WO2006001425A1 - 静電チャック - Google Patents

静電チャック Download PDF

Info

Publication number
WO2006001425A1
WO2006001425A1 PCT/JP2005/011743 JP2005011743W WO2006001425A1 WO 2006001425 A1 WO2006001425 A1 WO 2006001425A1 JP 2005011743 W JP2005011743 W JP 2005011743W WO 2006001425 A1 WO2006001425 A1 WO 2006001425A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrostatic chuck
wafer
mounting surface
aluminum nitride
dielectric layer
Prior art date
Application number
PCT/JP2005/011743
Other languages
English (en)
French (fr)
Inventor
Satoru Kamitani
Kiyoshi Yokoyama
Original Assignee
Kyocera Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004190462A external-priority patent/JP4666960B2/ja
Priority claimed from JP2004190461A external-priority patent/JP4540407B2/ja
Application filed by Kyocera Corporation filed Critical Kyocera Corporation
Priority to US11/571,347 priority Critical patent/US7586734B2/en
Priority to KR1020067027690A priority patent/KR101142000B1/ko
Publication of WO2006001425A1 publication Critical patent/WO2006001425A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N13/00Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect

Definitions

  • the present invention relates to an electrostatic chuck used in a flat display manufacturing process in which a semiconductor wafer is electrostatically adsorbed in a semiconductor manufacturing process or a liquid crystal substrate is adsorbed.
  • a wafer is statically removed in an etching process for fine processing a semiconductor wafer (hereinafter referred to as a wafer) or a film forming process for forming a thin film.
  • An electrostatic chuck that is fixed with an electroadhesive force is used.
  • the electrostatic chuck has an upper surface of a dielectric layer as a mounting surface on which a wafer as an object to be attracted is placed, and an electrostatic chucking electrode on the lower surface of the dielectric layer.
  • the wafer is fixed to the mounting surface by applying a voltage between the electrode and the electrode for electrostatic attraction to develop an electrostatic attraction force.
  • Patent Document 1 in order to increase the contact area between a wafer and a gas for heating the wafer and to make the wafer temperature uniform, a plurality of minute convex portions whose tip portions are smaller than the base are provided. An electrostatic chuck that is provided on the mounting surface and holds the wafer in point contact with the tip of the convex portion has been proposed.
  • Patent Document 2 by reducing the contact area between the wafer and the electrostatic chuck surface and reducing the height of the convex portion, an attractive force other than the contact portion can be obtained. It has been proposed that even with a small contact area, the wafer can be held with a large force and the temperature of the wafer can be made uniform. However, in the electrostatic chucks described in Patent Documents 1 and 2, since the contact area between the wafer and the electrostatic chuck is small, the electrostatic chuck that produces a Johnson Rabeck force with a large attraction force is used.
  • the wafer In the case of an electrostatic chuck that exerts a low coulomb force with a low attraction force, if the gas flows through the gas flow path of the electrostatic chuck, the wafer also has an electrostatic chuck force due to the gas pressure of the electrostatic chuck. It will come off. If the gas pressure is lowered in order to prevent the wafer from being detached from the electrostatic chuck, the time for the wafer to reach the saturation temperature is lengthened, and the number of wafers processed per unit time is reduced.
  • Patent Document 3 discloses a plurality of radial grooves in which the gas grooves of the electrostatic chuck are arranged at equal intervals.
  • a plurality of annular grooves arranged concentrically in communication with the radial grooves and surrounded by two radial grooves adjacent to the two adjacent annular grooves in the area after the first annular groove from the center.
  • Each installation surface is composed of at least one radially extending partition groove that divides the installation surface into two or more, and two adjacent annular grooves and two adjacent annular grooves are surrounded by two adjacent radial grooves.
  • the wafer reaches the saturation temperature. Time to heat and saturation at the saturation temperature It has been proposed that an excellent electrostatic chuck can be provided.
  • an electrostatic chuck is disclosed in which convex portions having a circular shape are arranged in a lattice pattern on a wafer mounting surface.
  • Patent Document 1 Japanese Patent Laid-Open No. 9 172055
  • Patent Document 2 JP 2002-222851
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-170868
  • Patent Document 4 JP-A-7-153825
  • an object of the present invention is to provide an electrostatic chuck that has good temperature uniformity, a short time until the wafer reaches a saturation temperature, and good durability against a voltage application cycle. .
  • the shape of the convex portion is provided in an electrostatic chuck having a gas flow path in which a plurality of convex portions are arranged in a lattice pattern. If the gas is introduced into the through hole, the gas introduced into the through hole is less likely to spread laterally with respect to the traveling direction. Although it diffuses well in the lateral direction with respect to the direction of travel, it is difficult to diffuse even in the direction of travel. If the corners are formed in an arc shape, the gas can be diffused uniformly, the time to reach the saturation temperature can be shortened, and the thermal uniformity can be improved. And the present invention has been completed.
  • the first invention of the present invention comprises a pair of main surfaces, one main surface of which is a mounting surface on which a wafer is placed, and the other main surface of the plate-shaped body or In the chucking electrode provided inside and the electrostatic chuck with force,
  • At least one gas introduction through hole formed so as to penetrate the plate-like body and a plurality of convex portions spaced apart from each other, and further connected to the through hole.
  • a gas flow path formed to pass through, and an annular wall formed on the outer periphery of the plate-like body,
  • Planar shape force of the convex part It consists of one side and an arcuate part that connects the four sides, and the through hole force for gas introduction
  • the convex part is located above the mounting surface so as to uniformly diffuse the introduced gas
  • the electrostatic chuck is arranged uniformly.
  • the convex portions are arranged in a lattice pattern.
  • the gas introduced with the through-hole force can be uniformly diffused, and the wafer can be heated uniformly.
  • a portion where the bottom surface of the gas flow path is connected to the convex portion or the annular wall portion has an arc shape.
  • the arithmetic average roughness Ra of the bottom surface of the gas flow path is 2 ⁇ m or less.
  • the arithmetic average roughness Ra is 2 m or less, the bottom surface of the gas flow path becomes a sliding force, allowing low-pressure gas to diffuse smoothly into the gas flow path, and the surface temperature of wafer W reaches a predetermined temperature. It is possible to shorten the saturation time until the time becomes, and to reduce the in-plane temperature difference.
  • the width of the annular wall portion is 0.5 to: LOmm, and the interval between the opposite sides of the convex portion is 1.5 to: LOmm.
  • the total area of the top surface of the wall is 50 to 80% of the area of the mounting surface, and the distance from the bottom surface of the gas flow path to the top surface of the convex portion is 10 to: LOO / zm It is characterized by that.
  • the gas when the distance from the bottom surface of the gas flow path to the top surface of the convex portion is 10 to 100 m, the gas can be smoothly distributed over the entire surface, and a voltage is applied between the wafer and the electrode. Insulation breakdown can be prevented.
  • one through hole is provided at the center of the mounting surface and a plurality of concentric circles are provided from the center.
  • the electrostatic chuck according to the present invention includes the annular wall portion on the outermost periphery and the inner side of the mounting surface, and a plurality of gaps between the outermost annular wall portion and the inner annular wall portion.
  • a through hole is provided, and a through hole is further provided inside the inner annular wall.
  • the maximum diameter of the plate-like body is 180 to 500 mm
  • the diameter of the through hole is 0.1 to 5 mm
  • the gas can be uniformly diffused in the gas flow path, the time for the wafer to reach the saturation temperature can be shortened, and the thermal uniformity can be improved.
  • a heat exchange member to the other main surface of the plate-like body.
  • the heat exchange member By the heat exchange member, the heat of the mounting surface can be efficiently absorbed by the plate-like body force, and an increase in temperature of Ueno can be suppressed.
  • the heat exchange member has a metal plate force.
  • a metal plate as the heat exchange member, the heat of the mounting surface can be absorbed most efficiently.
  • the plate-like body also has a sintered body strength mainly composed of alumina or aluminum nitride.
  • the above materials are preferable because they are excellent in plasma resistance.
  • the present inventors have imposed a charge that dielectric breakdown of the dielectric layer of the electrostatic chuck will occur if the high voltage is released from the electrode embedded in the electrostatic chuck and such a cycle is repeated.
  • the open porosity of the dielectric layer has an effect on the durability against repeated voltage application release cycles, and if the open porosity of the dielectric layer is 1% or less, the voltage Even when the application and release of the material are repeated for a long time, the durability against the above cycle can be improved, in which the dielectric layer sandwiched between the mounting surface and the electrode does not cause dielectric breakdown, and the above.
  • the average distance from the electrode to the wafer placement surface is 0.015 cm or more, and the volume resistivity of the dielectric layer between the electrode and the placement surface and the average distance If the product of the separation is 1 X 10 7 to 5 ⁇ 10 16 ⁇ 'cm 2 and the average particle size of the aluminum nitride forming the dielectric layer is 1 to 20 m, the voltage application is canceled as above.
  • the present inventors have found that durability against cycles can be improved and have completed the present invention.
  • the second invention of the present invention is that the plate-like body also has a dielectric force mainly composed of aluminum nitride, and an average distance from the electrode to the placement surface is 0.015 cm or more.
  • the product of the volume resistivity value of the dielectric layer between the dielectric layer and the above-mentioned mounting surface and the average distance is IX 10 7 to 5 X 10 16 ⁇ ′cm 2 , and the aluminum nitride forming the dielectric layer -An electrostatic chuck characterized in that the average particle size of the particles is 1 to 20 ⁇ m and the open porosity of the dielectric layer is 1% or less.
  • the electrostatic chuck according to the present invention is characterized in that the dielectric layer includes intragranular pores and grain boundary pores, and an average diameter of the grain boundary pores is smaller than an average crystal grain size of aluminum nitride. And.
  • the average grain boundary pore size smaller than the average crystal grain size of aluminum nitride, the open porosity can be suppressed, and the dielectric layer does not break down even if the voltage application release cycle is repeated. It can be an electrostatic chuck that is not.
  • the electrostatic chuck according to the present invention is characterized in that a ratio SgZSc between a grain boundary pore ratio Sg and an intragranular pore ratio Sc of the dielectric layer is 1.0 or less.
  • a ratio SgZSc between a grain boundary pore ratio Sg and an intragranular pore ratio Sc of the dielectric layer is 1.0 or less.
  • the dielectric layer contains 0.2 to 15% by mass of a minor component composed mainly of aluminum nitride and made of a Group 3a metal oxide.
  • a minor component composed mainly of aluminum nitride and made of a Group 3a metal oxide.
  • the Group 3a metal is preferably cerium. Cerium has the best durability against repeated application of voltage.
  • the electrostatic chuck according to the present invention is baked by holding within 0.5 to 20 hours at a temperature of 1800 to 1900 ° C or less in a non-oxidizing atmosphere having a plate-like ceramic strength of 0.2 to 200 MPa as the aluminum nitride force. It is characterized by being tied. By firing under such conditions, the dielectric layer can be an electrostatic chuck having a desired average particle diameter and open porosity. The invention's effect
  • one main surface of the plate-like body is a mounting surface on which a wafer is placed, and the other main surface or the inside of the plate-like body is used for suction.
  • the electrostatic chuck including an electrode, a through hole, a plurality of convex portions, an annular wall portion provided on the outer periphery, and a gas flow path provided between the convex portions are formed on one main surface of the plate-like body.
  • the planar shape of the convex portion includes four sides and an arc-shaped portion connecting the four sides, and the convex portion is uniformly disposed on the mounting surface, so that the convex portion is introduced from the through hole. Gas can be diffused uniformly at an appropriate rate in the direction of travel and in the direction transverse to the direction of travel, so that the time to reach the saturation temperature can be shortened, and soaking It is possible to improve.
  • Fig. 1 is a schematic plan view showing an electrostatic chuck according to the present invention, and Fig. 1 (b) is an X of (a).
  • FIG. 1 A first figure.
  • FIG. 2 (a) is a schematic plan view showing an electrostatic chuck according to the present invention
  • FIG. 2 (b) is a cross-sectional view taken along the line XX of (a).
  • FIG. 3 (a) is a plan view showing an outline of another example of the electrostatic chuck according to the present invention
  • FIG. 3 (b) is a sectional view taken along the line XX of FIG. 3 (a).
  • FIG. 4 is a schematic view showing an electrostatic chuck according to the present invention.
  • FIG. 5 is a schematic view showing a conventional electrostatic chuck.
  • FIG. 6 is a cross-sectional view of the wafer holding member of the present invention.
  • FIG. 7 is a cross-sectional view of a conventional wafer holding member.
  • FIG. 1 is a schematic view showing an example of an electrostatic chuck 1 according to the present invention.
  • the electrostatic chuck 1 includes an electrode 6 for adsorption inside a plate-shaped body 8, and one main surface of the plate-shaped body 8 is a mounting surface 8 a on which a wafer W is placed, and is connected to the electrode 6.
  • the terminal 7 is provided on the main surface side of the other surface of the plate-like body 8. Further, a heat exchange member 9 is joined to the other main surface of the plate-like body 8 as necessary.
  • a through hole 5 is provided on one main surface of the plate-like body 8, and a gas such as He is supplied from the through hole 5 and flows into the gas flow path 8d. The space to be formed can be filled with gas.
  • the electrostatic chuck 1 is installed in a decompression container (not shown), and the wafer W can be sucked by placing the wafer W on the mounting surface 8a and applying a voltage to the electrode 6 for electrostatic suction. Then, argon gas or the like is introduced into the pressure reducing container to generate plasma above the wafer W, and the wafer W can be etched or formed.
  • the wafer W is heated by the plasma, and the temperature of the mounting surface 8a increases. Therefore, it is possible to flow the gas from the through hole 5 to the gas flow path 8d of the electrostatic chuck 1 and increase the thermal conductivity between the mounting surface 8a and the wafer W to release the heat and make the surface temperature of the wafer W more uniform. it can.
  • a small amount of gas has leaked into the container.
  • the gas leaks out of the electrostatic chuck 1 within a vacuum range that does not affect the film formation process on Ueno and W.
  • the pressure of this gas is set to a constant pressure smaller than the adsorption force of the electrostatic chuck 1, and the wafer W does not come off the electrostatic chuck 1 due to the pressure of this gas.
  • the electrostatic chuck 1 of the present invention has a convex shape 8b in plan view having four sides and an arcuate portion connecting the projection surface 8a when viewed from the projection surface onto the placement surface 8a. It is characterized by being uniformly arranged. It is more preferable that the shape of the convex part 8b is a substantially square.
  • the uniform arrangement means that the through holes are arranged at substantially equal intervals except for the periphery of the annular wall portion.
  • the arc-shaped portion has a shape capable of forming a partial force such as a circle, an ellipse, a hyperbola, or a spline curve.
  • the gas supplied from the through hole 5 smoothly flows to the outer periphery through a straight gas flow path in the a direction.
  • the shape of the convex portion 8b is such that the gas flows smoothly in the b and c directions by using four sides and an arcuate portion connecting them. Therefore, the gas supplied from the through-hole 5 can be supplied to the entire back surface of the wafer through the gas flow path 8d in a short time. As a result, it is preferable that the in-plane temperature difference of the wafer W is small in a short time and the saturation time until the temperature change becomes small is shortened.
  • the shape of the convex part 8b surrounds the convex part 8b for the above reason.
  • the shape surrounded by four straight lines with one side extended to the left and right is most preferably a square shape, but may be a fan shape as shown in FIG.
  • it is preferable that the shape of the convex portion 8b is centrosymmetric with respect to the center of the mounting surface 8a, because the gas spreads uniformly around the central force and the temperature differential force in the wafer W plane is reduced.
  • the shape of the convex portion 8b may be a rectangular shape or a rhombus shape according to the shape of the semiconductor element.
  • the film thickness and characteristics in the chip of a large-sized chip are uniform and excellent. found. The reason for this is thought to be that uniformity is important in each of the square-shaped chips for large-scale chips that require centrally symmetric temperature distribution and adsorption on wafer W. . By making the film thickness and film characteristics in the chip uniform in this way, many elements having excellent electrical characteristics can be obtained from one wafer W, and the yield can be increased.
  • the arc-shaped portion has an arcuate R shape.
  • the size of the R shape is preferably 0.1 mm to 2 mm. By setting this range, the gas can flow uniformly in the a, b, and c directions, the time for which the temperature of the wafer W is saturated is shortened, and the temperature difference in the wafer W surface is small, so that the heat uniformity is improved. It is.
  • the R shape of the arcuate part is less than O.lmm, the gas flow in the a direction in Fig. 1 is good, but the flow in the b and c directions is poor, and the wafer temperature is saturated for a long time.
  • the temperature difference of the wafer acting on the part where the gas flow path 4 in the a direction is straight from the through hole 5 toward the outer periphery is small and excellent.
  • the temperature difference of the wafer in the b and c directions is It gets worse.
  • the time to reach the saturation temperature is not preferable because the time to reach the saturation temperature is longer in the b and c directions than in the a direction. This is thought to be due to the fact that the gas supplied from the through-hole flows in the direction a, which is a straight line, and the temperature force in the direction a is saturated because the R shape of the arcuate part is small.
  • the R-shaped force S2mm is exceeded, the gas flow in the b and c directions will be improved.
  • the temperature reaches a predetermined temperature from the vicinity of the through-hole 5, and it takes time until the temperature of the outer periphery reaches the predetermined temperature.
  • the arcuate portion has a large R shape, and thus reaches a predetermined temperature around the through-hole 5 to which a large amount of gas flowing in the b and c directions in FIG. 1 is supplied.
  • the size of R should be between O.lmm and 2mm.
  • the R-shaped size of the curved surface connecting the bottom surface of the gas flow path 8d and the convex portion 8b is 0.01 to 0.1 mm.
  • the time until the wafer temperature reaches a predetermined temperature is shortened and the thermal uniformity is improved. If it is less than O.Olmm, the gas stays on the curved surface connected to the bottom surface of the gas flow path 8d and the convex portion 8b, and the gas flow becomes worse, so the in-plane temperature difference between Ueno and W may increase. There is. If the R shape exceeds O.lmm, the groove depth must be greater than O.lmm, and the distance between the electrode and the bottom of the groove will be reduced. If is applied, the bottom force of groove 4 may also break down between the electrodes. From these facts, it can be seen that the size of the R shape of the curved surface connecting the bottom surface of the gas flow path 8d and the convex portion 8b may be 0.01 to 0.1 mm.
  • the R-shaped size of the curved surface can be represented by a radius measured in a plane perpendicular to the side of the convex portion 8b and the top surface of the convex portion 8b.
  • the arithmetic average roughness of the bottom surface of the gas flow path 8d is preferably 2 ⁇ m or less, more preferably 1 ⁇ m or less. This is because by setting the length to 2 m or less, the bottom surface of the gas flow path 8d becomes a sliding force, and the low-pressure gas flows smoothly through the groove. However, if it exceeds 2 m, the collision resistance between the gas and the bottom of the groove increases, and there is a possibility that the gas may not flow smoothly through the gas flow path 8d. Then, the saturation time until the surface temperature of the wafer W becomes uniform to a predetermined temperature becomes longer, and the in-plane temperature difference may be increased.
  • the total area of the top surfaces of the convex portion 8b and the outer peripheral annular wall portion 8c is 50 to 80% of the area of the wafer mounting surface 8a, and the convex portion 8b extends from the bottom surface of the gas flow path 8d.
  • the distance to the top surface is preferably 10 to 100 m. Since the electrostatic chuck 1 that exhibits the Coulomb force has a low adsorption force, it is necessary to increase the contact area with the wafer W as much as possible to increase the adsorption force. A contact area of 50% or more is preferable because there is no risk that the wafer W will come off the electrostatic chuck 1 even if gas is supplied to the gas flow path 8d.
  • the contact area with the wafer that is, the total area of the top surfaces of the convex part and the outer peripheral annular wall part is preferably 50 to 80% of the mounting surface.
  • the distance from the bottom surface of the gas flow path 8d to the top surface of the convex portion 8b is preferably 10 to: L00 ⁇ m. Yes. According to Patent Document 1, this distance is preferably 5 to 10 m. In this case, however, the contact area between the electrostatic chuck and the wafer is as small as 5 to 10%. Force that can spread smoothly over the entire surface
  • the electrostatic chuck of the present invention has a contact area of 50 to 80% between the electrostatic chuck and the wafer. Is needed.
  • the distance from the bottom surface of the gas flow path 8d to the top surface of the convex portion 8b is preferably 100 ⁇ m or less! /. Electrode force of electrostatic chuck that exerts Coulomb force The smaller the distance to the mounting surface, the greater the attractive force.
  • the distance from the bottom of the groove to the electrode is less than 100 to 300 ⁇ m, and when a predetermined voltage is applied between the wafer and the electrode, the breakdown force between the bottom force electrode of groove 4 and the electrode there's a possibility that . From this, it can be seen that the distance from the gas flow path to the tip of the convex portion 8b is preferably 10 to: LOO / zm.
  • the distance from the bottom surface of the gas channel 8d to the top surface of the convex portion 8b can be obtained as an average value of five points from the bottom surface of the gas channel 8d excluding the R shape to the convex portion 8b.
  • a processing method such as sand blasting, machining, or ultrasonic processing may be used. It is desirable to use sandblasting because of the processing cost.
  • the size of the convex portion 8b is small. This is because the heat transfer effect due to gas increases when the contact area with the wafer W is reduced, and the in-plane temperature differential force S of the wafer W decreases.
  • the contact area with the wafer W needs to be 50 to 80%, and it can be seen that the size of the convex portion 8b has an appropriate range. Further, if the groove width is less than 0.5 mm, the gas flow path becomes too small, and the in-plane temperature difference of the wafer W may be increased.
  • the minimum size of the convex part whose contact area does not fall below 50% is sufficient if the distance between the opposite sides of the convex part is about 1.5 mm or more. Further, if the distance between the opposite sides of the convex part exceeds 10 mm, the temperature of the wafer corresponding to the central part of the convex part is preferably lowered. More preferably, the distance between opposite sides is 2 to 8 mm. More preferably, it is 3-7 mm.
  • the through hole 5 has one through hole 5 at the center of the placement surface and a plurality of through holes 5 concentrically from the center.
  • the gas flows uniformly over the outer periphery.
  • gas can be supplied to the entire mounting surface 8a in a short time, and the time for saturation until the temperature in the surface of the wafer W becomes constant is short. It is preferable.
  • annular wall portion 8c is provided on the outermost periphery of the mounting surface and on the inner side thereof, and a plurality of through holes are provided between the outermost annular wall portion 8c and the inner annular wall portion 8c.
  • 15 and a through-hole 16 inside the inner annular wall 8c is preferable in reducing the in-plane temperature difference of a large wafer W having a diameter of 300 mm or more. The reason is that gas is supplied separately to the through hole 15 between the outermost annular wall 8c and the inner annular wall 8c and the inner through hole 16 of the inner annular wall 8c.
  • the thermal conductivity between the mounting surface 8a and the wafer W can be adjusted inside and outside the mounting surface 8a, so that the difference between the inside and outside of the wafer W can be controlled.
  • the temperature difference in the W plane is reduced and soaking is improved.
  • the diameter of the through holes 5, 15, 16 is 0.1 to 5 mm, and the through holes 5, 15 , 16 is preferably provided 4 to 100.
  • the diameter of the through holes 5, 15, 16 is 0.1-5mm, and the number of through holes is 4-:
  • the diameter of the through-holes 5, 15, 16 is less than O.lmm, the diameter of the through-hole is small, so the gas cannot be supplied sufficiently and the time until the temperature of the wafer W is saturated may increase. It is. Also, if the diameter of the through holes 5, 15, 16 exceeds 5 mm, the gas concentrates in the vicinity of the through hole, and there is a risk that the temperature of the other mounting surface becomes high near the through hole. It is also a force that may deteriorate the heat uniformity. Further, if the number of through holes 5, 15, 16 is zero, gas cannot be supplied to the gas flow path, so that the thermal uniformity of the wafer is deteriorated.
  • the diameter of the through hole is 0.1 to 5 mm, and 4 to L00 is preferably provided.
  • the heat exchange member 9 may be attached to the other main surface of the plate-like body 8.
  • the wafer W is heated by the plasma, and a large amount of heat flows to the mounting surface 8a.
  • the heat exchange member 9 is preferably a metal having a high thermal conductivity, and particularly preferably aluminum.
  • the heat exchange member 9 and the plate-like body 8 are preferably joined by a method such as indium joining or silicon adhesive.
  • the heat exchange member 9 is provided with a passage 9a for cooling with water or air to discharge heat to the outside. This is because by allowing water or gas for cooling to flow through the passage 9a, heat exchange is facilitated, and the mounting surface 2a can be cooled more efficiently.
  • a sintered body mainly composed of alumina, aluminum nitride, or silicon nitride can be used as the material of the plate-like body 8 constituting the electrostatic chuck 1. It is desirable to use a sintered body mainly composed of alumina and aluminum nitride.
  • the material of the adsorption electrode 6 embedded in the plate-like body 8 is preferably molybdenum, tungsten, tungsten carbide, which has a small thermal expansion difference from the sintered body forming the plate-like body 8. Etc. may be used.
  • the electrostatic chuck 1 having the structure shown in FIG. 1 has been described as an example.
  • the electrostatic chuck 1 of the present invention is not limited to the structure shown in FIG. In this case, it is possible to embed the heater electrode in the electric body 2. In this case, since the electrostatic chuck 1 can be directly heated by the heater electrode, heat loss is less than that of the indirect heating type. .
  • a plasma generating electrode may be provided in addition to the electrostatic adsorption electrode 4.
  • the structure of the film forming apparatus and the etching apparatus can be simplified. Needless to say, improvements and changes can be made without departing from the scope.
  • the electrostatic chuck 1 of the present invention has one main surface of the plate-like ceramic body 2 having an aluminum nitride force as a wafer mounting surface 2a, and the other main surface or the inside of the plate-like ceramic body 2 described above.
  • Electrode 3 and the average distance t of the dielectric layer 2b from the electrode 3 to the mounting surface 2a is 0.015 cm or more, and the volume resistivity of the dielectric layer 2b between the electrode 3 and the mounting surface 2a
  • the average particle size of aluminum nitride forming the dielectric layer 2b is 1 to 20 m Yes, and dielectric layer 2b has an open porosity of 1% or less.
  • the average distance t of the dielectric layer 2b from the electrode 3 to the mounting surface 2a is the average distance t from the mounting surface 2a to the electrode 3 if the mounting surface 2a is a uniform plane. .
  • the average value t is the distance from the bottom surface 8d of the gas flow path on the mounting surface 8a to the adsorption electrode 6. More specifically, ten distances from the bottom surface 8d of the gas flow path on the mounting surface 8a to the adsorption electrode 6 can be measured, and the average value can be obtained as the average distance t.
  • the distance from the bottom 8d of the gas flow path to the adsorption electrode 6 cannot be measured directly with ultrasonic waves, measure the distance from the convex 8b to the adsorption electrode 6 and measure the gas near the measurement point.
  • the distance from the bottom surface 8d to the adsorption electrode 6 can be obtained by subtracting the maximum depth of the bottom surface 8d of the flow path.
  • the average distance t can be obtained as an average value of the measured values at the ten locations.
  • the average distance from the electrode to the mounting surface can be measured by an ultrasonic method. In the ultrasonic method, the actual distance can be obtained by obtaining the correlation between the distance between the known sample force electrode and the mounting surface and the distance obtained from the reflection of the ultrasonic wave.
  • the average distance t can be calculated as the average of these measurements. More specifically, the distance from the electrode 3 of the electrostatic chuck made of the same dielectric layer 2b to the mounting surface 2a is measured by an ultrasonic method (C-SAM D-9000 manufactured by SONOSCAN). Then, the measured location is cut along a cross section perpendicular to the mounting surface, and the distance from the actual electrode to the mounting surface is measured. The average distance t with a small measurement error can be obtained by inputting the difference between the value measured by the ultrasonic method and the value obtained by actually cutting the cross section as a correction value to the ultrasonic measuring machine.
  • An electrostatic chuck 1 in which one main surface of a plate-like ceramic body 2 made of aluminum nitride is used as a wafer mounting surface 2a and an electrode 3 is provided on the other main surface of the plate-like ceramic body 2 or inside thereof.
  • the average distance of the dielectric layer 2b from the electrode 3 to the wafer mounting surface 2a is set to 0.015 cm or more because the thicker the dielectric layer 2b is, the larger the volume of the dielectric layer 2b is. The greater the specific resistance, the better the durability against repeated voltage application release cycles. However, if the thickness of the dielectric layer 2 is less than 0.015 cm, the thickness of the dielectric layer 2 is too thin in the first place.
  • the thickness of the dielectric layer 2 is 0.015 cm or more on average.
  • the product t XR of the average distance t from the electrode 3 to the wafer placement surface 2a and the volume resistivity value R of the dielectric layer 2b between the electrode 3 and the wafer placement surface 1 is 1 X 10 7 ⁇ 5 ⁇ 10 15 ⁇ 'cm 2 is preferred because the thicker the dielectric layer 2b, the thicker the dielectric layer 2b, and the larger the volume resistivity R of the dielectric layer 2b. Since durability against repeated voltage application removal cycles is improved, the product t XR can be considered as an index representative of durability with respect to repeated voltage application removal cycles.
  • the applied dielectric polarization In order to detach the adsorbed wafer W, the applied dielectric polarization must be balanced by applying a voltage to the electrode 3, but if the product t XR exceeds 5 X 10 15 ⁇ -cm 2, Since the thickness of layer 2b is too thick, or the volume resistivity R of dielectric layer 2b is too large, it takes a long time for the dielectric-polarized charge to equilibrate, so wafer W can be detached. Therefore, even if sufficient durability against the repeated voltage application release cycle intended by the present invention is obtained, the electrostatic chuck is not preferable at all.
  • the product of the average distance t from the electrode 3 to the wafer placement surface 2a and the volume resistivity R of the dielectric layer 2b between the electrode 3 and the wafer placement surface 2a is 1 X 10 7 Q cm 2 It is important to set it to ⁇ 5 X 10 15 Q cm 2 .
  • the average particle diameter of aluminum nitride forming the dielectric layer 2b is set to 1 to 20 ⁇ m because the average particle diameter of aluminum nitride is resistant to repeated voltage application release cycles intended by the present invention. It is a force that has been found to greatly affect sex.
  • the average particle diameter of the aluminum nitride is less than 1 ⁇ m, and even if the average particle diameter is more than 20 ⁇ m, the average particle diameter is sufficient for the durability against the repeated withstand voltage cycle which is the object of the present invention. Is not preferable.
  • the durability against repeated application of voltage is degraded when the particle size of aluminum nitride is less than 1 ⁇ m because the particle size of aluminum nitride is too fine. Since the withstand voltage becomes poor, a single pole lkV voltage is applied for 1 minute, and in the cycle of releasing the voltage, dielectric breakdown does not occur at the initial stage. Since one piece is destroyed, there is a risk of dielectric breakdown before reaching 10,000 cycles.
  • the average particle size of aluminum nitride exceeds 20 ⁇ m, the durability against repeated voltage application release cycles deteriorates.
  • the reason why the aluminum nitride particle size exceeds 20 m is that the particle size of aluminum nitride is reduced. This is because a large number of lattice defects that cause dielectric breakdown occur in the grain boundary phase. If there are many lattice defects, the lattice defects will gradually break down, and there will be no breakdown at the beginning of the voltage release cycle where the voltage is released after the voltage of the single pole lkV is applied for 1 minute. By doing so, the lattice defects that have undergone breakdown break down, and there is a risk of breakdown before reaching 10,000 cycles.
  • the average crystal grain size of aluminum nitride forming the dielectric layer 2 is 1 to 20 ⁇ m.
  • the dielectric layer forming the mounting surface 2a was mirror-polished and then etched.
  • the etched surface was photographed with a SEM (scanning electron microscope) at a magnification of 2000, three 7cm lines were drawn on the photograph, and the total length of the line segment was divided by the number of aluminum nitride crystals that crossed the line.
  • the average crystal grain size was determined.
  • the reason why the open porosity of the dielectric layer 2b is set to 1% or less is that, as a result of intensive studies by the present inventors, the durability against repeated voltage application release cycles is affected. Seeing that the open porosity is, it is also a force.
  • Patent Document 1 describes that the porosity is 3% or less.
  • Sintered aluminum nitride by a hot press method has an open porosity near the surface layer of the sintered body. Since the dielectric layer of the electrostatic chuck was as large as 1.3% near the surface layer of the sintered body, it was impossible to keep the open porosity below 1%. Therefore, for durability against repeated withstand voltage cycles Is a very poor invention. In this respect also, it is clear that the present invention is completely different from Patent Document 1.
  • the open porosity of the dielectric layer 2b that affects the durability against repeated voltage application release cycles. If there are open pores in the dielectric layer 2b, the adsorption surface of the wafer W and the bottom surface of the open pore portion Since this is a very thin space, electric discharge occurs, and dielectric breakdown gradually proceeds from the open pores, and finally dielectric layer 2b reaches dielectric breakdown. In other words, the dielectric breakdown of the dielectric layer 2 gradually and gradually progresses during repeated use of the force that can be used without problems at the beginning of use as an electrostatic chuck, and eventually leads to dielectric breakdown. Therefore, it is important that the open porosity of the dielectric layer 2 is 1% or less.
  • one main surface of the plate-like ceramic body having the strength of the aluminum nitride sintered body is used as the wafer mounting surface 1, and the other main surface of the plate-like ceramic body is used.
  • the electrostatic chuck is provided with an electrode 3 inside, and the electrode force has an average distance of the dielectric layer 2 from the wafer mounting surface of 0.015 cm or more, and an average distance from the electrode to the wafer mounting surface.
  • the product of the volume resistivity of dielectric layer 2 forming the part from the electrode to the wafer mounting surface is IX 10 7 to 5 ⁇ 10 15 ⁇ « ⁇ 2 , and nitriding to further form dielectric layer 2b
  • a voltage application release cycle in which a voltage of 5 kV is applied for 1 minute and then the voltage is released by setting the average particle size of aluminum to 1 to 20 m and the open porosity of the dielectric layer 2b to 1% or less.
  • the electrostatic chuck 1 is provided so that the dielectric layer 2b does not break down even after repeated 1 000 cycles. It can be.
  • the cross section of the dielectric layer is observed by SEM at a magnification of 10,000 to 60,000, it can be seen that there are intragranular pores in the crystal grains and grain boundary pores in the crystal grain boundaries.
  • the maximum diameter of grain boundary pores is determined in a 5 cm square of 10,000 to 60,000 times photos by SEM, and the average value of the maximum diameter of 10 photos is the average diameter of grain boundary pores, this grain boundary It is important that the average pore size is smaller than the average crystal grain size of aluminum nitride. This is because the open porosity is 0.8% or less.
  • the average grain boundary pore size is equal to or larger than the average crystal grain size of aluminum nitride, the aluminum nitride particles constituting the aluminum nitride sintered body are likely to fall apart.
  • the dielectric layer contains 0.2 to 15% by mass of a minor component composed mainly of aluminum nitride and made of a Group 3a metal oxide. This is also the force that can control the volume resistivity to any desired value.
  • the group 3a metal forming the group 3a oxide is preferably cerium. This is cerium, which is the most abundant in the cycle resistance release cycle resistance among group 3a metals. The reason is that cerium oxide is expressed as CeAlO at the grain boundaries of the aluminum nitride sintered body.
  • This CeAlO is a very thin A1 that covers the surface of aluminum nitride particles.
  • the electrostatic chuck 1 of the present invention has a plate-like ceramic body having the aluminum nitride force 2 force in a non-oxidizing atmosphere of S0.2 to 200 MPa at a temperature of 1800 to 1900 ° C. for 0.5 to 20 hours.
  • the reason why the sintering was carried out for a while was to control the average particle size and open porosity of the dielectric layer 2b.
  • the method of manufacturing the aluminum nitride plate-like ceramic body 2 includes a hot press method, an atmospheric pressure firing method, and a HIP method. In the hot press method, since the carbon mold and the product are in direct contact, the carbon mold is nitrided. Apply boron etc. and sinter.
  • Hot press method In order to reduce the open porosity of the obtained plate-like ceramic body 2 having an aluminum nitride strength, the force required to remove at least 0.5 mm of hot press surface force by grinding is not preferable because it is poor in mass productivity.
  • the open porosity can be reduced to 0.5% or less by setting the firing atmosphere to 0.2 to 200 MPa at a non-acidic atmosphere pressure. Furthermore, by setting the firing temperature to 1800 ° C to 1900 ° C and the firing holding time to 0.5 to 20 hours, the average particle size of aluminum nitride can be made 5 to 15 ⁇ m.
  • the electrostatic chuck 1 is obtained in which the dielectric layer 2b does not break down even if the voltage application removal cycle test of 1000 cycles or more is repeated in the voltage application removal cycle test for 1 minute.
  • an aluminum nitride sintered body can be used as the plate-like ceramic body 2 constituting the electrostatic chuck.
  • Group 3a oxides of about 10% by mass or less are added to aluminum nitride powder and mixed for 48 hours with a ball mill using IPA and urethane balls. Pass the resulting aluminum nitride slurry through 200 mesh to remove urethane balls and ball mill wall debris, and then dry at 120 ° C for 24 hours with an explosion-proof dryer to obtain a homogeneous aluminum nitride mixed powder. Get.
  • an acrylic binder and solvent are mixed with the mixed powder to form an aluminum nitride-based slip, and tape molding is performed by a doctor blade method.
  • a plurality of the obtained aluminum nitride tapes are laminated, and tungsten is formed thereon as an electrostatic adsorption electrode 3 by the screen printing method.
  • a desired adhesive liquid is applied to the plain tape, and the plurality of tapes are coated. Repeated press molding to obtain a compact.
  • the obtained molded body was degreased for about 5 hours at 500 ° C in a non-oxidizing gas stream, and further in a non-oxidizing atmosphere under a pressure of 0.2 to 200MP at 1800 ° C ⁇ Sinter at a temperature of 1900 ° C for 0.5-20 hours. In this way, an aluminum nitride sintered body in which the electrode 3 is embedded is obtained.
  • the aluminum nitride sintered body thus obtained is subjected to mechanical caloring so as to obtain a desired shape. Further, the metal terminal 4 for applying a voltage to the electrode 3 is joined using a method such as a metallization method. In this way, the electrostatic chuck 1 of the present invention shown in FIG. 6 is obtained.
  • Example 1
  • a plate-like body having an alumina Al 2 O force will be described as an example. Purity with an average particle size of 1.0 ⁇ m 99.
  • One and a solvent were added to prepare a slurry, and a plurality of alumina green sheets were formed by the doctor blade method.
  • a molybdenum metal paste serving as an electrode for adsorption was printed in a predetermined electrode pattern shape by a screen printing method. And the remaining alumina green sheet was laminated
  • a plurality of alumina green sheets on which the metal paste was not printed were stacked, and a power supply hole with a diameter of 5 mm was formed at a predetermined position.
  • the power supply hole was a hole for connecting a power supply terminal to the electrode.
  • Each laminate was thermocompression bonded at 50 ° C and a pressure of 1.5 X 10 7 Pa. 50.
  • the laminate having the printed surface and the power feed hole formed thereon is stacked so as to cover the printed surface to be an electrode.
  • C thermocompression bonding was performed at a pressure of 1.7 X 10 7 Pa. After the ceramic laminate was produced in this way, the ceramic laminate was cut into a disk shape.
  • the ceramic laminate was degreased by heating in a nitrogen and hydrogen mixed atmosphere furnace and fired in a nitrogen and hydrogen mixed atmosphere furnace at a normal pressure of 1600 ° C for about 3 hours.
  • a plate-like body in which an electrode for adsorption was embedded was obtained.
  • the plate-like body was processed, and a through hole having a diameter of 1 mm was provided in the center of the plate-like body. Then, the thickness is polished to 3 mm, and one main surface (widest !, surface) is formed with a maximum height (Rmax) of 1 ⁇ m or less and a mounting surface is formed.
  • the conducting power supply terminals were joined.
  • an electrostatic chuck having a diameter of 200 mm and a thickness of 3 mm was prepared by providing a convex portion, an annular wall portion, and a groove by blasting. And the aluminum heat exchange member was joined to the plate-like body with a silicon adhesive.
  • the shape of the convex part is a substantially square with an opposite side distance of 6 mm, and the R-shaped size connecting the sides is 0.05 mm, 0.1 mm, 0.5 mm, 2 mm, 2.5 mm, and Rff An electrostatic chuck with no shape was produced. In addition, the interval between the protrusions was lmm. The gas supply through-hole was 3mm in diameter and provided in the center of the mounting surface. [0095] The distance from the groove to the convex surface was 50 ⁇ m, and the surface roughness of the groove was RaO.5 ⁇ m.
  • thermoelectric measuring silicon wafers with thermocouples were placed on the mounting surface of the electrostatic chuck.
  • the pressure in the chamber was reduced to 10 _ 1 Pa.
  • a voltage of 1000 V is applied between the chucking electrode of the electrostatic chuck and the wafer W to generate a Coulomb force, so that the wafer W is sucked and fixed to the mounting surface, and a halogen installed in the vacuum chamber.
  • the heater was heated to heat the wafer to 100 ° C.
  • An experiment was conducted in which helium gas of 1300 Pa was passed through the through-hole and the time until the wafer temperature reached the saturation temperature and the temperature distribution of the wafer at the saturation temperature were investigated.
  • the saturation temperature is the average temperature when the average temperature of the wafer reaches a temperature change rate of 0.1 ° CZ seconds or less.
  • the time to reach the saturation temperature is the time when helium gas is supplied. Is the time from when to reach the saturation temperature.
  • the average temperature of the wafer was measured by a thermocouple attached at 17 power points on the wafer, and the average value was obtained.
  • the wafer temperature distribution at the saturation temperature was measured at V and thermocouples at 17 power points on the wafer, and the difference between the maximum and minimum values was taken as the temperature distribution.
  • Sample Nos. 1 to 5 connecting the sides of the convex part with R-shape have a small wafer temperature distribution of 0.8 to 1.2 ° C, and the time to reach the saturation temperature is 2.5 to 3.2 seconds. .
  • sample No. 6 was not formed in an R shape, so the time to reach a saturation temperature where the temperature distribution of the wafer was as large as 3.0 ° C was 5.0 seconds, and the characteristics were bad. This is due to the through hole The temperature around the groove extending in a more linear direction is higher, and the temperature in the direction perpendicular to this groove is low, and the temperature difference in the wafer w plane is large. In addition, the temperature around the groove extending in the linear direction from the through-hole increased quickly, and the temperature around the groove perpendicular to the groove rose slowly, so the time to reach the saturation temperature also increased.
  • Samples Nos. 2 to 4 have a R-shaped size of 0.1 to 2 mm, the wafer temperature distribution is as small as 0.8 to 1.0 ° C, and the time to reach the saturation temperature is preferably as small as 3.0 seconds or less.
  • An electrostatic chuck was produced in the same manner as in Example 1.
  • the groove is covered with a machining center, and the R shape size of the curved surface connecting the groove and the projection is 0.005, 0.01, 0.05, O.lmm, and the R shape size connecting the sides of the projection is 0.5 mm. did.
  • an electrostatic chuck similar to No. 3 of Example 1 was produced.
  • the groove depth is O.lmm when the size of the R shape that connects the groove and the convex part is O.lmm. This was evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • Sample Nos. 8 to 10 whose curved surface connecting the bottom of the groove and the convex part has an R shape of 0.01 to 0.1 mm, have a wafer temperature distribution of 0.5 to 0.7 ° C, and the time to reach a small saturation temperature is 2.1 to It was small and excellent at 2.2 seconds.
  • Example 2 An electrostatic chuck was produced in the same manner as in Example 1. R at the corner of convex part 2 is set to 0.5 mm, the gunshot of the sandblast is changed, and the arithmetic average roughness Ra of groove 4 is set to 0.3, 0.5, 1.0, 2.0, 2.5, Thereafter, the same electrostatic chuck as in Example 1 was produced. And it evaluated similarly to Example 1. FIG. The results are shown in Table 2.
  • Specimen Nos. 12 to 15 with an arithmetic average roughness Ra of 2 or less at the bottom of the groove have a temperature distribution force of 0.4 to 0.7 ° C and the time to reach a saturation temperature as small as 2.0 to 2.4 seconds. It was excellent.
  • the arithmetic average surface roughness was measured in accordance with WIS standard B0651.
  • Sample No. 16 which had a large arithmetic average roughness Ra of 2.5 at the bottom of the groove, had a slightly large saturation time of 3.2 seconds.
  • the reason for this is that the temperature rises from around the through-hole supplying the gas, and the temperature distribution is divided by the fact that the temperature is higher at the outer periphery. If the surface roughness of the groove becomes rough, the resistance between the gas and the groove will increase, and the gas may not flow smoothly.
  • the R-shaped size of the arc-shaped part connecting the sides of the convex part is 0.5 mm, the distance between the opposite sides of the convex part is changed, and the total area of the top surface of the convex part and the outer peripheral annular wall part is The area of the mounting surface was 40 to 90%, and the distance from the bottom surface of the groove to the top surface of the convex portion was 5 to 100 / m.
  • an electrostatic chuck was prepared in the same manner as Sample No. 3 in Example 1.
  • Sample No. 26 had a slightly large time to reach the saturation temperature of 3.2 seconds. This is probably because the time required to supply the gas to the entire surface was strong because the depth of the groove was small.
  • the diameter of the through hole for supplying gas is set to 0.08, 0.1, 2, 5, 6 mm on the center of the mounting surface and on a circle equidistant from the center, and the number of through holes is 1, Electrostatic chucks similar to Sample No. 3 in the f row 1 were manufactured using 10, 50, 100, and 200 pieces.
  • an electrostatic chuck having one through hole provided at the center of the mounting surface and an electrostatic chuck without a through hole were produced.
  • Sample Nos. 31 to 36 with one through hole in the center of the mounting surface have a temperature distribution of 0.8 to 1.2 ° C.
  • the time to reach the saturation temperature was 2.5 to 3.2 seconds.
  • Sample No. 3 having one through hole in the center of the mounting surface and a plurality of through holes around it.
  • the diameters of the through holes are 0.1 to 5 mm and the number of through holes is 4 to:
  • Sample Nos. 39 to 41 and 43 to 45 with L00 have a temperature distribution of 0.4 to 0.7 ° C and the time to reach a smaller saturation temperature is 2.0. It was found that V, small as ⁇ 2 ⁇ 4 seconds.
  • Sample No. 37 had a saturation time of 10 seconds, and the wafer temperature distribution was as large as 5 ° C. This is because gas cannot be supplied to the trench, and the time to reach saturation time and the temperature distribution of the wafer are thought to have increased.
  • a Group 3a oxide of 10 mass% or less in terms of weight is added to the aluminum nitride powder, and mixed with a ball mill using IP A and urethane balls for 48 hours, and the resulting aluminum nitride slurry is mixed. Pass through 200 mesh, remove urethane balls and ball mill wall debris, and then dry with an explosion-proof dryer at 120 ° C for 24 hours to obtain a homogeneous aluminum nitride mixed powder Get.
  • the resulting aluminum nitride mixed powder was mixed with an acrylic binder and solvent to produce an aluminum nitride slip, and tape-molded by the doctor blade method.
  • a plurality of the obtained aluminum nitride tapes were laminated, and tandastain was formed thereon as an electrode by a printing method, a desired adhesive liquid was applied to a plain tape, and a plurality of the tapes were stacked to perform press molding. went.
  • the obtained aluminum nitride / tungsten electrode mixture was degreased in a non-acidic gas stream at 500 ° C for about 5 hours, and then O. lMPa in a non-acidic atmosphere. Firing was performed at a temperature of 1900 to 2050 ° C for 0.1 to 20 hours under pressure to obtain an aluminum nitride sintered body.
  • the aluminum calcined sintered body thus obtained was subjected to mechanical caloring so as to obtain a desired shape.
  • the dry weight, underwater weight, and wet weight of the machined aluminum nitride sintered body were measured, and the open porosity was determined by Archimedes method.
  • a desired gas groove (not shown) was formed on the wafer mounting surface by a method such as sandblasting.
  • metal terminals for applying voltage to the electrodes were joined by a metallization method using silver solder.
  • the average distance from the electrode to the placement surface was measured by an ultrasonic method. The average value was calculated for five locations, one at the center and four at the periphery.
  • the electrostatic chuck obtained was subjected to ultrasonic inspection and cracks and peeling occurred! After confirming that there is no, repeat the withstand voltage by applying a single-pole lkV voltage to electrode 3 for 1 minute via metal terminal 4 in the atmosphere at 25 ° C and releasing it. The cycle test was conducted until breakdown. At that time, a test was carried out by adsorbing a woofer (not shown) on the woofer mounting surface 1. After the withstanding voltage cycle test, the product was cut, and 1 force place near the electrode of the dielectric layer, 1 force place near the mounting surface, 1 force place near the electrode and the mounting surface, and 1 force place in the middle of the electrode and mounting surface. Images were taken, the particle diameter of 20 aluminum nitride particles was arbitrarily measured from each photograph, the total average was calculated, and the average particle diameter was obtained.
  • the product of the average distance t to the mounting surface t and the volume resistivity R of the dielectric layer is 1 X 1
  • the value of the product of the electrode force average distance t to the mounting surface and the volume resistivity R of the dielectric layer is preferably 1 ⁇ 10 7 ⁇ ′cm 2 to 5 ⁇ 10 15 ⁇ ′cm 2. I understand that.
  • Sample No. 117 in which the average particle size of aluminum nitride was as small as 0.9 m and less than 1 m, had a dielectric breakdown after 720 voltage application removal cycles.
  • Sample No. 118 having an average particle size of more than 20 ⁇ m failed in dielectric breakdown after 825 voltage application removal cycles.
  • the average particle size of aluminum nitride forming the dielectric layer is preferably 1 to 20 ⁇ m.
  • Sample No. 119 whose open porosity of the dielectric layer is as large as 1.1% and exceeds 1%, applied voltage. Dielectric breakdown occurred after 771 removal cycles.
  • the average distance is 0.015 cm or more
  • the product (t XR) is 1 ⁇ 10 7 to 5 ⁇ 10 15 ⁇ ⁇ m 2
  • the average particle size is 1 to 20 m
  • the open porosity is It was found that Sample Nos. 1 to 114, which were 1% or less, had excellent characteristics that the voltage application removal cycle was 1000 times or more and that dielectric breakdown was difficult to occur.
  • 0.1-20 mass% Group 3a acid oxide in terms of weight is added to aluminum nitride powder, and mixed for 48 hours with a ball mill using IP A and urethane balls.
  • the resulting aluminum nitride slurry After passing through 200 mesh, remove the urethane ball and ball mill wall debris and dry it at 120 ° C for 24 hours with an explosion-proof dryer to obtain a homogeneous aluminum nitride mixed powder.
  • the resulting aluminum nitride mixed powder was mixed with an acrylic binder and solvent to produce an aluminum nitride slip, and tape-molded by the doctor blade method.
  • a plurality of the obtained aluminum nitride tapes are laminated, and tandastain is formed thereon as an electrode by a printing method, a desired adhesive liquid is applied to a plain tape, and a plurality of the tapes are stacked to perform press molding. went.
  • the obtained aluminum nitride / tungsten electrode mixture was degreased at 500 ° C in a non-acidic gas stream for about 5 hours, and further O. lMPa in a non-acidic atmosphere. Firing was performed at a temperature of 1900 to 2050 ° C for 0.1 to 20 hours under pressure to obtain an aluminum nitride sintered body. Then, an electrostatic chuck was prepared and evaluated in the same manner as in Example 6. The results are shown in Table 7.
  • the subcomponent of the dielectric layer is a group 3a metal oxide such as Yb, Y, or Ce as in samples 121 ⁇ . 121 to 135, the number of applied voltage removal cycles until dielectric breakdown is 2700. It can be seen that it is much more preferable than the number of times.
  • samples containing 0.2 to 15% by mass of the accessory group 3a metal oxide, such as sample ⁇ .128 to 134, have more than 5050 voltage application removal cycles until dielectric breakdown. I found that I liked it.
  • Samples 127 ⁇ .127 to 135 were preferable because the number of voltage application removal cycles until dielectric breakdown was 3800 times or more until the metal of the accessory component was Ce element.
  • the aluminum nitride sintered body is baked for 0.1 hour to 20 hours at a temperature of 1700 ° C to 2000 ° C under a pressure of 0.1 MPa to 300 MPa in a non-oxidizing atmosphere.
  • the average particle size and open porosity of the layer were measured and evaluated in the same manner as in Example 6.
  • an electrostatic chuck that does not cause dielectric breakdown even when used repeatedly, and film forming apparatuses such as CVD, PVD, sputtering, SOD, SOG, etc.
  • An innovative electrostatic chuck can be provided in the field of semiconductor manufacturing equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Jigs For Machine Tools (AREA)

Description

明 細 書
静電チャック
技術分野
[0001] 本発明は、半導体製造工程で半導体ウェハを静電吸着したり、液晶基板を吸着す るフラットディスプレイ製造工程に使用する静電チャックに関する。
背景技術
[0002] 従来、半導体製造工程にお!/、て、半導体ウェハ (以下、ウェハと称す。 )に微細加工 を施すためのエッチング工程や、薄膜を形成するための成膜工程において、ウェハ を静電吸着力で固定する静電チャックが使用されている。
[0003] 静電チャックは、誘電体層の上面を、被吸着物であるウェハを載せる載置面とする とともに、上記誘電体層の下面に静電吸着用電極を備えたもので、上記ウェハと静電 吸着用電極との間に電圧を印カロして静電吸着力を発現させることによりウェハを載置 面に固定するようになって 、る。
[0004] ところで、今日の半導体製造において、ウェハに対してエッチング力卩ェゃ成膜加工 を行う際、ウェハ全面のエッチングレートを均一にしたり、均一に成膜することが求め られている。その為にウェハの温度を一定に保持し、かつウェハの面内温度差を小さ くする必要がある。また、近年では半導体産業の急激な拡大の為、単位時間当たり のウェハ処理枚数を向上させる必要があり、ウェハが飽和温度に達するまでの時間を 短くすることが求められて 、る。
[0005] 特許文献 1には、ウェハとこのウェハを加熱するガスとの接触面積を大きくしウェハ 温度を均一とするため、先端部が根元よりも小さい形状をした複数の微少な凸部をゥ ヱハ載置面に設け、ウェハを上記凸部先端部で点接触して保持する静電チャックが 提案されている。
[0006] また、特許文献 2には、ウェハと静電チャック表面との接触面積を小さくし、かつ凸 部の高さを小さくすることにより、接触部以外力もの吸着力を得ることができ、接触面 積が小さくてもウェハを大きな力で保持でき、ウェハの温度を均一にできることが提案 されている。 [0007] し力しながら、特許文献 1、 2に記載された静電チャックでは、ウェハと静電チャック との接触面積が小さいため、吸着力が大きなジョンソンラーベック力を発現する静電 チャックの場合は良いが、吸着力が小さいクーロン力を発揮する静電チャックの場合 にお ヽては、静電チャックのガス流路にガスを流すと静電チャックのガス圧でウェハ が静電チャック力も外れてしまう。静電チャックからウェハが外れな 、ようにするためガ ス圧を下げるとウェハが飽和温度に達する時間が長くなり、単位時間当たりに処理す るウェハの処理枚数が少なくなつてしまう。
[0008] ゥヱハが静電チャック力 外れな 、ようゥヱハと載置面の接触面積を大きくするため 、特許文献 3には、静電チャックのガス溝が等間隔に配置された複数の放射状溝と、 該放射状溝と連通し、同心円上に配置された複数の環状溝と、中心より 1つ目の環 状溝以降の領域で、隣り合う 2つの環状溝と隣り合う 2つの放射状溝で囲まれる各設 置面を 2つ以上に分断する少なくとも一つの放射方向に延びる仕切り溝とから構成し 、隣り合う 2つの環状溝と隣り合う 2つの放射状溝で囲まれる設置面と隣り合う 2つの 環状溝と放射状溝及び仕切り溝で囲まれる設置面と、隣り合う 2つの環状溝と隣り合 う 2つの仕切り溝で囲まれる設置面を各々略同等の面積とすることにより、ウェハが飽 和温度に達するまでの時間が短ぐかつ飽和温度での均熱性に優れた静電チャック を提供できることが提案されて 、る。
[0009] また、特許文献 4に記載されているように、形状が円形である凸部がウェハ載置面 に格子状に配列された静電チャックが開示されている。
[0010] 特許文献 1 :特開平 9 172055号公報
特許文献 2 :特開 2002— 222851号公報
特許文献 3:特開 2002— 170868号公報
特許文献 4:特開平 7— 153825号公報
発明の開示
発明が解決しょうとする課題
[0011] しカゝしながら、特許文献 3に記載された静電チャックでは、ウェハとの接触面積が大 きくガス流路にガスを流してもウェハが静電チャック力 外れてしまうことはないけれど も、ガスが溝の分岐点においてスムーズに流れず、近年の要求である均熱性を得る ことができず、ウェハが飽和温度に達するまでの時間を短くすることができないという 問題があった。また、特許文献 4には、図 5に示すように、上面力も見た凸部の形状が 円状であり、図 5の b, c方向のガスの流れは良くなるが、 a方向のガスの流れは悪くな るため、外周の温度が飽和温度に達するまでの時間が大きくなるとの問題があった。
[0012] また、このような静電チャックにおいて、均熱性を向上させるためガス通路を大きく すると、ガス通路を拡大させたことによりウェハとの接触面積が減少し、静電チャック のウェハを吸着する吸着力が減少してしまう。この吸着力を、ガス通路を縮小させず に大きくするためには、静電チャックに埋設された電極に高電圧を印加する必要があ る力 このように高電圧を印加し高電圧印加解除サイクルを繰り返すと、静電チャック の誘電体層が絶縁破壊されてしまうと ヽぅ問題があった。
課題を解決するための手段
[0013] そこで、本発明は、均熱性が良好で、ウェハが飽和温度に達するまでの時間が短く 、かつ、電圧印加サイクルに対する耐久性が良好な静電チャックを提供することを目 的とする。
[0014] 本発明者らは、上記課題に鑑み鋭意研究を行った結果、複数の凸部が格子状に 配列されてなるガス流路を備える静電チャックにお 、て、この凸部の形状を矩形とす ると、上記貫通孔カも導入されたガスがその進行方向に対して横方向に拡がりにくく 、逆に凸部の形状を略円形とすると、上記貫通孔から導入されたガスが、その進行方 向に対して横方向には良く拡散するが、進行方向には拡散しにくぐ上記いずれの 場合も一様な加熱を実現することができないけれども、上記凸部の形状を、矩形の角 部が円弧状に形成された形状とすれば、ガスを一様に拡散させることができ、飽和温 度に達する時間を短くすることができ、また均熱性を向上させることができることを見 出し、本発明を完成するに至った。
[0015] したがって、本発明の第 1発明は、一対の主面を備え、その一方の主面をウェハを 載せる載置面とする板状体と、該板状体のもう一方の主面または内部に設けられた 吸着用電極と、力もなる静電チャックにおいて、
上記板状体に貫通するように形成された少なくとも 1つのガス導入用貫通孔と、互 いに離間された複数の凸部により上記載置面上に形成され、さらに上記貫通孔と連 通するように形成されたガス流路と、上記板状体の外周に形成された環状壁部と、を 備え、
上記凸部の平面形状力 つの辺と該 4つの辺を繋ぐ弧状部とからなるとともに、ガス 導入用貫通孔力 導入されたガスを一様に拡散させるように上記凸部が上記載置面 上に一様に配設されてなることを特徴とする静電チャックにある。
[0016] 本発明に係る静電チャックにおいて、上記凸部が格子状に配列されていることが好 ましい。上記凸部を格子状に配列することにより、貫通孔力 導入されたガスを一様 に拡散させることができ、ウェハを一様に加熱することができる。
[0017] また、上記ガス流路の底面と上記凸部若しくは上記環状壁部とが繋がる部位を円 弧状とすることが好ましい。このような構成とすることにより、貫通孔から導入されたガ スが、基板に対して左右方向に拡散しやすくなり上記同様一様な加熱を行うことがで きる。
[0018] また、本発明に係る静電チャックでは、上記ガス流路の底面の算術平均粗さ Raが 2 μ m以下であることを特徴とする。算術平均粗さ Raを 2 m以下とすると、ガス流路の 底面が滑ら力となり低圧のガスをスムーズにガス流路内に拡散させることができ、ゥェ ハ Wの表面温度が所定の温度になるまでの飽和時間を短くすることができ、面内温 度差を小さくすることができる。
[0019] さらに、本発明に係る静電チャックは、上記環状壁部の幅が 0.5〜: LOmmであり、 上記凸部の対辺の間隔が 1.5〜: LOmmであるとともに、上記凸部及び上記環状壁部 の頂面の総面積が上記載置面の面積の 50〜80%であり、かつ上記ガス流路の底 面から上記凸部の頂面までの距離が 10〜: LOO /z mであることを特徴とする。接触面 積を 50〜80%とすることにより、ウェハが静電チャック力も外れることを防止すること ができ、かつ、ガスの流れる領域が小さくなることによるウェハ面内温度差の拡大を防 止することができる。また、上記ガス流路の底面から上記凸部の頂面までの距離を 10 〜100 mとすると、ガスをスムーズに全面に行き渡らせることができ、かつウェハと 電極間に電圧を印加することによる絶縁破壊を防止することができる。
[0020] 上記貫通孔は、上記載置面の中心に 1個と、該中心から同心円上に複数個備えら れていることが好ましい。上記構成とすることにより、短時間で載置面の全体にガスを 供給でき、ウエノ、 Wの面内の温度が一定となるまでの飽和時間を短くすることができ る。
[0021] また、本発明に係る静電チャックは、上記環状壁部を載置面の最外周と内側とに備 え、最外周の環状壁部と内側の環状壁部との間に複数の貫通孔を備え、さらに内側 の環状壁部の内側に貫通孔を備えていることを特徴とする。最外周の環状壁部と内 側の環状壁部の間の貫通孔と内側の環状壁部の内側の貫通孔に、それぞれガス流 量を変えてガスを供給することにより、載置面の内側と外側で載置面とウェハとの間 の熱伝導率を調整できることから、ウェハ面内の温度差を小さくすることができる。
[0022] ここで、上記板状体の最大径は 180〜500mmであり、上記貫通孔は、直径が 0.1 〜5mmであり、 4〜: LOO個備えていることが好ましい。ガスをガス流路に均一に拡散 させることができ、ウェハが飽和温度に達する時間を短くすることができ、均熱性を向 上させることができる。
[0023] また、上記板状体の他方の主面に熱交換部材を取り付けることが好ま 、。上記熱 交換部材により、載置面の熱を上記板状体力 効率よく吸収することができ、ウエノ、 の温度上昇を抑制することができる。
[0024] 特に、上記熱交換部材は金属板力もなることが好ま U、。熱交換部材として金属板 を使用することにより、載置面の熱を最も効率よく吸収することができる。
[0025] 本発明に係る静電チャックにお 、て、上記板状体は、アルミナまたは窒化アルミ- ゥムを主成分とする焼結体力もなることが好ましい。上記材料は、耐プラズマ性に優 れるため好ましい。
[0026] また、本発明者らは、静電チャックに埋設された電極に高電圧を印加解除し、この ようなサイクルを繰り返すと、静電チャックの誘電体層が絶縁破壊されてしまうという課 題に鑑み鋭意研究を行った結果、誘電体層の開気孔率が、繰り返し電圧印加解除 サイクルに対する耐久性に影響を及ぼし、上記誘電体層の開気孔率を 1%以下とす れば、電圧の印加と解除を長時間に渡り繰り返したとしても、載置面と電極とに挟ま れた誘電体層が絶縁破壊を起こすことがなぐ上記サイクルに対する耐久性を向上さ せることができること、また上記電極から上記ウェハ載置面までの平均距離を 0.015c m以上とし、上記電極と上記載置面との誘電体層の体積固有抵抗値と上記平均距 離との積を 1 X 107〜5 Χ 1016 Ω ' cm2とするとともに、上記誘電体層を形成する窒化 アルミニウムの平均粒径を 1〜20 mとすれば、上記同様、電圧印加解除サイクル に対する耐久性を向上させることができることを見出し、本発明を完成するに至った。
[0027] したがって、本発明の第 2発明は、上記板状体が窒化アルミニウムを主成分とする 誘電体力もなり、上記電極から上記載置面までの平均距離が 0.015cm以上であり、 上記電極と上記載置面との間の誘電体層の体積固有抵抗値と上記平均距離との積 が I X 107〜5 X 1016 Ω ' cm2であるとともに、上記誘電体層を形成する窒化アルミ- ゥムの平均粒径が 1〜20 μ mであり、且つ上記誘電体層の開気孔率が 1%以下であ ることを特徴とする静電チャックにある。
[0028] 本発明に係る静電チャックは、上記誘電体層には粒内気孔と粒界気孔とが存在し 、粒界気孔の平均径が窒化アルミニウムの平均結晶粒径より小さ 、ことを特徴とする 。このように粒界気孔の平均径を窒化アルミニウムの平均結晶粒径より小さくすること により、開気孔率を抑えることができ、それにより電圧印加解除サイクルを繰り返し行 つても、誘電体層が絶縁破壊されない静電チャックとすることができる。
[0029] 本発明に係る静電チャックは、上記誘電体層の粒界気孔の比率 Sgと粒内気孔の 比率 Scとの比 SgZScが 1.0以下であることを特徴とする。上記比 SgZScを 1.0以上 とすると、粒界気孔の存在比率が増加し、機械加工によって、窒化アルミニウム粒子 の脱粒が増加し開気孔率が増え好ましくな 、。
[0030] 上記誘電体層が窒化アルミニウムを主成分として 3a族金属酸ィ匕物からなる副成分 を 0.2〜 15質量%含むことが好ま 、。上記副成分を 0.2〜 15質量%含むことにより 、体積固有抵抗値を任意の所望の値に制御することができる。
[0031] 上記 3a族金属がセリウムであることが好ましい。セリウムは繰り返し電圧印加解除サ イタルに対する耐久性が最も良好である。
[0032] 本発明に係る静電チャックは、上記窒化アルミニウム力 なる板状セラミックス体力 0.2〜200MPaの非酸化性雰囲気中にて 1800〜 1900°C以下の温度で 0.5〜20 時間以内保持して焼結させたものであることを特徴とする。このような条件で焼成する ことにより、誘電体層が所望の平均粒子径と開気孔率を有する静電チャックとすること ができる。 発明の効果
[0033] 以上のように、本発明に係る静電チャックによれば、板状体の一方の主面をウェハ を載せる載置面とし、前記板状体の他方の主面または内部に吸着用電極を備えた 静電チャックにおいて、前記板状体の一方の主面に、貫通孔、複数の凸部、外周に 備えた環状壁部、及びこれら凸部の間に備えたガス流路とを有するとともに、上記凸 部の平面形状が 4つの辺と 4つの辺を繋ぐ円弧状部を備え、上記凸部が上記載置面 に一様に配設されていることにより、上記貫通孔から導入されたガスをその進行方向 、及び、その進行方向に対して横方向に適切な割合で、一様に拡散させることができ 、そのため、飽和温度に達する時間を短くすることができ、また均熱性を向上させるこ とがでさる。
図面の簡単な説明
[0034] [図 1]図 1 (a)は本発明に係る静電チャックを示す概略の平面図、図 1 (b)は (a)の X
-X線断面図である。
[図 2]図 2 (a)は本発明に係る静電チャックを示す概略の平面図、図 2 (b)は (a)の X -X線断面図である。
[図 3]図 3 (a)は本発明に係る静電チャックの他の例の概略を示す平面図、図 3 (b)は (a)の X— X断面図である。
[図 4]図 4は本発明に係る静電チャックを示す概略図である。
[図 5]図 5は従来の静電チャックを示す概略図である。
[図 6]図 6は本発明のウェハ保持部材の断面図である。
[図 7]図 7は従来のウェハ保持部材の断面図である。
発明を実施するための最良の形態
[0035] 以下、本発明の静電チャックについて説明する。
[0036] 図 1は本発明に係る静電チャック 1の一例を示す概略図である。この静電チャック 1 は、板状体 8の内部に吸着用の電極 6を備え、前記板状体 8の一方の主面をウェハ Wを載せる載置面 8aとし、前記電極 6に接続した給電端子 7を板状体 8の他面の主 面側に備えている。また、必要に応じ板状体 8の他方の主面に熱交換部材 9が接合 されている。 [0037] そして、板状体 8の一方の主面に貫通孔 5が備えられており、貫通孔 5から He等の ガスを供給し、ガス流路 8dに流しウェハ Wと載置面 8aで形成される空間にガスを充 填させることができる。
[0038] 静電チャック 1は不図示の減圧容器に設置され、ウェハ Wを載置面 8aに載せ静電 吸着用の電極 6に電圧を印加してウェハ Wを吸着することができる。そして、上記減 圧容器の中にアルゴンガス等を導入しウェハ Wの上方にプラズマを発生させ、ウェハ Wにエッチング処理、または成膜処理することができる。
[0039] この時プラズマによりウェハ Wが加熱され、載置面 8aの温度が上昇する。そこで、 静電チャック 1のガス流路 8dに貫通孔 5よりガスを流し、載置面 8aとウェハ W間の熱 伝導率を高めて熱を逃がしウェハ Wの表面温度をより均一にすることができる。
[0040] また、板状体 8の周辺に位置する環状壁部 8cとガス流路 8dとウェハ Wで形成される 空間に貫通孔 5からガスを供給する力 環状壁部 8cとウェハ Wの間から微量のガス が容器内に漏れ出している。しかし、ウエノ、 Wへの成膜処理に影響のない真空度の 範囲で前記ガスが静電チャック 1の外に漏れるような構造となっている。このガスの圧 力は、静電チャック 1の吸着力よりも小さい一定の圧力に設定されており、このガスの 圧力によりウェハ Wが静電チャック 1から外れることはな 、。
[0041] 本発明の静電チャック 1は載置面 8aへの投影面からみて凸部 8bの平面形状は 4つ の辺とそれを繋ぐ弧状部からなり、凸部 8bが載置面 8aに一様に配設されていること を特徴とする。凸部 8bの形が略正四角形であると更に好ま U、。
[0042] 尚、一様に配設されているとは、貫通孔ゃ環状壁部の周辺を除き略等間隔に配置 していることを示す。また、弧状部は円、楕円、双曲線やスプライン曲線等の一部力も 形成することができる形状を有して 、る。
[0043] そして、例えば図 1において、貫通孔 5より供給されるガスが a方向に直線状のガス 流路をスムーズに外周まで流れる。また、凸部 8bの形は 4つの辺とそれを繋ぐ円弧状 部とすることにより、 b, c方向にもガスがスムーズに流れ好ましい。従って、貫通孔 5よ り供給されるガスを短時間でガス流路 8dを通しウェハ裏面の全面に供給できる。その 結果、短時間でウェハ Wの面内温度差が小さく且つ温度変化が小さくなるまでの飽 和時間が短くなり好ましい。また、凸部 8bの形状は、上記の理由から凸部 8bを囲む 4 つの辺を左右に伸ばした 4つの直線で囲まれる形状は正四角形状が最も好ましいが 、図 3に示す扇形状でも良い。図 3に示すように凸部 8bの形状が載置面 8aの中心に 対し中心対称であると、ガスが中心力 周辺に均一に広がりウェハ W面内の温度差 力 、さくなり好ましい。また同様に、凸部 8bの形状は、半導体素子の形状に合わせ て長方形状や菱形状でも良 、。
[0044] また、本発明の凸部のように 4つの辺とこれを繋ぐ弧状部からなると、近年採用され て 、る大型チップのチップ内の膜厚や特性が均一となり優れて 、ることが判明した。 この理由はウェハ Wに対し中心対称の温度分布や吸着が求められている力 大型チ ップではこれらの特性にカ卩ぇ四角形のチップの夫々の中で均一性が重要になるため と考えられる。このようにチップ内の膜厚や膜特性を均一とすることにより 1枚のウェハ Wから電気特性の優れた多くの素子が得られ歩留まりを高める事ができる。
[0045] また、上記弧状部は円弧状の R形状であることが好ましい。そしてこの R形状の大き さは 0.1mm〜2mmが好ましい。この範囲とすることにより、 a, b, c方向により均一に ガスの流れができ、ウェハ Wの温度が飽和する時間が短くなり、かつウェハ W面内の 温度差が小さく均熱性が向上するからである。弧状部の R形状の大きさが O.lmm未 満では図 1の a方向へのガスの流れは良いが、 b, c方向への流れが悪くなり、ウェハ 温度が飽和する時間が長くなる。即ち、貫通孔 5より a方向のガス流路 4が外周に向 力つて直線になっている部分に力かるウェハの温度差は小さく優れている力 b, c方 向にかかるウェハの温度差は大きく悪くなる。また、飽和温度に達する時間も、 a方向 に比べて b、 c方向では飽和温度に達する時間が大きくなり好ましくない。これは、弧 状部の R形状の大きさが小さいため、貫通孔より供給されたガスが直線部分である a 方向に多く流れ、 a方向の温度力 飽和したと考えられる。逆に、上記 R形状の大きさ 力 S2mmを越えると、 b, c方向のガスの流れは良くなる力 外周の温度が飽和する時 間が大きくなる虞がある。即ち、貫通孔 5の近傍より温度が所定の温度に達し、外周 の温度が所定の温度に達するまでに時間が力かることが分かる。これは、弧状部の R 形状が大きいため、図 1の b, c方向へ流れるガスの量が大きぐガスが供給される貫 通孔 5の周りより所定の温度に達したと考えられる。このことより、 Rの大きさは O.lmm 〜2mmが良!ヽことが分かる。 [0046] また、ガス流路 8dの底面と凸部 8bが繋がる曲面の R形状の大きさが 0.01〜0.1m mであると好ましい。 R形状を 0.01〜0.1mmとすることにより、ウェハ温度が所定の温 度に達するまでの時間が短くかつ均熱性が向上する。 O.Olmm未満では、ガスがガ ス流路 8dの底面と凸部 8bに繋がる曲面の部分で滞留してしまい、ガスの流れが悪く なるため、ウエノ、 Wの面内温度差が大きくなる虞がある。 R形状が O.lmmを越えると 、溝深さを O.lmmを越える大きさにしなければならず、電極と溝の底面までの距離が 小さくなるため、ウエノ、 Wと電極間に必要な電圧を印加すると溝 4の底力も電極まで の間で絶縁破壊する可能性がある。これらのことより、ガス流路 8dの底面と凸部 8bが 繋がる曲面の R形状の大きさが 0.01〜0. lmmとすればよいことが分かる。
[0047] 尚、上記の曲面の R形状の大きさは凸部 8bの辺と凸部 8bの頂面に垂直な面内で 測定した半径の大きさで表すことができる。
[0048] また、ガス流路 8dの底面の算術平均粗さは 2 μ m以下であると良ぐ 1 μ m以下で あるとさらに好ましい。 2 m以下とすることにより、ガス流路 8dの底面が滑ら力となり 低圧のガスがスムーズに溝を流れるからである。しカゝし、 2 mを越えると、ガスと溝の 底面との衝突抵抗が大きくなり、ガスがスムーズにガス流路 8dを流れなくなる虞があ る力らである。そして、ウェハ Wの表面温度が所定の温度に均一になるまでの飽和時 間が長くなり、また面内温度差も大きくなる虞がある。
[0049] さらに、凸部 8b及び外周の環状壁部 8cの頂面の総面積は、ウェハ載置面 8aの面 積の 50〜80%であり、かつガス流路 8dの底面から凸部 8bの頂面までの距離が 10 〜100 mであると好ましい。クーロン力を発揮する静電チャック 1は吸着力が小さい ので、できるだけウェハ Wとの接触面積を大きくし、吸着力を大きくする必要がある。 接触面積が 50%以上とするとガス流路 8dにガスを供給してもウェハ Wが静電チヤッ ク 1を外れる虞がなく好ましい。また、凸部 8b及び外周の環状壁部 8cの頂面の総面 積は、ウェハ載置面の面積の 80%を越えると、ガス流路 8dの面積が小さくなり過ぎて ガスの流れる領域が小さくなり、ウェハ Wの面内温度差が大きくなる虞がある。このこ とよりゥヱハとの接触面積、つまり凸部及び外周環状壁部の頂面の総面積は、載置 面の 50〜80%であることが好ましいことが分かる。
[0050] また、ガス流路 8dの底面から凸部 8bの頂面までの距離は、 10〜: L00 μ mが好まし い。特許文献 1にはこの距離は 5〜10 mが良いとされるが、この場合は静電チヤッ クとウェハとの接触面積が 5〜10%と小さいため、溝深さが小さくてもガスが全面にス ムーズに行き渡ることができる力 本発明の静電チャックは静電チャックとウェハの接 触面積が 50〜80%と大きぐガスがスムーズに全面に行き渡るには少なくとも 10 m以上の溝深さが必要となる。
[0051] 一方、ガス流路 8dの底面から凸部 8bの頂面までの距離は 100 μ m以下とすること が好まし!/、。クーロン力を発揮する静電チャックの電極力 載置面までの距離は小さ いほど吸着力が大きぐ 200〜400 m程度にする必要がある。溝 4の深さが 100 mを越えると溝の底から電極までの距離が 100〜300 μ mを下回り、ウェハと電極間 に所定の電圧を印加すると溝 4の底力 電極までの間で絶縁破壊する可能性がある 。このことよりガス流路から凸部 8b先端までの距離は 10〜: LOO /z mが良いことが分か る。尚、ガス流路 8dの底面から凸部 8bの頂面までの距離はガス流路 8dの R形状を 除く底面から凸部 8bまでの 5箇所の平均値として求める事ができる。
[0052] また、凸部 8b、環状壁部 8c、ガス流路 8dを形成するには、サンドブラスト加工、マ シニング加工、超音波加工等の加工方法を用いれば良いが、加工精度、形状自由 度、加工コストからサンドブラスト加工を用いることが望ま 、。
[0053] ここで、凸部 8bの大きさは小さい方が好ましい。これはウェハ Wとの接触面積を減 少させた方がガスによる熱伝達効果が大きくなり、ウェハ Wの面内温度差力 S小さくな る力らである。し力し、上述したようにウェハ Wとの接触面積は 50〜80%は必要であ り凸部 8bの大きさは適切な範囲があることが分かる。また、溝の幅が 0.5mmを下回る とガスの流れる流路が小さくなり過ぎて、ウェハ Wの面内温度差が大きくなる虞がある 。従って、接触面積が 50%を下回らない凸部の最小の大きさは、凸部の対辺の間隔 が約 1.5mm以上であればよいことが分かる。また、凸部の対辺の間隔が 10mmを越 えると凸部の中心部に対応するウェハの温度が低下して好ましくな 、。より好ましくは 対辺の間隔は 2〜8mmである。更に好ましくは 3〜7mmである。
[0054] さらに図 2に示すように、上記貫通孔 5は載置面の中心に 1個と、中心から同心円上 に複数の貫通孔 5を備えると良い。貫通孔 5を中心に設け、中心の貫通孔 5からガス を流すことにより、中心力も外周にかけて均一にガスが流れる。また、同心円上に複 数の貫通孔 5を設け、そこからもガスを流すことにより、短時間で載置面 8aの全体に ガスを供給でき、ウェハ Wの面内の温度が一定となるまでの飽和する時間が短くなり 好ましい。
[0055] また、図 4に示すように、環状壁部 8cを載置面の最外周とその内側に備え、最外周 の環状壁部 8cと内側の環状壁部 8cの間に複数の貫通孔 15を備え、内側の環状壁 部 8cの内側に貫通孔 16を備えるとウェハ Wの直径が 300mm以上の大型のウェハ Wの面内温度差を小さくする上で好ましい。その理由は、最外周の環状壁部 8cと内 側の環状壁部 8cの間の貫通孔 15と内側の環状壁部 8cの内側の貫通孔 16に、別系 統でガスを供給することにより、それぞれガス流量を変えることができるため、載置面 8aの内側と外側で載置面 8aとウェハ Wの間の熱伝導率を調整できることからウェハ Wの内側と外側の差をコントロールできることからウェハ W面内の温度差が小さくなり 均熱性が向上する。
[0056] また、板状体 8の外径が 180〜500mm、より好ましくは 180〜350mmである場合 において、上記貫通孔 5、 15、 16の直径は、 0.1〜5mmで、貫通孔 5、 15、 16は 4 〜100個備えていることが好ましい。貫通孔 5、 15、 16の直径を 0.1〜5mmで、貫通 孔の数を 4〜: LOO個とすることにより、ガスがガス流路 8dを均一に流れ、ウェハが飽和 温度に達する時間が短ぐウェハ W面内の温度差力 S小さく均熱性が向上する。貫通 孔 5、 15、 16の直径が O.lmm未満では、貫通孔の直径が小さいため、ガスの供給 が十分にできず、ウェハ Wの温度が飽和するまでの時間が大きくなる虞がある力 で ある。また、貫通孔 5、 15、 16の直径が 5mmを越えると、貫通孔付近にガスが集中し 、貫通孔付近の温度が高ぐその他の載置面の温度が低くなる虞があり、ウェハ Wの 均熱性が悪くなる虞がある力もである。また、貫通孔 5、 15、 16の数は、 0個ではガス 流路にガスが供給できな 、ためウェハの均熱性が悪くなる。 100個を越えると 1つの 貫通孔力 流れるガスが他の貫通孔力 流れるガスと干渉し、ガスの流れが悪くなる ため、ウェハ Wの均熱性が悪くなる。このことより、上記貫通孔の直径は、 0.1〜5mm で、 4〜: L00個備えていると良い。
[0057] また、上記板状体 8の他方の主面に熱交換部材 9を取り付けると良い。プラズマによ りウェハ Wが加熱され、載置面 8aに熱が多量に流れてくる力 板状体 8の他方の主 面に熱交換部材 9をとりつけることにより、載置面 2aの熱を効率よく板状体 8から熱交 換部材 9に流すことができ、載置面 2aの温度上昇を抑えウェハ Wの温度上昇を抑制 できる。熱交換部材 9は熱伝導率の大きい金属が良ぐ特にアルミニウムが好ましい。 また、熱交換部材 9と板状体 8とはインジウム接合、シリコン接着剤等の方法で接合す ることが好ましい。さらに熱交換部材 9は、その内部に水冷や空冷するための通路 9a を設け熱を外部に排出することが好ましい。通路 9aに冷却用の水やガスを流すこと により熱交換が容易となり、より効率的に載置面 2aを冷却できるからである。
[0058] ここで静電チャック 1を構成する板状体 8の材質としては、アルミナ、窒化アルミ-ゥ ム、窒化珪素を主成分とする焼結体を用いることができ、これらの中でも耐プラズマ 性に優れるアルミナ、窒化アルミニウムを主成分とする焼結体を用いることが望ま Uヽ
[0059] また、上記板状体 8に埋設する吸着用電極 6の材質としては、板状体 8を形成する 焼結体との熱膨張差が小さい物が良ぐモリブデン、タングステン、タングステンカー ノイト等を用いれば良い。
[0060] 以上、本実施形態では図 1に示す構造の静電チャック 1を例にとって説明したが本 発明の静電チャック 1は図 1に示した構造だけに限定されるものではなぐ例えば、誘 電体 2中にヒータ用の電極を埋設しても良ぐこの場合、ヒータ用の電極により静電チ ャック 1を直接発熱させることができるため、間接加熱方式のものに比べて熱損失が 少ない。
[0061] さらに、静電吸着用電極 4以外にプラズマ発生用電極を備えても良ぐこの場合、 成膜装置やエッチング装置の構造を簡略ィ匕することができるというように、本発明の 要旨を逸脱しな 、範囲で改良や変更できることは言う迄もな 、。
[0062] また、本発明の静電チャック 1は、窒化アルミニウム力もなる板状セラミックス体 2の 一方の主面をウェハの載置面 2aとし、上記板状セラミックス体 2の他方の主面または 内部に電極 3を備え、電極 3から載置面 2aまでの誘電体層 2bの平均距離 tが 0.015 cm以上であるとともに、電極 3から載置面 2aの間の誘電体層 2bの体積固有抵抗値 Rと上記平均距離との積(=t X R)が 1 X 107〜5 Χ 1016 Ω «η2であるとともに、誘電 体層 2bを形成する窒化アルミニウムの平均粒径が 1〜20 mであり、且つ誘電体層 2bの開気孔率が 1 %以下であることを特徴とする。
[0063] なお、電極 3から載置面 2aまでの誘電体層 2bの平均距離 tとは、載置面 2aが均一 な平面であれば載置面 2aから電極 3までの平均距離 tである。また、載置面 8aにガス 流路が形成されて ヽる場合には、載置面 8aのガス流路の底面 8dから吸着用電極 6 までの距離の平均値 tである。より具体的には、載置面 8aのガス流路の底面 8dから 吸着用電極 6までの距離を 10箇所測定し、その平均値を平均距離 tとして求めること ができる。なお、ガス流路の底面 8dから吸着用電極 6までの距離を超音波等で直接 測定できない場合には、凸部 8bから吸着用電極 6までの距離を測定し、その測定点 の近くのガス流路の底面 8dの最大深さを差し引いて底面 8dから吸着用電極 6までの 距離とすることができる。そして、 10箇所の測定値の平均値として平均距離 tを求める ことができる。例えば、電極から載置面までの平均距離は、超音波法により測定でき る。超音波法では既知の試料力 電極と載置面までの距離と超音波の反射から求め られる距離との相関を求めて実際の距離を求めることができる。これらの実測値の 10 点平均として平均距離 tを求めることができる。より具体的には、同じ誘電体層 2bから なる静電チャックの電極 3から載置面 2aまでの距離を、超音波法 (SONOSCAN社製 C-SAM D-9000)で測定する。そしてその測定した箇所を載置面に垂直な断面で 切断し、実際の電極から載置面までの距離を測定する。超音波法で測定した値と、 実際断面切断した値の差を、超音波測定機に補正値として入力することにより、測定 誤差の小さな平均距離 tを求めることができる。
[0064] 窒化アルミニウムからなる板状セラミックス体 2の一方の主面をウェハの載置面 2aと し、上記板状セラミックス体 2の他方の主面または内部に電極 3を備えた静電チャック 1であって、電極 3からウェハ載置面 2aまでの誘電体層 2bの平均距離を 0.015cm以 上としたのは、誘電体層 2bの厚みが厚ければ厚いほど、誘電体層 2bの体積固有抵 抗が大きければ大き 、ほど、繰り返し電圧印加解除サイクルに対しての耐久性が向 上するが、そもそも誘電体層 2の厚みが 0.015cm未満では、誘電体層 2の厚みが薄 すぎるために本発明が目的とする繰り返し耐電圧サイクルに対しての充分な耐久性 が得られないからである。よって、誘電体層 2の厚みは平均で 0.015cm以上であるこ とが重要である。 [0065] 更に、電極 3からウェハ載置面 2aまでの平均距離 tと電極 3からウェハ載置面 1の間 の誘電体層 2bの体積固有抵抗値 Rの積 t XRが 1 X 107〜5 Χ 1015 Ω 'cm2が好まし いとしたのは、前述のように誘電体層 2bの厚み tが厚ければ厚いほど、誘電体層 2b の体積固有抵抗 Rが大きければ大き ヽほど、繰り返し電圧印加除去サイクルに対し ての耐久性が向上することから、その積 t XRを繰り返し電圧印加除去サイクルに関 する耐久性を代表する指数と考えることができる。
[0066] 積 t XRが 1 X 107 Ω «η2を下回ると、誘電体層 2bの厚みが薄すぎるか、誘電体層 2 bの体積固有抵抗 Rが小さ過ぎるかのどちらかあるいは両方の理由で本発明が目的 とする繰り返し電圧印加除去サイクルに対しての充分な耐久性が得られないからであ る。
[0067] また、積 t X Rが 5 X 1015 Ω · cmを越えると、静電チャックでは、半導体の製造工程 である CVD、 PVD、スパッタリング、 SOD、 SOG、等の成膜装置やエッチング装置 において、半導体ウェハを保持するウェハ保持部材であって、特にウェハをジョンソン ラーベック力やクーロン力で保持して、成膜装置やエッチング装置内の真空中にお Vヽてもウェハ Wを保持した後に電圧を解除して吸着したウエノ、 Wを離脱して次工程に 進めることが困難になる。吸着したウェハ Wを離脱するには、電極 3に電圧を印加し て発現した誘電分極を平衡にしなければならないが、積 t XRの値が 5 X 1015 Ω -cm 2を越えると、誘電体層 2bの厚みが厚すぎるか、誘電体層 2bの体積固有抵抗 Rが大 きすぎるために誘電分極した電荷が平衡となるまでの時間が大きくなるために、ゥェ ハ Wが離脱可能となるまでの時間が長くなり過ぎるために本発明が目的とする繰り返 し電圧印加解除サイクルに対しての充分な耐久性は得られても、静電チャックとして は全く好ましくないものとなってしまう。
[0068] よって、電極 3からウェハ載置面 2aまでの平均距離 tと電極 3からウェハ載置面 2aの 間の誘電体層 2bの体積固有抵抗値 Rの積が 1 X 107 Q cm2〜5 X 1015 Q cm2とする ことが重要である。
[0069] 更に、誘電体層 2bを形成する窒化アルミニウムの平均粒径が 1〜20 μ mとしたの は、窒化アルミニウムの平均粒径が本発明が目的とする繰り返し電圧印加解除サイク ルに対する耐久性に大きく影響することを見いだした力 である。 [0070] 窒化アルミニウムの平均粒径は 1 μ m未満であっても、 20 μ mを越える値であって も上記平均粒径が本発明が目的とする繰り返し耐電圧サイクルに対する耐久性に対 しては好ましくない。窒化アルミニウムの平均粒径が: L m未満で繰り返し電圧印加 解除サイクルに対する耐久性が劣化する理由は、窒化アルミニウムの粒径 1 μ m未 満では窒化アルミニウムの粒径が細かすぎて、各粒子の耐電圧性が乏しくなるため、 単極 lkVの電圧を 1分間印加した後、電圧を解除するサイクルにおいて、その初期 には絶縁破壊が発生しないが、繰り返し行うことにより、窒化アルミニウム粒子の 1ケ、 1ケが破壊することから、 1万サイクルに到達する前に絶縁破壊に至る虞がある。
[0071] 窒化アルミニウムの平均粒径が 20 μ mを超えると繰り返し電圧印加解除サイクルに 対する耐久性が劣化する理由は、窒化アルミニウムの粒径 20 mを越えると窒化ァ ルミ-ゥムの粒径が大きくなりすぎて、絶縁破壊の原因となる格子欠陥が粒界相に多 量に発生するからである。格子欠陥が多いと該格子欠陥が徐々に絶縁破壊してゆき 、単極 lkVの電圧を 1分間の印加した後電圧を解除する電圧印加解除サイクルの初 期には絶縁破壊が発生しないが、繰り返し行うことにより、絶縁破壊した格子欠陥が 連なり、 1万サイクルに到達する前に絶縁破壊に至る虞がある。
[0072] よって、該誘電体層 2を形成する窒化アルミニウムの平均結晶粒径は 1〜20 μ mで あることが重要である。
[0073] 尚、窒化アルミニウムの平均結晶粒径を求めるために載置面 2aを形成する誘電体 層を鏡面研摩した後、エッチングした。そしてエッチング面を SEM (走査電子顕微鏡 )で 2000倍の写真を撮影し写真に 7cmの線を 3本引き、その線を横切る窒化アルミ 二ゥムの結晶の数で線分の総長さを除して平均結晶粒径を求めた。
[0074] 更に、該誘電体層 2bの開気孔率が 1%以下としたのは、本発明者が鋭意研究の結 果、繰り返し電圧印加解除サイクルに対する耐久性に影響するのは誘電体層 2bの 開気孔率であることを見 、だした力もである。
[0075] 特許文献 1では、気孔率が 3%以下であることが記載されている力 窒化アルミ-ゥ ムをホットプレス法で焼結したものは焼結体の表面層近くの開気孔率が 1.3%と大き く静電チャックの誘電体層が上記焼結体の表面層近くにあることから開気孔率を 1% 以下に抑えることはできな力つた。そこで繰り返し耐電圧サイクルに対する耐久性に は全く乏しい発明である。この点においても本発明は、特許文献 1とは全く異なる発 明であることが明白である。
[0076] 繰り返し電圧印加解除サイクルに対する耐久性に影響するのは誘電体層 2bの開 気孔率である理由は、誘電体層 2bに開気孔があるとウェハ Wの吸着面と開気孔部の 底面との間は非常薄い空間であるため、放電が発生し、開気孔部をから徐々に絶縁 破壊が進行し、最終的に誘電体層 2bが絶縁破壊に至る。つまり、静電チャックとして 使用し始めの初期には問題なく使用できる力 繰り返し使用してゆく内に徐々に徐々 に誘電体層 2の絶縁破壊が進展し、最終的に絶縁破壊に至るのである。よって、該 誘電体層 2の開気孔率が 1 %以下であることが重要である。
[0077] 本発明によれば、以上のように、窒化アルミニウム質焼結体力 なる板状セラミック ス体の一方の主面をウェハの載置面 1とし、上記板状セラミックス体の他方の主面ま たは内部に電極 3を備えた静電チャックであって、電極力もウェハ載置面までの誘電 体層 2の平均距離が 0.015cm以上であり、更に電極からウェハ載置面までの平均距 離と電極からウェハ載置面までの部分を形成する誘電体層 2の体積固有抵抗値の積 が I X 107〜5 Χ 1015 Ω «η2であり、更に誘電体層 2bを形成する窒化アルミニウムの 平均粒径が 1〜20 mであり、更に該誘電体層 2bの開気孔率が 1%以下とすること により、 5kVの電圧を 1分間印加した後、電圧を解除する電圧印加解除サイクルを 1 000サイクル繰り返し行っても、誘電体層 2bが絶縁破壊しな 、静電チャック 1を提供 できる。
[0078] 誘電体層の断面を SEMで 1万倍〜 6万倍で観察すると、気孔には結晶粒内にある 粒内気孔と結晶粒界にある粒界気孔が存在することが判る。 SEMにて 1万倍〜 6万 倍の写真の 5cm角の中で粒界気孔の最大径を求め、 10枚の写真の最大径の平均 値を粒界気孔の平均径とすると、この粒界気孔の平均径が窒化アルミニウムの平均 結晶粒径より小さいことが重要である。これは、開気孔率を 0.8%以下とするためであ る。粒界気孔の平均径が窒化アルミニウムの平均結晶粒径と同等か大きいと窒化ァ ルミ-ゥム質焼結体を構成する窒化アルミニウム粒子の脱粒が起こりやすくなるため
、如何に緻密に焼結したとしても、後の機械加工により脱粒が発生するために開気孔 率を発生させてしまうからである。以上のように本発明者らは鋭意研究の結果、開気 孔率を 0.8%以下とするためには粒界気孔の平均径が窒化アルミニウムの平均結晶 粒径よりも小さ 、ことが重要であることを見 、だした。
[0079] また、誘電体層の断面を SEMで 1万倍〜 6万倍で観察すると気孔には粒内気孔が 存在するが、 SEMにて 1万倍〜 6万倍の写真を 10枚撮影し、これらの写真の各 5cm 角の範囲の中で粒内気孔の最大径を求め、これらの最大径と同じ直径の円の面積を 評価範囲 250cm2の実際の面積で除した値を粒内気孔の比率 Scとして計算した。ま た、同様に粒界気孔の比率 Sg値を算出した。そして、 Sgと Scの比 SgZScを求めた 。そして比 SgZScが 1.0以下であることが重要である。これは、開気孔率を 0.6%以 下とするためである。 Sg/Scが 1.0を超えて、粒界気孔の存在比率が増してくると、 機械加工によって、窒化アルミニウム粒子の脱粒が増すために開気孔率が増えてし まう。本発明者らは鋭意研究の結果、開気孔率を 0.6%以下とするためには SgZSc 力 S 1.0以下であることが重要であることを見いだした。
[0080] また、誘電体層が窒化アルミニウムを主成分として 3a族金属酸化物からなる副成分 を 0.2〜15質量%含むことが好ましい。これは、体積固有抵抗値を任意の所望の値 に制御することができる力もである。
[0081] また、 3a族酸ィ匕物を形成する 3a族金属がセリウムであることが好ましい。これは、 3a 族金属の中でもセリウムが最も耐繰り返し電圧印加解除サイクル性に富むカゝらである 。その理由は、酸ィ匕セリウムは窒化アルミニウム質焼結体の粒界に CeAlOで現され
3 る化合物を形成するが、この CeAlOは窒化アルミニウムの粒子表面を覆う極薄い A1
3
O層と三価の Ceの酸ィ匕物である Ce Oが反応して形成されるため、窒化アルミ-ゥ
2 3 2 3
ム粒子と粒界相との間の欠陥所謂粒界欠陥をほぼゼロに近くできるからである。
[0082] また、本発明の静電チャック 1は、該窒化アルミニウム力 なる板状セラミックス体 2 力 S0.2〜200MPaの非酸化性雰囲気中にて 1800〜1900°Cの温度で 0.5〜20時 間保持して焼結させたとしたのは、誘電体層 2bの平均粒子径と開気孔率を制御する ためである。窒化アルミニウムの板状セラミックス体 2の製造方法は、ホットプレス法、 雰囲気加圧焼成法、 HIP法などがあるが、ホットプレス法では、カーボン型と製品が 直接接触するために、カーボン型に窒化ボロンなどを塗布して焼結する。窒化ボロン と窒化アルミニウム質焼結体との反応により、開気孔が発生し易い。ホットプレス法で 得た窒化アルミニウム力 なる板状セラミックス体 2の開気孔率を低下させるためには 、ホットプレス面力 少なくとも 0.5mm以上を研削で除去する必要がある力 全くもつ て量産性に乏しく好ましくない。雰囲気加圧焼成法または HIP法では、焼成雰囲気 を非酸ィ匕性雰囲気の圧力で 0.2〜200MPaとすることにより、開気孔率を 0.5%以下 とすることができる。更に焼成温度を 1800°C〜1900°Cとし、焼成保持時間を 0.5〜 20時間とすること〖こより、窒化アルミニウムの平均粒径を 5〜 15 μ mとすることが可能 となり、単極 lkVで印加時間 1分間の電圧印加除去サイクル試験において 1000サイ クル以上の電圧印加除去サイクル試験を繰り返しても誘電体層 2bが絶縁破壊しない 静電チャック 1が得られる。
[0083] 次に本発明の静電チャック 1のその他の製造方法を説明する。
[0084] 静電チャックを構成する板状セラミックス体 2としては、窒化アルミニウム質焼結体を 用いることができる。窒化アルミニウム質焼結体の製造に当たっては、窒化アルミ-ゥ ム粉末に重量換算で 10質量%以下程度の第 3a族酸ィ匕物を添加し、 IPAとウレタン ボールを用いてボールミルにより 48時間混合し、得られた窒化アルミニウムのスラリ 一を 200メッシュに通し、ウレタンボールやボールミル壁の屑を取り除いた後、防爆乾 燥機にて 120°Cで 24時間乾燥して、均質な窒化アルミニウム混合粉末を得る。そし て、該混合粉末にアクリル系のバインダーと溶媒を混合して窒化アルミニウム質のスリ ップを作成し、ドクターブレード法にてテープ成形を行う。得られた窒化アルミニウム のテープを複数枚積層し、その上に静電吸着用の電極 3としてタングステンをスクリ ーン印刷法で形成し、無地のテープに所望の密着液を塗り、テープを複数枚重ねて プレス成形して成形体を得る。
[0085] 得られた成形体を非酸化性ガス気流中にて 500°Cで 5時間程度の脱脂を行 ヽ、更 に非酸化性雰囲気にて 0.2〜200MPの圧力下にて 1800°C〜1900°Cの温度で 0. 5〜20時間保持して焼結させる。このようにして電極 3を埋設した窒化アルミニウム質 焼結体を得る。
[0086] こうして得られた窒化アルミニウム質焼結体に所望の形状が得られるように機械カロ ェを施す。更に、電極 3へ電圧を印可するための金属端子 4をメタライズ法などの方 法を用 ヽて接合する。このようにして図 6に示す本発明の静電チャック 1が得られる。 実施例 1
[0087] 以下、本発明の具体例を静電チャックを例にとって説明する。
[0088] まず、アルミナ Al O力もなる板状体を例に説明する。平均粒径 1.0 μ mの純度 99.
2 3
9質量%である Al O粉末に焼結助剤として CaOと SiOを 0.2質量%加え、ノ インダ
2 3 2
一と溶媒を加えて泥漿を作製し、ドクターブレード法にてアルミナグリーンシートを複 数枚成形した。
[0089] このうち 1枚のアルミナグリーンシート上に、吸着用の電極となるモリブデンの金属 ペーストをスクリーン印刷法にて所定の電極パターン形状に印刷した。そして、上記 金属ペースト塗布面と反対面に残りのアルミナグリーンシートを積層した。一方、上記 金属ペーストを印刷しないアルミナグリーンシートを複数枚積層し、所定の位置に直 径 5mmの給電穴を開けた。尚、給電穴は上記電極に給電端子を接続する穴とした。
[0090] そして、それぞれの積層体を 50°C、 1.5 X 107Paの圧力で熱圧着した。そして、前 記印刷面と前記給電穴を開けた積層体を、電極となる印刷面を覆うように重ね、 50 。C、 1.7 X 107Paの圧力で熱圧着した。このようにセラミック積層体を作製した後、こ のセラミック積層体に切削加工を施して円板状とした。
[0091] 次 、で、上記のセラミック積層体を窒素と水素の混合雰囲気炉で加熱脱脂し、窒素 と水素の混合雰囲気炉を用い、常圧の 1600°Cの温度で約 3時間焼成した。これより 吸着用の電極が埋設された板状体を得た。
[0092] し力る後、板状体を加工し、板状体中央に直径 lmmの貫通孔を設けた。そして厚 みを 3mmとなるまで研磨し、一方の主面(最も広!、面)を、最大高さ(Rmax)で 1 μ m 以下、載置面を形成するとともに、静電吸着用電極と導通する給電端子を接合した。
[0093] そして、ブラスト加工により凸部と環状壁部、溝を設け直径 200mm、厚み 3mmの 静電チャックを作製した。そして、アルミニウムの熱交換部材をシリコン接着剤で前記 板状体に接合した。
[0094] 凸部の形状は対辺距離が 6mmの略正四角形とし、辺と辺を繋ぐ R形状の大きさを 0.05mm, 0.1mm, 0.5mm, 2mm、 2.5mmとした静電チャックと、 Rff 状のない静 電チャックを作製した。また、凸部の間隔は何れも lmmとした。ガス供給の貫通孔は 直径 3mmとして載置面の中心に設けた。 [0095] なお、溝から凸部表面までの距離は 50 μ m、溝の表面粗さを RaO.5 μ mとした。
[0096] そして、作製したこれら 6種類の静電チャックを真空チャンバ一内に設置し、 17力所 の熱電対付き測温用シリコンウェハを静電チャックの載置面に載せ、この状態で真空 チャンパ一内を 10_ 1Paまで減圧した。そして、静電チャックの吸着用の電極とウェハ Wの間に 1000Vの電圧を印加してクーロン力を発生させ、ウェハ Wを載置面に吸着 固定するとともに、真空チャンバ一内に設置されたハロゲンヒータを発熱させてウェハ を 100°Cまで加熱させた。そして、貫通孔より 1300Paのヘリウムガスを流し、ウェハ 温度が飽和温度に達するまでの時間と、飽和温度でのウェハの温度分布について 調べる実験を行った。
[0097] なお、飽和温度とは、ウェハの平均温度が 0.1°CZ秒以下の温度変化率になった 時の平均温度のことであり、飽和温度に達する時間とは、ヘリウムガスを供給してから 飽和温度に達するまでの時間のことである。
[0098] また、ウェハの平均温度は、ウェハの 17力所に付いている熱電対で温度測定し、そ の平均値とした。さらに、飽和温度でのウェハ温度分布は、ウェハの 17力所に付いて V、る熱電対で温度測定し、その最大値と最小値の差を温度分布とした。
[0099] それぞれの結果は表 1に示す通りである。
[0100] [表 1]
Figure imgf000023_0001
[0101] *印は本発明の範囲外であることを示す。
[0102] 凸部の辺を R形状で繋ぐ試料 No. l〜5はウェハの温度分布が 0.8〜1.2°Cと小さく 、飽和温度に達する時間も 2.5〜3.2秒と小さく優れていることが分かる。
[0103] 一方、試料 No.6は R形状が形成されていないことからウェハの温度分布が 3.0°Cと 大きぐ飽和温度に達する時間も 5.0秒と大きく特性が悪力つた。この原因は、貫通孔 より直線方向に伸びる溝の周辺の温度は高ぐこの溝と直交する方向の周辺の温度 が低くウェハ w面内の温度差が大きいことが分力つた。また、貫通孔より直線方向に 伸びる溝の周辺の温度は早く高くなり、この溝と直交する方向の周辺の温度は遅く上 昇することから飽和温度に達する時間も大きくなつた。
[0104] また、試料 No.2〜4は R形状の大きさが 0.1〜2mmでありウェハの温度分布は 0.8 〜1.0°Cと小さく飽和温度に達する時間も 3.0秒以下と小さく更に好ましいことが分か つた o
実施例 2
[0105] 実施例 1と同様にして静電チャックを作製した。溝はマシニングセンターでカ卩ェし、 溝と凸部が繋がる曲面の R形状の大きさを、 0.005、 0.01、 0.05、 O.lmmとして、凸 部の辺を繋ぐ R形状の大きさを 0.5mmとした。そして、実施例 1の No.3と同様の静電 チャックを作製した。但し、溝と凸部が繋がる R形状の大きさを O.lmmとしたものは溝 深さを O.lmmとした。これを実施例 1と同様に評価した。その結果を表 2に示す。
[0106] [表 2]
Figure imgf000024_0001
[0107] 溝の底面と凸部が繋がる曲面の R形状が 0.01〜0.1mmである試料 No.8〜10は ウェハの温度分布が 0.5〜0.7°Cと小さぐ飽和温度に達する時間も 2.1〜2.2秒と小 さく優れていた。
[0108] 一方、試料 No.7はウェハの温度分布が 0.8°Cとやや大きぐ飽和温度に達する時 間も 2.4秒とやや大きかった。これは R形状が小さいため、ガスがその部分に滞留し やすくなりガスの流れが悪くなつたためと考えられる。
実施例 3
[0109] 実施例 1と同様にして静電チャックを作製した。凸部 2の角部の Rを 0.5mmとし、サ ンドブラストの砲粒を変え、溝 4の算術平均粗さ Raを 0.3、 0.5、 1.0、 2.0、 2.5として、 あとは実施例 1と同様の静電チャックを作製した。そして、実施例 1と同様に評価した 。その結果は表 2に示す。
[0110] [表 3]
Figure imgf000025_0001
[0111] 溝の底面の算術平均粗さ Raが 2以下である試料 No.12〜 15はウェハの温度分布 力 0.4〜0.7°Cと小さぐ飽和温度に達する時間は 2.0〜2.4秒と小さく更に優れてい た。尚、算術平均表面粗さ WIS規格の B0651に準じて測定した。
[0112] 一方、溝の底面の算術平均粗さ Raが 2.5と大きな試料 No.16はウェハの温度分布 力 1.2°Cとやや大きぐ飽和温度に達する時間も 3.2秒とやや大き力つた。その理由 は、ガスを供給している貫通孔の周りから温度が上昇しており、温度分布は外周部分 が温度が高くなつていることが分力つた。溝の表面粗さが粗くなると、ガスと溝での抵 抗が大きくなり、ガスがスムーズに流れないことが原因と考えられる。
実施例 4
[0113] 凸部の辺を繋ぐ円弧状部の R形状の大きさを 0.5mmとし、凸部の対辺の距離を変 え、凸部の頂面と外周の環状壁部の総面積を、ウェハ載置面の面積の 40〜90%と し、かつ溝の底面から凸部の頂面までの距離を 5〜: 100 / mとした。他の部分は実施 例 1の試料 No.3と同様に静電チャックを作製した。
[0114] そして、実施例 1と同様に評価した。その結果は表 4に示す。
[0115] [表 4] 試料 ウェハ載置面に対す 溝から突起部 ウェハの温度 飽和温度に達
No. る、 突起部及び環状 先端までの距 分布 (°C) するまでの時 突起部の面積の割合 離 間 (秒)
22 50% 50 0.4 2.0
23 60% 50 0. 5 2. 1
24 80% 50 0. 7 2.4
25 90% 50 1.0 3.0
26 50% 5 0. 7 3. 2
27 50% 10 0. 7 2. 3
28 50% 100 0.4 2.0
[0116] 凸部と環状壁部の頂面の総面積が載置面の面積の 50〜80%で、溝の底面から凸 部の頂面までの距離が 10〜100/ζπιである試料 No.22〜24、 27、 28はウェハの温 度分布が 0.4〜0.7°Cと小さく、飽和温度に達する時間も 2.0〜2.4秒と小さく優れて いることが分った。
[0117] また、試料 No.25はウェハの温度分布が 1.0°Cとやや大きぐ飽和温度に達する時 間も 3.0秒とやや大きかった。ガス流路分の面積が小さいため、十分なガスの供給が できず、温度分布が大きぐまた飽和温度に達する時間も大きくなつたと考えられる。
[0118] また、試料 No.26は飽和温度に達する時間が 3.2秒とやや大き力つた。溝の深さが 小さいため、ガスが全面に供給できる時間が力かったためと考えられる。
実施例 5
[0119] ガスを供給する貫通孔を載置面の中心と、中心から等距離の円上に、その直径を 0 .08、 0.1、 2、 5、 6mmとし、貫通孑しの数を 1、 10、 50、 100、 200個として、実施 f列 1 の試料 No.3と同様の静電チャックを作製した。
[0120] また、貫通孔を載置面の中心に 1個設けた静電チャックや貫通孔のない静電チヤッ クを作製した。
[0121] これを実施例 1と同様に評価した。その結果を表 5に示す。
[0122] [表 5] 試料 N o . 貫通孔の直径 貫通孔の数 ウェハの温度分 飽和温度に達する
(mm) (個) 布 (°C) までの時間 (秒)
31 0.08 1 1.2 3.2
32 0. 1 1 1. 2 3.0
33 1 1 1. 1 2.8
34 2 1 0. 9 2.7
35 5 1 0.8 2.5
36 6 1 1.0 2.8
* 37 0. 1 0 5.0 10
39 0. 1 10 0.5 2.4
40 0. 1 50 0.4 2. 2
41 0. 1 100 0. 6 2.0
42 0. 1 200 1. 2 2.0
43 5 10 0. 6 2.4
44 5 50 0.4 2.2
45 5 100 0. 7 2.0
46 5 200 1. 2 2.0
[0123] *印は本発明の範囲外であることを示す。
[0124] 載置面の中心に 1つの貫通孔のある試料 No.31〜36は温度分布が 0.8〜1.2°Cで
、飽和温度に達する時間も 2.5〜3.2秒とやや大き力つた。
[0125] また、載置面の中心に 1つの貫通孔とその周りに複数の貫通孔を備えた試料 No.3
9〜46は、温度分布が 0.4〜1.2°Cと小さぐ飽和温度に達する時間が 2.0〜3.2と小 さく好ましいことが分った。
更に貫通孔の直径が 0.1〜5mmで貫通孔を 4〜: L00個備えた試料 No.39〜41、43 〜45は温度分布が 0.4〜0.7°Cと更に小さぐ飽和温度に達する時間が 2.0〜2·4秒 と小さく好まし V、ことが分った。
[0126] 試料 No.37は飽和時間に達する時間が 10秒、ウェハの温度分布が 5°Cと大きかつ た。これは溝にガスを供給することができないため、飽和時間に達する時間も、ウェハ の温度分布も大きくなつたと考えられる。
実施例 6
[0127] 窒化アルミニウム粉末に重量換算で 10質量%以下の第 3a族酸ィ匕物を添加し、 IP Aとウレタンボールを用いてボールミルにより 48時間混合し、得られた窒化アルミェゥ ムのスラリーを 200メッシュに通し、ウレタンボールやボールミル壁の屑を取り除いた 後、防爆乾燥機にて 120°Cで 24時間乾燥して、均質な窒化アルミニウム質混合粉末 を得る。得られた窒化アルミニウム質混合粉末にアクリル系のバインダーと溶媒を混 合して窒化アルミニウム質のスリップを作成し、ドクターブレード法にてテープ成形を 行った。
[0128] 得られた窒化アルミニウムのテープを複数枚積層し、その上に電極としてタンダステ ンを印刷法で形成し、無地のテープに所望の密着液を塗り、テープを複数枚重ねて プレス成形を行った。
[0129] 得られた窒化アルミニウムとタングステン電極の混合成形体を非酸ィ匕性ガス気流中 にて 500°Cで 5時間程度の脱脂を行い、更に非酸ィ匕性雰囲気の O. lMPaの圧力下 にて 1900〜2050°Cの温度で 0.1〜20時間の焼成を行い、窒化アルミニウム質焼 結体を得た。
[0130] こうして得られた窒化アルミニウム質焼結体に所望の形状が得られるように機械カロ ェを施した。機械加工を施した窒化アルミニウム質焼結体の乾燥重量、水中重量、 抱水重量を測定し、アルキメデス法にて開気孔率を求めた。更に所望のガス溝 (不図 示)をウェハの載置面にサンドブラストなどの方法で形成した。更に電極へ電圧を印 可するための金属端子を銀ろうを用いたメタライズ法で接合した。
[0131] そして、電極から載置面までの平均距離は、超音波法により測定した。中心部 1箇 所と周辺部 4箇所の 5箇所の平均値で求めた。
[0132] 得られた静電チャックをあら力じめ超音波検査してクラックや剥がれの発生して!/、な いことを確認した後に大気中、 25°Cの環境において、金属端子 4を経由して、電極 3 に単極 lkVの電圧を 1分間印可して、解除するという方法で繰り返し耐電圧サイクル 試験を絶縁破壊するまで行った。その際には、ゥヱハ載置面 1にはゥヱハ(不図示)を 吸着させて試験を行った。耐電圧サイクル試験終了後に製品を切断し、誘電体層の 電極付近 1力所、載置面付近 1力所、電極と載置面の中間付近 1力所を SEMにて 10 00倍の組織を撮影し、各写真から任意に 20ケの窒化アルミニウム粒子の粒子径を測 定し、その全平均を算出し、平均粒径とした。
表 6にその結果を示す。
[0133] [表 6] 試料 電極から載 平均距離 tと誘電 誘電体層 誘電体層 絶縁破壊し N o . 置面までの 体層の体積固有抵 の平均粒 の開気孔 た電圧印加
平均距離 抗 Rの積 径 率 除去サイク ( c m) (Ω ■ cm2) (μ m) (%) ル数
I l l 0.015 1.00E + 12 1 1 1 11
1 12 0.015 1.00 E + 12 20 1 1499
1 13 0.015 1.00 E + 07 1 1 1002
1 14 0. 1 1.0 OE + 0S 20 1 1400
1 1 5 0.014 1.00 E + l 2 1 1 521
1 1 6 0.015 9.00 E + 06 1 1 800
1 1 7 0.015 1.00E + 12 0.9 1 720
1 1 8 0.015 1.00 E +12 21 1 825
1 1 9 0.015 1.00 E + 12 1 1. 1 771
[0134] 表 6の試料 No.115の電極力も載置面までの平均距離は、 0.014mmと小さく電圧 印加除去サイクルが 521回で絶縁破壊した。
[0135] また、電極力も載置面までの平均距離 tと誘電体層の体積固有抵抗 Rの積が 1 X 1
07 Ω 'cm2を下回る試料 No.116は電圧印加除去サイクルが 800回で絶縁破壊した
[0136] また、上記平均距離 tと上記体積固有抵抗 Rの積が 5 X 1015Ω 'cm2を越える試料( 表 1には記載なし)は電圧印加除去サイクルを 1000回まで行っても、絶縁破壊は発 生しないが、誘電分極した電荷が平衡となるまでの時間が大きくなるために、ウェハ Wが離脱可能となるまでの時間が長くなり過ぎるため、静電チャックとして機能しなか つ 7こ。
[0137] 従って、電極力 載置面までの平均距離 tと誘電体層の体積固有抵抗 Rの積の値 は 1 X 107Ω 'cm2〜5X 1015Ω 'cm2であることが好ましいことが分る。
[0138] また、窒化アルミニウムの平均粒径が 0.9 mと小さく 1 mを下回る試料 No.117 は電圧印加除去サイクルが 720回で絶縁破壊した。
[0139] 更に、上記平均粒径が 20 μ mを超える試料 No.118は電圧印加除去サイクルが 8 25回で絶縁破壊した。
[0140] 従って誘電体層を成す窒化アルミニウムの平均粒径は 1〜20μ mが好ましいことが 分る。
[0141] 更に、誘電体層の開気孔率が 1.1%と大きく 1%を越える試料 No.119は電圧印加 除去サイクルが 771回で絶縁破壊した。
[0142] 以上の結果から、平均距離が 0.015cm以上で積 (t XR)が 1 Χ 107〜5 Χ 1015 Ω ο m2で、平均粒径が 1〜 20 mで、開気孔率が 1%以下である試料 No.l l l〜114は 電圧印加除去サイクルが 1000回以上と大きく絶縁破壊が発生し難ぐ優れた特性を 示すことが分った。
実施例 7
[0143] 窒化アルミニウム粉末に重量換算で 0.1〜20質量%の第 3a族酸ィ匕物を添加し、 IP Aとウレタンボールを用いてボールミルにより 48時間混合し、得られた窒化アルミニゥ ムのスラリーを 200メッシュに通し、ウレタンボールやボールミル壁の屑を取り除いた 後、防爆乾燥機にて 120°Cで 24時間乾燥して、均質な窒化アルミニウム質混合粉末 を得る。得られた窒化アルミニウム質混合粉末にアクリル系のバインダーと溶媒を混 合して窒化アルミニウム質のスリップを作成し、ドクターブレード法にてテープ成形を 行った。
[0144] 得られた窒化アルミニウムのテープを複数枚積層し、その上に電極としてタンダステ ンを印刷法で形成し、無地のテープに所望の密着液を塗り、テープを複数枚重ねて プレス成形を行った。
[0145] 得られた窒化アルミニウムとタングステン電極の混合成形体を非酸ィ匕性ガス気流中 にて 500°Cで 5時間程度の脱脂を行い、更に非酸ィ匕性雰囲気の O. lMPaの圧力下 にて 1900〜2050°Cの温度で 0.1〜20時間の焼成を行い、窒化アルミニウム質焼 結体を得た。そして、実施例 6と同様に静電チャックを作製し評価した。その結果を表 7に示す。
[0146] [表 7] 試料 電極 平均距離 副成 副成 粒界 粒界 開気 絶縁破壊 N o. から tと誘電 分酸 分の 気孔 アル 気孔 孔率 した電圧 載置 体層の体 化物 含有 の平 率ノ (%) 印加除去 面ま 積固有抵 とな 均径 ゥム 粒内 サイクル での 抗 Rの積 る金 (%) (μ m の平 気孔 数 平均 ( Ω■ c m 属元 ) 均結 率
距離( 晶粒
c m 径
(μ m
)
1 2 1 0. 0 1. 0 0 Y b 5 1 1 0 0. 1 0. 2 48 00
1 5 E + 1°
1 2 2 0. 0 1. 00 Y b 5 5 1 0 0. 8 0. 5 4 7 50
1 5 E + 1°
1 23 0. 0 1. 00 Yb 5 1 2 1 0 1. 1 0. 8 2 7 00
1 5 E + 1°
1 24 0. 0 1. 2 0 Y 5 1 1 0 0. 1 0. 2 4 9 50
3
1 2 5 0. 0 1. 2 0 Υ 5 5 1 0 0. 8 0. 5 4 6 00
3 E + 12
1 2 6 0. 0 1. 2 0 Υ 5 9 1 0 1. 0 0. 8 4 200
3 E +
1 2 7 0. 1 5. 00 C e 0. 9 1 0 1. 2 0. 9 3 8 00
E + 09 1
1 2 8 0. 1 3. 0 0 C e 0. 1 0 1 5 0. 9 0. 5 50 50
E + 09 2
1 2 9 0. 1 2. 0 0 C e 2 9 1 5 0. 8 0. 1 70 90
E + 09
1 3 0 0. 1 1. 0 0 C e 1 0 8 1 0 0. 7 0. 7 7 9 9 9
Ε +。θ
1 3 1 0. 1 1. 00 C e 1 0 7 1 0 0. 5 0. 6 8 200
1 3 2 0. 1 5. 0 0 C e 1 5 6 8 0. 6 0. 5 8 900
E + 08
1 3 3 0. 1 5. 0 0 C e 1 5 5 8 0. 4 0. 5 98 00
E + os
1 34 0. 1 5. 0 0 C e 1 5 4 8 0. 2 0. 5 1 000
0以上
1 3 5 1. 1 1. 0 0 C e 20 4 8 0. 2 0. 5 4 200
E十07
[0147] 試料 Νο.121〜122、や 124〜135に示すように、粒界気孔の平均径が窒化アルミ
-ゥムの平均結晶粒径より小さい静電チャックは絶縁破壊した電圧印加除去サイク ル数が 3800回以上と大きく好ましいことが分った。
[0148] 一方、試料 No.123のように粒界気孔の平均径が窒化アルミニウムの平均結晶粒 径ょり大きなものは絶縁破壊した電圧印加除去サイクル数が 2700回と上記試料と比 ベ小さかった。 [0149] また、誘電体層の粒界気孔の比率 Sgと粒内気孔の比率 Scとの比 SgZScが 1.0以 下である試料 Νο.121〜122、 124〜126、 128〜135は絶縁破壊した電圧印カロ除 去サイクル数が 4200回以上と大きく更に好ましいことが分った。
[0150] また、試料 Νο.121〜135のように誘電体層の副成分が Yb、 Y、 Ce等の 3a族金属 酸ィ匕物であると絶縁破壊するまでの電圧印加除去サイクル数が 2700回以上と大きく 好ましいことが分る。
[0151] 更に、試料 Νο.128〜134のように副成分の 3a族金属酸化物の含有量が 0.2〜15 質量%含むものは絶縁破壊するまでの電圧印加除去サイクル数が 5050回以上と更 に好ましことが分った。
[0152] 更に、試料 Νο.127〜135は副成分の金属が Ce元素であると絶縁破壊するまでの 電圧印加除去サイクル数が 3800回以上であることから好ましいことが分った。
実施例 8
[0153] 窒化アルミニウム質焼結体の焼成を非酸化性雰囲気の 0. lMPa〜300MPaの圧 力下にて 1700°C〜2000°Cの温度で 0.1時間〜 20時間の焼成を行い、誘電体層の 平均粒径と開気孔率を実施例 6と同様に測定し評価した。
[0154] その結果を表 8に示す。
[表 8]
試料 焼成雰 焼成温度 保持 電極か 平均距離 tと 誘電 絶緣破壊 No. 囲気庄 (°C) 温度( ら載置 誘電体層の体 体層 体層 した電圧 力 時間) 面まで 積固有抵抗 R の平 の開 印加除去 の平均 の積 均粒 気孔 サイクル 距離 (Ω · cm2) 径 率 (% 数 m) m) )
1 4 1 0. 2 1800 0. 5 0. 0 1 7. 50E + 07 5 0. 5 2800
5
1 42 1 1800 10 0.01 7. 50 E + 07 10 0.4 3200
5
143 1 0 1 800 20 0. 0 1 7. 50 E + 07 1 5 0. 3 4080
5
1 44 1 00 1 850 10 0. 01 7. 50 E + 07 1 0 0. 2 5000
5
1 5 200 1 900 1 0. 01 7. 50 E + 07 5 0. 1 6000
5
1 46 0. 2 1 800 0. 5 0.03 1. 50 E + os 5 0. 5 2900
1 47 1 1 800 10 0.03 1. 50 E + 0B 1 0 0.4 3000
1 48 1 0 1800 20 0.03 1. 50 E + os 1 5 0. 3 4200
1 49 1 00 1 850 10 0.03 1. 50 E + os 10 0.2 5200
1 50 200 1 900 1 0. 0 3 1. 50 E + os 5 0. 1 6 100
1 5 1 0. 2 1 800 0. 5 0. 10 5.0 OE + 0S 5 0. 5 2700
1 52 1 1 800 10 0. 10 5. 00 E+08 10 0.4 3300
1 53 1 0 1800 20 0. 10 5. 00 E + 08 1 5 0.3 4500
1 54 1 00 1 850 1 0 0. 1 0 5.00 E + 08 10 0.2 5500
1 55 200 1 900 1 0. 1 0 5. 00 E + 08 5 0. 1 6500
[0155] 試料 Νο.141〜155に示すように、窒化アルミユウム質焼結体の焼成を非酸化性雰 囲気の 0.2〜200MPa以下の圧力下にて 1800〜1900°C以下の温度で 0.2〜20 時間以下とすることにより、窒化アルミニウム質焼結体の平均粒径を 5〜 15 m以下 とすることができ、更に開気孔率を 0.5%以下とすることにより電圧印加除去サイクル が 2700回以上となり更に好ましいことが判明した。
産業上の利用の可能性
[0156] 本発明によれば、繰り返し使用しても絶縁破壊の発生しない静電チャックを提供す ることが可能となり、 CVD、 PVD、スパッタリング、 SOD、 SOG、等の成膜装置ゃェ ツチング装置といった半導体製造装置分野にて画期的な静電チャックを提供できる。

Claims

請求の範囲
[1] 一対の主面を備え、その一方の主面をウェハを載せる載置面とする板状体と、該板 状体のもう一方の主面または内部に設けられた吸着用電極と、力 なる静電チャック において、
上記板状体に貫通するように形成された少なくとも 1つのガス導入用貫通孔と、互 いに離間された複数の凸部により上記載置面上に形成され、さらに上記貫通孔と連 通するように形成されたガス流路と、上記板状体の外周に形成された環状壁部と、を 備え、
上記凸部の平面形状が 4つの辺と該 4つの辺を繋ぐ弧状部とからなり、上記凸部が 上記載置面上に一様に配設されてなることを特徴とする静電チャック。
[2] 上記凸部が格子状に配列されて 、ることを特徴とする請求項 1に記載の静電チャック
[3] 上記ガス流路の底面と上記凸部若しくは上記環状壁部とが繋がる部位が円弧状であ ることを特徴とする請求項 1に記載の静電チャック。
[4] 上記ガス流路の底面の算術平均粗さ Raが 2 m以下であることを特徴とする請求項
1に記載の静電チャック。
[5] 上記環状壁部の幅が 0.5〜: LOmmであり、上記凸部の対辺の間隔が 1.5〜: LOmmで あるとともに、上記凸部及び上記環状壁部の頂面の総面積が上記載置面の面積の 5
0〜80%であり、かつ上記ガス流路の底面から上記凸部の頂面までの距離が 10〜1
00 μ mであることを特徴とする請求項 1に記載の静電チャック。
[6] 上記貫通孔は、上記載置面の中心に 1個と、該中心に対する同心円上に複数個設 けられて 、ることを特徴とする請求項 1に記載の静電チャック。
[7] 上記環状壁部を載置面の最外周と内側とに備え、最外周の環状壁部と内側の環状 壁部との間に複数の貫通孔を備え、さらに内側の環状壁部の内側に貫通孔を備えて
V、ることを特徴とする請求項 1に記載の静電チャック。
[8] 上記板状体の最大径が 180〜500mmであり、上記貫通孔は、直径が 0.1〜5mmで あり、 4〜: L00個備えていることを特徴とする請求項 1に記載の静電チャック。
[9] 上記板状体の他方の主面に熱交換部材が設けられたことを特徴とする請求項 1に記 載の静電チャック。
[10] 上記熱交換部材が金属板力 なることを特徴とする請求項 9に記載の静電チャック。
[11] 上記板状体は、アルミナまたは窒化アルミニウムを主成分とする焼結体力 なることを 特徴とする請求項 1に記載の静電チャック。
[12] 上記板状体が窒化アルミニウムを主成分とする誘電体力 なり、上記電極から上記 載置面までの平均距離が 0.015cm以上であり、上記電極と上記載置面との間の誘 電体層の体積固有抵抗値と上記平均距離との積が 1 X 107〜5 Χ 1016 Ω 'cm2である ととも〖こ、上記誘電体層を形成する窒化アルミニウムの平均粒径が 1〜 20 mであり 、且つ上記誘電体層の開気孔率が 1%以下であることを特徴とする請求項 1に記載 の静電チャック。
[13] 上記誘電体層には粒内気孔と粒界気孔とが存在し、粒界気孔の平均径が窒化アル ミニゥムの平均結晶粒径より小さいことを特徴とする請求項 12に記載の静電チャック
[14] 上記誘電体層の粒界気孔の比率 Sgと粒内気孔の比率 Scとの比 SgZScが 1.0以下 であることを特徴とする請求項 12に記載の静電チャック。
[15] 上記誘電体層が、主成分として窒化アルミニウムを含み、さらに副成分として 3a族金 属酸化物を 0.2〜 15質量%含むことを特徴とする請求項 12に記載の静電チャック。
[16] 上記 3a族金属がセリウムであることを特徴とする請求項 15に記載の静電チャック。
[17] 上記窒化アルミニウム力もなる板状セラミックス体力 0.2〜200MPaの非酸ィ匕性雰 囲気中にて 1800〜1900°C以下の温度で 0.5〜20時間以内保持して焼結されてな ることを特徴とする請求項 12に記載の静電チャック。
PCT/JP2005/011743 2004-06-28 2005-06-27 静電チャック WO2006001425A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/571,347 US7586734B2 (en) 2004-06-28 2005-06-27 Electrostatic chuck
KR1020067027690A KR101142000B1 (ko) 2004-06-28 2005-06-27 정전척

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004190462A JP4666960B2 (ja) 2004-06-28 2004-06-28 静電チャック
JP2004-190462 2004-06-28
JP2004190461A JP4540407B2 (ja) 2004-06-28 2004-06-28 静電チャック
JP2004-190461 2004-06-28

Publications (1)

Publication Number Publication Date
WO2006001425A1 true WO2006001425A1 (ja) 2006-01-05

Family

ID=35781860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011743 WO2006001425A1 (ja) 2004-06-28 2005-06-27 静電チャック

Country Status (5)

Country Link
US (1) US7586734B2 (ja)
KR (1) KR101142000B1 (ja)
CN (1) CN100470756C (ja)
TW (1) TWI267940B (ja)
WO (1) WO2006001425A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008153314A (ja) * 2006-12-15 2008-07-03 Tokyo Electron Ltd 基板載置台、基板載置台の製造方法、基板処理装置、流体供給機構
WO2011118659A1 (ja) * 2010-03-26 2011-09-29 Toto株式会社 静電チャック
JPWO2020153449A1 (ja) * 2019-01-24 2021-11-25 京セラ株式会社 静電チャック

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006087894A1 (ja) * 2005-02-03 2006-08-24 Shin-Etsu Polymer Co., Ltd. 固定キャリア、固定キャリアの製造方法、固定キャリアの使用方法、及び基板収納容器
US8226769B2 (en) * 2006-04-27 2012-07-24 Applied Materials, Inc. Substrate support with electrostatic chuck having dual temperature zones
KR101007534B1 (ko) * 2008-11-05 2011-01-14 주식회사 테스 반도체 제조장치 및 이를 이용한 실리콘 산화막 건식 식각 방법
CN102308378A (zh) * 2008-11-25 2012-01-04 M丘比德技术公司 静电吸盘
WO2010073514A1 (ja) * 2008-12-25 2010-07-01 株式会社アルバック 静電チャック用のチャックプレートの製造方法
JP5470601B2 (ja) * 2009-03-02 2014-04-16 新光電気工業株式会社 静電チャック
US8546732B2 (en) * 2010-11-10 2013-10-01 Lam Research Corporation Heating plate with planar heater zones for semiconductor processing
JP5816943B2 (ja) * 2011-01-10 2015-11-18 Scivax株式会社 温調装置およびこれを適用したインプリント装置
US9070760B2 (en) * 2011-03-14 2015-06-30 Plasma-Therm Llc Method and apparatus for plasma dicing a semi-conductor wafer
KR101310775B1 (ko) * 2011-09-28 2013-09-25 주식회사 티씨케이 엘이디용 서셉터의 포켓 가공방법
US9916998B2 (en) 2012-12-04 2018-03-13 Applied Materials, Inc. Substrate support assembly having a plasma resistant protective layer
US9685356B2 (en) * 2012-12-11 2017-06-20 Applied Materials, Inc. Substrate support assembly having metal bonded protective layer
CN104134624B (zh) * 2013-05-02 2017-03-29 北京北方微电子基地设备工艺研究中心有限责任公司 托盘及等离子体加工设备
KR20170002603A (ko) 2014-05-09 2017-01-06 어플라이드 머티어리얼스, 인코포레이티드 보호 커버링을 갖는 기판 캐리어 시스템
KR20160015510A (ko) * 2014-07-30 2016-02-15 삼성전자주식회사 정전척 어셈블리, 이를 구비하는 반도체 제조장치, 및 이를 이용한 플라즈마 처리방법
US10403535B2 (en) * 2014-08-15 2019-09-03 Applied Materials, Inc. Method and apparatus of processing wafers with compressive or tensile stress at elevated temperatures in a plasma enhanced chemical vapor deposition system
JP1549880S (ja) * 2015-08-06 2016-05-23
JP1550115S (ja) * 2015-08-18 2016-05-23
JP1549882S (ja) * 2015-08-18 2016-05-23
US10020218B2 (en) 2015-11-17 2018-07-10 Applied Materials, Inc. Substrate support assembly with deposited surface features
CN108604568B (zh) * 2016-01-19 2023-10-10 因特瓦克公司 用于基板处理的图案化卡盘
KR102203402B1 (ko) * 2016-02-10 2021-01-15 엔테그리스, 아이엔씨. 입자 성능이 개선된 웨이퍼 접촉 표면 돌출 프로파일
US10340171B2 (en) 2016-05-18 2019-07-02 Lam Research Corporation Permanent secondary erosion containment for electrostatic chuck bonds
US11069553B2 (en) * 2016-07-07 2021-07-20 Lam Research Corporation Electrostatic chuck with features for preventing electrical arcing and light-up and improving process uniformity
WO2018020956A1 (ja) * 2016-07-25 2018-02-01 京セラ株式会社 試料保持具
US10910195B2 (en) 2017-01-05 2021-02-02 Lam Research Corporation Substrate support with improved process uniformity
JP7239560B2 (ja) * 2018-03-26 2023-03-14 日本碍子株式会社 静電チャックヒータ
CN111052343B (zh) * 2018-07-04 2023-10-03 日本碍子株式会社 晶圆支撑台
KR102556739B1 (ko) * 2018-11-19 2023-07-17 엔테그리스, 아이엔씨. 전하 소산 코팅이 적용된 정전 척
KR102515262B1 (ko) * 2018-12-05 2023-03-29 가부시키가이샤 아루박 정전척, 진공처리장치 및 기판처리방법
US11031273B2 (en) 2018-12-07 2021-06-08 Applied Materials, Inc. Physical vapor deposition (PVD) electrostatic chuck with improved thermal coupling for temperature sensitive processes
TWI799315B (zh) 2018-12-14 2023-04-11 美商應用材料股份有限公司 處置與處理易碎基板上的雙面元件
US11012008B2 (en) * 2019-02-20 2021-05-18 Sumitomo Osaka Cement Co., Ltd. Electrostatic chuck device
JP7221737B2 (ja) * 2019-03-04 2023-02-14 日本碍子株式会社 ウエハ載置装置
JP6839314B2 (ja) * 2019-03-19 2021-03-03 日本碍子株式会社 ウエハ載置装置及びその製法
US20210035767A1 (en) * 2019-07-29 2021-02-04 Applied Materials, Inc. Methods for repairing a recess of a chamber component
CN114695047A (zh) * 2020-12-29 2022-07-01 中微半导体设备(上海)股份有限公司 静电吸盘、下电极组件及等离子体处理装置
TWD223375S (zh) * 2021-03-29 2023-02-01 大陸商北京北方華創微電子裝備有限公司 靜電卡盤
KR20230008342A (ko) 2021-07-07 2023-01-16 주식회사 시에스언리밋 반도체 웨이퍼 지지장치의 정전척용 전원회로
KR20230008343A (ko) 2021-07-07 2023-01-16 주식회사 시에스언리밋 정전척 캐리어
KR20230172838A (ko) 2022-06-16 2023-12-26 주식회사 시에스언리밋 쌍극형 정전척 캐리어의 제조방법
KR20230172837A (ko) 2022-06-16 2023-12-26 주식회사 시에스언리밋 쌍극형 정전척 캐리어
CN115142050B (zh) * 2022-09-05 2022-11-25 拓荆科技(北京)有限公司 真空吸附加热盘及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0969555A (ja) * 1995-08-31 1997-03-11 Kyocera Corp 静電チャック
JP2003086664A (ja) * 2001-09-13 2003-03-20 Sumitomo Osaka Cement Co Ltd 吸着固定装置及びその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07153825A (ja) 1993-11-29 1995-06-16 Toto Ltd 静電チャック及びこの静電チャックを用いた被吸着体の処理方法
US5886863A (en) 1995-05-09 1999-03-23 Kyocera Corporation Wafer support member
JPH09172055A (ja) 1995-12-19 1997-06-30 Fujitsu Ltd 静電チャック及びウエハの吸着方法
JPH09213777A (ja) * 1996-01-31 1997-08-15 Kyocera Corp 静電チャック
US5986874A (en) * 1997-06-03 1999-11-16 Watkins-Johnson Company Electrostatic support assembly having an integral ion focus ring
JP2002170868A (ja) 2000-11-30 2002-06-14 Kyocera Corp 静電チャック
WO2002047129A1 (fr) * 2000-12-05 2002-06-13 Ibiden Co., Ltd. Substrat ceramique pour dispositifs de production et de controle de semi-conducteurs et procede de production dudit substrat ceramique
JP4312394B2 (ja) 2001-01-29 2009-08-12 日本碍子株式会社 静電チャックおよび基板処理装置
US20040055709A1 (en) 2002-09-19 2004-03-25 Applied Materials, Inc. Electrostatic chuck having a low level of particle generation and method of fabricating same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0969555A (ja) * 1995-08-31 1997-03-11 Kyocera Corp 静電チャック
JP2003086664A (ja) * 2001-09-13 2003-03-20 Sumitomo Osaka Cement Co Ltd 吸着固定装置及びその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008153314A (ja) * 2006-12-15 2008-07-03 Tokyo Electron Ltd 基板載置台、基板載置台の製造方法、基板処理装置、流体供給機構
WO2011118659A1 (ja) * 2010-03-26 2011-09-29 Toto株式会社 静電チャック
US8848335B2 (en) 2010-03-26 2014-09-30 Toto Ltd. Electrostatic chuck
JPWO2020153449A1 (ja) * 2019-01-24 2021-11-25 京セラ株式会社 静電チャック
JP7083923B2 (ja) 2019-01-24 2022-06-13 京セラ株式会社 静電チャック

Also Published As

Publication number Publication date
KR101142000B1 (ko) 2012-05-17
US7586734B2 (en) 2009-09-08
US20080037194A1 (en) 2008-02-14
KR20070032966A (ko) 2007-03-23
TW200625501A (en) 2006-07-16
CN101010791A (zh) 2007-08-01
CN100470756C (zh) 2009-03-18
TWI267940B (en) 2006-12-01

Similar Documents

Publication Publication Date Title
WO2006001425A1 (ja) 静電チャック
JP4744855B2 (ja) 静電チャック
KR101531726B1 (ko) 정전 척 및 그 제조 방법
US20080276865A1 (en) Electrostatic Chuck, Manufacturing method thereof and substrate treating apparatus
JP6441733B2 (ja) 試料保持具
JP2004260039A (ja) 半導体あるいは液晶製造装置用保持体およびそれを搭載した半導体あるいは液晶製造装置
US10418265B2 (en) Sample holder and plasma etching apparatus using same
WO2013051713A1 (ja) 試料保持具
JP4540407B2 (ja) 静電チャック
JP2005150506A (ja) 半導体製造装置
JP2007207840A (ja) サセプタ装置
JPH09270454A (ja) ウエハ保持装置
JP3728078B2 (ja) プラズマ発生用部材
JP6438352B2 (ja) 加熱装置
JP4849887B2 (ja) 静電チャック
JP2000277599A (ja) 静電チャック
EP3041039B1 (en) Sample-retainer
JP2006128205A (ja) ウェハ支持部材
JP4439102B2 (ja) 静電チャック
JP2004031594A (ja) 静電チャックおよびその製造方法
JP3965468B2 (ja) 静電チャック
JP2003017377A (ja) セラミックヒータ
JP2003017223A (ja) セラミックヒータ及びセラミックヒータ内臓型静電チャック
JP2005116686A (ja) 双極型静電チャック
TW200415693A (en) Wafer holder for semiconductor manufacturing device and semiconductor manufacturing device in which it is installed

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11571347

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067027690

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 200580029075.1

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020067027690

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11571347

Country of ref document: US