WO2005121390A1 - Method for suppressing adsorption of organic compound on surface of synthetic resin molded article - Google Patents

Method for suppressing adsorption of organic compound on surface of synthetic resin molded article Download PDF

Info

Publication number
WO2005121390A1
WO2005121390A1 PCT/JP2005/010457 JP2005010457W WO2005121390A1 WO 2005121390 A1 WO2005121390 A1 WO 2005121390A1 JP 2005010457 W JP2005010457 W JP 2005010457W WO 2005121390 A1 WO2005121390 A1 WO 2005121390A1
Authority
WO
WIPO (PCT)
Prior art keywords
synthetic resin
thin film
container
adsorption
plasma
Prior art date
Application number
PCT/JP2005/010457
Other languages
French (fr)
Japanese (ja)
Inventor
Eiji Kusano
Hui Zhang
Zhaopeng Hu
Kazufumi Shiotani
Akio Kimura
Original Assignee
Santen Pharmaceutical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Santen Pharmaceutical Co., Ltd. filed Critical Santen Pharmaceutical Co., Ltd.
Publication of WO2005121390A1 publication Critical patent/WO2005121390A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates

Definitions

  • the present invention provides a synthetic resin of an organic compound, characterized in that a thin film layer of metal, silicon or their oxides is formed on the surface of a synthetic resin molded product such as a container by a thin film forming technique using plasma.
  • the present invention relates to a method for suppressing adsorption to a molded product.
  • Synthetic resins are easily used in molding, are excellent in impact resistance, are lightweight and safe, and are therefore widely used as materials for various molded articles such as containers.
  • the synthetic resin molded article has a property that an organic compound is adsorbed on its surface, there are various restrictions in using the organic compound in direct contact with the organic compound. Therefore, attempts have been made to suppress the adsorption of organic compounds by modifying the surface of the synthetic resin.
  • a plasma etching technique is known. This technique is characterized by homogenizing the surface of the synthetic resin by plasma treatment.However, it is possible to modify the surface structure of the synthetic resin even at a low temperature. It has been described that plasma irradiation of a copolymer plate in an argon gas atmosphere improves the hydrophilicity of its surface and suppresses the adsorption of insulin. It is described that when the rate plate is subjected to plasma treatment in an argon gas atmosphere to make it hydrophilic, proteins such as lysozyme, anolebumin, and ⁇ _ globulin in artificial tears can be suppressed from being adsorbed on the surface of the polymethacrylate plate. Have been.
  • methods for forming a thin film of metal or metal oxide on the surface of a synthetic resin molded article by a thin film forming technique using plasma include sputtering, ion plating, plasma-enhanced chemical vapor deposition, and the like. There are arc ion plating, hollow sword vapor deposition, etc.Resin containers using these technologies to form thin films of metals and metal oxides have excellent permeability to oxygen and other gases. Is known.
  • Patent Document 1 discloses forming a Si ⁇ film on the surface of a synthetic resin container such as polyethylene terephthalate (PET) or polyethylene ( ⁇ ) using a special ionization coating method. It describes that the gas permeability is reduced to prevent oxidation of the contents.
  • Patent Document 2 discloses that a gas barrier property for oxygen and the like is improved by subjecting a ceramic thin film layer containing silicon oxide as a main component to plasma chemical vapor deposition on an inner surface or an outer surface of a plastic molded article made of an ethylene polypropylene random copolymer. It is described. All of the above-mentioned prior art documents aim at protecting the contents by blocking the intrusion of gas such as oxygen into the container. There is no description about the suppression of adsorption of organic compounds by forming a thin film layer by using it, and it goes without saying that it is also suggested.
  • Patent Document 1 JP-A-60-2443
  • Patent Document 2 JP 2001-261866 A
  • Non-patent Document 1 Pharmaceutical Journal 119 (12) 929-935, 1999
  • Non-Patent Document 2 Chem. Pharm. Bull. 42 (9) 1896-1901, 1994
  • the synthetic resin can be more effectively used.
  • a plasma etching technique described in the background art.
  • the plasma etching technique is a simple and useful method, radicals generated at the cross-linking site and the graft site on the surface of the synthetic resin molded product may cause a secondary reaction with oxygen in the air, etc.
  • Development of a method for suppressing adsorption of organic compounds has been desired.
  • Synthetic resins are used for various purposes, and are also used in aqueous liquid containers such as eye drops.
  • aqueous liquid containers such as eye drops.
  • organic compounds such as drugs and preservatives in the ophthalmic solution stored in the container are adsorbed on the inner surface of the container, a change in the concentration of the organic compound in the ophthalmic solution occurs and quality assurance can be achieved. Therefore, it is important to suppress the decrease in the content of organic compounds in eye drops.
  • the inventors of the present invention have made intensive studies to solve the above-mentioned problems, and found that a thin film layer of metal, silicon or their oxides was formed on a synthetic resin molded product by a thin film forming technique using plasma. Then, they found that adsorption of an organic compound to the resin could be effectively suppressed, and the present invention was reached.
  • a method for suppressing adsorption of organic compounds to the inner surface of a container characterized by forming a thin film layer of metal, silicon or their oxides on the inner surface of a synthetic resin container by a thin film forming technique using plasma,
  • polyolefin resin is S, polyethylene resin, polypropylene resin or polyethylene terephthalate resin.
  • An organic compound is formed into a synthetic resin molded product by forming a thin film layer of metal, silicon or their oxides on the surface of the synthetic resin molded product by a thin film forming technique using plasma. Synthetic resin molded products with excellent adsorption suppression,
  • the kind of the synthetic resin is not particularly limited, and examples thereof include a polyolefin resin, a polystyrene resin, and a polyester resin, and a polyolefin resin is preferable.
  • the polyolefin resin include polyethylene resin (PE), polypropylene resin (PP), polyethylene terephthalate resin (PET), polyvinyl chloride resin (PVC), and more preferably polyethylene resin (PE) and polypropylene resin. (PP) and polyethylene terephthalate resin (PET). These resins may be a homopolymer or a copolymer.
  • the synthetic resin container of the present invention is not particularly limited as long as it is a container capable of storing an aqueous solution, and examples thereof include an eyedropper container and a pet bottle.
  • the method for suppressing the adsorption of organic compounds to synthetic resin molded articles by the thin film forming technique using plasma of the present invention is suitable for suppressing the adsorption of trace amounts of organic compounds in aqueous liquid preparations, and is therefore useful in gene research and the like. It can also be used for biochips for analysis technology.
  • the thin film forming technology using plasma is a technology for forming a thin film layer of metal, silicon or their oxides on the surface of a synthetic resin molded product by plasma irradiation.
  • Technologies for Films and Coatings NOYES PUBLICATIONS, 1982, pp170-243, NOYES PUBLICATIONS, 1990, pp160-182, etc., ion plating (HANDBOOK OF PLASMA PROCESSI NG TECHNOLOGY, NOYES PUBLICATIONS, 1990, ⁇ 338_355), plasma chemical vapor deposition (Deposition Technologies for Films and Coatings, NOYES PUBLICATI ⁇ NS, 1982, pp365-384), arc ion plating (HANDBOOK OF PLASMA PROCESSING TECHNOLOGY, NOYES PUBLICATIONS, 1990, pp419-446) ), Hollow force sword deposition (HANDBOOK OF PLASMA PROCESSING TECHNOLOGY, N ⁇ Y ES PUBLICATION
  • Examples of the metal, silicon or their oxides include Ti, Si, Ta, Al, Ni, Cr, Ag, S Examples thereof include n, Hf, Nb, TiO, SiO, SiO, and Al 2 O, and more preferably Ti, Ag, Ti ⁇ , and SiO.
  • the thickness (average thickness) of the thin film layer of metal, silicon or their oxide is preferably 1 ⁇ m or less, more preferably 0.1 to 500 nm, and most preferably:! To 100 nm.
  • the thin film layer effectively suppresses the adsorption of the organic compound to the surface of the synthetic resin molded product even in such a thin layer.
  • a multi-layered thin film layer of metal, silicon or their oxides can be formed, whereby the adsorption suppressing effect can be further improved.
  • An example of the two-layer thin film layer is a layer in which an Ag layer is formed on a TiO layer by vapor deposition.
  • the synthetic resin container according to the present invention generally stores an organic compound in the form of a solution or suspension.
  • the organic compound having a property of being adsorbed on the inner surface of the container include vitamins such as vitamin E, local anesthetics such as dibuforcein hydrochloride, steroids such as fluorometholone, betamethasone, and triamcinolone, and prostaglandin derivatives such as latanoprost.
  • Drugs such as peptides and proteins such as cyclosporine, lysozyme, anolebumin, and ⁇ -globulin, and various additives such as preservatives and surfactants that are acceptable for pharmaceuticals, foods, beverages, and the like.
  • the preservative include a paraben preservative such as butyl paraoxybenzoate and a quaternary ammonium preservative such as benzanolone chloride.
  • the synthetic resin container of the present invention is an ophthalmic container
  • a thin film made of a desired metal such as Ti, Ag, TiO, SiO, silicon or an oxide thereof is formed on the inner surface of the ophthalmic container by using a sputtering technique.
  • a layer is formed.
  • the thickness of the thin film layer on the inner surface of the ophthalmic container is not particularly limited, and may be determined in consideration of the characteristics of the organic compound contained in the ophthalmic solution, the type of the thin film, and the like.
  • a thin film layer of metal, silicon or their oxides is formed on the surface of a synthetic resin molded article or the inner surface of a synthetic resin container by a thin film forming technique using plasma, the surface of the synthetic resin molded article or the synthetic resin Adsorption of the organic compound on the inner surface of the container can be effectively suppressed.
  • the force described in detail in the section on adsorption suppression test below When a thin film layer of Ti, Ag, TiO, and SiO was formed on the resin, the reduction of the organic compound content was significantly suppressed in all cases.
  • Persistence Vitamin E content at measurement / Vitamin E content before immersion X 100
  • Figure 1 shows the change in the residual ratio of vitamin E (average value of three times) at each film thickness.
  • the PE piece treated with the Ti sputtering thin film has excellent vitamin E adsorption suppression. Indicates for production.
  • Test Example 2 [Adsorption suppression test of dib-hydrochloric acid force using a resin piece on which Ti was plasma-deposited]
  • Residual rate content of dibu-hydrochloric acid at measurement / content of dibu-hydrochloric acid before immersion X 100
  • Table 1 shows the change in the residual ratio of dibu-hydrochloric acid hydrochloride (average value of three times).
  • the PE piece treated with the Ti sputtering thin film has an excellent dib hydrochloride force-in adsorption suppressing action.
  • Table 2 shows the residual ratio of vitamin E at each film thickness (average value of three times).
  • TiO sputtered thin film-treated PE pieces have excellent vitamin E adsorption.
  • the residual ratio of vitamin E was calculated by the calculation formula shown in Test Example 1.
  • Table 3 shows the residual ratio of vitamin E at each film thickness (average value of three times).
  • the PE piece treated with the Ag sputtering thin film shows an excellent vitamin E adsorption suppression effect.
  • Si which is the target material
  • Si discharge power: 40 W
  • Si which is the target material
  • a thin film treated PE piece was obtained.
  • a plurality of glass bottles each containing 120 mL of a test solution containing 0.002% butyl paraoxybenzoate (w / v) were prepared.
  • the E pieces were immersed in test solutions in separate glass bottles three by three, and stored under the conditions of 40 ° C and 75% RH.
  • the content of butyl paraoxybenzoate was measured using a high performance liquid chromatograph at 0 (before immersion in the PE piece) and after 84 days. [0040]
  • the residual ratio of butyl paraoxybenzoate was calculated by the following formula.
  • Residual rate content of butyl paraoxybenzoate at the time of measurement / content of butyl paraoxybenzoate before immersion X I 00
  • Table 4 shows the residual ratio of butyl para-oxybenzoate (average of three times).
  • FIG. 1 is a graph showing the results of an adsorption suppression test (change in the residual ratio of vitamin E) using a PE piece treated with a Ti sputtering thin film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Physical Vapour Deposition (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Abstract

Disclosed is a method for suppressing adsorption of an organic compound on the surface of a synthetic resin molded article. A thin-film layer of a metal, silicon or an oxide of the metal or silicon is formed on the surface of a synthetic resin molded article by a thin-film forming technique using plasma. Consequently, there can be suppressed adsorption of an organic compound on the synthetic resin molded article.

Description

明 細 書  Specification
合成樹脂成形物表面における有機化合物の吸着抑制方法  Method for suppressing adsorption of organic compounds on synthetic resin molded product surface
技術分野  Technical field
[0001] 本発明は、プラズマを用いた薄膜形成技術により、容器などの合成樹脂成形物の 表面に金属、珪素またはそれらの酸化物の薄膜層を形成することを特徴とする有機 化合物の合成樹脂成形物への吸着抑制方法に関する。  [0001] The present invention provides a synthetic resin of an organic compound, characterized in that a thin film layer of metal, silicon or their oxides is formed on the surface of a synthetic resin molded product such as a container by a thin film forming technique using plasma. The present invention relates to a method for suppressing adsorption to a molded product.
背景技術  Background art
[0002] 合成樹脂は、成形加工が容易であり、耐衝撃性に優れ、さらに軽量でかつ安全であ るので、容器等の各種成形物の材料として汎用されている。しかし、合成樹脂成形物 は、その表面に有機化合物が吸着する性質を有しているため、有機化合物が直接接 触するような使用に際しては種々の制約があった。そこで、合成樹脂表面を改質する などして有機化合物の吸着を抑制する試みがなされている。  [0002] Synthetic resins are easily used in molding, are excellent in impact resistance, are lightweight and safe, and are therefore widely used as materials for various molded articles such as containers. However, since the synthetic resin molded article has a property that an organic compound is adsorbed on its surface, there are various restrictions in using the organic compound in direct contact with the organic compound. Therefore, attempts have been made to suppress the adsorption of organic compounds by modifying the surface of the synthetic resin.
[0003] その一つとしてプラズマエッチング技術が知られている。この技術はプラズマ処理す ることにより合成樹脂表面を均質化することを特徴とするが、低温でも合成樹脂の表 面構造を改質することが可能で、非特許文献 1には、エチレンビュルアセテート共重 合体製のプレートにアルゴンガス雰囲気下でプラズマ照射を行うことによって、その 表面の親水性を向上させてインスリンの吸着を抑制することが記載され、また、非特 許文献 2には、ポリメタタリレート板をアルゴンガス雰囲気下でプラズマ処理して親水 性にすると、人工涙液中のリゾチーム、ァノレブミン、 γ _グロブリンなどのタンパクが該 ポリメタタリレート板の表面に吸着されるのを抑制できることが記載されている。  [0003] As one of them, a plasma etching technique is known. This technique is characterized by homogenizing the surface of the synthetic resin by plasma treatment.However, it is possible to modify the surface structure of the synthetic resin even at a low temperature. It has been described that plasma irradiation of a copolymer plate in an argon gas atmosphere improves the hydrophilicity of its surface and suppresses the adsorption of insulin. It is described that when the rate plate is subjected to plasma treatment in an argon gas atmosphere to make it hydrophilic, proteins such as lysozyme, anolebumin, and γ_ globulin in artificial tears can be suppressed from being adsorbed on the surface of the polymethacrylate plate. Have been.
[0004] 他方、プラズマを用いた薄膜形成技術により、合成樹脂成形物の表面に金属や金 属酸化物の薄膜を形成する方法としては、スパッタリング、イオンプレーティング、プ ラズマ化学気相成長法、アークイオンプレーティング、ホロ一力ソード蒸着などがあり 、これらの技術を用いて金属や金属酸化物の薄膜を形成した樹脂製容器は、酸素な どの気体の透過遮断性に優れてレ、ることが知られてレ、る。  [0004] On the other hand, methods for forming a thin film of metal or metal oxide on the surface of a synthetic resin molded article by a thin film forming technique using plasma include sputtering, ion plating, plasma-enhanced chemical vapor deposition, and the like. There are arc ion plating, hollow sword vapor deposition, etc.Resin containers using these technologies to form thin films of metals and metal oxides have excellent permeability to oxygen and other gases. Is known.
[0005] 例えば特許文献 1は、ポリエチレンテレフタレート(PET)やポリエチレン(ΡΕ)などの 合成樹脂容器の表面に特殊イオン化コーティング法を用いて Si〇の被膜を形成す ることにより、気体透過性を減少させて内容物の酸化防止を図ることを記載している。 また、特許文献 2は、エチレン ポリプロピレンランダム共重合体からなるプラスチック 成形品の内面又は外面に酸化ケィ素を主成分とするセラミック薄膜層をプラズマ化 学蒸着することにより、酸素などのガスバリア性を高めることを記載している。上記先 行文献は、いずれも容器外部力 容器内に酸素などの気体が侵入するのを遮断す ることにより、内容物を保護することを目的とするもので、プラズマを用いた薄膜形成 技術を用いて薄膜層を形成することによる有機化合物の吸着抑制についての記載 がなレ、ことは言うまでもなぐその示唆もなされてレ、なレ、。 [0005] For example, Patent Document 1 discloses forming a Si 特殊 film on the surface of a synthetic resin container such as polyethylene terephthalate (PET) or polyethylene (ΡΕ) using a special ionization coating method. It describes that the gas permeability is reduced to prevent oxidation of the contents. Patent Document 2 discloses that a gas barrier property for oxygen and the like is improved by subjecting a ceramic thin film layer containing silicon oxide as a main component to plasma chemical vapor deposition on an inner surface or an outer surface of a plastic molded article made of an ethylene polypropylene random copolymer. It is described. All of the above-mentioned prior art documents aim at protecting the contents by blocking the intrusion of gas such as oxygen into the container. There is no description about the suppression of adsorption of organic compounds by forming a thin film layer by using it, and it goes without saying that it is also suggested.
特許文献 1 :特開昭 60— 2443号公報  Patent Document 1: JP-A-60-2443
特許文献 2 :特開 2001— 261866号公報  Patent Document 2: JP 2001-261866 A
非特許文献 1 :薬学雑誌 119 (12) 929-935, 1999  Non-patent Document 1: Pharmaceutical Journal 119 (12) 929-935, 1999
非特許文献 2: Chem.Pharm.Bull.42 (9) 1896- 1901, 1994  Non-Patent Document 2: Chem. Pharm. Bull. 42 (9) 1896-1901, 1994
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 合成樹脂成形物の表面への有機化合物の吸着を抑制できれば、合成樹脂のより有 効な活用が図れる。その方法の一つとして背景技術に記載したプラズマエッチング 技術がある。プラズマエッチング技術は簡便で有用な方法ではあるが、合成樹脂成 形物の表面の架橋部位ゃグラフト部位に生じたラジカルが空気中の酸素などと二次 的な反応を起すこともあり、新たな有機化合物の吸着抑制方法の開発が望まれてい た。 [0006] If the adsorption of an organic compound to the surface of a synthetic resin molded product can be suppressed, the synthetic resin can be more effectively used. As one of the methods, there is a plasma etching technique described in the background art. Although the plasma etching technique is a simple and useful method, radicals generated at the cross-linking site and the graft site on the surface of the synthetic resin molded product may cause a secondary reaction with oxygen in the air, etc. Development of a method for suppressing adsorption of organic compounds has been desired.
[0007] 合成樹脂は種々の用途に用いられ、点眼容器のような水性液剤容器にも用いられ る。点眼容器おいては、容器内に保存された点眼液中の薬物や防腐剤などの有機 化合物が容器内面に吸着されると、点眼液中の有機化合物の濃度変化が生じ、品 質保証が果たせなくなるので、点眼液中の有機化合物の含有率低下を抑制すること は重要な課題である。  [0007] Synthetic resins are used for various purposes, and are also used in aqueous liquid containers such as eye drops. In an ophthalmic container, when organic compounds such as drugs and preservatives in the ophthalmic solution stored in the container are adsorbed on the inner surface of the container, a change in the concentration of the organic compound in the ophthalmic solution occurs and quality assurance can be achieved. Therefore, it is important to suppress the decrease in the content of organic compounds in eye drops.
課題を解決するための手段  Means for solving the problem
[0008] 本発明者は、上記課題を解決すべく鋭意検討したところ、プラズマを用いた薄膜形 成技術により、合成樹脂成形物に金属、珪素またはそれらの酸化物の薄膜層を形成 すれば、当該樹脂への有機化合物の吸着を効果的に抑制できることを見出し、本発 明に至った。 [0008] The inventors of the present invention have made intensive studies to solve the above-mentioned problems, and found that a thin film layer of metal, silicon or their oxides was formed on a synthetic resin molded product by a thin film forming technique using plasma. Then, they found that adsorption of an organic compound to the resin could be effectively suppressed, and the present invention was reached.
すなわち、本発明は、  That is, the present invention
(1)プラズマを用いた薄膜形成技術により、合成樹脂成形物の表面に金属、珪素ま たはそれらの酸化物の薄膜層を形成することを特徴とする有機化合物の合成樹脂成 形物への吸着抑制方法、  (1) Forming a thin film layer of metal, silicon, or their oxides on the surface of a synthetic resin molded product by a thin film forming technology using plasma Adsorption suppression method,
(2)プラズマを用いた薄膜形成技術により、合成樹脂製容器内面に金属、珪素また はそれらの酸化物の薄膜層を形成することを特徴とする有機化合物の容器内面への 吸着抑制方法、  (2) A method for suppressing adsorption of organic compounds to the inner surface of a container, characterized by forming a thin film layer of metal, silicon or their oxides on the inner surface of a synthetic resin container by a thin film forming technique using plasma,
(3)合成樹脂が、ポリオレフイン樹脂、ポリスチレン樹脂またはポリエステル樹脂であ る前(1)〜(2)記載の方法、  (3) The method according to (1) or (2), wherein the synthetic resin is a polyolefin resin, a polystyrene resin, or a polyester resin.
(4)ポリオレフイン樹脂力 S、ポリエチレン樹脂、ポリプロピレン樹脂またはポリエチレン テレフタレート樹脂である前(3)記載の方法、  (4) The method according to (3), wherein the polyolefin resin is S, polyethylene resin, polypropylene resin or polyethylene terephthalate resin.
(5)プラズマを用いた薄膜形成技術力 Sスパッタリング技術である前(1)〜(2)記載の 方法、  (5) Thin film formation technology using plasma The method according to (1) to (2), which is an S sputtering technology,
(6)金属、珪素またはそれらの酸化物力 Ti、 Ag、 TiOまたは SiOである前(1)〜(  (6) Metal, silicon or their oxide power Ti, Ag, TiO or SiO before (1)-(
2 2  twenty two
2)記載の方法、  2) described method,
(7)薄膜層の膜厚が、 1 / m以下である前(1)〜(2)記載の方法、  (7) The method according to (1) to (2), wherein the thickness of the thin film layer is 1 / m or less,
(8)有機化合物が、薬物又は医薬品、食品若しくは飲料品に許容される添加物であ る前(1)〜(2)記載の方法、  (8) The method according to the above (1) to (2), wherein the organic compound is a drug or an additive that is acceptable for a pharmaceutical, a food or a beverage.
(9)合成樹脂製容器が、水性液剤用容器である前 (2)記載の方法、  (9) The method according to (2), wherein the container made of synthetic resin is an aqueous liquid container.
(10)水性液剤用容器が、点眼容器又はペットボトルである前(9)記載の方法、 (10) The method according to (9), wherein the aqueous solution container is an eye drop container or a plastic bottle,
(11)前(1)記載の方法にて有機化合物の吸着が抑制された合成樹脂成形物、(11) A synthetic resin molded article in which the adsorption of an organic compound is suppressed by the method described in the above (1),
(12)前 (2)記載の方法にて有機化合物の吸着が抑制された合成樹脂製容器、(12) The synthetic resin container in which the adsorption of the organic compound is suppressed by the method described in (2) above,
(13)プラズマを用いた薄膜形成技術により、合成樹脂成形物の表面に金属、珪素ま たはそれらの酸化物の薄膜層を形成することを特徴とする有機化合物の合成樹脂成 形物への吸着抑制に優れた合成樹脂成形物、 (13) An organic compound is formed into a synthetic resin molded product by forming a thin film layer of metal, silicon or their oxides on the surface of the synthetic resin molded product by a thin film forming technique using plasma. Synthetic resin molded products with excellent adsorption suppression,
(14)プラズマを用いた薄膜形成技術により、容器内面に金属、珪素またはそれらの 酸化物の薄膜層を形成することを特徴とする有機化合物の容器内面への吸着抑制 に優れた合成樹脂製容器、 (14) By the thin film forming technology using plasma, metal, silicon or their A synthetic resin container excellent in suppressing adsorption of organic compounds to the inner surface of the container, characterized by forming a thin film layer of oxide;
に関する。  About.
[0010] 本発明において、合成樹脂の種類には、特に制限はないが、その例としてポリオレ フィン樹脂、ポリスチレン樹脂、ポリエステル樹脂などが挙げられ、好ましくはポリオレ フィン樹脂である。ポリオレフイン樹脂としては、ポリエチレン樹脂(PE)、ポリプロピレ ン樹脂(PP)、ポリエチレンテレフタレート樹脂(PET)、ポリ塩化ビュル樹脂(PVC)な どが挙げられるが、より好ましくはポリエチレン樹脂(PE)、ポリプロピレン樹脂(PP)、 ポリエチレンテレフタレート樹脂(PET)である。これらの樹脂は単独重合体であって も共重合体であつてもよい。  [0010] In the present invention, the kind of the synthetic resin is not particularly limited, and examples thereof include a polyolefin resin, a polystyrene resin, and a polyester resin, and a polyolefin resin is preferable. Examples of the polyolefin resin include polyethylene resin (PE), polypropylene resin (PP), polyethylene terephthalate resin (PET), polyvinyl chloride resin (PVC), and more preferably polyethylene resin (PE) and polypropylene resin. (PP) and polyethylene terephthalate resin (PET). These resins may be a homopolymer or a copolymer.
[0011] 本発明の合成樹脂製容器としては、水性液剤を収納できる容器であれば特に制限さ れないが、例えば点眼容器、ペットボトノレなどが挙げられる。また、本発明のプラズマ を用いた薄膜形成技術による有機化合物の合成樹脂成形物への吸着抑制方法は、 水性液剤中の微量な有機化合物の吸着抑制にも適しているので、遺伝子研究等に おける解析技術用のバイオチップにも利用できる。 [0011] The synthetic resin container of the present invention is not particularly limited as long as it is a container capable of storing an aqueous solution, and examples thereof include an eyedropper container and a pet bottle. In addition, the method for suppressing the adsorption of organic compounds to synthetic resin molded articles by the thin film forming technique using plasma of the present invention is suitable for suppressing the adsorption of trace amounts of organic compounds in aqueous liquid preparations, and is therefore useful in gene research and the like. It can also be used for biochips for analysis technology.
本発明において、プラズマを用いた薄膜形成技術は、プラズマ照射により合成樹脂 成形物の表面に金属、珪素またはそれらの酸化物の薄膜層を形成する技術であり、 例えば背景技術に掲げたスパッタリング(Deposition Technologies for Films and Coa tings, NOYES PUBLICATIONS, 1982, p.p.170- 243, NOYES PUBLICATIONS, 199 0, p.p.160-182など)、イオンプレーティング(HANDBOOK OF PLASMA PROCESSI NG TECHNOLOGY, NOYES PUBLICATIONS, 1990, ρ·ρ·338_355)、プラズマ化学 気相成長法(Deposition Technologies for Films and Coatings, NOYES PUBLICATI 〇NS, 1982, p.p.365- 384)、アークイオンプレーティング(HANDBOOK OF PLASMA PROCESSING TECHNOLOGY, NOYES PUBLICATIONS, 1990, p.p.419—446)、ホ ロー力ソード蒸着(HANDBOOK OF PLASMA PROCESSING TECHNOLOGY, N〇Y ES PUBLICATIONS, 1990, p.p.308-335)などが挙げられ、より好ましくはスパッタリン グである。  In the present invention, the thin film forming technology using plasma is a technology for forming a thin film layer of metal, silicon or their oxides on the surface of a synthetic resin molded product by plasma irradiation. Technologies for Films and Coatings, NOYES PUBLICATIONS, 1982, pp170-243, NOYES PUBLICATIONS, 1990, pp160-182, etc., ion plating (HANDBOOK OF PLASMA PROCESSI NG TECHNOLOGY, NOYES PUBLICATIONS, 1990, ρ 338_355), plasma chemical vapor deposition (Deposition Technologies for Films and Coatings, NOYES PUBLICATI 〇NS, 1982, pp365-384), arc ion plating (HANDBOOK OF PLASMA PROCESSING TECHNOLOGY, NOYES PUBLICATIONS, 1990, pp419-446) ), Hollow force sword deposition (HANDBOOK OF PLASMA PROCESSING TECHNOLOGY, N〇Y ES PUBLICATIONS, 1990, pp308-335), and more preferably sputtering.
[0012] 金属、珪素またはそれらの酸化物としては、例えば Ti、 Si、 Ta、 Al、 Ni、 Cr、 Ag、 S n、 Hf、 Nb、 TiO、 SiO、 SiO、 Al Oなどが挙げられるが、より好ましくは Ti、 Ag、 T i〇、 SiOである。 [0012] Examples of the metal, silicon or their oxides include Ti, Si, Ta, Al, Ni, Cr, Ag, S Examples thereof include n, Hf, Nb, TiO, SiO, SiO, and Al 2 O, and more preferably Ti, Ag, Ti〇, and SiO.
[0013] 金属、珪素またはそれらの酸化物の薄膜層の膜厚(平均膜厚)は、好ましくは 1 μ m 以下、より好ましくは 0. l ~500nm,最も好ましくは:!〜 lOOnmである。薄膜層はこ のような薄レ、ものでも有機化合物の合成樹脂成形物の表面への吸着を効果的に抑 制する。  The thickness (average thickness) of the thin film layer of metal, silicon or their oxide is preferably 1 μm or less, more preferably 0.1 to 500 nm, and most preferably:! To 100 nm. The thin film layer effectively suppresses the adsorption of the organic compound to the surface of the synthetic resin molded product even in such a thin layer.
[0014] また、プラズマを用いた薄膜形成を繰り返すことによって多層の金属、珪素または それらの酸化物の薄膜層を形成することができ、これにより吸着抑制効果をさらに向 上させることができる。二層からなる薄膜層としては、例えば TiO層の上に Ag層を蒸 着により形成したものが挙げられる。  [0014] Furthermore, by repeatedly forming a thin film using plasma, a multi-layered thin film layer of metal, silicon or their oxides can be formed, whereby the adsorption suppressing effect can be further improved. An example of the two-layer thin film layer is a layer in which an Ag layer is formed on a TiO layer by vapor deposition.
[0015] 本発明による合成樹脂製容器には、通常、有機化合物を溶液又は懸濁液の形態 で保存する。容器内面に吸着される性質のある有機化合物としては、例えばビタミン E等のビタミン類、塩酸ジブ力イン等の局所麻酔剤、フルォロメトロン、ベタメタゾン、ト リアムシノロン等のステロイド、ラタノプロスト等のプロスタグランジン誘導体、シクロス ポリン、リゾチーム、ァノレブミン、 γ -グロブリン等のペプチドやタンパク等の薬物や、 医薬品、食品、飲料品等に許容される防腐剤、界面活性剤等の各種の添加物が挙 げられる。防腐剤としては例えばパラォキシ安息香酸ブチル等のパラベン系防腐剤 や塩化ベンザノレコニゥム等の第四級アンモニゥム系防腐剤などが挙げられる。 [0015] The synthetic resin container according to the present invention generally stores an organic compound in the form of a solution or suspension. Examples of the organic compound having a property of being adsorbed on the inner surface of the container include vitamins such as vitamin E, local anesthetics such as dibuforcein hydrochloride, steroids such as fluorometholone, betamethasone, and triamcinolone, and prostaglandin derivatives such as latanoprost. Drugs such as peptides and proteins such as cyclosporine, lysozyme, anolebumin, and γ-globulin, and various additives such as preservatives and surfactants that are acceptable for pharmaceuticals, foods, beverages, and the like. Examples of the preservative include a paraben preservative such as butyl paraoxybenzoate and a quaternary ammonium preservative such as benzanolone chloride.
[0016] 本発明の合成樹脂製容器が点眼容器である場合には、例えばスパッタリング技術 を用いて点眼容器内面に Ti、 Ag、 TiO、 SiOなど所望の金属、珪素またはそれらの 酸化物からなる薄膜層を形成することが好ましい。点眼容器内面の薄膜層の膜厚は 、特に制限されず、点眼液に含有される有機化合物の特性、薄膜の種類などを考慮 して決定すればよい。  When the synthetic resin container of the present invention is an ophthalmic container, for example, a thin film made of a desired metal such as Ti, Ag, TiO, SiO, silicon or an oxide thereof is formed on the inner surface of the ophthalmic container by using a sputtering technique. Preferably, a layer is formed. The thickness of the thin film layer on the inner surface of the ophthalmic container is not particularly limited, and may be determined in consideration of the characteristics of the organic compound contained in the ophthalmic solution, the type of the thin film, and the like.
発明の効果  The invention's effect
[0017] プラズマを用いた薄膜形成技術により、合成樹脂成形物の表面や合成樹脂製容器 内面に金属、珪素またはそれらの酸化物の薄膜層を形成すれば、合成樹脂成形物 の表面や合成樹脂製容器内面に有機化合物が吸着することを効果的に抑制できる 。具体的事例として、後述する吸着抑制試験の項で詳細に説明する力 ポリエチレン 樹脂に Ti、 Ag、 TiO、 SiOの薄膜層を形成したところ、いずれも有機化合物の含有 率の低下を顕著に抑制した。 [0017] If a thin film layer of metal, silicon or their oxides is formed on the surface of a synthetic resin molded article or the inner surface of a synthetic resin container by a thin film forming technique using plasma, the surface of the synthetic resin molded article or the synthetic resin Adsorption of the organic compound on the inner surface of the container can be effectively suppressed. As a specific example, the force described in detail in the section on adsorption suppression test below When a thin film layer of Ti, Ag, TiO, and SiO was formed on the resin, the reduction of the organic compound content was significantly suppressed in all cases.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 以下に、 Ti、 TiO、 Ag、 SiOをプラズマ蒸着した樹脂片を用いた吸着抑制試験の 結果を示すが、これは本発明をよりよく理解するためのものであり、本発明の範囲を 限定するものではない。 [0018] The results of an adsorption suppression test using a resin piece on which Ti, TiO, Ag, and SiO are plasma-deposited are shown below, but this is for better understanding of the present invention, and the scope of the present invention is as follows. This is not a limitation.
[0019] [吸着抑制試験] [Adsorption suppression test]
試験例 l [Tiをプラズマ蒸着した樹脂片を用いたビタミン E吸着抑制試験]  Test Example l [Vitamin E adsorption suppression test using a resin piece with Ti plasma deposited]
(実験方法)  (experimental method)
スパッタリング装置(L— 332S— FH ァネルバ社製)を用いて、 Arガス存在下(放 電圧力: 0. 5Pa)、直流電力(放電電流: 0. 4A)をターゲットに印加することにより、タ 一ゲット材料である Tiを蒸発させ、ターゲット上のホルダーに取り付けられた板状のポ リエチレン樹脂片(厚さ lmm、 30mm X 15mm,以下「PE片」とする。)の両面に蒸 着させた。プラズマ照射に際して、プラズマ照射時間(5— 250秒)を制御することに より、平均膜厚 2nm、 20nmおよび lOOnmの各 Tiスパッタリング薄膜処理 PE片を得 た。 Using a sputtering device (L-332S-FH, manufactured by ANELVA), applying DC power (discharge current: 0.4 A) to the target in the presence of Ar gas (discharge current: 0.5 Pa), evaporated Ti is target material, it was both surfaces vapor deposition of Po Riechiren resin piece plate-shaped which is attached to a holder on the target (thickness l mm, 30 mm X 15 mm, hereinafter referred to as "PE piece".) . By controlling the plasma irradiation time (5 to 250 seconds) during the plasma irradiation, each Ti-sputtered thin film-treated PE piece with an average film thickness of 2 nm, 20 nm and 100 nm was obtained.
[0020] つぎに、 0. 0007%ビタミン E (w/v)含有試験液 14. 4mLの入った複数のガラス 瓶を用意し、膜厚 2nm、 20nm、 lOOnmの Tiスパッタリング薄膜処理 PE片および未 処理 PE片を 2枚ずつ別々のガラス瓶内の試験液中に浸漬し、試験液を 40°Cで振と うした。 0 (PE片浸漬前)、 1、 2及び 7日後に高速液体クロマトグラフ (Waters社製 Waters2695または 2487、以下特記なき限り同じ。)を用いて各試験液中のビタミン Eの含有量を測定した。  [0020] Next, a plurality of glass bottles each containing 1 .4 mL of a test solution containing 0.0007% vitamin E (w / v) were prepared. Two pieces of the treated PE were immersed in the test solution in separate glass bottles, and the test solution was shaken at 40 ° C. Vitamin E content in each test solution was measured using a high performance liquid chromatograph (Waters Waters2695 or 2487, unless otherwise specified) after 1, 2 and 7 days after immersion in PE pieces. .
[0021] 下記の計算式によりビタミン Eの残存率を算出した。 [0021] The residual ratio of vitamin E was calculated by the following formula.
[0022] 残存率 =測定時のビタミン E含有量/浸漬前のビタミン E含有量 X 100 [0022] Persistence = Vitamin E content at measurement / Vitamin E content before immersion X 100
(結果)  (Result)
各膜厚におけるビタミン Eの残存率 (各 3回の平均値)の変化を図 1に示す。  Figure 1 shows the change in the residual ratio of vitamin E (average value of three times) at each film thickness.
[0023] (考察) [0023] (Discussion)
図 1から明らかなように、 Tiスパッタリング薄膜処理 PE片は優れたビタミン E吸着抑 制作用を示す。 As is evident from Figure 1, the PE piece treated with the Ti sputtering thin film has excellent vitamin E adsorption suppression. Indicates for production.
[0024] 試験例 2 [Tiをプラズマ蒸着した樹脂片を用いた塩酸ジブ力イン吸着抑制試験]  Test Example 2 [Adsorption suppression test of dib-hydrochloric acid force using a resin piece on which Ti was plasma-deposited]
(実験方法)  (experimental method)
0. 005%塩酸ジブ力イン (w/v)含有試験液 5mLの入った複数のガラス瓶を用意 し、試験例 1で得た膜厚 20nmの Tiスパッタリング薄膜処理 PE片および未処理 PE片 を 2枚ずつ別々のガラス瓶内の試験液中に浸漬し、試験液を 40°Cで振とうした。 0 (P E片浸漬前)、 2及び 7日後に高速液体クロマトグラフを用いて塩酸ジブ力インの含有 量を測定した。  Prepare a plurality of glass bottles each containing 5 mL of test solution containing 0.005% dibu-hydrochloric acid hydrochloride (w / v). Each piece was immersed in the test solution in a separate glass bottle, and the test solution was shaken at 40 ° C. 0 (before immersion in the PE piece), and 2 and 7 days later, the content of dibu-hydrochlorin was measured using a high performance liquid chromatograph.
[0025] 下記の計算式により塩酸ジブ力インの残存率を算出した。  [0025] The residual ratio of dibu-hydrochloric acid hydrochloride was calculated by the following formula.
[0026] 残存率 =測定時の塩酸ジブ力イン含有量/浸漬前の塩酸ジブ力イン含有量 X 10 0  [0026] Residual rate = content of dibu-hydrochloric acid at measurement / content of dibu-hydrochloric acid before immersion X 100
(結果)  (Result)
塩酸ジブ力インの残存率 (各 3回の平均値)の変化を表 1に示す。  Table 1 shows the change in the residual ratio of dibu-hydrochloric acid hydrochloride (average value of three times).
[表 1]  [table 1]
Figure imgf000009_0001
Figure imgf000009_0001
[0027] (考察) [0027] (Discussion)
表 1から明ら力、なように、 Tiスパッタリング薄膜処理 PE片は優れた塩酸ジブ力イン吸 着抑制作用を示す。  As can be clearly seen from Table 1, the PE piece treated with the Ti sputtering thin film has an excellent dib hydrochloride force-in adsorption suppressing action.
[0028] 試験例 3 [Ti〇をプラズマ蒸着した樹脂片を用いたビタミン E吸着抑制試験]  Test Example 3 [Vitamin E adsorption suppression test using resin pieces on which Ti〇 was plasma-deposited]
2  2
(実験方法)  (experimental method)
スパッタリング装置を用いて、 Arガス存在下(放電圧力: 0. 5Pa)、〇を導入(流量:  Using a sputtering device, 〇 was introduced in the presence of Ar gas (discharge pressure: 0.5 Pa) (flow rate:
2  2
5sccm)しながら、高周波電力(放電電力: 40W)をターゲットに印加することにより、 ターゲット材料である Tiを蒸発させ、ターゲット上のホルダーに取り付けられた PE片 の両面に蒸着させた。プラズマ照射に際して、プラズマ照射時間(1200— 3000秒) を制御して、膜厚 20nmおよび 50nmの TiOスパッタリング薄膜処理 PE片を得た。 By applying high-frequency power (discharge power: 40 W) to the target while 5 sccm), Ti as a target material was evaporated and vapor-deposited on both sides of the PE piece attached to the holder on the target. For plasma irradiation, plasma irradiation time (1200-3000 seconds) Was controlled to obtain PE pieces treated with TiO sputtering thin films having a thickness of 20 nm and 50 nm.
2  2
[0029] つぎに、 0. 0007%ビタミン E (w/v)含有試験液 14· 4mLの入った複数のガラス 瓶を用意し、膜厚 20nm、 50nmの TiOスパッタリング薄膜処理 PE片および未処理  [0029] Next, a plurality of glass bottles each containing 14.4 mL of the test solution containing 0.0007% vitamin E (w / v) were prepared.
2  2
PE片を 2枚ずつ別々のガラス瓶内の試験液中に浸漬し、試験液を 40°Cで振とうした 。 0 (PE片浸漬前)及び 2日後に高速液体クロマトグラフを用いてビタミン Eの含有量 を測定した。  Two pieces of PE were immersed in the test solution in separate glass bottles, and the test solution was shaken at 40 ° C. The vitamin E content was measured using a high performance liquid chromatograph at 0 (before immersion in the PE piece) and 2 days later.
[0030] 試験例 1で示した計算式によりビタミン Eの残存率を算出した。  [0030] The residual ratio of vitamin E was calculated by the formula shown in Test Example 1.
[0031] (結果) [0031] (Result)
各膜厚におけるビタミン Eの残存率 (各 3回の平均値)を表 2に示す。  Table 2 shows the residual ratio of vitamin E at each film thickness (average value of three times).
[表 2]  [Table 2]
Figure imgf000010_0001
Figure imgf000010_0001
[0032] (考察) [0032] (Discussion)
表 2から明らかなように、 TiOスパッタリング薄膜処理 PE片は優れたビタミン E吸着  As is evident from Table 2, TiO sputtered thin film-treated PE pieces have excellent vitamin E adsorption.
2  2
抑制作用を示す。  Shows inhibitory action.
[0033] 試験例 4[Agをプラズマ蒸着した樹脂片を用いたビタミン E吸着抑制試験]  Test Example 4 [Vitamin E adsorption suppression test using a resin piece on which plasma deposition of Ag was performed]
(実験方法)  (experimental method)
スパッタリング装置を用いて、 Arガス存在下(放電圧力: 0. 5Pa)、直流電力(放電 電流: 0. 4A)をターゲットに印加することにより、ターゲット材料である Agを蒸発させ 、ターゲット上のホルダーに取り付けられた PE片の両面に蒸着させた。プラズマ照射 に際して、プラズマ照射時間(3— 100秒)を制御して、膜厚 4nmおよび 20nmの Ag スパッタリング薄膜処理 PE片を得た。  By applying a DC power (discharge current: 0.4 A) to the target in the presence of Ar gas (discharge pressure: 0.5 Pa) using a sputtering device, Ag as a target material is evaporated, and a holder on the target is applied. Was vapor-deposited on both sides of the PE piece attached to the. At the time of plasma irradiation, the plasma irradiation time (3-100 seconds) was controlled to obtain 4 and 20 nm-thick Ag-sputtered thin-film-treated PE pieces.
[0034] つぎに、 0. 0007%ビタミン E (w/v)含有試験液 14· 4mLの入った複数のガラス 瓶を用意し、膜厚 4nm、 20nmの Agスパッタリング薄膜処理 PE片および未処理 PE 片を 2枚ずつ別々のガラス瓶内の試験液中に浸漬し、試験液を 40°Cで振とうした。 0 (PE片浸漬前)及び 2日後に高速液体クロマトグラフを用いてビタミン Eの残存率を測 定した。 [0034] Next, a plurality of glass bottles containing 14.4 mL of a test solution containing 0.0007% vitamin E (w / v) were prepared, and a 4 nm-thick and 20 nm-thick Ag-sputtered thin-film-treated PE piece and an untreated PE Two pieces were immersed in the test solution in separate glass bottles, and the test solution was shaken at 40 ° C. 0 The residual ratio of vitamin E was measured using a high performance liquid chromatograph (before immersion in the PE piece) and two days later.
[0035] 試験例 1で示した計算式によりビタミン Eの残存率を算出した。  The residual ratio of vitamin E was calculated by the calculation formula shown in Test Example 1.
[0036] (結果) [0036] (Result)
各膜厚におけるビタミン Eの残存率 (各 3回の平均値)を表 3に示す。  Table 3 shows the residual ratio of vitamin E at each film thickness (average value of three times).
[表 3]  [Table 3]
Figure imgf000011_0001
Figure imgf000011_0001
[0037] (考察) [0037] (Discussion)
表 3から明ら力、なように、 Agスパッタリング薄膜処理 PE片は優れたビタミン E吸着抑 制効果を示す。  As can be clearly seen from Table 3, the PE piece treated with the Ag sputtering thin film shows an excellent vitamin E adsorption suppression effect.
[0038] 試験例 5 [SiOをプラズマ蒸着した樹脂片を用いたパラォキシ安息香酸ブチル吸着  Test Example 5 [Adsorption of butyl paraoxybenzoate using resin pieces on which SiO was plasma-deposited]
2  2
抑制試験]  Suppression test]
(実験方法)  (experimental method)
スパッタリング装置を用いて、 Arガス存在下(放電圧力: 0· 5Pa)、〇を導入しなが  Using a sputtering device, introduce 〇 in the presence of Ar gas (discharge pressure: 0.5Pa)
2  2
ら高周波電力(放電電力: 40W)をターゲットに印加することにより、ターゲット材料で ある Siを蒸発させ、ターゲット上のホルダーに取り付けられた PE片(ターゲットと PE片 の距離: 100mm)両面に蒸着した。プラズマ照射に際して、ホルダーを回転させ(30 rpm)、プラズマ照射時間を 4800秒にして、平均膜厚 lOOnmの SiOスパッタリング  By applying high-frequency power (discharge power: 40 W) to the target, Si, which is the target material, was vaporized and vapor-deposited on both sides of the PE piece (distance between target and PE piece: 100 mm) attached to the holder on the target . During plasma irradiation, the holder was rotated (30 rpm), the plasma irradiation time was set to 4800 seconds, and SiO sputtering with an average film thickness of 100 nm was performed.
2  2
薄膜処理 PE片を得た。  A thin film treated PE piece was obtained.
[0039] 0. 002%パラォキシ安息香酸ブチル (w/v)含有試験液 120mLの入った複数の ガラス瓶を用意し、膜厚 lOOnmの SiOスパッタリング薄膜処理 PE片および未処理 P [0039] A plurality of glass bottles each containing 120 mL of a test solution containing 0.002% butyl paraoxybenzoate (w / v) were prepared.
2  2
E片を 3枚ずつ別々のガラス瓶内の試験液中に浸漬し、 40°C ' 75%RH条件下で保 存した。 0 (PE片浸漬前)及び 84日後に高速液体クロマトグラフを用いてパラォキシ 安息香酸ブチルの含有量を測定した。 [0040] 下記の計算式によりパラォキシ安息香酸ブチルの残存率を算出した。 The E pieces were immersed in test solutions in separate glass bottles three by three, and stored under the conditions of 40 ° C and 75% RH. The content of butyl paraoxybenzoate was measured using a high performance liquid chromatograph at 0 (before immersion in the PE piece) and after 84 days. [0040] The residual ratio of butyl paraoxybenzoate was calculated by the following formula.
[0041] 残存率 =測定時のパラォキシ安息香酸ブチル含有量/浸漬前のパラォキシ安息 香酸ブチル含有量 X I 00  [0041] Residual rate = content of butyl paraoxybenzoate at the time of measurement / content of butyl paraoxybenzoate before immersion X I 00
(結果)  (Result)
パラォキシ安息香酸ブチルの残存率 (各 3回の平均値)を表 4に示す。  Table 4 shows the residual ratio of butyl para-oxybenzoate (average of three times).
[表 4]  [Table 4]
Figure imgf000012_0001
Figure imgf000012_0001
[0042] (考察) [0042] (Discussion)
表 4から明らかなように、 SiOスパッタリング薄膜処理 PE片は優れたパラォキシ安息  As is evident from Table 4, the PE piece treated with SiO sputtering
2  2
香酸ブチル吸着抑制効果を示す。  It shows an effect of suppressing adsorption of butyl perfate.
図面の簡単な説明  Brief Description of Drawings
[0043] [図 1]図 1は、 Tiスパッタリング薄膜処理 PE片を用いた吸着抑制試験の結果(ビタミン E残存率の変化)を示すグラフである。  FIG. 1 is a graph showing the results of an adsorption suppression test (change in the residual ratio of vitamin E) using a PE piece treated with a Ti sputtering thin film.

Claims

請求の範囲 The scope of the claims
[I] プラズマを用いた薄膜形成技術により、合成樹脂成形物の表面に金属、珪素または それらの酸化物の薄膜層を形成することを特徴とする有機化合物の合成樹脂成形 物への吸着抑制方法。  [I] A method for suppressing adsorption of an organic compound to a synthetic resin molded product, comprising forming a thin film layer of metal, silicon or their oxides on the surface of the synthetic resin molded product by a thin film forming technique using plasma. .
[2] プラズマを用いた薄膜形成技術により、合成樹脂製容器内面に金属、珪素またはそ れらの酸化物の薄膜層を形成することを特徴とする有機化合物の容器内面への吸 着抑制方法。  [2] A method for suppressing adsorption of organic compounds onto the inner surface of a container, comprising forming a thin film layer of metal, silicon or their oxides on the inner surface of a synthetic resin container by a thin film forming technique using plasma. .
[3] 合成樹脂が、ポリオレフイン樹脂、ポリスチレン樹脂またはポリエステル樹脂である請 求項:!〜 2記載の方法。  [3] The method according to claim 2, wherein the synthetic resin is a polyolefin resin, a polystyrene resin, or a polyester resin.
[4] ポリオレフイン樹脂力 ポリエチレン樹脂、ポリプロピレン樹脂またはポリエチレンテレ フタレート樹脂である請求項 3記載の方法。  [4] The method according to claim 3, wherein the resin is a polyethylene resin, a polypropylene resin or a polyethylene terephthalate resin.
[5] プラズマを用いた薄膜形成技術力 Sスパッタリング技術である請求項 1〜 2記載の方法 [5] The method according to claim 1 or 2, wherein the thin film forming technology using plasma is S sputtering technology.
[6] 金属、珪素またはそれらの酸化物力 Ti、 Ag、 TiOまたは SiOである請求項:!〜 2 [6] Metal, silicon or oxides thereof Ti, Ag, TiO or SiO claim:! ~ 2
2 2  twenty two
記載の方法。  The described method.
[7] 薄膜層の膜厚が、 1 μ m以下である請求項:!〜 2記載の方法。  [7] The method according to any one of [1] to [2], wherein the thickness of the thin film layer is 1 μm or less.
[8] 有機化合物が、薬物又は医薬品、食品若しくは飲料品に許容される添加物である請 求項:!〜 2記載の方法。  [8] The method according to claim 2, wherein the organic compound is a drug or an additive acceptable for a drug, a pharmaceutical, a food or a beverage.
[9] 合成樹脂製容器が、水性液剤容器である請求項 2記載の方法。 [9] The method according to claim 2, wherein the synthetic resin container is an aqueous solution container.
[10] 水性液剤容器が、点眼容器又はペットボトルである請求項 9記載の方法。 10. The method according to claim 9, wherein the aqueous solution container is an eye drop container or a PET bottle.
[II] 請求項 1記載の方法にて有機化合物の吸着が抑制された合成樹脂成形物。  [II] A synthetic resin molded article in which adsorption of an organic compound is suppressed by the method according to claim 1.
[12] 請求項 2記載の方法にて有機化合物の吸着が抑制された合成樹脂製容器。 [12] A synthetic resin container in which adsorption of an organic compound is suppressed by the method according to claim 2.
[13] プラズマを用いた薄膜形成技術により、合成樹脂成形物の表面に金属、珪素または それらの酸化物の薄膜層を形成することを特徴とする有機化合物の合成樹脂成形 物への吸着抑制に優れた合成樹脂成形物。  [13] A technique for forming a thin film of metal, silicon or their oxides on the surface of a synthetic resin molded article by using a thin film forming technique using plasma to suppress the adsorption of organic compounds to the synthetic resin molded article. Excellent synthetic resin molded product.
[14] プラズマを用いた薄膜形成技術により、容器内面に金属、珪素またはそれらの酸化 物の薄膜層を形成することを特徴とする有機化合物の容器内面への吸着抑制に優 れた合成樹脂製容器。 [14] A synthetic resin material that excels in suppressing the adsorption of organic compounds onto the inner surface of the container, characterized in that a thin film layer of metal, silicon or their oxides is formed on the inner surface of the container by a thin film forming technique using plasma. container.
PCT/JP2005/010457 2004-06-08 2005-06-08 Method for suppressing adsorption of organic compound on surface of synthetic resin molded article WO2005121390A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004169651 2004-06-08
JP2004-169651 2004-06-08

Publications (1)

Publication Number Publication Date
WO2005121390A1 true WO2005121390A1 (en) 2005-12-22

Family

ID=35503079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010457 WO2005121390A1 (en) 2004-06-08 2005-06-08 Method for suppressing adsorption of organic compound on surface of synthetic resin molded article

Country Status (1)

Country Link
WO (1) WO2005121390A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002370722A (en) * 2001-06-19 2002-12-24 Toppan Printing Co Ltd Barrier container
JP2003104352A (en) * 2001-09-28 2003-04-09 Toppan Printing Co Ltd Plastic container with barrier properties
JP2003138377A (en) * 2001-10-31 2003-05-14 Toppan Printing Co Ltd Method of depositing thin film to plastic container

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002370722A (en) * 2001-06-19 2002-12-24 Toppan Printing Co Ltd Barrier container
JP2003104352A (en) * 2001-09-28 2003-04-09 Toppan Printing Co Ltd Plastic container with barrier properties
JP2003138377A (en) * 2001-10-31 2003-05-14 Toppan Printing Co Ltd Method of depositing thin film to plastic container

Similar Documents

Publication Publication Date Title
KR100186806B1 (en) Blood collection tube assembly
JP4050800B2 (en) Plastic container having barrier coating and method for producing the same
US20120125353A1 (en) Nicotine delivery system
EP0787821A2 (en) Blood collection tube assembly
CA3095165A1 (en) Vessels, containers, and surfaces coated with water barrier coatings
JP5083200B2 (en) Plastic molded product with vapor deposition film
EP3176284B1 (en) Laminate body and manufacturing method thereof, and gas barrier film and manufacturing method thereof
Teixeira et al. High barrier plastics using nanoscale inorganic films
EP3066230B1 (en) Coated container, use thereof and process for its manufacturing
KR20060132994A (en) Synthetic resin container with high gas barrier performance
JP2006022403A (en) Method for inhibiting organic compound from adsorbing onto surface of article molded from synthetic resin
WO2005121390A1 (en) Method for suppressing adsorption of organic compound on surface of synthetic resin molded article
JP2008080704A (en) Gas barrier laminate
EP1846587A1 (en) Sealing of plastic containers
US9981794B2 (en) Packaging for high purity solvents
US20080081129A1 (en) Method for Treating a Polymer Material, Device for Implementing this Method and Use of this Device for Treating Hollow Bodies
JP4389519B2 (en) Method for producing gas barrier film
JP5610536B2 (en) Coated plastic molded body and method for producing the same
JP2007261134A (en) Antistatic barrier film
EP2739320B1 (en) Method for treating cork stoppers
JP2006272589A (en) Gas-barrier film and its production method
EP3093309A1 (en) Process for depositing a gas barrier coating on a polymer film or polymer container, and polymer film or polymer container with coated with such a gas barrier
US20220372620A1 (en) Systems and methods for medical packaging
US20200370165A1 (en) Laminate and method of producing the same, and gas barrier film and method of producing the same
JP2019111794A (en) Coating plastic molded body and manufacturing method therefor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP