WO2006001480A1 - Error judgment value setting method, motor control device, and actuator - Google Patents

Error judgment value setting method, motor control device, and actuator Download PDF

Info

Publication number
WO2006001480A1
WO2006001480A1 PCT/JP2005/011971 JP2005011971W WO2006001480A1 WO 2006001480 A1 WO2006001480 A1 WO 2006001480A1 JP 2005011971 W JP2005011971 W JP 2005011971W WO 2006001480 A1 WO2006001480 A1 WO 2006001480A1
Authority
WO
WIPO (PCT)
Prior art keywords
linear motion
abnormality
peak
value
motion device
Prior art date
Application number
PCT/JP2005/011971
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuo Shoda
Yuki Nomura
Yoshifumi Nagato
Original Assignee
Thk Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thk Co., Ltd. filed Critical Thk Co., Ltd.
Priority to JP2006528756A priority Critical patent/JPWO2006001480A1/en
Publication of WO2006001480A1 publication Critical patent/WO2006001480A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors

Definitions

  • the present invention relates to a technique for detecting an abnormality of a linear motion device on a motor control device side.
  • linear motion devices such as linear guides and ball screws have been widely used.
  • linear motors and servo motors are used to drive the moving body, and the position, speed, and acceleration of the moving body are controlled by changing the current supplied from the motor driver (motor controller). And then.
  • the current supplied to the motor depends on the driving conditions (speed, acceleration, load applied to the moving body, etc.) of the linear motion device. Therefore, the abnormality determination value should be set to an optimum value according to the driving conditions of the linear motion device.
  • the upper limit (motor driver capacity) is set as the abnormality judgment value at the time of shipment. It must be set to. Therefore, in some cases, it may not be possible to accurately detect a linear motion device abnormality in which the difference between the actual supply current value and the abnormality judgment value is large.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a technique for automatically setting an appropriate abnormality determination value in accordance with the drive condition of the linear motion device. There is. Means for solving the problem
  • the linear motion device is operated, and the abnormality determination value is set based on the supply current to the motor or the peak of the supply current at that time.
  • the setting of the abnormality determination value may be performed by a motor control device that controls the motor of the linear motion device. That is, first, the control means for controlling the current or voltage supplied to the motor of the linear motion device automatically operates the linear motion device according to the given drive conditions. Then, the abnormality judgment value setting means samples the peak of the supply current or supply voltage to the motor at that time, and sets the abnormality judgment value used for detecting the abnormality of the linear motion device based on the sampled peak value. .
  • the abnormality judgment value should be set to about 1.2 to 1.4 times the peak value, preferably about 1.25-1.
  • the peak value represents the load actually applied to the motor. Therefore, by using the value as a reference, it is possible to calculate an appropriate abnormality determination value according to the actual driving condition of the linear motion device. In addition, since each process is automatically executed without bothering the user, it is possible to simplify the setting of the abnormality determination value and save labor.
  • the abnormality determination value setting process be executed under the same driving conditions as in the actual operation during the test operation before entering the actual operation.
  • the abnormality detection means of the motor control device may detect an abnormality of the linear motion device by comparing the supply current or supply voltage to the motor with the abnormality determination value. As a result, it is possible to properly detect abnormalities in the linear motion device and prevent malfunctions and damages.
  • the load applied to the motor ie, the amplitude of the supply current or the supply voltage
  • the load applied to the motor ie, the amplitude of the supply current or the supply voltage
  • the abnormality judgment value is set based on the peak value at non-constant speed
  • the abnormality detection accuracy at constant speed may be reduced.
  • misjudgment may occur frequently at non-constant speed.
  • the peak at the constant speed and the peak at the non-constant speed are sampled separately, and each peak value force abnormality determination value for the constant speed and abnormality determination for the non-constant speed are obtained. It is advisable to adopt a configuration that obtains values. As a result, abnormalities appropriate for both constant speed and non-constant speed Since the determination value is set, the accuracy and reliability of abnormality detection is improved.
  • the present invention can be understood as a motor control device having at least a part of the above means.
  • the present invention can also be understood as an actuator comprising the motor control device and the linear motion device.
  • the present invention can also be understood as an abnormality determination value setting method and control method for a linear motion device that includes at least a part of the above processing.
  • FIG. 1 shows a configuration of an actuator according to an embodiment of the present invention.
  • the actuator 1 according to this embodiment is a linear motor actuator that drives a moving body with a linear motor, and includes a linear motion device 2 and a motor driver (motor control device) 3 that controls the linear motion device 2.
  • a linear motor actuator that drives a moving body with a linear motor
  • a motor driver (motor control device) 3 that controls the linear motion device 2.
  • the linear motion device 2 generally includes a base portion 20 and a slider (moving body) 21 that is slidable with respect to the base portion 20.
  • two linear guides 22 are employed as the linear motion mechanism of the slider 21
  • two rails 22 a are provided on both sides of the base portion 20
  • two blocks 22 b are attached to the back surface of the slider 21.
  • a plurality of rolling elements are interposed between the rail 22a and the block 22b, and when the slider 21 moves, the rolling elements roll to achieve a smooth linear motion.
  • a linear motor 23 is employed as the driving means for the slider 21.
  • a permanent magnet magnet plate 23 a is provided on the bottom surface of the base portion 20, and a mover 23 b is fixed to the lower portion of the slider 21.
  • the position / velocity “acceleration” of the slider 21 can be controlled.
  • the position and speed of the slider 21 are detected by using a linear encoder 24 as position detecting means.
  • a linear scale attached to the base 20 with the head 24b fixed to the slider 21. This is a mechanism for reading the rule 24a.
  • the detection result of the linear encoder 24 is input to the motor driver 3 and used for feedback control of the linear motor 23.
  • FIG. 2 is a block diagram showing a functional configuration of the motor driver 3.
  • the motor driver 3 includes a control unit 30, an abnormality determination value setting unit 31, and an abnormality detection unit 32.
  • the control unit 30 performs frequency and amplitude modulation of the currents of the U, V, and W phases according to the set control program, and supplies the three-phase alternating current to the linear motor 23.
  • the linear motor 23 operates according to this supplied current, and the slider 21 moves.
  • the position / velocity information of the slider 21 is detected by the linear encoder 24 and sequentially input to the control unit 30.
  • the control unit 30 feedback-controls the current supplied to the linear motor 23 based on the detection result, and causes the slider 21 to perform the desired motion.
  • the abnormality determination value setting unit 31 is a part that automatically calculates and sets an abnormality determination value.
  • the abnormality determination value obtained here is transferred to the abnormality detection unit 32 and used for abnormality detection of the linear motion device 2.
  • the abnormality determination value setting process and the linear motion apparatus abnormality detection process will be described in detail.
  • FIG. 3 is a flowchart showing the flow of the abnormality determination value setting process executed in the motor driver 3.
  • This abnormality judgment value setting process is executed at the time of trial operation before entering the actual operation, such as when the linear motion device 2 is installed. It is also preferable to update the abnormality determination value not only at the time of installation but also periodically.
  • step S1 first, the control unit 30 drives the linear motion device 2 to start automatic operation. At this time, it is preferable to perform automatic operation under substantially the same driving conditions (speed, acceleration, load applied to the slider 21, etc.) as in actual operation. This is because the reliability of the calculated abnormality judgment value improves as the conditions are closer to actual operation.
  • FIG. 4 shows an example of the waveform of the current supplied to the linear motor 23.
  • This figure is a waveform related to one drive, and a series of control is performed in which the slider 21 in a stationary state is accelerated, moved at a constant speed when it reaches a predetermined speed, and then decelerated and stopped. Represents. It can be seen that the amplitude of the supply current is larger at non-constant speed (acceleration and deceleration) than at constant speed.
  • the abnormality determination value setting unit 31 samples the peak (PI, P1 ', etc.) of the supply current during acceleration.
  • step S3 the peak at constant speed (P2, etc.) is sampled, and in step S4, the peak at deceleration (P3, P3 ', etc.) is sampled.
  • Each sampling timing may be determined by the force recognized by the timing signal supplied from the control unit 30 and the changing force of the peak value.
  • step S5 it is checked whether the above sampling process has been repeated N times (N is an integer of 1 or more). If it is less than N times, repeat steps S1 to S4.
  • step S6 an average of peak values obtained by N sampling processes is obtained.
  • Figure 5 shows the peak values during acceleration (black circles) and their average values (dashed lines).
  • the average can be calculated using a simple average or a weighted average. It is also preferable to use a median (median) or maximum value that is not an average value, or estimate a peak value by a statistical method. Thus, the reliability of the peak value can be improved by performing sampling a plurality of times and calculating the average (or a similar value) of them.
  • the abnormality determination value setting unit 31 uses the peak values as a reference for acceleration, constant speed, and deceleration.
  • Abnormality judgment value for time is calculated (step S7).
  • a value obtained by simply multiplying the peak value by a constant is adopted as the abnormality determination value.
  • the magnification at this time is about 1.2 to 1.4 times, preferably about 1.25 to about L 3 times. Anomaly detection becomes more sensitive as the magnification is reduced, but false detection may increase. Conversely, increasing the magnification reduces the number of false detections, but decreases the accuracy of abnormality detection.
  • the optimum magnification may be determined according to a specific embodiment.
  • abnormality determination values are obtained, they are stored in the nonvolatile memory, and the abnormality determination value setting process is terminated (step S8).
  • FIG. 6 is a diagram for explaining the abnormality detection process in the abnormality detection unit 32.
  • the abnormality detection unit 32 reads the abnormality determination values for acceleration, constant speed, and deceleration from the nonvolatile memory and holds them as threshold values. Then, the supply current to the linear motor 23 is monitored, and the value (amplitude) is compared with the abnormality determination value. At this time, The output unit 32 determines a driving state (aside from acceleration Z at constant speed Z deceleration) from a signal supplied from the control unit 30, and performs comparison using an abnormality determination value corresponding to the driving state. Then, as shown in FIG. 6, when the value of the supply current reaches the abnormality determination value, it is determined that some abnormality has occurred in the linear motion device 2.
  • the abnormality detection unit 32 sends an abnormality detection signal to the control unit 30 to interrupt the control being executed.
  • the buzzer is sounded and the warning lamp is lit to notify the operator of the occurrence of an abnormality and prompt action.
  • the linear motion device 2 is actually operated, and the abnormality determination value is calculated based on the peak of the supply current observed there. Therefore, it is possible to calculate an appropriate abnormality determination value according to the actual driving conditions, and to improve the accuracy of abnormality detection.
  • the calculation method of the abnormality determination value is not limited to the method of multiplying the peak value by a constant as in the above embodiment, and for example, a constant is added to the peak value, or a predetermined function or table is used. You can also convert peak values.
  • an abnormality determination value can be set for each control program. This allows the control program to be executed. It is possible to change the abnormality determination value to an appropriate value according to the program (driving condition).
  • the linear guide is used as the linear motion mechanism, but a ball screw, a roller screw, a ball spline, or a combination thereof can also be suitably used.
  • a rotary servo motor instead of a linear motor may be employed as the driving mechanism for the linear motion mechanism, and a rotary encoder may be employed as the slider position detecting means instead of the linear encoder. Good.
  • the waveform of the supply current is monitored! /.
  • the motor is voltage-controlled, it is also preferable to detect the abnormality by monitoring the waveform of the supply voltage.
  • FIG. 1 is a diagram showing a configuration of an actuator according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a functional configuration of a motor driver.
  • FIG. 3 is a flowchart showing a flow of abnormality determination value setting processing.
  • FIG. 4 is a diagram showing an example of a waveform of a supply current.
  • FIG. 5 is a diagram showing a peak value during acceleration, an average value thereof, and an abnormality determination value.
  • FIG. 6 is a diagram for explaining abnormality detection processing.

Abstract

A control unit of a motor driver automatically operates a linear motion device according to a given drive condition. An error judgment value setting unit samples the peak of the current supplied to the linear motor during the automatic operation. According to the peak value sampled, an error judgment value used for detecting an error of the linear motion device is set. For example, the error judgment value can be set at the peak value multiplied by about 1.2 to 1.4 and more preferably, by 1.25 to 1.3. Thus, it is possible to automatically set an error judgment value in accordance with the drive condition of the linear motion device.

Description

明 細 書  Specification
異常判定値設定方法、モータ制御装置、ァクチユエータ  Abnormality judgment value setting method, motor control device, actuator
技術分野  Technical field
[0001] 本発明は、モータ制御装置側で直動装置の異常を検出する技術に関する。  The present invention relates to a technique for detecting an abnormality of a linear motion device on a motor control device side.
背景技術  Background art
[0002] 従来より、リニアガイドやボールねじ等の直動装置が広く用いられている。この種の 直動装置では、移動体の駆動にリニアモータやサーボモータが利用され、モータドラ ィバ (モータ制御装置)から供給する電流を変化させることで移動体の位置、速度お よび加速度を制御して 、る。  Conventionally, linear motion devices such as linear guides and ball screws have been widely used. In this type of linear motion device, linear motors and servo motors are used to drive the moving body, and the position, speed, and acceleration of the moving body are controlled by changing the current supplied from the motor driver (motor controller). And then.
[0003] 移動体の移動経路内に異物が落下したり、直動装置のボール循環路に切り屑や塵 埃が侵入すると、移動体の円滑な移動が阻害され、誤動作や故障の原因となる。そ こで通常は、モータドライバに過負荷アラーム機能を設けて、供給電流が所定のァラ ーム値 (異常判定値)をこえたときに警告を発するようにして!/ヽる。  [0003] If foreign objects fall into the moving path of the moving body or chips or dust enter the ball circulation path of the linear motion device, smooth movement of the moving body is hindered, causing malfunction or failure. . Therefore, normally, an overload alarm function is provided in the motor driver so that a warning is issued when the supply current exceeds a predetermined alarm value (abnormal judgment value).
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] モータへの供給電流は、直動装置の駆動条件 (速度、加速度、移動体にかかる負 荷など)に依存する。よって本来ならば、異常判定値も直動装置の駆動条件に応じて 最適な値に設定すべきである。 [0004] The current supplied to the motor depends on the driving conditions (speed, acceleration, load applied to the moving body, etc.) of the linear motion device. Therefore, the abnormality determination value should be set to an optimum value according to the driving conditions of the linear motion device.
[0005] し力しながら、製品出荷の段階では、ユーザが直動装置をどのような条件下で使用 するかわ力もないため、異常判定値の出荷時設定としては上限値 (モータドライバ容 量)に設定しておかざるを得ない。それゆえ、場合によっては、実際の供給電流値と 異常判定値との開きが大きぐ直動装置の異常を正確に検出できないおそれがあるHowever, at the time of product shipment, the user has no power to use the linear motion device under any conditions. Therefore, the upper limit (motor driver capacity) is set as the abnormality judgment value at the time of shipment. It must be set to. Therefore, in some cases, it may not be possible to accurately detect a linear motion device abnormality in which the difference between the actual supply current value and the abnormality judgment value is large.
。とはいえ、駆動条件にあわせて異常判定値を調整するには高度なスキルが必要で あり、ユーザ側で最適な値に設定することは困難である。 . However, advanced skill is required to adjust the abnormality judgment value according to the driving conditions, and it is difficult for the user to set the optimum value.
[0006] 本発明は上記実情に鑑みてなされたものであって、その目的とするところは、直動 装置の駆動条件に合わせた適切な異常判定値を自動で設定するための技術を提供 することにある。 課題を解決するための手段 [0006] The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a technique for automatically setting an appropriate abnormality determination value in accordance with the drive condition of the linear motion device. There is. Means for solving the problem
[0007] 上記目的を達成するために本発明では、直動装置を運転し、そのときのモータへ の供給電流または供給電流のピークを基準にして異常判定値の設定を行う。  In order to achieve the above object, in the present invention, the linear motion device is operated, and the abnormality determination value is set based on the supply current to the motor or the peak of the supply current at that time.
[0008] この異常判定値の設定は、直動装置のモータを制御するモータ制御装置が行うと よい。すなわちまず、直動装置のモータに供給する電流または電圧を制御する制御 手段が、与えられた駆動条件に従って直動装置を自動運転する。そして、異常判定 値設定手段が、そのときのモータへの供給電流または供給電圧のピークをサンプリン グし、サンプリングされたピーク値を基準にして直動装置の異常検出に用いる異常判 定値を設定する。たとえば、ピーク値の約 1. 2〜1. 4倍、好ましくは約 1. 25-1. 3 倍程度に異常判定値を設定すればょ ヽ。  [0008] The setting of the abnormality determination value may be performed by a motor control device that controls the motor of the linear motion device. That is, first, the control means for controlling the current or voltage supplied to the motor of the linear motion device automatically operates the linear motion device according to the given drive conditions. Then, the abnormality judgment value setting means samples the peak of the supply current or supply voltage to the motor at that time, and sets the abnormality judgment value used for detecting the abnormality of the linear motion device based on the sampled peak value. . For example, the abnormality judgment value should be set to about 1.2 to 1.4 times the peak value, preferably about 1.25-1.
[0009] 上記ピーク値は、実際にモータにかかる負荷を表している。よって、その値を基準 にすることで、直動装置の実際の駆動条件に応じた適切な異常判定値の算出が可 能となる。また、各処理はユーザの手を煩わせることなく全て自動で実行されるため、 異常判定値の設定簡易化および省力化を図ることができる。  [0009] The peak value represents the load actually applied to the motor. Therefore, by using the value as a reference, it is possible to calculate an appropriate abnormality determination value according to the actual driving condition of the linear motion device. In addition, since each process is automatically executed without bothering the user, it is possible to simplify the setting of the abnormality determination value and save labor.
[0010] 異常判定値の設定処理については、本稼働に入る前の試運転時に、本稼働とほ ぼ同じ駆動条件で実行することが好ま U、。  [0010] It is preferable that the abnormality determination value setting process be executed under the same driving conditions as in the actual operation during the test operation before entering the actual operation.
[0011] 本稼働時には、モータ制御装置の異常検出手段が、モータへの供給電流または供 給電圧と前記異常判定値とを比較することによって直動装置の異常を検出するとよ い。これにより、直動装置の異常を適切に検出し、故障や破損などを未然に防ぐこと ができる。  [0011] During actual operation, the abnormality detection means of the motor control device may detect an abnormality of the linear motion device by comparing the supply current or supply voltage to the motor with the abnormality determination value. As a result, it is possible to properly detect abnormalities in the linear motion device and prevent malfunctions and damages.
[0012] ところで、通常、非等速時 (加速時または減速時)には等速時よりもモータにかかる 負荷 (すなわち、供給電流または供給電圧の振幅)が大きい。それゆえ、非等速時の ピーク値を基準に異常判定値を設定した場合には、等速時の異常検出精度が低下 するおそれがある。逆に等速時のピーク値を基準にした場合には、非等速時に誤判 定が頻発するおそれがある。  By the way, normally, the load applied to the motor (ie, the amplitude of the supply current or the supply voltage) is larger at non-constant speed (acceleration or deceleration) than at constant speed. Therefore, when the abnormality judgment value is set based on the peak value at non-constant speed, the abnormality detection accuracy at constant speed may be reduced. Conversely, if the peak value at constant speed is used as a reference, misjudgment may occur frequently at non-constant speed.
[0013] そこで、本発明では、等速時のピークと非等速時のピークとを別々にサンプリングし 、それぞれのピーク値力 等速時用の異常判定値と非等速時用の異常判定値を求 める構成を採用するとよい。これにより、等速時、非等速時のそれぞれに適切な異常 判定値が設定されるため、異常検出の精度および信頼性が向上する。 [0013] Therefore, in the present invention, the peak at the constant speed and the peak at the non-constant speed are sampled separately, and each peak value force abnormality determination value for the constant speed and abnormality determination for the non-constant speed are obtained. It is advisable to adopt a configuration that obtains values. As a result, abnormalities appropriate for both constant speed and non-constant speed Since the determination value is set, the accuracy and reliability of abnormality detection is improved.
[0014] なお、本発明は、上記手段の少なくとも一部を有するモータ制御装置として捉える ことができる。また、本発明はそのモータ制御装置と直動装置とを備えるァクチユエ一 タとして捉えることもできる。さらに、本発明は上記処理の少なくとも一部を含む直動 装置の異常判定値設定方法や制御方法として捉えることもできる。上記手段および 処理の各々は可能な限り互いに組み合わせて本発明を構成可能である。  [0014] It should be noted that the present invention can be understood as a motor control device having at least a part of the above means. The present invention can also be understood as an actuator comprising the motor control device and the linear motion device. Furthermore, the present invention can also be understood as an abnormality determination value setting method and control method for a linear motion device that includes at least a part of the above processing. Each of the above means and processes can be combined with each other as much as possible to constitute the present invention.
発明の効果  The invention's effect
[0015] 本発明によれば、直動装置の駆動条件に合わせた適切な異常判定値を自動で設 定することができ、ユーザの負荷軽減と異常検出の精度向上とを図ることができる。 発明を実施するための最良の形態  [0015] According to the present invention, it is possible to automatically set an appropriate abnormality determination value in accordance with the driving conditions of the linear motion device, and to reduce the load on the user and improve the accuracy of abnormality detection. BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 以下に図面を参照して、この発明の好適な実施の形態を例示的に詳しく説明する Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings.
[0017] 図 1は、本発明の一実施形態に係るァクチユエータの構成を示している。本実施形 態のァクチユエータ 1は、移動体をリニアモータで駆動する方式のリニアモータァクチ ユエータであり、直動装置 2とそれを制御するモータドライバ (モータ制御装置) 3とか ら構成される。 FIG. 1 shows a configuration of an actuator according to an embodiment of the present invention. The actuator 1 according to this embodiment is a linear motor actuator that drives a moving body with a linear motor, and includes a linear motion device 2 and a motor driver (motor control device) 3 that controls the linear motion device 2.
[0018] 直動装置 2は、概略、ベース部 20と、ベース部 20に対してスライド自在に設けられ たスライダ (移動体) 21とからなる。本実施形態では、スライダ 21の直動機構として 2 基のリニアガイド 22を採用し、ベース部 20の両側に 2条のレール 22aを設け、スライ ダ 21の裏面に 2つのブロック 22bを取り付けている。レール 22aとブロック 22bの間に は複数の転動体 (ボールまたはローラ)が介在しており、スライダ 21移動時には転動 体が転がり運動をすることで滑らかな直線運動を実現する。  The linear motion device 2 generally includes a base portion 20 and a slider (moving body) 21 that is slidable with respect to the base portion 20. In this embodiment, two linear guides 22 are employed as the linear motion mechanism of the slider 21, two rails 22 a are provided on both sides of the base portion 20, and two blocks 22 b are attached to the back surface of the slider 21. . A plurality of rolling elements (balls or rollers) are interposed between the rail 22a and the block 22b, and when the slider 21 moves, the rolling elements roll to achieve a smooth linear motion.
[0019] スライダ 21の駆動手段としてはリニアモータ 23を採用している。ベース部 20の底面 に永久磁石のマグネットプレート 23aが設けられ、スライダ 21の下部には可動子 23b が固定されている。モータドライバ 3によって可動子 23bの磁力および極性を適宜変 化させることにより、スライダ 21の位置 ·速度 '加速度を制御することができる。  A linear motor 23 is employed as the driving means for the slider 21. A permanent magnet magnet plate 23 a is provided on the bottom surface of the base portion 20, and a mover 23 b is fixed to the lower portion of the slider 21. By appropriately changing the magnetic force and polarity of the mover 23b by the motor driver 3, the position / velocity “acceleration” of the slider 21 can be controlled.
[0020] スライダ 21の位置.速度の検出には、位置検出手段であるリニアエンコーダ 24を利 用する。スライダ 21に固定したヘッド 24bで、ベース部 20に取り付けられたリニアスケ ール 24aを読み取る仕組みである。リニアエンコーダ 24の検出結果は、モータドライ ノ 3に入力され、リニアモータ 23のフィードバック制御に供される。 [0020] The position and speed of the slider 21 are detected by using a linear encoder 24 as position detecting means. A linear scale attached to the base 20 with the head 24b fixed to the slider 21. This is a mechanism for reading the rule 24a. The detection result of the linear encoder 24 is input to the motor driver 3 and used for feedback control of the linear motor 23.
[0021] 図 2は、モータドライバ 3の機能構成を示すブロック図である。このモータドライバ 3 は、制御部 30、異常判定値設定部 31、および、異常検出部 32を有している。  FIG. 2 is a block diagram showing a functional configuration of the motor driver 3. The motor driver 3 includes a control unit 30, an abnormality determination value setting unit 31, and an abnormality detection unit 32.
[0022] 制御部 30では、設定された制御プログラムに従って、 U, V, W相それぞれの電流 の周波数および振幅変調を行 、、その三相交流電流をリニアモータ 23へと供給する 。この供給電流に従ってリニアモータ 23が動作し、スライダ 21が移動する。スライダ 2 1の位置 ·速度情報はリニアェンコーダ 24で検出され、逐次制御部 30に入力される。 制御部 30では、その検出結果に基づいてリニアモータ 23への供給電流をフィードバ ック制御し、スライダ 21に所期の運動を行わせる。  The control unit 30 performs frequency and amplitude modulation of the currents of the U, V, and W phases according to the set control program, and supplies the three-phase alternating current to the linear motor 23. The linear motor 23 operates according to this supplied current, and the slider 21 moves. The position / velocity information of the slider 21 is detected by the linear encoder 24 and sequentially input to the control unit 30. The control unit 30 feedback-controls the current supplied to the linear motor 23 based on the detection result, and causes the slider 21 to perform the desired motion.
[0023] 異常判定値設定部 31は、異常判定値の算出、設定を自動で行う部分である。ここ で求められた異常判定値は異常検出部 32に引き渡され、直動装置 2の異常検出に 用いられる。以下、異常判定値の設定処理および直動装置の異常検出処理につい て詳しく説明する。  The abnormality determination value setting unit 31 is a part that automatically calculates and sets an abnormality determination value. The abnormality determination value obtained here is transferred to the abnormality detection unit 32 and used for abnormality detection of the linear motion device 2. Hereinafter, the abnormality determination value setting process and the linear motion apparatus abnormality detection process will be described in detail.
[0024] (異常判定値設定処理)  [Abnormal judgment value setting processing]
図 3は、モータドライバ 3において実行される異常判定値設定処理の流れを示すフ ローチャートである。この異常判定値設定処理については、直動装置 2の設置時など 、本稼動に入る前の試運転時に実行されるものである。また、設置時のみならず、定 期的に実行して異常判定値を更新することも好ましい。  FIG. 3 is a flowchart showing the flow of the abnormality determination value setting process executed in the motor driver 3. This abnormality judgment value setting process is executed at the time of trial operation before entering the actual operation, such as when the linear motion device 2 is installed. It is also preferable to update the abnormality determination value not only at the time of installation but also periodically.
[0025] ステップ S1では、まず制御部 30が直動装置 2を駆動し、自動運転を開始する。この とき、本稼働とほぼ同じ駆動条件 (速度、加速度、スライダ 21にかかる負荷など)にて 自動運転を行うことが好ましい。本稼働に近い条件であるほど、算出される異常判定 値の信頼性が向上するからである。  [0025] In step S1, first, the control unit 30 drives the linear motion device 2 to start automatic operation. At this time, it is preferable to perform automatic operation under substantially the same driving conditions (speed, acceleration, load applied to the slider 21, etc.) as in actual operation. This is because the reliability of the calculated abnormality judgment value improves as the conditions are closer to actual operation.
[0026] 図 4にリニアモータ 23への供給電流の波形の一例を示す。同図は、 1回の駆動に 係る波形であって、静止状態にあるスライダ 21を加速し、所定速度になった時点で 等速移動させた後、減速して静止させる、という一連の制御を表している。非等速時 ( 加速時、減速時)には、等速時に比べて、供給電流の振幅が大きくなることがわかる [0027] ステップ S2では、異常判定値設定部 31が、加速時の供給電流のピーク (PI, P1 ' など)をサンプリングする。また、ステップ S3では、等速時のピーク(P2, など) を、ステップ S4では、減速時のピーク(P3, P3' など)をサンプリングする。それぞれ のサンプリングタイミングは、制御部 30から供給されるタイミング信号によって認識す る力、ピーク値の変化力 判断すればよい。 FIG. 4 shows an example of the waveform of the current supplied to the linear motor 23. This figure is a waveform related to one drive, and a series of control is performed in which the slider 21 in a stationary state is accelerated, moved at a constant speed when it reaches a predetermined speed, and then decelerated and stopped. Represents. It can be seen that the amplitude of the supply current is larger at non-constant speed (acceleration and deceleration) than at constant speed. [0027] In step S2, the abnormality determination value setting unit 31 samples the peak (PI, P1 ', etc.) of the supply current during acceleration. In step S3, the peak at constant speed (P2, etc.) is sampled, and in step S4, the peak at deceleration (P3, P3 ', etc.) is sampled. Each sampling timing may be determined by the force recognized by the timing signal supplied from the control unit 30 and the changing force of the peak value.
[0028] ステップ S5では、上記サンプリング処理を N回繰り返したか調べる(Nは 1以上の整 数)。 N回未満の場合には、ステップ S1〜S4の処理を繰り返す。  [0028] In step S5, it is checked whether the above sampling process has been repeated N times (N is an integer of 1 or more). If it is less than N times, repeat steps S1 to S4.
[0029] ステップ S6では、 N回のサンプリング処理で得られたピーク値の平均を求める。図 5 は、加速時のピーク値 (黒丸)とそれらの平均値 (破線)を示している。平均の算出に は、単純平均や加重平均を用いればよい。また、平均値ではなぐ中央値 (メディアン )または最大値を用いたり、統計的手法でピーク値を推定することも好ましい。このよう にサンプリングを複数回実行し、それらの平均 (またはそれに類する値)を求めること により、ピーク値の信頼性を向上することができる。  In step S6, an average of peak values obtained by N sampling processes is obtained. Figure 5 shows the peak values during acceleration (black circles) and their average values (dashed lines). The average can be calculated using a simple average or a weighted average. It is also preferable to use a median (median) or maximum value that is not an average value, or estimate a peak value by a statistical method. Thus, the reliability of the peak value can be improved by performing sampling a plurality of times and calculating the average (or a similar value) of them.
[0030] 加速時、等速時、減速時それぞれのピーク値 (平均値)が求まったら、異常判定値 設定部 31は、それらのピーク値を基準にして加速時用、等速時用、減速時用の異常 判定値を算出する (ステップ S7)。ここでは、図 5に示すように、ピーク値を単純に定 数倍した値を異常判定値として採用する。このときの倍率は、約 1. 2〜1. 4倍、好ま しくは約 1. 25〜: L 3倍程度がよい。倍率を小さくするほど異常検出が敏感になるが 、誤検出が増加する可能性がある。逆に倍率を大きくすると誤検出は少なくなるが、 異常検出の精度が低下する。最適な倍率については具体的な実施態様に合わせて 決定すればよい。  [0030] Once the peak values (average values) at acceleration, constant speed, and deceleration are obtained, the abnormality determination value setting unit 31 uses the peak values as a reference for acceleration, constant speed, and deceleration. Abnormality judgment value for time is calculated (step S7). Here, as shown in Fig. 5, a value obtained by simply multiplying the peak value by a constant is adopted as the abnormality determination value. The magnification at this time is about 1.2 to 1.4 times, preferably about 1.25 to about L 3 times. Anomaly detection becomes more sensitive as the magnification is reduced, but false detection may increase. Conversely, increasing the magnification reduces the number of false detections, but decreases the accuracy of abnormality detection. The optimum magnification may be determined according to a specific embodiment.
[0031] 異常判定値が求まったら、それらを不揮発性メモリに格納し、異常判定値設定処理 を終了する (ステップ S8)。  [0031] When the abnormality determination values are obtained, they are stored in the nonvolatile memory, and the abnormality determination value setting process is terminated (step S8).
[0032] (異常検出処理)  [0032] (Abnormality detection processing)
図 6は、異常検出部 32における異常検出処理を説明するための図である。同図に 示すように、異常検出部 32は、不揮発性メモリから、加速時用、等速時用、減速時用 それぞれの異常判定値を読み込み、閾値として保持する。そして、リニアモータ 23へ の供給電流を監視し、その値 (振幅)と異常判定値との比較を行う。このとき、異常検 出部 32は、制御部 30から供給される信号から駆動状態 (加速時 Z等速時 Z減速時 の別)を判断し、その駆動状態に対応した異常判定値を用いて比較を行う。そして、 図 6に示すように、供給電流の値が異常判定値に達したら、直動装置 2に何らかの異 常が発生したものと判定する。 FIG. 6 is a diagram for explaining the abnormality detection process in the abnormality detection unit 32. As shown in the figure, the abnormality detection unit 32 reads the abnormality determination values for acceleration, constant speed, and deceleration from the nonvolatile memory and holds them as threshold values. Then, the supply current to the linear motor 23 is monitored, and the value (amplitude) is compared with the abnormality determination value. At this time, The output unit 32 determines a driving state (aside from acceleration Z at constant speed Z deceleration) from a signal supplied from the control unit 30, and performs comparison using an abnormality determination value corresponding to the driving state. Then, as shown in FIG. 6, when the value of the supply current reaches the abnormality determination value, it is determined that some abnormality has occurred in the linear motion device 2.
[0033] 異常を検出した場合、異常検出部 32は制御部 30に異常検出信号を送出すること によって実行中の制御を中断させる。また、ブザーを鳴動させたり警告ランプを点灯 させたりして、作業者に異常発生を通知し、迅速な対応を促す。 When an abnormality is detected, the abnormality detection unit 32 sends an abnormality detection signal to the control unit 30 to interrupt the control being executed. In addition, the buzzer is sounded and the warning lamp is lit to notify the operator of the occurrence of an abnormality and prompt action.
[0034] 以上述べた本実施形態の構成によれば、直動装置 2を実際に運転し、そこで観測 された供給電流のピークを基準に異常判定値を算出しているので、直動装置 2の実 際の駆動条件に応じた適切な異常判定値の算出が可能となり、ひいては異常検出 の精度向上を図ることができる。 [0034] According to the configuration of the present embodiment described above, the linear motion device 2 is actually operated, and the abnormality determination value is calculated based on the peak of the supply current observed there. Therefore, it is possible to calculate an appropriate abnormality determination value according to the actual driving conditions, and to improve the accuracy of abnormality detection.
[0035] また、各処理はユーザの手を煩わせることなく全て自動で実行されるため、異常判 定値の設定簡易化および省力化を図ることができる。 [0035] In addition, since each process is automatically executed without bothering the user, it is possible to simplify the setting of the abnormality determination value and save labor.
[0036] さらに、加速時、等速時、減速時それぞれに異なる異常判定値を採用したので、各 駆動状態において異常検出の精度および信頼性が向上する。 [0036] Further, since different abnormality determination values are adopted for acceleration, constant speed, and deceleration, the accuracy and reliability of abnormality detection are improved in each driving state.
[0037] なお、上記実施形態は本発明の一具体例を例示したものにすぎない。本発明の範 囲は上記実施形態に限られるものではなぐその技術思想の範囲内で種々の変形が 可能である。 [0037] The above embodiment is merely an example of the present invention. The scope of the present invention is not limited to the above embodiment, and various modifications can be made within the scope of the technical idea.
[0038] たとえば、上記実施形態では、加速時、等速時、減速時のそれぞれにつ!/、て異な る異常判定値を採用したが、各駆動状態で供給電流の振幅にさほど差が無い場合 には、単一の異常判定値を用いたり、加速時と減速時の異常判定値を共通にしたり してもよい。また逆に、駆動状態をより細力べ分類して、 3つよりも多い異常判定値を 採用することも好ましい。  [0038] For example, in the above embodiment, different abnormality judgment values are adopted for acceleration, constant speed, and deceleration, but there is not much difference in the amplitude of the supply current in each driving state. In some cases, a single abnormality determination value may be used, or the abnormality determination values during acceleration and deceleration may be shared. On the other hand, it is also preferable to classify the driving state more finely and adopt more than three abnormality judgment values.
[0039] また、異常判定値の算出方法としては、上記実施形態のようなピーク値を定数倍す る方法に限らず、たとえば、ピーク値に定数を加算したり、所定の関数やテーブルを 用いてピーク値を変換したりする方法でもよ 、。  [0039] The calculation method of the abnormality determination value is not limited to the method of multiplying the peak value by a constant as in the above embodiment, and for example, a constant is added to the peak value, or a predetermined function or table is used. You can also convert peak values.
[0040] モータ制御装置に複数の制御プログラムを設定できる場合には、制御プログラムご とに異常判定値を設定できるようにすることが好ましい。これにより、実行する制御プ ログラム (駆動条件)に応じて異常判定値を適切な値に変更することが可能となる。 [0040] When a plurality of control programs can be set in the motor control device, it is preferable that an abnormality determination value can be set for each control program. This allows the control program to be executed. It is possible to change the abnormality determination value to an appropriate value according to the program (driving condition).
[0041] また、上記実施形態では直動機構としてリニアガイドを採用したが、その他にも、ボ ールねじ、ローラねじ、ボールスプラインまたはそれらの組み合わせも好適に採用で きる。  In the above embodiment, the linear guide is used as the linear motion mechanism, but a ball screw, a roller screw, a ball spline, or a combination thereof can also be suitably used.
[0042] また、直動機構の駆動手段としてはリニアモータでなく回転式のサーボモータを採 用してもよいし、スライダの位置検出手段としてはリニアエンコーダでなくロータリエン コーダを採用してもよい。  [0042] Further, a rotary servo motor instead of a linear motor may be employed as the driving mechanism for the linear motion mechanism, and a rotary encoder may be employed as the slider position detecting means instead of the linear encoder. Good.
[0043] また、上記実施形態では供給電流の波形を監視して!/、るが、モータを電圧制御し ている場合には供給電圧の波形を監視して異常検出を行うことも好ましい。 In the above embodiment, the waveform of the supply current is monitored! /. However, when the motor is voltage-controlled, it is also preferable to detect the abnormality by monitoring the waveform of the supply voltage.
図面の簡単な説明  Brief Description of Drawings
[0044] [図 1]本発明の一実施形態に係るァクチユエータの構成を示す図。 FIG. 1 is a diagram showing a configuration of an actuator according to an embodiment of the present invention.
[図 2]モータドライバの機能構成を示すブロック図。  FIG. 2 is a block diagram showing a functional configuration of a motor driver.
[図 3]異常判定値設定処理の流れを示すフローチャート。  FIG. 3 is a flowchart showing a flow of abnormality determination value setting processing.
[図 4]供給電流の波形の一例を示す図。  FIG. 4 is a diagram showing an example of a waveform of a supply current.
[図 5]加速時におけるピーク値、その平均値、および、異常判定値を示す図。  FIG. 5 is a diagram showing a peak value during acceleration, an average value thereof, and an abnormality determination value.
[図 6]異常検出処理を説明するための図。  FIG. 6 is a diagram for explaining abnormality detection processing.
符号の説明  Explanation of symbols
[0045] 1 ァクチユエータ [0045] 1actuator
2 直動装置  2 Linear motion device
3 モータドライバ(モータ制御装置)  3 Motor driver (motor control device)
20 ベース部  20 Base part
21 スライダ (移動体)  21 Slider (moving object)
22 リニアガイド  22 Linear guide
23 リニアモータ  23 Linear motor
24 リニアエンコーダ  24 linear encoder
30 制御部  30 Control unit
31 異常判定値設定部  31 Error judgment value setting section
32 異常検出部  32 Anomaly detector

Claims

請求の範囲 The scope of the claims
[1] 直動装置のモータを制御するモータ制御装置が、  [1] A motor control device that controls the motor of the linear motion device
与えられた駆動条件に従って直動装置を自動運転し、  The linear motion device is automatically operated according to the given drive conditions,
そのときのモータへの供給電流または供給電圧のピークをサンプリングし、 サンプリングされたピーク値を基準にして直動装置の異常検出に用いる異常判定 値を設定する  Sampling the peak of the supply current or supply voltage to the motor at that time, and setting the abnormality judgment value used for detecting the abnormality of the linear motion device based on the sampled peak value
直動装置の異常判定値設定方法。  An abnormality judgment value setting method for a linear motion device.
[2] 等速時のピークと非等速時のピークとを別々にサンプリングし、それぞれのピーク値 力 等速時用の異常判定値と非等速時用の異常判定値を求める  [2] The peak at constant speed and the peak at non-constant speed are sampled separately, and the peak value of each force is obtained.
請求項 1記載の直動装置の異常判定値設定方法。  The method for setting an abnormality judgment value for a linear motion device according to claim 1.
[3] 前記ピーク値の約 1. 2〜1. 4倍に異常判定値を設定する [3] Set the abnormality judgment value approximately 1.2 to 1.4 times the peak value.
請求項 1または 2記載の直動装置の異常判定値設定方法。  The method for setting an abnormality judgment value for a linear motion device according to claim 1 or 2.
[4] 直動装置のモータに供給する電流または電圧を制御する制御手段と、 [4] control means for controlling the current or voltage supplied to the motor of the linear motion device;
前記制御手段が与えられた駆動条件に従って直動装置を自動運転して!/、るときに When the control means automatically operates the linear motion device according to the given drive conditions!
、モータへの供給電流または供給電圧のピークをサンプリングし、サンプリングされた ピーク値を基準にして異常判定値を設定する異常判定値設定手段と、 An abnormality determination value setting means for sampling a peak of a supply current or supply voltage to the motor and setting an abnormality determination value based on the sampled peak value;
モータへの供給電流または供給電圧と前記異常判定値とを比較することによって 直動装置の異常を検出する異常検出手段と、  An abnormality detection means for detecting an abnormality of the linear motion device by comparing the supply current or supply voltage to the motor and the abnormality determination value;
を備えるモータ制御装置。  A motor control device comprising:
[5] 前記異常判定値設定手段は、等速時のピークと非等速時のピークとを別々にサン プリングし、それぞれのピーク値力 等速時用の異常判定値と非等速時用の異常判 定値を求める [5] The abnormality judgment value setting means samples the peak at constant speed and the peak at non-constant speed separately, and each peak value force abnormality judgment value for constant speed and non-constant speed use Obtain the abnormal judgment value of
請求項 4記載のモータ制御装置。  The motor control device according to claim 4.
[6] 前記異常判定値設定手段は、前記ピーク値の約 1. 2〜1. 4倍に異常判定値を設 定する [6] The abnormality judgment value setting means sets the abnormality judgment value about 1.2 to 1.4 times the peak value.
請求項 4または 5記載のモータ制御装置。  The motor control device according to claim 4 or 5.
[7] 請求項 4、 5または 6記載のモータ制御装置と、 [7] The motor control device according to claim 4, 5 or 6,
前記モータ制御装置によって駆動される直動装置と、 を備えるァクチユエータ。 A linear motion device driven by the motor control device; Actuator with
PCT/JP2005/011971 2004-06-29 2005-06-29 Error judgment value setting method, motor control device, and actuator WO2006001480A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006528756A JPWO2006001480A1 (en) 2004-06-29 2005-06-29 Abnormality judgment value setting method, motor control device, actuator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004191810 2004-06-29
JP2004-191810 2004-06-29

Publications (1)

Publication Number Publication Date
WO2006001480A1 true WO2006001480A1 (en) 2006-01-05

Family

ID=35781899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011971 WO2006001480A1 (en) 2004-06-29 2005-06-29 Error judgment value setting method, motor control device, and actuator

Country Status (2)

Country Link
JP (1) JPWO2006001480A1 (en)
WO (1) WO2006001480A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11131369B2 (en) 2018-03-26 2021-09-28 Denso Corporation Failure diagnostic apparatus for ball screw device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4663576A (en) * 1985-04-30 1987-05-05 Combustion Engineering, Inc. Automatic controller for magnetic jack type control rod drive mechanism
JPH0962343A (en) * 1995-08-23 1997-03-07 Ricoh Co Ltd Controller
JP2003134900A (en) * 2001-10-26 2003-05-09 Fuji Electric Co Ltd Method of indicating data of motor
JP2003348900A (en) * 2002-05-28 2003-12-05 Mitsubishi Electric Corp Motor abnormality detecting device and electric power steering control unit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06133591A (en) * 1992-10-13 1994-05-13 Sawafuji Electric Co Ltd Control circuit for compressor using three-phase induction motor
JP2002010681A (en) * 2000-06-16 2002-01-11 Aisin Seiki Co Ltd Motor-driving unit
JP4560953B2 (en) * 2000-12-01 2010-10-13 三菱電機株式会社 Variable speed device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4663576A (en) * 1985-04-30 1987-05-05 Combustion Engineering, Inc. Automatic controller for magnetic jack type control rod drive mechanism
JPH0962343A (en) * 1995-08-23 1997-03-07 Ricoh Co Ltd Controller
JP2003134900A (en) * 2001-10-26 2003-05-09 Fuji Electric Co Ltd Method of indicating data of motor
JP2003348900A (en) * 2002-05-28 2003-12-05 Mitsubishi Electric Corp Motor abnormality detecting device and electric power steering control unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11131369B2 (en) 2018-03-26 2021-09-28 Denso Corporation Failure diagnostic apparatus for ball screw device

Also Published As

Publication number Publication date
JPWO2006001480A1 (en) 2008-04-17

Similar Documents

Publication Publication Date Title
JP4755593B2 (en) Abnormality detection method and motor control device
CN102862903B (en) Point inspection apparatus for elevator door and point inspection method for elevator door
JP6312517B2 (en) Motor control device
WO2012014249A1 (en) Motor control device and method for controlling motor control device
JPH0454885A (en) Monitor for servomotor
CN105800434A (en) Variable-frequency detecting system and method for door opening and closing abnormity
WO2018196177A1 (en) Limit sensing method
US20070229019A1 (en) Electric motor control unit
JP2019144809A (en) Servo control device
KR101233558B1 (en) Elevator device
WO2006001480A1 (en) Error judgment value setting method, motor control device, and actuator
JPH11252990A (en) Pwm-type motor controller
KR100747219B1 (en) method for testing an endurance of window system in a car
KR20190045580A (en) Rope-type screen door
JP2011105455A (en) Elevator device
CN106163964B (en) The controlling device for doors and door control method of elevator
JP2007290834A (en) Elevator door control device
JP2011231490A (en) Automatic door drive controller
JP2007204156A (en) Door control device for elevator
JP2006083526A (en) Automatic door device and contact detection device used for the automatic door device
CN113739840B (en) Detection device and detection method of movement mechanism and photoetching equipment
JP4958620B2 (en) Automatic door opening / closing control device, automatic door opening / closing control method, and automatic door device
JP2002350184A (en) Failure detection method for encoder for ac servo
JPH102150A (en) Device for sensing opening and closing end of automatic door device
JP2000351558A (en) Door control unit of elevator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006528756

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase