WO2005115445A1 - Enzymes for pharmaceutical use - Google Patents
Enzymes for pharmaceutical use Download PDFInfo
- Publication number
- WO2005115445A1 WO2005115445A1 PCT/DK2005/000342 DK2005000342W WO2005115445A1 WO 2005115445 A1 WO2005115445 A1 WO 2005115445A1 DK 2005000342 W DK2005000342 W DK 2005000342W WO 2005115445 A1 WO2005115445 A1 WO 2005115445A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- protease
- enzyme
- lipase
- amylase
- seq
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/43—Enzymes; Proenzymes; Derivatives thereof
- A61K38/46—Hydrolases (3)
- A61K38/48—Hydrolases (3) acting on peptide bonds (3.4)
- A61K38/482—Serine endopeptidases (3.4.21)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/43—Enzymes; Proenzymes; Derivatives thereof
- A61K38/46—Hydrolases (3)
- A61K38/465—Hydrolases (3) acting on ester bonds (3.1), e.g. lipases, ribonucleases
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/43—Enzymes; Proenzymes; Derivatives thereof
- A61K38/46—Hydrolases (3)
- A61K38/47—Hydrolases (3) acting on glycosyl compounds (3.2), e.g. cellulases, lactases
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/14—Prodigestives, e.g. acids, enzymes, appetite stimulants, antidyspeptics, tonics, antiflatulents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/18—Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
Definitions
- the present invention relates to the pharmaceutical use of proteases related to a protease derived from Nocardiopsis sp. NRRL 18262 (SEQ ID NO: 1), optionally in combination with a lipase and/or an amylase.
- Examples of medical indications are: Treatment of digestive disorders, pancreatic exocrine insufficiency (PEI), pancreatitis, cystic fibrosis, diabetes type I, and/or diabetes type II.
- pancreatic enzyme supplements for the treatment of pancreatic exocrine insufficiency.
- the active ingredients of these products are digestive enzymes, mainly amylase, lipase and protease, which are normally produced in the pancreas and excreted to the upper part of the small intestine (the duodenum).
- the enzymes used in such medicaments derive from bovine or swine pancreas.
- US 5614189 (EP 600868) describes the use of certain microbial lipases in pancreatic enzyme replacement therapy, for example in the treatment of patients suffering from cystic fibrosis.
- WO 00/54799 describes the use of enzyme mixtures having lipolytic, proteolytic and amylolytic activity in the treatment of diabetes mellitus type I and II.
- WO 02/060474 describes the use of certain lipases, proteases and amylases in the treatment of mal-digestion.
- the protease derived from Nocardiopsis sp. NRRL 18262 (SEQ ID NO: 1 ), as well as its preparation and various industrial applications thereof are described in WO 88/03947 and WO 01/58276.
- the present invention relates to a protease of at least 70% identity to SEQ ID NO: 1 , for use as a medicament, optionally in combination with a lipase, and/or an amylase.
- the invention also relates to the use of such proteases for the manufacture of a medicament for the treatment of digestive disorders, PEI, pancreatic insufficiency, pancreatitis, cystic fibrosis, diabetes type I, and/or diabetes type II, these uses optionally further comprising the use of a lipase, and/or an amylase.
- the invention furthermore relates to a pharmaceutical composition comprising such proteases, together with at least one pharmaceutically acceptable auxiliary material, optionally including a lipase and/or an amylase.
- the invention also relates to a method for the treatment of digestive disorders, PEI, pancreatic insufficiency, pancreatitis, cystic fibrosis, diabetes type I, and/or diabetes type II, by administering a therapeutically effective amount of such proteases, optionally together with a lipase and/or an amylase.
- protease is defined herein as an enzyme that hydrolyses peptide bonds. It includes any enzyme belonging to the EC 3.4 enzyme group (including each of the thirteen subclasses thereof, these enzymes being in the following referred to as "belonging to the EC
- the EC number refers to Enzyme Nomenclature 1992 from NC-IUBMB,
- proteases are classified on the basis of their catalytic mechanism into the following groups: Serine proteases (S), Cysteine proteases (C), Aspartic proteases (A), Metallo proteases (M), and Unknown, or as yet unclassified, proteases (U), see Handbook of Proteolytic Enzymes, A.J.Barrett, N.D.Rawlings, J.F.Woessner (eds), Academic Press (1998), in particular the general introduction part.
- the present invention relates to the pharmaceutical use of proteases of at least 70% identity to the protease of SEQ ID NO: 1 , which is derived from Nocardiopsis sp. NRRL 18262, and described in WO 88/03947 and WO 01/58276. Additional proteases of the invention are disclosed in WO 2004/111220, WO
- proteases of the invention are derived from Nocardiopsis rougevillei subsp. josonvillei DSM 43235 (SEQ ID NO: 2), Nocardiopsis alba DSM 15647 (SEQ ID NO: 3), Nocardiopsis prasina DSM 15648 (SEQ ID NO: 4), Nocardiopsis prasina
- DSM 15649 (SEQ ID NO: 5), as well as fragments, mutants, and variants thereof, such as
- each of SEQ ID NOs: 1-6 has a C-terminal extension consisting of one or more amino acids, for example non-polar or uncharged amino acids, such as one or more of Q, S, V, A, or P, preferably selected from the group consisting of: QSHVQSAP (SEQ ID NO:7), QSAP, QP, TL, TT, QL, TP, LP, TI, IQ, QP, PI, LT, TQ, IT, QQ, and PQ.
- the proteases of the invention are selected from the group consisting of:
- proteases derived from strains of Nocardiopsis. For determining whether a given protease is a serine protease, and a family S2A protease, reference is made to the above Handbook and the principles indicated therein. Such determination can be carried out for all types of proteases, be it naturally occurring or wild-type proteases; or genetically engineered or synthetic proteases.
- the degree of identity to SEQ ID NO: 1 is at least 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or at least 99%.
- the degree of identity is at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, or at least 69%.
- a 280 1.0 means such concentration (dilution) of said pure protease which gives rise to an absorption of 1.0 at 280 nm in a 1cm path length cuvette relative to a buffer blank.
- the term pure protease refers to a sample with a A 280 /A 26 o ratio above or equal to 1.70 (see Example 2E of WO 01/58276), and which by a scan of a Coomassie stained SDS-PAGE gel is measured to have at least 95% of its scan intensity in the band corresponding to said protease (see Example 2A of WO 01/58276).
- an additional protease may be used, for example a mammalian protease, for example in the form of pancreas extract from swine, or a microbial protease, for example derived from bacterial or fungal strains, such as Bacillus, Pseudomonas, Aspergillus, or Rhizopus.
- the protease may in particular be derived from a strain of Aspergillus, such as Aspergillus oryzae or Aspergillus melleus, in particular the product Prozyme 6TM (neutral, alkaline protease EC 3.4.21.63) which is commercially available from Amano Pharmaceuticals, Japan.
- a lipase means a carboxylic ester hydrolase EC 3.1.1.-, which includes activities such as EC 3.1.1.3 triacylglycerol lipase, EC 3.1.1.4 phospholipase A1 , EC 3.1.1.5 lysophospholipase, EC 3.1.1.26 galactolipase, EC 3.1.1.32 phospholipase A1 , EC 3.1.1.73 feruloyl esterase.
- the lipase is an EC 3.1.1.3 triacylglycerol lipase.
- the lipase is a mammalian lipase, for example in the form of pancreas extract from swine, or a microbial lipase, for example derived from bacterial or fungal strains, such as Bacillus, Pseudomonas, Aspergillus, or Rhizopus.
- the lipase may in particular be derived from a strain of Rhizopus, such as Rhizopus javanicus, Rhizopus oryzae, or Rhizopus delemar, for example the product Lipase D Amano 2000TM (also designated Lipase D2TM) which is commercially available from Amano Pharmaceuticals, Japan.
- the lipase for use in the present invention is a recombinantly produced microbial lipase, for example derived from a fungus such as Humicola or Rhizomucor, from a yeast such as Candida, or from a bacterium such as Pseudomonas.
- the lipase is derived from a strain of Humicola lanuginosa or Rhizomucor miehei.
- the Humicola lanuginosa (synonym Thermomyces lanuginosus) lipase (SEQ ID NO: 8) is described in EP 305216, and particular lipase variants are described in, for example, WO 92/05249, WO 92/19726, WO 94/25577, WO 95/22615, WO 97/04079, WO 97/07202, WO 99/42566, WO 00/32758, WO 00/60063, WO 01/83770, WO 02/055679, and WO 02/066622.
- fungal lipases are the cutinase from Humicola insolens which is described in EP 785994, and the phospholipase from Fusarium oxysporum which is described in EP 869167.
- yeast lipases are lipase A and B from Candida antarctica of which lipase A is described in EP 652945, and lipase B is described by, for example, Uppenberg et al in Structure, 2 (1994), 293.
- An example of a bacterial lipase is the lipase derived from Pseudomonas cepacia, which is described in EP 214761.
- the lipase is at least 70% identical to the lipase of SEQ ID
- the degree of identity to SEQ ID NO: 8 is at least 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or at least 99%.
- the degree of identity to SEQ ID NO: 8 is at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, or at least 69%.
- the lipase like the mammalian pancreatic lipase, is a 1 ,3-position specific lipase.
- the protease of the invention, with or without a lipase as described above, may also be used in combination with an amylase.
- an amylase is an enzyme that catalyzes the endo-hydrolysis of starch and other linear and branched oligo- and polysaccharides.
- the amylose part of starch is rich in 1 ,4-alpha-glucosidic linkages, while the amylopectin part is more branched containing not only 1 ,4-alpha- but also 1 ,6-alpha-glucosidic linkages.
- the amylase is an enzyme belonging to the EC 3.2.1.1 group.
- the amylase is a mammalian amylase, for example in the form of pancreas extract from swine, or a microbial amylase, for example derived from bacterial or fungal strains, such as Bacillus, Pseudomonas, Aspergillus, or Rhizopus.
- the amylase may in particular be derived from a strain of Aspergillus, such as
- Amylase A1TM derived from Aspergillus oryzae which is commercially available from Amano Pharmaceuticals, Japan, or Amylase ECTM derived from Aspergillus melleus which is commercially available from Extract-Chemie, Germany.
- Other examples of fungal amylases are the Aspergillus niger amylase (SWISSPROT P56271 ), which is also described in Example 3 of WO 89/01969, and the Aspergillus oryzae amylase (SEQ ID NO: 9). Examples of variants of the Aspergillus oryzae amylase are described in WO 01/34784.
- the alpha-amylase derived from Bacillus licheniformis is an example of a bacterial alpha-amylase.
- This amylase is, for example, described in WO 99/19467, together with other homologous bacterial alpha-amylases derived from, for example, Bacillus amyloliquefaciens, and Bacillus stearothermophilus, as well as variants thereof.
- additional amylase variants are those described in US patent no. 4,933,279; EP 722490, and EP 904360.
- the amylase is at least 70% identical to the amylase of SEQ ID NO: 9.
- the degree of identity to SEQ ID NO: 9 is at least 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or at least 99%.
- the degree of identity to SEQ ID NO: 9 is at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, or at least 69%.
- the protease, lipase, and amylase enzymes for use according to the invention may be natural or wild-type enzymes obtained from animals, in particular mammals, for example human or swine enzymes; from plants, or from microorganisms, but also any mutants, variants, fragments etc. thereof exhibiting the desired enzyme activity, as well as synthetic enzymes, such as shuffled enzymes, and consensus enzymes.
- the enzyme(s) are low-allergenic variants, designed to invoke a reduced immunological response when exposed to animals, including man.
- immunological response is to be understood as any reaction by the immune system of an animal exposed to the enzyme(s).
- One type of immunological response is an allergic response leading to increased levels of IgE in the exposed animal.
- Low-allergenic variants may be prepared using techniques known in the art.
- the enzyme(s) may be conjugated with polymer moieties shielding portions or epitopes of the enzyme(s) involved in an immunological response.
- Conjugation with polymers may involve in vitro chemical coupling of polymer to the enzyme(s), e.g. as described in WO 96/17929, WO 98/30682, WO 98/35026, and/or WO 99/00489. Conjugation may in addition or alternatively thereto involve in vivo coupling of polymers to the enzyme(s).
- Such conjugation may be achieved by genetic engineering of the nucleotide sequence encoding the enzyme(s), inserting consensus sequences encoding additional glycosylation sites in the enzyme(s) and expressing the enzyme(s( in a host capable of glycosylating the enzyme(s), see e.g. WO 00/26354.
- Another way of providing low-allergenic variants is genetic engineering of the nucleotide sequence encoding the enzyme(s) so as to cause the enzymes to self-oligomerize, effecting that enzyme monomers may shield the epitopes of other enzyme monomers and thereby lowering the antigenicity of the oligomers.
- Such products and their preparation is described e.g. in WO 96/16177.
- Epitopes involved in an immunological response may be identified by various methods such as the phage display method described in WO 00/26230 and WO 01/83559, or the random approach described in EP 561907.
- its amino acid sequence may be altered to produce altered immunological properties of the enzyme(s) by known gene manipulation techniques such as site directed mutagenesis (see e.g. WO 00/26230, WO 00/26354 and/or WO 00/22103) and/or conjugation of a polymer may be done in sufficient proximity to the epitope for the polymer to shield the epitope.
- the protease, lipase, and/or amylase enzymes are (i) stable at pH 4-8, preferably also at pH 3-4, more preferably at pH 3.5; (ii) active at pH 4-9, preferably 4-8, more preferably at pH 6.5; (iii) stable against degradation by pepsin and other digestive proteases (such as pancreas proteases, i.e., mainly trypsin and chymotrypsin); and/or (iv) stable and/or active in the presence of bile salts
- pepsin and other digestive proteases such as pancreas proteases, i.e., mainly trypsin and chymotrypsin
- stable and/or active in the presence of bile salts stable and/or active in the presence of bile salts
- the term "in combination with” refers to the combined use according to the invention of the protease, lipase, and/or amylase.
- the combined use can be simultaneous, overlapping, or sequential, these three terms being generally interpreted in the light of the prescription made by the physician.
- the term “simultaneous” refers to circumstances under which the enzymes are active at the same time, for example when they are administered at the same time as one or more separate pharmaceutical products, or if they are administered in one and the same pharmaceutical composition.
- the term “sequential” refers to such instances where one and/or two of the enzymes are acting first, and the second and/or third enzyme subsequently.
- a sequential action can be obtained by administering the enzymes in question as separate pharmaceutical formulations with desired intervals, or as one pharmaceutical composition in which the enzymes in question are differently formulated (compartmentalized), for example with a view to obtaining a different release time, providing an improved product stability, or to optimizing the enzyme dosage.
- overlapping refers to such instances where the enzyme activity periods are neither completely simultaneous nor completely sequential, viz. there is a certain period in which the enzymes are both, or all, active.
- a for example when used in the context of the protease, lipase, and/or amylase of the invention, means at least one.
- a means “one or more,” or “at least one”, which again means one, two, three, four, five etc.
- the degree of identity between two amino acid sequences is determined by the program "align” which is a Needleman-Wunsch alignment (i.e. a global alignment). The sequences are aligned by the program, using the default scoring matrix BLOSUM50 is used. The penalty for the first residue of a gap is 12, and for further residues of a gap the penalties are 2.
- Align is a Needleman-Wunsch alignment (i.e. a global alignment).
- the sequences are aligned by the program, using the default scoring matrix BLOSUM50 is used.
- the penalty for the first residue of a gap is 12, and for further residues of a gap the penalties are 2.
- “Align” is part of the FASTA package version v20u6 (see W. R. Pearson and D. J. Lipman (1988), "Improved Tools for Biological Sequence Analysis", PNAS 85:2444
- FASTA protein alignments use the Smith-Waterman algorithm with no limitation on gap size (see “Smith-Waterman algorithm”, T. F. Smith and M. S. Waterman (1981) J. Mol. Biol. 147:195-197).
- the activity of the enzyme(s) of the invention can be measured using any suitable assay. Generally, assay-pH and assay-temperature are to be adapted to the enzyme in question. Examples of assay-pH-values are pH 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , or 12.
- assay-temperatures are 30, 35, 37, 40, 45, 50, 55, 60, 65, 70, 80, 90, or 95°C.
- protease activity can be measured using any assay, in which a substrate is employed, that includes peptide bonds relevant for the specificity of the protease in question.
- suitable enzyme assays are included in the experimental part.
- Other examples are the Ph. Eur. assays for lipase and amylase activity.
- medicament means a compound, or mixture of compounds, that treats, prevents and/or alleviates the symptoms of disease.
- the medicament may be prescribed by a physician, or it may be an over-the-counter product.
- compositions Isolation, purification, and concentration of the enzyme(s) of the invention may be carried out by conventional means.
- concentrated solid or liquid preparations of each of the enzyme(s) are prepared separately. These concentrates may also, at least in part, be separately formulated, as explained in more detail below.
- the enzyme(s) are incorporated in the pharmaceutical compositions of the invention in the form of solid concentrates.
- the enzyme(s) can be brought into the solid state by various methods as is known in the art.
- the solid state can be either crystalline, where the enzyme molecules are arranged in a highly ordered form, or a precipitate, where the enzyme molecules are arranged in a less ordered, or disordered, form.
- Crystallization may, for example, be carried out at a pH close to the pi of the enzyme(s) and at low conductivity, for example 10 mS/cm or less, as described in EP 691982 (see also Example 2 herein).
- Various precipitation methods are known in the art, including precipitation with salts, such as ammonium sulphate, and/or sodium sulphate; with organic solvents, such as ethanol, and/or isopropanol; or with polymers, such as PEG (Poly Ethylene Glycol).
- the enzyme(s) can be precipitated from a solution by removing the solvent (typically water) by various methods known in the art, e.g.
- the solid concentrate of the enzyme(s) has a content of active enzyme protein of at least 50% (w/w) by reference to the total protein content of the solid concentrate.
- the content of active enzyme protein, relative to the total protein content of the solid concentrate is at least 55, 60, 65, 70, 75, 80, 85, 90, or at least 95% (w/w).
- the protein content can be measured as is known in the art, for example using a commercial kit, such as Protein Assay ESL, order no. 1767003, which is commercially available from Roche, or on the basis of the method described in Example 8 of WO 01/58276.
- a pharmaceutical composition of the invention comprises the enzyme(s), preferably in the form of concentrated enzyme preparations, more preferably solid concentrates, together with at least one pharmaceutically acceptable auxiliary, or subsidiary, material such as (i) at least one carrier and/or excipient; or (ii) at least one carrier, excipient, diluent, and/or adjuvant.
- pharmaceutically acceptable auxiliary, or subsidiary material such as (i) at least one carrier and/or excipient; or (ii) at least one carrier, excipient, diluent, and/or adjuvant.
- suitable auxiliary, or subsidiary material such as (i) at least one carrier and/or excipient; or (ii) at least one carrier, excipient, diluent, and/or adjuvant.
- material such as (i) at least one carrier and/or excipient; or (ii) at least one carrier, excipient, diluent, and/or adjuvant.
- the composition of the invention may be designed for all manners of administration known in the art, including enteral administration (through the alimentary canal), and parenteral administration, for example by injection (such as subcutaneous, intramuscular, or intravenous, etc.).
- the composition may be in solid, semi-solid, liquid, or gaseous form, such as tablets, capsules, powders, granules, microspheres, ointments, creams, foams, solutions, suppositories, injections, inhalants, gels, microspheres, lotions, and aerosols.
- enteral administration through the alimentary canal
- parenteral administration for example by injection (such as subcutaneous, intramuscular, or intravenous, etc.).
- the composition may be in solid, semi-solid, liquid, or gaseous form, such as tablets, capsules, powders, granules, microspheres, ointments, creams, foams, solutions, suppositories, injections, inhalants, gels, microsphere
- the enzyme(s) can be used alone or in combination with appropriate additives to make tablets, powders, granules or capsules, for example, with conventional carriers, such as lactose, mannitol, corn starch, or potato starch; with excipients or binders, such as crystalline, or microcrystalline, cellulose, cellulose derivatives, acacia, corn starch, or gelatins; with disintegrators, such as corn starch, potato starch, or sodium carboxymethylcellulose; with lubricants, such as camauba wax, white wax, shellac, waterless colloid silica, macrogol 6000, povidone, talc, monolein, or magnesium stearate; and if desired, with diluents, adjuvants, buffering agents, moistening agents, preservatives such as methylparahydroxybenzoate (E218), colouring agents such as titanium dioxide (E171 ), and flavouring agents such as saccharose, saccharin, orange
- Oral preparations are examples of preferred preparations for treatment of the medical indication of PEI.
- the enzyme(s) can also, quite generally, be formulated into preparations for injection, or into liquid oral preparations, by dissolving, suspending, or emulsifying them in an aqueous solvent such as water, or in non-aqueous solvents such as vegetable or other similar oils, synthetic aliphatic acid glycerides, esters of higher aliphatic acids, propylene glycol, polyethylene glycol such as PEG 4000, or lower alcohols such as linear or ramified C1-C4 alcohols, for example 2-propanol; and if desired, with conventional subsidiary materials or additives such as solubilizers, adjuvants, diluents, isotonic agents, suspending agents, emulsifying agents, stabilizers, and preservatives.
- an aqueous solvent such as water, or in non-aqueous solvents such as vegetable or other similar oils, synthetic aliphatic acid g
- the enzyme(s) can furthermore, still quite generally, be utilized in aerosol formulation to be administered via inhalation, for example by formulation into pressurized acceptable propellants such as dichlorodifluoromethane, propane, nitrogen, and the like.
- the enzyme(s) can generally be made into suppositories for rectal administration by mixing with a variety of bases such as emulsifying bases or water-soluble bases.
- the suppository can include vehicles such as cocoa butter, carbowaxes and polyethylene glycols, which melt at body temperature, yet are solidified at room temperature.
- the use of liposomes as a delivery vehicle is another method of possible general interest. The liposomes fuse with the cells of the target site and deliver the contents of the lumen intracellularly.
- liposomes are maintained in contact with the cells for sufficient time for fusion, using various means to maintain contact, such as isolation, binding agents, and the like.
- liposomes are designed to be aerosolized for pulmonary administration.
- Liposomes may be prepared with purified proteins or peptides that mediate fusion of membranes, such as Sendai virus or influenza virus, etc.
- the lipids may be any useful combination of known liposome forming lipids, including cationic or zwitterionic lipids, such as phosphatidylcholine.
- the remaining lipid will normally be neutral or acidic lipids, such as cholesterol, phosphatidyl serine, phosphatidyl glycerol, and the like.
- Unit dosage forms for oral or rectal administration such as syrups, elixirs, powders, and suspensions may be provided wherein each dosage unit, for example, teaspoonful, tablespoonful, capsule, tablet or suppository, contains a predetermined amount of the enzyme(s).
- unit dosage forms for injection or intravenous administration may comprise the enzyme(s) in a composition as a solution in sterile water, normal saline, or another pharmaceutically acceptable carrier.
- unit dosage form refers to physically discrete units suitable as unitary dosages for human and animal subjects, each unit containing a predetermined quantity of enzyme(s) in an amount sufficient to produce the desired effect.
- the pharmaceutical composition of the invention is for enteral, preferably oral, administration.
- the oral composition is (i) a liquid composition containing crystals of the enzyme(s); (ii) a liquid suspension of sediments of (highly) purified enzyme(s); (iii) a gel containing the enzyme(s) in solid or solubilized form; (iv) a liquid suspension of immobilized enzyme(s) or of enzymes adsorbed to particles and the like; or (v) a solid composition in the form of enzyme(s)-containing powder, pellets, granules, or microspheres, if desired in the form of tablets, capsules, or the like, that are optionally coated, for example with an acid-stable coating.
- the enzyme(s) are compartmentalized, viz.
- the protease is separated from each other, for example by means of separate coatings.
- the protease is separated from other enzyme components of the composition, such as the lipase, and/or the amylase.
- the dosage of the enzyme(s) will vary widely, depending on the specific enzyme(s) to be administered, the frequency of administration, the manner of administration, the severity of the symptoms, and the susceptibility of the subject to side effects, and the like. Some of the specific enzymes may be more potent than others.
- the amide (peptide) bonds, as well as the amino and carboxy termini, may be modified for greater stability on oral administration. For example, the carboxy terminus may be amidated.
- the protease of the invention is useful in the therapeutic, and/or prophylactic, treatment of various diseases or disorders in animals.
- the term "animal” includes all animals, and in particular human beings. Examples of animals are non-ruminants, and ruminants, such as sheep, goats, horses, and cattle, e.g. beef cattle, cows, and young calves. In a particular embodiment, the animal is a non-ruminant animal. Non-ruminant animals include mono-gastric animals, e.g.
- pigs or swine including, but not limited to, piglets, growing pigs, and sows
- poultry such as turkeys, ducks and chicken (including but not limited to broiler chicks, layers); young calves; pets such as cat, and dog; and fish (including but not limited to salmon, trout, tilapia, catfish and carps; and crustaceans (including but not limited to shrimps and prawns).
- the animal is a mammal, more in particular a human being.
- the enzyme(s) are useful in the treatment of digestive disorders like mal- digestion or dyspepsia that are often caused by a deficient production and/or secretion into the gastrointestinal tract of digestive enzymes normally secreted from, i.a., the stomach, and the pancreas.
- the enzyme(s) are particularly useful in the treatment of PEI.
- PEI can be verified using, i.a., the Borgstr ⁇ m test (JOP. J Pancreas (Online) 2002; 3(5):116-125), and it may be caused by diseases and conditions such as pancreatic cancer, pancreatic and/or gastric surgery, e.g.
- pancreas total or partial resection of the pancreas, gastrectomy, post gastrointestinal bypass surgery (e.g. Billroth II gastroenterostomy); chronic pancreatitis; Shwachman Diamond Syndrome; ductal obstruction of the pancreas or common bile duct (e.g. from neoplasm); and/or cystic fibrosis (an inherited disease in which a thick mucus blocks the ducts of the pancreas).
- the enzyme(s) may also be useful in the treatment of acute pancreatitis.
- Example 2 describes an in vitro digestibility test for measuring lipase stability test under gastric conditions
- Example 3 an in vitro digestibility test for lipase activity in the presence of bile salts.
- Corresponding tests can be set up for the protease and amylase.
- WO 02/060474 discloses suitable tests, for example (1 ) an in vitro test for measuring lipid digestion in a swine test feed, and (2) an in vivo trial with pancreas insufficient swine in which the digestibility of fat, protein and starch is measured.
- the effect of the protease of the invention is measured using the in vitro pancreas insufficiency digestion model of Example 1 herein, in which various other substrates may be used as desired, for example animal protein, other vegetable proteins, cereals, animal or vegetable fats and oils, as well as any mixtures thereof.
- the effect of the protease of the invention is measured using the in vivo screening test for protease efficacy of Example 4, or the full in vivo digestibility trial of Example 5.
- the enzyme(s) are useful in the treatment of Diabetes mellitus type I, and/or type II, in particular for adjuvant treatment in a diabetes therapy of digestive disorders usually accompanying this disease, with a view to diminishing late complications.
- the effect on Diabetes mellitus of the enzyme(s) may be determined by one or more of the methods described in WO 00/54799, for example by controlling the level of glycosylated haemoglobin, the blood glucose level, hypoglycaemic attacks, the status of fat-soluble vitamins like vitamins A, D and E, the required daily dosage of insulin, the body-weight index, and hyper glycaemic periods.
- the invention described and claimed herein is not to be limited in scope by the specific embodiments herein disclosed, since these embodiments are intended as illustrations of several aspects of the invention. Any equivalent embodiments are intended to be within the scope of this invention. Indeed, various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims. In the case of conflict, the present disclosure including definitions will control.
- Various references are cited herein, the disclosures of which are incorporated by reference in their entireties.
- Example 1 In vitro Pancreatic Insufficiency Digestion Model A purified preparation of the protease derived from Nocardiopsis sp. NRRL 18262 (SEQ ID NO: 1 ) was prepared as generally described in Example 2 of WO 01/58276, and tested in an in vitro model simulating the digestion in individuals suffering from pancreatic insufficiency.
- the in vitro system consists of 24 flasks in which a substrate (based on maize and soybean meal (SBM)) was initially incubated with HCI/pepsin (simulating gastric digestion), and subsequently with two reduced levels of pancreatin, simulating intestinal digestion in an individual with partial and complete pancreatic insufficiency.
- SBM maize and soybean meal
- a positive control experiment was also included with a normal level of pancreatin. 10 of the flasks were dosed with the protease at the start of the gastric phase whereas the remaining flasks served as blanks. At the end of the intestinal incubation phase samples of in vitro digesta were removed and analysed for solubilised and digested protein.
- Substrate 4 g SBM, 6 g maize (premixed)
- HCI 0.105 M for 1.5 hours (i.e. 30 min HCI-substrate premixing) pepsin: Sigma P-7000; 3000 U /g substrate for 1 hour pancreatin Sigma P-7545; 0, 4, or 8 mg / g substrate for 4 hours (the assumed normal level of pancreatin being 8 mg/g) protease: 100 mg protease enzyme protein (EP) / kg of substrate (Enzyme Protein was calculated on the basis of the A 28 o values and the amino acid sequences (amino acid compositions) using the principles outlined in S.C.Gill & P.H. von Hippel, Analytical Biochemistry 182, 319-326, (1989)) pH: 3.0 stomach step / 6.8-7.0 intestinal step temperature: 40°C
- solubilised and digested protein The content of solubilised protein in supernatants from in vitro digested samples was estimated by quantifying crude protein (CP) using gel filtration HPLC. Supernatants were thawed, filtered through 0.45 ⁇ m polycarbonate filters and diluted (1 :50, v/v) with H 2 O. Diluted samples were chromatographed by HPLC using a Superdex Peptide PE (7.5 x 300 mm) gel filtration column (Global). The eluent used for isocratic elution was 50 mM sodium phosphate buffer (pH 7.0) containing 150 mM NaCI.
- the total volume of eluent per run was 26 ml and the flow rate was 0.4 ml/min.
- Elution profiles were recorded at 214 nm and the total area under the profiles was determined by integration.
- the protein determination in this reference sample was carried out using a standard method (in this case the Kjeldahl method for determination of % nitrogen; A.O.A.C. (1984) Official Methods of Analysis 14th ed., Washington DC).
- the content of digested protein was estimated by integrating the chromatogram area corresponding to peptides and amino acids having a molecular mass of 1500 Dalton or below (Savoie.L.; Gauthier.S.F. Dialysis Cell For The In-vitro Measurement Of Protein Digestibility. J. Food Sci. 1986, 51 , 494-498; Babinszky.L; Van.D.M.J.M.; Boer.H.; Den.H.L.A. An In-vitro Method for Prediction of The Digestible Crude Protein Content in Pig Feeds. J. Sci. Food Agr. 1990, 50, 173-178; Boisen.S.; Eggum.B.O.
- the following cluster of columns shows the percentage of digestible Crude Protein (abbreviated %dig.CP), including the Standard Deviation (SD), and the significance superscript letter as explained in the footnote below the table. And finally, the last cluster of columns shows the percentage of soluble Crude Protein (abbreviated %sol.CP), also including SD and significance superscript letters.
- %dig.CP percentage of digestible Crude Protein
- SD Standard Deviation
- %sol.CP percentage of soluble Crude Protein
- Example 2 Preparation of Crystallized Protease Preparations
- the protease of SEQ ID NO: 1 was fermented as described in Example 1 , and the protease-containing broth was harvested on a centrifuge at pH 4.5. The resulting supernatant was subjected to ultra-filtration using a membrane with a cut-off value of 6 kDal, and to diafiltration until a conductivity of 2 mS/cm in the protease-containing solution. The content of protease was approximately 100 mg/mL.
- the concentrated and diafiltered protease solution is crystallized by adjusting pH with sodium hydroxide to pH 8.5, i.e. close to the pi of the protease (which is 9.3). After pH adjustment the solution is left over night at room temperature, and crystallization takes place. The following day the crystallized protease is harvested by centrifugation.
- Substrate Suc-AAPF-pNA (Sigma ® S-7388).
- Assay buffer 100mM succinic acid, 100mM HEPES, 100mM CHES, 100mM CABS, 1mM CaCI 2 , 150mM KCI, 0.01% Triton ® X-100 adjusted to pH 9.0 with HCI or NaOH.
- Assay temperature 25°C.
- 300 ⁇ l diluted protease sample was mixed with 1.5ml of the assay buffer and the activity reaction was started by adding 1.5ml pNA substrate (50mg dissolved in 1.0ml DMSO and further diluted 45x with 0.01% Triton ® X-100) and, after mixing, the increase in A ⁇ s was monitored by a spectrophotometer as a measurement of the protease activity.
- the protease samples were diluted prior to the activity measurement in order to ensure that all activity measurements fell within the linear part of the dose-response curve for the assay.
- Protease FIP assay Protease activity may also be determined using the FIP assay (Federation
- the substrate casein is hydrolysed by protease at pH 7.5 and at a temperature of 35°C.
- the reaction is stopped by addition of trichloroacetic acid, and non- degraded casein is filtered off.
- the quantity of peptides remaining in solution is determined by spectrophotometry at 275 nm.
- the protease activity is determined as the quantity of peptides not precipitated by a 5.0% (wt/vol, i.e. 5.0 g/100ml) solution of trichloroacetic acid, by reference to a pancreas reference powder (protease reference standard) of known FIP activity.
- Casein solution 1.25 g casein (dry matter), e.g. Calbiochem no. 218680, is suspended in water until a practically clear solution is obtained. pH is adjusted to 8.0, and the solution is diluted with water to a final volume of 100 ml.
- water means deionized water.
- Borate buffer pH 7.5 2.5 g sodium chloride, 2.85 g disodium tetraborate and 10.5 g boric acid are dissolved in 900 ml water, pH is adjusted to pH 7.5+/-0.1 and diluted to 1000 ml with water.
- Filter paper Folded filters with a diameter of 125 mm, e.g. Schleicher & Schuell no.
- Test suspension Prepare a suspension of the sample as described above for the protease reference standard, using a sample amount equivalent to approx. 260 FIP/Ph.Eur.-units. pH is adjusted to 6.1 and water is added to 100 ml. 5.0 ml of this solution is mixed with 5 ml of calcium chloride solution. 5 ml of this dilution is further diluted to 100 ml with borate buffer. Use 2.0 ml of this solution for the assay (in what follows the sample is designated Un, sample of unknown activity, number ⁇ ). Assay procedure (activity test): The assay is performed for the three reference suspensions (S1 , S2, S3) and for the sample suspension (Un), all in triplicate.
- a blind (B) is prepared without without sample/standard as compensation liquid for the spectrophotometer. Borate buffer is added to tubes as follows: Blind (B) 3.0 ml; sample (Un) 1.0 ml; standards (S1 , S2 and S3) 2.0, 1.0 and 0 ml, respectively. Protease reference standard is added to S1 , S2 and S3 as follows: 1.0, 2.0, and 3.0 ml, respectively. The test suspension is added to the sample tubes as follows (Un): 2.0 ml.
- each tube is filtered twice through the same filter, and the absorption of the filtrates is measured at 275 nm using the filtrate from tube B as compensation liquid.
- the activity of the sample (Un) in FIP units is calculated relative to the known labelled activity (A) of the standards (S1, S2, S3).
- the absorption values minus the respective blinds e.g. the absorption of S1 minus the absorption of S1b should lie in the interval of 0.15 - 0.60.
- Substrate Phadebas tablets (Pharmacia Diagnostics; cross-linked, insoluble, blue-coloured starch polymer, which is mixed with bovine serum albumin and a buffer substance, and manufactured into tablets)
- APTSMYQI-3207 is available on request from Novozymes A/S, Krogshoejvej 36, DK-2880 Bagsvaerd, Denmark.
- Example 4 In vivo screening test for protease efficacy The protease described in Example 1 was tested in female G ⁇ ttingen minipigs
- pancreatic duct was ligated to induce Pancreatic Exocrine Insufficiency (PEI), and they were fitted with an ileo-caecal re-entrant cannula, all under halothane anaesthesia and at a weight of about 25 kg, as described in Tabeling et al., J. 1999, Studies on nutrient digestibilities (pre-caecal and total) in pancreatic duct-ligated pigs and the effects of enzyme substitution, J. Anim. Physiol. A. Anim. Nutr. 82: 251-263 (hereinafter referred to as "Tabeling 1999”); and in Gregory et al., J. 1999.
- the pigs were housed in modified metabolism cages on a 12:12h light-dark cycle and allowed free access to water and fed two meals/day.
- the pigs were fed a 250 g test meal mixed with 1 liter of water, 0.625 g Cr 2 O 3 (chromic oxide marker) and into which differing amounts of protease (0, 1000, 2500, 6000 FIP U protease/meal (protease FIP units, see Example 3)) were mixed immediately before feeding.
- the test meal contained 21.4% protein, 51.9% starch, 2.6% fat, and had the following composition (g/100g dry matter): Fish meal 3.5, poultry meat meal 10.2, wheat flour 29.5, shelled rice 14, potato starch 11 , maize starch 14, casein 5.9, cellulose powder 4.3, vitamins, minerals and trace elements 7.6 (as per the nutritional requirement for pigs/piglets, see e.g. Table A of WO 01/58276). Heal chyme was collected on ice for a total of 8h after first appearance of the meal marker in the ileum (green chyme) and stored at -20°C before analysis. At least one day washout was allowed between separate determinations.
- DM dry matter
- the nitrogen content was determined by the Kjeldahl method (Naumann and Bassler, 1993, Die chemische für Futterstoff.
- Example 5 Full in vivo digestibility trial The protease described in Example 1 was tested in female G ⁇ ttingen minipigs (Ellegaard) in which the pancreatic duct was ligated to induce PEI, and they were fitted with an ileo-caecal re-entrant cannula, all under halothane anaesthesia and at a weight of about 25 kg, as previously described (Tabeling 1999; Gregory et al 1999). Control minipigs were prepared in similar manner, but the pancreatic duct was left intact. A period of at least 4 weeks was allowed, for recovery from surgery, before studies were commenced.
- each pig Prior to study begin, the PEI status of each pig was confirmed via the stool chymotrypsin test (see Example 4).
- the pigs were allowed free access to water and fed two 250 g meals/day, at 08.00 and 20.00h, of a finely milled diet (as in Example 4), mixed with 1 litre water, 0.625 g Cr 2 O 3 and into which differing amounts of protease (0, 6000 FIP U protease/meal) were mixed immediately before feeding.
- Each dose was fed to the pigs for 2 weeks and ileal chyme was collected on ice for 12h for the final 3 days.
- the samples were stored at -20°C until analysis. In brief, the frozen samples were freeze-dried and analysed for dry matter (DM) and crude protein.
- DM dry matter
- pre-caecal protein digestibility (apparent digestibility) calculated as described in Example 4.
- Pre-caecal protein digestibility was ca. 80% in control (pancreatic sufficient) minipigs on the diet used.
- protein digestibility was severely reduced compared to these control values, but enzyme supplementation with pancreatin or the microbial protease strongly improved digestibility, which approached control values (see the results in Table 3 below).
- Table 3 Influence of enzyme supplementation on apparent protein digestibility:
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Gastroenterology & Hepatology (AREA)
- Epidemiology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Immunology (AREA)
- Diabetes (AREA)
- Hematology (AREA)
- Obesity (AREA)
- Endocrinology (AREA)
- Emergency Medicine (AREA)
- Nutrition Science (AREA)
- Pulmonology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Enzymes And Modification Thereof (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
Description
Claims
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007516970A JP2008500055A (en) | 2004-05-24 | 2005-05-24 | Enzymes for pharmaceutical use |
DK05744343.4T DK1755656T3 (en) | 2004-05-24 | 2005-05-24 | Enzymes for pharmaceutical use |
EP05744343A EP1755656B1 (en) | 2004-05-24 | 2005-05-24 | Enzymes for pharmaceutical use |
BRPI0510817-9A BRPI0510817A (en) | 2004-05-24 | 2005-05-24 | protease, use of a protease, pharmaceutical composition, and method for treating a disease |
DE602005022187T DE602005022187D1 (en) | 2004-05-24 | 2005-05-24 | ENZYMES FOR PHARMACEUTICAL USE |
CA002586222A CA2586222A1 (en) | 2004-05-24 | 2005-05-24 | Enzymes for pharmaceutical use |
AU2005247061A AU2005247061A1 (en) | 2004-05-24 | 2005-05-24 | Enzymes for pharmaceutical use |
AT05744343T ATE473010T1 (en) | 2004-05-24 | 2005-05-24 | ENZYMES FOR PHARMACEUTICAL USE |
MXPA06013239A MXPA06013239A (en) | 2004-05-24 | 2005-05-24 | Enzymes for pharmaceutical use. |
US11/597,273 US20110158976A1 (en) | 2004-05-24 | 2005-05-24 | Enzymes for pharmaceutical use |
US13/456,781 US20120207741A1 (en) | 2004-05-24 | 2012-04-26 | Enzymes For Pharmaceutical Use |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DKPA200400810 | 2004-05-24 | ||
DKPA200400810 | 2004-05-24 | ||
DKPA200500101 | 2005-01-20 | ||
DKPA200500101 | 2005-01-20 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/456,781 Continuation US20120207741A1 (en) | 2004-05-24 | 2012-04-26 | Enzymes For Pharmaceutical Use |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2005115445A1 true WO2005115445A1 (en) | 2005-12-08 |
Family
ID=34968404
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DK2005/000342 WO2005115445A1 (en) | 2004-05-24 | 2005-05-24 | Enzymes for pharmaceutical use |
Country Status (12)
Country | Link |
---|---|
US (2) | US20110158976A1 (en) |
EP (1) | EP1755656B1 (en) |
JP (1) | JP2008500055A (en) |
AT (1) | ATE473010T1 (en) |
AU (1) | AU2005247061A1 (en) |
BR (1) | BRPI0510817A (en) |
CA (1) | CA2586222A1 (en) |
DE (1) | DE602005022187D1 (en) |
DK (1) | DK1755656T3 (en) |
MX (1) | MXPA06013239A (en) |
RU (1) | RU2389504C2 (en) |
WO (1) | WO2005115445A1 (en) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009071550A1 (en) * | 2007-12-04 | 2009-06-11 | Novozymes A/S | Protease variants for pharmaceutical use |
WO2011000924A1 (en) | 2009-07-03 | 2011-01-06 | Abbott Products Gmbh | Spray-dried amylase, pharmaceutical preparations comprising the same and use |
US8153396B2 (en) * | 2008-06-03 | 2012-04-10 | Novozymes A/S | Method for producing a casein hydrolysate |
US8357408B2 (en) | 2004-06-21 | 2013-01-22 | Novozymes A/S | Proteases |
US8377677B2 (en) | 2003-10-10 | 2013-02-19 | Novozymes A/S | Protease variants |
US8486390B2 (en) | 2008-04-18 | 2013-07-16 | Curemark Llc | Pharmaceutical preparation for the treatment of the symptoms of addiction and method of diagnosing same |
GB2480772B (en) * | 2009-01-06 | 2013-10-16 | Curelon Llc | Compositions and methods for the treatment or prevention of staphylococcus aureus infections and for the eradication or reduction of staphylococcus aureus |
US8580522B2 (en) | 2000-11-16 | 2013-11-12 | Curemark, Llc | Methods for diagnosing pervasive development disorders, dysautonomia and other neurological conditions |
GB2480773B (en) * | 2009-01-06 | 2013-12-11 | Curelon Llc | Compositions for the treatment of diarrhea caused by virulent E. coli infections |
US8613918B2 (en) | 1999-12-17 | 2013-12-24 | Curemark Llc | Method for treating pervasive development disorders |
US8673877B2 (en) | 2005-08-30 | 2014-03-18 | Curemark, Llc | Use of lactulose in the treatment of autism |
WO2014068083A1 (en) | 2012-11-01 | 2014-05-08 | Novozymes A/S | Method for removal of dna |
US8778335B2 (en) | 2000-08-14 | 2014-07-15 | Curemark, Llc | Methods of treating and diagnosing Parkinson's disease and related dysautonomic disorders |
US8980252B2 (en) | 2011-04-21 | 2015-03-17 | Curemark Llc | Methods of treatment of schizophrenia |
US9023344B2 (en) | 2008-03-13 | 2015-05-05 | Curemark, Llc | Method of treating toxemia |
US9056050B2 (en) | 2009-04-13 | 2015-06-16 | Curemark Llc | Enzyme delivery systems and methods of preparation and use |
US9061033B2 (en) | 2008-10-03 | 2015-06-23 | Curemark Llc | Methods and compositions for the treatment of symptoms of prion diseases |
RU2570376C2 (en) * | 2009-09-17 | 2015-12-10 | Апталис Фарма Лимитед | Compositions of pancreatic enzymes and method of treating pancreatitis and pancreas insufficiency |
US9320780B2 (en) | 2008-06-26 | 2016-04-26 | Curemark Llc | Methods and compositions for the treatment of symptoms of Williams Syndrome |
US9511125B2 (en) | 2009-10-21 | 2016-12-06 | Curemark Llc | Methods and compositions for the treatment of influenza |
AU2017239486B2 (en) * | 2009-01-06 | 2019-05-23 | Galenagen, Llc | Compositions and methods for the treatment or prevention of staphylococcus aureus infections and for the eradication or reduction of staphylococcus aureus on surfaces |
US10350278B2 (en) | 2012-05-30 | 2019-07-16 | Curemark, Llc | Methods of treating Celiac disease |
US10776453B2 (en) | 2008-08-04 | 2020-09-15 | Galenagen, Llc | Systems and methods employing remote data gathering and monitoring for diagnosing, staging, and treatment of Parkinsons disease, movement and neurological disorders, and chronic pain |
US11016104B2 (en) | 2008-07-01 | 2021-05-25 | Curemark, Llc | Methods and compositions for the treatment of symptoms of neurological and mental health disorders |
US11541009B2 (en) | 2020-09-10 | 2023-01-03 | Curemark, Llc | Methods of prophylaxis of coronavirus infection and treatment of coronaviruses |
WO2023225459A2 (en) | 2022-05-14 | 2023-11-23 | Novozymes A/S | Compositions and methods for preventing, treating, supressing and/or eliminating phytopathogenic infestations and infections |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109022518A (en) | 2011-07-22 | 2018-12-18 | 诺维信北美公司 | For pre-treating cellulosic material and the method for improving its hydrolysis |
US8268305B1 (en) | 2011-09-23 | 2012-09-18 | Bio-Cat, Inc. | Method and compositions to reduce serum levels of triacylglycerides in human beings using a fungal lipase |
EP2910129A1 (en) * | 2014-02-21 | 2015-08-26 | Clariant Produkte (Deutschland) GmbH | Composition for enzymatic sludge removal from oil |
JP6607409B2 (en) * | 2017-03-31 | 2019-11-20 | 株式会社東洋新薬 | Oral composition |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1988003947A1 (en) | 1986-11-25 | 1988-06-02 | Novo Industri A/S | Low-temperature active alkaline protease from nocardiopsis dassonvillei and its preparation |
EP0600868A1 (en) | 1990-06-06 | 1994-06-15 | Novo Nordisk A/S | Recombinantly produced lipases for therapeutical treatment |
WO1997037681A1 (en) * | 1996-04-05 | 1997-10-16 | Michel Hooreman | Medicament for optimising mucosal viscosity and stimulating intestinal function |
WO2000054799A2 (en) * | 1999-03-17 | 2000-09-21 | Solvay Pharmaceuticals Gmbh | Medicament for treating diabetes |
WO2001058276A2 (en) | 2000-02-08 | 2001-08-16 | F Hoffmann-La Roche Ag | Use of acid-stable proteases in animal feed |
WO2002060474A2 (en) | 2001-01-19 | 2002-08-08 | Solvay Pharmaceuticals Gmbh | Mixtures of mushroom enzymes and the use thereof for treating maldigestion |
WO2003106667A2 (en) * | 2002-06-12 | 2003-12-24 | Bayer Healthcare Ag | Regulation of human subtilase-like serine protease |
WO2004111220A1 (en) | 2003-06-19 | 2004-12-23 | Novozymes A/S | Proteases |
WO2004111219A1 (en) | 2003-06-19 | 2004-12-23 | Novozymes A/S | Improved proteases and methods for producing them |
WO2004111222A1 (en) | 2003-06-19 | 2004-12-23 | Novozymes A/S | Proteases |
WO2005035747A1 (en) | 2003-10-10 | 2005-04-21 | Novozymes A/S | Protease variants |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5614224A (en) * | 1995-04-20 | 1997-03-25 | Womack; Rick W. | Nutritional supplement for diabetics |
AU6221496A (en) * | 1995-05-31 | 1996-12-18 | Simon Lodewijk Scharpe | Composition to improve digestibility and utilisation of nutr ients |
-
2005
- 2005-05-24 WO PCT/DK2005/000342 patent/WO2005115445A1/en active Application Filing
- 2005-05-24 US US11/597,273 patent/US20110158976A1/en not_active Abandoned
- 2005-05-24 JP JP2007516970A patent/JP2008500055A/en active Pending
- 2005-05-24 DE DE602005022187T patent/DE602005022187D1/en active Active
- 2005-05-24 AT AT05744343T patent/ATE473010T1/en not_active IP Right Cessation
- 2005-05-24 MX MXPA06013239A patent/MXPA06013239A/en active IP Right Grant
- 2005-05-24 AU AU2005247061A patent/AU2005247061A1/en not_active Abandoned
- 2005-05-24 RU RU2006145899/15A patent/RU2389504C2/en not_active IP Right Cessation
- 2005-05-24 BR BRPI0510817-9A patent/BRPI0510817A/en not_active IP Right Cessation
- 2005-05-24 CA CA002586222A patent/CA2586222A1/en not_active Abandoned
- 2005-05-24 DK DK05744343.4T patent/DK1755656T3/en active
- 2005-05-24 EP EP05744343A patent/EP1755656B1/en not_active Not-in-force
-
2012
- 2012-04-26 US US13/456,781 patent/US20120207741A1/en not_active Abandoned
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1988003947A1 (en) | 1986-11-25 | 1988-06-02 | Novo Industri A/S | Low-temperature active alkaline protease from nocardiopsis dassonvillei and its preparation |
EP0600868A1 (en) | 1990-06-06 | 1994-06-15 | Novo Nordisk A/S | Recombinantly produced lipases for therapeutical treatment |
WO1997037681A1 (en) * | 1996-04-05 | 1997-10-16 | Michel Hooreman | Medicament for optimising mucosal viscosity and stimulating intestinal function |
WO2000054799A2 (en) * | 1999-03-17 | 2000-09-21 | Solvay Pharmaceuticals Gmbh | Medicament for treating diabetes |
WO2001058276A2 (en) | 2000-02-08 | 2001-08-16 | F Hoffmann-La Roche Ag | Use of acid-stable proteases in animal feed |
WO2002060474A2 (en) | 2001-01-19 | 2002-08-08 | Solvay Pharmaceuticals Gmbh | Mixtures of mushroom enzymes and the use thereof for treating maldigestion |
WO2003106667A2 (en) * | 2002-06-12 | 2003-12-24 | Bayer Healthcare Ag | Regulation of human subtilase-like serine protease |
WO2004111220A1 (en) | 2003-06-19 | 2004-12-23 | Novozymes A/S | Proteases |
WO2004111219A1 (en) | 2003-06-19 | 2004-12-23 | Novozymes A/S | Improved proteases and methods for producing them |
WO2004111222A1 (en) | 2003-06-19 | 2004-12-23 | Novozymes A/S | Proteases |
WO2005035747A1 (en) | 2003-10-10 | 2005-04-21 | Novozymes A/S | Protease variants |
Non-Patent Citations (9)
Title |
---|
"Handbook of Proteolytic Enzymes", 1998, ACADEMIC PRESS |
"NC-IUBMB", 1992, ACADEMIC PRESS, article "The EC number refers to Enzyme Nomenclature" |
BIOCHEM.J., vol. 290, 1993, pages 205 - 218 |
EUR. J. BIOCHEM., vol. 223, 1994, pages 1 - 5 |
EUR. J. BIOCHEM., vol. 232, 1995, pages 1 - 6 |
EUR. J. BIOCHEM., vol. 237, 1996, pages 1 - 5 |
EUR. J. BIOCHEM., vol. 250, 1997, pages 1 - 6 |
EUR. J. BIOCHEM., vol. 264, 1999, pages 610 - 650 |
LEBENTHAL E ET AL: "ENZYME THERAPY FOR PANCREATIC INSUFFICIENCY: PRESENT STATUS AND FUTURE NEEDS", PANCREAS, RAVEN PRESS, NEW YORK, NY, US, vol. 9, no. 1, 1994, pages 1 - 12, XP001024461, ISSN: 0885-3177 * |
Cited By (67)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8815233B2 (en) | 1999-12-17 | 2014-08-26 | Curemark Llc | Method for treating pervasive development disorders |
US8613918B2 (en) | 1999-12-17 | 2013-12-24 | Curemark Llc | Method for treating pervasive development disorders |
US9624525B2 (en) | 1999-12-17 | 2017-04-18 | Curemark, Llc | Method for treating pervasive development disorders |
US9624526B2 (en) | 1999-12-17 | 2017-04-18 | Curemark Llc | Method for treating pervasive development disorders |
US8778335B2 (en) | 2000-08-14 | 2014-07-15 | Curemark, Llc | Methods of treating and diagnosing Parkinson's disease and related dysautonomic disorders |
US9233146B2 (en) | 2000-08-14 | 2016-01-12 | Curemark, Llc | Method of treating and diagnosing Parkinson's disease and related dysautonomic disorders |
US9377459B2 (en) | 2000-11-16 | 2016-06-28 | Curemark Llc | Methods for diagnosing pervasive development disorders, dysautonomia and other neurological conditions |
US8921054B2 (en) | 2000-11-16 | 2014-12-30 | Curemark, Llc | Methods for diagnosing pervasive development disorders, dysautonomia and other neurological conditions |
US8580522B2 (en) | 2000-11-16 | 2013-11-12 | Curemark, Llc | Methods for diagnosing pervasive development disorders, dysautonomia and other neurological conditions |
US10209253B2 (en) | 2000-11-16 | 2019-02-19 | Curemark, Llc | Methods for diagnosing pervasive development disorders, dysautonomia and other neurological conditions |
US8377677B2 (en) | 2003-10-10 | 2013-02-19 | Novozymes A/S | Protease variants |
US9131711B2 (en) | 2003-10-10 | 2015-09-15 | Novozymes A/S | Protease variants |
US8772011B2 (en) | 2003-10-10 | 2014-07-08 | Novozymes A/S | Protease variants |
US8357408B2 (en) | 2004-06-21 | 2013-01-22 | Novozymes A/S | Proteases |
US9279114B2 (en) | 2004-06-21 | 2016-03-08 | Novozymes A/S | Proteases |
US9279115B2 (en) | 2004-06-21 | 2016-03-08 | Novozymes A/S | Proteases |
AU2010257357B2 (en) * | 2004-06-21 | 2013-05-02 | Novozymes A/S | Proteases |
US9345721B2 (en) | 2005-08-30 | 2016-05-24 | Curemark, Llc | Use of lactulose in the treatment of autism |
US11033563B2 (en) | 2005-08-30 | 2021-06-15 | Curemark, Llc | Use of lactulose in the treatment of autism |
US10350229B2 (en) | 2005-08-30 | 2019-07-16 | Curemark, Llc | Use of lactulose in the treatment of autism |
US8673877B2 (en) | 2005-08-30 | 2014-03-18 | Curemark, Llc | Use of lactulose in the treatment of autism |
US8455235B2 (en) | 2007-12-04 | 2013-06-04 | Novozymes A/S | Protease variants for pharmaceutical use |
WO2009071550A1 (en) * | 2007-12-04 | 2009-06-11 | Novozymes A/S | Protease variants for pharmaceutical use |
JP2011505160A (en) * | 2007-12-04 | 2011-02-24 | ノボザイムス アクティーゼルスカブ | Protease variants for pharmaceutical use |
US11045527B2 (en) | 2008-03-13 | 2021-06-29 | Curemark, Llc | Method of diagnosing preeclampsia or pregnancy-induced hypertension |
US9408895B2 (en) | 2008-03-13 | 2016-08-09 | Curemark, Llc | Method of treating pregnancy-induced hypertension |
US9925250B2 (en) | 2008-03-13 | 2018-03-27 | Curemark, Llc | Method of treating proteinuria in pregnancy |
US9023344B2 (en) | 2008-03-13 | 2015-05-05 | Curemark, Llc | Method of treating toxemia |
US9687534B2 (en) | 2008-04-18 | 2017-06-27 | Curemark, Llc | Pharmaceutical preparation for the treatment of the symptoms of addiction and method of diagnosing same |
US10272141B2 (en) | 2008-04-18 | 2019-04-30 | Curemark, Llc | Pharmaceutical preparation for the treatment of the symptoms of addiction and method of diagnosing same |
US8486390B2 (en) | 2008-04-18 | 2013-07-16 | Curemark Llc | Pharmaceutical preparation for the treatment of the symptoms of addiction and method of diagnosing same |
US9017665B2 (en) | 2008-04-18 | 2015-04-28 | Curemark, Llc | Pharmaceutical preparation for the treatment of the symptoms of addiction and method of diagnosing same |
US11235038B2 (en) | 2008-04-18 | 2022-02-01 | Curemark, Llc | Pharmaceutical preparation for the treatment of the symptoms of addiction and method of diagnosing same |
US8153396B2 (en) * | 2008-06-03 | 2012-04-10 | Novozymes A/S | Method for producing a casein hydrolysate |
US10588948B2 (en) | 2008-06-26 | 2020-03-17 | Curemark, Llc | Methods and compositions for the treatment of symptoms of Williams Syndrome |
US9320780B2 (en) | 2008-06-26 | 2016-04-26 | Curemark Llc | Methods and compositions for the treatment of symptoms of Williams Syndrome |
US11016104B2 (en) | 2008-07-01 | 2021-05-25 | Curemark, Llc | Methods and compositions for the treatment of symptoms of neurological and mental health disorders |
US10776453B2 (en) | 2008-08-04 | 2020-09-15 | Galenagen, Llc | Systems and methods employing remote data gathering and monitoring for diagnosing, staging, and treatment of Parkinsons disease, movement and neurological disorders, and chronic pain |
US10413601B2 (en) | 2008-10-03 | 2019-09-17 | Curemark, Llc | Methods and compositions for the treatment of symptoms of prion diseases |
US9061033B2 (en) | 2008-10-03 | 2015-06-23 | Curemark Llc | Methods and compositions for the treatment of symptoms of prion diseases |
US9687535B2 (en) | 2008-10-03 | 2017-06-27 | Curemark, Llc | Methods and compositions for the treatment of symptoms of prion diseases |
US9895427B2 (en) | 2009-01-06 | 2018-02-20 | Galenagen, Llc | Compositions and methods for the treatment or the prevention of E. coli infections and for the eradication or reduction of E. coli surfaces |
AU2017239486B2 (en) * | 2009-01-06 | 2019-05-23 | Galenagen, Llc | Compositions and methods for the treatment or prevention of staphylococcus aureus infections and for the eradication or reduction of staphylococcus aureus on surfaces |
US10736946B2 (en) | 2009-01-06 | 2020-08-11 | Galenagen, Llc | Compositions and methods for treatment or prevention of Staphylococcus aureus infections and for the eradication or reduction of Staphylococcus aureus on surfaces |
US9107419B2 (en) | 2009-01-06 | 2015-08-18 | Curelon Llc | Compositions and methods for treatment or prevention of Staphylococcus aureus infections and for the eradication or reduction of Staphylococcus aureus on surfaces |
GB2480773B (en) * | 2009-01-06 | 2013-12-11 | Curelon Llc | Compositions for the treatment of diarrhea caused by virulent E. coli infections |
GB2480772B (en) * | 2009-01-06 | 2013-10-16 | Curelon Llc | Compositions and methods for the treatment or prevention of staphylococcus aureus infections and for the eradication or reduction of staphylococcus aureus |
US11357835B2 (en) | 2009-01-06 | 2022-06-14 | Galenagen, Llc | Compositions and methods for the treatment or the prevention of E. coli infections and for the eradication or reduction of E. coli surfaces |
US9084784B2 (en) | 2009-01-06 | 2015-07-21 | Curelon Llc | Compositions and methods for the treatment or the prevention of E. coli infections and for the eradication or reduction of E. coli surfaces |
US9056050B2 (en) | 2009-04-13 | 2015-06-16 | Curemark Llc | Enzyme delivery systems and methods of preparation and use |
US9415014B2 (en) | 2009-04-13 | 2016-08-16 | Curemark, Llc | Enzyme delivery systems and methods of preparation and use |
US10098844B2 (en) | 2009-04-13 | 2018-10-16 | Curemark, Llc | Enzyme delivery systems and methods of preparation and use |
US9931302B2 (en) | 2009-04-13 | 2018-04-03 | Curemark , LLC | Enzyme delivery systems and methods of preparation and use |
US11419821B2 (en) | 2009-04-13 | 2022-08-23 | Curemark, Llc | Enzyme delivery systems and methods of preparation and use |
WO2011000924A1 (en) | 2009-07-03 | 2011-01-06 | Abbott Products Gmbh | Spray-dried amylase, pharmaceutical preparations comprising the same and use |
RU2570376C2 (en) * | 2009-09-17 | 2015-12-10 | Апталис Фарма Лимитед | Compositions of pancreatic enzymes and method of treating pancreatitis and pancreas insufficiency |
US10716835B2 (en) | 2009-10-21 | 2020-07-21 | Curemark, Llc | Methods and compositions for the prevention and treatment of influenza |
US9511125B2 (en) | 2009-10-21 | 2016-12-06 | Curemark Llc | Methods and compositions for the treatment of influenza |
US10940187B2 (en) | 2011-04-21 | 2021-03-09 | Curemark, Llc | Method of treatment of schizophreniform disorder |
US10279016B2 (en) | 2011-04-21 | 2019-05-07 | Curemark, Llc | Method of treatment of schizophreniform disorder |
US8980252B2 (en) | 2011-04-21 | 2015-03-17 | Curemark Llc | Methods of treatment of schizophrenia |
US9492515B2 (en) | 2011-04-21 | 2016-11-15 | Curemark, Llc | Method of treatment of schizophreniform disorder |
US10350278B2 (en) | 2012-05-30 | 2019-07-16 | Curemark, Llc | Methods of treating Celiac disease |
US11364287B2 (en) | 2012-05-30 | 2022-06-21 | Curemark, Llc | Methods of treating celiac disease |
WO2014068083A1 (en) | 2012-11-01 | 2014-05-08 | Novozymes A/S | Method for removal of dna |
US11541009B2 (en) | 2020-09-10 | 2023-01-03 | Curemark, Llc | Methods of prophylaxis of coronavirus infection and treatment of coronaviruses |
WO2023225459A2 (en) | 2022-05-14 | 2023-11-23 | Novozymes A/S | Compositions and methods for preventing, treating, supressing and/or eliminating phytopathogenic infestations and infections |
Also Published As
Publication number | Publication date |
---|---|
AU2005247061A1 (en) | 2005-12-08 |
US20110158976A1 (en) | 2011-06-30 |
DE602005022187D1 (en) | 2010-08-19 |
JP2008500055A (en) | 2008-01-10 |
ATE473010T1 (en) | 2010-07-15 |
MXPA06013239A (en) | 2007-02-28 |
EP1755656B1 (en) | 2010-07-07 |
EP1755656A1 (en) | 2007-02-28 |
BRPI0510817A (en) | 2007-11-20 |
DK1755656T3 (en) | 2010-10-04 |
RU2006145899A (en) | 2008-06-27 |
RU2389504C2 (en) | 2010-05-20 |
CA2586222A1 (en) | 2005-12-08 |
US20120207741A1 (en) | 2012-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1755656B1 (en) | Enzymes for pharmaceutical use | |
US8017351B2 (en) | Amylases for pharmaceutical use | |
US20090047266A1 (en) | Lipases for Pharmaceutical Use | |
RU2420578C2 (en) | Proteases for pharmaceutical application | |
US8455235B2 (en) | Protease variants for pharmaceutical use | |
ES2349086T3 (en) | ENZYMES FOR PHARMACEUTICAL USE. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2005247061 Country of ref document: AU |
|
ENP | Entry into the national phase |
Ref document number: 2005247061 Country of ref document: AU Date of ref document: 20050524 Kind code of ref document: A |
|
WWP | Wipo information: published in national office |
Ref document number: 2005247061 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005744343 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/2006/013239 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007516970 Country of ref document: JP Ref document number: 2586222 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 4311/CHENP/2006 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200580016683.9 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006145899 Country of ref document: RU |
|
WWP | Wipo information: published in national office |
Ref document number: 2005744343 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: PI0510817 Country of ref document: BR |