WO2005123957A2 - Method for nucleic acid analysis - Google Patents
Method for nucleic acid analysis Download PDFInfo
- Publication number
- WO2005123957A2 WO2005123957A2 PCT/US2005/020378 US2005020378W WO2005123957A2 WO 2005123957 A2 WO2005123957 A2 WO 2005123957A2 US 2005020378 W US2005020378 W US 2005020378W WO 2005123957 A2 WO2005123957 A2 WO 2005123957A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nucleic acid
- reaction mixture
- template
- labeled
- polymerization
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6834—Enzymatic or biochemical coupling of nucleic acids to a solid phase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6869—Methods for sequencing
Definitions
- the present invention relates generally to methods of sequencing a polynucleotide in a sample, based on the use of labeled nucleotides as substrates for nucleic acid polymerases.
- DNA polymerases are enzymes which are useful in many recombinant DNA techniques, such as nucleic acid amplification by the polymerase chain reaction (“PCR"), self-sustained sequence replication (“3 SR”), and DNA sequencing. Thermostable DNA polymerases are particularly useful. Because heat does not destroy the polymerase activity, there is no need to add additional polymerase after every denaturation step.
- PCR polymerase chain reaction
- 3 SR self-sustained sequence replication
- DNA sequencing DNA sequencing.
- Thermostable DNA polymerases are particularly useful. Because heat does not destroy the polymerase activity, there is no need to add additional polymerase after every denaturation step.
- the DNA polymerase-DNA complexes formed are known to undergo a rate-limiting, conformational transition from an 'open' to 'closed' state, upon binding of the 'correct' dNTP or ddNTP at the active site.
- Mg 2+ or other metal ion
- Mg 2+ mediates a rapid chemical step involving nucleophilic displacement of pyrophosphate by the 3' hydroxy 1 of the primer terminus.
- the enzyme returns to the 'open' state upon the release of pyrophosphate (PPi) and translocation initiates the next round of reaction. While the ternary complex
- Enzyme-DNA-dNTP (or ddNTP) can form in the absence of Mg 2+ (or other metal ions), it is proficient in chemical addition of nucleotide only in the presence of Mg 2+ (or other metal ions). Mg 2+ (or other metal ion)-deficient conditions tend to lead to non-covalent (physical) sequestration of first 'correct' dNTP in a tight ternary complex (D Symposiume et al. (15 February 1999) Structure Fold. Des., 7(2):R31-5).
- This invention makes use of the above observation by use of this closed complex to freeze the polymerase during DNA synthesis, trapping the nucleotide which is complementary to the next template nucleotide, to allow the determination of the identity of this next correct nucleotide. It can then be identified either in place, as part of the complex, or as the dye is eluted from the complex when the reaction cycle is completed by the addition of divalent metal ion. In this way, sequential nucleotides of a DNA can be identified, effectively determining the DNA sequence.
- This method can be applied both to single molecules of template nucleic acid or to collections of identical (or nearly identical) sequence such as PCR products or clones.
- Figure 1 depicts the reaction scheme for parallel sequencing by phosphate labeled nucleotides pausing at the closed complex stage of arrays of targets. Complex is stable for the full time scale of washing and scanning.
- Figure 2 depicts the reaction and detection scheme for sequencing by phosphate labeled nucleotides pausing at the closed complex stage. Complex is stable for the full time scale of washing and detection.
- Figure 3 depicts the reaction and detection scheme for sequencing by phosphate labeled nucleotides pausing at the closed complex stage. Complex is only partially stable for the full time scale of washing and detection. Sequence obtained will not distinguish multiples of a base (A, AA, AAA etc.) in the sequence.
- Figure 4 depicts the reaction scheme for parallel sequencing by phosphate labeled nucleotides pausing at the closed complex stage of arrays of targets. Complex is only partially stable for the full time scale of washing and detection. Sequence obtained will not distinguish multiples of a base (A, AA, AAA etc.) in the sequence.
- Figure 5 presents evidence of the formation of the stable closed complex using fluorescently labeled nucleotides. It clearly demonstrates that the complex can be detected as described herein.
- Figure 6 demonstrates how SDS destroys the closed complex.
- Figure 7 demonstrates polymerase titration of the closed complex.
- nucleoside is a compound including a purine, deazapurine, pyrimidine or modified base linked to a sugar or a sugar substitute, such as a carbocyclic or acyclic moiety, at the 1' position or equivalent position and includes 2'-deoxy and 2'-hydroxyl, and 2', 3'-dideoxy forms as well as other substitutions.
- nucleotide refers to a phosphate ester of a nucleoside, wherein the esterification site typically corresponds to the hydroxyl group attached to the C-5 position of the pentose sugar.
- oligonucleotide includes linear oligomers of nucleotides or derivatives thereof, including deoxyribonucleosides, ribonucleosides, and the like. Throughout the specification, whenever an oligonucleotide is represented by a sequence of letters, the nucleotides are in the 5' ⁇ 3' order from left to right where A denotes deoxyadenosine, C denotes deoxycytidine, G denotes deoxyguanosine, and T denotes thymidine, unless noted otherwise.
- primer refers to a linear oligonucleotide that anneals in a specific way to a unique nucleic acid sequence and allows for amplification of that unique sequence.
- target nucleic acid sequence refers to a nucleic acid whose sequence identity, or ordering or location of nucleosides is determined by one or more of the methods of the present invention.
- the present invention relates to methods of characterizing a polynucleotide in a sample wherein a convenient assay is used for monitoring RNA or DNA synthesis via nucleic acid polymerase activity.
- Nucleic acid polymerizing enzymes synthesize nucleic acid molecules via transfer of a nucleoside monophosphate from a nucleoside triphosphate (NTP) or deoxynucleoside triphosphate (dNTP) to the 3' hydroxyl of a growing oligonucleotide chain. This reaction also releases inorganic pyrophosphate.
- DNA polymerase-DNA complexes formed are known to undergo a rate-limiting, conformational transition from an 'open' to 'closed' state, after binding of the 'correct' dNTP or ddNTP at the active site.
- the ternary complexes Enzyme-DNA-dNTP (or ddNTP) form, but the dNTP or ddNTP is not added to the growing nucleic acid molecule. This leads to non-covalent (physical) sequestration of the next, 'correct' nucleotide in the ternary complex.
- the polymerase is a DNA polymerase, such as DNA polymerase I, II, or III or DNA polymerase ⁇ , ⁇ , ⁇ , or terminal deoxynucleotidyl transferase or telomerase.
- suitable polymerases include, but are not limited to, a DNA dependent RNA polymerase, a primase, or an RNA dependant DNA polymerase (reverse transcriptase).
- RNA polymerase a promoter sequence recognizable by the RNA polymerase is contained within the nucleic acid template or the primer sequence.
- the nucleic acid template for sequencing in the methods of this invention may include an RNA or DNA template.
- the nucleic acid polymerizing enzyme can be a reverse transcriptase or an RNA polymerase.
- the methods provided by this invention utilize a nucleoside polyphosphate, such as a deoxynucleoside polyphosphate, dideoxynucleoside polyphosphate, carbocyclic nucleoside polyphosphate, or acylic nucleoside polyphosphate analogue with a colorimetric dye, or a fluorescent label.
- the base in these nucleoside polyphosphate is selected from the group consisting of uracil, thymine, cytosine, 5- methylcytosine, guanine, 7-deazaguanine, hypoxanthine, 7-deazahypoxanthine, adenine, 7-deazaadenine, 2,6-diaminopurine and analogs thereof.
- the nucleotides are labeled with fluorescent dyes or colored dyes or other detectable tags.
- Suitable fluorescent dyes may be selected from the group consisting of a xanthene dye, a cyanine dye, a merrocyanine dye, an azo dye, a porphyrin dye, a coumarin dye, a bodipy dye and derivatives thereof.
- Suitable colored dyes may be selected from the group consisting of an azo dye, a merrocyanine, a cyanine dye, a xanthene dye, a porphyrin dye, a coumarin dye, a bodipy dye and derivatives thereof. These dyes are well known and are available from a number of commercial sources.
- the methods of the current invention can be used to detect the sequence of a single molecule, or a homogeneous population of molecules. While the methods can be used to sequence unknown templates, it can also be used to confirm known sequences, identify single nucleotide polymorphisms, and perform single base extension reactions, amongst others. Cycling of the various steps of the methods leads to detection of additional sequence of the same molecule, one per cycle.
- the steps can be carried out in a sequential manner in a flow through or a stop-flow system. In such a flow through or stop flow system, the ternary complex of polymerase-template-nucleotide can be immobilized on beads, and the beads can be localized within a portion of a microchannel.
- the methods of the current invention can also be adapted to perform massively parallel reactions, to sequence multiple templates at the same time.
- the ternary complex of polymerase-template-nucleotide can be immobilized on beads within confined locations of a carrier (e.g. capillary), or they can be immobilized on the inner surface of a microchannel, or on a surface of a microscope slide or the like.
- the surface of a microscope slide can be a planar surface, or a coated surface.
- the surface may comprise a plurality of micro features arranged in spatially discrete regions to produce a texture on the surface, wherein the textured surface provides an increase in surface area as compared to a non-textured surface.
- the methods of the current invention require that the template-polymerase- nucleotide complex be immobilized to a support surface. It is contemplated that immobilization could occur before or after the formation of the ternary complex. When immobilization occurs before the formation of the ternary complex, one of several components could be immobilized. This includes the primer, the nucleic acid template, the nucleic acid polymerization enzyme, or the primer-template complex. When immobilization occurs after the formation of the ternary complex, the complex itself is immobilized.
- the species (the primer, the nucleic acid template, the nucleic acid polymerization enzyme, or the primer-template complex, or the ternary complex) immobilized can form an ordered pattern on the support surface.
- the species can also be immobilized randomly on the surface. However, each different species is located at a discrete location so that signal from any dye bound to one complex (or homogeneous population of complexes) is readily distinguishable from signal of another, adjacently immobilized complex.
- FY7 DNA polymerase US patent number 6,479,267
- step by step sequencing of a single molecule of nucleic acid using labeled dNTPs is possible.
- This method when used in a multiplexed format, could allow sequencing of tens of thousands of templates simultaneously in a very short time or sequencing long regions of DNA.
- the steps include: a) initiating a nucleic acid polymerization reaction on a support, by forming a reaction mixture, the reaction mixture including a nucleic acid template, a primer, a nucleic acid polymerizing enzyme, and four terminal-phosphate- labeled nucleotides each containing a distinct label, wherein a component of the reaction mixture or a first complex of two or more of the components, is immobilized on the support, and the component or components are selected from the group consisting of the nucleic acid template, primer, and nucleic acid polymerizing enzyme, and wherein each of the four terminal-phosphate-labeled nucleotides contains a base complementary to each of the four naturally occurring bases; b) progressing the nucleic acid polymerization reaction by incubating the reaction mixture to form a second complex comprising the nucleic acid template, primer, nucleic acid polymerizing enzyme, and a terminal-phosphate-
- the template used for the nucleic acid polymerase reaction is a single molecule, or a homogeneous population of molecules.
- steps (a) through (d) above the following steps are performed: e) adding a divalent cation to complete the polymerization reaction (now in the absence of free nucleotide); f) removing the divalent cation and other end products from the polymerization reaction; and g) repeating steps (a) through (f) for determining additional nucleotides in sequence.
- an excess of a chelating agent can be added in any or all of steps (a) through (d) and in particular step (f) to sequester any residual divalent cation that might be present in the reaction mixture.
- a chelating agent can be added to each of the methods disclosed in the current invention, for the same purpose, whenever there is a need. Addition of the chelating agent does not interfere with the formation of the ternary complex of template-polymerase-dNTP (or ddNTP). This is experimentally shown in the examples provided below. These chelating agents are removed with the addition of the divalent cation (e.g. manganese or magnesium), which enables the completion of the polymerase reaction cycle.
- the divalent cation e.g. manganese or magnesium
- the steps include: a) immobilizing a plurality of primers or nucleic acid templates on a support structure, wherein each primer or template contains a unique sequence and wherein each primer (or multiple copies of the same primer) or template is localized to an identifiable, discrete location on the support structure; b) initiating a plurality of nucleic acid polymerization reactions on the support structure, by forming a reaction mixture, the reaction mixture including the plurality of primers, the plurality of nucleic acid templates, a nucleic acid polymerizing enzyme, and at least one terminal-phosphate-labeled nucleotides each containing a distinct label, wherein each of the terminal-phosphate-labeled nucleotides contains a base complementary to each of the
- each of the template (or primer) used for the nucleic acid polymerase reaction is a single molecule or a homogeneous population of molecules.
- steps (a) through (e) above the following steps are performed: f) adding a divalent cation to complete the polymerization reactions; g) removing the divalent cation and other end products from the polymerization reactions; and h) repeating steps (a) through (g) for the characterization of each additional nucleotide of the plurality of nucleic acid templates.
- Figure 1 depicts the multiplexing embodiment of the invention.
- the steps include: (a) initiating a nucleic acid polymerization reaction on a support, by forming a reaction mixture, the reaction mixture including a nucleic acid template, a primer, a nucleic acid polymerizing enzyme, and at least one terminal-phosphate-labeled nucleotides each containing a distinct label, wherein a component of the reaction mixture or a first complex of two or more of the components, is immobilized on the support, and the component or components are selected from the group consisting of the nucleic acid template, the primer, and the nucleic acid polymerizing enzyme, and wherein each of the at least one terminal-phosphate-labeled nucleotides contains a base complementary to the four naturally occurring bases; (b) progressing the nucleic acid polymerization reaction by incubating the reaction mixture to form a second complex comprising the nucleic acid template, primer, nucleic acid polymerizing enzyme, and
- the present invention further provides methods of sequencing a target sequence using the steps described above in a continuous flow or a stop-flow system, where the immobilized material is held in place by any one of the means known in the art and different reagents and buffers are pumped in to the system at one end and exit the system at the other end. Reagents and buffers may flow continuously or may be held in place for certain time to allow for the polymerization reaction to proceed.
- An illustration of the process is presented in Figure 2. As shown in Figure 2, beads within a microchannel provide support surface for the immobilization of the reaction complexes. As the buffers and reagents move along through the system, the dye released from the polymerase reaction moves directionally toward the exiting end of the microchannel.
- Detection of the dye labeled dNTP (or ddNTP) captured by the polymerase can be performed at a number of locations within the system, even after the dye is released from the nucleotide by the addition of divalent cation. These locations include the one where the beads are held (before or after the additional of the divalent cation), or downstream of where the beads are held but before the dyes exit the system. Alternatively, the dye containing solution can be first collected as it exits the system, and then detected.
- the method can still be used to sequence single molecules.
- the detection technique involves observing microscopic "flashes" of fluorescence at the site of the complex which would indicate the temporary (duration of seconds), binding of the next correct nucleotide (labeled), (resulting in a colored "glittering" of the DNA-DNA polymerase complex). Since the "closed complex” that is only formed with the next correct nucleotide, has at least 10-times longer lifetime than an open complex containing the incorrect next nucleotide, its fluorescence will dominate the observed signal at the site of the complex.
- the steps include: a) initiating a nucleic acid polymerization reaction on a support, by forming a reaction mixture, the reaction mixture including a nucleic acid template, a primer, a nucleic acid polymerizing enzyme, and at least one nucleotides each containing a distinct label, wherein a component of the reaction mixture or a first complex of two or more of the components, is immobilized on the support, and the component or components are selected from the group consisting of the nucleic acid template, the primer, and the nucleic acid polymerizing enzyme, and wherein one of the at least one labeled nucleotides contains a base complementary to the template base at the site of polymerization; b) incubating the reaction mixture to form a second complex comprising the nucleic acid template, primer, nucleic acid polymerizing enzyme, and one of the at least one labeled nucle
- the template used for the nucleic acid polymerase reaction is a single molecule, or a homogeneous population of molecules.
- steps (a) through (d) above the following steps are performed: e) removing the at least one labeled nucleotides and other components from the reaction mixture; f) adding, to the reaction mixture, a nucleic acid polymerizing enzyme, a divalent cation, and a nucleotide containing the base complementary to the template base at the site of polymerization; g) completing the polymerization reaction by incubating the reaction mixture for a period of time; h) removing the divalent cation, nucleotide and other end products from the polymerization reaction; and i) repeating steps (a) through (h) for each additional nucleotide to be analyzed.
- the steps include: a) immobilizing a plurality of primers on a support structure, wherein each primer contains a unique sequence and wherein each primer (or multiple copies of each primer) is localized to an identifiable, discrete location on the support structure; b) initiating a plurality of nucleic acid polymerization reactions on the support structure, by forming a reaction mixture, the reaction mixture including the plurality of immobilized primers, a plurality of nucleic acid templates, a nucleic acid polymerizing enzyme, and four labeled nucleotides each containing a distinct label, wherein each of the four labeled nucleotides contains a base complementary to each of the four naturally occurring bases; c) incubating the reaction mixture to form a plurality of primers on a support structure, wherein each primer contains a unique sequence and wherein each primer (or multiple copies of each primer) is localized to an identifiable, discrete location on the support structure; b) initiating a plurality of nucleic acid polymerization reactions on the
- each of the template (or primer) used for the nucleic acid polymerase reaction is a single molecule or a homogeneous population of molecules.
- the drawback to this method would be that runs of the same bases could not be fully sequenced.
- a sequence of GGGTTTCCTCTC SEQ ID NO: 1 would be read as GTCTCTC (SEQ ID NO: 2), but this information is useful in many situations. While this method only provides sequence information of the first base, cycling of a similar method can provide sequence information for multiple bases of each template.
- Another method that could be used in a multiplexed format will also allow sequencing of tens of thousands of templates simultaneously in a very short time or sequencing long regions of DNA. This method could be used to obtain sequence of multiple bases from the same template, with the same limitation. Runs of the same bases could not be easily detected (e.g. GGGTTTCCTCTC (SEQ ID NO: 1)) would be read as GTCTCTC (SEQ ID NO: 2).
- the steps include: a) immobilizing a plurality of primers on a support structure, wherein each primer contains a unique sequence and wherein each primer is localized to an identifiable, discrete location on the support structure; b) initiating a plurality of nucleic acid polymerization reactions on the support structure, by forming a reaction mixture, the reaction mixture including the plurality of immobilized primers, a plurality of nucleic acid templates, a nucleic acid polymerizing enzyme, and one labeled nucleotides; c) incubating the reaction mixture to form a plurality of second complexes, each comprising one of the plurality of immobilized primers, one of the plurality of nucleic acid templates, the nucleic acid polymerizing enzyme, and the labeled nucleotide, wherein the labeled nucleotide contains a base complementary to the template base at the site of polymerization
- the data (dye label information) obtained from this method are processed in a computer system with an appropriate algorithm.
- the data are converted to sequence information of each of the four nucleotides, either instantaneously as the data is generated, or at the end of the experimental reactions.
- the sequences are next assembled for each of the plurality of nucleic acid templates. It is noted that the order of addition of labeled nucleotides can occur in a preset cycle, but it is not essential.
- the following example illustrates the process for determining the sequence of two template nucleic acid molecules using the above method.
- the sequences to be analyzed are (a) GGGTTTCCTCTC (SEQ ID NO: 1) and (b) CTCTCCTTTTGGG (SEQ ID NO: 3) and nucleotides complementary to G, C, A, T, are added in this order.
- a nucleotide complementary to G is added.
- a signal is detected from the location where the next nucleotide base on the template is a G ( in this case SEQ ID NO: 1).
- a signal is not detected from the location where the next nucleotide base on the template is not a G (in this case SEQ ID NO: 3, which contains a next C).
- the information is recorded to a data storage media.
- a nucleotide complementary to C is added. Now a signal is detected from the location that contains the template of SEQ ID NO: 3 (with a next C).
- a signal is not detected from the location that contains the template of SEQ ID NO: 1 (with a next T). Again, this information is recorded to a data storage media.
- data regarding the two templates are obtained. If a full cycle of reactions with each of the four nucleotides gives no detectable data, it signals that the template sequence is completely sequenced.
- the end result from the reactions, for the template of SEQ ID NO: 1, reads as GTCTCTC (SEQ ID NO: 2), while the end result from the reactions, for the template of SEQ ID NO: 3, reads as CTCTCTG (SEQ ID NO: 4).
- the method can still be used to sequence single molecules.
- the detection technique involves observing microscopic "flashes" at the site of the complex which would indicate the temporary (duration of seconds to minutes), binding of the next correct nucleotide (labeled). While terminal phosphate labeled dNTPs or ddNTPs could be used, so could base labeled ddNTPs.
- the only drawback to this technique would be that runs of the same bases could not be fully sequenced. For example, a sequence of GGGTTTCCTCTC (SEQ ID NO: 1 ) would be read as GTCTCTC (SEQ ID NO: 2), but this information is useful.
- the steps include: (a) initiating a nucleic acid polymerization reaction on a support, by forming a reaction mixture, the reaction mixture including a nucleic acid template, a primer, a nucleic acid polymerizing enzyme, and at least one nucleotides each containing a distinct label, wherein a component of the reaction mixture or a first complex of two or more of the components, is immobilized on the support, and the component or components are selected from the group consisting of the nucleic acid template, primer, and nucleic acid polymerizing enzyme, and wherein one of the at least one labeled nucleotides contains a base complementary to the template base at the site of polymerization; (b) incubating the reaction mixture to form a second complex comprising the nucleic acid template, primer, nucleic acid polymerizing enzyme, and one of the at least one labeled nucleot
- the template used for the nucleic acid polymerase reaction is a single molecule, or a homogeneous population of molecules.
- steps (a) through (e) above the following steps are performed: (f) adding, to the reaction mixture, a nucleic acid polymerizing enzyme, a divalent cation, and an un-labeled nucleotide containing identified base sequence; (g) completing the polymerization reaction by incubating the reaction mixture for a period of time; (h) removing the divalent cation and other end products from the polymerization reaction; and (i) repeating steps (a) through (h) for each additional nucleotide to be sequenced. If the labeled nucleotides are base labeled, it is preferred that an additional wash step is performed before step (f) to get rid of the template-primer-polymerase complex captured labeled nucleotides.
- Figure 3 depicts the reaction and detection scheme for sequencing by phosphate labeled nucleotides pausing at the closed complex stage as detailed above.
- the only drawback of this method is that runs of the same bases could not be fully sequenced.
- GGGTTTCCTCTC SEQ ID NO: 1
- GTCTCTC SEQ ID NO: 2
- the steps include: (a) immobilizing a plurality of primers on a support structure, wherein each primer contains a unique sequence and wherein each primer (or multiple copies of each primer) is localized to an identifiable, discrete location on the support structure; (b) initiating a plurality of nucleic acid polymerization reactions on the support structure, by forming a reaction mixture, the reaction mixture including the plurality of immobilized primers, a plurality of nucleic acid templates, a nucleic acid polymerizing enzyme, and four labeled nucleotides each containing a distinct label, wherein each of the four labeled nucleotides contains a base complementary to each of the four naturally occurring bases; (c) incubating the reaction mixture to form a plurality of primers on a support structure, wherein each primer contains a unique sequence and wherein each primer (or multiple copies of each primer) is localized to an identifiable, discrete location on the support structure; (b) initiating a plurality of nucleic acid polymerization reactions on the
- each of the template (or primer) used for the nucleic acid polymerase reaction is a single molecule or a homogeneous population of molecules.
- Figure 4 depicts the reaction scheme for parallel sequencing as detailed hereinabove. The drawback to this method would be that runs of the same bases could not be fully sequenced. For example, as stated above, a sequence of GGGTTTCCTCTC (SEQ ID NO: 1) would be read as GTCTCTC (SEQ ID NO: 2), but this information is useful in many situations. While this method only provides sequence information of the first base, cycling of a similar method can provide sequence information for multiple bases of each template.
- the steps include: (a) immobilizing a plurality of primers on a support structure, wherein each primer contains a unique sequence and wherein each primer is localized to an identifiable, discrete location on the support structure; (b) initiating a plurality of nucleic acid polymerization reactions on the support structure, by forming a reaction mixture, including the plurality of immobilized primers, a plurality of nucleic acid templates, a nucleic acid polymerizing enzyme, and at least one labeled nucleotides; (c) incubating the reaction mixture to form a plurality of second complexes, each comprising one of the plurality of immobilized primers, one of the plurality
- step (g) If the labeled nucleotides are base labeled, it is preferred that an additional wash step is performed before step (g) to get rid of the template-primer-polymerase complex captured labeled nucleotides.
- the data (dye label information) obtained from this method are processed in a computer system with an appropriate algorithm.
- the data are converted to sequence of each of the four nucleotides, either instantaneously as the data is generated, or at the end of the experimental reactions.
- the sequences are next assembled for each of the plurality of nucleic acid templates. It is noted that the order of addition of labeled nucleotides can occur in a preset cycle, but it is not essential.
- Figure 5 presents evidence of the formation of this type of stable closed complex using fluorescently labeled nucleotides. It clearly demonstrates that the complex can be detected as described herein.
- Figure 7 demonstrates polymerase titration of the closed complex. Reactions
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
Claims
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE602005020011T DE602005020011D1 (en) | 2004-06-10 | 2005-06-09 | PROCESS FOR NUCLEIC ACID ANALYSIS |
JP2007527745A JP5037343B2 (en) | 2004-06-10 | 2005-06-09 | Nucleic acid analysis method |
CA2567591A CA2567591C (en) | 2004-06-10 | 2005-06-09 | Method for nucleic acid sequencing in the absence of divalent metal ion |
US11/570,347 US7871771B2 (en) | 2004-06-10 | 2005-06-09 | Method for nucleic acid analysis |
AU2005254984A AU2005254984B2 (en) | 2004-06-10 | 2005-06-09 | Method for nucleic acid analysis |
EP05759349A EP1766075B1 (en) | 2004-06-10 | 2005-06-09 | Method for nucleic acid analysis |
AT05759349T ATE461293T1 (en) | 2004-06-10 | 2005-06-09 | METHOD FOR NUCLEIC ACID ANALYSIS |
US11/255,683 US7264934B2 (en) | 2004-06-10 | 2005-10-21 | Rapid parallel nucleic acid analysis |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US57878904P | 2004-06-10 | 2004-06-10 | |
US60/578,789 | 2004-06-10 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/255,683 Continuation-In-Part US7264934B2 (en) | 2004-06-10 | 2005-10-21 | Rapid parallel nucleic acid analysis |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2005123957A2 true WO2005123957A2 (en) | 2005-12-29 |
WO2005123957A3 WO2005123957A3 (en) | 2006-05-18 |
Family
ID=35510340
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2005/020378 WO2005123957A2 (en) | 2004-06-10 | 2005-06-09 | Method for nucleic acid analysis |
Country Status (9)
Country | Link |
---|---|
US (1) | US7871771B2 (en) |
EP (1) | EP1766075B1 (en) |
JP (1) | JP5037343B2 (en) |
CN (1) | CN101120098A (en) |
AT (1) | ATE461293T1 (en) |
AU (1) | AU2005254984B2 (en) |
CA (1) | CA2567591C (en) |
DE (1) | DE602005020011D1 (en) |
WO (1) | WO2005123957A2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1954827A1 (en) * | 2005-10-21 | 2008-08-13 | GE Healthcare Bio-Sciences Corp. | Rapid parallel nucleic acid analysis |
US9255258B2 (en) | 2009-06-05 | 2016-02-09 | Life Technologies Corporation | Nucleotide transient binding for sequencing methods |
EP3438285A1 (en) | 2012-05-02 | 2019-02-06 | Ibis Biosciences, Inc. | Dna sequencing |
EP3438286A1 (en) | 2012-05-02 | 2019-02-06 | Ibis Biosciences, Inc. | Dna sequencing |
US10202642B2 (en) | 2012-05-02 | 2019-02-12 | Ibis Biosciences, Inc. | DNA sequencing |
US10655176B2 (en) | 2017-04-25 | 2020-05-19 | Omniome, Inc. | Methods and apparatus that increase sequencing-by-binding efficiency |
US10982264B2 (en) | 2016-04-22 | 2021-04-20 | Omniome, Inc. | Nucleic acid sequencing method and system employing enhanced detection of nucleotide-specific ternary complex formation |
US11168364B2 (en) | 2016-08-15 | 2021-11-09 | Omniome, Inc. | Method and system for sequencing nucleic acids |
RU2760737C2 (en) * | 2016-12-27 | 2021-11-30 | Еги Тек (Шэнь Чжэнь) Ко., Лимитед | Method for sequencing based on one fluorescent dye |
EP4153798A4 (en) * | 2020-05-20 | 2024-05-01 | Element Biosciences, Inc. | Methods for paired-end sequencing library preparation |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100036110A1 (en) * | 2008-08-08 | 2010-02-11 | Xiaoliang Sunney Xie | Methods and compositions for continuous single-molecule nucleic acid sequencing by synthesis with fluorogenic nucleotides |
US20100227327A1 (en) * | 2008-08-08 | 2010-09-09 | Xiaoliang Sunney Xie | Methods and compositions for continuous single-molecule nucleic acid sequencing by synthesis with fluorogenic nucleotides |
US9184099B2 (en) | 2010-10-04 | 2015-11-10 | The Board Of Trustees Of The Leland Stanford Junior University | Biosensor devices, systems and methods therefor |
SG189839A1 (en) | 2010-10-04 | 2013-06-28 | Genapsys Inc | Systems and methods for automated reusable parallel biological reactions |
US9399217B2 (en) | 2010-10-04 | 2016-07-26 | Genapsys, Inc. | Chamber free nanoreactor system |
EP2714935B1 (en) * | 2011-05-27 | 2017-03-15 | Genapsys Inc. | Systems and methods for genetic and biological analysis |
US8585973B2 (en) | 2011-05-27 | 2013-11-19 | The Board Of Trustees Of The Leland Stanford Junior University | Nano-sensor array |
US9926596B2 (en) | 2011-05-27 | 2018-03-27 | Genapsys, Inc. | Systems and methods for genetic and biological analysis |
EP2785868B1 (en) | 2011-12-01 | 2017-04-12 | Genapsys Inc. | Systems and methods for high efficiency electronic sequencing and detection |
US9279154B2 (en) * | 2011-12-21 | 2016-03-08 | Illumina, Inc. | Apparatus and methods for kinetic analysis and determination of nucleic acid sequences |
WO2014152625A1 (en) | 2013-03-15 | 2014-09-25 | Genapsys, Inc. | Systems and methods for biological analysis |
WO2015089238A1 (en) | 2013-12-11 | 2015-06-18 | Genapsys, Inc. | Systems and methods for biological analysis and computation |
WO2015161054A2 (en) | 2014-04-18 | 2015-10-22 | Genapsys, Inc. | Methods and systems for nucleic acid amplification |
US10077470B2 (en) | 2015-07-21 | 2018-09-18 | Omniome, Inc. | Nucleic acid sequencing methods and systems |
JP6915939B2 (en) * | 2016-04-29 | 2021-08-11 | オムニオム インコーポレイテッドOmniome, Inc. | Nucleic acid sequence determination method |
US10294514B2 (en) | 2016-04-29 | 2019-05-21 | Omniome, Inc. | Sequencing method employing ternary complex destabilization to identify cognate nucleotides |
CN116397014A (en) | 2016-07-20 | 2023-07-07 | 测序健康公司 | Systems and methods for nucleic acid sequencing |
US10428378B2 (en) | 2016-08-15 | 2019-10-01 | Omniome, Inc. | Sequencing method for rapid identification and processing of cognate nucleotide pairs |
EP3523444B1 (en) * | 2016-10-05 | 2023-09-13 | F. Hoffmann-La Roche AG | Nucleic acid sequencing using nanotransistors |
EP3562962B1 (en) | 2016-12-30 | 2022-01-05 | Omniome, Inc. | Method and system employing distinguishable polymerases for detecting ternary complexes and identifying cognate nucleotides |
WO2018136487A1 (en) | 2017-01-20 | 2018-07-26 | Omniome, Inc. | Process for cognate nucleotide detection in a nucleic acid sequencing workflow |
WO2018187013A1 (en) | 2017-04-04 | 2018-10-11 | Omniome, Inc. | Fluidic apparatus and methods useful for chemical and biological reactions |
US9951385B1 (en) | 2017-04-25 | 2018-04-24 | Omniome, Inc. | Methods and apparatus that increase sequencing-by-binding efficiency |
CN111566224A (en) | 2017-09-21 | 2020-08-21 | 吉纳普赛斯股份有限公司 | Systems and methods for nucleic acid sequencing |
CA3079411C (en) | 2017-10-19 | 2023-12-05 | Omniome, Inc. | Simultaneous background reduction and complex stabilization in binding assay workflows |
EP3827097A1 (en) | 2018-07-24 | 2021-06-02 | Omniome, Inc. | Serial formation of ternary complex species |
EP3853358A1 (en) | 2018-09-17 | 2021-07-28 | Omniome, Inc. | Engineered polymerases for improved sequencing |
EP3976814A4 (en) * | 2019-05-27 | 2023-07-19 | Universal Sequencing Technology Corporation | Methods to identify components in nucleic acid sequences |
US20210139867A1 (en) | 2019-11-08 | 2021-05-13 | Omniome, Inc. | Engineered polymerases for improved sequencing by binding |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020164629A1 (en) | 2001-03-12 | 2002-11-07 | California Institute Of Technology | Methods and apparatus for analyzing polynucleotide sequences by asynchronous base extension |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2256563A1 (en) * | 1997-04-04 | 1998-10-15 | Innogenetics N.V. | Isothermal polymerase chain reaction by cycling the concentration of divalent metal ions |
ATE371022T1 (en) * | 1998-06-17 | 2007-09-15 | Ge Healthcare Bio Sciences | FY7 POLYMERASE |
ATE310103T1 (en) * | 1998-08-19 | 2005-12-15 | Bioventures Inc | METHOD FOR DETERMINING POLYNUCLEOTIDE SEQUENCE VARIATIONS |
GB9901475D0 (en) * | 1999-01-22 | 1999-03-17 | Pyrosequencing Ab | A method of DNA sequencing |
US20030108867A1 (en) * | 1999-04-20 | 2003-06-12 | Chee Mark S | Nucleic acid sequencing using microsphere arrays |
US6274320B1 (en) * | 1999-09-16 | 2001-08-14 | Curagen Corporation | Method of sequencing a nucleic acid |
US6613523B2 (en) * | 2001-06-29 | 2003-09-02 | Agilent Technologies, Inc. | Method of DNA sequencing using cleavable tags |
US7169560B2 (en) * | 2003-11-12 | 2007-01-30 | Helicos Biosciences Corporation | Short cycle methods for sequencing polynucleotides |
US7264934B2 (en) * | 2004-06-10 | 2007-09-04 | Ge Healthcare Bio-Sciences Corp. | Rapid parallel nucleic acid analysis |
-
2005
- 2005-06-09 CN CNA2005800191648A patent/CN101120098A/en active Pending
- 2005-06-09 CA CA2567591A patent/CA2567591C/en not_active Expired - Fee Related
- 2005-06-09 WO PCT/US2005/020378 patent/WO2005123957A2/en active Application Filing
- 2005-06-09 DE DE602005020011T patent/DE602005020011D1/en active Active
- 2005-06-09 AT AT05759349T patent/ATE461293T1/en not_active IP Right Cessation
- 2005-06-09 AU AU2005254984A patent/AU2005254984B2/en not_active Ceased
- 2005-06-09 JP JP2007527745A patent/JP5037343B2/en active Active
- 2005-06-09 EP EP05759349A patent/EP1766075B1/en active Active
- 2005-06-09 US US11/570,347 patent/US7871771B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020164629A1 (en) | 2001-03-12 | 2002-11-07 | California Institute Of Technology | Methods and apparatus for analyzing polynucleotide sequences by asynchronous base extension |
Non-Patent Citations (1)
Title |
---|
DOUBLIE ET AL., STRUCTURE FOLD. DES., vol. 7, no. 2, 15 February 1999 (1999-02-15), pages 31 - 5 |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009512452A (en) * | 2005-10-21 | 2009-03-26 | ジーイー・ヘルスケア・バイオサイエンス・コーポレイション | Rapid parallel nucleic acid analysis |
EP1954827A4 (en) * | 2005-10-21 | 2009-12-09 | Ge Healthcare Bio Sciences | Rapid parallel nucleic acid analysis |
EP1954827A1 (en) * | 2005-10-21 | 2008-08-13 | GE Healthcare Bio-Sciences Corp. | Rapid parallel nucleic acid analysis |
US10597642B2 (en) | 2009-06-05 | 2020-03-24 | Life Technologies Corporation | Nucleotide transient binding for sequencing methods |
US9255258B2 (en) | 2009-06-05 | 2016-02-09 | Life Technologies Corporation | Nucleotide transient binding for sequencing methods |
US9765310B2 (en) | 2009-06-05 | 2017-09-19 | Life Technologies Corporation | Nucleotide transient binding for sequencing methods |
US11447756B2 (en) | 2009-06-05 | 2022-09-20 | Life Technologies Corporation | Nucleotide transient binding for sequencing methods |
EP3438285A1 (en) | 2012-05-02 | 2019-02-06 | Ibis Biosciences, Inc. | Dna sequencing |
US11359236B2 (en) | 2012-05-02 | 2022-06-14 | Ibis Biosciences, Inc. | DNA sequencing |
US10584377B2 (en) | 2012-05-02 | 2020-03-10 | Ibis Biosciences, Inc. | DNA sequencing |
US10202642B2 (en) | 2012-05-02 | 2019-02-12 | Ibis Biosciences, Inc. | DNA sequencing |
EP3438286A1 (en) | 2012-05-02 | 2019-02-06 | Ibis Biosciences, Inc. | Dna sequencing |
EP3783111A1 (en) | 2012-05-02 | 2021-02-24 | Ibis Biosciences, Inc. | Dna sequencing |
EP3789502A1 (en) | 2012-05-02 | 2021-03-10 | Ibis Biosciences, Inc. | Dna sequencing |
US10544454B2 (en) | 2012-05-02 | 2020-01-28 | Ibis Biosciences, Inc. | DNA sequencing |
US10982264B2 (en) | 2016-04-22 | 2021-04-20 | Omniome, Inc. | Nucleic acid sequencing method and system employing enhanced detection of nucleotide-specific ternary complex formation |
US11168364B2 (en) | 2016-08-15 | 2021-11-09 | Omniome, Inc. | Method and system for sequencing nucleic acids |
RU2760737C2 (en) * | 2016-12-27 | 2021-11-30 | Еги Тек (Шэнь Чжэнь) Ко., Лимитед | Method for sequencing based on one fluorescent dye |
US11466318B2 (en) | 2016-12-27 | 2022-10-11 | Egi Tech (Shen Zhen) Co., Limited | Single fluorescent dye-based sequencing method |
US11447823B2 (en) | 2017-04-25 | 2022-09-20 | Pacific Biosciences Of California, Inc. | Methods and apparatus that increase sequencing-by-binding efficiency |
US10655176B2 (en) | 2017-04-25 | 2020-05-19 | Omniome, Inc. | Methods and apparatus that increase sequencing-by-binding efficiency |
EP4153798A4 (en) * | 2020-05-20 | 2024-05-01 | Element Biosciences, Inc. | Methods for paired-end sequencing library preparation |
Also Published As
Publication number | Publication date |
---|---|
WO2005123957A3 (en) | 2006-05-18 |
JP5037343B2 (en) | 2012-09-26 |
US20080287305A1 (en) | 2008-11-20 |
CA2567591C (en) | 2011-08-02 |
EP1766075A4 (en) | 2008-05-21 |
CN101120098A (en) | 2008-02-06 |
CA2567591A1 (en) | 2005-12-29 |
DE602005020011D1 (en) | 2010-04-29 |
EP1766075A2 (en) | 2007-03-28 |
AU2005254984A1 (en) | 2005-12-29 |
JP2008502369A (en) | 2008-01-31 |
US7871771B2 (en) | 2011-01-18 |
AU2005254984B2 (en) | 2008-10-16 |
ATE461293T1 (en) | 2010-04-15 |
EP1766075B1 (en) | 2010-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2005254984B2 (en) | Method for nucleic acid analysis | |
EP1954827B1 (en) | Rapid parallel nucleic acid analysis | |
US10590479B2 (en) | Polymerase idling method for single molecule DNA sequencing | |
US7858311B2 (en) | Composition and method for nucleic acid sequencing | |
US20090163366A1 (en) | Two-primer sequencing for high-throughput expression analysis | |
WO2002044425A2 (en) | Enzymatic nucleic acid synthesis: compositions and methods for altering monomer incorporation fidelity | |
WO2005111240A2 (en) | Field-switch sequencing | |
JP2000513587A (en) | Determination of repeat length of nucleic acid by discontinuous primer extension | |
CA3177293A1 (en) | Nucleosides and nucleotides with 3' acetal blocking group | |
WO2010027497A2 (en) | Preparations, compositions, and methods for nucleic acid sequencing | |
JP2002531106A (en) | Determination of length of nucleic acid repeats by discontinuous primer extension | |
JP2024519372A (en) | Compositions and methods for sequencing by synthesis | |
US20090226906A1 (en) | Methods and compositions for reducing nucleotide impurities | |
US20060263790A1 (en) | Methods for improving fidelity in a nucleic acid synthesis reaction | |
JP4643263B2 (en) | Allele-specific primer extension | |
WO2009086353A1 (en) | Improved two-primer sequencing for high-throughput expression analysis | |
US20230313294A1 (en) | Methods for chemical cleavage of surface-bound polynucleotides | |
KR20230120985A (en) | Methods, systems and compositions for nucleic acid sequencing | |
JP2024502293A (en) | Sequencing of non-denaturing inserts and identifiers | |
US20140127698A1 (en) | Reiterative oligonucleotide synthesis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 11255683 Country of ref document: US |
|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWP | Wipo information: published in national office |
Ref document number: 11255683 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2567591 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005254984 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007527745 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11570347 Country of ref document: US Ref document number: 200580019164.8 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: DE |
|
ENP | Entry into the national phase |
Ref document number: 2005254984 Country of ref document: AU Date of ref document: 20050609 Kind code of ref document: A |
|
WWP | Wipo information: published in national office |
Ref document number: 2005254984 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005759349 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2005759349 Country of ref document: EP |