WO2005124156A1 - Multi-cylinder rorary compressor - Google Patents

Multi-cylinder rorary compressor Download PDF

Info

Publication number
WO2005124156A1
WO2005124156A1 PCT/JP2005/010588 JP2005010588W WO2005124156A1 WO 2005124156 A1 WO2005124156 A1 WO 2005124156A1 JP 2005010588 W JP2005010588 W JP 2005010588W WO 2005124156 A1 WO2005124156 A1 WO 2005124156A1
Authority
WO
WIPO (PCT)
Prior art keywords
eccentric
cylinder
compression mechanism
roller
portions
Prior art date
Application number
PCT/JP2005/010588
Other languages
French (fr)
Japanese (ja)
Inventor
Izumi Onoda
Masumi Hasegawa
Shinya Gotou
Mototoshi Kouzaka
Hisataka Kato
Koji Satodate
Toshimasa Aoki
Original Assignee
Toshiba Carrier Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corporation filed Critical Toshiba Carrier Corporation
Priority to JP2006514713A priority Critical patent/JP4594302B2/en
Publication of WO2005124156A1 publication Critical patent/WO2005124156A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • F04C29/0057Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions for eccentric movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts
    • F04C2240/601Shaft flexion

Definitions

  • the present invention relates to a multi-cylinder rotary compressor that constitutes, for example, a refrigeration cycle of a refrigeration apparatus and has three or more sets of compressor units in the axial direction.
  • an eccentric roller is accommodated in a cylinder chamber formed in an inner diameter portion of a cylinder (cylinder), and a blade is provided in the cylinder.
  • a chamber is provided and the blade is slidably housed.
  • the leading edge of the blade is pressed and urged by a compression spring so as to elastically abut against the peripheral surface of the eccentric roller, and the cylinder chamber is divided by the blade into a suction chamber and a compression chamber.
  • the rotating shaft used in this type of multi-cylinder rotary compressor has a longer shaft length than the rotating shafts used in single-cylinder and two-cylinder type compressors.
  • the lower end and the substantially middle part of the rotary shaft are supported by bearings, and three or more eccentric parts are provided integrally between these bearings, and eccentric rollers are fitted to each.
  • the rotary compressor has an accumulator on the suction side, and is communicated through a suction passage.
  • the rotary compressor includes a sealed case, a motor portion housed in the sealed case, a compression mechanism portion to which the suction pipe is directly connected, and a rotating shaft connecting the motor portion and the compression mechanism portion. Be composed.
  • the above-described multi-cylinder rotary compressor has the following problems.
  • Each eccentric portion and eccentric roller are accommodated in a cylinder chamber formed in the cylinder inner diameter portion and eccentrically rotate.
  • the eccentric portion and the eccentric roller have a smaller distance between bearings that support the rotating shaft. Becomes large, and the rotation shaft itself is likely to run out.
  • R410A which is a mixture of two types of HFCs, R32 and R125, tends to be frequently used.
  • This type of refrigerant has characteristics suitable for a refrigeration cycle, such as low pressure loss and high thermal conductivity as a pseudo-azeotropic refrigerant mixture.
  • R410A the gas load is large, and the gas load is circulated through the refrigeration cycle by the discharge pressure of the refrigerant gas compressed and discharged by the compressor. It is determined by the difference from the suction pressure when sucked into the compressor again.
  • FIG. 19 schematically illustrates a configuration of a compression assembly including a plurality of compression mechanisms in a multi-cylinder rotary compressor, and schematically illustrates a state of a rotating shaft connected to an electric motor (not shown). Is shown in
  • the main bearing d is located at the uppermost end of the figure, and the sub-bearing e is located at the lowermost end.
  • Three sets of compression bearings are provided at a predetermined interval between the main bearing d and the sub-bearing e.
  • Three eccentric rollers g1, g2, and g3, which are mechanical units, are interposed.
  • a solid line perpendicular to the vertical direction indicates the rotation axis h, and the eccentric rollers gl to g3 are fitted to an eccentric part (not shown) provided on the rotation axis h.
  • the rotation axis h shown by a solid line is curved and deformed as shown by a two-dot chain line in the figure, and is positioned with respect to the upper end dl and the lower end d2 of the main bearing d and the upper end el and the lower end e2 of the sub-bearing e.
  • Rotation axes h are mutually lined Contact, and a partial load called so-called extreme pressure is applied. Therefore, galling is likely to occur between the rotating shaft h and the main bearing d and the sub bearing e, so that the abrasion increases and the compression efficiency is reduced.
  • a suction passage communicating from the accumulator to each compression mechanism of the compressor is composed of a total of three independent suction pipes. For this reason, the above accumulator cannot connect each suction pipe unless it is made larger than an accumulator connected to a single-cylinder or two-cylinder type compressor, which is disadvantageous due to an increase in component costs.
  • suction pipes are connected to the accumulator, and one of the suction pipes is branched into two in the middle, and a total of three suction pipes are used to make each cylinder chamber of the compressor. It is conceivable to have a configuration that communicates with.
  • the work of first fitting the eccentric roller to the eccentric portion provided integrally with the rotary shaft is performed. is necessary.
  • the eccentric rollers of the first compression mechanism portion and the third compression mechanism portion on both sides can be fitted to the eccentric portion by rotating the rotating shaft vertically or inverted and interposing from the end.
  • the first compression mechanism or the third compression mechanism Insert the eccentric roller from the compression mechanism side and pass through the eccentric part of each compression mechanism
  • the eccentric portions are provided with the phase shifted by 120 °, the eccentric roller to be fitted is changed by changing the position of the eccentric roller after passing through one eccentric portion. It is necessary to match the direction.
  • an eccentric roller fitted to the eccentric portion of the second compression mechanism is divided into two parts in the radial direction, and the eccentric part is divided into eccentric parts divided from both left and right sides. It is conceivable that the rollers are fitted in and assembled via an assembly member.
  • the present invention has been made on the basis of the above circumstances, and a first object is to connect three or more sets of compression mechanism units to a rotating shaft, with the rotation of the rotating shaft,
  • the aim is to provide a multi-cylinder rotary compressor that reduces whirling of the rotating shaft and improves compression efficiency.
  • the second object is to simplify the suction passage while maintaining the refrigerating capacity, on the premise that three or more sets of compression mechanisms are connected to the rotating shaft.
  • a third object is to presuppose that three or more sets of compression mechanisms are connected to the rotating shaft, and particularly to assemble and fit the roller to the eccentric portion of the rotating shaft, to divide the roller.
  • the present invention aims to provide a multi-cylinder rotary compressor that can reduce the distance between the eccentric portions as much as possible and improve the assemblability and reliability and the compression efficiency.
  • the multi-cylinder rotary compressor of the present invention includes, in a closed case, a rotary shaft supported by a bearing, an electric motor portion connected to the rotary shaft, and
  • the compression mechanism unit includes a cylinder chamber in which an eccentric portion provided on the rotating shaft and a roller fitted in the eccentric portion are eccentrically rotatable and a cylinder chamber. And a blade provided on this cylinder, the leading edge of which abuts against the peripheral surface of the roller to divide the cylinder chamber into two, and at least one of the clearances of each sliding part in each compression mechanism. Is set larger in the compression mechanism part not in contact with the bearing than in the compression mechanism part in contact with the bearing.
  • the multi-cylinder rotary compressor of the present invention constitutes a refrigeration cycle, connects an accumulator via a suction passage, and includes a rotating shaft and a rotating shaft in a sealed case. It accommodates an electric motor unit connected to the shaft and three or more sets of compression mechanism units.Each compression mechanism unit accommodates three or more eccentric parts provided integrally with the rotary shaft and eccentrically rotatable rollers.
  • At least two eccentric parts have the same eccentric direction, and the suction passages that communicate the cylinder chambers accommodating the eccentric parts with the same eccentric direction and the accumulator share a part with each other.
  • the multi-cylinder rotary compressor of the present invention includes, in a closed case, a rotary shaft, a motor unit connected to the rotary shaft, and three or more sets of compression mechanism units.
  • Each compression mechanism section includes a cylinder chamber for eccentrically rotatably housing a roller fitted with three or more eccentric sections provided integrally with the rotating shaft, a cylinder having this cylinder chamber, The leading edge of the cylinder abuts against the peripheral surface of the roller, and the cylinder chamber is divided into the suction chamber and the compression chamber. Equipped with a separating blade and an intermediate partition plate interposed between the cylinders, where N is the number of compression mechanisms and (N-1) is the eccentricity between the eccentric parts (N-1).
  • the gap between the eccentric portions is formed to be larger than the axial length of the roller, and the thickness of the intermediate partition plate interposed between the eccentric portions is set to be less than the axial length of the roller.
  • the distance between the eccentric portions at the remaining places is formed to be less than the axial length of the roller, and the thickness of the intermediate partition plate interposed between the eccentric parts is less than the distance between the eccentric portions at the remaining places.
  • FIG. 1 is a longitudinal sectional view of a multi-cylinder rotary compressor according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional plan view of a compression mechanism according to an embodiment of the multi-cylinder rotary compressor.
  • FIG. 3 is an explanatory diagram showing a relationship between a cylinder and a height of an eccentric roller, for explaining a clearance setting of a compression mechanism unit according to the embodiment.
  • FIG. 4 is a front view of a rotating shaft for explaining a clearance setting of a further different compression mechanism according to the embodiment.
  • FIG. 5 is a vertical cross-sectional view of a compression assembly for explaining a clearance setting of a different compression mechanism according to the embodiment.
  • FIG. 6A is a plan view and a cross-sectional view showing one portion of an eccentric roller for explaining a clearance setting of a different compression mechanism according to the embodiment.
  • FIG. 6B is a plan view and a sectional view showing another part of the eccentric roller for explaining a clearance setting of a different compression mechanism according to the embodiment.
  • FIG. 7A is a cross-sectional plan view of first and third compression mechanism units for describing a clearance setting of still another compression mechanism unit according to the embodiment.
  • FIG. 7B is a cross-sectional plan view of the second compression mechanism section for explaining a clearance setting of still another compression mechanism section according to the embodiment.
  • FIG. 8 is a longitudinal sectional view of a compression assembly for explaining the same clearance setting of the compression mechanism as in FIGS. 7A and 7B according to the embodiment.
  • FIG. 9 is a longitudinal sectional view of a multi-cylinder rotary compressor according to a second embodiment of the present invention.
  • FIG. 10 is a vertical cross-sectional view of a multi-cylinder rotary compressor according to a third embodiment of the present invention, with a part of the rotary compressor omitted.
  • FIG. 11 is a vertical cross-sectional view of a multi-cylinder rotary compressor according to a fourth embodiment of the present invention, with a part of the rotary compressor omitted.
  • FIG. 12 is a vertical cross-sectional view of a multi-cylinder rotary compressor according to a fifth embodiment of the present invention, with a part of the rotary compressor omitted.
  • FIG. 13A is a sectional view of an eccentric roller according to a sixth embodiment of the present invention.
  • FIG. 13B is a front view of a rotation shaft according to a sixth embodiment of the present invention.
  • FIG. 14 is a longitudinal sectional view of a compression assembly of the multi-cylinder rotary compressor according to the embodiment.
  • FIG. 15A is a plan view of a first cylinder according to a seventh embodiment of the present invention.
  • FIG. 15B is a plan view of a second cylinder according to a seventh embodiment of the present invention.
  • FIG. 15C is a plan view of a third cylinder according to a seventh embodiment of the present invention.
  • FIG. 16 is a plan view and a partial side view of a second cylinder according to an eighth embodiment of the present invention.
  • FIG. 17 is a plan view illustrating first to third eccentric portion structures according to a ninth embodiment of the present invention.
  • FIG. 18 is a longitudinal sectional view of a multi-cylinder rotary compressor according to a tenth embodiment of the present invention.
  • FIG. 19 is a schematic configuration diagram of a compression mechanism portion and a diagram illustrating a deformed state of a rotating shaft according to a conventional example.
  • FIG. 1 is a longitudinal sectional view showing the internal structure of a multi-cylinder rotary compressor ⁇ constituting a refrigeration cycle of a refrigeration system, for example.
  • reference numeral 1 denotes a sealed case, and a plurality of compression mechanism units described later, here, a first compression mechanism unit 2A and a second compression mechanism unit 2B , And a third compression mechanism section 2C, and a motor section 3 is provided above the compression mechanism assembly.
  • the electric motor section 3 and the first to third compression mechanism sections 2A to 2C constituting the compression mechanism assembly 2 are connected to each other via a rotary shaft 4.
  • the electric motor unit 3 is composed of a stator 5 fixed to the inner surface of the sealed case 1 and a rotor 6 disposed inside the stator 5 with a predetermined gap therebetween and having the rotating shaft 4 interposed therebetween. Be composed.
  • the motor unit 3 is connected to an inverter that varies the operating frequency via a power supply unit 3a, and is electrically connected to a control unit (both not shown) that controls the motor unit 3 from the inverter.
  • the first compression mechanism 2A, the second compression mechanism 2B, and the third compression mechanism 2C are respectively connected to the first cylinder 8A, the second cylinder 8B, and the intermediate partition 7A, 7B via the intermediate partition plates 7A, 7B. It has a third cylinder 8B.
  • One of the first to third cylinders 8A to 8C, for example, the first cylinder 8A is press-fitted into the inner peripheral surface of the sealed case 1 and is positioned and fixed by welding from the outside of the sealed case 1. You.
  • the main bearing 9 is superimposed on the upper surface of the first cylinder 8A, and is mounted and fixed to the cylinder 8A via mounting bolts 10 together with the valve cover a.
  • An auxiliary bearing 11 is superimposed on the lower surface of the third cylinder 8C, and is mounted and fixed to the first cylinder 8A via mounting bolts 12 together with the valve cover b, the intermediate partition plates 7A, 7B and the second cylinder 8B.
  • the rotating shaft 4 is rotatably supported at its middle and lower ends by a main bearing 9 and a sub-bearing 11.
  • the rotating shaft 4 penetrates the inside of the first to third cylinders 8A to 8C, and integrally has three eccentric portions 4a, 4b, 4c formed in order with a phase difference of about 120 °.
  • the eccentric portions 4a to 4c are assembled so as to be located in the inner diameter portions of the cylinders 8A to 8C, and the eccentric rollers 13a, 13b, and 13c are fitted to the respective peripheral surfaces.
  • the first cylinder 8A is divided into upper and lower surfaces by a main bearing 9 and an intermediate partition plate 7, and has an inner diameter portion.
  • a first cylinder chamber 14a is formed.
  • the upper and lower surfaces of the second cylinder 8A are defined by an intermediate partition plate 7A and an intermediate partition plate 7B, and a second cylinder chamber 14b is formed in the inner diameter portion.
  • the upper and lower surfaces of the third cylinder 8C are defined by an intermediate partition plate 7B and an auxiliary bearing 11, and a third cylinder chamber 14c is formed in the inner diameter portion.
  • These cylinder chambers 14a to 14c are formed to have the same diameter as each other, and eccentric rollers 13a to 13c are eccentrically rotatably accommodated in the respective cylinder chambers.
  • FIG. 2 is a schematic plan cross-sectional view of the first compression mechanism 2A constituting the compression assembly 2.
  • the first cylinder 8A is provided with a blade chamber 22a communicating with the cylinder chamber 14a.
  • the blade chamber 22a houses the blade 15a so as to be able to protrude and retract from the cylinder chamber 14a.
  • FIG. 1 shows only the blade 15a.
  • the blade chamber 22a is provided with a blade accommodating groove 23a in which both sides of the blade 15a are slidably movable, and a vertical hole portion integrally provided with an end of the blade accommodating groove and accommodating the rear end of the blade 15a. 24a.
  • a spring member 26 is housed in the blade chamber 22a.
  • the spring member 26 is a compression spring that is interposed on the back side of the blade 15a, applies an elastic force (back pressure) to the blade 15a, and brings the leading edge into contact with the eccentric roller 13a.
  • the tip edge of the blade 15a is formed in a semicircular shape in plan view, and can make line contact with the peripheral wall of the eccentric roller 13a regardless of the rotation angle of the eccentric roller.
  • the blade 15a reciprocates along the blade accommodating groove 23a, and the blade rear end can freely protrude and retract into the vertical hole 24a.
  • a semicircular discharge notch 27 is provided near the blade accommodating groove 23a in the first cylinder 8A.
  • the second and third cylinders 8B and 8C also have holes corresponding to the discharge holes, and each of them has a discharge valve mechanism. Further, a suction hole 28 is provided on the opposite side of the discharge hole 27 via the blade accommodating groove 23a and faces the cylinder chamber 14a from the outer peripheral surface of the first cylinder 8A. Tube 29a is connected.
  • the first and second compression mechanism sections 2A and 2C configured in this manner are denoted by the reference numerals corresponding to the corresponding parts, and description thereof is omitted. That's right.
  • a discharge pipe 18 is connected to the upper end of the sealed case 1.
  • the discharge pipe 18 is connected to a condenser constituting a refrigeration cycle together with the compressor T, and an accumulator 19 via an expansion mechanism and an evaporator.
  • Suction pipes 29a, 29b, and 29c are connected to the bottom of the accumulator 19, and the suction pipes 29a to 29c pass through the sealed case 1 and the first to third cylinders 8A to 8C to form the first to third cylinders.
  • the direct communication between the third cylinder chambers 14a to 14c is also as described above.
  • control unit When an operation start signal is input to the control unit from a remote controller (remote control panel) or the like (not shown), the control unit sends an operation signal to the motor unit 3 via the inverter.
  • the rotation shaft 4 is driven to rotate, and the eccentric rollers 13a to 13c together with the eccentric portions 4a to 4c perform eccentric rotation in each of the cylinder chambers 14a to 14c.
  • the blades 15a to 15c are always elastically pressed and urged by the spring members 26, respectively, so that the leading edges of the blades slide on the peripheral walls of the eccentric rollers 13a to 13c. Then, the inside of the first to third cylinder chambers 14a to 14c is divided into a suction chamber and a compression chamber.
  • the cylinder chambers 14a to 14c of the eccentric rollers 13a to 13c are aligned with the inner circumferential surface rolling contact positions and the blade housing grooves 23a to 23c, and the blades 15a to 15c are retracted most. Space capacity is maximized.
  • the refrigerant gas is sucked from the accumulator 19 via the suction pipes 29a to 29c into the respective cylinder chambers 14a to 14c, and is filled.
  • the high-pressure gas is discharged into the sealed case 1 via the valve covers a and b, filled, and discharged from the discharge pipe 18 above the sealed case.
  • the high-pressure gas is also guided by the compressor T in the order of the condenser, the expansion mechanism, and the evaporator.
  • the high-pressure gas evaporates in the evaporator to perform a refrigeration operation, and then is guided to the accumulator 19 to be separated into gas and liquid.
  • the multi-cylinder rotary compressor T of the present invention includes a motor unit 3 and a first compression mechanism connected to the motor unit 3 and the rotating shaft 4 in the sealed case 1.
  • the first cylinder 8A is provided with cylinder chambers 14a to 14c in which the eccentric rollers 13a to 13c are eccentrically and rotatably accommodated.
  • a third cylinder 8C and blades 15a to 15c having a leading edge abutting on the peripheral surface of the eccentric roller and bisecting the cylinder chamber along the rotation direction of the eccentric roller are provided.
  • the clearance of at least one of the sliding parts is the second compression mechanism part 2B which does not contact the main bearing 9 or the sub-bearing 11.
  • it is characterized in that it is set larger than the first compression mechanism 2A and the third compression mechanism 2C that are in contact with the main bearing 9 or the sub-bearing 11.
  • the clearance of the predetermined sliding part in the second compression mechanism part 2B is larger than the clearance of the corresponding sliding part of the other compression mechanism parts 2A, 2C.
  • the side clearance Sa between the inner peripheral portion of the cylinder 8B (the peripheral surface of the cylinder chamber 14b) and the peripheral surface of the eccentric roller 13b in the second compression mechanism 2B is increased by the first and third compression mechanisms.
  • the side clearance Sb between the inner surfaces of the cylinders 8A and 8C (the peripheral surfaces of the cylinder chambers 14a and 14c) and the peripheral surfaces of the eccentric rollers 13a and 13c in the mechanical units 2A and 2C is set to be larger (Sa> Sb).
  • FIG. 3 is a diagram illustrating the height dimensions of the cylinder and the eccentric roller.
  • the height clearance Sc which is the difference between the height of the cylinder 8B in the second compression mechanism 2B and the height of the eccentric roller 13b, is increased by the cylinders in the first and third compression mechanisms 2A and 2C.
  • the height clearance is set to be larger than the height clearance Sd (Sc> Sd), which is the difference between the height of 8A and 8C and the height of the eccentric rollers 13a and 13c.
  • the eccentric roller 13b which is larger than the whirling of the other eccentric portions 4a, 4c, is inclined more than the eccentric rollers 13a, 13c.
  • the height clearance Sc is set to be larger than the height clearance Sd, it is difficult for the intermediate partition plates 7A and 7B to make one-side contact, and reliability is particularly high under conditions of high compression load. The property can be improved.
  • FIG. 4 is a front view of the rotating shaft 4.
  • the eccentric amount Sf of the eccentric portion 4b constituting the second compression mechanism portion 2B is equal to the first and third compression mechanism portions 2.
  • the eccentric amounts Se, Sg of the eccentric portions 4a, 4c constituting A, 2C are set to be smaller (Sf ⁇ Sg, Se).
  • the eccentric roller 13b fitted here does not easily come into contact with the peripheral surface of the cylinder chamber 14b, so that the reliability can be improved.
  • the amount of eccentricity of the eccentric portion is reduced, the outer diameter of the roller increases, and the gas load acting on the outer peripheral surface of the roller increases. Therefore, in this configuration, the effect of the centrifugal force on the gas load is larger. It is most suitable when a refrigerant having a small gas load, for example, Rl 34a is used.
  • FIG. 5 is a longitudinal sectional view of the compression assembly.
  • the height H2 of the cylinder 8B in the second compression mechanism 2B is smaller than the height HI, H3 of the cylinders 8A, 8C in the first and third compression mechanisms 2A, 2C (H2 HI, H3).
  • the height dimension force of the eccentric roller 13b accommodated in the second cylinder chamber 14b is formed smaller than the height dimension of the eccentric rollers 13a, 13c accommodated in the first and third cylinder chambers 14a, 14c. Will be done.
  • FIGS. 6A and 6B are a plan view and a sectional view of an eccentric roller 13b used in the second compression mechanism 2B.
  • the eccentric roller 13bl shown in FIG. 6A is a hole j in which the upper and lower ends of the inner diameter are fitted into the eccentric portion 4b, and a step portion having a larger diameter than the hole at the center between the holes. k is provided. Therefore, the weight is reduced as compared with the eccentric rollers 13a and 13c provided in the first and third compression mechanism sections 2A and 2C, each of which is simply a hole.
  • the eccentric roller 13b2 shown in FIG. 6B has a hole j at the center portion to be fitted to the eccentric portion 4b, and a step k having a diameter larger than the hole at both upper and lower ends. Therefore, the weight can be reduced as compared with the eccentric rollers 13a, 13c provided in the first and third compression mechanism portions 2A, 2C, each of which is simply a hole.
  • the whirling of the eccentric roller 13b caused by the rotation of the rotary shaft 4 due to the compression reaction force or the like in the second compression mechanism 2B not in contact with the bearings 9 and 11 It tends to be larger than the whirling of the other eccentric rollers 13a and 13c.
  • the weight of the eccentric roller 13b is set to be smaller than the weight of the eccentric rollers 13a and 13c, the centrifugal force is reduced, the whirling of the rotating shaft 4 is reduced, and the load on the main bearing 9 and the auxiliary bearing 11 is reduced. The load is reduced and reliability is improved.
  • the eccentric rollers 13a to 13c used in each of the compression mechanism units 2A to 2C have all the same shape and size, and the eccentric rollers 13b of the second compression mechanism unit 2B
  • the material having a specific gravity smaller than that of the material of the eccentric rollers 13a and 13c provided in the first and third compression mechanisms 2A and 2C may be selected.
  • the mass of the eccentric roller 13b of the second compression mechanism 2B becomes smaller than the mass of the eccentric rollers 13a, 13c provided in the first and third compression mechanism 2A, 2C.
  • the same operation and effect as described can be obtained.
  • FIG. 7A is a cross-sectional plan view of first and third compression mechanism units 2A and 2C
  • FIG. 7B is a cross-sectional plan view of second compression mechanism unit 2B
  • FIG. 8 is first to third compression mechanism units. It is a longitudinal cross-sectional view of 2A-2C.
  • the eccentric amount E2 of the eccentric portion 4b provided on the rotating shaft 4 in the second compression mechanism portion 2B is determined by the eccentric portions 4a, 4c provided on the rotating shaft 4 in the first and third compression mechanism portions 2A, 2C.
  • E2 the deviation El and E3
  • the outer diameter of the eccentric roller 13b in the second compression mechanism 2B is the first diameter.
  • the mass force of the eccentric roller 13b becomes smaller than the mass of the eccentric rollers 13a and 13c.
  • the centrifugal force generated by the eccentric portion 4b and the eccentric roller 13b increases.
  • a gas load has a greater effect, in other words, when a refrigerant with a large gas load, for example, R41OA is used.
  • the first to third compression mechanisms 2A to 2C are provided.
  • the present invention is not limited to this, and the multi-cylinder rotary compression having a greater number of compression mechanisms is provided. Needless to say, the present invention can also be applied to machines.
  • FIG. 9 is a longitudinal sectional view showing the internal structure of a multi-cylinder rotary compressor TO constituting a refrigeration cycle of a refrigeration apparatus, for example, in the second embodiment.
  • reference numeral 101 denotes a sealed case, and a plurality of compression mechanism units described later, here, a first compression mechanism unit 102A and a second compression mechanism unit 102B , And a third compression mechanism unit 102C, and a motor unit 103 is provided above the compression mechanism assembly.
  • the electric motor unit 103 and the first to third compression mechanism units 102A to 102C constituting the compression mechanism assembly 102 are connected to each other via a rotating shaft 104.
  • the electric motor unit 103 includes a stator 105 fixed to the inner surface of the sealed case 101, a rotor 106 arranged with a predetermined gap inside the stator 105, and a rotating shaft 104 interposed therebetween. And power are also composed.
  • the motor unit 103 is connected to an inverter that varies the operating frequency via a power supply unit 103a, and is electrically connected to a control unit that controls the motor unit 103 from the inverter. .
  • An intermediate partition 107A is provided between the first compression mechanism 102A and the second compression mechanism 102B. Is interposed.
  • An intermediate partition plate 107B is interposed between the second compression mechanism 102B and the third compression mechanism 102C.
  • Each of the compression mechanism sections 102A to 102C includes a first cylinder 108A, a second cylinder 108B, and a third cylinder 108C.
  • a main bearing 109 is superimposed on the upper surface of the first cylinder 108A, and is fixed to the cylinder 108A via a fixing bolt 110 together with the valve cover a.
  • An auxiliary bearing 111 is superimposed on the lower surface of the third cylinder 108C, and the first cylinder 108A is attached to the valve cover b, the intermediate partition plates 107A and 107B and the second cylinder 108B via the mounting bonolet 112. Attached and fixed.
  • the rotating shaft 104 is rotatably supported at its middle and lower ends by the main bearing 109 and the sub-bearing 111.
  • the rotating shaft 104 penetrates the inside of the first to third cylinders 108A to 108C, and includes three first eccentric portions 104a and a second eccentric portion which are formed by a phase difference described later.
  • 104b and the third eccentric part 104c are provided integrally.
  • the center portion and the second and third eccentric portions 104b and 104c provided at the lowermost portion are identical to each other and are eccentric.
  • the eccentric direction is different from that of the portion 104a by 180 °. That is, when the rotating shaft 104 is provided with three eccentric portions 104a to 104c, the eccentric directions of the two eccentric portions 104b and 104c are the same.
  • the eccentric portions 104a to 104c of the rotating shaft 104 are assembled so as to be located in the inner diameter portions of the cylinders 108A to 108C, and the eccentric rollers 113a, 113b, and 113c are fitted on the respective peripheral surfaces. Therefore, the eccentric directions of the eccentric rollers 113b and 113c are set to be identical to each other with respect to the eccentric direction of the eccentric roller 113a, and are set to eccentric directions different from the eccentric roller 113a by 180 °.
  • the first cylinder 108A is divided into upper and lower surfaces by a main bearing 109 and an intermediate partition plate 107A, and a first cylinder chamber 114a is formed in an inner diameter portion.
  • the upper and lower surfaces of the second cylinder 108B are defined by an intermediate partition plate 107A and an intermediate partition plate 107B, and a second cylinder chamber 114b is formed in the inner diameter portion.
  • the third cylinder 108C is divided into upper and lower surfaces by an intermediate partition plate 107B and an auxiliary bearing 111, and a third cylinder chamber 114c is formed in the inner diameter portion.
  • These cylinder chambers 114a to 114c have the same diameter and the same axial length.
  • the eccentric rollers 113a to 113c each having a height dimension that is the same axial length are housed eccentrically rotatable.
  • the second and third eccentric portions 104b and 104c have the same eccentric direction, and have a phase difference of 180 ° with the first eccentric portion 104a. The same relationship is always maintained in the positions of the eccentric rollers 113a to: 113c in the cylinder chambers 114a to 114c.
  • the clearance of at least one of the sliding portions is the second compression mechanism portion not in contact with the main bearing 109 or the auxiliary bearing 111.
  • 102B is set larger than the first compression mechanism 102A and the third compression mechanism 102C that are in contact with the main bearing 109 or the sub-bearing 111.
  • first compression mechanism 102A to the third compression mechanism 102C all have the same configuration, only the first compression mechanism 102A will be described, and the second and third compression mechanisms 102A will be described. A description of the compressor components 102B and 102C is omitted.
  • the first cylinder 108A is provided with a blade chamber 115 communicating with the first cylinder chamber 114a.
  • a blade 116 is accommodated so as to be able to protrude and retract from the cylinder chamber 114a, and a spring member 117 is accommodated therein.
  • the spring member 117 is a compression spring that is provided on the back side of the blade 116 and applies an elastic force (back pressure) to the blade 116 to bring the leading edge into contact with the eccentric roller 113a.
  • the tip edge of the blade 116 is formed in a semicircular shape in plan view, and can make line contact with the peripheral wall of the eccentric roller 113a regardless of the rotation angle of the eccentric roller.
  • the blade 116 reciprocates in the blade chamber 115.
  • a discharge notch (not shown) is provided in first cylinder 108A, and a discharge valve mechanism is accommodated in main bearing 109 portion facing this discharge notch. Further, the first cylinder 108A is provided with a suction hole facing the cylinder chamber 114a from the outer peripheral surface, and a suction pipe 118a penetrating through the sealing case 101 is connected to the suction hole.
  • the cylinders 108B and 108C constituting the second and third compression mechanisms 102B and 102C are also provided with a discharge valve mechanism, and provided with a suction hole (not shown) facing the cylinder chamber 114a from the outer peripheral surface.
  • Each of the suction holes has a suction pipe 1 18b and 118c are connected.
  • a discharge pipe 120 is connected to the upper end of the sealed case 101.
  • An accumulator 121 is connected to the discharge pipe 120 via a condenser constituting a refrigeration cycle together with the compressor TO, and an expansion mechanism and an evaporator (hereinafter, not shown).
  • a suction pipe 118a and a suction pipe 118c extend from the bottom of the accumulator 121. As described above, these suction pipes 118a and 118c penetrate the sealed case 101 and directly communicate with the cylinder chambers 114a and 114c of the first cylinder 108A and the third cylinder 108C. As described above, the suction pipe 118b is branched from a middle portion of the suction pipe 118c and penetrates through the sealed case 101 to directly communicate with the cylinder chamber 114b of the second cylinder 108B. These suction pipes 118a to 118c form a suction passage 118 that communicates between the accumulator 121 and the multi-cylinder rotary compressor TO.
  • the control unit When an operation start signal is input to the control unit from a remote controller (remote control panel) (not shown) or the like, the control unit sends an operation signal to the motor unit 103 via the inverter.
  • the rotating shaft 104 is driven to rotate, and the eccentric rollers 113a to 113c together with the eccentric portions 104a to 104c perform eccentric rotation in each of the cylinder chambers 114a to 114c.
  • the refrigerant gas is supplied from the accumulator 121 via the suction pipes 118a to 118c. Then, each cylinder chamber 114a to 114c is sucked and filled.
  • first to third compression mechanism sections 102A to 102C since the blade 116 is constantly elastically pressed and urged by the spring member 117, the leading edge of the blade 116 comes into sliding contact with the peripheral walls of the eccentric rollers 113a to 113c.
  • the inside of the first to third cylinder chambers 114a to 114c is divided into a suction chamber and a compression chamber.
  • Eccentric rollers 113a to 113c With the eccentric rotation of 113c, the rolling contact positions of the eccentric rollers with respect to the inner peripheral surfaces of cylinder chambers 114a to 114c move, and the volume of the compression chamber defined by the cylinder chamber decreases. Therefore, the gas previously guided to the cylinder chambers 114a to 114c is gradually compressed. The rotating shaft 104 is continuously rotated, and the compression chambers in the respective cylinder chambers 114a to 114c are formed. The volume is further reduced and the gas is compressed. When the gas pressure rises to the specified pressure, the discharge valve mechanism opens.
  • the high-pressure gas is led from the compressor TO in the order of the condenser, the expansion mechanism, and the evaporator.
  • the high-pressure gas is evaporated by the evaporator to perform a refrigeration operation, and then is led to the accumulator 121 to be separated into gas and liquid.
  • the low-pressure vaporized refrigerant separated into gas and liquid is led out of the accumulator 121, guided to the cylinder chambers 114a to 114c via the suction pipes 118a to 118c forming the suction passage 118, and circulated through the above-described path again. .
  • the multi-cylinder rotary compressor TO of the present invention includes a motor unit 103 in a closed case 101, and a first compressor connected to the motor unit 103 via a rotating shaft 104.
  • a mechanism unit 102A to a third compression mechanism unit 102C are housed therein.
  • Each of the compression mechanism units 102A to 102C includes a first cylinder 108A to a third cylinder 108A including first to third cylinder chambers 114a to 114c in which eccentric rollers 113a to 113c are accommodated in eccentric rotation.
  • a cylinder 108C and a blade 116 having a leading edge abutting on the peripheral surface of the eccentric roller and bisecting the cylinder chamber along the rotation direction of the eccentric roller are provided.
  • the first eccentric portion 104a and the eccentric roller 113a accommodated in the cylinder chamber 114a of the first cylinder 108A are moved relative to the cylinder chambers 114b and 114c of the second and third cylinder chambers 108B and 108C.
  • the second and third eccentric portions 104b and 104c and the eccentric rollers 113b and 113c, which are two eccentric portions accommodated in the eccentric portion, are aligned in the same eccentric direction, and the eccentric portion 104a and the eccentric roller 113a are aligned.
  • the suction pipes 118b and 118c that form the suction passage 118 are formed so as to share a part with each other.
  • a cylinder accommodating a pair of eccentric portions 104b and 104c having the same eccentric direction. Since the compression strokes are performed at exactly the same timing in the chambers 114b and 114c, the suction pipes 118b and 118c constituting the suction passage 118 can be shared with each other, and a decrease in the refrigerating capacity can be prevented. Further, since two suction pipes 118a and 118c may be connected to the accumulator 121, the size and simplification of the accumulator can be obtained.
  • FIG. 10 is a cross-sectional view of the multi-cylinder rotary compressor T1 according to the third embodiment, in which a part of the rotary compressor T1 is omitted.
  • the same components as those in the second embodiment described above are denoted by the same reference numerals, and a new description will be omitted. Only different portions will be described.
  • the first and second eccentric portions 104a and the eccentric rollers 113a accommodated in the cylinder chamber 114a of the first cylinder 108A also have the cylinder chambers 11 of the second and third cylinder chambers 108B and 108C.
  • the second and third eccentric portions 104b and 104c and the eccentric rollers 113b and 113c which are two eccentric portions accommodated in the eccentric portions 104b and 114c, are aligned in the same eccentric direction.
  • the rollers 113a are set to have a phase difference of 180 ° from each other.
  • the clearance of at least one of the sliding parts is the second compression mechanism part 102B that does not contact the main bearing 109 or the sub-bearing 111.
  • the force is set larger than the first compression mechanism 102A and the third compression mechanism 102C that are in contact with the main bearing 109 or the auxiliary bearing 111.
  • suction pipe 118a and suction pipe 118c are connected to the bottom of accumulator 121, and penetrate through sealed case 101 to connect to cylinder chambers 114a, 114c of first and third cylinders 108A, 108C, respectively. Is done.
  • a guide passage 118d made of, for example, a pipe is provided between the second cylinder 108B and the third cylinder 108C via the lower intermediate partition plate 107B, and a second cylinder chamber is provided. Refrigerant gas can be guided between 114b and the third cylinder chamber 114c. Therefore, here, the suction pipes 118a and 118c and the guide passage 118d constitute the suction passage 118A.
  • the suction passage 118A communicates with the second and third cylinder chambers 114b and 114c accommodating the second and third eccentric portions 104b and 104c having the same eccentric direction and the accumulator 121.
  • the suction pipe 118c and the guide passage 118d are formed so as to partially share each other.
  • the two eccentric portions 104b and 104c have the same eccentric direction.
  • Multi-cylinder rotary compressor Tl When the rotating shaft 104 is driven to rotate, the cylinder chamber 114b and the cylinder chamber 114c perform the compression stroke at exactly the same time as the rotating shaft 104 rotates, so that a part of the suction passage 118A is formed in common. To prevent a decrease in refrigeration capacity.
  • FIG. 11 is a cross-sectional view of a multi-cylinder rotary compressor T2 according to a fourth embodiment, in which a part of the rotary compressor T2 is omitted.
  • the first eccentric portion 104a and the eccentric roller 113a housed in the cylinder chamber 114a of the first cylinder 108A are housed in the cylinder chambers 114b and 114c of the second and third cylinder chambers 108B and 108C.
  • the two eccentric portions 104b and 104c and the eccentric rollers 113b and 113c are aligned in the same eccentric direction, and the eccentric portion 104a and the eccentric roller 113a are set to have a phase difference of 180 ° from each other. Is unchanged.
  • suction pipes 118a and 118c are connected to the bottom of the accumulator 121, and each penetrates the sealed case 101.
  • the suction pipe 118a is connected to the cylinder chamber 114a of the first cylinder 108A.
  • the suction pipe 118c is connected to a suction hole 118e provided in the intermediate partition 107B.
  • the suction hole 118e is branched in a vertical direction at a position where it does not reach the inner diameter of the intermediate partition plate 107B.
  • the cylinders 108B and 108C are provided with suction guide paths 118f communicating with the suction holes 118e and opening to the respective cylinder chambers 114b and 114c.
  • the refrigerant gas guided to the suction pipe 118c is transferred from the suction hole 118e of the intermediate partition plate 107B to the second cylinder chamber 114b and the third cylinder chamber 114c through the suction guide path 118f.
  • the refrigerant gas can be guided.
  • the suction pipes 118a and 118c, the suction hole 118e, and the suction guide passage 118f constitute a suction passage 118B.
  • the second and third eccentric portions 104b and 104c accommodating the same eccentric direction are accommodated in the second and third eccentric portions 104b and 104c, respectively.
  • the suction pipe 118c, the suction hole 118e, and the suction guide path 118f as the suction passage 118B that communicates the third cylinder chambers 114b, 114c and the accumulator 121 are formed so as to be partially shared with each other.
  • the clearance of at least one of the sliding portions is the second compression mechanism portion that is not in contact with the main bearing 109 or the sub bearing 111.
  • 102B is set larger than the first compression mechanism 102A and the third compression mechanism 102C that are in contact with the main bearing 109 or the sub-bearing 111.
  • the two eccentric portions 104b and 104c are the multi-cylinder rotary compressor T2 in which the eccentric directions are the same.
  • the compression stroke is performed at exactly the same time in the cylinder chamber 114b and the cylinder chamber 114c with the rotation of the rotating shaft 104, so that a part of the suction passage 118B is shared. To prevent a decrease in refrigeration capacity.
  • FIG. 12 is a cross-sectional view of a multi-cylinder rotary compressor according to a fifth embodiment with a part thereof omitted.
  • the rotation provided with the four eccentric portions 104a to 104d is provided.
  • a multi-cylinder rotary compressor T3 with a shaft 104 is shown.
  • the first compression mechanism 102A to the fourth compression mechanism 102D are connected to the rotating shaft 104 along the axial direction. As before, there is a first compression mechanism 102A at the top, second and third compression mechanisms 102B and 102C below, and a fourth compression mechanism at the bottom. There is a part 102D to constitute the compression assembly 102.
  • the clearance of at least one of the sliding portions is the second compression mechanism portion that is not in contact with the main bearing 109 or the auxiliary bearing 111.
  • 102B is the first compression mechanism 10 in contact with the main bearing 109 or the sub-bearing 111. It is set larger than 2A and the fourth compression mechanism section 102D.
  • the first and second eccentric portions 104a and 104b and the eccentric rollers 113a and 113b which are two eccentric portions accommodated in the cylinder chambers 114a and 114b of the first and second cylinder chambers 108A and 108B, They are aligned in the same eccentric direction.
  • the third and fourth eccentric portions 104c and 104d which are two eccentric portions accommodated in the cylinder chambers 114c and 114d of the third and fourth cylinder chambers 108C and 108D, and the eccentric rollers 113c and 113d, They are aligned in the same eccentric direction.
  • the first and second eccentric portions 104a and 104b and the eccentric rollers 113a and 113b and the third and fourth eccentric portions 104c and 104d and the eccentric rollers 113c and 113d have a phase difference of 180 ° with each other. Is set.
  • suction pipes 118a and 118c are connected to the bottom of the accumulator 121, and each penetrates the sealed case 101.
  • the suction pipe 118a is connected to a suction hole 118g provided in the intermediate partition plate 107A.
  • the suction hole 118g is branched in the vertical direction at a position where it does not reach the inner diameter of the intermediate partition plate 107A.
  • the cylinders 108A and 108B are provided with suction guide paths 118h communicating with the suction holes 118g and opening to the respective cylinder chambers 114a and the cylinder chambers 114b.
  • the suction pipe 118c is connected to a suction hole 118i provided in the intermediate partition 107C.
  • the suction hole 118i does not reach the inner diameter of the intermediate partition plate 107C, but branches upward and downward at the position.
  • the cylinder 108C and the cylinder 108D are provided with suction guide paths 11 ⁇ communicating with the suction holes 118i and opening to the respective cylinder chambers 114c and 114d.
  • the suction pipe 118a, the suction hole 118g which connects the first and second cylinder chambers 114a, 114b accommodating the two eccentric portions 104a, 104b having the same eccentric direction to the accumulator 121
  • the suction guide path 118h is formed as a part of the suction path 118C in common with the suction path 118C.
  • a suction pipe 118c, a suction hole 118i, and a suction guide path 118j that communicate the third and fourth cylinder chambers 114c, 114d accommodating two eccentric portions 104c, 104d having the same eccentric direction and the accumulator 121 are provided.
  • the suction passages 118C are formed so as to partially share each other.
  • the eccentric portions 104a, 104b and the eccentric portions 104c, 104d are the multi-cylinder rotary compressor T3 in which the eccentric directions are the same, and the rotary shaft 104 is rotationally driven. Then, the cylinder chambers 114a and 114b and the cylinder chambers 114c and 114d perform the compression strokes at the same timing, respectively, due to the rotation of the rotating wheel, so that a part of the suction passage 118B is formed in common. And prevent a decrease in refrigeration capacity.
  • FIG. 13A is a cross-sectional view of an eccentric roller used in a multi-cylinder rotary compressor according to a sixth embodiment
  • FIG. 13B is a front view of a rotary shaft
  • FIG. It is sectional drawing of the compression assembly provided with the rotating shaft.
  • the clearance of at least one of the sliding parts is the second compression mechanism part 102B that does not contact the main bearing 109 or the sub-bearing 111.
  • the force is set larger than the first compression mechanism 102A and the third compression mechanism 102C that are in contact with the main bearing 109 or the auxiliary bearing 111.
  • the inner diameter and outer diameter of the eccentric rollers 113a, 113b, and 113c are all the same, and the height E, which is the axial length, is also all the same. You. Further, as shown in FIG. 13B, all the eccentric portions 104a to 104c provided integrally with the rotary shaft 104 have the same axial length. Therefore, if one type of eccentric roller is manufactured, there is no problem even if any one of the eccentric portions 104a to 104c is fitted.
  • one of the features of the rotating shaft 104 is that the distance between the eccentric portions 104a to 104c differs depending on the portion. That is, the first compression mechanism 102A The distance between the eccentric portion 104a corresponding to the second compression mechanism portion 102B and the eccentric portion 104b corresponding to the second compression mechanism portion 102B is A1, the eccentric portion 104b corresponding to the second compression mechanism portion 102B, and the third compressor. If the distance between the eccentric portion 104c and the corresponding eccentric portion 104c is A2, A2 is set to be larger than A1 (A2> A1).
  • the spacing dimension A2 is greater than the eccentric roller height dimension E (A2> E).
  • the spacing dimension A1 is eccentric. It is set smaller than the roller height dimension E (E> A1).
  • the eccentric rollers 113a to 113c are attached to the eccentric portions 104a to 104c.
  • Assembly work for fitting 113c can be performed smoothly. That is, in order to fit the eccentric roller 113a into the first eccentric portion 104a, the eccentric roller 113a is displaced from the right end of the rotating shaft 104 shown in FIG. It is only necessary to shift the position in accordance with the eccentric direction at the position facing the, and fit it.
  • eccentric rollers 113a to 113c are all formed in the same size and shape and can be fitted to any eccentric part, the eccentric roller 113a once fitted to the first eccentric part 104a is moved as it is, Attempting to fit the second eccentric 104b is not possible.
  • the eccentric roller 113a is Cannot be interposed between the eccentric portion 104a and the second eccentric portion 104b (A1 dimension range), and cannot be fitted to the second eccentric portion 104b.
  • the eccentric roller 113b is displaced from the left end of the rotating shaft 104 via the eccentric roller, and is opposed to the third eccentric portion 104c. Shift the position according to the eccentric direction.
  • the eccentric roller 113b is fitted to the third eccentric portion 104c, and is further pressed to get over the eccentric portion. Once the eccentric roller 113b is The eccentric roller 113b is fitted to the eccentric portion 104b after being positioned between the portion 104c and the second eccentric portion 104b and further displaced in accordance with the eccentric direction of the second eccentric portion 104b.
  • the distance A2 between the second eccentric portion 104b and the third eccentric portion 104c is set to be larger than the height E of the eccentric roller 113b.
  • the eccentric roller 113b is positioned between the 104c and the second eccentric portion 104b, and then the position thereof is shifted.
  • the eccentric roller 113b is fitted to the third eccentric part 104c from the left end of the rotating shaft 104 via another eccentric roller 113c.
  • the eccentric roller 113b can be fitted and assembled to the central eccentric portion 104b without being divided. Therefore, it is possible to provide a multi-cylinder rotary compressor having high reliability and high compression efficiency.
  • FIG. 14 is a diagram illustrating the relationship between the setting conditions of FIGS. 13A and 13B and the thickness of the intermediate partition plates 107A and 107B. That is, the thickness dimension HI of the intermediate partition plate 107A interposed between the first cylinder 108A and the second cylinder 108B is the distance dimension A1 between the first eccentric portion 104a and the second eccentric portion 104b. It is formed smaller (HI and A1). As described above, the distance A1 between the first eccentric portion 104a and the second eccentric portion 104b is set smaller (A1 ⁇ B) than the height E of the eccentric rollers 113a to 113c. Therefore, the setting condition of the intermediate partition plate thickness dimension HI ⁇ spacing dimension A1 ⁇ eccentric roller height dimension E will be derived.
  • the distance A1 between the remaining eccentric portions 104a_104b is formed to be less than the height E of the eccentric rollers 113a to 113c, and the thickness HI of the intermediate partition plate 107A interposed between the eccentric portions. Is set to be less than the distance A1 between the eccentric portions 104a_104b at the remaining positions.
  • the thickness of the intermediate partition plates 107A and 107B can be made thinner, and the distance between the eccentric portions 104a_104b and 104b_104c can be further reduced.
  • the distance between the main bearing 109 and the sub-bearing 111 that support the rotating shaft 104 can be reduced, and whirling can be suppressed to improve reliability and compression efficiency.
  • the first to third compression mechanisms 102A to 102C are provided, but the present invention is not limited to this.
  • the first to third compression mechanisms as described above with reference to FIG. The present invention can be applied to a multi-cylinder rotary compressor T3 provided with the mechanical units 102A to 102D, and also to a multi-cylinder rotary compressor provided with a greater number of compression mechanism units.
  • the compressor structure 102A to 102D force 3 ⁇ 4 group N
  • the eccentric portions are located 104a to 104b, 104b.
  • the interval between the first eccentric portion 104a and the second eccentric portion 104b and the interval between the third eccentric portion 104c and the fourth eccentric portion 104d are set to the same interval dimension A2, and the second If the distance between the eccentric part and the third eccentric part is the distance A1, and the height E of the eccentric rollers 113a to 113d is E, the distance: A2> the height of the eccentric roller: E> the distance: A1 It becomes. [0140]
  • the eccentric roller 113b fitted to the second eccentric portion 104b is allowed to pass through the first eccentric portion 104a, and the eccentric roller 113c fitted to the third eccentric portion 104c is What is necessary is just to let the eccentric part 104d of 4 pass. Therefore, it is possible to assemble the eccentric portions 104a to 104d without using divided eccentric rollers, and to provide a multi-cylinder rotary compressor having high reliability and high compression efficiency.
  • the compression mechanism units 102A to 102D are four sets: N compressor T3, and there are three eccentric parts: (N-1), two eccentric parts 104a_ 104b, 104c-104d spacing dimension: A2 is formed larger than eccentric rollers 113a-: 113d height dimension: E, and thickness of intermediate partition plate 107B interposed between these eccentric parts.
  • the dimension H2 was set to be less than the height dimension E of the eccentric roller.
  • the thickness HI of the intermediate partition plate 107A interposed between the remaining eccentric portions 104b_104c is set to be smaller than the interval A1 between the remaining eccentric portions 104b_104c.
  • FIG. 15 is a plan view of a cylinder according to the seventh embodiment.
  • FIG. 15A is a plan view of the first cylinder 108A
  • FIG. 15B is a plan view of the second cylinder 108B
  • FIG. 15C is a plan view of the third cylinder 108C.
  • the blade chamber 115, the discharge notch 30, and the suction hole 140 are formed at the same position and the same size and shape at the same diameter from the same central axis. .
  • FIG. 16 is a plan view of a cylinder according to the eighth embodiment.
  • a concave portion 145 is provided on a side surface of the cylinder 108, and a discharge valve mechanism 146 is accommodated therein.
  • the second cylinder 108B constituting the second compression mechanism unit 102B at the center is provided.
  • the second compression mechanism unit 102B and the second compression mechanism unit 102C forming the inner second compression mechanism unit 102C are included.
  • the first cylinder 108B and the third cylinder 108C are used.
  • FIG. 17 is a plan view of the rotation shaft according to the ninth embodiment.
  • the first to third eccentric portions 104a to 104c provided integrally with the rotating shaft 104 have a structure in which the first and third eccentric portions 104a to 104c are equidistant from each other. That is, the second eccentric portion 104b is eccentrically provided at a position shifted by 120 ° with respect to the first eccentric portion 104a, and the third eccentric portion 104c is further eccentrically provided at a position shifted by 120 °.
  • the second eccentric portion 104b is eccentrically provided at a position shifted by 120 ° with respect to the first eccentric portion 104a
  • the third eccentric portion 104c is further eccentrically provided at a position shifted by 120 °.
  • FIG. 18 is a longitudinal sectional view of a multi-cylinder rotary compressor in the tenth embodiment.
  • the eccentric portions 104a and 104c constituting the first compression mechanism unit 102A and the third compression mechanism unit 102C are identical to each other.
  • the eccentric portion 104b is provided in the direction and is eccentric by the same amount, and the eccentric portion 104b constituting the second compression mechanism portion 102B is eccentric in the opposite direction.
  • the one suction pipe 118c and the branch suction pipe 118a connected to the accumulator 121 guide the low-pressure evaporated refrigerant to the cylinder chambers 114a and 114c having the same rotation angle. A decrease in capacity can be prevented, and the size and simplification of the accumulator 121 can be obtained.
  • the present invention is not limited to this, and further includes a multi-cylinder type having a five-cylinder type or more cylinders. It goes without saying that it can be applied to all types of rotary compressors.
  • the present invention is a multi-cylinder rotary compressor in which three or more sets of compression mechanisms are connected to a rotary shaft, compression of the rotary shaft due to rotation of the rotary shaft is reduced by reducing rotation of the rotary shaft. If the efficiency is improved, the effect will be obtained.

Abstract

A multi-cylinder rotary compressor is constructed by receiving in a sealed chamber (1) a rotating shaft (4), an electric motor section (3), and first to third compression mechanism sections (2A-2C). The rotating shaft (4) is rotatably supported by bearings (9, 11). The electric motor section (3) and the first to third compression mechanism sections (2A-2C) are connected to the rotating shaft. The compression mechanism sections (2A-2C) respectively have cylinder chambers (14a-14c) in which eccentric sections (4a-4c) and eccentric rollers (13a-13c) provided on the rotating shaft are received, cylinders (8A-8C) having the cylinders chambers, and blades (15a-15c) of which each head edge is in contact with the peripheral surface of the eccentric roller to partition the cylinder chamber into two. At least one of the two clearances (Sa, Sc), out of clearances (Sa, Sb, Sc, Sd) in sliding sections of the compression mechanism sections, of the second compression mechanism section (2B) not in contact with the bearings is set greater than the clearances (Sb, Sd) in the first and third compression mechanism sections (2A, 2C) in contact with the bearings. Run-out of the rotating shaft involved in its rotation can be reduced to improve compression efficiency.

Description

明 細 書  Specification
多気筒形回転式圧縮機  Multi-cylinder rotary compressor
技術分野  Technical field
[0001] 本発明は、例えば冷凍装置の冷凍サイクルを構成し、軸方向に 3組以上の圧縮機 構部を設けた多気筒形回転式圧縮機に関する。  The present invention relates to a multi-cylinder rotary compressor that constitutes, for example, a refrigeration cycle of a refrigeration apparatus and has three or more sets of compressor units in the axial direction.
背景技術  Background art
[0002] 例えば冷凍装置の冷凍サイクルを構成する回転式圧縮機の圧縮機構部は、シリン ダ (気筒)の内径部に形成されるシリンダ室に偏心ローラが収容されるとともに、シリン ダにはブレード室が設けられ、ブレードが摺動自在に収納される。ブレードの先端縁 は偏心ローラの周面に弾性的に当接するよう圧縮ばねによって押圧付勢され、シリン ダ室はブレードによって吸込み室と圧縮室の二室に区分される。  [0002] For example, in a compression mechanism of a rotary compressor constituting a refrigerating cycle of a refrigerating apparatus, an eccentric roller is accommodated in a cylinder chamber formed in an inner diameter portion of a cylinder (cylinder), and a blade is provided in the cylinder. A chamber is provided and the blade is slidably housed. The leading edge of the blade is pressed and urged by a compression spring so as to elastically abut against the peripheral surface of the eccentric roller, and the cylinder chamber is divided by the blade into a suction chamber and a compression chamber.
[0003] なお、近年、上記圧縮機構部を上下に 2組備えた、 2気筒形回転式圧縮機が標準 化されつつある。この場合、単気筒の圧縮機と比較して圧縮能力の増大化を図れて 有利である。そして、さらに圧縮能力の増大化を図るベぐ例えば、特開平 5— 1686 号公報には、 3組の圧縮機構部を軸方向に積層した多気筒形回転式圧縮機が開示 されている。  [0003] In recent years, a two-cylinder rotary compressor equipped with two sets of the above and below compression mechanisms has been standardized. In this case, the compression capacity can be advantageously increased as compared with a single cylinder compressor. In order to further increase the compression capacity, for example, Japanese Patent Application Laid-Open No. Hei 5-1686 discloses a multi-cylinder rotary compressor in which three sets of compression mechanisms are stacked in the axial direction.
[0004] この種の多気筒形回転式圧縮機に用いられる回転軸は、単気筒及び 2気筒タイプ の圧縮機に用レ、られる回転軸と比較して、当然、軸長が長い。回転軸の下端部と略 中間部は軸受によって軸支されるが、これら軸受間に 3個、もしくはそれ以上の数の 偏心部が一体に設けられ、それぞれに偏心ローラが嵌合される。  [0004] The rotating shaft used in this type of multi-cylinder rotary compressor has a longer shaft length than the rotating shafts used in single-cylinder and two-cylinder type compressors. The lower end and the substantially middle part of the rotary shaft are supported by bearings, and three or more eccentric parts are provided integrally between these bearings, and eccentric rollers are fitted to each.
[0005] 一方、回転式圧縮機は、吸込み側にアキュームレータがあって、吸込み通路を介し て連通される。そして回転式圧縮機は、密閉ケースと、この密閉ケース内に収容され る電動機部と、上記吸込み管が直接、接続される圧縮機構部及び、これら電動機部 と圧縮機構部を連結する回転軸から構成される。  [0005] On the other hand, the rotary compressor has an accumulator on the suction side, and is communicated through a suction passage. The rotary compressor includes a sealed case, a motor portion housed in the sealed case, a compression mechanism portion to which the suction pipe is directly connected, and a rotating shaft connecting the motor portion and the compression mechanism portion. Be composed.
[0006] 前述したような多気筒形回転式圧縮機では、回転軸に一体に設けられる 3個の偏 心部が軸方向に沿って 120° ずつ位相をずらせて形成され、ここに偏心ローラが嵌 合される。そして、回転軸の回転駆動にともない、各シリンダ室に順次冷媒ガスを吸 込んで圧縮し、吐出通路の上流側から下流側へ順次、ずらしながら吐出することを特 徴としている。 [0006] In the above-described multi-cylinder rotary compressor, three eccentric portions provided integrally with the rotary shaft are formed with a phase shift of 120 ° along the axial direction, and the eccentric roller is provided here. Mated. Then, with the rotation of the rotating shaft, the refrigerant gas is sequentially sucked into each cylinder chamber. It is characterized in that it discharges while shifting sequentially from upstream to downstream of the discharge passage.
発明の開示  Disclosure of the invention
[0007] ところで、上述の多気筒形回転式圧縮機では、次のような問題があった。  [0007] The above-described multi-cylinder rotary compressor has the following problems.
[0008] 各偏心部と偏心ローラはシリンダ内径部に形成されるシリンダ室に収容され偏心回 転するが、単気筒及び 2気筒タイプのものと比較して、回転軸を軸支する軸受相互間 の距離が大きくなり、回転軸自体に振れが発生し易い状態となる。 [0008] Each eccentric portion and eccentric roller are accommodated in a cylinder chamber formed in the cylinder inner diameter portion and eccentrically rotate. However, compared to single cylinder and two cylinder types, the eccentric portion and the eccentric roller have a smaller distance between bearings that support the rotating shaft. Becomes large, and the rotation shaft itself is likely to run out.
[0009] また、近時、空気調和機の冷凍サイクルに用いられる冷媒ガスは、 R32と R125の 2 種の HFC混合冷媒である、「R410A」が多用される傾向にある。この種の冷媒は、 擬似共沸混合冷媒として圧力損失が小さく熱伝導率が高い等、冷凍サイクルに適し た特性を持っている。 [0009] Recently, as a refrigerant gas used in a refrigeration cycle of an air conditioner, "R410A", which is a mixture of two types of HFCs, R32 and R125, tends to be frequently used. This type of refrigerant has characteristics suitable for a refrigeration cycle, such as low pressure loss and high thermal conductivity as a pseudo-azeotropic refrigerant mixture.
[0010] し力 ながら、上記「R410A]はガス荷重が大きいことも特徴の一つとしている。ガス 荷重は、圧縮機で圧縮され吐出される冷媒ガスの吐出圧力と、冷凍サイクルを循環 して再び圧縮機に吸い込まれる際の吸込み圧力との差で求められる。  [0010] However, one of the features of the above-mentioned "R410A" is that the gas load is large, and the gas load is circulated through the refrigeration cycle by the discharge pressure of the refrigerant gas compressed and discharged by the compressor. It is determined by the difference from the suction pressure when sucked into the compressor again.
[0011] 図 19は、多気筒形回転式圧縮機において、複数の圧縮機構部からなる圧縮組立 の構成を概略的に示すとともに、ここでは図示しない電動機に連結される回転軸の 状態を模式的に示している。  FIG. 19 schematically illustrates a configuration of a compression assembly including a plurality of compression mechanisms in a multi-cylinder rotary compressor, and schematically illustrates a state of a rotating shaft connected to an electric motor (not shown). Is shown in
[0012] 図の最上端に主軸受 dが位置し、最下端に副軸受 eが位置していて、これら主軸受 dと副軸受 eとの間に、所定間隔を存して 3組の圧縮機構部である 3個の偏心ローラ g 1 , g2, g3が介在される。上下方向に垂直な実線は回転軸 hを示し、偏心ローラ gl〜 g3は回転軸 hに設けられる図示しない偏心部に嵌合される。  [0012] The main bearing d is located at the uppermost end of the figure, and the sub-bearing e is located at the lowermost end. Three sets of compression bearings are provided at a predetermined interval between the main bearing d and the sub-bearing e. Three eccentric rollers g1, g2, and g3, which are mechanical units, are interposed. A solid line perpendicular to the vertical direction indicates the rotation axis h, and the eccentric rollers gl to g3 are fitted to an eccentric part (not shown) provided on the rotation axis h.
[0013] このような圧縮機構部の構成であるうえに、上述の「R410A」のごとき、ガス荷重の 大きな冷媒を用いて回転軸 hを回転駆動すると、特に主軸受 dと副軸受 eの規制を受 けない真中の部分が最も大きく湾曲変形する。そのため、真中部分で圧縮機構部を 構成する偏心ローラ g2が、上下両側部の軸受 d, eと接する圧縮機構部である偏心口 ーラ gl , g3と比較して振れ回りが大きくなる。  [0013] In addition to the above-described structure of the compression mechanism, when the rotating shaft h is driven to rotate using a refrigerant having a large gas load, such as the above-mentioned "R410A", the regulation of the main bearing d and the sub-bearing e is particularly restricted. The central part, which does not receive this, undergoes the largest bending deformation. As a result, the eccentric roller g2, which constitutes the compression mechanism in the middle, has a larger whirling than the eccentric rollers gl, g3, which are the compression mechanism in contact with the bearings d, e on the upper and lower sides.
[0014] 実線で示す回転軸 hは図中二点鎖線に示すように湾曲変形し、主軸受 dの上端部 dlと下端部 d2、及び副軸受 eの上端部 elと下端部 e2に対して回転軸 hが互いに線 接触し、いわゆる極圧と呼ばれる部分的な荷重がかかる。そのため、回転軸 hと主軸 受 d及び副軸受 eとの間でカジリが生じ易ぐ互いに摩耗が増大して圧縮効率の低下 を招いてしまう。 [0014] The rotation axis h shown by a solid line is curved and deformed as shown by a two-dot chain line in the figure, and is positioned with respect to the upper end dl and the lower end d2 of the main bearing d and the upper end el and the lower end e2 of the sub-bearing e. Rotation axes h are mutually lined Contact, and a partial load called so-called extreme pressure is applied. Therefore, galling is likely to occur between the rotating shaft h and the main bearing d and the sub bearing e, so that the abrasion increases and the compression efficiency is reduced.
[0015] 一方、アキュームレータから圧縮機の各圧縮機構部に連通する吸込み通路が、個 々に独立する合計 3本の吸込み管で構成されている。そのため、上記アキユームレー タは、単気筒や 2気筒タイプの圧縮機に接続するアキュームレータと比較して大型化 しなければ各吸込み管を接続できないこととなり、部品費が嵩んで不利となる。  [0015] On the other hand, a suction passage communicating from the accumulator to each compression mechanism of the compressor is composed of a total of three independent suction pipes. For this reason, the above accumulator cannot connect each suction pipe unless it is made larger than an accumulator connected to a single-cylinder or two-cylinder type compressor, which is disadvantageous due to an increase in component costs.
[0016] 対応策として、アキュームレータに 2本の吸込み管を接続し、いずれか 1本の吸込 み管を中途部で 2本に分岐し、合計 3本の吸込み管にして圧縮機の各シリンダ室と連 通する構成が考えられる。  [0016] As a countermeasure, two suction pipes are connected to the accumulator, and one of the suction pipes is branched into two in the middle, and a total of three suction pipes are used to make each cylinder chamber of the compressor. It is conceivable to have a configuration that communicates with.
[0017] しかしながら、偏心部が 120° 回転方向にずれているため、分岐した吸込み管が 接続される 2つのシリンダ室では吸込み、圧縮タイミングが異なるために、互いのシリ ンダ室が互いのシリンダ室に吸込まれた冷媒ガスを取り合って、冷凍能力の低下を 招いてしまう。  [0017] However, since the eccentric portions are shifted in the direction of rotation by 120 °, the two cylinder chambers to which the branched suction pipes are connected have different suction and compression timings. The refrigeration capacity is reduced by competing for the refrigerant gas sucked into the chiller.
[0018] そして、上述の構成では吸込み管と分岐吸込み管の合計 3本の配管が、密閉ケー スに設けられる取付け用孔を貫通して、それぞれのシリンダ室に接続される。取付け 用孔の数が多くなると、必然的に取付け用孔の間隔が狭くなり、その結果、密閉ケー スの耐圧強度が低下する。密閉ケースの耐圧強度を保持するためには、密閉ケース を構成する鋼板の板厚を上げる必要があり、ここでも部品費の上昇を招いてしまう。  [0018] In the configuration described above, a total of three pipes, the suction pipe and the branch suction pipe, pass through the mounting holes provided in the sealed case and are connected to the respective cylinder chambers. When the number of mounting holes is increased, the interval between the mounting holes is inevitably reduced, and as a result, the pressure resistance of the sealed case is reduced. In order to maintain the pressure resistance of the sealed case, it is necessary to increase the thickness of the steel plate constituting the sealed case, which also increases the cost of parts.
[0019] そしてまた、上述の多気筒形回転式圧縮機では、圧縮機構部の組立て作業の面か ら、圧縮機構部を構成する各部品の形状寸法を考慮しなければならなず、設計上窮 屈なものとなっている。  [0019] Further, in the above-described multi-cylinder rotary compressor, in view of the work of assembling the compression mechanism, the shape and dimensions of each component constituting the compression mechanism must be taken into consideration. It is cramped.
[0020] すなわち、第 1の圧縮機構部〜第 3の圧縮機構部を回転軸の軸方向に沿って順次 組立てるにあたって、はじめに回転軸に一体に設けられる偏心部に偏心ローラを嵌 合する作業が必要である。このとき、両側部である第 1の圧縮機構部と第 3の圧縮機 構部の偏心ローラは、回転軸を垂直もしくは倒立して端部から介揷すれば偏心部に 嵌合できる。  That is, when assembling the first compression mechanism to the third compression mechanism sequentially along the axial direction of the rotary shaft, the work of first fitting the eccentric roller to the eccentric portion provided integrally with the rotary shaft is performed. is necessary. At this time, the eccentric rollers of the first compression mechanism portion and the third compression mechanism portion on both sides can be fitted to the eccentric portion by rotating the rotating shaft vertically or inverted and interposing from the end.
[0021] ただし、中央部にある第 2の圧縮機構部では、第 1の圧縮機構部側もしくは第 3の 圧縮機構部側から偏心ローラを介挿し、それぞれの圧縮機構部の偏心部を通過してHowever, in the second compression mechanism in the center, the first compression mechanism or the third compression mechanism Insert the eccentric roller from the compression mechanism side and pass through the eccentric part of each compression mechanism
、第 2の圧縮機構部に相当する偏心部に嵌合しなければならない。当然、このときは それぞれの圧縮機構部に偏心ローラが嵌合されてレ、なレ、。 Must be fitted to an eccentric part corresponding to the second compression mechanism part. Of course, in this case, the eccentric roller is fitted to each compression mechanism part.
[0022] また、上述したように偏心部は 120° ずつ位相をずらして設けられているから、一つ の偏心部を通過したあと偏心ローラの位置を変えて、嵌合すべき偏心部の偏心方向 に合わせる必要がある。 Further, as described above, since the eccentric portions are provided with the phase shifted by 120 °, the eccentric roller to be fitted is changed by changing the position of the eccentric roller after passing through one eccentric portion. It is necessary to match the direction.
[0023] ところが、回転軸に多くの偏心部を設けて偏心ローラを嵌合するので、回転軸の回 転に伴う振れ回りが生じ易い。この振れ回りを可能な限り防止するには、回転軸の全 長の短縮化を図ることであり、特に、偏心部相互間の間隔寸法を可能な限り短縮する 必要がある。その結果、偏心部相互の間隔寸法が偏心ローラの軸方向長さである高 さ寸法よりも短くなる。 However, since many eccentric portions are provided on the rotating shaft and the eccentric rollers are fitted, whirling due to rotation of the rotating shaft is likely to occur. In order to prevent this whirling as much as possible, it is necessary to shorten the entire length of the rotating shaft. In particular, it is necessary to reduce the distance between the eccentric portions as much as possible. As a result, the distance between the eccentric portions is shorter than the height, which is the axial length of the eccentric roller.
[0024] そのため、いずれか側部の偏心部を通過した偏心ローラを、 P 設される偏心部との 間の部位で、隣設される偏心部の偏心方向に合わせて移動しょうとしても、偏心部相 互の間隔寸法が偏心ローラの高さ寸法よりも短いので、偏心ローラを偏心方向に合 わせて姿勢を変更することができなレ、。  [0024] Therefore, even if the eccentric roller that has passed through the eccentric portion on either side is moved between the eccentric portion and the eccentric portion in accordance with the eccentric direction of the adjacent eccentric portion, the eccentric roller cannot be moved. Since the interval between the parts is shorter than the height of the eccentric roller, the posture cannot be changed by aligning the eccentric roller in the eccentric direction.
[0025] 上述の不具合に対処するには、第 2の圧縮機構部の偏心部に嵌合される偏心ロー ラを径方向に 2分割して構成し、偏心部には左右両側から分割した偏心ローラを嵌 め込み、組立部材を介して組立をなすことが考えられる。  [0025] In order to cope with the above-mentioned problem, an eccentric roller fitted to the eccentric portion of the second compression mechanism is divided into two parts in the radial direction, and the eccentric part is divided into eccentric parts divided from both left and right sides. It is conceivable that the rollers are fitted in and assembled via an assembly member.
[0026] この場合は、分割化した偏心ローラは加工が面倒であり、組立部材を偏心ローラの 周面内に形成しないと円滑な回転ができないので、組立性が悪レ、。そのため、信頼 性及び性能面に悪影響が及ぶところとなる。  In this case, the processing of the divided eccentric roller is troublesome, and smooth rotation cannot be performed unless the assembly member is formed in the peripheral surface of the eccentric roller, resulting in poor assemblability. Therefore, reliability and performance will be adversely affected.
[0027] 本発明は上記事情に基づきなされたものであり、第 1の目的とするところは、回転軸 に 3組以上の圧縮機構部を連結することを前提として、回転軸の回転に伴う、回転軸 の振れ回りの低減化を図り、圧縮効率の向上化を得る多気筒形回転式圧縮機を提 供しょうとするものである。  The present invention has been made on the basis of the above circumstances, and a first object is to connect three or more sets of compression mechanism units to a rotating shaft, with the rotation of the rotating shaft, The aim is to provide a multi-cylinder rotary compressor that reduces whirling of the rotating shaft and improves compression efficiency.
[0028] また、第 2の目的とするところは、回転軸に 3組以上の圧縮機構部を連結することを 前提として、冷凍能力を保持したうえで吸込み通路の簡略化を図り、よってアキユー ムレータの小型化に繋げられる多気筒形回転式圧縮機を提供しょうとするものである [0029] さらに、第 3の目的とするところは、回転軸に 3組以上の圧縮機構部を連結すること を前提として、特に回転軸の偏心部にローラを嵌合組立てするにあたって、ローラの 分割を不要とするとともに、偏心部相互間隔を極力短縮化して、組立性及び信頼性 の向上化と、圧縮効率の向上を得られる多気筒形回転式圧縮機を提供しょうとするも のである。 [0028] The second object is to simplify the suction passage while maintaining the refrigerating capacity, on the premise that three or more sets of compression mechanisms are connected to the rotating shaft. To provide a multi-cylinder rotary compressor that can be connected to downsizing [0029] Further, a third object is to presuppose that three or more sets of compression mechanisms are connected to the rotating shaft, and particularly to assemble and fit the roller to the eccentric portion of the rotating shaft, to divide the roller. The present invention aims to provide a multi-cylinder rotary compressor that can reduce the distance between the eccentric portions as much as possible and improve the assemblability and reliability and the compression efficiency.
[0030] 上記第 1の目的を満足するため本発明の多気筒形回転式圧縮機は、密閉ケース 内に、軸受に軸支される回転軸と、この回転軸に連結される電動機部及び 3組以上 の圧縮機構部を収容してなり、圧縮機構部は、回転軸に設けられる偏心部及び偏心 部に嵌合されるローラが偏心回転自在に収容されるシリンダ室と、このシリンダ室を備 えたシリンダと、このシリンダに設けられ先端縁がローラの周面に当接しシリンダ室を 二分するブレードとを備え、各圧縮機構部における各摺動部のクリアランスのうち少 なくとも 1つの摺動部のクリアランスは、軸受に接しない圧縮機構部が、軸受に接する 圧縮機構部よりも大に設定される。  [0030] In order to satisfy the first object, the multi-cylinder rotary compressor of the present invention includes, in a closed case, a rotary shaft supported by a bearing, an electric motor portion connected to the rotary shaft, and The compression mechanism unit includes a cylinder chamber in which an eccentric portion provided on the rotating shaft and a roller fitted in the eccentric portion are eccentrically rotatable and a cylinder chamber. And a blade provided on this cylinder, the leading edge of which abuts against the peripheral surface of the roller to divide the cylinder chamber into two, and at least one of the clearances of each sliding part in each compression mechanism. Is set larger in the compression mechanism part not in contact with the bearing than in the compression mechanism part in contact with the bearing.
[0031] 上記第 2の目的を満足するため本発明の多気筒形回転式圧縮機は、冷凍サイクル を構成し、吸込み通路を介してアキュームレータを接続し、密閉ケース内に、回転軸 と、回転軸に連結する電動機部及び 3組以上の圧縮機構部を収容し、各圧縮機構 部は、回転軸に一体に設けた 3個以上の偏心部と嵌合するローラを偏心回転自在に 収容し、吸込み通路を介してアキュームレータと連通するシリンダ室と、このシリンダ 室を備えたシリンダと、このシリンダに設けられ先端縁がローラの周面に当接してシリ ンダ室を吸込み室と圧縮室に二分するブレードとを備え、少なくとも 2個の偏心部は 偏心方向を同一に揃え、これら偏心方向が同一の偏心部を収容する各シリンダ室と アキュームレータとを連通する吸込み通路は、互いに一部を共有して形成する。  [0031] In order to satisfy the second object, the multi-cylinder rotary compressor of the present invention constitutes a refrigeration cycle, connects an accumulator via a suction passage, and includes a rotating shaft and a rotating shaft in a sealed case. It accommodates an electric motor unit connected to the shaft and three or more sets of compression mechanism units.Each compression mechanism unit accommodates three or more eccentric parts provided integrally with the rotary shaft and eccentrically rotatable rollers. A cylinder chamber communicating with the accumulator via a suction passage, a cylinder provided with the cylinder chamber, and a leading edge provided in the cylinder abutting against the peripheral surface of the roller to divide the cylinder chamber into a suction chamber and a compression chamber. At least two eccentric parts have the same eccentric direction, and the suction passages that communicate the cylinder chambers accommodating the eccentric parts with the same eccentric direction and the accumulator share a part with each other. To form Te.
[0032] 上記第 3の目的を満足するため本発明の多気筒形回転式圧縮機は、密閉ケース 内に、回転軸と、この回転軸に連結される電動機部及び 3組以上の圧縮機構部を収 容し、各圧縮機構部は、回転軸に一体に設けた 3個以上の偏心部と嵌合するローラ を偏心回転自在に収容するシリンダ室と、このシリンダ室を備えたシリンダと、このシリ ンダに設けられ先端縁がローラの周面に当接しシリンダ室を吸込み室と圧縮室に二 分するブレードと、シリンダ相互間に介在される中間仕切り板を備え、圧縮機構部の 数を Nとし、偏心部相互間ケ所が(N—1)であるとき、(N— 2)ケ所の偏心部相互の間 隔寸法をローラの軸方向長さ寸法よりも大に形成して、これら偏心部相互間に介在 する中間仕切り板の厚さ寸法をローラの軸方向長さ寸法未満に設定し、残りケ所の 偏心部相互の間隔寸法をローラの軸方向長さ寸法未満に形成して、これら偏心部相 互間に介在する中間仕切り板の厚さ寸法を残りケ所の偏心部相互の間隔寸法未満 に設定する。 [0032] In order to satisfy the third object, the multi-cylinder rotary compressor of the present invention includes, in a closed case, a rotary shaft, a motor unit connected to the rotary shaft, and three or more sets of compression mechanism units. Each compression mechanism section includes a cylinder chamber for eccentrically rotatably housing a roller fitted with three or more eccentric sections provided integrally with the rotating shaft, a cylinder having this cylinder chamber, The leading edge of the cylinder abuts against the peripheral surface of the roller, and the cylinder chamber is divided into the suction chamber and the compression chamber. Equipped with a separating blade and an intermediate partition plate interposed between the cylinders, where N is the number of compression mechanisms and (N-1) is the eccentricity between the eccentric parts (N-1). The gap between the eccentric portions is formed to be larger than the axial length of the roller, and the thickness of the intermediate partition plate interposed between the eccentric portions is set to be less than the axial length of the roller. The distance between the eccentric portions at the remaining places is formed to be less than the axial length of the roller, and the thickness of the intermediate partition plate interposed between the eccentric parts is less than the distance between the eccentric portions at the remaining places. Set to.
図面の簡単な説明 Brief Description of Drawings
[図 1]図 1は、本発明の第 1の実施の形態に係る多気筒形回転式圧縮機の縦断面図 である。 FIG. 1 is a longitudinal sectional view of a multi-cylinder rotary compressor according to a first embodiment of the present invention.
[図 2]図 2は、同多気筒形回転式圧縮機に実施の形態に係る圧縮機構部の横断平 面図である。  FIG. 2 is a cross-sectional plan view of a compression mechanism according to an embodiment of the multi-cylinder rotary compressor.
[図 3]図 3は、同実施の形態に係る圧縮機構部のクリアランス設定を説明するための、 シリンダと偏心ローラの高さとの関係を示す説明図である。  FIG. 3 is an explanatory diagram showing a relationship between a cylinder and a height of an eccentric roller, for explaining a clearance setting of a compression mechanism unit according to the embodiment.
[図 4]図 4は、同実施の形態に係るさらに異なる圧縮機構部のクリアランス設定を説明 するための回転軸の正面図である。  FIG. 4 is a front view of a rotating shaft for explaining a clearance setting of a further different compression mechanism according to the embodiment.
[図 5]図 5は、同実施の形態に係るさらに異なる圧縮機構部のクリアランス設定を説明 するための、圧縮組立の縦断面図である。  FIG. 5 is a vertical cross-sectional view of a compression assembly for explaining a clearance setting of a different compression mechanism according to the embodiment.
[図 6A]図 6Aは、同実施の形態に係るさらに異なる圧縮機構部のクリアランス設定を 説明するための偏心ローラの一部位を示す平面図と断面図である。  FIG. 6A is a plan view and a cross-sectional view showing one portion of an eccentric roller for explaining a clearance setting of a different compression mechanism according to the embodiment.
[図 6B]図 6Bは、同実施の形態に係るさらに異なる圧縮機構部のクリアランス設定を 説明するための偏心ローラの他部位を示す平面図と断面図である。  FIG. 6B is a plan view and a sectional view showing another part of the eccentric roller for explaining a clearance setting of a different compression mechanism according to the embodiment.
[図 7A]図 7Aは、同実施の形態に係るさらに異なる圧縮機構部のクリアランス設定を 説明するための第 1、第 3の圧縮機構部の横断平面図である。  [FIG. 7A] FIG. 7A is a cross-sectional plan view of first and third compression mechanism units for describing a clearance setting of still another compression mechanism unit according to the embodiment.
[図 7B]図 7Bは、同実施の形態に係るさらに異なる圧縮機構部のクリアランス設定を 説明するための第 2の圧縮機構部の横断平面図である。  [FIG. 7B] FIG. 7B is a cross-sectional plan view of the second compression mechanism section for explaining a clearance setting of still another compression mechanism section according to the embodiment.
[図 8]図 8は、同実施の形態に係る図 7A及び図 7Bと同じ圧縮機構部のクリアランス 設定を説明するための、圧縮組立の縦断面図である。 [図 9]図 9は、本発明の第 2の実施の形態に係る、多気筒形回転式圧縮機の縦断面 図である。 FIG. 8 is a longitudinal sectional view of a compression assembly for explaining the same clearance setting of the compression mechanism as in FIGS. 7A and 7B according to the embodiment. FIG. 9 is a longitudinal sectional view of a multi-cylinder rotary compressor according to a second embodiment of the present invention.
[図 10]図 10は、本発明の第 3の実施の形態に係る、多気筒形回転式圧縮機の一部 を省略した縦断面図である。  FIG. 10 is a vertical cross-sectional view of a multi-cylinder rotary compressor according to a third embodiment of the present invention, with a part of the rotary compressor omitted.
[図 11]図 11は、本発明の第 4の実施の形態に係る、多気筒形回転式圧縮機の一部 を省略した縦断面図である。  FIG. 11 is a vertical cross-sectional view of a multi-cylinder rotary compressor according to a fourth embodiment of the present invention, with a part of the rotary compressor omitted.
[図 12]図 12は、本発明の第 5の実施の形態に係る、多気筒形回転式圧縮機の一部 を省略した縦断面図である。  FIG. 12 is a vertical cross-sectional view of a multi-cylinder rotary compressor according to a fifth embodiment of the present invention, with a part of the rotary compressor omitted.
[図 13A]図 13Aは、本発明の第 6の実施の形態に係る、偏心ローラの断面図である。  FIG. 13A is a sectional view of an eccentric roller according to a sixth embodiment of the present invention.
[図 13B]図 13Bは、本発明の第 6の実施の形態に係る、回転軸の正面図である。 FIG. 13B is a front view of a rotation shaft according to a sixth embodiment of the present invention.
[図 14]図 14は、同実施の形態に係る、多気筒形回転式圧縮機の圧縮組立の縦断面 図である。 FIG. 14 is a longitudinal sectional view of a compression assembly of the multi-cylinder rotary compressor according to the embodiment.
[図 15A]図 15Aは、本発明の第 7の実施の形態に係る、第 1のシリンダの平面図であ る。  FIG. 15A is a plan view of a first cylinder according to a seventh embodiment of the present invention.
[図 15B]図 15Bは、本発明の第 7の実施の形態に係る、第 2のシリンダの平面図であ る。  FIG. 15B is a plan view of a second cylinder according to a seventh embodiment of the present invention.
[図 15C]図 15Cは、本発明の第 7の実施の形態に係る、第 3のシリンダの平面図であ る。  FIG. 15C is a plan view of a third cylinder according to a seventh embodiment of the present invention.
[図 16]図 16は、本発明の第 8の実施の形態に係る、第 2のシリンダの平面図と、一部 側面図である。  FIG. 16 is a plan view and a partial side view of a second cylinder according to an eighth embodiment of the present invention.
[図 17]図 17は、本発明の第 9の実施の形態に係る、第 1〜第 3の偏心部構造を説明 する平面図である。  FIG. 17 is a plan view illustrating first to third eccentric portion structures according to a ninth embodiment of the present invention.
[図 18]図 18は、本発明の第 10の実施の形態に係る、多気筒形回転式圧縮機の縦 断面図である。  FIG. 18 is a longitudinal sectional view of a multi-cylinder rotary compressor according to a tenth embodiment of the present invention.
[図 19]図 19は、従来例に係る、圧縮機構部の模式的構成図と、回転軸の変形状態 を説明する図である。  [FIG. 19] FIG. 19 is a schematic configuration diagram of a compression mechanism portion and a diagram illustrating a deformed state of a rotating shaft according to a conventional example.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明の多気筒形回転式圧縮機における一実施の形態を、図面に基づい て説明する。図 1は、例えば冷凍装置の冷凍サイクルを構成する多気筒形回転式圧 縮機 τの内部構造を示す縦断面図である。 Hereinafter, an embodiment of a multi-cylinder rotary compressor of the present invention will be described with reference to the drawings. Will be explained. FIG. 1 is a longitudinal sectional view showing the internal structure of a multi-cylinder rotary compressor τ constituting a refrigeration cycle of a refrigeration system, for example.
[0035] 図 1中 1は密閉ケースであって、この密閉ケース 1内の下部には後述する複数の圧 縮機構部、ここでは第 1の圧縮機構部 2Aと、第 2の圧縮機構部 2B、及び第 3の圧縮 機構部 2Cから構成される圧縮機構組立 2が設けられ、この圧縮機構組立の上部に は電動機部 3が設けられる。これら電動機部 3と、圧縮機構組立 2を構成する第 1〜 第 3の圧縮機構部 2A〜2Cは、互いに回転軸 4を介して連結される。  In FIG. 1, reference numeral 1 denotes a sealed case, and a plurality of compression mechanism units described later, here, a first compression mechanism unit 2A and a second compression mechanism unit 2B , And a third compression mechanism section 2C, and a motor section 3 is provided above the compression mechanism assembly. The electric motor section 3 and the first to third compression mechanism sections 2A to 2C constituting the compression mechanism assembly 2 are connected to each other via a rotary shaft 4.
[0036] 電動機部 3は、密閉ケース 1の内面に固定されるステータ 5と、このステータ 5の内側 に所定の間隙を存して配置され、かつ、回転軸 4が介揷するロータ 6とから構成される 。電動機部 3は、給電部 3aを介して運転周波数を可変するインバータに接続されると ともに、インバータから電動機部 3を制御する制御部(いずれも図示しない)と電気的 に接続される。  [0036] The electric motor unit 3 is composed of a stator 5 fixed to the inner surface of the sealed case 1 and a rotor 6 disposed inside the stator 5 with a predetermined gap therebetween and having the rotating shaft 4 interposed therebetween. Be composed. The motor unit 3 is connected to an inverter that varies the operating frequency via a power supply unit 3a, and is electrically connected to a control unit (both not shown) that controls the motor unit 3 from the inverter.
第 1の圧縮機構部 2Aと第 2の圧縮機構部 2B及び第 3の圧縮機構部 2Cは、中間仕 切り板 7A, 7Bを介して、それぞれが第 1のシリンダ 8A、第 2のシリンダ 8B、第 3のシリ ンダ 8Bを備えている。これら第 1〜第 3のシリンダ 8A〜8Cのうちの 1つ、例えば第 1 のシリンダ 8Aが密閉ケース 1内周面に圧入されたうえに、密閉ケース 1外部からの溶 接加工によって位置決め固定される。  The first compression mechanism 2A, the second compression mechanism 2B, and the third compression mechanism 2C are respectively connected to the first cylinder 8A, the second cylinder 8B, and the intermediate partition 7A, 7B via the intermediate partition plates 7A, 7B. It has a third cylinder 8B. One of the first to third cylinders 8A to 8C, for example, the first cylinder 8A is press-fitted into the inner peripheral surface of the sealed case 1 and is positioned and fixed by welding from the outside of the sealed case 1. You.
[0037] 第 1のシリンダ 8Aの上面部には主軸受 9が重ね合わされ、バルブカバー aとともに 取付けボルト 10を介してシリンダ 8Aに取付け固定される。第 3のシリンダ 8Cの下面 部には副軸受 11が重ね合わされ、バルブカバー bと中間仕切り板 7A, 7B及び第 2 のシリンダ 8Bとともに取付けボルト 12を介して第 1のシリンダ 8Aに取付け固定される 一方、回転軸 4は、中途部と下端部が主軸受 9と副軸受 11に回転自在に枢支され る。さらに回転軸 4は第 1〜第 3のシリンダ 8A〜8C内部を貫通するとともに、順に略 1 20° の位相差で形成される 3つの偏心部 4a, 4b, 4cを一体に備えている。各偏心 部 4a〜4cは、各シリンダ 8A〜8C内径部内に位置するよう組立てられ、それぞれの 周面に偏心ローラ 13a, 13b, 13cが嵌合される。 [0037] The main bearing 9 is superimposed on the upper surface of the first cylinder 8A, and is mounted and fixed to the cylinder 8A via mounting bolts 10 together with the valve cover a. An auxiliary bearing 11 is superimposed on the lower surface of the third cylinder 8C, and is mounted and fixed to the first cylinder 8A via mounting bolts 12 together with the valve cover b, the intermediate partition plates 7A, 7B and the second cylinder 8B. On the other hand, the rotating shaft 4 is rotatably supported at its middle and lower ends by a main bearing 9 and a sub-bearing 11. Further, the rotating shaft 4 penetrates the inside of the first to third cylinders 8A to 8C, and integrally has three eccentric portions 4a, 4b, 4c formed in order with a phase difference of about 120 °. The eccentric portions 4a to 4c are assembled so as to be located in the inner diameter portions of the cylinders 8A to 8C, and the eccentric rollers 13a, 13b, and 13c are fitted to the respective peripheral surfaces.
[0038] 第 1のシリンダ 8Aは、主軸受 9と中間仕切り板 7とで上下面が区画され、内径部に 第 1のシリンダ室 14aが形成される。第 2のシリンダ 8Aは、中間仕切り板 7Aと中間仕 切り板 7Bとで上下面が区画され、内径部に第 2のシリンダ室 14bが形成される。第 3 のシリンダ 8Cは、中間仕切り板 7Bと副軸受 11で上下面が区画され、内径部に第 3 のシリンダ室 14cが形成される。これらシリンダ室 14a〜14cは互いに同一直径に形 成されていて、それぞれに偏心ローラ 13a〜 13cが偏心回転自在に収容される。 なお、先に説明した第 1〜第 3のシリンダ 2A〜2Cの高さ寸法と、これに伴う第 1〜 第 3のシリンダ室 14a〜14cの高さ寸法と、偏心部 4a〜4cの偏心量及び、偏心ローラ 13a〜 13cの高さ寸法もしくは外径寸法等、条件に応じて後述するように種々寸法設 定される。 [0038] The first cylinder 8A is divided into upper and lower surfaces by a main bearing 9 and an intermediate partition plate 7, and has an inner diameter portion. A first cylinder chamber 14a is formed. The upper and lower surfaces of the second cylinder 8A are defined by an intermediate partition plate 7A and an intermediate partition plate 7B, and a second cylinder chamber 14b is formed in the inner diameter portion. The upper and lower surfaces of the third cylinder 8C are defined by an intermediate partition plate 7B and an auxiliary bearing 11, and a third cylinder chamber 14c is formed in the inner diameter portion. These cylinder chambers 14a to 14c are formed to have the same diameter as each other, and eccentric rollers 13a to 13c are eccentrically rotatably accommodated in the respective cylinder chambers. The height dimensions of the first to third cylinders 2A to 2C described above, the height dimensions of the first to third cylinder chambers 14a to 14c associated therewith, and the eccentricity of the eccentric portions 4a to 4c Various dimensions are set according to conditions such as the height dimension or the outer diameter dimension of the eccentric rollers 13a to 13c as described later.
[0039] 図 2は、圧縮組立 2を構成する第 1の圧縮機構部 2Aの概略的な平断面図である。  FIG. 2 is a schematic plan cross-sectional view of the first compression mechanism 2A constituting the compression assembly 2.
すなわち、第 1の圧縮機構部 2A〜第 3の圧縮機構部 2Cは全て同一の構成をなして いるので、ここでは第 1の圧縮機構部 2Aについてのみ説明し、第 2、第 3の圧縮機構 部 2B, 2Cについては対応する構成部品に対応する番号を付して説明は省略する。 第 1のシリンダ 8Aには、シリンダ室 14aと連通するブレード室 22aが設けられている 。このブレード室 22aには、ブレード 15aがシリンダ室 14aに対して突没自在に収容さ れる。なお、図 1にはブレード 15aのみ示している。  That is, since the first compression mechanism 2A to the third compression mechanism 2C all have the same configuration, only the first compression mechanism 2A will be described here, and the second and third compression mechanisms will be described. The parts 2B and 2C are given the numbers corresponding to the corresponding components, and the description is omitted. The first cylinder 8A is provided with a blade chamber 22a communicating with the cylinder chamber 14a. The blade chamber 22a houses the blade 15a so as to be able to protrude and retract from the cylinder chamber 14a. FIG. 1 shows only the blade 15a.
[0040] ブレード室 22aは、ブレード 15aの両側面が摺動自在に移動できるブレード収納溝 23aと、このブレード収納溝端部に一体に連設されブレード 15aの後端部が収容され る縦孔部 24aとからなる。ブレード室 22aには、ばね部材 26が収容される。このばね 部材 26は、ブレード 15aの背面側に介在され、ブレード 15aに弾性力(背圧)を付与 して、この先端縁を偏心ローラ 13aに接触させる圧縮ばねである。  [0040] The blade chamber 22a is provided with a blade accommodating groove 23a in which both sides of the blade 15a are slidably movable, and a vertical hole portion integrally provided with an end of the blade accommodating groove and accommodating the rear end of the blade 15a. 24a. A spring member 26 is housed in the blade chamber 22a. The spring member 26 is a compression spring that is interposed on the back side of the blade 15a, applies an elastic force (back pressure) to the blade 15a, and brings the leading edge into contact with the eccentric roller 13a.
ブレード 15aの先端縁は平面視で半円状に形成されていて、偏心ローラ 13a周壁 に、偏心ローラの回転角度にかかわらず線接触できる。偏心ローラ 13aがシリンダ室 14aの内周壁に沿って偏心回転したとき、ブレード 15aはブレード収納溝 23aに沿つ て往復運動し、ブレード後端部は縦孔部 24aへ突没自在である。  The tip edge of the blade 15a is formed in a semicircular shape in plan view, and can make line contact with the peripheral wall of the eccentric roller 13a regardless of the rotation angle of the eccentric roller. When the eccentric roller 13a rotates eccentrically along the inner peripheral wall of the cylinder chamber 14a, the blade 15a reciprocates along the blade accommodating groove 23a, and the blade rear end can freely protrude and retract into the vertical hole 24a.
[0041] 第 1のシリンダ 8Aにおけるブレード収納溝 23a近傍に半円状の吐出切欠 27が設け られている。この吐出切欠 27と対向するここでは図示しない主軸受 9部位には丸状 の吐出孔が設けられていて、バルブカバーと連通する吐出弁機構が収容される。第[0041] A semicircular discharge notch 27 is provided near the blade accommodating groove 23a in the first cylinder 8A. The main bearing (not shown) facing this discharge notch 27 And a discharge valve mechanism that communicates with the valve cover is accommodated. First
2、第 3のシリンダ 8B, 8Cにも吐出孔に相当する孔部が開口され、それぞれに吐出 弁機構が備えられている。さらに、吐出孔 27とはブレード収納溝 23aを介して反対側 の部位で、第 1のシリンダ 8Aの外周面からシリンダ室 14aに臨む吸込み孔 28が設け られていて、密閉ケース 1を貫通する吸込み管 29aが接続される。 The second and third cylinders 8B and 8C also have holes corresponding to the discharge holes, and each of them has a discharge valve mechanism. Further, a suction hole 28 is provided on the opposite side of the discharge hole 27 via the blade accommodating groove 23a and faces the cylinder chamber 14a from the outer peripheral surface of the first cylinder 8A. Tube 29a is connected.
このようにして構成される第 1の圧縮機構部 2Aであり、第 2、第 3の圧縮機構部 2B, 2Cについては対応する部品に対応する符号を付して説明を省略することは、上述し た通りである。  The first and second compression mechanism sections 2A and 2C configured in this manner are denoted by the reference numerals corresponding to the corresponding parts, and description thereof is omitted. That's right.
[0042] 再び図 1に示すように、密閉ケース 1の上端部には、吐出管 18が接続される。この 吐出管 18には、圧縮機 Tとともに冷凍サイクルを構成する凝縮器と、膨張機構及び 蒸発器を介してアキュームレータ 19が接続される。このアキュームレータ 19底部には 、吸込み管 29a, 29b, 29cが接続されていて、各吸込み管 29a〜29cは密閉ケース 1と第 1〜第 3のシリンダ 8A〜8Cを貫通して、第 1〜第 3のシリンダ室 14a〜14c内に 直接連通することも上述したとおりである。  As shown in FIG. 1 again, a discharge pipe 18 is connected to the upper end of the sealed case 1. The discharge pipe 18 is connected to a condenser constituting a refrigeration cycle together with the compressor T, and an accumulator 19 via an expansion mechanism and an evaporator. Suction pipes 29a, 29b, and 29c are connected to the bottom of the accumulator 19, and the suction pipes 29a to 29c pass through the sealed case 1 and the first to third cylinders 8A to 8C to form the first to third cylinders. The direct communication between the third cylinder chambers 14a to 14c is also as described above.
[0043] 次に、多気筒形回転式圧縮機 Tの作用について説明する。  Next, the operation of the multi-cylinder rotary compressor T will be described.
図示しなレ、リモコン (遠隔操作盤)等から制御部に運転開始信号が入ると、制御部 はインバータを介して電動機部 3に運転信号を送る。回転軸 4が回転駆動され、偏心 部 4a〜4cとともに偏心ローラ 13a〜13cは各シリンダ室 14a〜14c内で偏心回転を 行う。  When an operation start signal is input to the control unit from a remote controller (remote control panel) or the like (not shown), the control unit sends an operation signal to the motor unit 3 via the inverter. The rotation shaft 4 is driven to rotate, and the eccentric rollers 13a to 13c together with the eccentric portions 4a to 4c perform eccentric rotation in each of the cylinder chambers 14a to 14c.
第 1〜第 3の圧縮機構部 2A〜2Cにおいて、ブレード 15a〜15cがそれぞれ、ばね 部材 26によって常に弾性的に押圧付勢されるところから、ブレードの先端縁が偏心 ローラ 13a〜13c周壁に摺接して第 1〜第 3のシリンダ室 14a〜14c内を吸込み室と 圧縮室に二分する。  In the first to third compression mechanisms 2A to 2C, the blades 15a to 15c are always elastically pressed and urged by the spring members 26, respectively, so that the leading edges of the blades slide on the peripheral walls of the eccentric rollers 13a to 13c. Then, the inside of the first to third cylinder chambers 14a to 14c is divided into a suction chamber and a compression chamber.
[0044] 偏心ローラ 13a〜13cのシリンダ室 14a〜14c内周面転接位置とブレード収納溝 2 3a〜23cがー致し、ブレード 15a〜 15cが最も後退した状態で、シリンダ室 14a〜14 cの空間容量が最大となる。冷媒ガスはアキュームレータ 19から吸込管 29a〜29cを 介してそれぞれのシリンダ室 14a〜14cに吸込まれ充満する。  [0044] The cylinder chambers 14a to 14c of the eccentric rollers 13a to 13c are aligned with the inner circumferential surface rolling contact positions and the blade housing grooves 23a to 23c, and the blades 15a to 15c are retracted most. Space capacity is maximized. The refrigerant gas is sucked from the accumulator 19 via the suction pipes 29a to 29c into the respective cylinder chambers 14a to 14c, and is filled.
[0045] 偏心ローラ 13a〜13cの偏心回転にともなって、偏心ローラの各シリンダ室 14a〜l 4c内周面に対する転接位置が移動し、シリンダ室の区画された圧縮室容積が減少 する。そのため、先にシリンダ室 14a〜14cに導かれたガスが徐々に圧縮される。回 転軸 4が継続して回転され、各シリンダ室 14a〜14cにおける圧縮室容量がさらに減 少してガスが圧縮される。ガス圧が所定圧まで上昇したところで、吐出孔 27に設けら れる吐出弁機構が開放する。 With the eccentric rotation of the eccentric rollers 13a to 13c, the cylinder chambers 14a to 14l of the eccentric rollers 4c The rolling contact position with respect to the inner peripheral surface moves, and the volume of the compression chamber defined by the cylinder chamber decreases. Therefore, the gas previously guided to the cylinder chambers 14a to 14c is gradually compressed. The rotation shaft 4 is continuously rotated, and the volume of the compression chamber in each of the cylinder chambers 14a to 14c is further reduced to compress the gas. When the gas pressure rises to a predetermined pressure, the discharge valve mechanism provided in the discharge hole 27 opens.
[0046] 高圧ガスはバルブカバー a, bを介して密閉ケース 1内に吐出され、充満して密閉ケ ース上部の吐出管 18から吐出される。そして、高圧ガスは圧縮機 T力も凝縮器、膨 張機構及び蒸発器の順に導かれ、この蒸発器で蒸発し冷凍作用をなしてからアキュ 一ムレータ 19に導かれて気液分離される。  [0046] The high-pressure gas is discharged into the sealed case 1 via the valve covers a and b, filled, and discharged from the discharge pipe 18 above the sealed case. The high-pressure gas is also guided by the compressor T in the order of the condenser, the expansion mechanism, and the evaporator. The high-pressure gas evaporates in the evaporator to perform a refrigeration operation, and then is guided to the accumulator 19 to be separated into gas and liquid.
[0047] アキュームレータ 19から気液分離された低圧の蒸発冷媒が導出され、各吸込み管 29a〜29cを介して第 1〜第 3のシリンダ室 14aから 14cに導かれ再び上述の経路を 循環する。結局、多気筒形回転式圧縮機 Tにおいては、第 1のシリンダ室 14aと第 2 のシリンダ室 14b及び第 3のシリンダ室 14cの全てで一斉に、かつ、同時に圧縮作用 が行われる。  [0047] The low-pressure vaporized refrigerant separated into gas and liquid is led out of the accumulator 19, led to the first to third cylinder chambers 14a to 14c via the suction pipes 29a to 29c, and circulates again in the above-described path. As a result, in the multi-cylinder rotary compressor T, the compression operation is performed simultaneously and simultaneously in all of the first cylinder chamber 14a, the second cylinder chamber 14b, and the third cylinder chamber 14c.
[0048] このようにして本発明の多気筒形回転式圧縮機 Tは、密閉ケース 1内に、電動機部 3と、この電動機部 3と回転軸 4を介して連結される第 1の圧縮機構部 2A〜第 3の圧 縮機構部 2Cを収容し、それぞれの圧縮機構部は、偏心ローラ 13a〜13cが偏心回 転自在に収容されるシリンダ室 14a〜14cを備えた第 1のシリンダ 8A〜第 3のシリン ダ 8Cと、先端縁が偏心ローラの周面に当接し、偏心ローラの回転方向に沿ってシリ ンダ室を二分するブレード 15a〜 15cを備えてレ、る。  [0048] As described above, the multi-cylinder rotary compressor T of the present invention includes a motor unit 3 and a first compression mechanism connected to the motor unit 3 and the rotating shaft 4 in the sealed case 1. The first cylinder 8A is provided with cylinder chambers 14a to 14c in which the eccentric rollers 13a to 13c are eccentrically and rotatably accommodated. A third cylinder 8C and blades 15a to 15c having a leading edge abutting on the peripheral surface of the eccentric roller and bisecting the cylinder chamber along the rotation direction of the eccentric roller are provided.
[0049] そのうえで、各圧縮機構部 2A〜2Cにおける各摺動部のクリアランスのうち、少なく とも 1つの摺動部のクリアランスは、主軸受 9もしくは副軸受 11に接しない第 2の圧縮 機構部 2Bが、主軸受 9もしくは副軸受 11に接する第 1の圧縮機構部 2Aと第 3の圧 縮機構部 2Cよりも大に設定されることを特徴としている。  [0049] Then, of the clearances of the respective sliding parts in each of the compression mechanism parts 2A to 2C, the clearance of at least one of the sliding parts is the second compression mechanism part 2B which does not contact the main bearing 9 or the sub-bearing 11. However, it is characterized in that it is set larger than the first compression mechanism 2A and the third compression mechanism 2C that are in contact with the main bearing 9 or the sub-bearing 11.
[0050] なお説明すると、軸受 9, 11に接しない第 2の圧縮機構部 2Bにおいては、圧縮反 力等により回転軸 4の回転に伴う偏心部 4bの振れ回りが、他の偏心部 4a, 4cの振れ 回りよりも大きくなつてしまうが、第 2の圧縮機構部 2Bにおける所定の摺動部のクリア ランスを、他の圧縮機構部 2A, 2Cの対応する摺動部におけるクリアランスに対して 広げることで、各摺動部間の接触を防止でき、信頼性の向上を得られる。 [0050] Note that, in the second compression mechanism portion 2B not in contact with the bearings 9, 11, the whirling of the eccentric portion 4b due to the rotation of the rotating shaft 4 due to the compression reaction force or the like causes the whirling of the other eccentric portions 4a, 4a, 4c, the clearance of the predetermined sliding part in the second compression mechanism part 2B is larger than the clearance of the corresponding sliding part of the other compression mechanism parts 2A, 2C. By expanding, the contact between the sliding parts can be prevented, and the reliability can be improved.
[0051] 以下、本発明の特徴を具体的に説明する。  Hereinafter, features of the present invention will be described specifically.
[0052] 図 2に示すように、第 2の圧縮機構部 2Bにおけるシリンダ 8B内径部(シリンダ室 14 b周面)と偏心ローラ 13b周面とのサイドクリアランス Saが、第 1、第 3の圧縮機構部 2 A, 2Cにおけるシリンダ 8A, 8C内径部(シリンダ室 14a, 14c周面)と偏心ローラ 13a , 13c周面とのサイドクリアランス Sbよりも大(Sa > Sb)に設定されている。  [0052] As shown in Fig. 2, the side clearance Sa between the inner peripheral portion of the cylinder 8B (the peripheral surface of the cylinder chamber 14b) and the peripheral surface of the eccentric roller 13b in the second compression mechanism 2B is increased by the first and third compression mechanisms. The side clearance Sb between the inner surfaces of the cylinders 8A and 8C (the peripheral surfaces of the cylinder chambers 14a and 14c) and the peripheral surfaces of the eccentric rollers 13a and 13c in the mechanical units 2A and 2C is set to be larger (Sa> Sb).
[0053] すなわち、本来は、シリンダ室周面と偏心ローラ周面との間には潤滑油の油膜が形 成される範囲の極く小さな隙間であるサイドクリアランスを得るよう設計されていて、サ イドクリアランス Sbは勿論のこと、サイドクリアランス Saにおレ、ても油膜が形成される範 囲内での設定となる。  [0053] That is, originally, it is designed to obtain a side clearance that is a very small gap in a range where an oil film of the lubricating oil is formed between the peripheral surface of the cylinder chamber and the peripheral surface of the eccentric roller. Not only the id clearance Sb but also the side clearance Sa are set within the range where an oil film is formed.
[0054] このような構成のうえで作用すると、軸受 9, 11に接しない第 2の圧縮機構部 2Bに おいて、圧縮反力等により回転軸 4の回転に伴う偏心部 4bの振れ回りが、他の偏心 部 4a, 4cの振れ回りよりも大きくなる。し力 ながら、サイドクリアランス Saがサイドタリ ァランス Sbよりも大に設定されているため、偏心ローラ 13b周面がシリンダ 8B内径部 に接触し難くなつて、特に始動時や高速時における信頼性の向上を得られる。  When operated in such a configuration, in the second compression mechanism 2B not in contact with the bearings 9 and 11, the whirling of the eccentric portion 4b due to the rotation of the rotary shaft 4 due to a compression reaction force or the like. However, it becomes larger than the whirling of the other eccentric parts 4a and 4c. However, since the side clearance Sa is set to be larger than the side clearance Sb, the peripheral surface of the eccentric roller 13b does not easily come into contact with the inner diameter of the cylinder 8B, improving reliability especially at startup and at high speeds. can get.
[0055] 図 3は、シリンダと偏心ローラの高さ寸法を説明する図である。  FIG. 3 is a diagram illustrating the height dimensions of the cylinder and the eccentric roller.
第 2の圧縮機構部 2Bにおけるシリンダ 8Bの高さ寸法と、偏心ローラ 13bの高さ寸 法との差である高さクリアランス Scが、第 1、第 3の圧縮機構部 2A, 2Cにおけるシリン ダ 8A, 8Cの高さ寸法と、偏心ローラ 13a, 13cの高さ寸法との差である高さクリアラン ス Sd (Sc > Sd)よりも大に設定されている。  The height clearance Sc, which is the difference between the height of the cylinder 8B in the second compression mechanism 2B and the height of the eccentric roller 13b, is increased by the cylinders in the first and third compression mechanisms 2A and 2C. The height clearance is set to be larger than the height clearance Sd (Sc> Sd), which is the difference between the height of 8A and 8C and the height of the eccentric rollers 13a and 13c.
[0056] このような構成のうえで作用すると、軸受 9, 11に接しない第 2の圧縮機構部 2Bに おいて、圧縮反力等により回転軸 4の回転に伴う偏心部 4bの振れ回りが他の偏心部 4a, 4cの振れ回りよりも大きぐ偏心ローラ 13bが偏心ローラ 13a, 13cよりも傾いた状 態となる。し力 ながら、高さクリアランス Scが、高さクリアランス Sdよりも大に設定され ているため、中間仕切り板 7A, 7Bに片当り接触がし難くなつて、特に圧縮負荷の高 い条件での信頼性の向上を得られる。  When operated in such a configuration, in the second compression mechanism 2B not in contact with the bearings 9 and 11, the whirling of the eccentric portion 4b due to the rotation of the rotary shaft 4 due to the compression reaction force or the like. The eccentric roller 13b, which is larger than the whirling of the other eccentric portions 4a, 4c, is inclined more than the eccentric rollers 13a, 13c. However, since the height clearance Sc is set to be larger than the height clearance Sd, it is difficult for the intermediate partition plates 7A and 7B to make one-side contact, and reliability is particularly high under conditions of high compression load. The property can be improved.
[0057] 図 4は、回転軸 4の正面図である。回転軸 4に一体に設けられる偏心部 4a〜4cで、 第 2の圧縮機構部 2Bを構成する偏心部 4bの偏心量 Sfが、第 1、第 3の圧縮機構部 2 A, 2Cを構成する偏心部 4a, 4cの偏心量 Se, Sgよりも小(Sf < Sg, Se)に設定され ている。 FIG. 4 is a front view of the rotating shaft 4. With the eccentric portions 4a to 4c provided integrally with the rotating shaft 4, the eccentric amount Sf of the eccentric portion 4b constituting the second compression mechanism portion 2B is equal to the first and third compression mechanism portions 2. The eccentric amounts Se, Sg of the eccentric portions 4a, 4c constituting A, 2C are set to be smaller (Sf <Sg, Se).
[0058] このような構成のうえで作用すると、軸受 9, 11に接しない第 2の圧縮機構部 2Bに おいて、圧縮反力等により回転軸 4の回転に伴う偏心部 4bの振れ回りが、他の偏心 部 4a, 4cの振れ回りよりも大きくなろうとする。し力 ながら、偏心部 4bの偏心量 Sfが 他の偏心部 4a, 4cの偏心量 Se, Sgよりも小に設定されているため、偏心部 4bとロー ラ 13bによる遠心力が小さくなつて振れ回りが小さくなる。  When operated in such a configuration, in the second compression mechanism 2B not in contact with the bearings 9 and 11, whirling of the eccentric portion 4b due to rotation of the rotary shaft 4 due to a compression reaction force or the like. However, it tends to be larger than the whirling of the other eccentric parts 4a and 4c. However, since the eccentricity Sf of the eccentric part 4b is set to be smaller than the eccentricities Se and Sg of the other eccentric parts 4a and 4c, the centrifugal force generated by the eccentric part 4b and the roller 13b is reduced. The circumference becomes small.
したがって、ここに嵌合する偏心ローラ 13bがシリンダ室 14b周面に接触し難くなつ て、信頼性の向上を得られる。なお、偏心部の偏心量を小さくするとローラ外径が大 きくなり、ローラ外周面に作用するガス荷重が増えるため、本構成は、ガス荷重に対し て遠心力の影響の方が大きい、換言すれば、ガス荷重の小さな冷媒、例えば Rl 34a 等を使用する場合に最適である。  Therefore, the eccentric roller 13b fitted here does not easily come into contact with the peripheral surface of the cylinder chamber 14b, so that the reliability can be improved. When the amount of eccentricity of the eccentric portion is reduced, the outer diameter of the roller increases, and the gas load acting on the outer peripheral surface of the roller increases. Therefore, in this configuration, the effect of the centrifugal force on the gas load is larger. It is most suitable when a refrigerant having a small gas load, for example, Rl 34a is used.
[0059] 図 5は、圧縮組立の縦断面図である。  FIG. 5 is a longitudinal sectional view of the compression assembly.
[0060] 第 2の圧縮機構部 2Bにおけるシリンダ 8Bの高さ寸法 H2が、第 1、第 3の圧縮機構 部 2A, 2Cにおけるシリンダ 8A, 8Cの高さ寸法 HI , H3よりも小(H2く HI , H3)に 設定されている。これにより、第 2のシリンダ室 14bに収容される偏心ローラ 13bの高 さ寸法力 第 1、第 3のシリンダ室 14a, 14cに収容される偏心ローラ 13a, 13cの高さ 寸法よりも小に形成されることになる。  The height H2 of the cylinder 8B in the second compression mechanism 2B is smaller than the height HI, H3 of the cylinders 8A, 8C in the first and third compression mechanisms 2A, 2C (H2 HI, H3). Thereby, the height dimension force of the eccentric roller 13b accommodated in the second cylinder chamber 14b is formed smaller than the height dimension of the eccentric rollers 13a, 13c accommodated in the first and third cylinder chambers 14a, 14c. Will be done.
[0061] このような構成のうえで作用すると、軸受 9, 11に接しない第 2の圧縮機構部 2Bに おいて、圧縮反力等により回転軸 4の回転に伴う偏心ローラ 13bの振れ回りが、他の 偏心ローラ 13a, 13cの振れ回りよりも大きくなろうとする。し力しながら、シリンダ 8Bと 偏心ローラ 13bの高さ寸法 H2が、他の圧縮機構部の高さ寸法 Hl, H3よりも小に設 定されているため、ガス荷重及び遠心力が低減して回転軸の振れ回りが小さくなり、 主軸受 9と副軸受 11にかかる荷重が軽減してカジリ等の発生がなぐ信頼性の向上 を得られる。  When operated in such a configuration, in the second compression mechanism portion 2B not in contact with the bearings 9 and 11, the whirling of the eccentric roller 13b due to the rotation of the rotary shaft 4 due to a compression reaction force or the like. However, it tends to be larger than the whirling of the other eccentric rollers 13a and 13c. Since the height H2 of the cylinder 8B and the eccentric roller 13b is set smaller than the heights Hl and H3 of the other compression mechanisms, the gas load and centrifugal force are reduced. The whirling of the rotating shaft is reduced, the load applied to the main bearing 9 and the sub-bearing 11 is reduced, and the reliability in which galling or the like does not occur can be improved.
[0062] 図 6A及び図 6Bは、第 2の圧縮機構部 2Bに用いられる偏心ローラ 13bの平面図と 断面図である。ともに、外径寸法に何らの変化もないが、内径部に後述する加工が加 えられている。 [0063] 図 6Aに示す偏心ローラ 13blは、内径の上下両端部が偏心部 4bに嵌合する孔部 j であり、これら孔部相互間の中央部において、孔部よりも直径の大きな段部 kが設け られる。したがって、第 1、第 3の圧縮機構部 2A, 2Cに備えられる、単純に全てが孔 部である偏心ローラ 13a, 13cと比較して軽量ィ匕される。 FIGS. 6A and 6B are a plan view and a sectional view of an eccentric roller 13b used in the second compression mechanism 2B. In both cases, the outer diameter dimension does not change at all, but the inner diameter portion is processed as described later. The eccentric roller 13bl shown in FIG. 6A is a hole j in which the upper and lower ends of the inner diameter are fitted into the eccentric portion 4b, and a step portion having a larger diameter than the hole at the center between the holes. k is provided. Therefore, the weight is reduced as compared with the eccentric rollers 13a and 13c provided in the first and third compression mechanism sections 2A and 2C, each of which is simply a hole.
[0064] 図 6Bに示す偏心ローラ 13b2は、中央部に偏心部 4bに嵌合する孔部 jをなし、この 上下両端に孔部よりも直径の大きな段部 kが設けられる。したがって、第 1、第 3の圧 縮機構部 2A, 2Cに備えられる、単純に全てが孔部である偏心ローラ 13a, 13cと比 較して軽量化される。  [0064] The eccentric roller 13b2 shown in FIG. 6B has a hole j at the center portion to be fitted to the eccentric portion 4b, and a step k having a diameter larger than the hole at both upper and lower ends. Therefore, the weight can be reduced as compared with the eccentric rollers 13a, 13c provided in the first and third compression mechanism portions 2A, 2C, each of which is simply a hole.
[0065] このような構成のうえで作用すると、軸受 9, 11に接しない第 2の圧縮機構部 2Bに おいて、圧縮反力等により回転軸 4の回転に伴う偏心ローラ 13bの振れ回りが他の偏 心ローラ 13a, 13cの振れ回りよりも大きくなろうとする。しかしながら、偏心ローラ 13b の重量が偏心ローラ 13a, 13cの重量よりも小に設定されているため、遠心力が低減 して回転軸 4の振れ回りが小さくなり、主軸受 9と副軸受 11にかかる荷重が軽減して 信頼性の向上を得られる。  When operated in such a configuration, the whirling of the eccentric roller 13b caused by the rotation of the rotary shaft 4 due to the compression reaction force or the like in the second compression mechanism 2B not in contact with the bearings 9 and 11 It tends to be larger than the whirling of the other eccentric rollers 13a and 13c. However, since the weight of the eccentric roller 13b is set to be smaller than the weight of the eccentric rollers 13a and 13c, the centrifugal force is reduced, the whirling of the rotating shaft 4 is reduced, and the load on the main bearing 9 and the auxiliary bearing 11 is reduced. The load is reduced and reliability is improved.
[0066] また、特に図示していなレ、が、各圧縮機構部 2A〜2Cに用いられる偏心ローラ 13a 〜13cの形状寸法を全て統一し、かつ、第 2の圧縮機構部 2Bの偏心ローラ 13bは素 材の比重が、第 1、第 3の圧縮機構部 2A, 2Cに備えられる偏心ローラ 13a, 13cの 素材の比重よりも小さいものを選択してもよい。  Further, although not particularly shown, the eccentric rollers 13a to 13c used in each of the compression mechanism units 2A to 2C have all the same shape and size, and the eccentric rollers 13b of the second compression mechanism unit 2B The material having a specific gravity smaller than that of the material of the eccentric rollers 13a and 13c provided in the first and third compression mechanisms 2A and 2C may be selected.
[0067] その結果、第 2の圧縮機構部 2Bの偏心ローラ 13bの質量が、第 1、第 3の圧縮機構 部 2A, 2Cに備えられる偏心ローラ 13a, 13cの質量よりも小となり、先に説明したのと 同様の作用効果を得られる。  As a result, the mass of the eccentric roller 13b of the second compression mechanism 2B becomes smaller than the mass of the eccentric rollers 13a, 13c provided in the first and third compression mechanism 2A, 2C. The same operation and effect as described can be obtained.
[0068] 図 7Aは第 1、第 3の圧縮機構部 2A, 2Cの横断平面図、図 7Bは第 2の圧縮機構部 2Bの横断平面図、図 8は第 1〜第 3の圧縮機構部 2A〜2Cの縦断面図である。 ここでは、第 2の圧縮機構部 2Bにおける回転軸 4に設けられる偏心部 4bの偏心量 E2を、第 1、第 3の圧縮機構部 2A, 2Cにおける回転軸 4に設けられる偏心部 4a, 4c の偏 、量 El, E3よりも大(E2 >E1, E3)に設定する。  FIG. 7A is a cross-sectional plan view of first and third compression mechanism units 2A and 2C, FIG. 7B is a cross-sectional plan view of second compression mechanism unit 2B, and FIG. 8 is first to third compression mechanism units. It is a longitudinal cross-sectional view of 2A-2C. Here, the eccentric amount E2 of the eccentric portion 4b provided on the rotating shaft 4 in the second compression mechanism portion 2B is determined by the eccentric portions 4a, 4c provided on the rotating shaft 4 in the first and third compression mechanism portions 2A, 2C. Set to a value larger than the deviation El and E3 (E2> E1, E3).
一方、各シリンダ 8A〜8Cの内径部(第 1〜第 3のシリンダ室 14a〜: 14c)の直径は 全て同一であるから、第 2の圧縮機構部 2Bにおける偏心ローラ 13bの外径が第 1、 第 3の圧縮機構部 2A, 2Cにおける偏心ローラ 13a, 13cの外径よりも小さくなる。そ の結果、偏心ローラ 13bの質量力 偏心ローラ 13a, 13cの質量よりも小さくなる。 On the other hand, since the diameters of the inner diameters of the cylinders 8A to 8C (the first to third cylinder chambers 14a to 14c) are all the same, the outer diameter of the eccentric roller 13b in the second compression mechanism 2B is the first diameter. , It becomes smaller than the outer diameter of the eccentric rollers 13a, 13c in the third compression mechanism sections 2A, 2C. As a result, the mass force of the eccentric roller 13b becomes smaller than the mass of the eccentric rollers 13a and 13c.
[0069] このような構成のうえで作用すると、軸受 9, 11に接しない第 2の圧縮機構部 2Bに おいては、圧縮反力等により回転軸 4の回転に伴う偏心ローラ 13bの振れ回りが他の 偏心ローラ 13a, 13cの振れ回りよりも大きくなろうとする。しかしながら、偏心ローラ 1 3bに作用するガス荷重が小さくなるため、回転軸の振れ回りが小さくなり、主軸受 9と 副軸受 11に力かる荷重が軽減して信頼性の向上を得られる。  When operated in such a configuration, in the second compression mechanism portion 2B not in contact with the bearings 9 and 11, the whirling of the eccentric roller 13b due to the rotation of the rotating shaft 4 due to a compression reaction force or the like. Tends to be larger than the whirling of the other eccentric rollers 13a and 13c. However, since the gas load acting on the eccentric roller 13b is reduced, the whirling of the rotating shaft is reduced, and the load applied to the main bearing 9 and the sub-bearing 11 is reduced, so that the reliability can be improved.
なお、偏心部 4bの偏心量 E2を偏心部 4a, 4cの偏心量 El , E3よりも大きくすること により、偏心部 4bと偏心ローラ 13bによる遠心力は大きくなるため、本構成は、遠心 力に対してガス荷重の影響の方が大きい、換言すれば、ガス加重の大きな冷媒、例 えば R41 OAを用いる場合に最適である。  By making the eccentric amount E2 of the eccentric portion 4b larger than the eccentric amounts El and E3 of the eccentric portions 4a and 4c, the centrifugal force generated by the eccentric portion 4b and the eccentric roller 13b increases. On the other hand, it is most suitable when a gas load has a greater effect, in other words, when a refrigerant with a large gas load, for example, R41OA is used.
なお、上述の実施の形態では第 1〜第 3の圧縮機構部 2A〜2Cを備えたが、これ に限定されるものではなぐさらに多くの数の圧縮機構部を備えた多気筒形回転式 圧縮機にも適用できることは勿論である。  In the above-described embodiment, the first to third compression mechanisms 2A to 2C are provided. However, the present invention is not limited to this, and the multi-cylinder rotary compression having a greater number of compression mechanisms is provided. Needless to say, the present invention can also be applied to machines.
[0070] 図 9は、第 2の実施の形態における、例えば冷凍装置の冷凍サイクルを構成する多 気筒形回転式圧縮機 TOの内部構造を示す縦断面図である。  FIG. 9 is a longitudinal sectional view showing the internal structure of a multi-cylinder rotary compressor TO constituting a refrigeration cycle of a refrigeration apparatus, for example, in the second embodiment.
[0071] 図 9中 101は密閉ケースであって、この密閉ケース 101内の下部には後述する複 数の圧縮機構部、ここでは第 1の圧縮機構部 102Aと、第 2の圧縮機構部 102B、及 び第 3の圧縮機構部 102Cから構成される圧縮機構組立 102が設けられ、この圧縮 機構組立の上部には電動機部 103が設けられる。これら電動機部 103と、圧縮機構 組立 102を構成する第 1〜第 3の圧縮機構部 102A〜102Cは、互いに回転軸 104 を介して連結される。  In FIG. 9, reference numeral 101 denotes a sealed case, and a plurality of compression mechanism units described later, here, a first compression mechanism unit 102A and a second compression mechanism unit 102B , And a third compression mechanism unit 102C, and a motor unit 103 is provided above the compression mechanism assembly. The electric motor unit 103 and the first to third compression mechanism units 102A to 102C constituting the compression mechanism assembly 102 are connected to each other via a rotating shaft 104.
[0072] 電動機部 103は、密閉ケース 101の内面に固定されるステータ 105と、このステー タ 105の内側に所定の間隙を存して配置され、かつ、回転軸 104が介揷するロータ 1 06と力も構成される。電動機部 103は、給電部 103aを介して運転周波数を可変する インバータに接続されるとともに、インバータから電動機部 103を制御する制御部(レヽ ずれも図示しなレ、)と電気的に接続される。  The electric motor unit 103 includes a stator 105 fixed to the inner surface of the sealed case 101, a rotor 106 arranged with a predetermined gap inside the stator 105, and a rotating shaft 104 interposed therebetween. And power are also composed. The motor unit 103 is connected to an inverter that varies the operating frequency via a power supply unit 103a, and is electrically connected to a control unit that controls the motor unit 103 from the inverter. .
[0073] 第 1の圧縮機構部 102Aと第 2の圧縮機構部 102Bとの間には中間仕切り板 107A が介在される。第 2の圧縮機構部 102Bと第 3の圧縮機構部 102Cとの間には、中間 仕切り板 107Bが介在される。それぞれの圧縮機構部 102A〜102Cは、第 1のシリ ンダ 108A、第 2のシリンダ 108B、第 3のシリンダ 108Cを備えている。 [0073] An intermediate partition 107A is provided between the first compression mechanism 102A and the second compression mechanism 102B. Is interposed. An intermediate partition plate 107B is interposed between the second compression mechanism 102B and the third compression mechanism 102C. Each of the compression mechanism sections 102A to 102C includes a first cylinder 108A, a second cylinder 108B, and a third cylinder 108C.
[0074] 第 1のシリンダ 108Aの上面部には主軸受 109が重ね合わされ、バルブカバー aとと もに取付けボルト 110を介してシリンダ 108Aに取付け固定される。第 3のシリンダ 10 8Cの下面部には副軸受 111が重ね合わされ、バルブカバー bと中間仕切り板 107A , 107B及び第 2のシリンダ 108Bととちに取付けボノレト 112を介して第 1のシリンダ 10 8Aに取付け固定される。  [0074] A main bearing 109 is superimposed on the upper surface of the first cylinder 108A, and is fixed to the cylinder 108A via a fixing bolt 110 together with the valve cover a. An auxiliary bearing 111 is superimposed on the lower surface of the third cylinder 108C, and the first cylinder 108A is attached to the valve cover b, the intermediate partition plates 107A and 107B and the second cylinder 108B via the mounting bonolet 112. Attached and fixed.
[0075] 一方、回転軸 104は、中途部と下端部が主軸受 109と副軸受 111に回転自在に枢 支される。回転軸 104は、第 1〜第 3のシリンダ 108A〜108C内部を貫通するととも に、後述する位相差で形成される 3つの偏心部である、第 1の偏心部 104aと、第 2の 偏心部 104b及び第 3の偏心部 104cを一体に備えている。  On the other hand, the rotating shaft 104 is rotatably supported at its middle and lower ends by the main bearing 109 and the sub-bearing 111. The rotating shaft 104 penetrates the inside of the first to third cylinders 108A to 108C, and includes three first eccentric portions 104a and a second eccentric portion which are formed by a phase difference described later. 104b and the third eccentric part 104c are provided integrally.
[0076] 図において最上部に設けられる第 1の偏心部 104aの偏心方向に対して、中央部と 最下部に設けられる第 2、第 3の偏心部 104b, 104cは互いに同一で、かつ、偏心部 104aとは 180° 異なる偏心方向に設定されている。すなわち、回転軸 104に 3個の 偏心部 104a〜104cを備えたときに、 2個の偏心部 104b, 104cの偏心方向を同一 としている。  In the figure, with respect to the eccentric direction of the first eccentric portion 104a provided at the uppermost portion, the center portion and the second and third eccentric portions 104b and 104c provided at the lowermost portion are identical to each other and are eccentric. The eccentric direction is different from that of the portion 104a by 180 °. That is, when the rotating shaft 104 is provided with three eccentric portions 104a to 104c, the eccentric directions of the two eccentric portions 104b and 104c are the same.
[0077] 回転軸 104の各偏心部 104a〜104cは、各シリンダ 108A〜108Cの内径部内に 位置するよう組立てられ、それぞれの周面に偏心ローラ 113a, 113b, 113cが嵌合 される。したがって、偏心ローラ 113aの偏心方向に対して、偏心ローラ 113b, 113c の偏心方向は互いに同一に揃えられ、かつ、偏心ローラ 113aとは 180° 異なる偏心 方向に設定されることになる。  [0077] The eccentric portions 104a to 104c of the rotating shaft 104 are assembled so as to be located in the inner diameter portions of the cylinders 108A to 108C, and the eccentric rollers 113a, 113b, and 113c are fitted on the respective peripheral surfaces. Therefore, the eccentric directions of the eccentric rollers 113b and 113c are set to be identical to each other with respect to the eccentric direction of the eccentric roller 113a, and are set to eccentric directions different from the eccentric roller 113a by 180 °.
[0078] 第 1のシリンダ 108Aは、主軸受 109と中間仕切り板 107Aとで上下面が区画され、 内径部に第 1のシリンダ室 114aが形成される。第 2のシリンダ 108Bは、中間仕切り 板 107Aと中間仕切り板 107Bとで上下面が区画され、内径部に第 2のシリンダ室 11 4bが形成される。第 3のシリンダ 108Cは、中間仕切り板 107Bと副軸受 111で上下 面が区画され、内径部に第 3のシリンダ室 114cが形成される。  [0078] The first cylinder 108A is divided into upper and lower surfaces by a main bearing 109 and an intermediate partition plate 107A, and a first cylinder chamber 114a is formed in an inner diameter portion. The upper and lower surfaces of the second cylinder 108B are defined by an intermediate partition plate 107A and an intermediate partition plate 107B, and a second cylinder chamber 114b is formed in the inner diameter portion. The third cylinder 108C is divided into upper and lower surfaces by an intermediate partition plate 107B and an auxiliary bearing 111, and a third cylinder chamber 114c is formed in the inner diameter portion.
[0079] これらシリンダ室 114a〜: 114cは互いに同一直径及び、同一軸方向長さである高さ 寸法に形成されてレ、て、それぞれに同一軸方向長さである高さ寸法の偏心ローラ 11 3a〜113cが偏心回転自在に収容される。上述したように、第 2,第 3の偏心部 104b , 104cは互いに偏心方向が同一に揃えられ、かつ、第 1の偏心部 104aとは 180° の位相差があり、回転軸 104の回転に伴う偏心ローラ 113a〜: 113cのシリンダ室 114 a〜: 114cにおける位置も、常に同一の関係が保持される。 [0079] These cylinder chambers 114a to 114c have the same diameter and the same axial length. The eccentric rollers 113a to 113c each having a height dimension that is the same axial length are housed eccentrically rotatable. As described above, the second and third eccentric portions 104b and 104c have the same eccentric direction, and have a phase difference of 180 ° with the first eccentric portion 104a. The same relationship is always maintained in the positions of the eccentric rollers 113a to: 113c in the cylinder chambers 114a to 114c.
[0080] なお、各圧縮機構部 102A〜: 102Cにおける各摺動部のクリアランスのうち、少なく とも 1つの摺動部のクリアランスは、主軸受 109もしくは副軸受 111に接しない第 2の 圧縮機構部 102Bが、主軸受 109もしくは副軸受 111に接する第 1の圧縮機構部 10 2Aと第 3の圧縮機構部 102Cよりも大に設定されている。  [0080] Of the clearances of the respective sliding portions in each of the compression mechanism portions 102A to 102C, the clearance of at least one of the sliding portions is the second compression mechanism portion not in contact with the main bearing 109 or the auxiliary bearing 111. 102B is set larger than the first compression mechanism 102A and the third compression mechanism 102C that are in contact with the main bearing 109 or the sub-bearing 111.
[0081] ここでは、第 1の圧縮機構部 102A〜第 3の圧縮機構部 102Cは全て同一の構成を なしているので、第 1の圧縮機構部 102Aについてのみ説明し、第 2、第 3の圧縮機 構部 102B, 102Cについては説明を省略する。  [0081] Here, since the first compression mechanism 102A to the third compression mechanism 102C all have the same configuration, only the first compression mechanism 102A will be described, and the second and third compression mechanisms 102A will be described. A description of the compressor components 102B and 102C is omitted.
[0082] 第 1のシリンダ 108Aには、第 1のシリンダ室 114aと連通するブレード室 115が設け られている。ブレード室 115には、ブレード 116がシリンダ室 114aに対して突没自在 に収容されるとともに、ばね部材 117が収容される。ばね部材 117は、ブレード 116 の背面側に設けられ、ブレード 116に弾性力(背圧)を付与して先端縁を偏心ローラ 113aに接触させる圧縮ばねである。  [0082] The first cylinder 108A is provided with a blade chamber 115 communicating with the first cylinder chamber 114a. In the blade chamber 115, a blade 116 is accommodated so as to be able to protrude and retract from the cylinder chamber 114a, and a spring member 117 is accommodated therein. The spring member 117 is a compression spring that is provided on the back side of the blade 116 and applies an elastic force (back pressure) to the blade 116 to bring the leading edge into contact with the eccentric roller 113a.
[0083] ブレード 116の先端縁は平面視で半円状に形成されていて、偏心ローラ 113a周壁 に、偏心ローラの回転角度にかかわらず線接触できる。偏心ローラ 113aがシリンダ 室 114aの内周壁に沿って偏心回転したとき、ブレード 116はブレード室 115を往復 運動するうようになっている。  [0083] The tip edge of the blade 116 is formed in a semicircular shape in plan view, and can make line contact with the peripheral wall of the eccentric roller 113a regardless of the rotation angle of the eccentric roller. When the eccentric roller 113a rotates eccentrically along the inner peripheral wall of the cylinder chamber 114a, the blade 116 reciprocates in the blade chamber 115.
[0084] 第 1のシリンダ 108Aには図示しない吐出切欠が設けられ、この吐出切欠と対向す る主軸受 109部位には吐出弁機構が収容される。さらに、第 1のシリンダ 108Aには、 外周面からシリンダ室 114aに臨む吸込み孔が設けられ、この吸込み孔には密閉ケ ース 101を貫通する吸込み管 118aが接続される。  [0084] A discharge notch (not shown) is provided in first cylinder 108A, and a discharge valve mechanism is accommodated in main bearing 109 portion facing this discharge notch. Further, the first cylinder 108A is provided with a suction hole facing the cylinder chamber 114a from the outer peripheral surface, and a suction pipe 118a penetrating through the sealing case 101 is connected to the suction hole.
[0085] 第 2、第 3の圧縮機構部 102B, 102Cを構成するシリンダ 108B, 108Cにも吐出弁 機構が設けられるとともに、外周面からシリンダ室 114aに臨む吸込み孔(以上、図示 しない)が設けられ、それぞれの吸込み孔には密閉ケース 101を貫通する吸込み管 1 18b, 118cが接続される。 [0085] The cylinders 108B and 108C constituting the second and third compression mechanisms 102B and 102C are also provided with a discharge valve mechanism, and provided with a suction hole (not shown) facing the cylinder chamber 114a from the outer peripheral surface. Each of the suction holes has a suction pipe 1 18b and 118c are connected.
[0086] 一方、密閉ケース 101の上端部には、吐出管 120が接続される。この吐出管 120に は、圧縮機 TOとともに冷凍サイクルを構成する凝縮器と、膨張機構及び蒸発器 (以 上,図示しなレ、)を介して、アキュームレータ 121が接続される。  [0086] On the other hand, a discharge pipe 120 is connected to the upper end of the sealed case 101. An accumulator 121 is connected to the discharge pipe 120 via a condenser constituting a refrigeration cycle together with the compressor TO, and an expansion mechanism and an evaporator (hereinafter, not shown).
[0087] このアキュームレータ 121底部から、吸込み管 118aと吸込み管 1 18cが延出されて いる。これら吸込み管 118a, 118cは密閉ケース 101を貫通し、第 1のシリンダ 108A と第 3のシリンダ 108Cのシリンダ室 114a, 114cに直接連通することは、上述したと おりである。吸込み管 118bは吸込み管 118cの中途部から分岐していて、密閉ケー ス 101を貫通し第 2のシリンダ 108Bのシリンダ室 114bに直接連通することも、上述し たとおりである。これら吸込み管 118a〜: 118cで、アキュームレータ 121と多気筒形 回転式圧縮機 TOとを連通する吸込み通路 118が構成されることになる。  [0087] A suction pipe 118a and a suction pipe 118c extend from the bottom of the accumulator 121. As described above, these suction pipes 118a and 118c penetrate the sealed case 101 and directly communicate with the cylinder chambers 114a and 114c of the first cylinder 108A and the third cylinder 108C. As described above, the suction pipe 118b is branched from a middle portion of the suction pipe 118c and penetrates through the sealed case 101 to directly communicate with the cylinder chamber 114b of the second cylinder 108B. These suction pipes 118a to 118c form a suction passage 118 that communicates between the accumulator 121 and the multi-cylinder rotary compressor TO.
[0088] 次に、多気筒形回転式圧縮機 TOの作用について説明する。図示しないリモコン( 遠隔操作盤)等から制御部に運転開始信号が入ると、制御部はインバータを介して 電動機部 103に運転信号を送る。回転軸 104が回転駆動され、偏心部 104a〜104 cとともに偏心ローラ 113a〜1 13cは各シリンダ室 114a〜114c内で偏心回転を行う 冷媒ガスは、アキュームレータ 121から吸込管 118a〜l 18cを介して、それぞれの シリンダ室 114a〜114cに吸込まれ充満する。第 1〜第 3の圧縮機構部 102A〜10 2Cにおいて、ブレード 116がばね部材 117によって常に弾性的に押圧付勢されると ころから、ブレード 116の先端縁が偏心ローラ 113a〜113c周壁に摺接して、第 1〜 第 3のシリンダ室 114a〜l 14c内を吸込み室と圧縮室に二分する。  Next, the operation of the multi-cylinder rotary compressor TO will be described. When an operation start signal is input to the control unit from a remote controller (remote control panel) (not shown) or the like, the control unit sends an operation signal to the motor unit 103 via the inverter. The rotating shaft 104 is driven to rotate, and the eccentric rollers 113a to 113c together with the eccentric portions 104a to 104c perform eccentric rotation in each of the cylinder chambers 114a to 114c.The refrigerant gas is supplied from the accumulator 121 via the suction pipes 118a to 118c. Then, each cylinder chamber 114a to 114c is sucked and filled. In the first to third compression mechanism sections 102A to 102C, since the blade 116 is constantly elastically pressed and urged by the spring member 117, the leading edge of the blade 116 comes into sliding contact with the peripheral walls of the eccentric rollers 113a to 113c. Thus, the inside of the first to third cylinder chambers 114a to 114c is divided into a suction chamber and a compression chamber.
[0089] 偏心ローラ 113a〜113cのシリンダ室 114a〜114c内周面転接位置とブレード室 1 15がー致し、ブレード 116が最も後退した状態で、シリンダ室 114a〜: 114cの空間 容量が最大となる。 [0089] When the inner circumferential surface rolling contact positions of the cylinder chambers 114a to 114c of the eccentric rollers 113a to 113c are aligned with the blade chamber 115, and the blade 116 is retracted most, the space capacity of the cylinder chambers 114a to 114c is maximized. Become.
[0090] 偏心ローラ 113a〜: 113cの偏心回転にともなって、偏心ローラの各シリンダ室 114a 〜114c内周面に対する転接位置が移動し、シリンダ室の区画された圧縮室容積が 減少する。そのため、先にシリンダ室 114a〜: 114cに導かれたガスが徐々に圧縮さ れる。回転軸 104が継続して回転され、各シリンダ室 114a〜: 114cにおける圧縮室 容量がさらに減少してガスが圧縮される。ガス圧が所定圧まで上昇したところで吐出 弁機構が開放する。 [0090] Eccentric rollers 113a to 113c: With the eccentric rotation of 113c, the rolling contact positions of the eccentric rollers with respect to the inner peripheral surfaces of cylinder chambers 114a to 114c move, and the volume of the compression chamber defined by the cylinder chamber decreases. Therefore, the gas previously guided to the cylinder chambers 114a to 114c is gradually compressed. The rotating shaft 104 is continuously rotated, and the compression chambers in the respective cylinder chambers 114a to 114c are formed. The volume is further reduced and the gas is compressed. When the gas pressure rises to the specified pressure, the discharge valve mechanism opens.
[0091] 第 1の偏心部 104aと第 2,第 3の偏心部 104b, 104cとの位相差の設定条件から、 第 1のシリンダ室 114aと第 2,第 3のシリンダ室 114b, 114cにおける吐出弁機構の 開放行程に 180° のズレがある。高圧ガスは密閉ケース 101内に吐出され、充満し て密閉ケース上部の吐出管 120から吐出される。  [0091] From the setting conditions of the phase difference between the first eccentric portion 104a and the second and third eccentric portions 104b and 104c, the discharge in the first cylinder chamber 114a and the second and third cylinder chambers 114b and 114c is performed. There is a 180 ° shift in the opening stroke of the valve mechanism. The high-pressure gas is discharged into the closed case 101, filled and discharged from the discharge pipe 120 at the top of the closed case.
[0092] 高圧ガスは圧縮機 TOから凝縮器、膨張機構及び蒸発器の順に導かれ、この蒸発 器で蒸発し冷凍作用をなしてからアキュームレータ 121に導かれて気液分離される。 アキュームレータ 121から気液分離された低圧の蒸発冷媒が導出され、吸込み通路 118を構成する各吸込み管 118a〜: 118cを介して各シリンダ室 114a〜: 114cに導か れ、再び上述の経路を循環する。  [0092] The high-pressure gas is led from the compressor TO in the order of the condenser, the expansion mechanism, and the evaporator. The high-pressure gas is evaporated by the evaporator to perform a refrigeration operation, and then is led to the accumulator 121 to be separated into gas and liquid. The low-pressure vaporized refrigerant separated into gas and liquid is led out of the accumulator 121, guided to the cylinder chambers 114a to 114c via the suction pipes 118a to 118c forming the suction passage 118, and circulated through the above-described path again. .
[0093] このようにして本発明の多気筒形回転式圧縮機 TOは、密閉ケース 101内に、電動 機部 103と、この電動機部 103と回転軸 104を介して連結される第 1の圧縮機構部 1 02A〜第 3の圧縮機構部 102Cを収容してなる。  [0093] Thus, the multi-cylinder rotary compressor TO of the present invention includes a motor unit 103 in a closed case 101, and a first compressor connected to the motor unit 103 via a rotating shaft 104. A mechanism unit 102A to a third compression mechanism unit 102C are housed therein.
[0094] それぞれの圧縮機構部 102A〜102Cは、偏心ローラ 113a〜113cが偏心回転自 在に収容される第 1〜第 3のシリンダ室 114a〜114cを備えた第 1のシリンダ 108A〜 第 3のシリンダ 108Cと、先端縁が偏心ローラの周面に当接し、偏心ローラの回転方 向に沿ってシリンダ室を二分するブレード 116を備えている。  [0094] Each of the compression mechanism units 102A to 102C includes a first cylinder 108A to a third cylinder 108A including first to third cylinder chambers 114a to 114c in which eccentric rollers 113a to 113c are accommodated in eccentric rotation. A cylinder 108C and a blade 116 having a leading edge abutting on the peripheral surface of the eccentric roller and bisecting the cylinder chamber along the rotation direction of the eccentric roller are provided.
[0095] そして、第 1のシリンダ 108Aのシリンダ室 114aに収容される第 1の偏心部 104a及 び偏心ローラ 113aに対して、第 2、第 3のシリンダ室 108B, 108Cのシリンダ室 114b , 114cに収容される 2個の偏心部である第 2,第 3の偏心部 104b, 104c及び偏心口 ーラ 113b, 113cは、互いに同一の偏心方向に揃えられるとともに、偏心部 104a及 び偏心ローラ 113aとは、互いに 180° の位相差に設定されている。  [0095] Then, the first eccentric portion 104a and the eccentric roller 113a accommodated in the cylinder chamber 114a of the first cylinder 108A are moved relative to the cylinder chambers 114b and 114c of the second and third cylinder chambers 108B and 108C. The second and third eccentric portions 104b and 104c and the eccentric rollers 113b and 113c, which are two eccentric portions accommodated in the eccentric portion, are aligned in the same eccentric direction, and the eccentric portion 104a and the eccentric roller 113a are aligned. Are set to a phase difference of 180 ° from each other.
[0096] し力、も、アキュームレータ 121から第 2のシリンダ 108Bのシリンダ室 114bに接続さ れる吸込み管 118bは、第 3のシリンダ 108Cのシリンダ室 114cに連通する吸込み管 118cから分岐していて、吸込み通路 118を構成する吸込み管 118b, 118cは互い に一部が共有して形成される。  [0096] The suction pipe 118b connected from the accumulator 121 to the cylinder chamber 114b of the second cylinder 108B branches off from the suction pipe 118c communicating with the cylinder chamber 114c of the third cylinder 108C. The suction pipes 118b and 118c that form the suction passage 118 are formed so as to share a part with each other.
[0097] すなわち、互いに偏心方向が同一の一対の偏心部 104b, 104cを収容するシリン ダ室 114b, 114cにおいては、互いに全く同一のタイミングで圧縮行程が行われるの で、吸込み通路 118を構成する吸込み管 118b, 118cを互いに共有することができ 、冷凍能力の低下を阻止できる。また、アキュームレータ 121には 2本の吸込み管 1 1 8a, 118cを接続すればよいから、アキュームレータの小型化と簡略化を得られる。 [0097] That is, a cylinder accommodating a pair of eccentric portions 104b and 104c having the same eccentric direction. Since the compression strokes are performed at exactly the same timing in the chambers 114b and 114c, the suction pipes 118b and 118c constituting the suction passage 118 can be shared with each other, and a decrease in the refrigerating capacity can be prevented. Further, since two suction pipes 118a and 118c may be connected to the accumulator 121, the size and simplification of the accumulator can be obtained.
[0098] 図 10は、第 3の実施の形態を示す多気筒形回転式圧縮機 T1の一部を省略した断 面図である。先に説明した第 2の実施の形態と同一構成部品については、同番号を 付して新たな説明を省略し、相違する部位についてのみ説明する。 (以下、同じ) ここでも、第 1のシリンダ 108Aのシリンダ室 114aに収容される第 1の偏心部 104a 及び偏心ローラ 113aに対して、第 2、第 3のシリンダ室 108B, 108Cのシリンダ室 11 4b, 114cに収容される 2個の偏心部である第 2,第 3の偏心部 104b, 104c及び偏 心ローラ 113b, 113cは、互いに同一の偏心方向に揃えられるとともに、偏心部 104 a及び偏心ローラ 113aとは、互いに 180° の位相差に設定される。  FIG. 10 is a cross-sectional view of the multi-cylinder rotary compressor T1 according to the third embodiment, in which a part of the rotary compressor T1 is omitted. The same components as those in the second embodiment described above are denoted by the same reference numerals, and a new description will be omitted. Only different portions will be described. Hereafter, the first and second eccentric portions 104a and the eccentric rollers 113a accommodated in the cylinder chamber 114a of the first cylinder 108A also have the cylinder chambers 11 of the second and third cylinder chambers 108B and 108C. The second and third eccentric portions 104b and 104c and the eccentric rollers 113b and 113c, which are two eccentric portions accommodated in the eccentric portions 104b and 114c, are aligned in the same eccentric direction. The rollers 113a are set to have a phase difference of 180 ° from each other.
[0099] なお、各圧縮機構部 102A〜102Cにおける各摺動部のクリアランスのうち、少なく とも 1つの摺動部のクリアランスは、主軸受 109もしくは副軸受 111に接しない第 2の 圧縮機構部 102B力 主軸受 109もしくは副軸受 111に接する第 1の圧縮機構部 10 2Aと第 3の圧縮機構部 102Cよりも大に設定されている。  [0099] Among the clearances of the sliding parts in each of the compression mechanism parts 102A to 102C, the clearance of at least one of the sliding parts is the second compression mechanism part 102B that does not contact the main bearing 109 or the sub-bearing 111. The force is set larger than the first compression mechanism 102A and the third compression mechanism 102C that are in contact with the main bearing 109 or the auxiliary bearing 111.
[0100] アキュームレータ 121底部には吸込み管 118aと吸込み管 118cの 2本のみが接続 され、それぞれ密閉ケース 101を貫通して第 1 ,第 3のシリンダ 108A, 108Cのシリン ダ室 114a, 114cに接続される。  [0100] Only two pipes, suction pipe 118a and suction pipe 118c, are connected to the bottom of accumulator 121, and penetrate through sealed case 101 to connect to cylinder chambers 114a, 114c of first and third cylinders 108A, 108C, respectively. Is done.
[0101] また、下部側の中間仕切り板 107Bを介して第 2のシリンダ 108Bと第 3のシリンダ 1 08Cとの間に亘り、例えばパイプからなる案内通路 1 18dが設けられ、第 2のシリンダ 室 114bと第 3のシリンダ室 114cとの間に冷媒ガスを案内できるようになつている。し たがって、ここでは吸込み管 118a, 118c及び案内通路 118dで吸込み通路 118A が構成される。  [0101] A guide passage 118d made of, for example, a pipe is provided between the second cylinder 108B and the third cylinder 108C via the lower intermediate partition plate 107B, and a second cylinder chamber is provided. Refrigerant gas can be guided between 114b and the third cylinder chamber 114c. Therefore, here, the suction pipes 118a and 118c and the guide passage 118d constitute the suction passage 118A.
[0102] 換言すれば、偏心方向が同一の第 2,第 3の偏心部 104b, 104cを収容する第 2, 第 3のシリンダ室 114b, 114cと、アキュームレータ 121とを連通する吸込み通路 118 Aとしての吸込み管 118cと案内通路 118dは、互いに一部が共有して形成される。  [0102] In other words, the suction passage 118A communicates with the second and third cylinder chambers 114b and 114c accommodating the second and third eccentric portions 104b and 104c having the same eccentric direction and the accumulator 121. The suction pipe 118c and the guide passage 118d are formed so as to partially share each other.
[0103] このようにして、 2個の偏心部 104b, 104cが、それぞれ偏心方向を同一に揃えら れた多気筒形回転式圧縮機 Tlである。回転軸 104を回転駆動すると、回転軸 104 の回転にともなって、シリンダ室 114bとシリンダ室 114cでは、互いに全く同一のタイ ミングで圧縮行程を行うため、吸込み通路 118Aの一部を共有して形成でき、冷凍能 力の低下を阻止する。 [0103] In this way, the two eccentric portions 104b and 104c have the same eccentric direction. Multi-cylinder rotary compressor Tl. When the rotating shaft 104 is driven to rotate, the cylinder chamber 114b and the cylinder chamber 114c perform the compression stroke at exactly the same time as the rotating shaft 104 rotates, so that a part of the suction passage 118A is formed in common. To prevent a decrease in refrigeration capacity.
[0104] アキュームレータ 121には 2本の吸込み管 118a, 118cを接続すればよいから、ァ キュームレータの小型化と簡略化を得られる。密閉ケース 101においては、吸込み管 118a, 118cが貫通する取付け用孔を 2個設ければよいとともに、互いに取付け用孔 の間隔を広げることができるから、密閉ケースの耐圧性の向上を得られる。  [0104] Since two suction pipes 118a and 118c may be connected to the accumulator 121, the size and simplification of the accumulator can be obtained. In the closed case 101, it is sufficient to provide two mounting holes through which the suction pipes 118a and 118c penetrate, and since the distance between the mounting holes can be increased, the pressure resistance of the closed case can be improved.
[0105] 図 11は、第 4の実施の形態を示す多気筒形回転式圧縮機 T2の一部を省略した断 面図である。  FIG. 11 is a cross-sectional view of a multi-cylinder rotary compressor T2 according to a fourth embodiment, in which a part of the rotary compressor T2 is omitted.
[0106] 第 1のシリンダ 108Aのシリンダ室 114aに収容される第 1の偏心部 104a及び偏心 ローラ 113aに対して、第 2、第 3のシリンダ室 108B, 108Cのシリンダ室 114b, 114 cに収容される 2個の偏心部 104b, 104c及び偏心ローラ 113b, 113cは、互いに同 一の偏心方向に揃えられるとともに、偏心部 104a及び偏心ローラ 113aとは、互いに 180° の位相差に設定されることは変りがない。  The first eccentric portion 104a and the eccentric roller 113a housed in the cylinder chamber 114a of the first cylinder 108A are housed in the cylinder chambers 114b and 114c of the second and third cylinder chambers 108B and 108C. The two eccentric portions 104b and 104c and the eccentric rollers 113b and 113c are aligned in the same eccentric direction, and the eccentric portion 104a and the eccentric roller 113a are set to have a phase difference of 180 ° from each other. Is unchanged.
[0107] そして、アキュームレータ 121底部には吸込み管 118aと吸込み管 118cの 2本のみ が接続され、それぞれ密閉ケース 101を貫通する。吸込み管 118aは第 1のシリンダ 1 08Aのシリンダ室 114aに接続される力 吸込み管 118cは中間仕切り板 107Bに設 けられる吸込み穴部 118eに接続される。  [0107] Only two suction pipes 118a and 118c are connected to the bottom of the accumulator 121, and each penetrates the sealed case 101. The suction pipe 118a is connected to the cylinder chamber 114a of the first cylinder 108A. The suction pipe 118c is connected to a suction hole 118e provided in the intermediate partition 107B.
[0108] この吸込み穴部 118eは中間仕切り板 107Bの内径部には到達しない位置で上下 方向に分岐される。シリンダ 108Bとシリンダ 108Cには吸込み穴部 118eに連通する とともに、それぞれのシリンダ室 114bとシリンダ室 114cに開口する吸込み案内路 11 8fが設けられている。  [0108] The suction hole 118e is branched in a vertical direction at a position where it does not reach the inner diameter of the intermediate partition plate 107B. The cylinders 108B and 108C are provided with suction guide paths 118f communicating with the suction holes 118e and opening to the respective cylinder chambers 114b and 114c.
[0109] したがって、吸込み管 118cに導かれた冷媒ガスを中間仕切り板 107Bの吸込み穴 部 118eから吸込み案内路 118fを介して第 2のシリンダ室 114bと第 3のシリンダ室 1 14cとの間に冷媒ガスを案内できるようになつている。ここでは、吸込み管 118a, 118 c及び吸込み穴部 118eと吸込み案内路 118fで、吸込み通路 118Bが構成される。  [0109] Therefore, the refrigerant gas guided to the suction pipe 118c is transferred from the suction hole 118e of the intermediate partition plate 107B to the second cylinder chamber 114b and the third cylinder chamber 114c through the suction guide path 118f. The refrigerant gas can be guided. Here, the suction pipes 118a and 118c, the suction hole 118e, and the suction guide passage 118f constitute a suction passage 118B.
[0110] 換言すれば、偏心方向が同一の第 2,第 3の偏心部 104b, 104cを収容する第 2, 第 3のシリンダ室 114b, 114cとアキュームレータ 121とを連通する吸込み通路 118B としての吸込み管 118c、吸込み穴部 118e、吸込み案内路 118fは互いに一部が共 有して形成される。 [0110] In other words, the second and third eccentric portions 104b and 104c accommodating the same eccentric direction are accommodated in the second and third eccentric portions 104b and 104c, respectively. The suction pipe 118c, the suction hole 118e, and the suction guide path 118f as the suction passage 118B that communicates the third cylinder chambers 114b, 114c and the accumulator 121 are formed so as to be partially shared with each other.
[0111] なお、各圧縮機構部 102A〜: 102Cにおける各摺動部のクリアランスのうち、少なく とも 1つの摺動部のクリアランスは、主軸受 109もしくは副軸受 111に接しない第 2の 圧縮機構部 102Bが、主軸受 109もしくは副軸受 111に接する第 1の圧縮機構部 10 2Aと第 3の圧縮機構部 102Cよりも大に設定されている。  [0111] Among the clearances of the respective sliding portions in each of the compression mechanism portions 102A to 102C, the clearance of at least one of the sliding portions is the second compression mechanism portion that is not in contact with the main bearing 109 or the sub bearing 111. 102B is set larger than the first compression mechanism 102A and the third compression mechanism 102C that are in contact with the main bearing 109 or the sub-bearing 111.
[0112] このようにして、 2個の偏心部 104b, 104cが、それぞれ偏心方向を同一に揃えら れた多気筒形回転式圧縮機 T2である。回転軸 104を回転駆動すると、回転軸 104 の回転にともなって、シリンダ室 114bとシリンダ室 114cでは、互いに全く同一のタイ ミングで圧縮行程を行うため、吸込み通路 118Bの一部を共有して形成でき、冷凍能 力の低下を阻止する。  [0112] Thus, the two eccentric portions 104b and 104c are the multi-cylinder rotary compressor T2 in which the eccentric directions are the same. When the rotating shaft 104 is driven to rotate, the compression stroke is performed at exactly the same time in the cylinder chamber 114b and the cylinder chamber 114c with the rotation of the rotating shaft 104, so that a part of the suction passage 118B is shared. To prevent a decrease in refrigeration capacity.
[0113] アキュームレータ 121には 2本の吸込み管 118a, 118cを接続すればよいから、ァ キュームレータの小型化と簡略化を得られる。密閉ケース 101においては、吸込み管 118a, 118cが貫通する取付け用孔を 2個設ければよいとともに、互いに取付け用孔 の間隔を広げることができるから、密閉ケース 101の耐圧性の向上を得られる。  [0113] Since two suction pipes 118a and 118c may be connected to the accumulator 121, the size and simplification of the accumulator can be obtained. In the sealed case 101, it is sufficient to provide two mounting holes through which the suction pipes 118a and 118c pass, and since the distance between the mounting holes can be increased, the pressure resistance of the sealed case 101 can be improved. .
図 12は、第 5の実施の形態を示す多気筒形回転式圧縮機の一部を省略した断面 図である。ここでは、これまで説明してきた 3個の偏心部 104a〜104cが設けられる 回転軸 104を備えた多気筒形回転式圧縮機とは相違し、 4個の偏心部 104a〜104 dが設けられる回転軸 104を備えた多気筒形回転式圧縮機 T3を示している。  FIG. 12 is a cross-sectional view of a multi-cylinder rotary compressor according to a fifth embodiment with a part thereof omitted. Here, unlike the multi-cylinder rotary compressor having the rotating shaft 104 provided with the three eccentric portions 104a to 104c described above, the rotation provided with the four eccentric portions 104a to 104d is provided. A multi-cylinder rotary compressor T3 with a shaft 104 is shown.
[0114] ただし、シリンダ (気筒)数が相違していても基本的な構成は全く変りがない。相違 点のみ説明すると、回転軸 104には第 1の圧縮機構部 102 A〜第 4の圧縮機構部 10 2Dが軸方向に沿って連結される。これまでのものと同様、最上部に第 1の圧縮機構 部 102Aがあり、以下、下部側に亘つて第 2、第 3の圧縮機構部 102B, 102Cがあり 、最下部に第 4の圧縮機構部 102Dがあって、圧縮組立 102が構成される。  [0114] However, even if the number of cylinders (cylinders) is different, the basic configuration does not change at all. Explaining only the differences, the first compression mechanism 102A to the fourth compression mechanism 102D are connected to the rotating shaft 104 along the axial direction. As before, there is a first compression mechanism 102A at the top, second and third compression mechanisms 102B and 102C below, and a fourth compression mechanism at the bottom. There is a part 102D to constitute the compression assembly 102.
[0115] なお、各圧縮機構部 102A〜: 102Dにおける各摺動部のクリアランスのうち、少なく とも 1つの摺動部のクリアランスは、主軸受 109もしくは副軸受 111に接しない第 2の 圧縮機構部 102Bが、主軸受 109もしくは副軸受 111に接する第 1の圧縮機構部 10 2Aと第 4の圧縮機構部 102Dよりも大に設定されている。 [0115] Of the clearances of the sliding portions in each of the compression mechanism portions 102A to 102D, the clearance of at least one of the sliding portions is the second compression mechanism portion that is not in contact with the main bearing 109 or the auxiliary bearing 111. 102B is the first compression mechanism 10 in contact with the main bearing 109 or the sub-bearing 111. It is set larger than 2A and the fourth compression mechanism section 102D.
[0116] 第 1、第 2のシリンダ室 108A, 108Bのシリンダ室 114a, 114bに収容される 2個の 偏心部である第 1 ,第 2の偏心部 104a, 104b及び偏心ローラ 113a, 113bは、互い に同一の偏心方向に揃えられる。また、第 3、第 4のシリンダ室 108C, 108Dのシリン ダ室 114c, 114dに収容される 2個の偏心部である第 3,第 4の偏心部 104c, 104d 及び偏心ローラ 113c, 113dは、互いに同一の偏心方向に揃えられる。第 1 ,第 2の 偏心部 104a, 104b及び偏心ローラ 113a, 113bと、第 3,第 4の偏心部 104c、 104 d及び偏心ローラ 113c, 113dとは、互レ、に 180° の位相差に設定される。  [0116] The first and second eccentric portions 104a and 104b and the eccentric rollers 113a and 113b, which are two eccentric portions accommodated in the cylinder chambers 114a and 114b of the first and second cylinder chambers 108A and 108B, They are aligned in the same eccentric direction. Further, the third and fourth eccentric portions 104c and 104d, which are two eccentric portions accommodated in the cylinder chambers 114c and 114d of the third and fourth cylinder chambers 108C and 108D, and the eccentric rollers 113c and 113d, They are aligned in the same eccentric direction. The first and second eccentric portions 104a and 104b and the eccentric rollers 113a and 113b and the third and fourth eccentric portions 104c and 104d and the eccentric rollers 113c and 113d have a phase difference of 180 ° with each other. Is set.
[0117] アキュームレータ 121底部には吸込み管 118aと吸込み管 118cの 2本のみが接続 され、それぞれ密閉ケース 101を貫通する。吸込み管 118aは中間仕切り板 107Aに 設けられる吸込み穴部 118gに接続される。この吸込み穴部 118gは中間仕切り板 1 07Aの内径部に到達しない位置で上下方向に分岐される。シリンダ 108Aとシリンダ 108Bには吸込み穴部 118gに連通するとともに、それぞれのシリンダ室 114aとシリ ンダ室 114bに開口する吸込み案内路 118hが設けられてレ、る。  [0117] Only two suction pipes 118a and 118c are connected to the bottom of the accumulator 121, and each penetrates the sealed case 101. The suction pipe 118a is connected to a suction hole 118g provided in the intermediate partition plate 107A. The suction hole 118g is branched in the vertical direction at a position where it does not reach the inner diameter of the intermediate partition plate 107A. The cylinders 108A and 108B are provided with suction guide paths 118h communicating with the suction holes 118g and opening to the respective cylinder chambers 114a and the cylinder chambers 114b.
[0118] 一方、吸込み管 118cは中間仕切り板 107Cに設けられる吸込み穴部 118iに接続 される。この吸込み穴部 118iは中間仕切り板 107Cの内径部に到達しなレ、位置で上 下方向に分岐される。シリンダ 108Cとシリンダ 108Dには吸込み穴部 118iに連通す るとともに、それぞれのシリンダ室 114cとシリンダ室 114dに開口する吸込み案内路 1 1 ¾が設けられている。  [0118] On the other hand, the suction pipe 118c is connected to a suction hole 118i provided in the intermediate partition 107C. The suction hole 118i does not reach the inner diameter of the intermediate partition plate 107C, but branches upward and downward at the position. The cylinder 108C and the cylinder 108D are provided with suction guide paths 11 路 communicating with the suction holes 118i and opening to the respective cylinder chambers 114c and 114d.
[0119] 換言すれば、偏心方向が同一の 2個の偏心部 104a, 104bを収容する第 1 ,第 2の シリンダ室 114a, 114bとアキュームレータ 121とを連通する吸込み管 118a、吸込み 穴部 118g、吸込み案内路 118hは吸込み通路 118Cとして、互いに一部が共有して 形成される。さらに、偏心方向が同一の 2個の偏心部 104c, 104dを収容する第 3, 第 4のシリンダ室 114c, 114dとアキュームレータ 121とを連通する吸込み管 118c、 吸込み穴部 118i、吸込み案内路 118jは吸込み通路 118Cとして、互いに一部が共 有して形成される。  [0119] In other words, the suction pipe 118a, the suction hole 118g, which connects the first and second cylinder chambers 114a, 114b accommodating the two eccentric portions 104a, 104b having the same eccentric direction to the accumulator 121, The suction guide path 118h is formed as a part of the suction path 118C in common with the suction path 118C. Further, a suction pipe 118c, a suction hole 118i, and a suction guide path 118j that communicate the third and fourth cylinder chambers 114c, 114d accommodating two eccentric portions 104c, 104d having the same eccentric direction and the accumulator 121 are provided. The suction passages 118C are formed so as to partially share each other.
[0120] このようにして、の偏心部 104a, 104bと偏心部 104c, 104d力 それぞれ偏心方 向を同一に揃えられた多気筒形回転式圧縮機 T3であり、回転軸 104を回転駆動す ると、回転車由の回転にとちなつて、シリンダ室 114aと 114b、及びシリンダ室 114cと 11 4dでは、それぞれ同一のタイミングで圧縮行程を行うため、吸込み通路 118Bの一部 を共有して形成でき、冷凍能力の低下を阻止する。 [0120] Thus, the eccentric portions 104a, 104b and the eccentric portions 104c, 104d are the multi-cylinder rotary compressor T3 in which the eccentric directions are the same, and the rotary shaft 104 is rotationally driven. Then, the cylinder chambers 114a and 114b and the cylinder chambers 114c and 114d perform the compression strokes at the same timing, respectively, due to the rotation of the rotating wheel, so that a part of the suction passage 118B is formed in common. And prevent a decrease in refrigeration capacity.
[0121] アキュームレータ 121には 2本の吸込み管 118a, 118cを接続すればよいから、ァ キュームレータの小型化と簡略化を得られる。密閉ケース 101においては、吸込み管 118a, 118cが貫通する取付け用孔を 2個設ければよいとともに、互いに取付け用孔 の間隔を広げることができるから、密閉ケース 101の耐圧性の向上を得られる。  [0121] Since two suction pipes 118a and 118c may be connected to the accumulator 121, the size and simplification of the accumulator can be obtained. In the sealed case 101, it is sufficient to provide two mounting holes through which the suction pipes 118a and 118c pass, and since the distance between the mounting holes can be increased, the pressure resistance of the sealed case 101 can be improved. .
[0122] 当然ながら、この種の多気筒形回転式圧縮機 T3において、 4個の偏心部 104a〜  [0122] Naturally, in this kind of multi-cylinder rotary compressor T3, four eccentric portions 104a to 104c
104dのうちの、 2個の偏心部だけを偏心方向を同一にする構成であっても、何ら問 題がない。  Even if only two eccentric portions of 104d have the same eccentric direction, there is no problem.
[0123] 図 13Aは、第 6の実施の形態を示す多気筒形回転式圧縮機に用いられる偏心ロー ラの断面図、図 13Bは、回転軸の正面図であり、図 14は偏心ローラと回転軸を備え た圧縮組立の断面図である。  FIG. 13A is a cross-sectional view of an eccentric roller used in a multi-cylinder rotary compressor according to a sixth embodiment, FIG. 13B is a front view of a rotary shaft, and FIG. It is sectional drawing of the compression assembly provided with the rotating shaft.
ここでは、再び 3個の偏心部 104a〜104cが設けられる回転軸 104を備えた多気 筒形回転式圧縮機に適用して説明する。基本的な構成については、先に図 9で説明 したものと全く同じであるので、新たな説明は省略する。ただし、各圧縮機構部の寸 法設定は後述するようになる。  Here, a description will be given by applying the present invention to a multi-cylinder rotary compressor having a rotary shaft 104 provided with three eccentric portions 104a to 104c again. The basic configuration is exactly the same as that described above with reference to FIG. 9, and thus a new description will be omitted. However, the dimension setting of each compression mechanism will be described later.
[0124] なお、各圧縮機構部 102A〜102Cにおける各摺動部のクリアランスのうち、少なく とも 1つの摺動部のクリアランスは、主軸受 109もしくは副軸受 111に接しない第 2の 圧縮機構部 102B力 主軸受 109もしくは副軸受 111に接する第 1の圧縮機構部 10 2Aと第 3の圧縮機構部 102Cよりも大に設定されている。  [0124] Among the clearances of the sliding parts in each of the compression mechanism parts 102A to 102C, the clearance of at least one of the sliding parts is the second compression mechanism part 102B that does not contact the main bearing 109 or the sub-bearing 111. The force is set larger than the first compression mechanism 102A and the third compression mechanism 102C that are in contact with the main bearing 109 or the auxiliary bearing 111.
[0125] 図 13Aに示すように、偏心ローラ 113a, 113b, 113cの内径寸法と外径寸法は全 て同一に形成されるとともに、軸方向長さである高さ寸法 Eも全て同一に形成される。 また、図 13Bに示すように、回転軸 104に一体に設けられる全ての偏心部 104a〜l 04cは、その軸方向長さが全て同一に統一される。したがって、 1種類の偏心ローラ を製作すれば、いずれの偏心部 104a〜: 104cに嵌合しても何ら問題がない。  As shown in FIG. 13A, the inner diameter and outer diameter of the eccentric rollers 113a, 113b, and 113c are all the same, and the height E, which is the axial length, is also all the same. You. Further, as shown in FIG. 13B, all the eccentric portions 104a to 104c provided integrally with the rotary shaft 104 have the same axial length. Therefore, if one type of eccentric roller is manufactured, there is no problem even if any one of the eccentric portions 104a to 104c is fitted.
[0126] さらに、回転軸 104において、各偏心部 104a〜: 104c相互間の間隔寸法が部位に よって相違することが特徴の一つとなっている。すなわち、第 1の圧縮機構部 102A に対応する偏心部 104aと、第 2の圧縮機構部 102Bに対応する偏心部 104bとの間 隔寸法を A1とし、第 2の圧縮機構部 102Bに対応する偏心部 104bと、第 3の圧縮機 構部 102Cに対応する偏心部 104cとの間隔寸法を A2とすると、 A2は A1よりも大 (A 2 >A1)に設定される。 Further, one of the features of the rotating shaft 104 is that the distance between the eccentric portions 104a to 104c differs depending on the portion. That is, the first compression mechanism 102A The distance between the eccentric portion 104a corresponding to the second compression mechanism portion 102B and the eccentric portion 104b corresponding to the second compression mechanism portion 102B is A1, the eccentric portion 104b corresponding to the second compression mechanism portion 102B, and the third compressor. If the distance between the eccentric portion 104c and the corresponding eccentric portion 104c is A2, A2 is set to be larger than A1 (A2> A1).
[0127] 間隔寸法 Al, A2と偏心ローラ 113a〜113cの高さ寸法 Eとの関係では、間隔寸法 A2は偏心ローラ高さ寸法 Eよりも大 (A2 >E)である力 間隔寸法 A1は偏心ローラ高 さ寸法 Eよりも小 (E >A1)に設定される。以上をまとめると、  [0127] In the relationship between the spacing dimensions Al and A2 and the height dimension E of the eccentric rollers 113a to 113c, the spacing dimension A2 is greater than the eccentric roller height dimension E (A2> E). The spacing dimension A1 is eccentric. It is set smaller than the roller height dimension E (E> A1). To summarize the above,
間隔寸法 A2 > 偏心ローラ高さ寸法 E > 間隔寸法 A1  Spacing dimension A2> Eccentric roller height dimension E> Spacing dimension A1
の設定条件が導かれる。  Setting conditions are derived.
[0128] すなわち、圧縮機構部 102A〜: 102Cの数が 3組: Nあり、偏心部相互間ケ所が 2ケ 所:(N—1)ある場合に、 1ケ所:(N— 2)の偏心部 104b_ 104c相互間の間隔寸法: A2が偏心ローラ 113a〜113cの高さ寸法: Eよりも大に形成される。  In other words, when the number of compression mechanism units 102A to 102C is three: N, and there are two places between the eccentric parts: (N-1), one place: (N-2) eccentricity The interval between the portions 104b_104c: A2 is formed to be larger than the height: E of the eccentric rollers 113a to 113c.
[0129] このような寸法設定をなすことにより、各偏心部 104a〜104cに偏心ローラ 113a〜  [0129] By setting such dimensions, the eccentric rollers 113a to 113c are attached to the eccentric portions 104a to 104c.
113cを嵌合する組立作業が円滑に行える。すなわち、第 1の偏心部 104aに偏心口 ーラ 113aを嵌合するには、図 13Bに示す回転軸 104の右側端部から偏心ローラ 11 3aを介挿して変位させ、第 1の偏心部 104aに対向したところで偏心方向に合わせて 位置をずらせ、嵌合すればよい。  Assembly work for fitting 113c can be performed smoothly. That is, in order to fit the eccentric roller 113a into the first eccentric portion 104a, the eccentric roller 113a is displaced from the right end of the rotating shaft 104 shown in FIG. It is only necessary to shift the position in accordance with the eccentric direction at the position facing the, and fit it.
なお、偏心ローラ 113a〜113cが全て同一の寸法形状に形成され、いずれの偏心 部にも嵌合可能なところから、一旦は第 1の偏心部 104aに嵌合した偏心ローラ 113a をそのまま移動し、第 2の偏心部 104bに嵌合しようとしても、不可能である。  In addition, since the eccentric rollers 113a to 113c are all formed in the same size and shape and can be fitted to any eccentric part, the eccentric roller 113a once fitted to the first eccentric part 104a is moved as it is, Attempting to fit the second eccentric 104b is not possible.
[0130] すなわち、第 1の偏心部 104aと第 2の偏心部 104bとの相互間隔寸法 A1が、偏心 ローラ 113aの高さ寸法 Eよりも小に設定されているので、偏心ローラ 113aを第 1の偏 心部 104aと第 2の偏心部 104bとの間(A1寸法範囲)に介在させることができず、第 2の偏心部 104bに嵌合できない。  That is, since the mutual interval dimension A1 between the first eccentric portion 104a and the second eccentric portion 104b is set smaller than the height dimension E of the eccentric roller 113a, the eccentric roller 113a is Cannot be interposed between the eccentric portion 104a and the second eccentric portion 104b (A1 dimension range), and cannot be fitted to the second eccentric portion 104b.
[0131] そこで、第 2の偏心部 104bに偏心ローラ 113bを嵌合するには、回転軸 104の左側 端部から偏心ローラを介揷して変位させ、第 3の偏心部 104cに対向したところで偏 心方向に合わせて位置をずらせる。この偏心ローラ 113bを第 3の偏心部 104cに嵌 合し、さらに押圧してこの偏心部を乗り越える。一旦、偏心ローラ 113bを第 3の偏心 部 104cと第 2の偏心部 104bとの間に位置させ、さらに第 2の偏心部 104bの偏心方 向に合わせて位置をずらせてから、この偏心部 104bに偏心ローラ 113bを嵌合する Therefore, in order to fit the eccentric roller 113b to the second eccentric portion 104b, the eccentric roller 113b is displaced from the left end of the rotating shaft 104 via the eccentric roller, and is opposed to the third eccentric portion 104c. Shift the position according to the eccentric direction. The eccentric roller 113b is fitted to the third eccentric portion 104c, and is further pressed to get over the eccentric portion. Once the eccentric roller 113b is The eccentric roller 113b is fitted to the eccentric portion 104b after being positioned between the portion 104c and the second eccentric portion 104b and further displaced in accordance with the eccentric direction of the second eccentric portion 104b.
[0132] この状態で、第 2の偏心部 104bと第 3の偏心部 104c相互間の間隔寸法 A2を、偏 心ローラ 113bの高さ寸法 Eよりも大に設定しているので、偏心部 104b_ 104c相互 間にー且、偏心ローラ 113bを位置し、そのあと第 2の偏心部 104bに合わせて位置 をずらせるのに何らの不具合もなレ、。第 2の偏心部 104bに偏心ローラ 113bを嵌合 できたら、回転軸 104の左側端部から別の偏心ローラ 113cを介揷して第 3の偏心部 104cに嵌合する。 [0132] In this state, the distance A2 between the second eccentric portion 104b and the third eccentric portion 104c is set to be larger than the height E of the eccentric roller 113b. There is no problem in that the eccentric roller 113b is positioned between the 104c and the second eccentric portion 104b, and then the position thereof is shifted. When the eccentric roller 113b can be fitted to the second eccentric part 104b, the eccentric roller 113b is fitted to the third eccentric part 104c from the left end of the rotating shaft 104 via another eccentric roller 113c.
[0133] このように、 間隔寸法 A2 >偏心ローラ高さ寸法 E >間隔寸法 A1 の設定条件を 得ることにより、偏心ローラ 113bを分割化することなく中央部の偏心部 104bに対して 嵌合組立が可能であり、よって信頼性が高ぐ圧縮効率が高い多気筒形回転式圧縮 機を提供できる。  [0133] As described above, by obtaining the setting conditions of the interval dimension A2> the eccentric roller height dimension E> the interval dimension A1, the eccentric roller 113b can be fitted and assembled to the central eccentric portion 104b without being divided. Therefore, it is possible to provide a multi-cylinder rotary compressor having high reliability and high compression efficiency.
[0134] 図 14は、上述の図 13A及び図 13Bの設定条件に加えて、中間仕切り板 107A, 1 07Bの厚さ寸法との関係を説明する図である。すなわち、第 1のシリンダ 108Aと第 2 のシリンダ 108Bとの間に介在される中間仕切り板 107Aの厚さ寸法 HIは、第 1の偏 心部 104aと第 2の偏心部 104b相互の間隔寸法 A1よりも小(HIく A1)に形成され る。先に説明したように、第 1の偏心部 104aと第 2の偏心部 104b相互の間隔寸法 A 1は、偏心ローラ 113a〜113cの高さ寸法 Eよりも小(A1 < B)に設定されているから 中間仕切り板厚さ寸法 HI < 間隔寸法 A1 < 偏心ローラ高さ寸法 E の設定条件が導かれることになる。  FIG. 14 is a diagram illustrating the relationship between the setting conditions of FIGS. 13A and 13B and the thickness of the intermediate partition plates 107A and 107B. That is, the thickness dimension HI of the intermediate partition plate 107A interposed between the first cylinder 108A and the second cylinder 108B is the distance dimension A1 between the first eccentric portion 104a and the second eccentric portion 104b. It is formed smaller (HI and A1). As described above, the distance A1 between the first eccentric portion 104a and the second eccentric portion 104b is set smaller (A1 <B) than the height E of the eccentric rollers 113a to 113c. Therefore, the setting condition of the intermediate partition plate thickness dimension HI <spacing dimension A1 <eccentric roller height dimension E will be derived.
[0135] また、第 2のシリンダ 108Bと第 3のシリンダ 108Cとの間に介在される中間仕切り板 [0135] Also, an intermediate partition plate interposed between the second cylinder 108B and the third cylinder 108C.
107Bの厚さ寸法 H2は、第 1の偏心部 104aと第 2の偏心部 104b相互の間隔寸法 A 2よりも小(H2く A2)に形成される。先に説明したように、第 2の偏心部 104bと第 3の 偏心部 104c相互の間隔寸法 A2は、偏心ローラ 113a〜113cの高さ寸法 Eよりも小( A2く E)であるから、  The thickness H2 of 107B is formed smaller than the distance A2 between the first eccentric portion 104a and the second eccentric portion 104b (H2 = A2). As described above, the distance A2 between the second eccentric portion 104b and the third eccentric portion 104c is smaller than the height E of the eccentric rollers 113a to 113c (A22E).
中間仕切り板厚さ寸法 H2 < 間隔寸法 A2 < 偏心ローラ高さ寸法 E の設定条件が導かれる。 Intermediate partition thickness H2 <spacing A2 <eccentric roller height E Setting conditions are derived.
[0136] すなわち、圧縮機構部 102A〜102Cが 3組: Nであり、偏心部相互間ケ所が 2ケ所 : (N— 1)ある場合に、 1ケ所:(N— 2)の偏心部 104b— 104c相互間の間隔寸法: A 2が偏心ローラ 113a〜113cの高さ寸法: Eよりも大に形成されるとともに、これら偏心 部 104b_ 104c相互間に介在される中間仕切り板 107Bの厚さ寸法 H2を、偏心口 ーラの高さ寸法 E未満に設定した。  That is, when three sets of compression mechanism units 102A to 102C are N, and there are two places between eccentric parts: (N-1), one place: (N-2) eccentric parts 104b— The spacing dimension between the 104c: A2 is formed to be larger than the height dimension of the eccentric rollers 113a to 113c: E, and the thickness H2 of the intermediate partition plate 107B interposed between the eccentric portions 104b_104c. Was set to be less than the height dimension E of the eccentric roller.
そして、残りケ所の偏心部 104a_ 104b相互の間隔寸法 A1を、偏心ローラ 113a〜 113cの高さ寸法 E未満に形成するとともに、これら偏心部相互間に介在される中間 仕切り板 107Aの厚さ寸法 HIを、残りケ所の偏心部 104a_ 104b相互の間隔寸法 A 1未満に設定した。  The distance A1 between the remaining eccentric portions 104a_104b is formed to be less than the height E of the eccentric rollers 113a to 113c, and the thickness HI of the intermediate partition plate 107A interposed between the eccentric portions. Is set to be less than the distance A1 between the eccentric portions 104a_104b at the remaining positions.
[0137] 以上の条件から、中間仕切り板 107A, 107Bの板厚を、より薄くすることができ、さ らに偏心部 104a_ 104b, 104b_ 104c相互間の間隔を短くすることができる。結局 、回転軸 104を軸支する主軸受 109と副軸受 111間の距離の短縮化を得られ、振れ 回りの抑制を図って信頼性及び圧縮効率の向上を得られる。  [0137] From the above conditions, the thickness of the intermediate partition plates 107A and 107B can be made thinner, and the distance between the eccentric portions 104a_104b and 104b_104c can be further reduced. As a result, the distance between the main bearing 109 and the sub-bearing 111 that support the rotating shaft 104 can be reduced, and whirling can be suppressed to improve reliability and compression efficiency.
なお、上述の実施の形態では第 1〜第 3の圧縮機構部 102A〜102Cを備えたが、 これに限定されるものではなぐ例えば先に図 12で説明したような第 1〜第 3の圧縮 機構部 102A〜102Dを備えた多気筒形回転式圧縮機 T3にも適用でき、また、さら に多くの数の圧縮機構部を備えた多気筒形回転式圧縮機にも適用できる。  In the above-described embodiment, the first to third compression mechanisms 102A to 102C are provided, but the present invention is not limited to this.For example, the first to third compression mechanisms as described above with reference to FIG. The present invention can be applied to a multi-cylinder rotary compressor T3 provided with the mechanical units 102A to 102D, and also to a multi-cylinder rotary compressor provided with a greater number of compression mechanism units.
[0138] 具体的に図 12の構成の圧縮機 T3では、先に説明した設定条件のように、圧縮機 構部 102A〜102D力 ¾組: Nあり、偏心部相互間ケ所 104a— 104b, 104b— 104c , 104c— 104d力 S3ケ所:(N— 1)ある場合に、 2ケ所:(N— 2)の偏心部相互 104a— 104b, 104c_ 104dの間隔寸法を偏心ローラ 113a〜113dの高さ寸法 Eよりも大に 形成し、残りケ所の偏心部相互 104b_ 104cの間隔寸法を偏心ローラ 113a〜: 113d の高さ寸法 E未満に形成してレ、る。  [0138] Specifically, in the compressor T3 having the configuration shown in Fig. 12, as in the setting conditions described above, the compressor structure 102A to 102D force ¾ group: N, and the eccentric portions are located 104a to 104b, 104b. — 104c, 104c— 104d force S3 places: (N-1), if there are 2 places: (N-2) mutual eccentric part 104a— 104b, 104c_ 104d spacing dimension to eccentric rollers 113a to 113d height dimension It is formed larger than E, and the interval between the eccentric portions 104b_104c at the remaining portions is formed to be less than the height E of the eccentric rollers 113a to 113d.
[0139] 例えば、第 1の偏心部 104aと第 2の偏心部 104bとの間及び、第 3の偏心部 104cと 第 4の偏心部 104dとの相互間隔を同じ間隔寸法 A2とし、第 2の偏心部と第 3の偏心 部との相互間隔を間隔寸法 A1とし、偏心ローラ 113a〜: 113dの高さ寸法 Eとすれば 、 間隔寸法: A2 >偏心ローラ高さ寸法: E >間隔寸法: A1となる。 [0140] このことにより、第 2の偏心部 104bに嵌合する偏心ローラ 113bは第 1の偏心部 10 4aを通過させればよぐ第 3の偏心部 104cに嵌合する偏心ローラ 113cは第 4の偏 心部 104dを通過させればよい。したがって、分割した偏心ローラを使用しなくても偏 心部 104a〜104dに対する組立が可能であり、信頼性が高く圧縮効率が高い多気 筒形回転式圧縮機を提供できる。 For example, the interval between the first eccentric portion 104a and the second eccentric portion 104b and the interval between the third eccentric portion 104c and the fourth eccentric portion 104d are set to the same interval dimension A2, and the second If the distance between the eccentric part and the third eccentric part is the distance A1, and the height E of the eccentric rollers 113a to 113d is E, the distance: A2> the height of the eccentric roller: E> the distance: A1 It becomes. [0140] Thus, the eccentric roller 113b fitted to the second eccentric portion 104b is allowed to pass through the first eccentric portion 104a, and the eccentric roller 113c fitted to the third eccentric portion 104c is What is necessary is just to let the eccentric part 104d of 4 pass. Therefore, it is possible to assemble the eccentric portions 104a to 104d without using divided eccentric rollers, and to provide a multi-cylinder rotary compressor having high reliability and high compression efficiency.
すなわち、圧縮機構部 102A〜102Dが 4組: Nの圧縮機 T3であり、偏心部相互間 ケ所が 3ケ所:(N—1)ある場合に、 2ケ所:(N— 2)の偏心部 104a_ 104b、 104c— 104d相互間の間隔寸法: A2が偏心ローラ 113a〜: 113dの高さ寸法: Eよりも大に形 成するとともに、これら偏心部相互間に介在される中間仕切り板 107Bの厚さ寸法 H2 を、偏心ローラの高さ寸法: E未満に設定した。残りケ所の偏心部 104b_ 104c相互 間に介在される中間仕切り板 107Aの厚さ寸法 HIを、残りケ所の偏心部 104b_ 10 4c相互の間隔寸法 A1未満に設定した。  That is, when the compression mechanism units 102A to 102D are four sets: N compressor T3, and there are three eccentric parts: (N-1), two eccentric parts 104a_ 104b, 104c-104d spacing dimension: A2 is formed larger than eccentric rollers 113a-: 113d height dimension: E, and thickness of intermediate partition plate 107B interposed between these eccentric parts. The dimension H2 was set to be less than the height dimension E of the eccentric roller. The thickness HI of the intermediate partition plate 107A interposed between the remaining eccentric portions 104b_104c is set to be smaller than the interval A1 between the remaining eccentric portions 104b_104c.
[0141] 以上の条件から、中間仕切り板 107A, 107Bの板厚を、より薄くすること力 Sできると ともに、偏 、咅 B 104a— 104b, 104b— 104c, 104c— 104d申目互間の間鬲を短くす ること力 Sできる。結局、回転軸 104を軸支する主軸受 109と副軸受 111間の距離の短 縮化を得られ、振れ回りの抑制を図って信頼性及び圧縮効率の向上を得られる。  [0141] From the above conditions, it is possible to make the thickness of the intermediate partition plates 107A and 107B thinner, and at the same time, it is possible to reduce the thickness, and to increase the bias, 咅 B 104a—104b, 104b—104c, 104c—104d The ability to shorten the sieve can be S. As a result, the distance between the main bearing 109 and the auxiliary bearing 111 that support the rotating shaft 104 can be shortened, and whirling can be suppressed to improve reliability and compression efficiency.
[0142] さらに多くの圧縮機構部を備えた多気筒形回転式圧縮機においても、上述の設定 条件を適用することにより、同様の作用効果を得られる。  [0142] In a multi-cylinder rotary compressor having more compression mechanism sections, the same operation and effect can be obtained by applying the above-mentioned setting conditions.
[0143] 図 15は、第 7の実施の形態におけるシリンダの平面図である。  FIG. 15 is a plan view of a cylinder according to the seventh embodiment.
すなわち、図 15Aは第 1のシリンダ 108Aの平面図、図 15Bは第 2のシリンダ 108B の平面図、図 15Cは第 3のシリンダ 108Cの平面図である。いずれのシリンダ 108A 〜108Cにおいても同一の中心軸から同一直径の内径部に形成されるとともに、同 一位置に、同一の寸法形状で、ブレード室 115と、吐出切欠 30及び吸込み孔 140が 設けられる。  That is, FIG. 15A is a plan view of the first cylinder 108A, FIG. 15B is a plan view of the second cylinder 108B, and FIG. 15C is a plan view of the third cylinder 108C. In any of the cylinders 108A to 108C, the blade chamber 115, the discharge notch 30, and the suction hole 140 are formed at the same position and the same size and shape at the same diameter from the same central axis. .
このように、各シリンダ 108A〜108Cを全て同一の構成とすることにより、共通化が 可能となり、コストの低減を得られる。  As described above, by making all the cylinders 108A to 108C have the same configuration, the cylinders can be shared and the cost can be reduced.
[0144] 図 16は、第 8の実施の形態を示すシリンダの平面図である。 FIG. 16 is a plan view of a cylinder according to the eighth embodiment.
[0145] ここでは、ブレード室 115と吸込み孔 140が同一の形状寸法で設けられる一方で、 シリンダ 108の側面に凹陥部 145が設けられ、吐出弁機構 146が収容される。 [0145] Here, while the blade chamber 115 and the suction hole 140 are provided with the same shape and size, A concave portion 145 is provided on a side surface of the cylinder 108, and a discharge valve mechanism 146 is accommodated therein.
[0146] 例えば、図 9で示す第 1〜第 3の圧縮機構部 102A〜102Cを備えた圧縮機 TOに おいては中央部の第 2の圧縮機構部 102Bを構成する第 2のシリンダ 108Bに採用し 、図 12で示す第 1〜第 4の圧縮機構部 102A〜102Dを備えた圧縮機 T3において は、内側の第 2の圧縮機構部 102Bと第 3の圧縮機構部 102Cを構成する第 2のシリ ンダ 108B及び第 3のシリンダ 108Cに採用する。 [0146] For example, in the compressor TO including the first to third compression mechanism units 102A to 102C shown in Fig. 9, the second cylinder 108B constituting the second compression mechanism unit 102B at the center is provided. In the compressor T3 having the first to fourth compression mechanism units 102A to 102D shown in FIG. 12, the second compression mechanism unit 102B and the second compression mechanism unit 102C forming the inner second compression mechanism unit 102C are included. The first cylinder 108B and the third cylinder 108C are used.
[0147] すなわち、各シリンダ室 108A〜108C (108D)で圧縮され所定圧に上昇したガス を密閉ケース 101内に吐出するのに、最上部と最下部の圧縮機構部 102A, 102C ( 102D)ではバルブカバー a, bを介して吐出し易いが、真中にある圧縮機構部 102B , (102C)では吐出し難いので、それぞれのシリンダ周面に吐出弁機構 146を設け て、ここから円滑に吐出できる。部品点数を増加することなく吐出構造が構築できるこ とで、安価な圧縮機を提供できる。 [0147] That is, in order to discharge the gas that has been compressed in each of the cylinder chambers 108A to 108C (108D) and increased to a predetermined pressure into the closed case 101, the uppermost and lowermost compression mechanisms 102A and 102C (102D) Although it is easy to discharge through the valve covers a and b, it is difficult to discharge in the compression mechanisms 102B and (102C) in the middle, so a discharge valve mechanism 146 is provided on each cylinder peripheral surface, and discharge can be performed smoothly from here. . Since the discharge structure can be constructed without increasing the number of parts, an inexpensive compressor can be provided.
[0148] 図 17は、第 9の実施の形態における回転軸の平面図である。 FIG. 17 is a plan view of the rotation shaft according to the ninth embodiment.
[0149] 回転軸 104に一体に設けられる第 1〜第 3の偏心部 104a〜104cは互いに 120° 等配構造をなしている。すなわち、第 1の偏心部 104aを基準にして、第 2の偏心部 1 04bが 120° ずれた位置に偏心して設けられ、第 3の偏心部 104cはさらに 120° ず れた位置に偏心して設けられる。 [0149] The first to third eccentric portions 104a to 104c provided integrally with the rotating shaft 104 have a structure in which the first and third eccentric portions 104a to 104c are equidistant from each other. That is, the second eccentric portion 104b is eccentrically provided at a position shifted by 120 ° with respect to the first eccentric portion 104a, and the third eccentric portion 104c is further eccentrically provided at a position shifted by 120 °. Can be
[0150] 回転軸 104が 1回転する都度、 3回の圧縮行程が行われてガスが吐出されることに なり、圧縮行程におけるトルク変動の抑制化を図ることができ、低振動で、かつ、高信 頼性の多気筒形回転式圧縮機を提供できる。 [0150] Each time the rotating shaft 104 makes one rotation, three compression strokes are performed and gas is discharged, so that torque fluctuation in the compression stroke can be suppressed, low vibration can be achieved, and A highly reliable multi-cylinder rotary compressor can be provided.
[0151] 図 18は、第 10の実施の形態における、多気筒形回転式圧縮機の縦断面図である FIG. 18 is a longitudinal sectional view of a multi-cylinder rotary compressor in the tenth embodiment.
[0152] ここでは、第 1〜第 3の圧縮機構部 102A〜102Cを備えたうえに、第 1の圧縮機構 部 102Aと第 3の圧縮機構部 102Cを構成する偏心部 104a、 104cが互いに同一方 向に、かつ、同一量だけ偏心して設けられ、第 2の圧縮機構部 102Bを構成する偏心 部 104bは反方向に偏心していることを特徴としている。 [0152] Here, in addition to having the first to third compression mechanism units 102A to 102C, the eccentric portions 104a and 104c constituting the first compression mechanism unit 102A and the third compression mechanism unit 102C are identical to each other. The eccentric portion 104b is provided in the direction and is eccentric by the same amount, and the eccentric portion 104b constituting the second compression mechanism portion 102B is eccentric in the opposite direction.
[0153] アキュームレータ 121から 2本の吸込み管 118b, 118cが突出していることは変りが なぐ一方の吸込み管 118bは密閉ケース 101を貫通して直接、第 2の圧縮機構部 1 02Bのシリンダ 108Bに接続される。他方の吸込み管 118cはアキュームレータ 121 力 突出したところで、分岐吸込み管 118aが分岐される。分岐吸込み管 118aは第 1 の圧縮機構部 102Aのシリンダ 108Aに接続され、吸込み管 118cは第 3の圧縮機構 部 102Cのシリンダ 108Cに接続される。 The fact that the two suction pipes 118b and 118c protrude from the accumulator 121 remains unchanged. One of the suction pipes 118b penetrates through the sealed case 101 and directly passes through the second compression mechanism 1 Connected to cylinder 108B of 02B. When the other suction pipe 118c protrudes from the accumulator 121, the branch suction pipe 118a is branched. The branch suction pipe 118a is connected to the cylinder 108A of the first compression mechanism 102A, and the suction pipe 118c is connected to the cylinder 108C of the third compression mechanism 102C.
[0154] したがって、アキュームレータ 121に接続される一方の吸込み管 118cと分岐吸込 み管 118aは、回転角度を同一としたシリンダ室 114a, 114cへ低圧の蒸発冷媒を導 くこととなり、その結果、圧縮能力の低下を阻止し、アキュームレータ 121の小型化、 簡素化を得られる。 [0154] Therefore, the one suction pipe 118c and the branch suction pipe 118a connected to the accumulator 121 guide the low-pressure evaporated refrigerant to the cylinder chambers 114a and 114c having the same rotation angle. A decrease in capacity can be prevented, and the size and simplification of the accumulator 121 can be obtained.
[0155] なお、以上説明した実施の形態では 3シリンダタイプもしくは 4シリンダタイプについ て説明したが,これに限定されるものではなぐさらに 5シリンダタイプもしくはそれ以 上の数のシリンダを備えた多気筒形の回転式圧縮機の全てに適用できることは、言う までもない。  [0155] In the embodiment described above, the three-cylinder type or the four-cylinder type has been described. However, the present invention is not limited to this, and further includes a multi-cylinder type having a five-cylinder type or more cylinders. It goes without saying that it can be applied to all types of rotary compressors.
産業上の利用可能性  Industrial applicability
[0156] 本発明は、回転軸に 3組以上の圧縮機構部を連結した多気筒形回転式圧縮機で ありながら、回転軸の回転に伴う、回転軸の振れ回りの低減化を図り、圧縮効率の向 上化を得るとレ、う効果を奏する。 [0156] Although the present invention is a multi-cylinder rotary compressor in which three or more sets of compression mechanisms are connected to a rotary shaft, compression of the rotary shaft due to rotation of the rotary shaft is reduced by reducing rotation of the rotary shaft. If the efficiency is improved, the effect will be obtained.
[0157] また、圧縮能力を保持したうえで吸込み通路の簡略化を図り、よってアキユームレ ータの小型化に繋げられる効果を奏する。 [0157] In addition, the suction path is simplified while maintaining the compression capacity, and thus the effect of reducing the size of the accumulator is achieved.
[0158] さらに、ローラの分割を不要とし、偏心部相互間隔を極力短縮化して、組立性と信 頼性及び圧縮効率の向上化を得られる効果を奏する。  [0158] Furthermore, the need for roller division is eliminated, and the distance between the eccentric portions is reduced as much as possible, thereby achieving an effect of improving assemblability, reliability, and compression efficiency.

Claims

請求の範囲 The scope of the claims
[1] 密閉ケース内に、軸受に軸支される回転軸と、この回転軸に連結される電動機部 及び 3組以上の圧縮機構部を収容してなり、  [1] A sealed case accommodates a rotating shaft supported by bearings, an electric motor unit connected to the rotating shaft, and three or more sets of compression mechanism units.
上記圧縮機構部は、上記回転軸に設けられる偏心部及び、この偏心部に嵌合され るローラが偏心回転自在に収容されるシリンダ室と、このシリンダ室を備えたシリンダ と、このシリンダに設けられ先端縁が上記ローラの周面に当接しシリンダ室を二分す るブレードとを備え、  The compression mechanism includes an eccentric portion provided on the rotary shaft, a cylinder chamber accommodating a roller fitted to the eccentric portion for eccentric rotation, a cylinder provided with the cylinder chamber, and a cylinder provided on the cylinder. And a blade whose leading edge abuts on the peripheral surface of the roller and bisects the cylinder chamber.
上記各圧縮機構部における各摺動部のクリアランスのうち、少なくとも 1つの摺動部 のクリアランスは、軸受に接しない圧縮機構部が、軸受に接する圧縮機構部よりも大 に設定されることを特徴とする多気筒形回転式圧縮機。  The clearance of at least one of the sliding portions in each of the above-mentioned compression mechanism portions is such that the clearance of the compression mechanism portion not in contact with the bearing is set larger than that of the compression mechanism portion in contact with the bearing. Multi-cylinder rotary compressor.
[2] 上記軸受に接しない圧縮機構部のシリンダの高さ寸法が、上記軸受に接する圧縮 機構部のシリンダの高さ寸法よりも小に設定されることを特徴とする請求項 1記載の 多気筒形回転式圧縮機。  [2] The multi-cylinder according to claim 1, wherein the height of the cylinder of the compression mechanism not in contact with the bearing is set smaller than the height of the cylinder of the compression mechanism in contact with the bearing. Cylinder rotary compressor.
[3] 上記軸受に接しない圧縮機構部の偏心部の偏心量が、上記軸受に接する圧縮機 構部の偏心部の偏心量よりも大に設定されるとともに、軸受に接しない圧縮機構部の 偏心部に嵌合されるローラの外径が、軸受に接する圧縮機構部の偏心部に嵌合さ れるローラの外径よりも小に設定されることを特徴とする請求項 1記載の多気筒形回 転式圧縮機。  [3] The amount of eccentricity of the eccentric portion of the compression mechanism portion not in contact with the bearing is set to be larger than the amount of eccentricity of the eccentric portion of the compressor structure portion in contact with the bearing. 2. The multi-cylinder according to claim 1, wherein an outer diameter of the roller fitted to the eccentric portion is set to be smaller than an outer diameter of the roller fitted to the eccentric portion of the compression mechanism portion in contact with the bearing. Type rotary compressor.
[4] 上記偏心部のうち、少なくとも 2個の偏心部は偏心方向を同一に揃えられ、  [4] At least two of the eccentric portions have the same eccentric direction,
これら偏心方向が同一の偏心部を収容する各シリンダ室と上記アキュームレータと を連通する上記吸込み通路は、互いに一部が共有して形成されることを特徴とする 請求項 1記載の多気筒形回転式圧縮機。  2. The multi-cylinder rotary mechanism according to claim 1, wherein the suction passages that communicate the cylinder chambers accommodating the eccentric portions having the same eccentric direction and the accumulator are partially shared with each other. Type compressor.
[5] 上記各圧縮機構部の数を Nとし、上記偏心部の相互間ケ所が(N_ 1)であるとき、 [5] When the number of each compression mechanism is N, and the eccentric portion is located at (N_1),
(N— 2)ケ所の偏心部相互の間隔寸法が上記ローラの軸方向長さ寸法よりも大に 形成されるとともに、これら偏心部相互間に介在される中間仕切り板の厚さ寸法が上 記ローラの軸方向長さ寸法未満に設定され、  (N-2) The distance between the eccentric portions at the two locations is formed to be larger than the axial length of the roller, and the thickness of the intermediate partition plate interposed between the eccentric portions is as described above. Set to less than the axial length of the roller,
残りケ所の偏心部相互の間隔寸法がローラの軸方向長さ寸法未満に形成されると ともに、これら偏心部相互間に介在される中間仕切り板の厚さ寸法が残りケ所の偏心 部相互の間隔寸法未満に設定されることを特徴とする請求項 1記載の多気筒形回転 式圧縮機。 The distance between the eccentric portions at the remaining eccentric portions is less than the axial length of the roller, and the thickness of the intermediate partition plate interposed between the eccentric portions is eccentric at the remaining eccentric portions. 2. The multi-cylinder rotary compressor according to claim 1, wherein the distance is set to be less than a distance between the parts.
[6] 冷凍サイクルを構成し、吸込み通路を介してアキュームレータが接続され、  [6] A refrigeration cycle is configured, an accumulator is connected via a suction passage,
密閉ケース内に、回転軸と、この回転軸に連結される電動機部及び 3組以上の圧 縮機構部を収容する多気筒形回転式圧縮機において、  In a multi-cylinder rotary compressor in which a rotating shaft, an electric motor unit connected to the rotating shaft, and three or more compression mechanism units are housed in a sealed case,
上記各圧縮機構部は、上記回転軸に一体に設けられる 3個以上の偏心部と、それ ぞれの偏心部に嵌合されるローラを偏心回転自在に収容し、上記吸込み通路を介し て上記アキュームレータと連通するシリンダ室と、このシリンダ室を備えたシリンダと、 このシリンダに設けられ先端縁が上記ローラの周面に当接してシリンダ室を吸込み室 と圧縮室に二分するブレードとを備え、  Each of the compression mechanism sections accommodates three or more eccentric sections integrally provided on the rotary shaft and rollers fitted to the respective eccentric sections so as to be eccentrically rotatable, and the above-mentioned compression mechanism section is formed through the suction passage. A cylinder chamber communicating with the accumulator, a cylinder having the cylinder chamber, and a blade provided in the cylinder, a leading edge of which abuts against a peripheral surface of the roller to divide the cylinder chamber into a suction chamber and a compression chamber,
少なくとも 2個の偏心部は偏心方向を同一に揃えられ、  At least two eccentric parts have the same eccentric direction,
これら偏心方向が同一の偏心部を収容する各シリンダ室と上記アキュームレータと を連通する上記吸込み通路は、互いに一部が共有して形成されることを特徴とする 多気筒形回転式圧縮機。  The multi-cylinder rotary compressor is characterized in that the suction passages that communicate the cylinder chambers accommodating the eccentric portions having the same eccentric direction and the accumulator are partially shared with each other.
[7] 密閉ケース内に、回転軸と、この回転軸に連結される電動機部及び 3組以上の圧 縮機構部を収容する多気筒形回転式圧縮機において、 [7] In a multi-cylinder rotary compressor in which a rotating shaft, an electric motor unit connected to the rotating shaft, and three or more sets of compression mechanisms are housed in a sealed case,
上記圧縮機構部は、上記回転軸に一体に設けられる 3個以上の偏心部及び、それ ぞれの偏心部に嵌合されるローラを偏心回転自在に収容するシリンダ室と、このシリ ンダ室を備えたシリンダと、このシリンダに設けられ先端縁が上記ローラの周面に当 接しシリンダ室を吸込み室と圧縮室に二分するブレードと、上記シリンダ相互間に介 在される中間仕切り板を備え、  The compression mechanism section includes three or more eccentric sections provided integrally with the rotary shaft, a cylinder chamber for accommodating a roller fitted to each eccentric section for eccentric rotation, and a cylinder chamber. A cylinder provided with the cylinder, a blade having a leading edge contacting the peripheral surface of the roller and dividing the cylinder chamber into a suction chamber and a compression chamber, and an intermediate partition plate interposed between the cylinders;
上記各圧縮機構部の数を Nとし、上記偏心部の相互間ケ所が(N— 1)であるとき、 When the number of each compression mechanism is N and the eccentric portion is located at (N-1),
(N— 2)ケ所の偏心部相互の間隔寸法が上記ローラの軸方向長さ寸法よりも大に 形成されるとともに、これら偏心部相互間に介在される中間仕切り板の厚さ寸法が上 記ローラの軸方向長さ寸法未満に設定され、 (N-2) The distance between the eccentric portions at the two locations is formed to be larger than the axial length of the roller, and the thickness of the intermediate partition plate interposed between the eccentric portions is as described above. Set to less than the axial length of the roller,
残りケ所の偏心部相互の間隔寸法がローラの軸方向長さ寸法未満に形成されると ともに、これら偏心部相互間に介在される中間仕切り板の厚さ寸法が残りケ所の偏心 部相互の間隔寸法未満に設定されることを特徴とする多気筒形回転式圧縮機。  The distance between the eccentric portions at the remaining portions is formed to be less than the axial length of the roller, and the thickness of the intermediate partition plate interposed between the eccentric portions is adjusted to the distance between the eccentric portions at the remaining portions. A multi-cylinder rotary compressor characterized by being set to a size smaller than a dimension.
PCT/JP2005/010588 2004-06-15 2005-06-09 Multi-cylinder rorary compressor WO2005124156A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006514713A JP4594302B2 (en) 2004-06-15 2005-06-09 Multi-cylinder rotary compressor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004176899 2004-06-15
JP2004-176899 2004-06-15
JP2004182483 2004-06-21
JP2004-182483 2004-06-21

Publications (1)

Publication Number Publication Date
WO2005124156A1 true WO2005124156A1 (en) 2005-12-29

Family

ID=35509751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010588 WO2005124156A1 (en) 2004-06-15 2005-06-09 Multi-cylinder rorary compressor

Country Status (3)

Country Link
JP (1) JP4594302B2 (en)
KR (1) KR100805465B1 (en)
WO (1) WO2005124156A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007102496A1 (en) * 2006-03-09 2007-09-13 Daikin Industries, Ltd. Freezing device
US7748968B2 (en) * 2007-04-27 2010-07-06 Fujitsu General Limited Two-cylinder rotary compressor with suction pipes
JP2010156497A (en) * 2008-12-26 2010-07-15 Daikin Ind Ltd Refrigerating device
CN104251211A (en) * 2013-06-28 2014-12-31 珠海格力节能环保制冷技术研究中心有限公司 Compressor
US20160018136A1 (en) * 2013-03-26 2016-01-21 Toshiba Carrier Corporation Multiple cylinder rotary compressor and refrigeration cycle apparatus
WO2016031129A1 (en) * 2014-08-27 2016-03-03 東芝キヤリア株式会社 Rotary compressor and refrigeration cycle device
WO2019142408A1 (en) * 2018-01-18 2019-07-25 東芝キヤリア株式会社 Compressor and refrigeration cycle device
WO2019193697A1 (en) * 2018-04-04 2019-10-10 東芝キヤリア株式会社 Rotary compressor and refrigeration cycle device
EP3557067A1 (en) * 2018-04-17 2019-10-23 Mitsubishi Heavy Industries Thermal Systems, Ltd. Piston rotor, crankshaft, rotary compressor, and assembling method of crankshaft
JP2020118053A (en) * 2019-01-21 2020-08-06 東芝キヤリア株式会社 Rotary compressor and refrigeration cycle device
WO2020157786A1 (en) * 2019-01-28 2020-08-06 東芝キヤリア株式会社 Compressor and refrigeration cycle device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111954761B (en) 2018-03-27 2022-08-09 东芝开利株式会社 Rotary compressor and refrigeration cycle device
JP7013327B2 (en) 2018-05-31 2022-01-31 株式会社東芝 Crankshaft, crankshaft assembly method, rotary compressor and refrigeration cycle equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01151793A (en) * 1987-12-07 1989-06-14 Toshiba Corp Rotary compressor
JPH051686A (en) * 1991-06-27 1993-01-08 Daikin Ind Ltd Multiple cylinder rotational compressor
JPH06257580A (en) * 1993-03-10 1994-09-13 Matsushita Electric Ind Co Ltd Two-cylinder rotary compressor
JPH10103223A (en) * 1996-09-27 1998-04-21 Sanyo Electric Co Ltd Sealed type compressor
JPH10266984A (en) * 1997-03-26 1998-10-06 Toshiba Corp Rotary compressor
JP2003328972A (en) * 2002-05-09 2003-11-19 Hitachi Home & Life Solutions Inc Sealed two-cylinder rotary compressor and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01151793A (en) * 1987-12-07 1989-06-14 Toshiba Corp Rotary compressor
JPH051686A (en) * 1991-06-27 1993-01-08 Daikin Ind Ltd Multiple cylinder rotational compressor
JPH06257580A (en) * 1993-03-10 1994-09-13 Matsushita Electric Ind Co Ltd Two-cylinder rotary compressor
JPH10103223A (en) * 1996-09-27 1998-04-21 Sanyo Electric Co Ltd Sealed type compressor
JPH10266984A (en) * 1997-03-26 1998-10-06 Toshiba Corp Rotary compressor
JP2003328972A (en) * 2002-05-09 2003-11-19 Hitachi Home & Life Solutions Inc Sealed two-cylinder rotary compressor and manufacturing method thereof

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007239666A (en) * 2006-03-09 2007-09-20 Daikin Ind Ltd Refrigerator
AU2007223244B2 (en) * 2006-03-09 2010-02-25 Daikin Industries, Ltd. Refrigeration system
US8225624B2 (en) 2006-03-09 2012-07-24 Daikin Industries, Ltd. Refrigeration system
WO2007102496A1 (en) * 2006-03-09 2007-09-13 Daikin Industries, Ltd. Freezing device
US7748968B2 (en) * 2007-04-27 2010-07-06 Fujitsu General Limited Two-cylinder rotary compressor with suction pipes
JP2010156497A (en) * 2008-12-26 2010-07-15 Daikin Ind Ltd Refrigerating device
US10180271B2 (en) * 2013-03-26 2019-01-15 Toshiba Carrier Corporation Multiple cylinder rotary compressor and refrigeration cycle apparatus
US20160018136A1 (en) * 2013-03-26 2016-01-21 Toshiba Carrier Corporation Multiple cylinder rotary compressor and refrigeration cycle apparatus
CN104251211A (en) * 2013-06-28 2014-12-31 珠海格力节能环保制冷技术研究中心有限公司 Compressor
CN104251211B (en) * 2013-06-28 2016-02-03 珠海格力节能环保制冷技术研究中心有限公司 Compressor
JP2016048032A (en) * 2014-08-27 2016-04-07 東芝キヤリア株式会社 Rotary compressor and refrigeration cycle device
WO2016031129A1 (en) * 2014-08-27 2016-03-03 東芝キヤリア株式会社 Rotary compressor and refrigeration cycle device
CN111406154B (en) * 2018-01-18 2022-02-11 东芝开利株式会社 Compressor and refrigeration cycle device
WO2019142408A1 (en) * 2018-01-18 2019-07-25 東芝キヤリア株式会社 Compressor and refrigeration cycle device
CN111406154A (en) * 2018-01-18 2020-07-10 东芝开利株式会社 Compressor and refrigeration cycle device
US11339999B2 (en) 2018-01-18 2022-05-24 Toshiba Carrier Corporation Compressor and accumulator with multiple suction tubes for a refrigeration cycle device
JPWO2019142408A1 (en) * 2018-01-18 2020-11-19 東芝キヤリア株式会社 Compressor and refrigeration cycle equipment
WO2019193697A1 (en) * 2018-04-04 2019-10-10 東芝キヤリア株式会社 Rotary compressor and refrigeration cycle device
US11821664B2 (en) 2018-04-04 2023-11-21 Toshiba Carrier Corporation Rotary compressor and refrigeration cycle apparatus
CN111936746A (en) * 2018-04-04 2020-11-13 东芝开利株式会社 Rotary compressor and refrigeration cycle device
US20210018231A1 (en) * 2018-04-04 2021-01-21 Toshiba Carrier Corporation Rotary compressor and refrigeration cycle apparatus
EP3557067A1 (en) * 2018-04-17 2019-10-23 Mitsubishi Heavy Industries Thermal Systems, Ltd. Piston rotor, crankshaft, rotary compressor, and assembling method of crankshaft
JP7170547B2 (en) 2019-01-21 2022-11-14 東芝キヤリア株式会社 Rotary compressor and refrigeration cycle equipment
JP2020118053A (en) * 2019-01-21 2020-08-06 東芝キヤリア株式会社 Rotary compressor and refrigeration cycle device
JPWO2020157786A1 (en) * 2019-01-28 2021-10-28 東芝キヤリア株式会社 Compressor and refrigeration cycle equipment
US20210341188A1 (en) * 2019-01-28 2021-11-04 Toshiba Carrier Corporation Compressor and refrigeration cycle device
CN113302400A (en) * 2019-01-28 2021-08-24 东芝开利株式会社 Compressor and refrigeration cycle device
WO2020157786A1 (en) * 2019-01-28 2020-08-06 東芝キヤリア株式会社 Compressor and refrigeration cycle device
JP7223778B2 (en) 2019-01-28 2023-02-16 東芝キヤリア株式会社 Compressor and refrigeration cycle equipment
CN113302400B (en) * 2019-01-28 2023-08-25 东芝开利株式会社 Compressor and refrigeration cycle device

Also Published As

Publication number Publication date
KR20070030189A (en) 2007-03-15
JPWO2005124156A1 (en) 2008-04-10
KR100805465B1 (en) 2008-02-20
JP4594302B2 (en) 2010-12-08

Similar Documents

Publication Publication Date Title
WO2005124156A1 (en) Multi-cylinder rorary compressor
CN100447424C (en) Multi-cylinder rotary compressor
EP2749735B1 (en) Compressor
JP5441982B2 (en) Rotary compressor
US20110150683A1 (en) Rotary compressor
EP2613053B1 (en) Rotary compressor with dual eccentric portion
CN113833654B (en) Scroll compressor and refrigeration cycle device
JP5781019B2 (en) Rotary compressor
JP2003161278A (en) Hermetic rotary compressor
JP2022534304A (en) Compressors and refrigeration equipment
KR20020034883A (en) Plural cylinder rotary compressor
US6352418B1 (en) Displacement type fluid machine
US20210054842A1 (en) Rotary compressor and refrigeration cycle apparatus
CN111836965B (en) Rotary compressor and refrigeration cycle device
JP4065654B2 (en) Multi-cylinder rotary compressor
KR100266949B1 (en) Displacement fluid machine
US20210207601A1 (en) Rotary compressor and refrigeration cycle apparatus
US8485805B2 (en) Rotary compressor
EP1947292B1 (en) Fluid machine with crankshaft
KR20100036131A (en) Hermetic compressor and refrigerator having the same
WO2019193697A1 (en) Rotary compressor and refrigeration cycle device
WO2013015215A1 (en) Fluid machine
EP3388675A1 (en) Oscillating piston-type compressor
JP2012122400A (en) Hermetic compressor and refrigerating cycle device
JPH11324955A (en) Helical blade type compressor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006514713

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020067022426

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580013879.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 1020067022426

Country of ref document: KR

122 Ep: pct application non-entry in european phase