WO2006003776A1 - 無線通信装置 - Google Patents

無線通信装置 Download PDF

Info

Publication number
WO2006003776A1
WO2006003776A1 PCT/JP2005/010247 JP2005010247W WO2006003776A1 WO 2006003776 A1 WO2006003776 A1 WO 2006003776A1 JP 2005010247 W JP2005010247 W JP 2005010247W WO 2006003776 A1 WO2006003776 A1 WO 2006003776A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
transmission
unit
wireless communication
received
Prior art date
Application number
PCT/JP2005/010247
Other languages
English (en)
French (fr)
Inventor
Koichiro Tanaka
Tomohiro Kimura
Naganori Shirakata
Shuya Hosokawa
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2006528444A priority Critical patent/JP4464403B2/ja
Priority to EP05751306.1A priority patent/EP1753164A4/en
Priority to US11/628,039 priority patent/US7899401B2/en
Priority to CN2005800181222A priority patent/CN1977482B/zh
Publication of WO2006003776A1 publication Critical patent/WO2006003776A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0854Joint weighting using error minimizing algorithms, e.g. minimum mean squared error [MMSE], "cross-correlation" or matrix inversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values

Definitions

  • the present invention relates to a wireless communication apparatus that performs wireless communication, and more particularly, to a technique for receiving a signal transmitted from a wireless transmission station using a plurality of antennas.
  • Non-Patent Document 2 shows a configuration that improves the characteristics of the V-BLAST and non-signal reception method shown in Non-Patent Document 1, and the wireless communication device described in Non-Patent Document 2 is a wireless communication device.
  • a signal transmitted from the wireless transmission station is estimated based on a coefficient representing a propagation characteristic of a signal between the apparatus and the wireless transmission station and a signal received by the wireless communication apparatus.
  • coefficients representing the propagation characteristics of signals in wireless communication between a wireless communication device and a wireless transmission station are expressed as a matrix, and this matrix includes signals received by the wireless communication device and signals transmitted from the wireless transmission station. It is obtained by calculating the correlation with the predetermined training signal included.
  • the radio communication device can obtain a matrix representing the propagation characteristics of the signal in the radio communication between the radio transmission station and the radio communication device, Based on the obtained matrix and the received signal, the signal transmitted from the wireless transmission station can be estimated.
  • Non-Patent Document 1 PWWolniansky, 3 others, "V- BLAST: An Architecture for Realizing Very High Data Rates Over the Rich- Scatterint Wireless Channel ' ⁇ URSI Internatio nal Symposium on Signals, Systems, and Electronics ⁇ September 1998 ⁇ October
  • Non-Patent Document 2 Anass Benjebbour, 2 others, "Comparison of Ordered Successive Rece ivers for Space-Time Transmission” ⁇ Vehicular Technology Conference ⁇ 2001 1 0 month
  • the present invention estimates the signal transmitted from the wireless transmission station more accurately than in the past even when there is an interference station that interferes with the wireless communication with the wireless transmission station that desires communication.
  • Another object of the present invention is to provide a wireless communication system that is capable of serving as a power source between a wireless transmission station and the wireless communication device.
  • a wireless communication apparatus of the present invention identifies a wireless transmission station as a communication destination based on a signal of a predetermined pattern included in a signal wirelessly transmitted from a wireless transmission station, and performs wireless communication.
  • a plurality of antennas, a signal receiving unit that receives signals via the antennas, a radio transmitting station that transmits a signal including the predetermined pattern based on the received signals, and the own device And a first calculation unit that calculates a numerical sequence indicating a signal transmission path characteristic in the wireless communication, and a characteristic of an unnecessary signal that is a signal component that does not include the predetermined pattern of the received signal based on the received signal.
  • a wireless communication apparatus includes a plurality of antennas, receives signals transmitted from a wireless transmission station via each antenna, and includes a plurality of antennas, so that there are many obstacles. Even in a communication environment, stable communication can be performed as compared with the case where a signal is received using a single antenna. However, the above-described configuration enables unnecessary signals included in the received signal. It is possible to estimate the signal transmitted from the wireless transmission station while correcting so as to eliminate the influence of the above. For example, even when there is an interfering station that interferes with radio communication with a radio transmitting station that desires communication, the radio communication apparatus according to the present invention can transmit a signal transmitted from the interfering station to the second calculating means. The numerical sequence indicating the characteristics of the signal is calculated, and the influence of the signal transmitted by the interference station power is corrected based on the calculated numerical sequence so as to remove the received signal power. It can be estimated more accurately than in the past.
  • the second calculation unit performs the calculation based on a received signal received within a predetermined period, and the signal receiving unit converts the signal received via the antenna into an equivalent low-frequency signal.
  • the transmission signal estimating unit performs the estimation using the numerical sequence calculated by the second calculating unit based on the received signal received within the predetermined period, and the wireless communication
  • the device is configured to perform the predetermined period and before performing the estimation.
  • a gain control unit for controlling the gain of the down converter so as to make the gain of the down converter substantially the same during a period in which the signal input to the transmission signal estimation unit is received by the signal receiving unit. Good.
  • the wireless communication apparatus calculates the numerical sequence calculated by the second calculation unit by causing the second calculation unit to calculate the numerical sequence in a period different from the period in which the transmission signal estimation unit estimates the transmission signal.
  • the transmission signal is estimated using the numerical sequence.
  • the second calculation means and the transmission signal estimation means perform predetermined processing using the signal converted into an equivalent low-frequency signal by the down converter.
  • the gain of the down converter changes when receiving a signal, the characteristics of the signal transmission path with the radio transmission station that transmits the signal change. Therefore, if the down converter gain during the period in which the second calculation means calculates the numerical sequence indicating the characteristics of the unwanted signal and the down converter gain in the period during which the transmission signal estimation means estimates the transmission signal are different, When the transmission signal is estimated by the transmission signal estimation unit, the unnecessary signal removal correction performed based on the numerical sequence calculated by the second calculation unit is not appropriately performed.
  • the down converter in the period in which the numerical sequence indicating the characteristics of the unnecessary signal is calculated by the second calculation unit and the period in which the transmission signal estimation unit estimates the transmission signal Therefore, when the transmission signal is estimated, the unnecessary signal removal correction performed based on the numerical sequence calculated by the second calculation means can be appropriately performed.
  • the second calculation unit performs the calculation based on a received signal received within a predetermined period, and the signal receiving unit converts the signal received via the antenna into an equivalent low-frequency signal.
  • the transmission signal estimating unit performs the estimation using the numerical sequence calculated by the second calculating unit based on the received signal received within the predetermined period, and the wireless communication
  • the apparatus sets the gain of the down-converter within the predetermined period as a first gain, and the down-converter in a period in which a signal input to the transmission signal estimation unit for performing the estimation is received by the signal reception unit
  • the characteristic of the unnecessary signal calculated by the second calculation unit when the gain of the second gain is the second gain.
  • a gain control unit that corrects the numerical sequence shown based on the first gain and the second gain, and the transmission signal estimation unit replaces the numerical sequence calculated by the second calculation unit. The correction may be performed using a numerical sequence corrected by the gain control unit.
  • the first gain is C
  • the second gain is C
  • the second calculation unit is the predetermined period.
  • the gain control unit uses Ruu ′, which is a numerical sequence after the above correction, H as a complex conjugate transpose, and _1 as an inverse matrix.
  • Ruu, CC _1 Ruu (CC one 1) may perform the correction by obtaining by H.
  • the wireless communication apparatus corrects the numerical sequence indicating the characteristic of the unnecessary signal calculated by the second calculating means based on the first gain and the second gain, and the corrected numerical sequence is obtained.
  • the transmission signal is estimated using the second converter, and the downconverter gain during the period in which the second calculation means calculates the numerical sequence indicating the characteristics of the unwanted signal and the period during which the transmission signal is estimated by the transmission signal estimation means Even when the gain of the down-converter is different, the unnecessary signal removal correction can be appropriately performed when estimating the transmission signal.
  • the wireless communication device further includes a detection unit that detects that a signal is not transmitted from a wireless transmission station that desires communication based on a received signal, and the second calculation unit includes: The numerical sequence may be calculated based on the received signal and the signal of the predetermined pattern received within a predetermined period after the detection.
  • the said detection part is good also as performing the said detection based on the amplitude of a received signal.
  • the detection unit may perform the detection based on whether or not the received signal includes the signal of the predetermined pattern.
  • a wireless transmission station that performs wireless communication with the wireless communication device; and a wireless communication system that also serves as the wireless communication device, wherein the wireless transmission station stops signal transmission and performs wireless communication with the wireless communication device.
  • a transmission stop period setting unit for setting a transmission stop period not to be performed is included, and when the setting is made, transmission of signals within the period indicated in the transmission stop period is stopped.
  • a numerical string indicating the characteristics of an unnecessary signal is a signal transmitted from a wireless transmission station that desires communication. However, it is desirable to calculate in the period U. However, by providing the above-described configuration, the wireless communication apparatus transmits the received signal to the received signal based on the received signal. Since it is detected that no signal is included, the numerical sequence indicating the characteristics of the unnecessary signal can be accurately calculated by performing processing by the second calculation means after detection.
  • the wireless communication device further includes a second determination unit that determines whether the amplitude of the unnecessary signal is greater than a predetermined value based on a received signal, and the second calculation unit includes: If it is determined that the second determination unit determines that the value is large, the numerical sequence may be calculated using a received signal received within a period determined to be large.
  • the estimation by the transmission signal estimation means includes an error, but when the radio communication apparatus determines that the amplitude of the unnecessary signal is larger than a predetermined value, In wireless communication with the wireless transmission station, it is considered that the interference effect by the interference station is large, and the numerical value sequence indicating the characteristics of the unnecessary signal is calculated by the second calculation means based on the period when the influence of the interference is large. It is possible to reduce the maximum error included in the estimated value of the transmission signal transmitted from the station.
  • the wireless communication device can further identify the interference station based on a signal of a predetermined pattern included in a signal transmitted from an interference station that is a wireless transmission station other than the wireless transmission station that desires communication. Based on an interference signal received from the interference station and a signal of a predetermined pattern included in the interference signal when it is determined that the interference station can be identified.
  • An interference transmission path measurement unit that calculates a numerical sequence indicating a signal transmission path characteristic in wireless communication between the interference station and the own apparatus, and the second calculation unit is determined to be able to identify the interference station. Then, a numerical sequence based on the unnecessary signal may be calculated based on the numerical sequence calculated by the interference transmission path measurement unit.
  • the interference transmission path measurement means calculates a numerical string indicating the characteristics of the signal transmission path in the wireless communication between the interference station and the device itself.
  • the second calculation means included in the wireless communication device includes a numerical string indicating the characteristics of the signal transmission path in the wireless communication between the interference station and the own device, and a signal transmitted from the interference station. Based on! /, The predetermined calculation is performed, so that the numerical sequence indicating the characteristics of the unnecessary signal can be calculated more quickly and accurately than when the covariance matrix Ruu is calculated after measuring the unnecessary signal.
  • a wireless communication system including a wireless transmission station that performs wireless communication with the wireless communication device and the wireless communication device, wherein the wireless communication device requests to stop transmission of a signal for a predetermined period.
  • a transmission stop request transmission unit that transmits a request signal to the wireless transmission station, and the wireless transmission station receives a signal and receives the transmission stop request signal by the reception unit;
  • a control unit that controls transmission of the signal for a period of time, and the second calculation unit receives the received signal received within the predetermined period when the transmission stop request transmission unit transmits the transmission stop request signal.
  • the numerical sequence may be calculated using
  • the transmission stop request sending unit transmits stop period information indicating a period during which signal transmission is stopped in the transmission stop request signal, and the control unit is based on the stop period information. Then, the control may be performed, and the second calculation unit may perform the calculation using the received signal received in the period indicated by the stop period information.
  • the transmission stop request transmission unit includes transmission restart timing information indicating a timing at which transmission of a signal by the radio transmission station is restarted in the transmission stop request signal, and the control unit transmits the transmission restart request. Based on the time indicated in the time information, the control is performed to stop signal transmission, and the second calculation unit transmits the transmission stop request signal to the time indicated in the transmission resumption time information. The above calculation may be performed using the received signal received within the period.
  • the transmission stop request transmission unit further stops the transmission of the signal by the radio transmission station when the second calculation unit calculates the numerical sequence after transmitting the transmission stop request signal.
  • the control unit may release the stop when receiving the release signal by the receiving unit.
  • the wireless communication apparatus transmits a transmission stop request signal for requesting the wireless transmission station to stop signal transmission, and the wireless transmission station receives the transmission stop request signal and transmits a signal for a predetermined period. Because it stops, the wireless communication device sends a signal from the wireless transmission station for a predetermined period. Since it is possible to calculate the numerical sequence based on the unnecessary signal on the assumption that no is transmitted, the numerical sequence based on the unnecessary signal can be accurately calculated.
  • the second calculation unit is further configured based on the reception signal, the estimation signal sequentially estimated by the transmission signal estimation unit, and the numerical sequence calculated by the first calculation unit.
  • a calculation unit that calculates a numerical sequence indicating characteristics of the unnecessary signal, and the transmission signal estimation unit performs correction so as to remove the unnecessary signal in the received signal based on the numerical sequence sequentially calculated by the calculation unit.
  • the estimation may be performed based on the received signal and the numerical sequence calculated by the first calculation unit.
  • the wireless communication apparatus estimates the transmission signal by the above-described method and tracks the change in the influence of the interference while Corrections can be made to eliminate the effects of force interference.
  • the wireless communication device includes a determination unit that determines a multi-value number of a modulation of a signal transmitted by the wireless transmission station, and whether the determined multi-value number is smaller than a predetermined value. And a calculation unit control unit that controls the calculation unit to calculate a numerical value sequence when it is determined that the value is small.
  • a wireless communication device having the above-described configuration is a multi-value number when a signal transmitted from a wireless transmission station has a large number of modulation levels!
  • the numerical value sequence indicating the characteristics of the unwanted signal is calculated using the signal. For example, if a 64QAM signal and a 16QAM signal are mixed in the transmission signal, a numerical sequence indicating the characteristics of the unnecessary signal is calculated using the 16QAM signal.
  • the signal transmitted by the radio transmission station is a frequency division multiplexed signal
  • the signal receiving unit receives the frequency division multiplexed signal
  • the first calculation unit and the second calculation unit Calculates each numerical sequence corresponding to each frequency component of the frequency division multiplexed signal
  • the transmission signal estimation unit performs the above estimation corresponding to each frequency component of the frequency division multiplexed signal.
  • the frequency division multiplexed signal may be an OFDM signal.
  • the frequency division multiplexed signal may be a wavelet signal.
  • the transmission signal can be estimated more accurately than before, and this is a characteristic of radio communication by the frequency division multiplexing method.
  • a wireless communication device with multipath resistance and interference resistance can be realized.
  • the wireless communication device further includes an estimation estimated by the transmission signal estimation unit based on the numerical sequence calculated by the first calculation unit and the numerical sequence calculated by the second calculation unit. It is good also as providing the reliability evaluation part which calculates the residual error of a signal.
  • s is a column vector representing a signal transmitted from the wireless transmission station
  • Rss is a covariance matrix of s
  • a column vector representing a signal received by the signal receiving unit! A numerical value sequence calculated by the first calculation unit is a matrix H
  • a numerical value sequence calculated by the second calculation unit is a covariance matrix Rmi
  • an estimated value estimated by the transmission signal estimation unit is expressed in an equivalent low frequency range Vector v, s dimension MX 1, H complex conjugate transpose, _1 inverse matrix
  • s is a column vector representing a signal transmitted from the radio transmitting station
  • Rss is a covariance matrix of s
  • a column vector representing a signal received by the signal receiving unit! A numerical value sequence calculated by the first calculation unit is a matrix H
  • a numerical value sequence calculated by the second calculation unit is a covariance matrix Rmi
  • an estimated value estimated by the transmission signal estimation unit is expressed in an equivalent low frequency range Vector v, s dimension MX 1, H complex conjugate transpose
  • _1 inverse matrix W H H (HH H + (l / p) Ruu) _1 when the elements of s are uncorrelated with each other and the average powers p of the elements of s are all equal
  • W [k] RuuW [k] H
  • W [k] is the row vector of the kth row of W when W is a matrix
  • I [k] is MX when M is 2 or more
  • z [k] may be obtained by representing 1 as M.
  • the wireless communication apparatus having the above-described configuration calculates the residual error of the signal estimated by the transmission signal estimation means, using the reliability evaluation unit.
  • the wireless communication apparatus can determine whether or not the estimated signal has a reliability that can be used in wireless communication by using the estimated residual error of the signal.
  • the wireless communication apparatus further corrects an error included in the estimated signal based on the estimated signal estimated by the transmission signal estimating unit and the residual error calculated by the reliability evaluating unit.
  • An error correction unit may be provided.
  • the error correction unit may perform the correction according to the reciprocal of the square root of the residual error.
  • the error correction capability is improved by making the amplitude of the estimated residual error of the signal constant.
  • the error correction capability of the error correction unit can be improved.
  • FIG. 1 is a functional block diagram of a radio communication system according to a first embodiment of the present invention.
  • FIG. 2 is a flowchart showing a process in which the transmission path measurement unit 203 calculates a transmission path matrix H.
  • FIG. 3 is a flowchart showing a process in which an unnecessary signal measurement unit 204 calculates a covariance matrix Ruu of unnecessary signals.
  • FIG. 4 is a flowchart showing processing for estimating a signal transmitted from radio transmitting station 1000 by transmission signal estimating section 205.
  • FIG. 5 is a flowchart showing a process performed by transmission signal estimation section 205 when covariance matrix Ruu is corrected by the gain of down converter 202.
  • FIG. 6 is a functional block diagram of a radio communication system according to a second embodiment of the present invention.
  • FIG. 7 is a flowchart showing processing in which the control unit 206 controls the unnecessary signal measurement unit 204 based on detection by the no-transmission period detection unit 207.
  • FIG. 8 is a flowchart showing processing in which communication control section 103 controls signal transmission based on the transmission stop period set by transmission stop period setting section 104.
  • FIG. 9 is a functional block diagram of a radio communication system according to a third embodiment of the present invention.
  • FIG. 10 is a flowchart showing a process in which the control unit 206 controls the unnecessary signal measurement unit 204 based on detection by the strong interference period detection unit 208.
  • FIG. 11 is a functional block diagram of a radio communication system according to a fourth embodiment of the present invention.
  • FIG. 12 is a flowchart showing processing for calculating an unnecessary signal covariance matrix Ruu in unnecessary signal measuring section 210 in the fourth embodiment.
  • FIG. 13 is a functional block diagram of a radio communication system according to a fifth embodiment of the present invention.
  • FIG. 14 is a flowchart showing processing when the transmission stop request sending unit 211 transmits a transmission stop request signal.
  • FIG. 15 is a flowchart showing processing in which control unit 206 controls unnecessary signal measurement unit 204 in the fifth embodiment.
  • FIG. 16 is a flowchart showing a process in which communication control section 103 of radio transmitting station 1200 controls signal transmission based on a transmission stop request signal.
  • FIG. 17 is a flowchart showing processing performed by control unit 206 when a release signal is transmitted. Note that the same processes as those shown in FIG. 15 are denoted by the same reference numerals as those in FIG.
  • FIG. 18 is a flowchart showing a process in which communication control section 103 of wireless transmission station 1200 controls signal transmission based on a release signal.
  • FIG. 19 is a functional block diagram of a radio communication system according to a sixth embodiment of the present invention.
  • FIG. 20 is a flowchart showing a process of calculating an unnecessary signal covariance matrix Rmi by unnecessary signal measuring section 212 of the sixth embodiment.
  • FIG. 21 is a flowchart showing processing in which the control unit 206 controls the unnecessary signal measurement unit 212 based on the determined multi-value number.
  • FIG. 22 is a functional block diagram of a radio communication system according to a seventh embodiment of the present invention.
  • FIG. 23 is a functional block diagram of a radio communication system according to an eighth embodiment of the present invention.
  • FIG. 24 is a flowchart showing processing performed by the reliability evaluation unit 213.
  • FIG. 25 is a flowchart showing processing performed by the error correction unit 214.
  • FIG. 1 is a functional block diagram of a radio communication system according to the first embodiment of the present invention.
  • the radio communication system according to the first exemplary embodiment includes a radio transmission station 1000, a radio communication device 2000, and an interference station 1500, as shown in FIG.
  • the wireless transmission station 1000 and the wireless communication device 2000 perform wireless communication according to a prescribed protocol.
  • a wireless communication system that is effective in the present invention, for example, there is a wireless LAN system that performs wireless communication by a communication method defined in IEEE802.11n.
  • the wireless transmission station 1000 includes an antenna 101 (antenna 101a, antenna 101b,...), An upconverter 102 (upconverter 102a, upconverter 102b, etc, And a communication control unit. 103.
  • the antenna 101 consists of M pieces, and each antenna has up to M pieces. 1 to 1 and is sent to the space.
  • M is an integer of 1 or more.
  • the up-converter 102 also has M powers like the antenna 101, converts the transmission signal represented in the equivalent low frequency into a high-frequency signal, and amplifies it to the power necessary for wireless communication to the wireless communication device. To output a high-frequency signal to the antenna 101.
  • the communication control unit 103 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a modulation / demodulation circuit, and the like. According to a program stored in the ROM, Performs processing to control wireless communication with wireless communication devices.
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • modulation / demodulation circuit and the like. According to a program stored in the ROM, Performs processing to control wireless communication with wireless communication devices.
  • the signal transmitted by the communication control unit 103 via the antenna 101 includes a training signal having a predetermined pattern. Based on this training signal, the wireless communication device 2000 identifies the wireless transmission station 1000 that is the communication destination. .
  • Interference station 1500 has an unknown configuration with respect to radio communication apparatus 2000, and transmits an interference signal that interferes with radio communication between radio transmission station 1000 and radio communication apparatus 2000.
  • the wireless communication device 2000 identifies and identifies a wireless transmission station as a communication destination based on a training signal of a predetermined pattern included in a signal transmitted from the wireless transmission station 1000 and address information unique to the wireless transmission station 1000. Performs wireless communication with the wireless transmission station 1000.
  • wireless communication apparatus 2000 includes antenna 201 (antenna 201a, antenna 201b,...) And downconverter 202 (downconverter 202a, downconverter 202b,).
  • the transmission path measurement unit 203, the unnecessary signal measurement unit 204, the transmission signal estimation unit 205, and the control unit 206 are configured.
  • the antenna 201 includes N antennas, and each antenna is connected to a down-comparator 202 having N powers in a one-to-one relationship, receives a signal, and outputs the signal to the down-converter 202.
  • N is an integer of 2 or more.
  • the down converter 202 has N powers as with the antenna 201, and converts the high-frequency signal received via the antenna 201 into an equivalent low-frequency signal.
  • the converted equivalent low-frequency signal A received signal is output to the transmission path measurement unit 203, the unnecessary signal measurement unit 204, and the transmission signal estimation unit 205.
  • the transmission path measurement unit 203 is an integrated circuit that performs processing to calculate a transmission path matrix indicating the characteristics of the transmission path of a signal in wireless communication with the wireless transmission station 1000, and is included in the signal transmitted by the wireless transmission station 1000. It has a memory to hold a predetermined pattern signal in advance! When the signal output from the down converter 202 is received, the signal of the predetermined pattern included in the received signal is extracted, and the correlation between the extracted predetermined pattern and the signal of the predetermined pattern held in advance is calculated. The transmission path matrix H is calculated by calculation. The calculated transmission path matrix H is output to transmission signal estimation section 205.
  • the unnecessary signal measurement unit 204 is an integrated circuit that performs processing for calculating a covariance matrix of unnecessary signals.
  • An unnecessary signal is a signal component included in a received signal that is transmitted from the interference station 1500 and received by the wireless communication device 2000, and the influence of noise generated inside the wireless communication device 2000 on the received signal. Composed.
  • the unnecessary signal measuring unit 204 performs a process of calculating the covariance matrix Ruu of the unnecessary signal at a predetermined timing controlled by the control unit 206.
  • the calculated covariance matrix is output to transmission signal estimation section 205.
  • Transmission signal estimation section 205 is an integrated circuit that performs processing for estimating a signal transmitted from radio transmission station 1000, and includes a memory that receives and holds transmission path matrix H output from transmission path measurement section 203. And a memory that receives and holds the covariance matrix of the unnecessary signal output from the unnecessary signal measuring unit 204, and is output from the transmission path matrix H, the covariance matrix RUU of the unnecessary signal, and the down converter 202.
  • the transmission signal is estimated according to a predetermined formula based on the received signal.
  • the estimated value of the estimated transmission signal is output to control section 206.
  • Control unit 206 includes a CPU, a ROM, a RAM, and the like, receives an estimated value of a transmission signal output from transmission signal estimation unit 205, and stores radio transmission station 1000 according to a program stored in ROM. The process which controls wireless communication with is performed.
  • a measurement start instruction signal for starting the calculation of the covariance matrix Ruu is transmitted to the unnecessary signal measuring unit 204.
  • a measurement end instruction signal is transmitted.
  • radio communication apparatus 2000 Next, the operation of radio communication apparatus 2000 will be described.
  • FIG. 2 is a flowchart showing a process in which the transmission line measurement unit 203 calculates the transmission line matrix H.
  • the transmission path measurement unit 203 when the transmission path measurement unit 203 receives a reception signal from the down converter 202 (step S21: YES), the transmission path measurement unit 203 extracts a training signal included in the reception signal (step S22).
  • the correlation between the extracted training signal and the signal of the predetermined pattern stored in the memory in advance is calculated to indicate the characteristics of the signal transmission path in wireless communication with the wireless transmission station 1000.
  • the path matrix H is calculated (step S23). Then, the calculated transmission path matrix H is output to the transmission signal estimation unit 205 (step S 24), and waits until a received signal is received again (step S 21: NO).
  • transmission path measurement section 203 calculates transmission path matrix H every time it receives a received signal, and outputs the calculated transmission path matrix H to transmission signal estimation section 205.
  • the unnecessary signal measuring unit 204 receives the measurement start instruction signal transmitted from the control unit 206, starts the calculation, receives the measurement end instruction signal, and ends the calculation. To do.
  • FIG. 3 is a flowchart showing a process in which the unnecessary signal measurement unit 204 calculates the covariance matrix Ruu of the unnecessary signal.
  • the unnecessary signal measuring unit 204 receives the measurement start instruction signal output from the control unit 206 (step S31: YES), the unnecessary signal is measured based on the received signal output from the down converter 202.
  • the covariance matrix Ruu is calculated, and each time the covariance matrix Ruu is calculated, the covariance matrix Ruu is output to the transmission signal estimation unit 205 (step S32).
  • step S33: NO the covariance matrix Ruu is calculated and output (step S32).
  • step S33: YES the covariance matrix Ruu calculated at the time of acceptance is output to the transmission signal estimation unit 205 (step S34) until the measurement start instruction signal is input again. Wait (step S31: NO).
  • the transmission signal estimation unit 205 accepts the transmission path matrix H output from the transmission path measurement unit 203 and the unnecessary signal covariance matrix Ruu output from the unnecessary signal measurement unit 204 and stores them in the memory. Each time there is an output, the transmission path matrix H and covariance matrix R uu held in the memory are rewritten to the newly output values.
  • FIG. 4 is a flowchart showing a process in which transmission signal estimation section 205 estimates a signal transmitted from radio transmission station 1000.
  • the transmission signal estimation unit 205 receives the reception signal from the down converter 202 (step S41: YES), based on the reception signal, the transmission path matrix H, and the covariance matrix Ruu, the transmission signal estimation unit 205 will be described later.
  • the signal transmitted from the wireless transmission station 1000 is estimated by performing a calculation according to a predetermined equation (step S42).
  • the process waits until the reception signal is input again (step S41: NO).
  • a column vector representing a transmission signal transmitted from the wireless transmission station 1000 is s
  • a covariance matrix of s is Rss
  • a column vector representing a reception signal converted into an equivalent low-frequency signal by the down converter 202! In wireless communication between the wireless transmission station 1000 and the wireless communication device 2000, the transmission line matrix indicating the characteristics of the transmission line of the signal including the up-converter 102 and the down-converter 202 is H, and the unnecessary signal measurement unit 204 outputs
  • the covariance matrix held by the transmission signal estimation unit 205 be Ruu.
  • H be a complex conjugate transpose
  • _1 be an inverse matrix. Note that s is an MX 1 vector, r is an NX 1 vector, H is an NXM matrix, and v is an MX 1 vector.
  • Equation 1 is an expression for minimizing the mean square error of the transmission signal estimate V with respect to the transmission signal s.
  • a column vector representing a signal transmitted from the interference station 1500 is x
  • a transmission line matrix indicating the characteristics of the transmission line of the signal including the down-converter 202 in the radio communication device 2000 from the interference station 1500 is The method for deriving [Equation 1] is as follows, where G is the noise generated in the down converter 202 and n is the signal component of the unwanted signal in the received signal.
  • X is an L X 1 vector
  • G is an N X L matrix
  • u is an N X 1 vector.
  • the received signal r is expressed by the following [Equation 2].
  • W is an M X N matrix.
  • Rxx is the covariance matrix of x
  • q is the average power of noise corresponding to one antenna and the downconverter 202
  • I is an N ⁇ N unit matrix.
  • Rss can also obtain the statistical property power of the transmission signal s, and H is output from the transmission path measurement unit 203 and stored in the memory of the transmission signal estimation unit 205.
  • the transmission path matrix H that is retained is used.
  • the transmission signal estimation unit 205 can estimate the transmission signal according to the following equation [Equation 9].
  • the radio communication apparatus 2000 uses the equations according to [Expression 1] and [Expression 9] described above to estimate the transmission signal by the transmission signal estimation unit 205, based on the unnecessary signal u. Since it is necessary to calculate the covariance matrix Ruu, the unnecessary signal measurement unit 204 calculates the covariance matrix Ruu before the wireless communication with the wireless transmission station 1000 is started. Also starts wireless communication with the wireless transmission station 1000 to estimate the transmission signal
  • the transmission line matrix H included in the equations shown in [Expression 1] and [Expression 9] includes the down converter 202 in the wireless communication between the wireless transmission station 1000 and the wireless communication device 2000. It is a matrix which shows the characteristic of the transmission path of a signal.
  • the gain of down converter 202 changes when receiving a signal, the characteristics of the signal transmission path with the wireless transmission station that transmits the signal change.
  • the wireless communication apparatus 2000 corrects the covariance matrix Ruu using the gain of the down converter 202 in each period described above, and the transmission signal estimation unit 205 uses the corrected value.
  • the transmission signal is estimated.
  • the matrix indicating the transmission path characteristics of the signal from the wireless transmission station 1000 to the down converter 202 is H, and the interference station power is transmitted until the signal is input to the down converter 202.
  • G be the matrix indicating the road characteristics.
  • the unnecessary signal measurement unit 204 performs covariance matrix Ruu
  • the gain of the downconverter 202 in the period for calculating the input signal is C
  • the noise converted to the input of the downconverter 202 is n
  • the received signal is r.
  • n the noise converted to input 2 and r be the received signal.
  • the transmission signal estimation unit 205 By correcting the covariance matrix Ruu in this way, the transmission signal estimation unit 205 accurately performs the estimation of the transmission signal by using Ruu ′ shown in [Equation 14] instead of the covariance matrix Ruu. sell.
  • Transmission signal estimation section 205 receives a value indicating the gain of down converter 202 from down converter 202 and outputs the value to control section 206.
  • the control unit 206 receives a value indicating the gain of the down converter 202 from the transmission signal estimation unit 205, and transmits the gain of the down converter 202 while the unnecessary signal measurement unit 204 calculates the covariance matrix Ruu.
  • the signal is output to the signal estimation unit 205.
  • Transmission signal estimation section 205 receives the value indicating the gain output from control section 206, and holds the gain of down-converter 202 in the memory during the period when covariance matrix Ruu is calculated by unnecessary signal measurement section 204 To do.
  • FIG. 5 is a flowchart showing processing performed by transmission signal estimation section 205 when covariance matrix Ruu is corrected by the gain of down converter 202.
  • the transmission signal estimation unit 205 receives the received signal from the down converter 202 (step S51: YES), the transmission covariance matrix Ruu and the covariance matrix Ru u are calculated.
  • the covariance matrix Ruu is corrected according to the above [Equation 14] from the gain of the downconverter 202 and the gain of the downconverter 202 in the period for estimating the transmission signal, and the corrected covariance matrix Ruu ′ is calculated (S52 ).
  • the transmission signal is estimated based on the received signal, the transmission path matrix H, and the corrected covariance matrix Ruu ′ (step S53). That is, the transmission signal is estimated using Ruu ′ instead of Ruu in the above [Equation 1].
  • the estimated value is output to the control unit 206 (step S54) and waits until the reception signal is input again (step S51: NO).
  • FIG. 6 is a functional block diagram of the wireless communication system according to the second embodiment of the present invention.
  • the wireless communication apparatus is provided with a non-transmission period detection unit 207.
  • the description of the same configuration as the first embodiment is omitted, Description will be made with the main focus on points different from the first embodiment.
  • the wireless transmission station 1100 includes a transmission stop period setting unit 104.
  • the transmission stop period setting unit 104 is a circuit that transmits a predetermined signal, and sets a transmission stop period that is a period during which transmission of a signal from the wireless transmission station 1100 is stopped. For example, the transmission stop period is set to 40 microseconds. When the transmission stop period is set, the set period is output to the communication control unit 103.
  • the transmission stop period setting unit 104 sets the transmission stop period and outputs a predetermined signal
  • the communication control unit 103 accepts the output signal and outputs the signal for the period indicated in the transmission stop period.
  • the wireless communication with the wireless communication apparatus 2100 is controlled so as not to be transmitted.
  • the wireless communication device 2100 includes a no-transmission period detection unit 207.
  • the non-transmission period detection unit 207 is a circuit that receives a signal input and performs a predetermined detection based on the received signal. Each time a reception signal is received, a radio transmission period is detected based on the reception signal. It is detected that a signal is not transmitted from the station 1100, and a predetermined signal is continuously output to the control unit 206 while it is detected.
  • the method for detecting that no signal is transmitted from the wireless transmission station 1100 is, for example, by measuring the received signal and including the training signal included in the signal transmitted from the wireless transmission station 1100. It can be realized by determining that it is not.
  • the amplitude of the received signal when the signal transmitted from the wireless transmission station 1100 is received is a value within a predetermined range, the amplitude of the received signal is included in the predetermined range. Therefore, it can be detected that the signal is not transmitted from the wireless transmission station 1100.
  • Control unit 206 receives the signal output from non-transmission period detection unit 207, and controls the timing for causing unnecessary signal measurement unit 204 to calculate covariance matrix Ruu based on the received signal. .
  • radio communication apparatus 2100 Next, the operation of radio communication apparatus 2100 will be described.
  • the no-transmission period detection unit 207 sequentially performs predetermined detection every time a signal is received, In accordance with the result, predetermined signals are sequentially output to the control unit 206, and the control unit 206 controls the operation of the unnecessary signal measurement unit 204 based on the signals sequentially output from the non-transmission period detection unit 207.
  • FIG. 7 is a flowchart showing a process in which the control unit 206 controls the unnecessary signal measurement unit 204 based on the detection by the non-transmission period detection unit 207.
  • control unit 206 receives a signal output when no-transmission period detection unit 207 detects that no signal is transmitted from radio transmission station 1100 (step S71: YES). ), A measurement start instruction signal is transmitted to the unnecessary signal measuring unit 204 to cause the unnecessary signal measuring unit 204 to start calculating the covariance matrix Ruu (step S72).
  • the measurement start instruction signal is transmitted and the force has passed for a predetermined period of time (step S73: YES)
  • the measurement end instruction signal is transmitted to the unnecessary signal measurement unit 204, and the process of calculating the covariance matrix Ruu by the unnecessary signal measurement unit 204 is completed. (Step S75).
  • step S73: NO When the measurement start instruction signal is transmitted (step S72) and the force has also passed for a predetermined period of time (step S73: NO), while the signal is output from the non-transmission period detection unit 207, Wait until the fixed period has elapsed (step S74: NO, step S73). Before the predetermined period has elapsed (step S73: NO), when no signal is output from the no-transmission period detection unit 207, that is, the no-transmission period detection unit 207 indicates that no signal is transmitted from the wireless transmission station 1100. If not detected (step S74: YES), a measurement end instruction signal is transmitted to the unnecessary signal measuring unit 204, and the process of calculating the covariance matrix Ruu by the unnecessary signal measuring unit 204 is ended (step S75).
  • step S75 When the unnecessary signal measurement unit 204 finishes calculating the covariance matrix Ruu (step S75), the signal is output from the no-transmission period detection unit 207 (step S71: NO). The measurement start instruction signal is not transmitted to the measurement unit 204, and the unnecessary signal measurement unit 204 is kept waiting.
  • Radio transmitting station 1100 includes transmission stop period setting section 104.
  • the transmission stop period setting unit 104 sets the transmission stop period.
  • the timing for setting may be set periodically, for example, with a predetermined interval, or the timing for setting may be determined in advance.
  • the setting may be performed according to the determined time. When the setting is performed, a predetermined signal indicating a period for stopping transmission is output to communication control section 103.
  • FIG. 8 is a flowchart showing a process in which the communication control unit 103 controls signal transmission based on the transmission stop period set by the transmission stop period setting unit 104.
  • step S81: YES when the communication control unit 103 receives the setting of the transmission stop period from the transmission stop period setting unit 104 (step S81: YES), the communication control unit 103 stops signal transmission (step S82). Signal transmission is stopped until the period shown in (3) (NO at step S83).
  • step S83: YES When the transmission stop period elapses (step S83: YES), the signal transmission stop is canceled (step S84), and the transmission stop period is set by the transmission stop period setting unit 104 (step S81: NO). I do.
  • FIG. 9 is a functional block diagram of the wireless communication system according to the third embodiment of the present invention.
  • the wireless communication system shown in FIG. It is a point equipped with.
  • the description of the parts having the same configuration as in the first embodiment will be omitted, and the description will be made with a focus on the differences from the first embodiment.
  • radio communication apparatus 2200 includes strong interference period detection section 208.
  • the strong interference period detection unit 208 is a circuit that receives a signal input, performs a predetermined detection based on the received signal, and transmits the signal.Every time a received signal is received, the strong interference period detection unit 208 is based on the received signal. While detecting that the influence of the signal component received from the interference station 1500 out of the signals included in the received signal is larger than a predetermined range, the predetermined signal is continuously output to the control unit 206 while it is detected. Predetermined effect of signal components received from interference station 1500 For example, the signal intensity of a signal received from the interference station 1500 is greater than a predetermined value.
  • This detection is performed, for example, by determining that the amplitude of the received signal is larger than a predetermined value during a period in which no signal is transmitted from the wireless transmission station 1000.
  • the control unit 206 receives the signal output from the strong interference period detection unit 208, and controls the timing at which the unnecessary signal measurement unit 204 calculates the covariance matrix Ruu based on the received signal.
  • radio communication apparatus 2200 Next, the operation of radio communication apparatus 2200 will be described.
  • the strong interference period detection unit 208 sequentially performs predetermined detection every time a signal is received, and sequentially outputs the signal to the control unit 206 according to the detection result.
  • the control unit 206 uses the signals sequentially output from the strong interference period detection unit 208. Controls the operation of the unnecessary signal measurement unit 204.
  • FIG. 10 is a flowchart showing a process in which the control unit 206 controls the unnecessary signal measurement unit 204 based on detection by the strong interference period detection unit 208.
  • Step S101: YES when the control unit 206 detects that the strong interference period detection unit 208 detects that the influence of the signal component received from the interference station 1500 is larger than a predetermined range, the control unit 206 receives the output signal ( Step S101: YES), a measurement start instruction signal is transmitted to the unnecessary signal measuring unit 204, and the unnecessary signal measuring unit 204 is started to calculate the covariance matrix Ruu (step S102).
  • step S103 YES
  • the measurement end instruction signal is transmitted to the unnecessary signal measurement unit 204, and the calculation of the covariance matrix Ruu by the unnecessary signal measurement unit 204 is completed (Step S105)
  • step S103 When a measurement start instruction signal is transmitted and the force has not passed the predetermined period (step S103:
  • step S104 NO, step S103
  • step S104 YES
  • step S105 An end instruction signal is transmitted, and the calculation processing of the covariance matrix Ruu by the unnecessary signal measurement unit 204 is ended.
  • the unnecessary signal measuring unit 204 is output until the signal is output again from the strong interference period detecting unit 208 (step S101: NO). In response to this, the measurement start instruction signal is not transmitted to the unnecessary signal measurement unit 204.
  • FIG. 11 is a functional block diagram of the radio communication system according to the fourth embodiment of the present invention.
  • the radio communication system shown in FIG. 11 differs from the first embodiment in that the radio communication apparatus includes an interference transmission path measurement unit 209. It is a point equipped with. Further, the training signal included in the signal transmitted from the interference station 1500 is known to the wireless communication apparatus. The description of the parts having the same configuration as that of the first embodiment will be omitted, and the description will be made while focusing on the points different from the first embodiment.
  • the radio communication apparatus stores a training signal included in a signal transmitted from interference station 1500. Further, it is assumed that the signal transmitted from the interference station 1500 interferes with the same frequency channel as the signal transmitted by the wireless transmission station 1000, and the statistical property of the signal X transmitted from the interference station 1500 is known. At this time, the wireless communication device can calculate the interference transmission path matrix with the interference station based on the training signal, and calculates the covariance matrix Ruu based on the obtained interference transmission path matrix. .
  • the wireless communication device 2300 includes an interference transmission path measurement unit 209 and an unnecessary signal measurement unit 210.
  • the interference transmission path measurement unit 209 is an integrated circuit that performs a process of calculating a transmission path matrix indicating the characteristics of the transmission path of the signal to and from the interference station 1500, and a predetermined pattern included in the signal transmitted by the interference station 1500. It is provided with a memory for previously storing the signal. Receive signal In this case, a signal having a predetermined pattern included in the received signal is extracted, and a correlation between the extracted predetermined pattern and a signal having a predetermined pattern stored in advance is calculated.
  • Interferometric transmission line matrix G with 1500 is calculated.
  • the calculated interference transmission path matrix G is output to the unwanted signal measurement unit 204.
  • the unnecessary signal measurement unit 204 receives the interference transmission path matrix G output from the interference transmission path measurement unit 209, and calculates the covariance matrix Ruu according to [Equation 7].
  • the calculated covariance matrix Ruu is output to transmission signal estimation section 205.
  • the covariance matrix Rxx can be obtained from the statistical properties of X.
  • radio communication apparatus 2300 Next, the operation of radio communication apparatus 2300 will be described.
  • FIG. 12 is a flowchart showing processing for calculating the covariance matrix Ru u of unnecessary signals by the unnecessary signal measuring unit 210 in the fourth embodiment.
  • the unnecessary signal measurement unit 210 calculates the covariance matrix Ruu according to [Equation 7]. Calculate (step S122). The calculated covariance matrix Ruu is output to the transmission signal estimation unit 205 (step S123). Thereafter, every time there is an input of the interference transmission path matrix G (step S121), the covariance matrix Ruu is calculated and output.
  • radio communication apparatus 2300 can calculate covariance matrix Ruu earlier and more accurately than receiving unnecessary signals and calculating covariance matrix Ruu by correlation calculation. Can do.
  • FIG. 13 is a functional block diagram of the wireless communication system according to the fifth embodiment of the present invention.
  • the wireless communication system shown in FIG. And a transmission stop request receiving unit 105 is provided in the wireless transmission station.
  • the description of the same configuration as in the first embodiment is omitted. The description will be made with a focus on differences from the first embodiment.
  • the wireless communication device 2400 includes a transmission stop request sending unit 211.
  • the transmission stop request transmission unit 211 is a circuit that transmits and receives signals, and transmits a transmission stop request signal to the wireless transmission station 1200 in response to an instruction from the control unit 206.
  • the transmission stop request signal is a signal that requests the wireless transmission station 1200 to stop signal transmission. Signal transmission is performed via an antenna, but an antenna is provided separately from antenna 201, and a transmission stop request signal is transmitted via the antenna. Note that the antenna 201 may be used for transmission instead of a separate antenna.
  • stop period information indicating a period during which signal transmission to radio transmission station 1200 is stopped, and transmission indicating the timing at which radio transmission station 1200 resumes signal transmission
  • the restart time information can be included in the transmission stop request signal and transmitted to the wireless transmission station 1200.
  • the stop period information is set to 40 microseconds, for example.
  • Control unit 206 transmits a predetermined signal instructing transmission stop request transmission unit 211 to transmit a transmission stop request signal to radio transmission station 1200, and transmission stop request transmission unit 211 transmits the transmission stop request signal.
  • the operation of the unnecessary signal measuring unit 204 is controlled to calculate the covariance matrix Ruu.
  • the transmission stop request sending unit 211 is instructed to send the release signal to the wireless transmission station 1200. Monkey.
  • the wireless transmission station 1200 includes a transmission stop request receiving unit 105.
  • the transmission stop request receiving unit 105 is a circuit that receives a signal and performs predetermined processing. The received signal is received to determine whether a transmission stop request signal is included! /, And if included, a predetermined signal indicating that the transmission stop request signal has been received is sent to the communication control unit 103. Output.
  • a predetermined signal indicating that the release signal has been received is output to the communication control unit 103.
  • the communication control unit 103 When the communication control unit 103 receives a predetermined signal from the transmission stop request receiving unit 105, the communication control unit 103 stops the transmission of the signal for a predetermined period and controls wireless communication with the wireless communication apparatus 2400. If the transmission stop request signal includes stop period information and transmission resumption time information, the period for stopping signal transmission is controlled according to the stop period information and transmission resumption time information. In addition, upon receiving a predetermined signal indicating that a cancel signal has been received from the transmission stop request receiving unit 105, the stop of signal transmission is cancelled.
  • radio communication apparatus 2400 Next, the operation of radio communication apparatus 2400 will be described.
  • FIG. 14 is a flowchart showing processing when the transmission stop request transmission unit 211 transmits a transmission stop request signal.
  • transmission stop request transmission unit 211 upon receiving a transmission stop request signal transmission instruction from control unit 206 (step S141: YES), starts transmission of a transmission stop request signal to wireless transmission station 1200. (Step S142), and transmit until the transmission is completed! ⁇ (Step S143: NO). The data is output to part 206 (step S 144). Thereafter, every time there is a transmission stop request signal transmission instruction (step S141), the transmission stop request signal is transmitted to the wireless transmission station 1200.
  • FIG. 15 is a flowchart showing processing in which control unit 206 controls unnecessary signal measurement unit 204 in the fifth embodiment.
  • the control unit 206 instructs the transmission stop request transmission unit 211 to transmit a transmission stop request signal before the unnecessary signal measurement unit 204 calculates the covariance matrix Ruu (step S151), Transmission stop request transmission unit 211 wirelessly transmits a transmission stop request signal Wait until it receives a signal indicating that it has been transmitted to station 1200 (step SI 52: NO) .
  • step S152 YES
  • step S152 YES
  • step S152 YES
  • the unnecessary signal measurement unit 204 performs the covariance matrix until the predetermined period elapses (step S154). Let Ruu be calculated.
  • step S154 YES
  • a measurement end instruction signal is transmitted to the unnecessary signal measurement unit 204 (step S155).
  • radio transmission station 1200 Next, the operation of radio transmission station 1200 will be described.
  • FIG. 16 is a flowchart showing processing in which the communication control unit 103 of the wireless transmission station 1200 controls signal transmission based on the transmission stop request signal.
  • step S161 YES
  • step S162 the communication control unit 103 and the wireless communication device 2400 The wireless communication is controlled to stop signal transmission (step S162).
  • step S163: NO Signal transmission is stopped until the predetermined period elapses (step S163: NO), and when the predetermined period elapses (step S163: YES), signal transmission is started and the wireless communication device with the wireless communication device 2400 is turned off. Resume (step S164). Until the transmission stop request signal is received again by the transmission stop request receiving unit 105 (step S161: NO), wireless communication with the wireless communication apparatus 2400 is performed.
  • the transmission stop request signal includes stop period information or transmission restart timing information
  • control is performed to stop signal transmission during the period indicated in the stop period information or transmission restart timing information. To do.
  • the wireless communication apparatus 2400 has no transmission. After transmitting the transmission stop request signal to the line transmission station 1200 and stopping the transmission of the signal by the wireless transmission station 1200, the transmission signal is transmitted by the wireless transmission station 1200 by transmitting the release signal to the wireless transmission station 1200. Can be resumed.
  • radio communication apparatus 2400 when a cancel signal is transmitted and signal transmission by radio transmission station 1200 is stopped will be described.
  • FIG. 17 is a flowchart showing processing performed by the control unit 206 when a release signal is transmitted. Note that the same processes as those shown in FIG. 15 are denoted by the same reference numerals as those in FIG.
  • control unit 206 causes the unnecessary signal measurement unit 204 to calculate the covariance matrix Ruu by performing the processing shown in step S155 from step S151 in FIG. Is instructed to transmit a release signal (step S156).
  • radio transmitting station 1200 when a release signal is received will be described.
  • FIG. 18 is a flowchart illustrating processing in which the communication control unit 103 of the wireless transmission station 1200 controls signal transmission based on the release signal.
  • step S181 YES
  • the communication control unit 103 and the wireless communication device 2400 The wireless communication is controlled to stop signal transmission (step S182).
  • step S183: YES When the cancel signal is received from the transmission stop request receiving unit 105 after stopping the signal transmission (step S183: YES), the signal transmission is started and the wireless communication with the wireless communication apparatus 2400 is resumed (step S185).
  • step S183: NO When the release signal is not received by the transmission stop request receiving unit 105 (step S183: NO), it is determined whether or not the release signal is received until the predetermined period elapses (step S184: NO).
  • step S183) When the predetermined period has passed (Step S184: YES), the wireless communication with the wireless communication device 2400 is resumed (Step S185). Until the transmission stop request signal is received again by the transmission stop request receiving unit 105 (step S181: NO), wireless communication with the wireless communication apparatus 2400 is performed.
  • FIG. 19 is a functional block diagram of the wireless communication system according to the sixth embodiment of the present invention.
  • the wireless communication system shown in FIG. 19 differs from the first embodiment in the wireless communication device according to the first embodiment. Is that a different unnecessary signal measuring unit 212 is provided. Unlike the unnecessary signal measurement unit 204 in the first embodiment, the unnecessary signal measurement unit 212 accepts an input of the transmission channel matrix H from the transmission channel measurement unit 203, and further receives an estimated value of the transmission signal from the transmission signal estimation unit 205. V input is accepted. The received H and V are held in the memory included in the unnecessary signal measurement unit 212, and the values held in the memory are rewritten every time the transmission path matrix H and the estimated value V of the transmission signal are input. Then, based on the received signal, the transmission path matrix H, and the estimated value V of the transmission signal, a covariance matrix Ru u is calculated according to a predetermined formula. The predetermined formula will be described later.
  • the unnecessary signal measurement unit 212 includes a determination circuit that determines the multilevel number of modulation of the received signal.
  • the multi-level number of modulation is determined by identifying the modulation method of the received signal.
  • a signal representing the determined multi-value number is output to the control unit 206.
  • the unnecessary signal measurement unit 212 calculates the unnecessary signal by the following equation [Equation 15], where u is the unnecessary signal and r is the received signal.
  • d is a discrete value obtained by determining V. Since the transmission signal takes a discrete value during modulation, the estimated value is also a discrete value.
  • the control unit 206 can also receive a signal representing a multi-value number from the unnecessary signal measurement unit 212 and control the operation timing of the unnecessary signal measurement unit 212 based on the multi-value number.
  • FIG. 20 is a flowchart showing a process of calculating the unnecessary signal covariance matrix Ruu by the unnecessary signal measurement unit 212 of the sixth embodiment.
  • step S201 when the unnecessary signal measurement unit 212 receives the measurement start instruction signal output from the control unit 206 (step S201: YES), the reception signal, the transmission line matrix H, and the transmission signal are transmitted. Based on the estimated value V of the signal, a covariance matrix Ruu is calculated according to a predetermined formula (step S 202). Until the measurement end instruction signal is received from the control unit 206 (step S2 03: NO), the covariance matrix Ruu is calculated and output (step S202), and when the control unit 206 force also receives the measurement end instruction signal (step S203). : YES), the covariance matrix Ruu calculated at the time of acceptance is output to the transmission signal estimation unit (step S204), and it waits until the measurement start instruction signal is input again (step S201: NO).
  • the covariance matrix Ruu can be calculated while dealing with the influence of the signal transmitted from the interference station 1500 even during the period in which the signal is transmitted from the wireless transmission station 1000. Therefore, the transmission signal can be estimated while following the fluctuation of the influence of interference.
  • the covariance matrix Ruu is calculated by the unnecessary signal measurement unit 212, it is not necessary to stop the signal from the wireless transmission station 1000.
  • FIG. 21 is a flowchart showing a process in which the control unit 206 controls the unnecessary signal measurement unit 212 based on the determined multi-value number.
  • control unit 206 when control unit 206 receives a signal representing a multi-value number from unnecessary signal measurement unit 212 (step S211: YES), it compares the multi-value number with a predetermined value (step S212). If the multi-value number is equal to or less than the predetermined value (step S212: YES), a measurement start instruction signal is transmitted to the unnecessary signal measurement unit 212, and if the multi-value number is larger than the predetermined value (step S212: NO), the measurement is performed. If the start instruction signal is not transmitted or if the covariance matrix Ruu has already been calculated by the unnecessary signal measurement unit 212, the measurement end instruction signal is transmitted (step S214). Wait until there is a multi-value input again (Step S211: NO). S211: YES), control the operation of the unwanted signal measurement unit 212 by performing the above-described processing.
  • radio communication apparatus 2500 can calculate covariance matrix Ruu based on a signal with a small multi-value number of signal modulation. For example, if a 64 QAM signal and a 16 QAM signal are mixed in the received signal, the control unit 206 can cause the unnecessary signal measurement unit 212 to calculate the covariance matrix Ruu using the 16 QAM signal. In general, the smaller the multi-value number of the signal modulation, the fewer errors in the value obtained by judging the estimated value of the transmitted signal. Therefore, the covariance matrix Ruu is also accurately calculated by using the estimated value with less error. Yes.
  • FIG. 22 is a functional block diagram of the wireless communication system according to the seventh embodiment of the present invention.
  • the difference between the wireless communication system shown in FIG. This is a point where wireless communication is performed using a multiplexed signal.
  • the wireless transmission station includes a frequency multiplexing unit 104, and the wireless communication device includes a frequency separation unit 212.
  • the frequency division multiplexed signal is, for example, an OFDM signal or a wavelet signal.
  • the description of the parts having the same configuration as in the first embodiment will be omitted, and the description will focus on the points different from the first embodiment.
  • the wireless transmission station 1300 includes a frequency multiplexing unit 104 (frequency multiplexing unit 104a, frequency multiplexing unit 104b,...) Corresponding to the up-converter 102.
  • the frequency multiplexing unit 104 is composed of M pieces. For example, when performing radio communication with the radio communication apparatus 2600 using OFDM signals, the frequency multiplexing unit 104 is inverse Fourier transform. When wireless communication is performed using a wavelet signal, the frequency multiplexing unit 104 is a filter group corresponding to a wavelet.
  • frequency multiplexing section 104 it is assumed that there are M forces in FIG. However, it may be one that does not need to be M.
  • communication control section 103 configures a signal to be transmitted to radio communication apparatus 2600 from F transmission signal vectors s to s.
  • F is an integer of 2 or more.
  • the wireless communication device 2600 includes a frequency separation unit 212 (frequency separation unit 212a, frequency separation unit 212b,%) Corresponding to the down converter 202.
  • the frequency separation unit 212 includes N pieces.
  • the frequency separation unit 212 when performing wireless communication with the wireless transmission station 1300 using an OFDM signal, the frequency separation unit 212 is a Fourier transformer.
  • the frequency separation unit 212 is a filter group corresponding to the wavelet.
  • the transmission path measurement unit 203, the unnecessary signal measurement unit 204, and the transmission signal estimation unit 205 may be one set, or a plurality of sets may be provided according to the number F of frequency components. Good. In this embodiment, F sets are provided.
  • the frequency separation unit 212 transmits the f-th component of the transmission signal vectors s to s.
  • the data is output to the f-th set of the set consisting of the path measurement unit 203, the unnecessary signal measurement unit 204 and the transmission signal estimation unit 205.
  • the f-th frequency component of 1 F is received as the received signal r, and based on r, the transmission path measurement unit 203 uses the transmission line matrix H, the non-fff required signal measurement unit 204 uses RuM3 ⁇ 4, and the transmission signal estimation unit 205 Finds an estimate v of the transmitted signal s
  • the communication control unit 103 generates transmission signal vectors s to s, and transmits each element of the transmission signal vector.
  • the elements corresponding to each of the antennas 101 are output to the frequency multiplexing unit 104. That is, the element corresponding to the mth antenna of the transmission signal s, the mth antenna of the transmission signal s The element corresponding to the tenor, ... the element corresponding to the mth antenna of the transmitted signal s
  • Frequency multiplexing section 104 receives the output from communication control section 103, and synthesizes them by giving the first, second,. The synthesized signal is output to the up-converter 102.
  • the up-converter 102 converts the output of the frequency multiplexing unit 104 into a high-frequency signal having a predetermined center frequency and amplifies it to a power sufficient for wireless transmission.
  • Antenna 101 receives a high frequency signal from up-converter 102 and radiates the signal.
  • radio communication apparatus 2600 that receives a frequency division division signal transmitted from radio transmission station 1300 will be described.
  • the antenna 201 When the antenna 201 receives the combined signal of the signal transmitted from the wireless transmission station 1300 and the signal transmitted from the interference station 1500, the antenna 201 converts the received high-frequency signal into an equivalent low-frequency signal by the down converter 202. Convert. The converted equivalent low-frequency signal is output to the frequency separator 212, and the frequency separator 212 receives the signal output from the down converter 202 and separates it into frequency components, and is connected to each of the down converters 202. F received signals representing the 1st to Fth frequency components corresponding to each antenna are output.
  • the frequency separation unit 212a receives the signal output from the downconverter 202a and separates it into frequency components, and receives F received signals representing the first to Fth frequency components corresponding to the antenna 201a.
  • the transmission path measurement unit 203, the unnecessary signal measurement unit 204, and the transmission signal estimation unit 205 are output.
  • the f-th set of the combination of the transmission path measurement unit 203, the unnecessary signal measurement unit 204, and the transmission signal estimation unit 205 is the f-th corresponding to the 1st to N-th antennas. Accept frequency component as r. When r is received, based on r, the transmission signal estimation unit 205 sends f f f
  • the estimated value v of the signal s is obtained and output to the control unit 206.
  • FIG. 23 is a functional block diagram of the wireless communication system according to the eighth embodiment of the present invention.
  • the wireless communication system shown in FIG. 23 differs from the first embodiment in that the wireless communication device includes a reliability evaluation unit 213 and An error correction unit 214 is provided.
  • the description of the parts having the same configuration as in the first embodiment will be omitted, and the description will focus on the points different from the first embodiment.
  • the wireless communication device 2700 includes a reliability evaluation unit 213 and an error correction unit 214.
  • the reliability evaluation unit 213 is a circuit that performs a predetermined calculation, and receives the transmission line matrix H and the covariance matrix Rmi that are sequentially output from the transmission line measurement unit 203 and the unnecessary signal measurement unit 204. And a memory for holding the received transmission path matrix H and covariance matrix Rmi.
  • the transmission line matrix H and the covariance matrix Ruu held in the memory are rewritten whenever there is an output from the transmission line measurement unit 203 and the unnecessary signal measurement unit 204, and are held every time they are rewritten. ! /,
  • the residual error estimate z included in the estimated value V of the transmitted signal is obtained from the transmission line matrix H and the covariance matrix Rmi according to a predetermined formula.
  • z [k] indicates that the calculation is for the kth element of the vector of residual error estimates z
  • the reliability evaluation unit 213 calculates z [k] by the following equation [Equation 15]. .
  • W [k] is the row vector of the kth row of W if W is a matrix
  • the kth element of W if W is a column vector
  • I [k] is the case where M is 2 or more Represents the row vector of the k-th row of the MXM identity matrix, or 1 if M is 1.
  • the reliability evaluation unit 213 calculates the reliability of the transmission signal estimation value V based on the residual error estimation value z, and outputs the calculated reliability to the error correction unit 214.
  • the reliability is calculated by decreasing the reliability as z increases and increasing the reliability as z decreases. Can be issued. In other words, the higher the reliability, the smaller the residual error included in the estimated value V of the transmitted signal.
  • the error correction unit 214 is an error correction circuit that corrects an error included in a signal, and is, for example, a Viterbi decoding circuit. In addition to the Viterbi decoding circuit, a Dinterleave circuit may be included.
  • the error correction unit 214 includes a memory that holds the reliability output from the reliability evaluation unit 213 and performs error correction according to the reliability on the estimated value V of the transmission signal.
  • the error correction according to the reliability means, for example, that the estimated value of the transmission signal whose reliability is smaller than a predetermined value is ignored, and the reliability is larger than the predetermined value.
  • the data after error correction is output to the control unit 206.
  • the reliability evaluation unit 213 depends on the value obtained by making the reliability for the kth element of the estimated value V of the transmission signal inversely proportional to the square root of z [k] based on z [k]. Output.
  • FIG. 24 is a flowchart showing processing performed by the reliability evaluation unit 213.
  • the reliability evaluation unit 213 receives the transmission path matrix H output from the transmission path measurement unit 203 or receives the covariance matrix R uu output from the unnecessary signal measurement unit 204 (Ste S241: YES), residual error z is calculated based on transmission path matrix H and covariance matrix Ruu (step S242). After calculating the residual error z, the reliability is evaluated according to the residual error, and the evaluated reliability is output to the error correction unit 214 (step S243).
  • step S241 Wait until output of transmission line matrix H or covariance matrix Ruu is performed again (step S241: NO), and each time transmission line matrix H or covariance matrix Ruu is received (step S2 41: YES), according to a predetermined formula Residual error is calculated and reliability is output (step S242, step S243).
  • FIG. 25 is a flowchart showing processing performed by the error correction unit 214.
  • the error correction unit 214 When the error correction unit 214 receives the estimated value V of the transmission signal output from the transmission signal estimation unit 205 (step S251: YES), the error correction unit 214 corrects the error according to the reliability held for V. (Step S252). When error correction is performed, the corrected estimated value of the transmission signal is output to the control unit 206 (step S253). Thereafter, each time an estimated value V of the transmission signal is received from the transmission signal estimation unit 205 (step S251), error correction corresponding to the reliability is performed.
  • the present invention has been described based on the above embodiment, it is needless to say that the present invention is not limited to the above embodiment. The following cases are also included in the present invention.
  • the wireless communication device 2000 may control the down converter 202 so that the gain of the down converter 202 in each period is the same.
  • the present invention is applied to the present invention.
  • the case where the signal transmitted from the wireless transmission station is estimated by the method shown in FIG.
  • the processing performed by the interference transmission path measurement unit 209 may be performed by the transmission path measurement unit 203! /.
  • Each of the above devices is specifically a computer system composed of a microprocessor, ROM, RAM, hard disk unit, display unit, keyboard, mouse and the like.
  • a computer program is stored in the RAM or the hard disk unit.
  • Microprocessor power Each device achieves its functions by operating according to the computer program.
  • the computer program is configured by combining a plurality of instruction codes indicating instructions to the computer in order to achieve a predetermined function.
  • System LSI Large Scale Integration
  • LSI Large Scale Integration
  • ROM Read Only Memory
  • RAM Random Access Memory
  • a computer program is stored in the RAM. The microprocessor power by operating according to the computer program
  • the system LSI achieves its functions.
  • the wireless communication device of the present invention is a wireless LAN device that transmits and receives signals by wireless communication Etc. are useful. In particular, it is suitable for radio communication with few errors even in the presence of interference signals.

Abstract

 通信を所望する無線送信局以外の無線送信局から干渉を受けた場合であっても、所望の無線送信局から送信された信号を、前記無線送信局から送信された信号を表す列ベクトルをs、前記sの共分散行列をRss、前記信号受信部が受信した信号を表す列ベクトルをr、前記第1算出部が算出する数値列を行列H、前記第2算出部が算出する数値列を共分散行列Ruuとしたとき、前記送信信号推定部は、前記sの推定値を、Hを複素共役転置、-1を逆行列としてs=RssHH(HRssHH+Ruu)-1rによって求めることで、干渉の影響を考慮したうえで無線送信局から送信された信号を推定する。

Description

明 細 書
無線通信装置
技術分野
[0001] 本発明は、無線通信を行う無線通信装置に関し、特に、無線送信局から送信され る信号を、複数のアンテナを用いて受信する技術に関する。
背景技術
[0002] 従来、例えば無線 LAN (Local Area Network)による通信システムにお 、て、複数の アンテナを備えて無線送信局力 送信される信号を受信する無線通信装置として、 受信した信号をもとに装置内で発生する雑音の影響を考慮しつつ、無線送信局から 送信された信号を推定するものが可能である (非特許文献 1および 2参照)。
非特許文献 2では、非特許文献 1に示される V-BLASTと ヽぅ信号受信方法の特性 を向上させた構成が示されており、非特許文献 2に記載の無線通信装置は、無線通 信装置と無線送信局との間における信号の伝搬特性を表す係数と、無線通信装置 によって受信された信号とに基づいて、無線送信局から送信される信号を推定して いる。なお、無線通信装置と無線送信局との無線通信における信号の伝搬特性を表 す係数は行列で表され、この行列は、無線通信装置が受信した信号と、無線送信局 から送信される信号に含まれる所定のトレーニング信号との相関を計算することにより 求められる。
[0003] すなわち、無線送信局力 送信されるトレーニング信号が既知であれば、無線通信 装置は、無線送信局と無線通信装置との無線通信における信号の伝搬特性を表す 行列を求めることができ、求められた行列と、受信信号とに基づいて、無線送信局か ら送信される信号を推定することができる。
非特許文献 1 : P.W.Wolniansky、外 3名、 " V- BLAST: An Architecture for Realizing Very High Data Rates Over the Rich- Scatterint Wireless Channel'^ URSI Internatio nal Symposium on Signals, Systems, and Electronics ^ 1998年 9月〜10月
非特許文献 2 :Anass Benjebbour、外 2名、 " Comparison of Ordered Successive Rece ivers for Space-Time Transmission"^ Vehicular Technology Conference^ 2001年 1 0月
発明の開示
発明が解決しょうとする課題
[0004] し力しながら、上述の構成では、装置内で発生する雑音の影響を除去して無線送 信局から送信される信号を推定することができるものの、通信を所望する無線送信局 以外の干渉局が存在すると、その干渉局力 受信した信号の影響によって、所望の 無線送信局から送信される信号を正確に推定することが困難になるという問題がある なぜなら、上述の構成では、通信を所望する無線通信局から送信される信号を推 定する際に、干渉局力 受信した信号の影響を考慮した推定を行っておらず、また、 干渉局から受信した信号が無線送信局から送信された信号の推定に及ぼす悪影響 は、装置内で発生する雑音に比べて通常はるかに大き 、からである。
[0005] そこで、本発明は、通信を所望する無線送信局との無線通信に干渉する干渉局が 存在する場合であっても、無線送信局から送信された信号を従来より正確に推定しう る無線通信装置を提供することを目的とし、また、無線送信局と前記無線通信装置と 力 なる無線通信システムを提供することを目的とする。
課題を解決するための手段
[0006] 上記課題を解決するため、本発明の無線通信装置は、無線送信局から無線送信さ れる信号に含まれる所定パターンの信号に基づいて通信先の無線送信局を識別し、 無線通信を行う無線通信装置であって、複数のアンテナと、前記アンテナを介して信 号を受信する信号受信部と、受信信号に基づいて、前記所定パターンを含む信号を 送信する無線送信局と自装置との無線通信における信号の伝送路の特性を示す数 値列を算出する第 1算出部と、受信信号に基づいて、当該受信信号のうち前記所定 ノターンを含まない信号成分である不要信号の特性を示す数値列を算出する第 2算 出部と、前記第 2算出部が算出した数値列に基づいて受信信号における不要信号を 除去するよう補正し、当該受信信号と前記第 1算出部が算出した数値列とに基づい て前記無線送信局から送信された信号を推定する送信信号推定部とを備え、また、 前記無線送信局から送信された信号を表す列べ外ルを s、前記 sの共分散行列を Rs s、前記信号受信部が受信した信号を表す列ベクトル ¾:、前記第 1算出部が算出す る数値列を行列 H、前記第 2算出部が算出する数値列を共分散行列 Ruuとしたとき、 前記送信信号推定部は、前記 sの推定値 Vを、 Hを複素共役転置、 _1を逆行列として V =RssHH (HRssHH+Ruu) _1rによって求める。
発明の効果
[0007] 本発明にカゝかる無線通信装置は、複数のアンテナを備え、無線送信局から送信さ れる信号を、各アンテナを介して受信し、複数のアンテナを備えることで、障害物が 多 、通信環境にぉ 、ても、単一のアンテナを用いて信号を受信する場合に比べて 安定した通信を行うことができるが、上述の構成を備えることにより、受信した信号に 含まれる不要信号の影響を除去するよう補正しつつ無線送信局から送信された信号 を推定することができる。例えば、通信を所望する無線送信局との無線通信に干渉 する干渉局が存在する場合であっても、本発明にかかる無線通信装置は、第 2算出 手段によって干渉局カゝら送信される信号の特性を示す数値列を算出し、算出した数 値列に基づいて干渉局力 送信される信号の影響を受信信号力 除去するよう補正 するので、所望の無線送信局から送信される信号を、従来と比べてより正確に推定 することができる。
[0008] また、前記送信信号推定部は、前記 sの各要素が互いに無相関で、かつ前記 sの各 要素の平均電力 Pがすべて等しいとき、前記 sの推定値 Vを、 v=HH (HHH+ (1/p) Ruu) _1rによって求めることとしてもよ!/、。
これにより、 sの各要素が互いに無相関で、かつ sの各要素の平均電力 pがすべて 等しいときは、より行列の積の計算が少ない式に基づいて無線送信局力も送信され た信号の推定値を求めるので、送信信号の推定に必要な演算量を減少させることが できる。
[0009] また、前記第 2算出部は、所定の期間内に受信した受信信号に基づいて前記算出 を行い、前記信号受信部は、前記アンテナを介して受信した信号を等価低域の信号 に変換するダウンコンバータを含み、前記送信信号推定部は、前記所定の期間内に 受信した受信信号に基づいて前記第 2算出部によって算出された数値列を用いて前 記推定を行い、前記無線通信装置は、前記所定の期間と、前記推定を行うために前 記送信信号推定部に入力する信号を前記信号受信部によって受信する期間とにお ける前記ダウンコンバータの利得を略同一にするよう前記ダウンコンバータの利得を 制御する利得制御部とを備えることとしてもよい。
[0010] 無線通信装置は、第 2算出手段によって算出される数値列を、送信信号推定手段 によって送信信号の推定を行う期間とは別の期間に第 2算出手段に算出させておき 、算出された数値列を用いて送信信号の推定を行う。また、第 2算出手段および送信 信号推定手段は、ダウンコンバータによって等価低域の信号に変換された信号を用 いて所定の処理を行う。
ところで、信号を受信する際においてダウンコンバータの利得が変化すると、信号を 送信する無線送信局との間における信号の伝送路の特性が変化する。したがって、 第 2算出手段によって不要信号の特性を示す数値列を算出する期間におけるダウン コンバータの利得と、送信信号推定手段によって送信信号の推定を行う期間におけ るダウンコンバータの利得とが異なると、送信信号推定手段によって送信信号の推定 が行われる際に、第 2算出手段によって算出された数値列に基づいて行われる不要 信号の除去の補正が適切に行われなくなる。
[0011] しかし、上述の構成を備える無線通信装置では、不要信号の特性を示す数値列を 第 2算出手段によって算出する期間と、送信信号推定手段によって送信信号の推定 を行う期間とにおけるダウンコンバータの利得を略同一にするので、送信信号の推定 に際して、第 2算出手段によって算出された数値列に基づいて行われる不要信号の 除去補正を適切に行うことができる。
[0012] また、前記第 2算出部は、所定の期間内に受信した受信信号に基づいて前記算出 を行い、前記信号受信部は、前記アンテナを介して受信した信号を等価低域の信号 に変換するダウンコンバータを含み、前記送信信号推定部は、前記所定の期間内に 受信した受信信号に基づいて前記第 2算出部によって算出された数値列を用いて前 記推定を行い、前記無線通信装置は、前記所定の期間内における前記ダウンコンパ ータの利得を第 1利得とし、前記推定を行うために前記送信信号推定部に入力する 信号を前記信号受信部によって受信する期間における前記ダウンコンバータの利得 を第 2利得としたときに、前記第 2算出部によって算出された前記不要信号の特性を 示す数値列を、前記第 1利得と前記第 2利得とに基づ 、て補正する利得制御部を備 え、前記送信信号推定部は、前記第 2算出部によって算出された数値列にかえて、 前記利得制御部によって補正された数値列を用いて前記補正を行うこととしてもょ ヽ
[0013] また、前記第 1利得を C、前記第 2利得を C、前記第 2算出部が前記所定の期間
1 2
内に算出した前記不要信号の共分散行列を Rmiとしたとき、前記利得制御部は、前 記補正を行った後の数値列である Ruu'を、 Hを複素共役転置、 _1を逆行列として Ruu ,=C C _1Ruu (C C 一1) Hによって求めることで前記補正を行うこととしてもよい。
[0014] これにより、無線通信装置は、第 2算出手段によって算出された不要信号の特性を 示す数値列を、前記第 1利得と前記第 2利得とに基づいて補正し、補正した数値列を 用いて送信信号の推定を行うので、第 2算出手段によって不要信号の特性を示す数 値列を算出する期間におけるダウンコンバータの利得と、送信信号推定手段によつ て送信信号の推定を行う期間におけるダウンコンバータの利得とが異なる場合であつ ても、送信信号の推定に際して、不要信号の除去補正を適切に行うことができる。
[0015] また、前記無線通信装置は、さらに、受信信号に基づいて、通信を所望する無線送 信局から信号が送信されていないことを検出する検出部を備え、前記第 2算出部は、 前記検出がなされてから所定期間内に受信した前記受信信号と前記所定パターン の信号とに基づいて前記数値列を算出することとしてもよい。
また、前記検出部は、受信信号の振幅に基づいて、前記検出を行うこととしてもよい
[0016] また、前記検出部は、受信信号に前記所定パターンの信号が含まれる力否かに基 づ 、て前記検出を行うこととしてもょ 、。
また、前記無線通信装置と無線通信を行う無線送信局および前記無線通信装置 力もなる無線通信システムであって、前記無線送信局は、信号の送信を停止して前 記無線通信装置と無線通信を行わない送信停止期間を設定する送信停止期間設 定部を含み、前記設定がなされると、前記送信停止期間に示された期間内における 信号の送信を停止することとしてもょ 、。
[0017] 不要信号の特性を示す数値列は、通信を所望する無線送信局から信号が送信さ れて 、な 、期間にお 、て算出することが望ま U、が、上述の構成を備えることにより、 無線通信装置は、受信信号に基づ ヽて受信信号に無線送信局から送信されて ヽる 信号が含まれていないことを検出するので、検出した後に第 2算出手段による処理を 実施させることで、不要信号の特性を示す数値列を正確に算出しうる。
[0018] また、前記無線通信装置は、さらに、受信信号に基づいて、前記不要信号の振幅 が所定値よりも大きいか否かを判断する第 2判断部を備え、前記第 2算出部は、前記 第 2判断部によって大きいと判断されると、大きいと判断されている期間内に受信した 受信信号を用いて前記数値列の算出を行うこととしてもよい。
干渉局による干渉が大きくなる期間においては、送信信号推定手段による推定に 誤差が含まれる可能性が高くなるが、無線通信装置は、不要信号の振幅が所定値よ り大きいと判断したときに、無線送信局との無線通信において干渉局による干渉の影 響が大きいとみなし、干渉の影響が大きい期間に基づいて第 2算出手段によって不 要信号の特性を示す数値列を算出するので、無線送信局から送信される送信信号 の推定値に含まれる誤差の最大値を小さくすることができる。
[0019] また、前記無線通信装置は、さらに、通信を所望する無線送信局以外の無線送信 局である干渉局から送信される信号に含まれる所定パターンの信号に基づいて前記 干渉局を識別できるか否かを判定する判定部と、前記干渉局を識別できると判定さ れたとき、前記干渉局から受信した干渉信号と、前記干渉信号に含まれる所定バタ ーンの信号とに基づいて、前記干渉局と自装置との無線通信における信号の伝送路 の特性を示す数値列を算出する干渉伝送路測定部とを備え、前記第 2算出部は、前 記干渉局を識別できると判定されたとき、前記干渉伝送路測定部によって算出され た数値列に基づいて、前記不要信号に基づく数値列を算出することとしてもよい。
[0020] これにより、無線通信装置は、干渉局から送信される信号に含まれる所定パターン の信号に基づ 、て干渉局を識別できるか否かを判断し、識別できると判断したときは 、干渉伝送路測定手段によってその干渉局と自装置との無線通信における信号の 伝送路の特性を示す数値列を算出する。
算出が行われると、無線通信装置の備える第 2算出手段は、干渉局と自装置との無 線通信における信号の伝送路の特性を示す数値列と、干渉局から送信される信号と に基づ!/、て所定の計算を行うので、不要信号を測定してから共分散行列 Ruuを計算 する場合に比べて、不要信号の特性を示す数値列をより早く正確に算出しうる。
[0021] また、前記無線通信装置と無線通信を行う無線送信局および前記無線通信装置 からなる無線通信システムであって、前記無線通信装置は、信号の送信を所定期間 停止するよう要求する送信停止要求信号を前記無線送信局へ送信する送信停止要 求送出部を備え、前記無線送信局は、信号を受信する受信部と、前記受信部によつ て前記送信停止要求信号を受信すると、所定期間、信号の送信を停止するよう制御 する制御部とを備え、前記第 2算出部は、前記送信停止要求送出部が前記送信停 止要求信号を送信すると、前記所定期間内において受信した受信信号を用いて前 記数値列を算出することとしてもよい。
[0022] また、前記送信停止要求送出部は、信号の送信を停止する期間を表す停止期間 情報を前記送信停止要求信号に含ませて送信し、前記制御部は、前記停止期間情 報に基づいて、前記制御を行い、前記第 2算出部は、前記停止期間情報に示される 期間内にお 1、て受信した受信信号を用 1、て前記算出を行うこととしてもよ!、。
また、前記送信停止要求送出部は、前記無線送信局による信号の送信を再開する 時期を示す送信再開時期情報を前記送信停止要求信号に含ませて送信し、前記制 御部は、前記送信再開時期情報に示される時期に基づいて、信号の送信を停止す るよう前記制御を行い、前記第 2算出部は、前記送信停止要求信号を送信してから 前記送信再開時期情報に示される時期までの期間内において受信した受信信号を 用いて前記算出を行うこととしてもょ 、。
[0023] また、前記送信停止要求送出部は、さらに、前記送信停止要求信号を送信した後 に前記第 2算出部によって前記数値列が算出されると、前記無線送信局による信号 の送信の停止を解除する解除信号を前記無線送信局へ送信する解除信号送信部 を含み、前記制御部は、前記受信部によって前記解除信号を受信すると、前記停止 を解除することとしてもよい。
これにより、無線通信装置は、無線送信局へ信号の送信を停止するよう要求する送 信停止要求信号を送信し、無線送信局では、送信停止要求信号を受信して所定期 間信号の送信を停止するので、無線通信装置は、所定期間、無線送信局から信号 が送信されていないことを前提にして不要信号に基づく数値列を算出することができ るから、不要信号に基づく数値列を正確に算出しうる。
[0024] また、前記第 2算出部は、さらに、受信信号と、前記送信信号推定部によって逐次 推定される推定信号と、前記第 1算出部によって算出される数値列とに基づいて、前 記不要信号の特性を示す数値列を算出する算出部を備え、前記送信信号推定部は 、前記算出部によって逐次算出される数値列に基づいて前記受信信号における前 記不要信号を除去するよう補正し、前記受信信号と前記第 1算出部が算出した数値 列とに基づ 、て前記推定を行うこととしてもょ 、。
[0025] これにより、信号を受信して送信信号推定手段によって信号が推定されるごとに、 不要信号の特性を示す数値列を逐次算出し、逐次算出された数値列を用いて送信 信号の推定を行うので、無線通信装置は、干渉局による干渉の影響が大きく変動す る場合であっても、上述の方法によって送信信号の推定を行って、干渉の影響の変 動に追従しながら送信信号力 干渉の影響を除去するよう補正することができる。
[0026] また、前記無線通信装置は、前記無線送信局によって送信される信号の変調の多 値数を判別する判別部と、前記判別された多値数が所定値より小さ!ヽか否かを判断 する多値数判断部と、小さいと判断されたときに、前記算出部によって数値列を算出 するよう制御する算出部制御部とを備えることとしてもよい。
上述の構成を備える無線通信装置は、無線送信局から送信される信号に、変調の 多値数の大き!、信号と小さ!、信号とが混在して!/、るときは、多値数の小さ!、信号を用 いて不要信号の特性を示す数値列を算出する。例えば、送信信号に、 64QAMの 信号と 16QAMの信号とが混在していれば、 16QAMの信号を用いて不要信号の特 性を示す数値列を算出する。
[0027] 一般に、信号の変調の多値数が小さいほど、送信信号の推定に含まれる誤りが小 さくなるので、多値数が小さい信号を用いて不要信号の特性を示す数値列を算出す ると、多値数が大きい信号を用いる場合に比べて、数値列を算出する際の誤差を小 さくすることができる。
また、前記無線送信局が送信する信号は周波数分割多重信号であり、前記信号受 信部は、前記周波数分割多重信号を受信し、前記第 1算出部および前記第 2算出部 は、前記周波数分割多重信号の各周波数成分に対応して前記各数値列を算出し、 前記送信信号推定部は、前記周波数分割多重信号の各周波数成分に対応して前 記推定を行うこととしてもょ 、。
[0028] また、前記周波数分割多重信号は、 OFDM信号であることとしてもょ 、。
また、前記周波数分割多重信号は、ウェーブレット信号であることとしてもよい。 これにより、無線送信局力 送信される信号が周波数分割多重信号である場合で あっても、送信信号の推定を従来より正確に行うことができ、周波数分割多重方式に よる無線通信の特性である耐マルチパス性ゃ耐干渉性を備えた無線通信装置を実 現できる。
[0029] また、前記無線通信装置は、さらに、前記第 1算出部が算出した数値列と、前記第 2算出部が算出した数値列とに基づいて、前記送信信号推定部によって推定された 推定信号の残留誤差を算出する信頼度評価部を備えることとしてもよい。
また、前記無線送信局から送信された信号を表す列ベクトルを s、前記 sの共分散 行列を Rss、前記信号受信部が受信した信号を表す列ベクトルを!:、前記第 1算出部 が算出する数値列を行列 H、前記第 2算出部が算出する数値列を共分散行列 Rmi、 前記送信信号推定部が推定した推定値を等価低域で表した列ベクトルを v、前記 sの 次元を M X 1、 Hを複素共役転置、 _1を逆行列
とし、 ^^=1¾31^ (111¾31^+1¾1 _11:としたとき、前記信頼度評価部は、列ベクトル である前記 Vの、第 k番目の要素に対応する残留誤差の推定値 z [k]を、 z [k] = (W[ k]H-I [k])Rss (HHW[k]H-I [k]H) +W[k]RuuW[k]H、ただし、 W[k]は、 Wが
M M
行列のときは Wの第 k行目の行ベクトル、 Wが列ベクトルのときは Wの第 k番目の要素 とし、 I [k]は、 Mが 2以上のときは M X Mの単位行列の第 k行目の行ベクトル、 Mが
1のときは 1を表すこととして前記 z [k]を求めることとしてもよ!/、。
[0030] また、前記無線送信局から送信された信号を表す列ベクトルを s、前記 sの共分散 行列を Rss、前記信号受信部が受信した信号を表す列ベクトルを!:、前記第 1算出部 が算出する数値列を行列 H、前記第 2算出部が算出する数値列を共分散行列 Rmi、 前記送信信号推定部が推定した推定値を等価低域で表した列ベクトルを v、前記 sの 次元を M X 1、 Hを複素共役転置、 _1を逆行列 とし、前記 sの各要素が互いに無相関で、かつ前記 sの各要素の平均電力 pがすべて 等しいとき、 W=HH (HHH+ (l/p)Ruu) _1
とすると、前記信頼度評価部は、列ベクトルである前記 Vの、第 k番目の要素に対応 する残留誤差の推定値 z[k]を、 z[k] =p (W[k]H— I [k]) (HHW[k]H-I [k]H) +
W[k]RuuW[k]H、ただし、 W[k]は、 Wが行列のときは Wの第 k行目の行ベクトル、 Wが列ベクトルのときは Wの第 k番目の要素とし、 I [k]は、 Mが 2以上のときは M X
Mの単位行列の第 k行目の行ベクトル、 Mが 1のときは 1を表すこととして前記 z[k]を 求めることとしてちよい。
[0031] 上述の構成を備える無線通信装置は、送信信号推定手段によって推定した信号の 残留誤差を信頼度評価部によって算出する。
一般に、残留誤差が大きいほど、無線送信局から送信された信号の推定に含まれ る誤差が大きぐ残留誤差が小さいほど、信号の推定に含まれる誤差が小さくなる。 したがって、無線通信装置は、推定した信号の残留誤差を用いることで、推定した 信号が無線通信において使用に耐えうる信頼度があるか否かなどを判定することが できる。
[0032] また、前記無線通信装置は、さらに、前記送信信号推定部によって推定された推定 信号と、前記信頼度評価部によって算出された残留誤差とに基づいて、推定信号に 含まれる誤りを訂正する誤り訂正部を備えることとしてもよい。
これにより、推定した信号の誤り訂正を誤り訂正部によって行う際に、残留誤差を参 照することで、残留誤差の情報がない場合に比べて誤り訂正部の誤り訂正能力を向 上させることができる。
[0033] 例えば、残留誤差が大きい、すなわち信号の推定に含まれる誤差が大きい場合は 信号の推定値を無視し、残留誤差が小さい、すなわち信号の推定に含まれる誤差が 小さ 、場合は信号の推定値を重視する、などとすることで誤り訂正部の誤り訂正能力 を向上させることができる。
また、前記誤り訂正部は、前記残留誤差の平方根の逆数に応じて、前記訂正を行 うこととしてちよい。
[0034] これにより、推定した信号の残留誤差の振幅を一定にすると誤り訂正能力が向上す る場合において、誤り訂正部の誤り訂正能力を向上させることができる。
図面の簡単な説明
[図 1]図 1は、本発明の実施の形態 1にかかる無線通信システムの機能ブロック図で ある。
[図 2]図 2は、伝送路測定部 203が伝送路行列 Hを算出する処理を示すフローチヤ ートである。
[図 3]図 3は、不要信号測定部 204が不要信号の共分散行列 Ruuを算出する処理を 示すフローチャートである。
[図 4]図 4は、送信信号推定部 205が無線送信局 1000から送信された信号を推定す る処理を示すフローチャートである。
[図 5]図 5は、共分散行列 Ruuをダウンコンバータ 202の利得によって補正するときの 送信信号推定部 205が行う処理を示すフローチャートである。
[図 6]図 6は、本発明の実施の形態 2にかかる無線通信システムの機能ブロック図で ある。
[図 7]図 7は、制御部 206が無送信期間検出部 207による検出に基づいて不要信号 測定部 204を制御する処理を示すフローチャートである。
[図 8]図 8は、通信制御部 103が送信停止期間設定部 104によって設定された送信 停止期間に基づいて信号の送信を制御する処理を示すフローチャートである。
[図 9]図 9は、本発明の実施の形態 3にかかる無線通信システムの機能ブロック図で ある。
[図 10]図 10は、制御部 206が強干渉期間検出部 208による検出に基づいて不要信 号測定部 204を制御する処理を示すフローチャートである。
[図 11]図 11は、本発明の実施の形態 4にかかる無線通信システムの機能ブロック図 である。
[図 12]図 12は、実施の形態 4において不要信号測定部 210が不要信号の共分散行 列 Ruuを算出する処理を示すフローチャートである。
[図 13]図 13は、本発明の実施の形態 5にかかる無線通信システムの機能ブロック図 である。 [図 14]図 14は、送信停止要求送出部 211が送信停止要求信号を送信する際の処理 を示すフローチャートである。
[図 15]図 15は、実施の形態 5において制御部 206が不要信号測定部 204を制御す る処理を示すフローチャートである。
[図 16]図 16は、無線送信局 1200の通信制御部 103が送信停止要求信号をもとに 信号の送信を制御する処理を示すフローチャートである。
[図 17]図 17は、解除信号を送信する場合において制御部 206が行う処理を示すフロ 一チャートである。なお、図 15に示す処理と同一の処理については、図 15と同一の 符号を用いて説明を省略する。
[図 18]図 18は、無線送信局 1200の通信制御部 103が解除信号をもとに信号の送 信を制御する処理を示すフローチャートである。
[図 19]図 19は、本発明の実施の形態 6にかかる無線通信システムの機能ブロック図 である。
[図 20]図 20は、実施の形態 6の不要信号測定部 212が不要信号の共分散行列 Rmi を算出する処理を示すフローチャートである。
[図 21]図 21は、制御部 206が、判別された多値数をもとに不要信号測定部 212を制 御する処理を示すフローチャートである。
[図 22]図 22は、本発明の実施の形態 7にかかる無線通信システムの機能ブロック図 である。
[図 23]図 23は、本発明の実施の形態 8にかかる無線通信システムの機能ブロック図 である。
[図 24]図 24は、信頼度評価部 213の行う処理を示すフローチャートである。
[図 25]図 25は、誤り訂正部 214の行う処理を示すフローチャートである。
符号の説明
101 アンテナ
102 アップコンバータ
103 通信制御部
104 送信停止期間設定部 105 送信停止要求受信部
201 アンテナ
202 ダウンコンバータ
203 伝送路測定部
204 不要信号測定部
205 送信信号推定部
206 制御部
207 無送信期間検出部
208 強干渉期間検出部
209 干渉伝送路測定部
210 不要信号測定部
211 送信停止要求送出部
212 不要信号測定部
発明を実施するための最良の形態
[0037] 以下、本発明の実施の形態について図面を用いて説明する。
<実施の形態 1 >
<構成>
図 1は、本発明の実施の形態 1にかかる無線通信システムの機能ブロック図である 。実施の形態 1にかかる無線通信システムは、同図に示すように、無線送信局 1000 と、無線通信装置 2000と、干渉局 1500とから構成される。
[0038] 無線送信局 1000と無線通信装置 2000は、規定のプロトコルに従って無線通信を 行う。本発明に力かる無線通信システムには、例えば IEEE802.11nに規定されている 通信方法によって無線通信を行う無線 LANシステムがある。
<無線送信局 >
同図に示すように、無線送信局 1000は、アンテナ 101 (アンテナ 101a、アンテナ 1 01b、 · · ·)と、アップコンバータ 102 (アップコンバータ 102a、アップコンバータ 102b 、 · · ·)と、通信制御部 103とから構成される。
[0039] アンテナ 101は、 M個からなり、それぞれのアンテナは M個力もなるアップコンパ一 タ 102と一対一で接続され、アップコンバータ 102から入力された信号を空間に送出 する。ただし、 Mは 1以上の整数である。
アップコンバータ 102は、アンテナ 101と同様に M個力もなり、等価低域で表されて いる送信信号を高周波信号に変換するとともに、無線通信装置への無線通信を行う のに必要な電力に増幅して高周波信号をアンテナ 101へ出力する。
[0040] 通信制御部 103は、 CPU (Central Processing Unit)、 ROM (Read Only Memory) 、 RAM (Random Access Memory)、変復調回路等から構成されており、 ROMに格 納されているプログラムにしたがって、無線通信装置との無線通信を制御する処理を 行う。
なお、通信制御部 103がアンテナ 101を介して送信する信号には所定パターンのト レーニング信号が含まれ、このトレーニング信号に基づいて、無線通信装置 2000は 、通信先の無線送信局 1000を識別する。
[0041] <干渉局>
干渉局 1500は、無線通信装置 2000にとつて未知の構成であり、無線送信局 100 0と無線通信装置 2000との無線通信に干渉する干渉信号を送出する。
<無線通信装置 >
無線通信装置 2000は、無線送信局 1000から送信される信号に含まれる所定バタ ーンのトレーニング信号および無線送信局 1000に特有のアドレス情報に基づいて 通信先の無線送信局を識別し、識別した無線送信局 1000と無線通信を行う。
[0042] 同図に示すように、無線通信装置 2000は、アンテナ 201 (アンテナ 201a、アンテ ナ 201b、 · · ·)と、ダウンコンバータ 202 (ダウンコンバータ 202a、ダウンコンバータ 2 02b、 · · ·)と、伝送路測定部 203と、不要信号測定部 204と、送信信号推定部 205と 、制御部 206とから構成される。
アンテナ 201は、 N個からなり、それぞれのアンテナは N個力もなるダウンコンパ一 タ 202と一対一で接続され、信号を受信してダウンコンバータ 202へ出力する。ただ し、 Nは 2以上の整数である。
[0043] ダウンコンバータ 202は、アンテナ 201と同様に N個力もなり、アンテナ 201を介し て受信した高周波信号を等価低域の信号に変換する。変換した等価低域の信号で ある受信信号を、伝送路測定部 203と不要信号測定部 204と送信信号推定部 205 へ出力する。
伝送路測定部 203は、無線送信局 1000との無線通信における信号の伝送路の特 性を示す伝送路行列を算出する処理を行う集積回路であり、無線送信局 1000が送 信する信号に含まれる所定パターンの信号を予め保持するメモリを備えて!/ヽる。ダウ ンコンバータ 202から出力された信号を受け付けると、受け付けた信号に含まれる所 定パターンの信号を抽出し、抽出した所定パターンと、予め保持しておいた所定バタ ーンの信号との相関を計算することで伝送路行列 Hを算出する。算出した伝送路行 列 Hを送信信号推定部 205へ出力する。
[0044] 不要信号測定部 204は、不要信号の共分散行列を算出する処理を行う集積回路 である。不要信号とは、受信信号に含まれる信号成分のうち干渉局 1500から送信さ れて無線通信装置 2000で受信した成分と、無線通信装置 2000内部で発生する雑 音が受信信号に及ぼす影響とから構成される。不要信号測定部 204は、制御部 206 による制御にしたカ^、、所定のタイミングで不要信号の共分散行列 Ruuを算出する処 理を行う。算出した共分散行列を、送信信号推定部 205へ出力する。
[0045] 送信信号推定部 205は、無線送信局 1000から送信された信号を推定する処理を 行う集積回路であり、伝送路測定部 203から出力される伝送路行列 Hを受け付けて 保持するメモリと、不要信号測定部 204から出力される不要信号の共分散行列を受 け付けて保持するメモリとを備え、伝送路行列 Hと、不要信号の共分散行列 RUUと、 ダウンコンバータ 202から出力された信号とに基づいて、所定の式に従って送信信 号の推定を行う。推定された送信信号の推定値を制御部 206へ出力する。
[0046] 制御部 206は、 CPU、 ROM, RAM等から構成され、送信信号推定部 205から出 力された送信信号の推定値を受け付け、 ROMに格納されて ヽるプログラムに従って 、無線送信局 1000との無線通信を制御する処理を行う。
また、不要信号測定部 204に不要信号の共分散行列 Ruuを算出させるタイミングを 制御するために、不要信号測定部 204へ、共分散行列 Ruuの算出を開始させる測定 開始指示信号を送信し、共分散行列の算出を終了させるために、測定終了指示信 号を送信する。 [0047] <動作 >
次に、無線通信装置 2000の動作について説明する。
<伝送路行列算出処理 >
図 2は、伝送路測定部 203が伝送路行列 Hを算出する処理を示すフローチャート である。
[0048] 同図に示すように、伝送路測定部 203は、ダウンコンバータ 202から受信信号を受 け付けると (ステップ S21: YES)、受信信号に含まれるトレーニング信号を抽出する( ステップ S22)。
抽出を終えると、抽出したトレーニング信号と、予めメモリに保持しておいた所定パ ターンの信号との相関を計算して無線送信局 1000との無線通信における信号の伝 送路の特性を示す伝送路行列 Hを算出する (ステップ S23)。そして、算出した伝送 路行列 Hを送信信号推定部 205へ出力し (ステップ S 24)、再び受信信号を受け付 けるまで待機 (ステップ S 21: NO)する。
[0049] 上記の動作を行うことで、伝送路測定部 203は、受信信号を受け付けるごとに伝送 路行列 Hを算出し、算出した伝送路行列 Hを送信信号推定部 205へ出力する。
<共分散行列算出処理 >
次に、不要信号測定部 204の動作について説明する。
不要信号測定部 204は、不要信号の共分散行列 Ruuの算出を行うにあたって、制 御部 206から送信される測定開始指示信号を受け付けて算出を開始し、測定終了 指示信号を受け付けて算出を終了する。
[0050] 図 3は、不要信号測定部 204が不要信号の共分散行列 Ruuを算出する処理を示す フローチャートである。
同図に示すように、不要信号測定部 204は、制御部 206から出力された測定開始 指示信号を受け付けると (ステップ S31: YES)、ダウンコンバータ 202から出力され た受信信号をもとに不要信号の共分散行列 Ruuを算出し、算出するごとに共分散行 列 Ruuを送信信号推定部 205へ出力する (ステップ S32)。
[0051] 制御部 206から測定終了指示信号を受け付けるまでの間 (ステップ S33 :NO)、共 分散行列 Ruuの算出および出力を行い (ステップ S32)、制御部 206から測定終了指 示信号を受け付けると (ステップ S33: YES)、受け付けた時点で算出されて 、る共分 散行列 Ruuを送信信号推定部 205へ出力し (ステップ S34)、測定開始指示信号が 再度入力されるまで待機 (ステップ S31: NO)する。
[0052] <送信信号推定処理 >
次に、送信信号推定部 205の動作について説明する。
送信信号推定部 205は、伝送路測定部 203から出力される伝送路行列 Hと不要信 号測定部 204から出力される不要信号の共分散行列 Ruuとを受け付けてメモリに保 持しており、出力があるごとに、メモリに保持されている伝送路行列 Hと共分散行列 R uuを新たに出力された値に書き換える。
[0053] 図 4は、送信信号推定部 205が無線送信局 1000から送信された信号を推定する 処理を示すフローチャートである。
同図に示すように、送信信号推定部 205は、ダウンコンバータ 202から受信信号を 受け付けると (ステップ S41 : YES)、受信信号と、伝送路行列 Hと、共分散行列 Ruu とに基づいて、後述する所定の式に従った計算を行って無線送信局 1000から送信 された信号を推定する (ステップ S42)。送信信号の推定値を制御部 206へ出力する と (ステップ S43)、受信信号の入力が再度行われるまで待機 (ステップ S41 :NO)す る。
[0054] ここで、ステップ S42において無線送信局 1000から送信された信号を推定する際 に用いる所定の式にっ 、て説明する。
無線送信局 1000から送信された送信信号を表す列ベクトルを s、 sの共分散行列を Rss、ダウンコンバータ 202によって等価低域の信号に変換された受信信号を表す列 ベクトルを!:、無線送信局 1000と無線通信装置 2000との無線通信において、アップ コンバータ 102やダウンコンバータ 202も含めた信号の伝送路の特性を示す伝送路 行列を H、不要信号測定部 204によって出力され、送信信号推定部 205によって保 持されている共分散行列を Ruuとする。また、 Hを複素共役転置、 _1を逆行列とする。 なお、 sは M X 1ベクトル、 rは N X 1ベクトル、 Hは N X M行列、 vは M X 1ベクトルで ある。
[0055] このとき、送信信号推定部 205は、送信信号 sの推定値 Vを、 [数 1] v=RssHH (HRssHH+Ruu) ~
に従って求める。
以下、 [数 1]について詳説する。
[数 1]は、送信信号の推定値 Vの送信信号 sに対する平均 2乗誤差を最小にするた めの式である。
[0056] ここで、干渉局 1500から送信される信号を表す列ベクトルを x、干渉局 1500から無 線通信装置 2000における、ダウンコンバータ 202も含めた信号の伝送路の特性を 示す伝送路行列を G、ダウンコンバータ 202において発生する雑音を n、受信信号に おける不要信号の信号成分を uとして、 [数 1]の導出方法を以下に示す。なお、 Xは L X 1ベクトルとし、 Gは N X L行列、 uは N X 1ベクトルである。
[0057] 受信信号 rは、次の [数 2]で表される。
[数 2] r=Hs + Gx+n
送信信号の推定値 Vを、次式 [数 3]で求めるとする。
[数 3] v=Wr
ただし、 Wは M X N行列である。
[0058] Vの送信信号 sに対する平均 2乗誤差を eとすると、 eは、次式 [数 4]で表される。
[数 4] e = E[ (v-s) H (v-s) ]
ただし、 Eは期待値を表す。
平均 2乗誤差 eを最小にするという条件のもとで、 [数 2] [数 3] [数 4]を変形すると、 次式 [数 5]により Wが求まる。
[数 5] W=RssHH (HRssHH + GRxxGH + qI ) _1
N
ただし、 Rxxは xの共分散行列、 qは 1系統のアンテナならびにダウンコンバータ 20 2に対応する雑音の平均電力、 Iは N X Nの単位行列を表す。
N
[0059] ここで、不要信号 uは、次式 [数 6]で表される。
[数 6] u=Gx+n
よって、不要信号 uの共分散行列 Ruuは、次式 7によって表される。
[数 7] Ruu=E[ (Gx+n) (Gx+n) H]
=E[GxxHGH] +E[nnH] = GRxxGH + qI
N
[数 7]および [数 5]から、次式 [数 8]が求まる。
[数 8] W=RssHH (HRssHH+Ruu) _1
[数 8]および [数 3]から、 [数 1]が求められる。
[0060] なお、 [数 1]においては、 Rssは送信信号 sの統計的性質力も求めることが可能であ り、 Hは、伝送路測定部 203から出力されて送信信号推定部 205のメモリに保持され て 、る伝送路行列 Hを用いる。
なお、送信信号 sの各要素が互いに無相関で、各要素の平均電力がすべて等しく p で表せるときは、 Rss=plとなるので、 [数 1]は、次式 [数 9]のように変形でき、送信 信号推定部 205は、次式 [数 9]に従って送信信号の推定を行うことができる。
[数 9] V = HH (HHH + ( 1 /p) Ruu) "
<利得補正処理 >
無線通信装置 2000は、上述した [数 1]および [数 9]に従った式を用いて送信信号 推定部 205によって送信信号の推定を行うより前に、あら力じめ不要信号 uに基づい て共分散行列 Ruuを算出する必要があるので、無線送信局 1000との無線通信を開 始するより前に、不要信号測定部 204によって共分散行列 Ruuを算出させておき、算 出が行われて力も無線送信局 1000との無線通信を開始して送信信号の推定を行う
[0061] ところで、上記 [数 1]および [数 9]に示される数式に含まれる伝送路行列 Hは、無 線送信局 1000と無線通信装置 2000との無線通信において、ダウンコンバータ 202 も含めた信号の伝送路の特性を示す行列である。
したがって、信号を受信する際においてダウンコンバータ 202の利得が変化すると 、信号を送信する無線送信局との間における信号の伝送路の特性が変化する。
[0062] そのため、不要信号測定部 204によって共分散行列 Ruuを算出する期間と、送信 信号推定部 205によって送信信号の推定を行う期間とにおいてダウンコンバータ 20 2の利得が異なると、各々の期間における信号の伝送路特性を示す伝送路行列が異 なるため、送信信号の推定を行う期間における共分散行列 Ruuの値が適切ではなく なるおそれがある。 そこで、本発明に力かる無線通信装置 2000は、上述した各々の期間におけるダウ ンコンバータ 202の利得を用いて、共分散行列 Ruuを補正し、補正した値を用いて送 信信号推定部 205によって送信信号の推定を行うこととしている。
[0063] 以下、上述した各期間におけるダウンコンバータ 202の利得を用いて共分散行列 R uuを補正するときの補正式について説明する。
無線送信局 1000からダウンコンバータ 202へ入力されるまでの信号の伝送路特性 を示す行列を H、干渉局力 ダウンコンバータ 202へ入力されるまでの信号の伝送
0
路特性を示す行列を Gとする。また、不要信号測定部 204によって共分散行列 Ruu
0
を算出する期間におけるダウンコンバータ 202の利得を C、ダウンコンバータ 202の 入力に換算した雑音を n、受信信号を rとし、送信信号推定部 205によって送信信 号の推定を行う期間におけるダウンコンバータ 202の利得を C、ダウンコンバータ 20
2
2の入力に換算した雑音を n、受信信号を rとする。
2 2
[0064] rおよび rは、次式 [数 10]および [数 11]で表される。
1 2
[数 10] r =C (G x+n )
1 1 0 1
[数 11] r =C (H s + G x+n )
2 2 0 0 2
[数 10]により、共分散行列 Ruuは、次式 [数 12]のように表される。
[数 12] Ruu=C (G RxxG H+E[n n H]) C H
1 0 0 1 1 1
一方、送信信号を推定する期間において使用したい共分散行列 Ruu'は、次式 [数 13]で表される。
[数 13] Ruu' =C (G RxxG H+E[n n H]) C H
2 0 0 2 2 2
ここで、 nの分散と nの分散との差が小さいと仮定すると、 [数 12]および [数 13]か
1 2
ら Ruu'は次式 [数 14]で表される。
[数 14] Ruu' =C C _ 1Ruu (C C _1) H
2 1 2 1
このようにして共分散行列 Ruuを補正することで、送信信号推定部 205は、共分散 行列 Ruuに代えて [数 14]に示す Ruu'を用いることで、送信信号の推定を正確に実 施しうる。
[0065] 次に、上述の補正式を用いて共分散行列 Ruuを補正するときの、無線通信装置 20 00力 S行う処理にっ 、て説明する。 送信信号推定部 205は、ダウンコンバータ 202の利得を示す値をダウンコンバータ 202から受け付けて制御部 206へ出力する。
制御部 206は、ダウンコンバータ 202の利得を示す値を送信信号推定部 205から 受け付けており、不要信号測定部 204によって共分散行列 Ruuの算出を行わせてい る間におけるダウンコンバータ 202の利得を送信信号推定部 205へ出力する。
[0066] 送信信号推定部 205は、制御部 206から出力された利得を示す値を受け付けて、 不要信号測定部 204によって共分散行列 Ruuが算出された期間におけるダウンコン バータ 202の利得をメモリに保持する。
図 5は、共分散行列 Ruuをダウンコンバータ 202の利得によって補正するときの送 信信号推定部 205が行う処理を示すフローチャートである。
[0067] 同図に示すように、送信信号推定部 205は、ダウンコンバータ 202から受信信号を 受け付けると (ステップ S51 : YES)、保持している共分散行列 Ruuと、共分散行列 Ru u算出時におけるダウンコンバータ 202の利得と、送信信号を推定する期間における ダウンコンバータ 202の利得とから、上記 [数 14]に従って共分散行列 Ruuを補正し、 補正後の共分散行列 Ruu'を算出する (S52)。
[0068] 共分散行列 Ruu'を算出すると、受信信号と、伝送路行列 Hと、補正後の共分散行 列 Ruu'とに基づいて、送信信号を推定する (ステップ S53)。すなわち、上記 [数 1]に おける Ruuに代えて Ruu'を用いて送信信号の推定を行う。
送信信号の推定が行われると、推定値を制御部 206へ出力し (ステップ S54)、受 信信号の入力が再度行われるまで待機 (ステップ S51 :NO)する。
<実施の形態 2 >
次に、本発明の別の実施形態について図面を用いて説明する。
[0069] く構成〉
図 6は、本発明の実施の形態 2にかかる無線通信システムの機能ブロック図である 同図に示される無線通信システムにおいて実施の形態 1と異なる点は、無線送信 局に送信停止期間設定部 104が備わり、無線通信装置に無送信期間検出部 207が 備わっている点である。実施の形態 1と同一構成の部分については説明を省略し、 実施の形態 1と異なる点に主眼を置きつつ説明する。
[0070] <無線送信局 >
同図に示すように、無線送信局 1100は、送信停止期間設定部 104を備える。 送信停止期間設定部 104は、所定の信号を送信する回路であり、無線送信局 110 0から信号を送信することを停止する期間である送信停止期間を設定する。送信停 止期間は、例えば 40マイクロ秒と設定する。送信停止期間を設定すると、設定した期 間を通信制御部 103へ出力する。
[0071] 通信制御部 103は、送信停止期間設定部 104が送信停止期間の設定を行って所 定の信号を出力すると、出力された信号を受け付けて、送信停止期間に示される期 間、信号を送信しな 、よう無線通信装置 2100との無線通信を制御する。
<無線通信装置 >
同図に示すように、無線通信装置 2100は、無送信期間検出部 207を備える。
[0072] 無送信期間検出部 207は、信号の入力を受け付けて、受け付けた信号をもとに所 定の検出を行う回路であり、受信信号を受け付けるごとに、受信信号に基づいて無 線送信局 1100から信号が送信されていないことを検出し、検出している間、所定の 信号を制御部 206へ出力し続ける。
なお、無線送信局 1100から信号が送信されていないことを検出する方法は、例え ば、受信信号を測定し、無線送信局 1100から送信される信号に含まれるトレーニン グ信号が受信信号に含まれていないと判定することで実現できる。また、無線送信局 1100から送信される信号を受信したときの受信信号の振幅が所定範囲内の値であ る場合にぉ 、ては、受信信号の振幅が所定範囲に含まれて 、な 、ことを判定して、 無線送信局 1100から信号が送信されていないと検出することもできる。
[0073] 制御部 206は、無送信期間検出部 207から出力された信号を受け付けて、受け付 けた信号をもとに、不要信号測定部 204によって共分散行列 Ruuを算出させるタイミ ングを制御する。
<動作 >
次に、無線通信装置 2100の動作について説明する。
[0074] 無送信期間検出部 207は、信号を受信するたびに所定の検出を逐次行い、検出 結果に応じて、所定の信号を制御部 206へ逐次出力し、制御部 206では、無送信期 間検出部 207から逐次出力される信号をもとに不要信号測定部 204の動作を制御 する。
図 7は、制御部 206が無送信期間検出部 207による検出に基づいて不要信号測定 部 204を制御する処理を示すフローチャートである。
[0075] 同図に示すように、制御部 206は、無送信期間検出部 207が無線送信局 1100か ら信号が送信されていないことを検出して出力した信号を受け付けると (ステップ S71 : YES)、不要信号測定部 204へ測定開始指示信号を送信して不要信号測定部 20 4に共分散行列 Ruuの算出を開始させる (ステップ S72)。測定開始指示信号を送信 して力も所定期間が経過したら (ステップ S73: YES)、不要信号測定部 204へ測定 終了指示信号を送信して不要信号測定部 204による共分散行列 Ruuの算出処理を 終了させる(ステップ S75)。
[0076] 測定開始指示信号を送信 (ステップ S72)して力も所定期間が経過して 、な 、とき は (ステップ S73 :NO)、無送信期間検出部 207から信号が出力されている間は所 定期間が経過するまで待機する (ステップ S74 :NO、ステップ S73)。所定期間経過 前であって (ステップ S73 :NO)無送信期間検出部 207から信号が出力されなくなつ たとき、すなわち無送信期間検出部 207が無線送信局 1100から信号が送信されて いないことを検出できなかったときは (ステップ S74: YES)、不要信号測定部 204へ 測定終了指示信号を送信して不要信号測定部 204による共分散行列 Ruuの算出処 理を終了させる(ステップ S75)。
[0077] 不要信号測定部 204による共分散行列 Ruuの算出処理を終了させると (ステップ S 75)、無送信期間検出部 207から信号が出力されるまでの間 (ステップ S71 :NO)、 不要信号測定部 204に対して測定開始指示信号を送信せず、不要信号測定部 204 を待機させておく。
次に、無線送信局 1100の動作について説明する。
[0078] 無線送信局 1100は、送信停止期間設定部 104を備えており、送信停止期間を設 定することで、通信制御部 103によって所定期間、信号の送信を停止させることがで きる。 送信停止期間設定部 104は、送信停止期間の設定を行うが、設定を行う時期は、 例えば所定の間隔を空けて定期的に設定を行うこととしてもよいし、設定を行う時期 を予め決定しておき、決定した時期に従って設定を行うこととしてもよい。設定が行わ れると、送信を停止する期間を示す所定の信号を通信制御部 103へ出力する。
[0079] 図 8は、通信制御部 103が送信停止期間設定部 104によって設定された送信停止 期間に基づいて信号の送信を制御する処理を示すフローチャートである。
同図に示すように、通信制御部 103は、送信停止期間設定部 104から送信停止期 間の設定を受け付けると (ステップ S81: YES)、信号の送信を停止し (ステップ S82) 、送信停止期間に示される期間が経過するまで (ステップ S83 :NO)、信号の送信の 停止を行う。送信停止期間を経過すると (ステップ S83 : YES)、信号の送信の停止を 解除し (ステップ S84)、送信停止期間設定部 104から送信停止期間の設定があるま で (ステップ S81: NO)無線通信を行う。
<実施の形態 3 >
次に、本発明の別の実施形態について図面を用いて説明する。
[0080] く構成〉
図 9は、本発明の実施の形態 3にかかる無線通信システムの機能ブロック図である 同図に示される無線通信システムにおいて実施の形態 1と異なる点は、無線通信 装置に強干渉期間検出部 208が備わっている点である。実施の形態 1と同一構成の 部分については説明を省略し、実施の形態 1と異なる点に主眼を置きつつ説明する
[0081] <無線通信装置 >
同図に示すように、無線通信装置 2200は、強干渉期間検出部 208を備える。 強干渉期間検出部 208は、信号の入力を受け付けて、受け付けた信号をもとに所 定の検出を行って信号を送信する回路であり、受信信号を受け付けるごとに、受信 信号に基づいて、受信信号に含まれる信号のうち干渉局 1500から受信した信号成 分による影響が所定の範囲より大きいことを検出し、検出している間、所定の信号を 制御部 206へ出力し続ける。干渉局 1500から受信した信号成分による影響が所定 の範囲より大きいとは、例えば干渉局 1500から受信した信号の信号強度が所定値よ り大きいことをいう。
[0082] この検出は、例えば、無線送信局 1000から信号が送信されていない期間において 、受信信号の振幅が所定の値より大きいことを判定することで行う。
制御部 206は、強干渉期間検出部 208から出力された信号を受け付けて、受け付 けた信号をもとに、不要信号測定部 204によって共分散行列 Ruuを算出させるタイミ ングを制御する。
[0083] <動作 >
次に、無線通信装置 2200の動作について説明する。
強干渉期間検出部 208は、信号を受信するたびに所定の検出を逐次行い、検出 結果に応じて、信号を制御部 206へ逐次出力する。制御部 206では、無線送信局 1 000との無線通信に先立って不要信号測定部 204によって共分散行列 Ruuを算出さ せる際に、強干渉期間検出部 208から逐次出力される信号をもとに不要信号測定部 204の動作を制御する。
[0084] 図 10は、制御部 206が強干渉期間検出部 208による検出に基づいて不要信号測 定部 204を制御する処理を示すフローチャートである。
同図に示すように、制御部 206は、強干渉期間検出部 208が干渉局 1500から受 信した信号成分による影響が所定の範囲より大きいことを検出して出力した信号を受 け付けると (ステップ S101: YES)、不要信号測定部 204へ測定開始指示信号を送 信して不要信号測定部 204に共分散行列 Ruuの算出を開始させる (ステップ S102) 。測定開始指示信号を送信してから所定期間が経過したら (ステップ S103: YES)、 不要信号測定部 204へ測定終了指示信号を送信して不要信号測定部 204による共 分散行列 Ruuの算出処理を終了させる (ステップ S105)。
[0085] 測定開始指示信号を送信して力も所定期間が経過していないとき (ステップ S103 :
NO)であっても、強干渉期間検出部 208から信号が出力されている間は所定期間 が経過するまで待機しているが(ステップ S104 :NO、ステップ S 103)、強干渉期間 検出部 208から信号が出力されなくなったとき、すなわち強干渉期間検出部 208が 検出を行わな力つたときは (ステップ S 104 : YES)、不要信号測定部 204へ測定終 了指示信号を送信して不要信号測定部 204による共分散行列 Ruuの算出処理を終 了させる(ステップ S105)。
[0086] 不要信号測定部 204による共分散行列 Ruuの算出処理を終了させると、強干渉期 間検出部 208から再度信号が出力されるまでの間 (ステップ S101 :NO)、不要信号 測定部 204に対して測定開始指示信号を送信せず、不要信号測定部 204を待機さ せておく。
<実施の形態 4 >
次に、本発明の別の実施形態について図面を用いて説明する。
[0087] く構成〉
図 11は、本発明の実施の形態 4にかかる無線通信システムの機能ブロック図である 同図に示される無線通信システムにおいて実施の形態 1と異なる点は、無線通信 装置に干渉伝送路測定部 209が備わっている点である。また、干渉局 1500から送 信される信号に含まれるトレーニング信号は、無線通信装置にとって既知である。実 施の形態 1と同一構成の部分については説明を省略し、実施の形態 1と異なる点に 主眼を置きつつ説明する。
[0088] なお、実施の形態 4における無線通信装置は、干渉局 1500から送信された信号に 含まれるトレーニング信号を記憶している。また、干渉局 1500から送信された信号は 、無線送信局 1000が送信する信号と同一の周波数チャネルで干渉するとし、さらに 、干渉局 1500から送信される信号 Xの統計的性質は既知とする。このとき、無線通信 装置は、トレーニング信号に基づいて、干渉局との間における干渉伝送路行列を算 出することができ、求められた干渉伝送路行列をもとに共分散行列 Ruuを算出する。
[0089] <無線通信装置 >
同図に示すように、無線通信装置 2300は、干渉伝送路測定部 209を備え、また、 不要信号測定部 210を備える。
干渉伝送路測定部 209は、干渉局 1500との間における信号の伝送路の特性を示 す伝送路行列を算出する処理を行う集積回路であり、干渉局 1500が送信する信号 に含まれる所定パターンの信号を予め保持するメモリを備えて 、る。受信信号を受け 付けると、受け付けた信号に含まれる所定パターンの信号を抽出し、抽出した所定パ ターンと、予め保持しておいた所定パターンの信号との相関を計算することで干渉局
1500との間における干渉伝送路行列 Gを算出する。算出した干渉伝送路行列 Gを 不要信号測定部 204へ出力する。
[0090] 不要信号測定部 204は、干渉伝送路測定部 209から出力された干渉伝送路行列 Gを受け付け、 [数 7]にしたがって共分散行列 Ruuを算出する。算出した共分散行列 Ruuを送信信号推定部 205へ出力する。なお、 [数 7]において、共分散行列 Rxxは、 Xの統計的性質により求めることができる。
<動作 >
次に、無線通信装置 2300の動作について説明する。
[0091] 図 12は、実施の形態 4において不要信号測定部 210が不要信号の共分散行列 Ru uを算出する処理を示すフローチャートである。
同図に示すように、不要信号測定部 210は、干渉伝送路測定部 209から干渉伝送 路行列 Gの入力を受け付けると (ステップ S121 :NO)、 [数 7]にしたがって共分散行 列 Ruuを算出する (ステップ S 122)。算出した共分散行列 Ruuを送信信号推定部 20 5へ出力する (ステップ S123)。以後、干渉伝送路行列 Gの入力がある毎に (ステップ S121)、共分散行列 Ruuを算出して出力する。
[0092] 上記の構成を備えることにより、無線通信装置 2300は、不要信号を受信して共分 散行列 Ruuを相関演算により算出するよりも、早期にかつ正確に共分散行列 Ruuを 算出することができる。
<実施の形態 5 >
次に、本発明の別の実施形態について図面を用いて説明する。
[0093] <構成 >
図 13は、本発明の実施の形態 5にかかる無線通信システムの機能ブロック図である 同図に示される無線通信システムにおいて実施の形態 1と異なる点は、無線通信 装置に送信停止要求送出部 211が備わり、無線送信局に送信停止要求受信部 105 が備わっている点である。実施の形態 1と同一構成の部分については説明を省略し 、実施の形態 1と異なる点に主眼を置きつつ説明する。
[0094] <無線通信装置 >
同図に示すように、無線通信装置 2400は、送信停止要求送出部 211を備える。 送信停止要求送出部 211は、信号の送受信を行う回路であり、制御部 206の指示 を受けて、無線送信局 1200へ送信停止要求信号を送信する。送信停止要求信号と は、無線送信局 1200に対し、信号の送信を停止するよう要求する信号である。信号 の送信はアンテナを介して行うが、アンテナ 201とは別にアンテナを備え、そのアン テナを介して送信停止要求信号を送信する。なお、別にアンテナを備えず、アンテナ 201を用いて送信してもよい。送信停止要求信号を無線送信局 1200へ送信すると、 送信した旨を表す所定の信号を制御部 206へ出力する。
[0095] また、制御部 206の指示を受けて、無線送信局 1200に対して信号の送信を停止さ せる期間を表す停止期間情報や、無線送信局 1200による信号の送信の再開時期 を示す送信再開時期情報を送信停止要求信号に含ませて無線送信局 1200へ送信 することもできる。停止期間情報は、例えば 40マイクロ秒と設定する。
また、制御部 206の指示を受けて、無線送信局 1200に対して信号の送信の停止 を解除するよう要求する解除信号を送信することもできる。
[0096] 制御部 206は、送信停止要求送出部 211に対して、送信停止要求信号を無線送 信局 1200へ送信するよう指示する所定の信号を送信し、送信停止要求送出部 211 から、送信停止要求信号を送信した旨の信号を受け付けると、不要信号測定部 204 の動作を制御して共分散行列 Ruuを算出させる。
また、送信停止要求信号に停止期間情報や送信再開時期情報を含ませて無線送 信局 1200へ送信するよう送信停止要求送出部 211へ指示することもできる。
[0097] また、不要信号測定部 204の動作を制御して共分散行列 Ruuを算出させた後に、 解除信号を無線送信局 1200へ送信するよう送信停止要求送出部 211へ指示するこ とちでさる。
<無線送信局 >
同図に示すように、無線送信局 1200は、送信停止要求受信部 105を備える。
[0098] 送信停止要求受信部 105は、信号を受け付けて所定の処理を行う回路であり、受 信した信号を受け付けて送信停止要求信号が含まれて!/、るか否かを判定し、含まれ ていれば、送信停止要求信号を受信した旨を示す所定の信号を通信制御部 103へ 出力する。
また、解除信号を受信すると、解除信号を受信した旨を示す所定の信号を通信制 御部 103へ出力する。
[0099] 通信制御部 103は、送信停止要求受信部 105から所定の信号を受信すると、信号 の送信を所定期間停止して無線通信装置 2400との無線通信を制御する。なお、送 信停止要求信号に停止期間情報や送信再開時期情報が含まれていれば、停止期 間情報や送信再開時期情報にしたがって信号の送信を停止する期間を制御する。 また、送信停止要求受信部 105から解除信号を受信した旨の所定の信号を受け付 けて、信号の送信の停止を解除する。
[0100] <動作 >
次に、無線通信装置 2400の動作について説明する。
図 14は、送信停止要求送出部 211が送信停止要求信号を送信する際の処理を示 すフローチャートである。
同図に示すように、送信停止要求送出部 211は、制御部 206から送信停止要求信 号の送信指示を受け付けると (ステップ S141: YES)、無線送信局 1200へ送信停止 要求信号の送信を開始し (ステップ S 142)、送信が完了するまで送信を行!ヽ (ステツ プ S143 :NO)、送信が完了すると (ステップ S143 :YES)、送信が完了した旨を通 知する所定の信号を制御部 206へ出力する (ステップ S 144)。以後、送信停止要求 信号の送信指示がある毎に (ステップ S141)、送信停止要求信号を無線送信局 120 0へ送信する。
[0101] 続いて、制御部 206の行う処理について説明する。
図 15は、実施の形態 5において制御部 206が不要信号測定部 204を制御する処 理を示すフローチャートである。
同図に示すように、制御部 206は、不要信号測定部 204によって共分散行列 Ruu を算出させる前に、送信停止要求送出部 211へ送信停止要求信号を送信するよう指 示し (ステップ S151)、送信停止要求送出部 211から送信停止要求信号を無線送信 局 1200へ送信した旨を示す信号を受け付けるまで待機し (ステップ SI 52 : NO)、信 号を受け付けると (ステップ S152 :YES)、不要信号測定部 204へ測定開始指示信 号を送信する (ステップ S 153)。
[0102] 送信停止要求信号に停止期間情報や送信再開時期情報を含ませて無線送信局 1 200へ送信した場合は、停止期間情報や送信再開時期情報に示される期間におい て不要信号測定部 204によって共分散行列 Ruuを算出させ、停止期間情報や送信 再開時期情報を送信停止要求信号に含ませていないときは、所定期間経過が経過 するまで (ステップ S154)不要信号測定部 204によって共分散行列 Ruuを算出させ る。
[0103] 所定期間が経過するか、停止期間情報や送信再開時期情報に示される期間が過 ぎると (ステップ S154 :YES)、不要信号測定部 204へ測定終了指示信号を送信す る(ステップ S 155)。
次に、無線送信局 1200の動作について説明する。
図 16は、無線送信局 1200の通信制御部 103が送信停止要求信号をもとに信号 の送信を制御する処理を示すフローチャートである。
[0104] 同図に示すように、通信制御部 103は、送信停止要求受信部 105から、送信停止 要求信号を受信した旨を示す信号を受け付けると (ステップ S161 :YES)、無線通信 装置 2400との無線通信を制御して信号の送信を停止する (ステップ S 162)。
所定期間が経過するまで (ステップ S 163: NO)信号の送信を停止し、所定期間が 経過したら (ステップ S 163: YES)、信号の送信を開始して無線通信装置 2400との 無線通信装置を再開する (ステップ S164)。送信停止要求受信部 105によって再び 送信停止要求信号が受信されるまでの間 (ステップ S 161: NO)、無線通信装置 240 0との無線通信を行う。
[0105] なお、送信停止要求信号に停止期間情報や送信再開時期情報が含まれている場 合は、停止期間情報や送信再開時期情報に示されている期間において信号の送信 を停止するよう制御する。
上記の説明では、送信停止要求信号に停止期間情報や送信再開時期情報を含め て送信する場合について説明を行ったが、これとは別に、無線通信装置 2400は、無 線送信局 1200に対して送信停止要求信号を送信して無線送信局 1200による信号 の送信を停止させた後、解除信号を無線送信局 1200へ送信することで、無線送信 局 1200による信号の送信を再開させることもできる。
[0106] 以下、解除信号を送信して無線送信局 1200による信号の送信を停止させる場合 における無線通信装置 2400の動作について説明する。
図 17は、解除信号を送信する場合において制御部 206が行う処理を示すフローチ ヤートである。なお、図 15に示す処理と同一の処理については、図 15と同一の符号 を用いて説明を省略する。
[0107] 同図に示すように、制御部 206は、図 15のステップ S151力らステップ S155に示す 処理を行うことで不要信号測定部 204に共分散行列 Ruuを算出させると、無線送信 局 1200に対して解除信号を送信するよう指示する (ステップ S 156)。
次に、解除信号を受信した場合における無線送信局 1200の動作について説明す る。
図 18は、無線送信局 1200の通信制御部 103が解除信号をもとに信号の送信を制 御する処理を示すフローチャートである。
[0108] 同図に示すように、通信制御部 103は、送信停止要求受信部 105から、送信停止 要求信号を受信した旨を示す信号を受け付けると (ステップ S181 :YES)、無線通信 装置 2400との無線通信を制御して信号の送信を停止する (ステップ S 182)。
信号の送信を停止した後、送信停止要求受信部 105から解除信号を受け付けると (ステップ S183 : YES)、信号の送信を開始して無線通信装置 2400との無線通信を 再開する (ステップ S185)。送信停止要求受信部 105によって解除信号が受信され ていないときは (ステップ S183 :NO)、所定期間が経過するまでは、解除信号が受 信されている力否かを判断し (ステップ S184 :NO、ステップ S183)、所定期間が経 過すると (ステップ S 184 : YES)、無線通信装置 2400との無線通信を再開する (ステ ップ S185)。送信停止要求受信部 105によって再び送信停止要求信号が受信され るまでの間(ステップ S 181: NO)、無線通信装置 2400との無線通信を行う。
<実施の形態 6 >
次に、本発明の別の実施形態について図面を用いて説明する。 [0109] <構成 >
図 19は、本発明の実施の形態 6にかかる無線通信システムの機能ブロック図である 同図に示される無線通信システムにおいて実施の形態 1と異なる点は、無線通信 装置において、実施の形態 1とは異なる不要信号測定部 212を備えている点である。 不要信号測定部 212は、実施の形態 1における不要信号測定部 204とは異なり、 伝送路測定部 203から伝送路行列 Hの入力を受け付け、さらに、送信信号推定部 2 05から送信信号の推定値 Vの入力を受け付けている。受け付けた Hと Vは、不要信号 測定部 212が備えるメモリに保持されており、伝送路行列 Hおよび送信信号の推定 値 Vが入力される毎に、メモリに保持している値を書き換える。そして、受信信号と、伝 送路行列 Hと、送信信号の推定値 Vとに基づいて、所定の式に従って共分散行列 Ru uを算出する。所定の式については後述する。
[0110] また、不要信号測定部 212は、受信信号の変調の多値数を判別する判別回路を備 えている。変調の多値数は、受信信号の変調方式を識別することで判別する。多値 数を判別すると、判別した多値数を表す信号を、制御部 206へ出力する。
ここで、所定の式について説明すると、不要信号測定部 212は、不要信号を u、受 信信号を rとしたとき、不要信号を次式 [数 15]によって求める。
[数 15] u=r-Hd
dは、 Vを判定することにより得た離散値である。変調時に、送信信号は離散値をと るため、推定値も離散値とする。
[0111] この uに対して E [uuH]を計算することにより、共分散行列 Ruuを算出する。
上述した [数 15]について説明すると、まず、受信信号!:は、次式 [数 16]で表せる。
[数 16] r=Hs+u
sの値について、送信信号の推定値 Vの判定値 dを使用すると、 [数 15]が得られる
[0112] 制御部 206は、多値数を表す信号を不要信号測定部 212から受け付けて、多値数 に基づいて不要信号測定部 212の動作時期を制御することもできる。
<動作 > 次に、無線通信装置 2500の動作について説明する。
図 20は、実施の形態 6の不要信号測定部 212が不要信号の共分散行列 Ruuを算 出する処理を示すフローチャートである。
[0113] 同図に示すように、不要信号測定部 212は、制御部 206から出力された測定開始 指示信号を受け付けると (ステップ S201 : YES)、受信信号と、伝送路行列 Hと、送 信信号の推定値 Vとに基づいて、所定の式に従って共分散行列 Ruuを算出する (ステ ップ S 202)。制御部 206から測定終了指示信号を受け付けるまでの間 (ステップ S2 03 :NO)、共分散行列 Ruuの算出および出力を行い (ステップ S202)、制御部 206 力も測定終了指示信号を受け付けると (ステップ S203: YES)、受け付けた時点で算 出されている共分散行列 Ruuを送信信号推定部へ出力し (ステップ S204)、測定開 始指示信号が再度入力されるまで待機 (ステップ S201: NO)する。
[0114] 上述した構成を備えることにより、無線送信局 1000から信号が送信されている期間 においても、干渉局 1500から送信される信号の影響に対応しつつ共分散行列 Ruu を算出することができるので、干渉の影響の変動に追従しつつ、送信信号の推定を 行うことができる。また、不要信号測定部 212によって共分散行列 Ruuを算出する際 に、無線送信局 1000からの信号を停止させる必要がなくなる。
[0115] 続いて、制御部 206が、不要信号測定部 212から多値数を表す信号を受け付けて 多値数に基づいて不要信号測定部 212の動作時期を制御する場合において行う処 理について説明する。
図 21は、制御部 206が、判別された多値数をもとに不要信号測定部 212を制御す る処理を示すフローチャートである。
[0116] 同図に示すように、制御部 206は、不要信号測定部 212から多値数を表す信号を 受け付けると (ステップ S211 :YES)、多値数を所定値と比較し (ステップ S212)、多 値数が所定値以下であれば (ステップ S212 : YES)、不要信号測定部 212へ測定開 始指示信号を送信し、多値数が所定値より大きければ (ステップ S212 :NO)、測定 開始指示信号を送信しないか、既に不要信号測定部 212によって共分散行列 Ruu の算出が行われているときは測定終了指示信号を送信する (ステップ S214)。再び 多値数の入力があるまで待機 (ステップ S211 :NO)し、多値数の入力があると (ステ ップ S211 : YES)、上述した処理を実施して不要信号測定部 212の動作を制御する
[0117] 上述した構成を備えることにより、無線通信装置 2500は、信号の変調の多値数が 小さい信号をもとに共分散行列 Ruuを算出することができる。例えば、受信信号に 64 QAMの信号と 16QAMの信号とが混在していれば、制御部 206は、 16QAMの信 号を用いて不要信号測定部 212によって共分散行列 Ruuを算出させることができる。 一般に、信号の変調の多値数が小さいほど、送信信号の推定値を判定して求めた 値に誤りが少ないため、誤りの少ない推定値を用いることで、共分散行列 Ruuもまた 正確に算出しうる。
<実施の形態 7 >
次に、本発明の別の実施形態について図面を用いて説明する。
[0118] <構成 >
図 22は、本発明の実施の形態 7にかかる無線通信システムの機能ブロック図である 同図に示される無線通信システムにおいて実施の形態 1と異なる点は、無線送信 局と無線通信装置は周波数分割多重信号を用いて無線通信を行う点であり、無線 送信局は周波数多重部 104を備え、無線通信装置は周波数分離部 212を備えてい る点である。周波数分割多重信号とは、例えば OFDM信号やウェーブレット信号であ る。実施の形態 1と同一構成の部分については説明を省略し、実施の形態 1と異なる 点に主眼を置きつつ説明する。
[0119] <無線送信局 >
同図に示すように、無線送信局 1300は、アップコンバータ 102に対応した周波数 多重部 104 (周波数多重部 104a、周波数多重部 104b、 · · を備える。
周波数多重部 104は、 M個からなり、例えば OFDM信号を用いて無線通信装置 26 00と無線通信を行う場合は、周波数多重部 104は逆フーリエ変 である。ゥエー ブレット信号を用いて無線通信を行う場合は、周波数多重部 104はウェーブレットに 対応したフィルタ群である。
[0120] なお、周波数多重部 104では、図 22では M個備わっているものとしている力 必ず しも M個である必要はなぐ 1つであってもよい。
周波数分割多重信号力 sもつ周波数成分の数を Fとすると、通信制御部 103は、無 線通信装置 2600へ送信する信号を、 F個の送信信号ベクトル s〜sから構成して無
1 F
線通信装置 2600との無線通信を制御する。ただし、 Fは 2以上の整数である。
[0121] <無線通信装置 >
同図に示すように、無線通信装置 2600は、ダウンコンバータ 202に対応した周波 数分離部 212 (周波数分離部 212a、周波数分離部 212b、 · · を備える。
周波数分離部 212は、 N個からなり、例えば OFDM信号を用いて無線送信局 1300 と無線通信を行う場合は、周波数分離部 212はフーリエ変換器である。ウェーブレツ ト信号を用いて無線通信を行う場合は、周波数分離部 212はウェーブレットに対応し たフィルタ群である。
[0122] なお、伝送路測定部 203と、不要信号測定部 204と、送信信号推定部 205とからな る組は、 1組でもよいし、周波数成分の数 Fに応じて複数備えることとしてもよい。本実 施形態では F組備えて ヽるものとする。
そして、周波数分離部 212は、送信信号ベクトル s〜sの、第 f番目の成分を、伝送
1 F
路測定部 203と不要信号測定部 204と送信信号推定部 205とからなる組の第 f番目 の組に出力する。
[0123] 伝送路測定部 203と、不要信号測定部 204と、送信信号推定部 205とからなる組 の第 f番目の組においては、送信信号ベクトル s〜s
1 Fのうち f番目の周波数成分を受 信信号 rとして受け付けて、 rに基づいて、伝送路測定部 203は伝送路行列 Hを、不 f f f 要信号測定部 204は RuM¾、送信信号推定部 205は送信信号 sの推定値 vを求め
f f る。
[0124] <動作 >
<無線送信局 >
以下、上述の構成を備える無線送信局 1300の動作について説明する。 通信制御部 103は、送信信号ベクトル s〜sを生成し、送信信号ベクトルの各要素
1 F
の、アンテナ 101の各々に対応する要素を周波数多重部 104へ出力する。すなわち 、送信信号 sの第 m番目のアンテナに対応する要素、送信信号 sの第 m番目のアン テナに対応する要素、 · · ·送信信号 sの第 m番目のアンテナに対応する要素を周波
F
数多重部 104へ出力する。
[0125] 周波数多重部 104は、通信制御部 103からの出力を受け付けて、それぞれに 1番 目、 2番目、 · · 'F番目の周波数遷移を与えて合成する。合成した信号を、アップコン バータ 102へ出力する。
アップコンバータ 102は、周波数多重部 104の出力を所定の中心周波数を持つ高 周波信号に変換して無線電送に十分な電力に増幅する。
[0126] アンテナ 101は、アップコンバータ 102から高周波信号を受け付けて、信号の放射 を行う。
<無線通信装置 >
以下、無線送信局 1300から送信された周波数多重分割信号を受信する無線通信 装置 2600の動作にっ 、て説明する。
[0127] アンテナ 201は、無線送信局 1300から送信された信号と干渉局 1500から送信さ れた信号との合成信号を受信すると、受信した高周波信号を、ダウンコンバータ 202 によって等価低域の信号に変換する。変換した等価低域の信号を周波数分離部 21 2に出力し、周波数分離部 212は、ダウンコンバータ 202から出力された信号を受け 付けて周波数成分に分離し、ダウンコンバータ 202の各々と接続されている各アンテ ナに対応する第 1番目から第 F番目の周波数成分を表す F個の受信信号を出力する 。例えば、周波数分離部 212aは、ダウンコンバータ 202aから出力された信号を受け 付けて周波数成分に分離し、アンテナ 201aに対応する第 1番目から第 F番目の周波 数成分を表す F個の受信信号を、伝送路測定部 203と不要信号測定部 204と送信 信号推定部 205へ出力する。
[0128] 伝送路測定部 203と不要信号測定部 204と送信信号推定部 205とからなる組のう ち第 f番目の組は、第 1番目から第 N番目のアンテナに対応する第 f番目の周波数成 分を rとして受け付ける。 rを受け付けると、 rに基づいて、送信信号推定部 205は送 f f f
信信号 sの推定値 vを求めて制御部 206へ出力する。
f f
<実施の形態 8 >
次に、本発明の別の実施形態について図面を用いて説明する。 [0129] <構成 >
図 23は、本発明の実施の形態 8にかかる無線通信システムの機能ブロック図である 同図に示される無線通信システムにおいて実施の形態 1と異なる点は、無線通信 装置に信頼度評価部 213と誤り訂正部 214が備わっている点である。実施の形態 1 と同一構成の部分については説明を省略し、実施の形態 1と異なる点に主眼を置き つつ説明する。
[0130] <無線通信装置 >
同図に示すように、無線通信装置 2700は、信頼度評価部 213と誤り訂正部 214を 備える。
信頼度評価部 213は、所定の計算を行う回路であり、また、伝送路測定部 203およ び不要信号測定部 204から逐次出力される伝送路行列 Hと共分散行列 Rmiとを受け 付けて、受け付けた伝送路行列 Hおよび共分散行列 Rmiを保持するメモリを備える。
[0131] メモリに保持されて 、る伝送路行列 Hおよび共分散行列 Ruuは、伝送路測定部 20 3および不要信号測定部 204から出力がある毎に書き換えられ、書き換えられる毎に 、保持して!/、る伝送路行列 Hと共分散行列 Rmiとから所定の式に従って送信信号の 推定値 Vに含まれる残留誤差の推定値 zを求める。
ここで、残留誤差の推定値 zを求める所定の式について説明する。送信信号推定 部 205は、 [数 3]に示すように、 v=Wrによって送信信号の推定を行うとする。残留 誤差の推定値 zのベクトルのうち k番目の要素に対する演算であることを z[k]によって 示すと、信頼度評価部 213は、 z[k]を、次式 [数 15]によって算出する。
[数 15] z[k] = (W[k]H-I [k])Rss (HHW[k]H-I [k]H) +W[k]RuuW[k]H
M M
ただし、 W[k]は、 Wが行列の場合は Wの第 k行目の行ベクトル、 Wが列ベクトルの 場合は Wの第 k番目の要素、 I [k]は Mが 2以上の場合は M X Mの単位行列の第 k 行目の行ベクトル、 Mが 1の場合は 1、を表す。
[0132] 上述した [数 15]について詳説する。
列ベクトルである Vの、 k番目の要素が含む誤差振幅 y [k]を求めると、 y [k]は、次 式 [数 16]によって表される。 [数 16] y[k] = (Wr) [k] -s [k]
=W[k] (Hs + u)— s[k]
= (W[k]H-I [k]) s+W[k]u
M
ここで、 y[k]の 2乗平均値は、次式 [数 17]に示される。
[数 17] E[ I y[k]2 I ] = (W[k]H-I [k])Rss (HHW[k]H— I [k]H) +W[k]Ruu w[k]H
[数 15]は、この [数 17]と同一である。
[0133] なお、送信信号 sの各要素が互いに無相関で、 sの各要素の平均電力がすべて等 しい場合は、 sの各要素の平均電力を pと表記すると、 [数 15]は次式 [数 18]によつ て表すことが出来る。
[数 18] z[k] =p (W[k]H-I [k]) (HHW[k]H-I [k]H) +W[k]RuuW[k]H 上述した [数 18]によって zを求めることにより、 [数 15]によって算出する場合に比 ベて、行列の積の演算量を減少させることができる。
[0134] さらに、信頼度評価部 213は、残留誤差の推定値 zをもとにした送信信号の推定値 Vの信頼度を算出し、算出した信頼度を誤り訂正部 214へ出力する。
信頼度は、例えば [数 15]によって算出された残留誤差の推定値 zをもとに、 zが大 きいほど信頼度を小さぐ zが小さいほど信頼度を大きくする、などとして信頼度を算 出することができる。すなわち、信頼度が大きいほど、送信信号の推定値 Vに含まれ る残留誤差が小さ 、と 、うことになる。
[0135] 誤り訂正部 214は、信号に含まれる誤りを訂正する誤り訂正回路であり、例えばビタ ビ復号回路である。また、ビタビ復号回路の他に、ディンターリーブ回路を含めてもよ い。誤り訂正部 214は、信頼度評価部 213から出力される信頼度を保持するメモリを 備え、送信信号の推定値 Vに対して信頼度に応じた誤り訂正を実施する。信頼度に 応じた誤り訂正とは、例えば、信頼度が所定値より小さい送信信号の推定値を無視し 、信頼度が所定値より大き ヽ送信信号の推定値を重視することを ヽぅ。
[0136] 誤り訂正を実施すると、誤り訂正後のデータを制御部 206へ出力する。
なお、ビタビ復号などにおいては、送信信号の推定値 Vのに含まれる残留誤差の振 幅が一定であると、誤り訂正能力が向上するので、残留誤差を 2乗平均値の平方根 の逆数で正規ィ匕するとよい。したがって、信頼度評価部 213は、 z[k]をもとにして、 送信信号の推定値 Vの第 k番目の要素に対する信頼度を、 z [k]の平方根に反比例さ せた値に応じて出力するとよい。
[0137] <動作 >
以下、無線通信装置 2700の動作につ 、て図面を用いて説明する。
図 24は、信頼度評価部 213の行う処理を示すフローチャートである。
同図に示すように、信頼度評価部 213は、伝送路測定部 203から出力された伝送 路行列 Hを受け付けるか、または不要信号測定部 204から出力された共分散行列 R uuを受け付けると (ステップ S241: YES)、伝送路行列 Hと共分散行列 Ruuとに基づ いて残留誤差 zを算出する (ステップ S242)。残留誤差 zを算出すると、残留誤差に 応じて信頼度を評価し、評価した信頼度を誤り訂正部 214へ出力する (ステップ S24 3)。伝送路行列 Hまたは共分散行列 Ruuの出力が再度行われるまで待機 (ステップ S241 :NO)し、伝送路行列 Hまたは共分散行列 Ruuを受け付ける毎に (ステップ S2 41: YES)、所定の式に従って残留誤差の算出および信頼度の出力を行う(ステップ S 242、ステップ S 243)。
[0138] 続いて、誤り訂正部 214の行う処理について説明する。誤り訂正部 214は、信頼度 に応じて誤り訂正の方法を変更する。信頼度評価部 213から信頼度の出力があるた びに、出力された信頼度を保持して、保持している信頼度に応じた誤り訂正を行う。 図 25は、誤り訂正部 214の行う処理を示すフローチャートである。
誤り訂正部 214は、送信信号推定部 205から出力された送信信号の推定値 Vを受 け付けると (ステップ S251: YES)、 Vに対して、保持している信頼度に応じた誤り訂 正を実施する (ステップ S252)。誤り訂正を実施すると、訂正後の送信信号の推定値 を、制御部 206へ出力する (ステップ S253)。以後、送信信号推定部 205から送信 信号の推定値 Vを受け付ける (ステップ S251)たびに、信頼度に応じた誤り訂正を実 施する。
<補足 >
なお、本発明を上記の実施の形態に基づいて説明してきたが、本発明は、上記の 実施の形態に限定されないのは勿論である。以下のような場合も本発明に含まれる。 (1)実施の形態 1においては、不要信号測定部 204によって共分散行列 Rmiを算出 する期間と、送信信号推定部 205によって送信信号の推定を行う期間とにおけるダ ゥンコンバータ 202の利得を用いて共分散行列 Ruuを補正することとしている力 これ とは別に、無線通信装置 2000は、上記各期間におけるダウンコンバータ 202の利得 を同一になるようにダウンコンバータ 202を制御することとしてもよい。
(2)無線送信局がマッピング部を、無線通信装置がデマッピング部を備えて 、る場合 のように、無線送信局と無線通信装置とがデータ通信を行う場合にお!ヽて本発明に 表されて!/、る方法で無線送信局から送信された信号の推定を行う場合も本発明に含 まれる。
(3)実施の形態 4においては、干渉伝送路測定部 209の行う処理は伝送路測定部 2 03によって実施させることとしてもよ!/、。
(4)上記の各装置は、具体的には、マイクロプロセッサ、 ROM、 RAM、ハードデイス クユニット、ディスプレイユニット、キーボード、マウスなどから構成されるコンピュータ システムである。前記 RAM又は前記ハードディスクユニットには、コンピュータプログ ラムが記憶されている。前記マイクロプロセッサ力 前記コンピュータプログラムに従つ て動作することにより、各装置は、その機能を達成する。ここで、コンピュータプロダラ ムは、所定の機能を達成するために、コンピュータに対する指令を示す命令コードが 複数個組み合わされて構成されたものである。
(5)上述の実施形態においては、上記の各装置を構成する構成要素の一部または 全部は、 1つのシステム LSI (Large Scale Integration)として構成されることとしてもよい 。システム LSIは、複数の構成部を 1個のチップ上に集積して製造された超多機能 L SIであり、具体的には、マイクロプロセッサ、 ROM、 RAMなどを含んで構成されるコ ンピュータシステムである。前記 RAMには、コンピュータプログラムが記憶されている 。前記マイクロプロセッサ力 前記コンピュータプログラムに従って動作することにより
、システム LSIは、その機能を達成する。
(6)上記の実施形態を各々組み合わせるとしてもよ!/、。
産業上の利用可能性
本発明の無線通信装置は、無線通信によって信号の送受信を行う無線 LAN装置 等において有用である。特に、干渉信号が存在する場合においても誤りの少ない無 線通信を行うのに好適である。

Claims

請求の範囲
[1] 無線送信局から無線送信される信号に含まれる所定パターンの信号に基づ!ヽて通 信先の無線送信局を識別し、無線通信を行う無線通信装置であって、
複数のアンテナと、
前記アンテナを介して信号を受信する信号受信部と、
受信信号に基づ!/ヽて、前記所定パターンを含む信号を送信する無線送信局と自 装置との無線通信における信号の伝送路の特性を示す数値列を算出する第 1算出 部と、
受信信号に基づいて、当該受信信号のうち前記所定パターンを含まない信号成分 である不要信号の特性を示す数値列を算出する第 2算出部と、
前記第 2算出部が算出した数値列に基づいて受信信号における不要信号を除去 するよう補正し、当該受信信号と前記第 1算出部が算出した数値列とに基づいて前 記無線送信局から送信された信号を推定する送信信号推定部とを備える ことを特徴とする無線通信装置。
[2] 前記無線送信局から送信された信号を表す列ベクトルを s、
前記 sの共分散行列を Rss、
前記信号受信部が受信した信号を表す列ベクトルを!:、
前記第 1算出部が算出する数値列を行列 H、
前記第 2算出部が算出する数値列を共分散行列 Ruu
としたとき、
前記送信信号推定部は、
前記 sの推定値 Vを、 Hを複素共役転置、 _1を逆行列として
V = RssHH (HRssHH + Ruu) ~
によって求める
ことを特徴とする請求項 1記載の無線通信装置。
[3] 前記送信信号推定部は、
前記 sの各要素が互いに無相関で、かつ前記 sの各要素の平均電力 pがすべて等 しいとき、 前記 sの推定値 vを、請求項 2に記載の推定値に代えて、
V = HH (HHH + (l/p) Ruu) "
によって求める
ことを特徴とする請求項 2記載の無線通信装置。
[4] 前記第 2算出部は、
所定の期間内に受信した受信信号に基づ 、て前記算出を行 、、
前記信号受信部は、
前記アンテナを介して受信した信号を等価低域の信号に変換するダウンコンパ一 タを含み、
前記送信信号推定部は、前記所定の期間内に受信した受信信号に基づいて前記 第 2算出部によって算出された数値列を用いて前記推定を行い、
前記無線通信装置は、
前記所定の期間と、前記推定を行うために前記送信信号推定部に入力する信号を 前記信号受信部によって受信する期間とにおける前記ダウンコンバータの利得を略 同一にするよう前記ダウンコンバータの利得を制御する利得制御部とを備える ことを特徴とする請求項 1記載の無線通信装置。
[5] 前記第 2算出部は、
所定の期間内に受信した受信信号に基づ 、て前記算出を行 、、
前記信号受信部は、
前記アンテナを介して受信した信号を等価低域の信号に変換するダウンコンパ一 タを含み、
前記送信信号推定部は、前記所定の期間内に受信した受信信号に基づいて前記 第 2算出部によって算出された数値列を用いて前記推定を行い、
前記無線通信装置は、
前記所定の期間内における前記ダウンコンバータの利得を第 1利得とし、前記推定 を行うために前記送信信号推定部に入力する信号を前記信号受信部によって受信 する期間における前記ダウンコンバータの利得を第 2利得としたときに、前記第 2算 出部によって算出された前記不要信号の特性を示す数値列を、前記第 1利得と前記 第 2利得とに基づいて補正する利得制御部を備え、
前記送信信号推定部は、
前記第 2算出部によって算出された数値列にかえて、前記利得制御部によって補 正された数値列を用いて前記補正を行う
ことを特徴とする請求項 1記載の無線通信装置。
[6] 前記第 1利得を C、
前記第 2利得を C、
2
前記第 2算出部が前記所定の期間内に算出した前記不要信号の共分散行列を Ru u
としたとき、
前記利得制御部は、前記補正を行った後の数値列である Ruu'を、 Hを複素共役転 置、 _1を逆行列として
Ruu,=C C _1Ruu (C C _1) H
2 1 2 1
によって求めることで前記補正を行う
ことを特徴とする請求項 5記載の無線通信装置。
[7] 前記無線通信装置は、さらに、
受信信号に基づ!/ヽて、通信を所望する無線送信局から信号が送信されて!ヽな ヽこ とを検出する検出部を備え、
前記第 2算出部は、
前記検出がなされてから所定期間内に受信した前記受信信号と前記所定パターン の信号とに基づいて前記数値列を算出する
ことを特徴とする請求項 1記載の無線通信装置。
[8] 前記検出部は、
受信信号の振幅に基づいて、前記検出を行う
ことを特徴とする請求項 7記載の無線通信装置。
[9] 前記検出部は、
受信信号に前記所定パターンの信号が含まれるか否かに基づいて前記検出を行う ことを特徴とする請求項 7記載の無線通信装置。
[10] 請求項 7に記載の無線通信装置と無線通信を行う無線送信局および前記無線通 信装置力 なる無線通信システムであって、
前記無線送信局は、
信号の送信を停止して前記無線通信装置と無線通信を行わない送信停止期間を 設定する送信停止期間設定部を含み、
前記設定がなされると、前記送信停止期間に示された期間内における信号の送信 を停止する
ことを特徴とする無線通信システム。
[11] 前記無線通信装置は、さらに、
受信信号に基づ!/、て、前記不要信号の振幅が所定値よりも大き!、か否かを判断す る第 2判断部を備え、
前記第 2算出部は、
前記第 2判断部によって大きいと判断されると、大きいと判断されている期間内に受 信した受信信号を用いて前記数値列の算出を行う
ことを特徴とする請求項 1記載の無線通信装置。
[12] 前記無線通信装置は、さらに、
通信を所望する無線送信局以外の無線送信局である干渉局から送信される信号 に含まれる所定パターンの信号に基づいて前記干渉局を識別できる力否かを判定 する判定部と、
前記干渉局を識別できると判定されたとき、前記干渉局から受信した干渉信号と、 前記干渉信号に含まれる所定パターンの信号とに基づいて、前記干渉局と自装置と の無線通信における信号の伝送路の特性を示す数値列を算出する干渉伝送路測 定部とを備え、
前記第 2算出部は、
前記干渉局を識別できると判定されたとき、前記干渉伝送路測定部によって算出さ れた数値列に基づいて、前記不要信号に基づく数値列を算出する
ことを特徴とする請求項 1記載の無線通信装置。
[13] 請求項 1記載の無線通信装置と無線通信を行う無線送信局および前記無線通信 装置力 なる無線通信システムであって、
前記無線通信装置は、
信号の送信を所定期間停止するよう要求する送信停止要求信号を前記無線送信 局へ送信する送信停止要求送出部を備え、
前記無線送信局は、
信号を受信する受信部と、
前記受信部によって前記送信停止要求信号を受信すると、所定期間、信号の送信 を停止するよう制御する制御部とを備え、
前記第 2算出部は、
前記送信停止要求送出部が前記送信停止要求信号を送信すると、前記所定期間 内において受信した受信信号を用いて前記数値列を算出する
ことを特徴とする無線通信システム。
[14] 前記送信停止要求送出部は、
信号の送信を停止する期間を表す停止期間情報を前記送信停止要求信号に含ま せて送信し、
前記制御部は、
前記停止期間情報に基づ!、て、前記制御を行 、、
前記第 2算出部は、
前記停止期間情報に示される期間内にぉ 、て受信した受信信号を用 、て前記算 出を行う
ことを特徴とする請求項 13記載の無線通信システム。
[15] 前記送信停止要求送出部は、
前記無線送信局による信号の送信を再開する時期を示す送信再開時期情報を前 記送信停止要求信号に含ませて送信し、
前記制御部は、
前記送信再開時期情報に示される時期に基づいて、信号の送信を停止するよう前 記制御を行い、
前記第 2算出部は、 前記送信停止要求信号を送信してから前記送信再開時期情報に示される時期ま での期間内にお!、て受信した受信信号を用 、て前記算出を行う
ことを特徴とする請求項 13記載の無線通信システム。
[16] 前記送信停止要求送出部は、さらに、
前記送信停止要求信号を送信した後に前記第 2算出部によって前記数値列が算 出されると、前記無線送信局による信号の送信の停止を解除する解除信号を前記無 線送信局へ送信する解除信号送信部を含み、
前記制御部は、
前記受信部によって前記解除信号を受信すると、前記停止を解除する ことを特徴とする請求項 13記載の無線通信システム。
[17] 前記第 2算出部は、さらに、
受信信号と、前記送信信号推定部によって逐次推定される推定信号と、前記第 1 算出部によって算出される数値列とに基づいて、前記不要信号の特性を示す数値 列を算出する算出部を備え、
前記送信信号推定部は、
前記算出部によって逐次算出される数値列に基づいて前記受信信号における前 記不要信号を除去するよう補正し、前記受信信号と前記第 1算出部が算出した数値 列とに基づいて前記推定を行う
ことを特徴とする請求項 1記載の無線通信装置。
[18] 前記無線通信装置は、
前記無線送信局によって送信される信号の変調の多値数を判別する判別部と、 前記判別された多値数が所定値より小さいか否かを判断する多値数判断部と、 小さいと判断されたときに、前記算出部によって数値列を算出するよう制御する算 出部制御部とを備える
ことを特徴とする請求項 17記載の無線通信装置。
[19] 前記無線送信局が送信する信号は周波数分割多重信号であり、
前記信号受信部は、
前記周波数分割多重信号を受信し、 前記第 1算出部および前記第 2算出部は、前記周波数分割多重信号の各周波数 成分に対応して前記各数値列を算出し、
前記送信信号推定部は、前記周波数分割多重信号の各周波数成分に対応して前 記推定を行う
ことを特徴とする請求項 1記載の無線通信装置。
[20] 前記周波数分割多重信号は、 OFDM信号である
ことを特徴とする請求項 19記載の無線通信装置。
[21] 前記周波数分割多重信号は、ウェーブレット信号である
ことを特徴とする請求項 19記載の無線通信装置。
[22] 前記無線通信装置は、さらに、
前記第 1算出部が算出した数値列と、前記第 2算出部が算出した数値列とに基づ いて、前記送信信号推定部によって推定された推定信号の残留誤差を算出する信 頼度評価部を備える
ことを特徴とする請求項 1記載の無線通信装置。
[23] 前記無線送信局から送信された信号を表す列ベクトルを s、
前記 sの共分散行列を Rss、
前記信号受信部が受信した信号を表す列ベクトルを!:、
前記第 1算出部が算出する数値列を行列 H、
前記第 2算出部が算出する数値列を共分散行列 Rmi、
前記送信信号推定部が推定した推定値を等価低域で表した列ベクトルを v、 前記 sの次元を M X 1
Hを複素共役転置、 _1を逆行列
とし、
W=RssHH (HRssHH+Ruu) ~
としたとき、
前記信頼度評価部は、
列ベクトルである前記 Vの、第 k番目の要素に対応する残留誤差の推定値 z [k]を、 z [k] = (W[k]H-I [k] ) Rss (HHW[k]H-I [k]H) +W[k]RuuW[k]H ただし、 W[k]は、 Wが行列のときは Wの第 k行目の行ベクトル、 Wが列ベクトルのとき は Wの第 k番目の要素とし、 I [k]は、 Mが 2以上のときは M X Mの単位行列の第 k 行目の行ベクトル、 Mが 1のときは 1を表すこととして前記 z[k]を求める
ことを特徴とする請求項 22記載の無線通信装置。
[24] 前記無線送信局力 送信された信号を表す列べ外ルを s、
前記 sの共分散行列を Rss、
前記信号受信部が受信した信号を表す列ベクトルを!:、
前記第 1算出部が算出する数値列を行列 H、
前記第 2算出部が算出する数値列を共分散行列 Rmi、
前記送信信号推定部が推定した推定値を等価低域で表した列ベクトルを v、 前記 sの次元を M X 1
Hを複素共役転置、 _1を逆行列
とし、
前記 sの各要素が互いに無相関で、かつ前記 sの各要素の平均電力 pがすべて等 しいとき、
W=HH (HHH + ( 1 Zp) RUU) " 1
とすると、
前記信頼度評価部は、
列ベクトルである前記 Vの、第 k番目の要素に対応する残留誤差の推定値 z [k]を、 z[k] =p (W[k]H-I [k]) (HHW[k]H-I [k]H) +W[k]RuuW[k]H
M M
ただし、 W[k]は、 Wが行列のときは Wの第 k行目の行ベクトル、 Wが列ベクトルのとき は Wの第 k番目の要素とし、 I [k]は、 Mが 2以上のときは M X Mの単位行列の第 k 行目の行ベクトル、 Mが 1のときは 1を表すこととして前記 z[k]を求める
ことを特徴とする請求項 22記載の無線通信装置。
[25] 前記無線通信装置は、さらに、
前記送信信号推定部によって推定された推定信号と、前記信頼度評価部によって 算出された残留誤差とに基づいて、推定信号に含まれる誤りを訂正する誤り訂正部 を備える ことを特徴とする請求項 22記載の無線通信装置。
前記誤り訂正部は、
前記残留誤差の平方根の逆数に応じて、前記訂正を行う ことを特徴とする請求項 25記載の無線通信装置。
PCT/JP2005/010247 2004-06-04 2005-06-03 無線通信装置 WO2006003776A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006528444A JP4464403B2 (ja) 2004-06-04 2005-06-03 無線通信装置
EP05751306.1A EP1753164A4 (en) 2004-06-04 2005-06-03 RADIO COMMUNICATION DEVICE
US11/628,039 US7899401B2 (en) 2004-06-04 2005-06-03 Radio communication device
CN2005800181222A CN1977482B (zh) 2004-06-04 2005-06-03 无线通信装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-166834 2004-06-04
JP2004166834 2004-06-04
JP2004309379 2004-10-25
JP2004-309379 2004-10-25

Publications (1)

Publication Number Publication Date
WO2006003776A1 true WO2006003776A1 (ja) 2006-01-12

Family

ID=35782588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010247 WO2006003776A1 (ja) 2004-06-04 2005-06-03 無線通信装置

Country Status (5)

Country Link
US (1) US7899401B2 (ja)
EP (1) EP1753164A4 (ja)
JP (1) JP4464403B2 (ja)
CN (1) CN1977482B (ja)
WO (1) WO2006003776A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007129737A1 (ja) 2006-05-09 2007-11-15 Panasonic Corporation 干渉抑圧方法及び干渉抑圧装置
WO2008084800A1 (ja) 2007-01-12 2008-07-17 Panasonic Corporation 受信装置及び受信方法
JP2009105842A (ja) * 2007-10-25 2009-05-14 Nippon Telegr & Teleph Corp <Ntt> 通信システム及び通信方法
JP2009532967A (ja) * 2006-04-04 2009-09-10 ノキア コーポレイション 受信器及び受信方法
WO2010016232A1 (ja) * 2008-08-06 2010-02-11 パナソニック株式会社 無線受信装置
US20110000128A1 (en) * 2008-04-07 2011-01-06 Rudolf W. Gunnerman And Peter W. Gunnerman Process For Conversion of Biogas to Liquid Fuels

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090131021A1 (en) * 2007-11-16 2009-05-21 Motorola, Inc. Distribution of an emergency warning using peer-to-peer communications
JP4718595B2 (ja) * 2007-12-27 2011-07-06 パナソニック株式会社 無線通信システム及び携帯端末装置
US8417282B2 (en) * 2009-06-25 2013-04-09 Qualcomm Incorporated Methods and apparatus for communicating with multiple antennas
JP5436281B2 (ja) * 2010-03-16 2014-03-05 富士フイルム株式会社 放射線撮影システム、コンソール、放射線撮影用カセッテ、及びプログラム
US8929838B2 (en) 2011-06-30 2015-01-06 Motorola Mobility Llc System and methods for adaptive antenna optimization
US9564676B2 (en) 2011-06-30 2017-02-07 Google Technology Holdings LLC System and methods for adaptive antenna optimization
US11007370B2 (en) 2013-11-27 2021-05-18 Pacesetter, Inc. System and methods for establishing a communication session between an implantable medical device and an external device
CN106605034B (zh) * 2014-08-29 2019-08-16 阿尔卑斯阿尔派株式会社 无钥匙进入装置
US10248525B2 (en) * 2016-10-11 2019-04-02 Bayer Oy Intelligent medical implant and monitoring system
US10278217B2 (en) 2016-11-29 2019-04-30 Pacesetter, Inc. Managing dynamic connection intervals for implantable and external devices
US10124182B2 (en) * 2017-02-28 2018-11-13 Medtronic, Inc. Mitigating implantable device power drain associated with stalled telemetry sessions
US10785720B2 (en) 2019-01-23 2020-09-22 Pacesetter, Inc. Medical device with control circuitry to improve communication quality

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH104391A (ja) * 1996-06-14 1998-01-06 Kokusai Electric Co Ltd マルチキャリア伝送方式
JP2001094618A (ja) * 1999-09-20 2001-04-06 Matsushita Electric Ind Co Ltd 復調装置および方法
JP2003124857A (ja) * 2001-10-17 2003-04-25 Hokkaido Univ 無線装置およびアダプティブアレイ処理方法
WO2003041300A1 (en) * 2001-11-06 2003-05-15 Qualcomm Incorporated Multiple-access multiple-input multiple-output (mimo) communication system
JP2003218831A (ja) * 2002-01-24 2003-07-31 Matsushita Electric Ind Co Ltd 電力線搬送通信装置
JP2004064130A (ja) * 2002-07-24 2004-02-26 Ntt Docomo Inc 無線通信システム、無線局及び通信方法
JP2004511957A (ja) * 2000-10-10 2004-04-15 ラディアント ネットワークス ピーエルシー 通信メッシュ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2669393B2 (ja) 1995-04-11 1997-10-27 日本電気株式会社 干渉波除去装置
US6310866B1 (en) 1998-10-09 2001-10-30 Telefonaktiebolaget Lm Ericsson (Publ) Medium access control protocol with automatic frequency assignment
US6825794B2 (en) * 2000-06-02 2004-11-30 Research In Motion Limited Wireless communication system using surface acoustic wave (SAW) second harmonic techniques
ES2278769T3 (es) * 2000-06-27 2007-08-16 Koninklijke Philips Electronics N.V. Deteccion y correccion de saltos de fase dentro de una secuencia de fases.
JP2003041300A (ja) 2001-07-25 2003-02-13 Lion Corp 洗浄剤製品
EP1284562A1 (de) * 2001-08-16 2003-02-19 Alcatel Verfahren, Empfänger und Empfangsstation zum Entzerren eines Empfangssignals
KR20040073592A (ko) 2002-01-24 2004-08-19 마쯔시다덴기산교 가부시키가이샤 전력선 반송 통신 방법 및 장치
US7012978B2 (en) 2002-03-26 2006-03-14 Intel Corporation Robust multiple chain receiver

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH104391A (ja) * 1996-06-14 1998-01-06 Kokusai Electric Co Ltd マルチキャリア伝送方式
JP2001094618A (ja) * 1999-09-20 2001-04-06 Matsushita Electric Ind Co Ltd 復調装置および方法
JP2004511957A (ja) * 2000-10-10 2004-04-15 ラディアント ネットワークス ピーエルシー 通信メッシュ
JP2003124857A (ja) * 2001-10-17 2003-04-25 Hokkaido Univ 無線装置およびアダプティブアレイ処理方法
WO2003041300A1 (en) * 2001-11-06 2003-05-15 Qualcomm Incorporated Multiple-access multiple-input multiple-output (mimo) communication system
JP2003218831A (ja) * 2002-01-24 2003-07-31 Matsushita Electric Ind Co Ltd 電力線搬送通信装置
JP2004064130A (ja) * 2002-07-24 2004-02-26 Ntt Docomo Inc 無線通信システム、無線局及び通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JORSWIECK E.A. ET AL: "Analysis of Multiuser MIMO systems with MMSE Receiver based on Worst Case Noise", 2004 ITG WORKSHOP ON SMART ANTENNAS, 8 March 2004 (2004-03-08), pages 122 - 129, XP010780089 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009532967A (ja) * 2006-04-04 2009-09-10 ノキア コーポレイション 受信器及び受信方法
CN101438536B (zh) * 2006-05-09 2012-01-04 松下电器产业株式会社 干扰抑制方法和干扰抑制装置
WO2007129737A1 (ja) 2006-05-09 2007-11-15 Panasonic Corporation 干渉抑圧方法及び干渉抑圧装置
US8311165B2 (en) 2006-05-09 2012-11-13 Panasonic Corporation Interference suppression method and interference suppression device
WO2008084800A1 (ja) 2007-01-12 2008-07-17 Panasonic Corporation 受信装置及び受信方法
US8233865B2 (en) 2007-01-12 2012-07-31 Panasonic Corporation Reception device and reception method
CN101542947B (zh) * 2007-01-12 2013-03-20 松下电器产业株式会社 接收装置和接收方法
JP2009105842A (ja) * 2007-10-25 2009-05-14 Nippon Telegr & Teleph Corp <Ntt> 通信システム及び通信方法
US20110000128A1 (en) * 2008-04-07 2011-01-06 Rudolf W. Gunnerman And Peter W. Gunnerman Process For Conversion of Biogas to Liquid Fuels
WO2010016232A1 (ja) * 2008-08-06 2010-02-11 パナソニック株式会社 無線受信装置
US8290101B2 (en) 2008-08-06 2012-10-16 Panasonic Corporation Wireless receiver
US8422608B2 (en) 2008-08-06 2013-04-16 Panasonic Corporation Wireless receiver
JP5370366B2 (ja) * 2008-08-06 2013-12-18 パナソニック株式会社 無線受信装置

Also Published As

Publication number Publication date
CN1977482B (zh) 2010-10-06
CN1977482A (zh) 2007-06-06
JPWO2006003776A1 (ja) 2008-04-17
US7899401B2 (en) 2011-03-01
EP1753164A4 (en) 2015-04-29
US20070259623A1 (en) 2007-11-08
EP1753164A1 (en) 2007-02-14
JP4464403B2 (ja) 2010-05-19

Similar Documents

Publication Publication Date Title
WO2006003776A1 (ja) 無線通信装置
JP5275535B2 (ja) 変化する干渉環境におけるビーム形成のための装置および方法
JP4279671B2 (ja) 無線通信システム、その方法、そのための命令を記憶した機械可読媒体
RU2446575C2 (ru) Адаптивные способы управления лучом для максимизации ресурса беспроводной линии связи и уменьшение разброса задержки, используя многочисленные передающие и приемные антенны
US8233865B2 (en) Reception device and reception method
US20110149773A1 (en) Apparatus and method for receiving data in wireless communication system
US8385479B2 (en) Apparatus and method for canceling interference in multi-antenna system
JP4059871B2 (ja) 異常検出方法およびそれを利用した基地局装置
WO2006087977A1 (ja) キャリブレーション方法ならびにそれを利用した基地局装置、端末装置および無線装置
JP2006005525A (ja) 送信装置
KR20100034838A (ko) 다중안테나 통신시스템에서 중계기를 지원하기 위한 보정 장치 및 방법
CN106716866B (zh) 乒乓波束成形
US7209713B2 (en) Transmission method and radio apparatus for substantially constant receiving power level at a remote terminal
JP5055372B2 (ja) 符号間干渉の抑制
JP4459254B2 (ja) 無線通信装置
JP4447503B2 (ja) 通信装置及びキャリブレーションウエイト推定方法
JP4476879B2 (ja) 空間多重伝送用受信方法及び装置
JP5134380B2 (ja) 通信方法およびそれを利用した無線装置
US20040132430A1 (en) Received response characteristics storing method and radio apparatus utilizing the same
JP2004048093A (ja) 無線通信装置
US9509381B1 (en) Apparatus and method of blind detection of interference rank information in wireless communication system
JP4074553B2 (ja) 通信装置及びそれにおける検査方法
JP2008167347A (ja) 無線受信装置
JP5006224B2 (ja) 無線通信システム、無線通信装置および通信制御方法
JP4086151B2 (ja) 通信装置および通信方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006528444

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2005751306

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005751306

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580018122.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2005751306

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11628039

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11628039

Country of ref document: US