深度不同部位的 X射 线衍射谱, 进而可获得物相、 残余应力等参量及其分布; 而且, 本发 明也突破了现有的 X射线衍射仪及其方法在不破坏试样的情况下, 只 能对试样表面几十微米厚进行 X射线衍射分析的局限; 并且, 具有操 作简便, 检测时间不长, 测得的 X射线衍射谱真实、 可靠。 附图说明 图 1是 X射线穿过物质的示意图;
图 2为本发明所述装置框图;
图 3为本发明所采用的圆孔入射准直光阑结构剖面图; 图 4为图 3的 A向视图;
图 5为本发明所采用的矩形孔入射准直光阑结构剖面图; 图 6为图 5的 A向视图;
图 7为本发明所采用的锥度限位接收狭缝的结构剖面图,其中上 端 14为大口, 下端 15为小口;
图 8为图 7的俯视图;
图 9为本发明的具体实施例中工件移动测量示意图;
图 10为本发明所采用的测量和计算框图;
图 11为 25mm厚镁合金工件内部中心部位的^"射谱。
图中 1为 X射线管、 2为入射准直光阑、 3为工件、 4为工作台、 5为接收狭缝、 6为探测器、 7为测角仪、 8为 X射线发生器电源、 9 为能量分析器、 10为计算机、 11为数据输出设备、 12为稳压电源、 13为测量装置的固定平台、 14为锥度限位接收狭缝的上端大口、 15 为锥度限位接收狭缝的下端小口。 具体实施方式
下面我们将结合附图, 对本发明的最佳实施方案进行详细描述。 首先要指出的是, 本发明中用到的术语、 字词及权利要求的含义不能 仅仅限于其字面和普通的含义去理解,还包括进与本发明的技术相符 的含义和概念,这是因为我们作为发明者,要适当地给出术语的定义, 以便对我们的发明进行最恰当的描述, 因此, 本说明和附图中给出的 配置, 只是本发明的首选实施方案, 而不是要列举本发明的所有技术 特性。 我们要认识到, 还有各种各样的可以取代我们方案的同等方案 或修改方案。 实施例 1 : 参见上述附图: 一种短波长 X射线 †射测量装置, 包 括 X射线管 1、 入射光阑 2、 工作台 4、 接收狭缝 5、 测角仪 7、 探测 器 6、 能量分析器 9, 所述 X射线管 1与所述探测器 6位于所述工作 台 4两侧, 也即被测工件两侧。
上述接收狭缝 5、 探测器 6固定在测角仪 7上, 同步绕以工作台 4上被测工件 3被测点为圆心转动,此被测点位于测角仪 7的转轴上; 测角仪 7固定在一个平台 13上; 工作台 4固定在测角仪 7上, 或固 定于平台 13上; X射线管 1或固定于测角仪 7上, 或固定于平台 13 上; 入射光阑 2或固定于测角仪 7上, 或固定于平台 13上, 或固定 于 X射线管 1上的夹具; 入射光阑 2出口或在测角仪 7的圓周上, 或在测角仪 7圆周内; 工作台 4上的被测工件 3或随平台 13分别作 X、 Y、 Ζ三维方向平移或绕测角仪 7转轴转动 Ψ角度或作 X、 Υ、 Ζ、 Ψ 联动。
在本发明中, 上述 X射线管 1的阳极靶的材质为钨、 金、 银等 重金属材料, 管电压为 320KV, 管电流为 5mA, 连续可调, 使其发 出穿透能力强的波长为 0.01nm-0.07nm的短波长标识 X射线,对原子 序数比较低的(Z < 20 )金属、 非金属材料和陶瓷材料等, 如铝、 镁、 硅等, 可以穿透厘米一分米数量级的深度; 上述探测器 6为位敏探测 器; 上述入射光阑 2为入射准直光阑; 上述接收狭缝 5为锥度限位接 收狭缝, 屏蔽入射到探测器 6的散射 X射线和来自工件其他部位的 衍射线,也即只允许被测点的衍射线进入探测器,而将其余射线遮挡; 上述能量分析器 9为多道能量分析器; 上述工作台 4由计算机 10控 制, 作 X、 Y、 Ζ三维方向移动、 绕测角仪 7转轴转动, 多道能量分 析器 9的信号输入到计算机 10。
上述 X射线管 1到测角仪 7圓的圓心距离与探测器 6到测角仪 7 圆的圓心距离相等或不等, 且距离可调; 测角仪圆的圓心到辐射探测 器或位敏探测器的距离为 600mm。 上述入射准直光阑或为圓孔入射准直光阑,或为-矩形孔入射准直 光阑; 入射准直光阑的遮挡材料为铅或者比铅吸收 X射线能力更强 的重金属; 当采用闪烁计数器等单点辐射探测器扫描收集衍射谱时, 平行限位接收狭缝采用圓孔入射准直光阑或矩形孔入射准直光阑。
上述圆孔入射准直光阑的内径尺寸为 0.1-2mm , 长度为 50-200mm; 上述矩形孔入射准直光阑由 2个或 2个以上光阑构成, 每个光阑互相同向平行且中心线重合, 每个光阑遮挡材料厚度 5mm, 且间距 180mm, 每个光阑内孔尺寸为(1-4) x (0.1-0.8)mm, 整个矩形 孔入射准直光阑的遮挡材料总厚度不小于 15mm。
上述辐射探测器或位敏探测器用大于 2mm厚的铅皮或者比铅吸 收 X射线能力更强的重金属皮封闭来屏蔽 X射线, 只留正对接收狭 缝 5的窗口和引出电线的小孔。
上述锥度限位接收狭缝的锥度由位敏探测器可探测的有限角度 决定, 外壳由厚度大于 2mm的铅皮包覆, 内镶 3-10片钨或钼片且均 分锥度限位接收狭缝的锥度; 该狭缝的大口 14尺寸与位敏探测器的 有效尺寸吻合且与位敏探测器固定连接,锥度限位接收狭缝的锥面和 内镶的钨或钼片的延伸均相交于测角仪的转轴,其中心线相交于测角 仪圓的圆心; 锥度限位接收狭缝和位敏探测器联动。 当采用位敏探测 器收集衍射借时, 接收狭缝采用锥度限位接收狭缝。
一种实施上述装置的短波长 X射线衍射测量方法, 它采用短波 长 X射线衍射透射法, ( 1 )选择辐射和衍射测试参数, 包括管电压、 管电流、光阑和狭缝系统以及测角仪圆的圆心到辐射探测器或位敏探 测器的距离等;( 2 )由计算机控制将工件被测点置于测角仪圆的圓心; ( 3 )计算机控制测量衍射谱; (4 )根据需要, 由计算机控制工作台 作 X、 Υ、 Ζ三维方向移动或绕测角仪转轴转动, 便可测得工件内任 意一点及其任一 Ψ角的衍射谱; ( 5 )由计算机进行数据处理, 求得各 点物相、 残余应力参量及其分布。 选择辐射和衍射测试参数: 采用 W Ko 、 Au K oc、 Ag K a短波 长 X射线辐射; 采用 X射线衍射透射法; 采用平行限位接收狭缝或 锥度限位接收狭缝, 只允许被测点的衍射线进入探测器, 而将其余射 线遮挡。
由计算机控制工作台将其上的工件被测点置于测角仪圓的圆心 , 其工件厚度在可测厚度范围内的工件内部的任一被测点。为了实现断 层逐点扫描,由计算机控制图 9中工作台 4上的被测工件 3作空间三 维运动, 其步长为 0.1-2mm, 为了测量被测部位不同方向的衍射谱, 也可以由计算机控制图 9中的工作台 4上的被测工件 3绕测角仪转轴 转动一定的角度。计算机对测得的数据进行处理, 由输出设备输出被 测工件内部各点的物相、 残余应力等参量及其分布。
实施例 2: 参见图 9, 本例所釆用的装置和方法同实施例 1 , 所 不同的是各参数的选择: 本例采用 W Κ α辐射, 管电压为 280KV, 管电流为 3mA,测角仪圆的圆心到辐射探测器的距离为 220mm土 1.0, Nal闪烁计数器 6接多道能量分析器 9,入射准直光阑采用内径为 2mm ± 0.1、长 120mm ± 0.5的圓孔入射准直光阑, P艮位接收狭缝采用内径 为 0.5mm ± 0.1、 长 120mm ± 0.5的圓孔入射准直光阑, Nal闪烁计数 器 6用 8mm ± 0.1厚的铅皮屏蔽。 光路调好后, 将厚度为 25mm ± 0.5 的镁合金铸件 3置于工作台 4上,调整工作台 4使得镁合金铸件 3的 中心位于测角仪圓的圆心,图 9中虛线所示为镁合金铸件 3的实际位 置, 此时测角仪圆的圓心在镁合金铸件 3的内部且距其表面 12.5mm ± 0.1。2 Θ的扫描范围为 2-10° ,步长 0.05° ,每步的测量时间为 10s。 测得的 X射线衍射谱见图 11。
实施例 3: 本例所采用的装置和方法同实施例 1, 所不同的是各 参数的选择:本例采用 W K oc辐射,管电压为 320KV,管电流为 6mA, 测角仪圆的圆心到辐射探测器的距离为 500mm ± 1.0, Nal 闪烁计数 器 6接多道能量分析器 9, 入射准直光阑采用内径为 lmm ± 0.1、 长 150mm ± 0.5的圓孔入射准直光阑, P艮位接收狭缝采用内径为 0.8mm 土 0.1、 长 120mm ± 0.5 的圆孔入射准直光阑, Nal 闪烁计数器 6用 10mm ± 0.1厚的铅皮屏蔽。 光路调好后, 将工件 3置于工作台 4上, 调整工作台 4使得工件 3的中心位于测角仪圆的圓心, 此时测角仪 圓的圆心在工件 3的内部。 2 Θ的扫描范围为 2-10° , 步长 0.05° , 每步的测量时间为 10s。
以上公开的仅为本发明的几个具体实施例,但是, 本发明并非局 限于此,任何本领域的技术人员能思之的变化都应落入本发明的保护 范围。

Claims

权 利 要 求
1、 一种短波长 X射线衍射测量装置, 包括 X射线管(1)、 入射 光阑(2)、 工作台 (4)、 测角仪(7)、 探测器(6)、 能量分析器(9), 其特征在于: 所述 X射线管 ( 1 )与所述探测器(6)位于所述工作 台 (4) 两侧, 所述探测器 (6)接收 X衍射透射线。
2、如权利要求 1所述短波长 X射线衍射测量装置,其特征在于: 所述入射光阑 (2) 为入射准直光阑, 包括: 圆孔入射准直光阑或矩 形孔入射准直光阑。
3、如权利要求 2所述短波长 X射线衍射测量装置,其特征在于: 所述入射准直光阑主要由遮挡材料加工而成,该遮挡材料包括铅或者 比铅吸收 X射线能力强的重金属。
4、如权利要求 1所述短波长 X射线衍射测量装置,其特征在于, 还包括: 接收狭缝(5), 位于所述工作台 (4)与所述探测器(6)之 间。
5、如权利要求 4所述短波长 X射线衍射测量装置,其特征在于: 所述接收狭缝(5) 为平行限位接收狭缝, 或为锥度限位接收狭缝, 用于屏蔽入射到探测器(6)的散射 X射线和来自工件其他部位的衍 射线。
6、如权利要求 5所述短波长 X射线衍射测量装置,其特征在于: 所述接收狭缝(5)主要由遮挡材料加工而成, 该遮挡材料包括铅或 者比铅吸收 X射线能力更强的重金属。
7、如权利要求 5所述短波长 X射线衍射测量装置,其特征在于: 所述锥度限位接收狭缝的锥度由位敏探测器可探测的有限角度决定, 外壳由厚度大于 2mm的铅皮包覆, 内镶 3-10片钨或钼片均分锥度限 位接收狭缝的锥度; 该狭缝的大口 (14)尺寸与位敏探测器的有效尺 寸吻合且与位敏探测器固定连接,锥度限位接收狭缝的锥面和内镶的 钨或钼片的延伸均相交于测角仪(7) 的转轴, 其中心;线相交于所述 测角仪(7) 的圆心; 锥度限位接收狭缝和位敏探测器联动; 当采用 位敏探测器收集衍射谱时, 接收狭缝采用锥度限位接收狭缝。
8、 如权利要求 1或 4所述短波长 X射线衍射测量装置, 其特征 在于: 所述接收狭缝(5)、 探测器(6) 固定在测角仪(7)上, 同步 绕以工作台 (4)上被测工件(3)被测点为圓心转动, 此被测点位于 测角仪(7)的转轴上; 测角仪(7) 固定在一个平台 (13)上; 工作 台 (4)或固定在测角仪(7)上, 或固定于平台 (13); X射线管(1) 或固定于测角仪(7)上, 或固定于平台 ( 13)上; 入射光阑 (2)或 固定于测角仪(7)上, 或固定于平台 (13)上, 或固定于 X射线管 (1)上的夹具; 入射光阑 (2) 出口或在测角仪(7) 圆周上, 或在 测角仪(7)圆周内; 工作台(4)上的被测工件(3)或随工作台(4) 分别作 X、 Υ、 Ζ三维方向平移或绕测角仪转轴转动 Ψ角度或作 X、 Υ、 Ζ、 Ψ联动。
9、 如权利要求 1或 4所述的短波长 X射线衍射测量装置, 其特 征在于, 所述探测器 (6) 包括: 辐射探测器、 位敏探测器或一维半 导体探测器阵列。
10、 如权利要求 9所述短波长 X射线衍射测量装置, 其特征在 于, 所述探测器(6)用铅皮或者比铅吸收 X射线能力更强的重金属 皮封闭来屏蔽 X射线, 只留正对接收狭缝(5) 的窗口和引出电线的 小孔。
11、如权利要求 1或 4所述短波长 X射线衍射测量装置,其特征 在于: 所述能量分析器(9)或为单道能量分析器, 或为多道能量分 析器。
12、 如权利要求 1或 4所述短波长 X射线衍射测量装置, 其特征 在于: 所述 X射线管( 1 )的阳极靶的材质为钨、 金、银重金属材料, 管电压为 120-350KV, 管电流为 2-10mA, 连续可调。
13、 如权利要求 1或 4所述短波长 X射线衍射测量装置, 其特 征在于: 所述工作台 (4) 由计算机(10)控制, 作 X、 Y、 Ζ三维方 向平行移动或绕测角仪(7)转轴转动; 所述能量分析器(9)输出信 号到计算机(10)。
14、 如权利要求 1或 4所述短波长 X射线衍射测量装置, 其特 征在于: 所述 X射线管 (1)到测角仪(7) 圓的圆心距离与探测器
(6)到测角仪(7) 圆的圓心距离相等或不等, 且距离可调; 测角仪
(7) 圆的圆心到辐射探测器或位敏探测器的距离为 200-800mm; 所 述测角仪圆的圆心是测角仪的转轴与辐射探测器或位敏探测器的转 动平面的交点, 入射的 X射线在辐射探测器或位敏探测器的转动平 面上且经过测角仪圆的圆心,位于测角仪圓的圓心的被测工件部位就 是被测部位; 当采用闪烁计数器等单点辐射探测器扫描收集衍射谱 时, 平行限位接收狭缝采用圓孔入射准直光阑或矩形孔入射准直光 阑。
15、 如权利要求 2或 14所述短波长 X射线衍射测量装置, 其特 征在于: 所述圆孔入射准直光阑的内径尺寸为 0.1-2mm, 长度为 50-200mm; 所述矩形孔入射准直光阑由 2个或 2个以上光阑构成, 每个光阑互相同向平行且中心线重合, 每个光阑遮挡材料厚度> 4mm, 且间距 20-200mm, 每个光阑内孔尺寸为(1-4) x (0.1-0.8)mm, 整个矩形孔入射准直光阑的遮挡材料总厚度不小于 15mm。
16、 一种短波长 X射线衍射测量方法, 其特征在于: 包括以下 步骤:
1 )将探测器(6)与 X射线管 ( 1 )分别设置在工作台 (4) 的 两侧, 使探测器(6)接收由所述 X射线管 (1)辐射到工作台 (4) 上工件被测部位发出的透射衍射线;
2)选择辐射和 ί射测试参数, 包括管电压、 管电流、 入射光阑 和接收狭缝系统以及测角仪圆的圆心到探测器的距离; 3 )将工件被测点置于测角仪圆的圓心;
4 )测量衍射谱;
5 ) 由计算机进行数据处理, 求得各点物相、 残余应力参量及其 分布。
17、 如权利要求 16所述的短波长 X射线衍射测量方法, 其特征 在于: 选择辐射和衍射测试参数: 采用 W Ka、 Au Ka、 Ag Ka短波 长 X射线辐射。
18、 如权利要求 16所述的短波长 X射线衍射测量方法, 其特征 在于: 所述接收狭缝只允许被测点的衍射线进入探测器, 而将其余射 线遮挡; 包括: 采用闪烁计数器等单点辐射探测器扫描收集衍射谱时 使用的平行限位接收狭缝,或釆用位敏探测器收集衍射谱时使用锥度 限位接收狭缝。
19、 如权利要求 16所述的短波长 X射线衍射测量装置, 其特征 在于: 所述入射光阑为入射准直光阑, 包括: 圆孔入射准直光阑或矩 形孔入射准直光阑。
20、 如权利要求 16所述的短波长 X射线衍射测量方法, 其特征 在于: 所述探测器用铅皮或者比铅吸收 X射线能力更强的重金属皮 封闭来屏蔽 X射线, 只留正对接收狭缝(5 )的窗口和引出电线的小 孔。
21、 如权利要求 16所述的短波长 X射线衍射测量方法, 其特征 在于: 由计算机控制将工件被测点置于测角仪圆的圆心; 被测点就是 工件厚度在可测厚度范围内的工件表面或工件内部的任一点。
22、 如权利要求 16所述的短波长 X射线衍射测量方法, 其特征 在于: 测量衍射谱时, 根据需要, 由计算机控制被测工件(3 ) 的工 作台 (4 )作 X、 Y、 Ζ三维方向移动, 其步长为 0.1-2nmi和 /或绕测 角仪转轴转动, 以测得工件内任意一点及其任一绕测角仪( 7 )转轴 转动角度的衍射谱。
PCT/CN2005/000950 2004-07-14 2005-06-30 Dispositif de mesure destine a la diffraction de rayons x a longueur d'onde courte et procede correspondant WO2006005246A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/572,128 US7583788B2 (en) 2004-07-14 2005-06-30 Measuring device for the shortwavelength x ray diffraction and a method thereof
JP2007520648A JP2008506127A (ja) 2004-07-14 2005-06-30 短波長x線回折測定装置及びその方法
EP05759557A EP1767928A4 (en) 2004-07-14 2005-06-30 MEASURING DEVICE FOR SHORT-WAVE X-RAY DIFFUSION AND METHOD THEREFOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200410068880.2 2004-07-14
CNB2004100688802A CN100485373C (zh) 2004-07-14 2004-07-14 短波长x射线衍射测量装置和方法

Publications (1)

Publication Number Publication Date
WO2006005246A1 true WO2006005246A1 (fr) 2006-01-19

Family

ID=34604191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2005/000950 WO2006005246A1 (fr) 2004-07-14 2005-06-30 Dispositif de mesure destine a la diffraction de rayons x a longueur d'onde courte et procede correspondant

Country Status (5)

Country Link
US (1) US7583788B2 (zh)
EP (2) EP1767928A4 (zh)
JP (1) JP2008506127A (zh)
CN (1) CN100485373C (zh)
WO (1) WO2006005246A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009025234A (ja) * 2007-07-23 2009-02-05 Rigaku Corp 硬組織の評価方法
US7840237B2 (en) 2007-02-08 2010-11-23 Microsoft Corporation Enabling user interface elements based on short range wireless devices
CN109444948A (zh) * 2018-12-29 2019-03-08 中国原子能科学研究院 一种用于空气比释动能绝对测量的电离室
CN113176285A (zh) * 2021-04-23 2021-07-27 中国兵器工业第五九研究所 一种短波长特征x射线内部残余应力无损测试方法

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7978820B2 (en) * 2009-10-22 2011-07-12 Panalytical B.V. X-ray diffraction and fluorescence
US8477904B2 (en) * 2010-02-16 2013-07-02 Panalytical B.V. X-ray diffraction and computed tomography
CN102435626A (zh) * 2011-09-13 2012-05-02 丹东通达科技有限公司 一种台式x射线衍射仪
CN102706905A (zh) * 2012-06-28 2012-10-03 丹东奥龙射线仪器有限公司 X射线晶体定向仪数据记录仪
CN103245445A (zh) * 2013-05-17 2013-08-14 北京师范大学 一种应力仪
JP6127717B2 (ja) * 2013-05-24 2017-05-17 株式会社島津製作所 X線分析装置
EP3036532B1 (en) 2013-08-21 2018-05-16 United Technologies Corporation Method for in-situ markers for thermal mechanical structural health monitoring
CN103592321A (zh) * 2013-11-13 2014-02-19 常熟市宝华建筑装璜材料有限公司 基于x射线检测的钢管检测装置
CN104634799A (zh) * 2013-11-15 2015-05-20 郑琪 一种多波长特征x射线衍射测量装置和方法
CN103901063A (zh) * 2014-04-23 2014-07-02 哈尔滨工业大学 一种用x射线衍射测定c纤维增强树脂基复合材料的方法
CN105021331A (zh) * 2014-04-29 2015-11-04 上海理工大学 基于x射线衍射全谱的多晶材料残余应力测量方法
KR102303973B1 (ko) 2014-12-22 2021-09-23 삼성전자주식회사 박막 형성 장치 및 이를 이용한 박막 형성 방법
CN104502385A (zh) * 2014-12-30 2015-04-08 西南技术工程研究所 一种短波长x射线衍射的板状内部应力定点无损检测方法
CN104597065A (zh) * 2015-01-23 2015-05-06 中国工程物理研究院材料研究所 一种x射线衍射仪
CN104764761B (zh) * 2015-04-23 2017-05-10 中国工程物理研究院材料研究所 一种测量静高压下物质相变的方法
JP6656519B2 (ja) * 2016-06-15 2020-03-04 株式会社リガク X線回折装置
CN110036284B (zh) * 2016-11-29 2020-09-18 株式会社理学 X射线反射率测定装置
CN109324072B (zh) * 2017-07-28 2021-05-14 中国科学院苏州纳米技术与纳米仿生研究所 高通量组合材料芯片的检测系统及其检测方法
CN107703168A (zh) * 2017-10-13 2018-02-16 中国工程物理研究院材料研究所 一种晶体衍射信号获取方法
CN109374659B (zh) * 2017-12-28 2020-12-29 中国兵器工业第五九研究所 一种短波长x射线衍射测试样品的定位方法
JP6871629B2 (ja) * 2018-06-29 2021-05-12 株式会社リガク X線分析装置及びその光軸調整方法
CN111380880B (zh) * 2018-12-28 2023-04-07 中国兵器工业第五九研究所 衍射装置及无损检测工件内部晶体取向均匀性的方法
JP2022547046A (ja) 2019-09-12 2022-11-10 オーソスキャン インコーポレイテッド 無段階コリメーションを備えたミニcアーム撮像システム
CN110596160B (zh) * 2019-09-19 2020-12-25 西安交通大学 单色x射线的单晶/定向晶应力测量系统和测量方法
CN113740366B (zh) * 2020-05-27 2023-11-28 中国兵器工业第五九研究所 无损检测单晶体或定向结晶体内部晶体取向差异和晶界缺陷的方法及装置
CN115598157A (zh) * 2021-06-25 2023-01-13 中国兵器工业第五九研究所(Cn) 一种基于阵列探测的短波长特征x射线衍射装置和方法
CN117168372B (zh) * 2023-10-23 2024-01-23 北京华力兴科技发展有限责任公司 一种x射线金属镀层测厚仪

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2077546U (zh) * 1990-05-24 1991-05-22 中国科学院物理研究所 两用x-射线双晶衍射仪
CN1137368A (zh) * 1995-04-05 1996-12-11 西门子公司 X射线-计算机断层造影机
CN1038874C (zh) * 1994-04-12 1998-06-24 中国科学院上海原子核研究所 微区x射线荧光黄金首饰分析装置
US5949811A (en) * 1996-10-08 1999-09-07 Hitachi Medical Corporation X-ray apparatus
JPH11267120A (ja) * 1998-01-20 1999-10-05 Ge Yokogawa Medical Systems Ltd X線画像生成方法およびx線ct装置
CN1049496C (zh) * 1997-02-03 2000-02-16 重庆大学 X射线残余应力测定装置和方法
JP2001095789A (ja) * 1999-09-30 2001-04-10 Shimadzu Corp X線透視撮影装置
CN1291720A (zh) * 1999-10-11 2001-04-18 成都理工学院 便携式管激发x射线荧光仪的制造方法
CN1504744A (zh) * 2002-12-02 2004-06-16 中国科学技术大学 对组合样品的结构和成分进行测量分析的方法及装置

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1598413A1 (de) 1966-01-20 1970-04-23 Exxon Research Engineering Co Vorrichtung zur Anfertigung verzerrungsfreier Roentgenbeugungsbilder
US3527942A (en) 1967-11-09 1970-09-08 Atlantic Richfield Co Automatic sample changer for positioning a plurality of pellets in an x-ray analyzer
DE2312507A1 (de) * 1973-03-13 1974-09-26 Max Planck Gesellschaft Geraet fuer roentgenbeugungsmessungen mittels weisser roentgenstrahlen
JPS6093335A (ja) * 1983-10-27 1985-05-25 Natl Inst For Res In Inorg Mater 多結晶体の結晶粒子状態の検出測定装置
JPH01265146A (ja) * 1988-04-16 1989-10-23 Mc Sci:Kk X線回折装置
US4877080A (en) 1988-06-13 1989-10-31 Ahlstromforetagen Svenska Ab Process and apparatus for cooling a fluid
GB8830466D0 (en) 1988-12-31 1989-03-01 Salje Ekhard K H X-ray diffractometer
CA2022190C (en) 1989-08-11 2002-06-04 Andrew W. Gross Thiol-terminated hydroxyamides
JP2899057B2 (ja) * 1990-04-09 1999-06-02 理学電機株式会社 試料固定型x線回折装置の自動光軸調整装置
GB9122085D0 (en) * 1991-10-17 1991-11-27 Cambridge Surface Analytics X-ray diffractometer
US5259013A (en) * 1991-12-17 1993-11-02 The United States Of America As Represented By The Secretary Of Commerce Hard x-ray magnification apparatus and method with submicrometer spatial resolution of images in more than one dimension
GB2266040B (en) * 1992-04-09 1996-03-13 Rigaku Ind Corp X-ray analysis apparatus
JPH05296948A (ja) * 1992-04-17 1993-11-12 Nippon Steel Corp X線回折環全方位測定装置
JP2905659B2 (ja) * 1993-02-26 1999-06-14 シャープ株式会社 X線装置と該装置を用いた評価解析方法
JPH06258260A (ja) * 1993-03-05 1994-09-16 Seiko Instr Inc X線回折装置
GB9519687D0 (en) * 1995-09-27 1995-11-29 Schlumberger Ltd Method of determining earth formation characteristics
US6005913A (en) * 1996-04-01 1999-12-21 Siemens Westinghouse Power Corporation System and method for using X-ray diffraction to detect subsurface crystallographic structure
DE19839472C1 (de) 1998-08-29 2000-11-02 Bruker Axs Analytical X Ray Sy Automatischer Probenwechsler für Röntgen-Diffraktometer
JP3950239B2 (ja) * 1998-09-28 2007-07-25 株式会社リガク X線装置
EP1149282A2 (en) 1998-12-18 2001-10-31 Symyx Technologies, Inc. Apparatus and method for characterizing libraries of different materials using x-ray scattering
JP4155538B2 (ja) * 1999-06-30 2008-09-24 株式会社リガク X線測定装置及びx線測定方法
US6895075B2 (en) * 2003-02-12 2005-05-17 Jordan Valley Applied Radiation Ltd. X-ray reflectometry with small-angle scattering measurement
JP4533553B2 (ja) * 2001-04-13 2010-09-01 株式会社リガク X線管
CN2496018Y (zh) 2001-10-08 2002-06-19 中国科学院物理研究所 一种多功能x射线衍射仪
DE60305875T3 (de) 2002-01-15 2013-09-26 Avantium International B.V. Verfahren zur Durchführung einer Leistungsbeugungsanalyse
GB0201773D0 (en) * 2002-01-25 2002-03-13 Isis Innovation X-ray diffraction method
JP2003329620A (ja) * 2002-05-13 2003-11-19 Hitachi Ltd 積層薄膜検査方法
JP3731207B2 (ja) * 2003-09-17 2006-01-05 株式会社リガク X線分析装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2077546U (zh) * 1990-05-24 1991-05-22 中国科学院物理研究所 两用x-射线双晶衍射仪
CN1038874C (zh) * 1994-04-12 1998-06-24 中国科学院上海原子核研究所 微区x射线荧光黄金首饰分析装置
CN1137368A (zh) * 1995-04-05 1996-12-11 西门子公司 X射线-计算机断层造影机
US5949811A (en) * 1996-10-08 1999-09-07 Hitachi Medical Corporation X-ray apparatus
CN1049496C (zh) * 1997-02-03 2000-02-16 重庆大学 X射线残余应力测定装置和方法
JPH11267120A (ja) * 1998-01-20 1999-10-05 Ge Yokogawa Medical Systems Ltd X線画像生成方法およびx線ct装置
JP2001095789A (ja) * 1999-09-30 2001-04-10 Shimadzu Corp X線透視撮影装置
CN1291720A (zh) * 1999-10-11 2001-04-18 成都理工学院 便携式管激发x射线荧光仪的制造方法
CN1504744A (zh) * 2002-12-02 2004-06-16 中国科学技术大学 对组合样品的结构和成分进行测量分析的方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI R. ET AL: "Modification of automatic control and data processing system of X-ray stress instrument", AUTOMOBILE TECHNOLOGY MATERIAL, no. 5, 2002, pages 27 - 30 *
See also references of EP1767928A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7840237B2 (en) 2007-02-08 2010-11-23 Microsoft Corporation Enabling user interface elements based on short range wireless devices
JP2009025234A (ja) * 2007-07-23 2009-02-05 Rigaku Corp 硬組織の評価方法
CN109444948A (zh) * 2018-12-29 2019-03-08 中国原子能科学研究院 一种用于空气比释动能绝对测量的电离室
CN109444948B (zh) * 2018-12-29 2024-05-14 中国原子能科学研究院 一种用于空气比释动能绝对测量的电离室
CN113176285A (zh) * 2021-04-23 2021-07-27 中国兵器工业第五九研究所 一种短波长特征x射线内部残余应力无损测试方法
CN113176285B (zh) * 2021-04-23 2023-12-15 中国兵器工业第五九研究所 一种短波长特征x射线内部残余应力无损测试方法

Also Published As

Publication number Publication date
EP1767928A1 (en) 2007-03-28
EP2541238B1 (en) 2015-12-16
CN1588019A (zh) 2005-03-02
CN100485373C (zh) 2009-05-06
US20080095311A1 (en) 2008-04-24
US7583788B2 (en) 2009-09-01
JP2008506127A (ja) 2008-02-28
EP2541238A1 (en) 2013-01-02
EP1767928A4 (en) 2011-03-16

Similar Documents

Publication Publication Date Title
WO2006005246A1 (fr) Dispositif de mesure destine a la diffraction de rayons x a longueur d&#39;onde courte et procede correspondant
JP4796254B2 (ja) X線アレイ検出器
EP2564186B1 (en) Method and apparatus for using an area x-ray detector as a point detector in an x-ray diffractometer
JP4724662B2 (ja) パターン化された表面の分析のための開口マスクを備えるx線蛍光システム
WO2020199689A1 (zh) 一种毛细管聚焦的微束x射线衍射仪
JPH09511068A (ja) 材料のge−xrf x線分析方法及びこの方法を実施する装置
JP5403728B2 (ja) 中性子回折装置
JP5081556B2 (ja) デバイシェラー光学系を備えたx線回折測定装置とそのためのx線回折測定方法
JP6009156B2 (ja) 回折装置
JPH08313458A (ja) X線装置
JP3519292B2 (ja) 微小部x線回折測定方法及び微小部x線回折装置
JP2007033207A (ja) 蛍光x線三次元分析装置
JP5332801B2 (ja) 試料分析装置及び試料分析方法
JP2000206061A (ja) 蛍光x線測定装置
EP3458847A1 (en) Pulsed neutron generated prompt gamma emission measurement system for surface defect detection and analysis
JPH08510062A (ja) かすめ取出角のx線分析装置
JP2921910B2 (ja) 全反射蛍光x線分析装置
WO2006095468A1 (ja) X線回折分析装置およびx線回折分析方法
JP3823146B2 (ja) 蛍光x線分析装置
JPH02107952A (ja) 粉末のx線回析測定方法
JPH0980000A (ja) X線評価装置
JPS6353457A (ja) 二次元走査型状態分析装置
JP2023107744A (ja) X線吸収分光と蛍光x線分光分析を同時に実施するための方法およびシステム
JPH04206850A (ja) Siウェハの重金属汚染モニタ装置
JPH0815184A (ja) X線回折測定方法及びx線回折測定装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005759557

Country of ref document: EP

Ref document number: 2007520648

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2005759557

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11572128

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11572128

Country of ref document: US