WO2005115838A1 - Window frame for aircraft - Google Patents
Window frame for aircraft Download PDFInfo
- Publication number
- WO2005115838A1 WO2005115838A1 PCT/EP2005/005604 EP2005005604W WO2005115838A1 WO 2005115838 A1 WO2005115838 A1 WO 2005115838A1 EP 2005005604 W EP2005005604 W EP 2005005604W WO 2005115838 A1 WO2005115838 A1 WO 2005115838A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flange
- window frame
- fiber bundles
- window
- aircraft
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/40—Shaping or impregnating by compression not applied
- B29C70/42—Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
- B29C70/46—Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
- B29C70/48—Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements in the closed mould, e.g. resin transfer moulding [RTM], e.g. by vacuum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C1/00—Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
- B64C1/14—Windows; Doors; Hatch covers or access panels; Surrounding frame structures; Canopies; Windscreens accessories therefor, e.g. pressure sensors, water deflectors, hinges, seals, handles, latches, windscreen wipers
- B64C1/1476—Canopies; Windscreens or similar transparent elements
- B64C1/1492—Structure and mounting of the transparent elements in the window or windscreen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/001—Profiled members, e.g. beams, sections
- B29L2031/003—Profiled members, e.g. beams, sections having a profiled transverse cross-section
- B29L2031/005—Profiled members, e.g. beams, sections having a profiled transverse cross-section for making window frames
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/40—Weight reduction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24058—Structurally defined web or sheet [e.g., overall dimension, etc.] including grain, strips, or filamentary elements in respective layers or components in angular relation
- Y10T428/24074—Strand or strand-portions
Definitions
- the invention relates to a window frame for installation in the exterior shell of an aircraft, comprising in each case at least one outer flange, one inner flange, and one vertical flange arranged perpendicular to and between these flanges, wherein the connection with the aircraft structure takes place via the outer flange, and wherein on the inner flange, a window element to be held is attached, which is held via the vertical flange. Further, the invention relates to a method for manufacturing such a window frame.
- window frames made of aluminum are used, which comprise a part which is made by forging and truing.
- the component is organized into a total of three regions: an outer flange, an inner flange, and a vertical flange arranged perpendicular to and between these two flanges.
- the window frames are typically connected with two rows of rivets over the outer flange with the aircraft structure or with the exterior shell of the aircraft.
- a window element rests on the inner flange, which typically comprises two panes and a sealing arranged therebetween and which is held in its position via a downholder, which is connected with the vertical flange.
- such a window frame In addition to fixing the window element, such a window frame also has the function of absorbing the strain increase, which occurs on the edge of the comparably large cut-out for the window mounted in the load-transferring exterior shell.
- the outer flange of the window frame thereby serves, on the one hand, for reinforcement of this cut-out and on the other hand, via the outer flange, the frame and the exterior shell are connected to one another by means of rivets. Since the manufacture of the known aluminum window frame typically takes place by means of forging, it is not possible to achieve a cross-sectional distribution of the frame profile that is favorable for the rivet force distribution, since the slant of the flange may amount to a maximum of approximately two angular degrees, in order to enable a simple riveting.
- the inner flange serves to receive the window element, wherein here a slanting simplifies the mounting of the window. Simultaneously, the load resulting from the interior pressure, which prevails in the passenger cabin, is transferred via this inner flange to the exterior shell of the aircraft.
- the vertical flange serves exclusively as a reinforcement rib on the frame, in order to minimize the tension in the exterior shell with the least possible weight.
- the eye bolts are attached, with which, typically, the downholder or retainer for the window elements are held in their position.
- the vertical flange also forms the guide upon mounting of the window element.
- An object of the invention is to provide a window frame of the above- described type, which makes possible a considerable weight savings compared to the window frames used today for this application. Simultaneously, the costs for the manufacture of such a window frame should be as low as possible. In addition, by means of the invention, a simple and cost-effectively performed method of manufacturing such a window frame should be provided.
- the invention solves the first object, in that it contemplates that such a window frame comprises a resin reinforced by unidirectionally arranged fiber bundles.
- the solution of the further object is realized by means of a method, in which a semifinished part made from unidirectionally arranged fiber bundles is inserted into a molding tool, in which resin is injected under pressure and temperature, and with which the component developed in this manner is subsequently hardened in the molding tool.
- the invention contemplates the use of a window frame manufactured in a fiber composition construction with a load-conform fiber arrangement, in which the fibers follow the load direction, and which, compared to the aluminum window frames used up to now, achieves weight savings of approximately 50 percent. Due to its layer structure optimized according to the invention, the window frame according to the invention has another weight advantage of approximately 20 percent at the same time relative to the fiber window frames, which are made from a semifinished part with quasi-isotropic layer structure. In spite of this great weight savings potential, the costs for such a component, compared to a window frame manufactured from an aluminum forged part, do not rise.
- the fiber window frame according to the invention with a tolerance of only approximately 0.2 mm with an average wall thickness of 5 mm, which corresponds to a manufacturing tolerance of approximately 4 percent.
- tolerances of approximately 1.5 mm are accepted, which corresponds to a manufacturing tolerance of approximately 30 percent with the same will thickness. Therefore, by means of the invention, not only the weight fluctuations between the individual window frames is substantially reduced, but also, simultaneously, the installation of the frame in an aircraft or the mounting of the window element in the frame is simplified considerably. Finally, further advantages are increased safety as well as a greatly improved thermal insulation of the window frame according to the invention.
- Fig. 1 shows a window frame in perspective view
- Fig. 2 shows a detail section through the installation position of a window frame according to Fig. 1
- Fig. 3 shows a part of a molding tool for manufacturing a window frame of Fig. 1 in an opened position
- Fig. 4 shows the molding tool of Fig. 3 in a closed position
- Figs. 5 and 6 show a representation of the main directions with a window frame of Fig. 1 , wherein Fig. 6 is a detail representation of the region in Fig. 5 designated with VI
- Fig. 7 shows the direction of a load-suitable layer structure of the window frame of Fig. 1 in a principle representation
- Fig. 8 shows the structure of a preform in a sectional view; and
- Figs. 9-12 show the fiber progression in different regions of the window frame of Fig. 1.
- the window frame 1 shown in Fig. 1 is made with a fiber construction and, like the known aluminum forged frames, also has an outer flange 2, an inner flange 3, as well as a vertical flange 4 arranged between these two flanges.
- the outer flange 2 in this case, however, has a uniform circumferential edge.
- this outer flange 2, in contrast to a corresponding aluminum forged part has a varying thickness in different radial regions. This leads to a substantially improved material utilization in the region of the riveting and the shell cut-out.
- Fig. 2 more clearly shows this in a detail section, in which the installation position of such a window frame 1 in the outer shell 5 of an aircraft is shown. Indicated in this figure are also the rivet positions 6 for the connection of the frame with the outer shell 5, as well as two window panes 7 and 8, which together with a sealing 9, form the window element.
- the window frame 1 is manufactured by means of the so-called "resin- transfer-molding" or RTM technology.
- a mold part 10 the so-called preform, is manufactured from fibers.
- This is next placed in a two-part molding tool 11 , as shown in Figs. 3 and 4.
- the preform 10 is inserted between the two cores 14 and 15, the molding tool 11 is closed, and under pressure and temperature, resin is injected into the molding tool.
- the complete component 1 subsequently is hardened within the molding tool 11.
- the preform 10 can either be manufactured as a complete part or in the so- called sub-preform technology, in which the complete window frame 1 is combined from individual substructure-elements or sub-preforms.
- the preform 10 comprises individual layers, which are structured from unidirectional, circumferential fiber bundles.
- the direction of the individual fiber layers or positions is critical for the weight savings achievable with the window frame 1 described here.
- the principle layer direction with the main directions 0°, 45°, and 90° are shown in Figs. 5 and 6.
- the 0° direction therefore represents the circumferential direction of the window frame 1, the 90° direction runs in the radial direction, and the 45° direction runs in the region of the transition from the vertical flange 4 to the outer flange 2.
- Fig. 7 shows in principle representation the directions of a load-suitable layer structure of the window frame 1 and Fig. 8 shows a section through the layer structure of the fiber bundle.
- reference numeral 20 designates the 0° winding core in the inner flange
- reference numeral 23 designates the fiber bundles with a ⁇ 60° arrangement in all outer regions as well as the ⁇ 60° arrangements in all outer regions extending from the outer flange 2 to the inner flange 3
- reference numeral 24 designates the fiber bundles with 0° and 90° arrangements in the region of the vertical flange 4
- 25 designates the fiber bundles with +45° arrangements in the region of the outer flange 2.
- These layer directions are measured on the interface of the outer flange 2, inner flange 3, and vertical flange 4.
- Outer flange 2 - Quasi-isotropic, radial structure in the region of the riveting;
- Vertical flange 4 0° core for receiving the main load; ⁇ 60° layers on the outer sides.
- Inner flange 3 0° direction predominantly; ⁇ 60° layers on the outer sides; 90° for reinforcement.
- Figures 9 through 12 in which, respectively, the cut-out of the window frame 1 shown in the left part of the figure is enlarged, the following details are provided for the respectively straight-laid fiber:
- Fig. 12 shows the 90° fiber in the radius direction.
- the window frame 1 made in this manner has an approximately 50 percent weight savings with approximately the same manufacturing costs compared to the common aluminum window frames. Its tolerances are essentially lower than the tolerances of the corresponding aluminum components.
- the frame offers higher safety and better thermal insulation than the common aluminum window frame.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Aviation & Aerospace Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Moulding By Coating Moulds (AREA)
- Wing Frames And Configurations (AREA)
- Window Of Vehicle (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Body Structure For Vehicles (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
- Special Wing (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002564167A CA2564167A1 (en) | 2004-05-24 | 2005-05-24 | Window frame for aircraft |
BRPI0511011-4A BRPI0511011A (en) | 2004-05-24 | 2005-05-24 | aircraft window frame |
DE602005006793T DE602005006793D1 (en) | 2004-05-24 | 2005-05-24 | WINDOW FRAME FOR PLANES |
EP05746194A EP1748923B1 (en) | 2004-05-24 | 2005-05-24 | Window frame for aircraft |
US11/597,115 US7819360B2 (en) | 2004-05-24 | 2005-05-24 | Window frame for aircraft |
JP2007517107A JP4842934B2 (en) | 2004-05-24 | 2005-05-24 | Aircraft window frame |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004025378.1 | 2004-05-24 | ||
DE102004025378A DE102004025378B4 (en) | 2004-05-24 | 2004-05-24 | Window frame for aircraft |
US60010404P | 2004-08-09 | 2004-08-09 | |
US60/600,104 | 2004-08-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2005115838A1 true WO2005115838A1 (en) | 2005-12-08 |
Family
ID=35433004
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2005/005604 WO2005115838A1 (en) | 2004-05-24 | 2005-05-24 | Window frame for aircraft |
Country Status (10)
Country | Link |
---|---|
US (1) | US7819360B2 (en) |
EP (1) | EP1748923B1 (en) |
JP (1) | JP4842934B2 (en) |
CN (1) | CN100447050C (en) |
AT (1) | ATE395253T1 (en) |
BR (1) | BRPI0511011A (en) |
CA (1) | CA2564167A1 (en) |
DE (2) | DE102004025378B4 (en) |
RU (1) | RU2376197C2 (en) |
WO (1) | WO2005115838A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008088708A2 (en) * | 2007-01-12 | 2008-07-24 | The Nordam Group, Inc. | Composite aircraft window frame |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100096063A1 (en) * | 2006-11-13 | 2010-04-22 | Friddell S Douglas | Inspectability of composite items |
US8449709B2 (en) | 2007-05-25 | 2013-05-28 | The Boeing Company | Method of fabricating fiber reinforced composite structure having stepped surface |
DE102010023265A1 (en) * | 2010-06-09 | 2011-12-15 | Howaldtswerke-Deutsche Werft Gmbh | Closure body for closing an opening of a watercraft |
EP2640919A4 (en) | 2010-11-16 | 2018-01-10 | The Nordam Group, Inc. | Hybrid frame co-mold manufacture |
GB201206885D0 (en) * | 2012-04-19 | 2012-06-06 | Cytec Tech Corp | Composite materials |
EP2842865B1 (en) * | 2013-08-28 | 2019-12-18 | Airbus Operations GmbH | Window panel for an airframe and method of producing same |
ES2781182T3 (en) * | 2015-11-05 | 2020-08-31 | Airbus Operations Sl | Manufacturing process of an aperture surround frame for an aircraft fuselage, and frame |
US11235853B2 (en) * | 2018-10-16 | 2022-02-01 | Textron Innovations Inc. | Aircraft windowed structure |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1983001237A1 (en) * | 1981-09-30 | 1983-04-14 | Whitener, Philip, Charles | Composite structures window belt and method of making |
US20030168775A1 (en) * | 2002-03-08 | 2003-09-11 | Ulrich Eberth | Method and apparatus for manufacturing a fiber reinforced synthetic composite structural element using fiber textile preforms |
DE10251579A1 (en) * | 2002-03-08 | 2003-09-25 | Airbus Gmbh | To produce an all-round three-dimensional fiber-reinforced body, e.g. for an aircraft window frame, a material which can be draped is laid on a carrier to be fixed in place by immersion in a resin |
WO2004016844A1 (en) * | 2002-08-12 | 2004-02-26 | Shikibo Ltd. | Preform precursor for fiber-reinforced composite material, preform for fiber-reinforced composite material, and method of manufacturing the precursor and the preform |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3356403A (en) * | 1965-01-12 | 1967-12-05 | August B Sak | Modular construction and support means therefor |
US3906669A (en) * | 1973-03-02 | 1975-09-23 | Lockheed Aircraft Corp | Window assembly |
FR2632604B1 (en) * | 1988-06-08 | 1991-07-12 | Aerospatiale | FRAME OF COMPOSITE MATERIAL IN PARTICULAR FOR AIRCRAFT FUSELAGE, AND METHOD FOR MANUFACTURING SAME |
US5271581A (en) * | 1992-05-29 | 1993-12-21 | Irish Michael J | Window clip for aircraft |
DE4234038C2 (en) * | 1992-10-09 | 1997-07-03 | Daimler Benz Aerospace Airbus | Shell component made of fiber composite material |
US5496602A (en) * | 1994-11-22 | 1996-03-05 | Dow-United Technologies Composite Products, Inc. | Low resin content unidirectional fiber tape |
US6318035B1 (en) * | 1999-06-01 | 2001-11-20 | Lockheed Martin Corporation | Window frame assembly for use in an aircraft and associated method of manufacture |
GB0113916D0 (en) * | 2001-06-07 | 2001-08-01 | Bae Systems Plc | Adding glass to composite bonding surfaces |
GB0213161D0 (en) * | 2002-06-07 | 2002-07-17 | Short Brothers Plc | A fibre reinforced composite component |
DE10250826B4 (en) * | 2002-10-31 | 2008-05-29 | Airbus Deutschland Gmbh | Method for producing a three-dimensional preform |
JP4309748B2 (en) * | 2003-11-25 | 2009-08-05 | シキボウ株式会社 | Dry preform for FRP window frames used in aircraft |
-
2004
- 2004-05-24 DE DE102004025378A patent/DE102004025378B4/en not_active Expired - Fee Related
-
2005
- 2005-05-24 RU RU2006143857/11A patent/RU2376197C2/en not_active IP Right Cessation
- 2005-05-24 BR BRPI0511011-4A patent/BRPI0511011A/en not_active IP Right Cessation
- 2005-05-24 AT AT05746194T patent/ATE395253T1/en not_active IP Right Cessation
- 2005-05-24 DE DE602005006793T patent/DE602005006793D1/en active Active
- 2005-05-24 CA CA002564167A patent/CA2564167A1/en not_active Abandoned
- 2005-05-24 CN CNB2005800167723A patent/CN100447050C/en not_active Expired - Fee Related
- 2005-05-24 EP EP05746194A patent/EP1748923B1/en active Active
- 2005-05-24 US US11/597,115 patent/US7819360B2/en active Active
- 2005-05-24 WO PCT/EP2005/005604 patent/WO2005115838A1/en active IP Right Grant
- 2005-05-24 JP JP2007517107A patent/JP4842934B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1983001237A1 (en) * | 1981-09-30 | 1983-04-14 | Whitener, Philip, Charles | Composite structures window belt and method of making |
US20030168775A1 (en) * | 2002-03-08 | 2003-09-11 | Ulrich Eberth | Method and apparatus for manufacturing a fiber reinforced synthetic composite structural element using fiber textile preforms |
DE10251579A1 (en) * | 2002-03-08 | 2003-09-25 | Airbus Gmbh | To produce an all-round three-dimensional fiber-reinforced body, e.g. for an aircraft window frame, a material which can be draped is laid on a carrier to be fixed in place by immersion in a resin |
WO2004016844A1 (en) * | 2002-08-12 | 2004-02-26 | Shikibo Ltd. | Preform precursor for fiber-reinforced composite material, preform for fiber-reinforced composite material, and method of manufacturing the precursor and the preform |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008088708A2 (en) * | 2007-01-12 | 2008-07-24 | The Nordam Group, Inc. | Composite aircraft window frame |
WO2008088708A3 (en) * | 2007-01-12 | 2008-10-02 | Nordam Group Inc | Composite aircraft window frame |
US7988094B2 (en) | 2007-01-12 | 2011-08-02 | Scott Ernest Ostrem | Aircraft window erosion shield |
Also Published As
Publication number | Publication date |
---|---|
US20080191095A1 (en) | 2008-08-14 |
JP2008500231A (en) | 2008-01-10 |
EP1748923B1 (en) | 2008-05-14 |
ATE395253T1 (en) | 2008-05-15 |
RU2376197C2 (en) | 2009-12-20 |
DE602005006793D1 (en) | 2008-06-26 |
CN1956881A (en) | 2007-05-02 |
EP1748923A1 (en) | 2007-02-07 |
US7819360B2 (en) | 2010-10-26 |
BRPI0511011A (en) | 2007-11-20 |
RU2006143857A (en) | 2008-06-27 |
JP4842934B2 (en) | 2011-12-21 |
DE102004025378A1 (en) | 2005-12-22 |
DE102004025378B4 (en) | 2011-01-13 |
CN100447050C (en) | 2008-12-31 |
CA2564167A1 (en) | 2005-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7988093B2 (en) | Window frame for aircraft | |
US8096506B2 (en) | Method for making window frame | |
US7819360B2 (en) | Window frame for aircraft | |
EP1748924B1 (en) | Window frame for aircraft | |
US9359061B2 (en) | Compliant stiffener for aircraft fuselage | |
CN108137100B (en) | Automobile body shell | |
US9957032B2 (en) | Fibre composite component, winglet and aircraft with a fibre composite component | |
US20080048068A1 (en) | Window Frame For Aircraft | |
US10046526B2 (en) | Method for producing a load introducing element | |
EP1753655B1 (en) | Window frame for aircraft | |
US6729581B2 (en) | Supporting arm of a passenger door of an aircraft |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2564167 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005746194 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1363/MUMNP/2006 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007517107 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200580016772.3 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006143857 Country of ref document: RU |
|
WWP | Wipo information: published in national office |
Ref document number: 2005746194 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: PI0511011 Country of ref document: BR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11597115 Country of ref document: US |
|
WWG | Wipo information: grant in national office |
Ref document number: 2005746194 Country of ref document: EP |