WO2005115058A1 - Dimming circuit for led lighting device with means for holding triac in conduction - Google Patents

Dimming circuit for led lighting device with means for holding triac in conduction Download PDF

Info

Publication number
WO2005115058A1
WO2005115058A1 PCT/US2005/017551 US2005017551W WO2005115058A1 WO 2005115058 A1 WO2005115058 A1 WO 2005115058A1 US 2005017551 W US2005017551 W US 2005017551W WO 2005115058 A1 WO2005115058 A1 WO 2005115058A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimmer
current
dummy load
led
converter
Prior art date
Application number
PCT/US2005/017551
Other languages
French (fr)
Inventor
Carlo Scianna
Original Assignee
Goeken Group Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Goeken Group Corp. filed Critical Goeken Group Corp.
Priority to KR1020067003530A priority Critical patent/KR101218157B1/en
Priority to NZ545325A priority patent/NZ545325A/en
Priority to EP05749942A priority patent/EP1752022A1/en
Priority to CA2536307A priority patent/CA2536307C/en
Priority to MXPA06005602A priority patent/MXPA06005602A/en
Priority to AU2005246918A priority patent/AU2005246918B2/en
Priority to JP2007527437A priority patent/JP2007538378A/en
Priority to US11/576,671 priority patent/US7872427B2/en
Publication of WO2005115058A1 publication Critical patent/WO2005115058A1/en
Priority to HK07102118.6A priority patent/HK1094853A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B39/00Circuit arrangements or apparatus for operating incandescent light sources
    • H05B39/04Controlling
    • H05B39/041Controlling the light-intensity of the source
    • H05B39/044Controlling the light-intensity of the source continuously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • F21S2/005Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction of modular construction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/04Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of a single character by selection from a plurality of characters, or by composing the character by combination of individual elements, e.g. segments using a combination of such display devices for composing words, rows or the like, in a frame with fixed character positions
    • G09G3/06Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of a single character by selection from a plurality of characters, or by composing the character by combination of individual elements, e.g. segments using a combination of such display devices for composing words, rows or the like, in a frame with fixed character positions using controlled light sources
    • G09G3/12Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of a single character by selection from a plurality of characters, or by composing the character by combination of individual elements, e.g. segments using a combination of such display devices for composing words, rows or the like, in a frame with fixed character positions using controlled light sources using electroluminescent elements
    • G09G3/14Semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • H05B45/14Controlling the intensity of the light using electrical feedback from LEDs or from LED modules
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/357Driver circuits specially adapted for retrofit LED light sources
    • H05B45/3574Emulating the electrical or functional characteristics of incandescent lamps
    • H05B45/3575Emulating the electrical or functional characteristics of incandescent lamps by means of dummy loads or bleeder circuits, e.g. for dimmers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • This invention is in the field of LED lighting, particularly circuitry to allow low electrical current LED lighting to work with dimming switches.
  • This invention is related to making the AC to DC converter used on LED lighting compatible with the phase control dimmer which is widely used for incandescent wall dimming applications.
  • a typical circuit for use of a dimmer is shown in Figure 1.
  • the dimmer 1 is electrically connected in series between the electrical load 2, and the power source 3.
  • the power source is AC household current as one would find in a typical household dimming application.
  • the load 2 in the example is an incandescent light bulb, but one skilled in the art will recognize other loads may be used. Dimming is achieved by adjusting the conduction angle of the dimmer 1 so that the RMS voltage across the load 2 varies with the adjustment of the conduction angle. In the case of the incandescent bulb being the load 2, the light intensity of the light bulb will change as the RMS voltage is varied across the light bulb. A reduced RMS voltage across the light bulb results in a dimmer light bulb.
  • the dimmer can create different waveforms across the load, depending upon the conduction angle adjustment of the dimmer.
  • the first example 20 shown in Figure 2 shows the waveform of a 115 volt 60 hertz domestic AC power supply without a dimmer.
  • the second 21 and third 22 examples in Figure 2 show the output waveforms generated when the 115 volt 60 hertz domestic AC power line is adjusted by a phase control dimmer.
  • the dimmer clips the waveform for a certain period after a zero crossing, thus resulting in a reduced RMS voltage at the output.
  • the dimmer may clip the waveform at different times and by different amounts than what is shown in Figure 2.
  • TRIAC thyristor device
  • TRIACs are generally available from a number of sources, and have well understood characteristics.
  • Example TRIACs are models MAC 12V, MAC12M and MAC12N, available from On Semiconductor, which may be found at the home page http://onsemi.com.
  • the TRIACs discussed herein are generally representative of the TRIACs that are available, but are in no way meant to limit the scope of the invention described herein.
  • TRIACs generally have a first main terminal MT1 a second main terminal MT2 and a gate terminal G.
  • TRIACs generally exhibit the following basic characteristics: - Bidirectional conduction through the main terminals, allowing AC to pass through. - The TRIAC is turned on and conduction is present between the main terminals when there is a trigger current present between gate G and second main terminal 2 MT2. - Once triggered, the TRIAC remains on until a zero crossing of the AC power line at which point the device turns off and awaits the next trigger pulse or zero crossing of the AC power line. This characteristic allows phase angle control to be achieved.
  • the TRIAC has one more important parameter that directly relates to LED lighting, that is the hold current.
  • a TRIAC will not remain in the on state after triggering without a current larger than the hold current passing through the main terminals. Because of the need to hold a current, TRIACs have difficulty remaining on when a low current is drawn through the main terminals, such as in the case of LED lighting. With reference to the data sheet for TRIAC MAC 12D, the hold current is typically 20 milliamps.
  • LED lighting is more energy efficient that incandescent light, therefore drawing a much smaller current.
  • a typical incandescent light bulb can easily draw more than 200 mA during conduction. This value largely exceeds the holding current of typical dimmers. Therefore, there is usually no problem in dimming an incandescent bulb.
  • LED lighting generally draws less current, typically ranging from 10 to 150 mA depending on the circuit design.
  • the load current does not satisfy the hold current requirement of the device, namely the TRIAC in the dimmer, and the dimmer enters a retriggering state that causes flickering of the LED light.
  • the problem may be solved by placing a dummy load in parallel across the LED lighting so as to provide a sufficient current draw to exceed the hold current of the TRIAC in the dimmer.
  • this is not a desired option. Since LED lighting is meant to be energy efficient, putting a dummy load across the LED lighting device will cause some issues such as reduced energy efficiency, due to the power draw of the dummy load, and degeneration of heat inside LED lighting which is undesirable to the thermal management of the power electronics inside.
  • the AC to DC converter is basically a step-down switch mode power supply that converts AC input voltage to low voltage high current that drives the LED emitters.
  • a representative circuit is shown in Figure 3. As with the circuit in Figure 1, it includes a power source 3, a dimmer 1 and a load all connected in series. The load in the representative circuit is LED lighting electronics 6 to convert the AC to DC and the LED 7. The Figure also shows the small amount of inductance 9 that is present due to the character of the wire. Inside the converter electronics there is small amount of capacitance 8 that will cause the load current to ring when the dimmer starts conduction.
  • Figure 4 shows the output current waveform 10 of a dimmer, and the dimmer output waveform 11 when ringing is present at the firing or starting of the dimmer. If the ringing is large enough to cause current flow to fall below the hold current threshold 12 of the TRIAC, dimmer conduction will cease, causing flickering of the LED light.
  • the control circuit inside the dimmer requires a small bias current as its power supply to power up the dimmer. This implies the LED lighting load presented to the dimmer has to provide such minimum current.
  • the electronic converter inside the LED converter usually has very low current consumption. This prevents the dimmer circuit from firing properly, again causing ringing.
  • the LED converter takes time to start, therefore its current consumption requires a finite time to reach a level exceeding the hold current of the dimmer. This delay in providing sufficient current needs to be taken into account in any circuitry.
  • the invention described herein is a dynamic load or snubbing circuit for use with a phase control dimmer and LED lighting.
  • the dynamic load provides sufficient current draw for the dimmer circuit and provides a current draw that will be varied depending on the current draw needs of the dimmer.
  • Figure 1 is a basic electrical circuit showing a phase control dimmer electrically connected in series between a power source and a load.
  • Figure 2 is a plot showing a household AC wave form, and waveforms resulting from applying a phase control dimmer to the household AC power supply.
  • Figure 3 is a representative circuit showing a dimmer used with LED lighting and converter electronics.
  • Figure 4 is a plot showing the current output of a dimmer, and a waveform for an output exhibiting ringing.
  • Figure 5 is a block representation of a dimmable LED lighting circuit, including a dynamic snubbing element.
  • Figure 6 is a plot showing the relationship between the dimmer voltage output, dummy load current, and control signal with respect to time.
  • Figure 7 is a schematic showing a preferred implementation of the invention.
  • FIG. 8 is a schematic showing an alternate embodiment of the invention, including a surge limiting circuit.
  • the dynamic dummy load circuit 30 of the present invention is connected to an AC power source 32 electrically connected to a dimmer 33 which is electrically connected to a bridge rectifier BR1.
  • the LED lighting converter 35 having a LED 36 is connected in parallel across the bridge rectifier BR1.
  • the dynamic dummy load 40 is placed in parallel with the LED light converter 35.
  • a feedback channel 45 is provided between the LED light converter 35 and the dummy load 40, so that the dummy load may be adjusted to provide an appropriate load when needed and a reduced load when not needed, thereby conserving power.
  • the lighting converter 35 includes electronics to regulate the power received from the bridge rectifier BR1 and includes electronics to provide a control or feedback signal to the dynamic dummy load 40.
  • the load presented to the power source or bridge rectifier BR1 by the dynamic dummy load 40 is varied based on the control signal, thus changing the amount of current that flows or is drawn by the dynamic dummy load 40.
  • Figure 6 shows three plots representing the voltage output 50 of the dimmer 40, the current 51 through the dummy load, and the feedback or control signal 52 from the LED lighting electronics 35 to the dummy load 40, all with respect to time.
  • the control signal 52 could be a voltage or current signal.
  • the dummy load provides adequate bias current 55 for the dimmer circuit prior to operation, as discussed in the background section of this application.
  • the dummy load will not have a high power consumption prior to dimmer conduction, as the power consumption is being limited by the low flow of current through the dimmer circuit when the dimmer is off.
  • the dummy load 40 were not present, there would be no conduction, as the LED would not conduct at the bias current level.
  • the dynamic dummy load 40 provides additional current 59 consumption that when combined with the current consumption of the LED converter 35, provides sufficient current drawn through the dimmer 33 to exceed the hold current of the dimmer 33.
  • the current provided through the dynamic dummy load 40 will stay at a sufficiently high value, until the LED converter 35 starts and its current consumption exceeds the hold current of the dimmer.
  • a feedback signal 52 is sent via feedback channel 45 to the dynamic dummy load 40, thereby reducing the current draw 60 of the dynamic dummy load.
  • a typical profile is shown in Figure 8. So long as the feedback signal 52 is maintained 62 at a sufficient level, the dummy load 40 current draw is maintained at a low level 63. Preferably below the bias current level 55.
  • the control signal 52 is reduced 70, allowing the dummy load 40 to pass bias level current 55.
  • the process is repeated.
  • a surge limiting circuit 50 may be included in series between the bridge rectifier BR1 and the LED lighting converter 35.
  • the surge limiting circuit 50 limits the current peak when the dimmer fires, and leads to reduction of the ringing current magnitude. This reduces the need for a higher dummy load current.
  • An example of a surge limiting circuit can be a constant current source.
  • diode Dl connected between the rectifier DC output of the input rectifier circuit and the bypass capacitor. This diode stops the current from reversing from the bypass capacitor Cl of the LED lighting converter 35. Diode Dl stops the current from reversing from the bypass capacitor Cl of the LED lighting converter 35 into the input bridge rectifier and thus significantly reduces the ringing magnitude.
  • diode Dl belongs to the type that exhibit low junction capacitants when reversed biased, thus greatly reducing the equivalent capacitants seen into the LED lighting converter 35 when there is a tendency for the current to reverse.
  • FIG. 7 A schematic showing an embodiment of a circuit utilizing the dynamic dummy load of the invention is shown in Figure 7.
  • the dimmer is not shown in the figure, but ne skilled in the art would recognize the dimmer would be provided between terminals CN1 and CN 4.
  • the LED is not shown, but would be provided between terminals CN2 and CN 3.
  • the dynamic dummy load is a current source including MOSFET Q6 and transistor Q5.
  • Dynamic dummy load current modulation is introduced from the auxiliary power supply of the LED converter from the junction of diodes D12 and D9. A brief time delay is generated by the time constant of resistor R13 and capacitor C12.
  • the dummy load current source including MOSFET Q6 and transistor Q5 is sinking its maximum current.
  • the LED converter starts operating, and a voltage equal to a derivative of the LED voltage, as defined by the currents ratio of transformer Tl, is generated at the cathode junction of diodes D9 and D12.
  • This voltage supplies the control ICU1 as well as injecting a current determined by the derived auxiliary voltage and resister values of resisters R12 and R13. Since the action of the dummy load current source is to maintain a predetermined voltage drop across a resister R14, injecting current from another source other than MOSFET Q6 will reduce the current flowing MOSFET Q6, and thereby current is reduced when a converter starts.
  • Diode D13 stops current from reversing from the LED converter electronics into the bridge rectifier BR1 thus reducing any ringing current magnitude.
  • FIG. 8 shows an alternate embodiment of the invention described herein.
  • the dimmer is not shown in the figure, but would be connected in series with a power source to terminals CN1 and CN4.
  • the circuit includes a bridge rectifier 80 connected to the output of the dimmer to convert AC current to DC current. Bridge rectifier 80 then provides current to the dummy load 81 and the LED converter electronics 82.
  • the dummy load 81 is electrically connected to a surge limiting circuit 82 which functions to limit the maximum current through the circuit.
  • the schematic does not show the LED, which if present would be connected between terminals CN5 and CN6 of the LED converter electronics 82.
  • a feedback channel 90 is provided between the LED converter electronics and the dynamic dummy load 81.
  • the LED lighting converter electronics 82 includes an adjustable voltage regulator U2 along with its associated diodes D7 and D8 and resistors R22 and R23 to provide a regulated DC current to converter ICU1.
  • ICU1 functions as a regulator of current provided to LED terminals CN5 and C6.
  • Converter ICU1 also includes an output connected to MOSFET Ql, which acts as a main switch, controlled by converter ICU1.
  • Transformer Tl is preferably a high frequency transformer provided to step down the voltage input into the transformer to a lower voltage for powering the LED connected between terminals CN5 and CN6.
  • the transformer Tl also provides a feedback signal to the dynamic dummy load 81 via the feedback channel 90, which in the present implementation includes diodes D9 and resistor R27.
  • the output of the transformer Tl is electrically connected to power rectifiers D6 and D3 which rectifies the high frequency AC output to direct current to be provided to the LED at terminals CN5 and CN6. Since the rectified DC output provided by rectifiers D6 and D3 will be pulsing, capacitor C3 is electrically connected between the rectifier output and ground to filter and smooth the output from rectifiers D6 and D3.
  • Circuit elements diode D5 and capacitor C5 are connected to another output of transformer Tl, and provide an auxiliary power supply to converter ICU1, thereby reducing the power dissipation of linear regulator U2.
  • Capacitor C4, and resistors R2 and diode D2 act to suppress high voltage spikes across main switch MOSFET Ql.
  • Dummy load 81 includes a two transistor current source, wherein the current through MOSFET Q2 is regulated by a quantity determined by resistor R28 and the base to emitter voltage drop of transistor Q3.
  • the surge limiting circuit is electrically connected to the dynamic dummy load 81 and the bridge rectifier 80.
  • the surge limiter includes a two transistor current source formed by MOSFET Q4 and transistor Q5.
  • the surge limiter limits the maximum current allowed through the LED converter electronics.
  • the surge limiting circuit includes zener diode D12 which functions to limit the voltage across the gate and source of MOSFET Q4 is maintained at a safe level.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

The invention disclosed herein is a dynamic dummy load to allow a phase control dimmer to be used with LED lighting. The invention includes providing a dynamic dummy load to provide a load to the dimmer when the LED electronics do not provide sufficient load due to start up issues or ringing in the circuit, the dynamic dummy load providing a reduced flow of current when the LED and its converter electronics provide sufficient current draw from the dimmer. The system generally includes a power source electrically connected to a phase control dimmer, the phase control dimmer electrically connected to converter circuitry to convert the AC power output of the dimmer to DC power output for powering the LED lighting, a dynamic dummy load electrically connected in parallel with the converter circuitry, the dummy load varying its current draw in response to operation of the converter circuitry.

Description

DYNAMIC SNUBBING FOR LED LIGHTING CONVERTER Inventor: Carlo Scianna Field of the Invention
[0001] This invention is in the field of LED lighting, particularly circuitry to allow low electrical current LED lighting to work with dimming switches. Related Applications
[0002] This application claims priority to U.S. provisional application 60/572,557 filed on 5/19/04, which is herein incorporated by reference. Background of the Invention
[0003] This invention is related to making the AC to DC converter used on LED lighting compatible with the phase control dimmer which is widely used for incandescent wall dimming applications. A typical circuit for use of a dimmer is shown in Figure 1.
[0004] As shown in Figure 1, the dimmer 1 is electrically connected in series between the electrical load 2, and the power source 3. In this example, the power source is AC household current as one would find in a typical household dimming application. The load 2 in the example is an incandescent light bulb, but one skilled in the art will recognize other loads may be used. Dimming is achieved by adjusting the conduction angle of the dimmer 1 so that the RMS voltage across the load 2 varies with the adjustment of the conduction angle. In the case of the incandescent bulb being the load 2, the light intensity of the light bulb will change as the RMS voltage is varied across the light bulb. A reduced RMS voltage across the light bulb results in a dimmer light bulb.
[0005] As shown in Figure 2, the dimmer can create different waveforms across the load, depending upon the conduction angle adjustment of the dimmer. The first example 20 shown in Figure 2 shows the waveform of a 115 volt 60 hertz domestic AC power supply without a dimmer. The second 21 and third 22 examples in Figure 2 show the output waveforms generated when the 115 volt 60 hertz domestic AC power line is adjusted by a phase control dimmer. In summary, the dimmer clips the waveform for a certain period after a zero crossing, thus resulting in a reduced RMS voltage at the output. One skilled in the art will recognize that the dimmer may clip the waveform at different times and by different amounts than what is shown in Figure 2. [0006] Although there is a wide variety of circuit techniques that can achieve the dimming function, the switch or circuit element that controls the power on-off inside a typical phase control dimmer is typically a type of thyristor device commonly known in the art as a TRIAC. TRIACs are generally available from a number of sources, and have well understood characteristics. Example TRIACs are models MAC 12V, MAC12M and MAC12N, available from On Semiconductor, which may be found at the home page http://onsemi.com. The TRIACs discussed herein are generally representative of the TRIACs that are available, but are in no way meant to limit the scope of the invention described herein. TRIACs generally have a first main terminal MT1 a second main terminal MT2 and a gate terminal G. As known to one skilled in the art, TRIACs generally exhibit the following basic characteristics: - Bidirectional conduction through the main terminals, allowing AC to pass through. - The TRIAC is turned on and conduction is present between the main terminals when there is a trigger current present between gate G and second main terminal 2 MT2. - Once triggered, the TRIAC remains on until a zero crossing of the AC power line at which point the device turns off and awaits the next trigger pulse or zero crossing of the AC power line. This characteristic allows phase angle control to be achieved.
[0007] The TRIAC has one more important parameter that directly relates to LED lighting, that is the hold current. A TRIAC will not remain in the on state after triggering without a current larger than the hold current passing through the main terminals. Because of the need to hold a current, TRIACs have difficulty remaining on when a low current is drawn through the main terminals, such as in the case of LED lighting. With reference to the data sheet for TRIAC MAC 12D, the hold current is typically 20 milliamps.
[0008] There a number of reasons that dimmers cause problems for LED lighting, especially low wattage LED lighting. Some of these reasons are set forth below.
[0009] 1. LED lighting is more energy efficient that incandescent light, therefore drawing a much smaller current. A typical incandescent light bulb can easily draw more than 200 mA during conduction. This value largely exceeds the holding current of typical dimmers. Therefore, there is usually no problem in dimming an incandescent bulb. LED lighting generally draws less current, typically ranging from 10 to 150 mA depending on the circuit design.
[00010] At smaller current levels, once the dimmer conducts, the load current does not satisfy the hold current requirement of the device, namely the TRIAC in the dimmer, and the dimmer enters a retriggering state that causes flickering of the LED light. The problem may be solved by placing a dummy load in parallel across the LED lighting so as to provide a sufficient current draw to exceed the hold current of the TRIAC in the dimmer. However, this is not a desired option. Since LED lighting is meant to be energy efficient, putting a dummy load across the LED lighting device will cause some issues such as reduced energy efficiency, due to the power draw of the dummy load, and degeneration of heat inside LED lighting which is undesirable to the thermal management of the power electronics inside.
[00011] 2. Dimmable LED lighting requires an electronic AC to DC converter to operate. The AC to DC converter is basically a step-down switch mode power supply that converts AC input voltage to low voltage high current that drives the LED emitters. A representative circuit is shown in Figure 3. As with the circuit in Figure 1, it includes a power source 3, a dimmer 1 and a load all connected in series. The load in the representative circuit is LED lighting electronics 6 to convert the AC to DC and the LED 7. The Figure also shows the small amount of inductance 9 that is present due to the character of the wire. Inside the converter electronics there is small amount of capacitance 8 that will cause the load current to ring when the dimmer starts conduction. Figure 4 shows the output current waveform 10 of a dimmer, and the dimmer output waveform 11 when ringing is present at the firing or starting of the dimmer. If the ringing is large enough to cause current flow to fall below the hold current threshold 12 of the TRIAC, dimmer conduction will cease, causing flickering of the LED light.
[00012] 3. The control circuit inside the dimmer requires a small bias current as its power supply to power up the dimmer. This implies the LED lighting load presented to the dimmer has to provide such minimum current. However, the electronic converter inside the LED converter usually has very low current consumption. This prevents the dimmer circuit from firing properly, again causing ringing. [00013] 4. The LED converter takes time to start, therefore its current consumption requires a finite time to reach a level exceeding the hold current of the dimmer. This delay in providing sufficient current needs to be taken into account in any circuitry.
[00014] In view of these shortcomings, it is desirable to include a dynamic load for use with a phase control dimmer and LED lighting, the dynamic load providing sufficient load to the dimmer at appropriate times to provide sufficient hold current, and prevent ringing in the circuit. Summary of the Invention
[00015] The invention described herein is a dynamic load or snubbing circuit for use with a phase control dimmer and LED lighting. The dynamic load provides sufficient current draw for the dimmer circuit and provides a current draw that will be varied depending on the current draw needs of the dimmer. Brief Description of the Drawings
[00016] Figure 1 is a basic electrical circuit showing a phase control dimmer electrically connected in series between a power source and a load. [00017] Figure 2 is a plot showing a household AC wave form, and waveforms resulting from applying a phase control dimmer to the household AC power supply. [00018] Figure 3 is a representative circuit showing a dimmer used with LED lighting and converter electronics. [00019] Figure 4 is a plot showing the current output of a dimmer, and a waveform for an output exhibiting ringing. [00020] Figure 5 is a block representation of a dimmable LED lighting circuit, including a dynamic snubbing element. [00021 ] Figure 6 is a plot showing the relationship between the dimmer voltage output, dummy load current, and control signal with respect to time. [00022] Figure 7 is a schematic showing a preferred implementation of the invention.
[00023] Figure 8 is a schematic showing an alternate embodiment of the invention, including a surge limiting circuit. Detailed Description of the Preferred Embodiment
[00024] As shown in Figure 5, the dynamic dummy load circuit 30 of the present invention is connected to an AC power source 32 electrically connected to a dimmer 33 which is electrically connected to a bridge rectifier BR1. The LED lighting converter 35 having a LED 36 is connected in parallel across the bridge rectifier BR1. The dynamic dummy load 40 is placed in parallel with the LED light converter 35. A feedback channel 45 is provided between the LED light converter 35 and the dummy load 40, so that the dummy load may be adjusted to provide an appropriate load when needed and a reduced load when not needed, thereby conserving power. The lighting converter 35 includes electronics to regulate the power received from the bridge rectifier BR1 and includes electronics to provide a control or feedback signal to the dynamic dummy load 40. The load presented to the power source or bridge rectifier BR1 by the dynamic dummy load 40 is varied based on the control signal, thus changing the amount of current that flows or is drawn by the dynamic dummy load 40.
[00025] Figure 6 shows three plots representing the voltage output 50 of the dimmer 40, the current 51 through the dummy load, and the feedback or control signal 52 from the LED lighting electronics 35 to the dummy load 40, all with respect to time. One skilled in the art will recognize that the control signal 52 could be a voltage or current signal. For example, with reference to the plots shown in Figure 6, the dummy load provides adequate bias current 55 for the dimmer circuit prior to operation, as discussed in the background section of this application. Thus, the dummy load will not have a high power consumption prior to dimmer conduction, as the power consumption is being limited by the low flow of current through the dimmer circuit when the dimmer is off. However, if the dummy load 40 were not present, there would be no conduction, as the LED would not conduct at the bias current level.
[00026] When the dimmer fires 57, the dynamic dummy load 40 provides additional current 59 consumption that when combined with the current consumption of the LED converter 35, provides sufficient current drawn through the dimmer 33 to exceed the hold current of the dimmer 33. The current provided through the dynamic dummy load 40 will stay at a sufficiently high value, until the LED converter 35 starts and its current consumption exceeds the hold current of the dimmer. At this point in time 60 a feedback signal 52 is sent via feedback channel 45 to the dynamic dummy load 40, thereby reducing the current draw 60 of the dynamic dummy load. A typical profile is shown in Figure 8. So long as the feedback signal 52 is maintained 62 at a sufficient level, the dummy load 40 current draw is maintained at a low level 63. Preferably below the bias current level 55. When the dimmer 33 output reaches the zero crossing 65, the control signal 52 is reduced 70, allowing the dummy load 40 to pass bias level current 55. When the dimmer 40 fires again 72, the process is repeated.
[00027] In an optional embodiment, a surge limiting circuit 50 , shown in Figure 5, may be included in series between the bridge rectifier BR1 and the LED lighting converter 35. The surge limiting circuit 50 limits the current peak when the dimmer fires, and leads to reduction of the ringing current magnitude. This reduces the need for a higher dummy load current. An example of a surge limiting circuit can be a constant current source.
[00028] Also shown in Figure 5, diode Dl connected between the rectifier DC output of the input rectifier circuit and the bypass capacitor. This diode stops the current from reversing from the bypass capacitor Cl of the LED lighting converter 35. Diode Dl stops the current from reversing from the bypass capacitor Cl of the LED lighting converter 35 into the input bridge rectifier and thus significantly reduces the ringing magnitude. Preferably, diode Dl belongs to the type that exhibit low junction capacitants when reversed biased, thus greatly reducing the equivalent capacitants seen into the LED lighting converter 35 when there is a tendency for the current to reverse.
[00029] A schematic showing an embodiment of a circuit utilizing the dynamic dummy load of the invention is shown in Figure 7. the dimmer is not shown in the figure, but ne skilled in the art would recognize the dimmer would be provided between terminals CN1 and CN 4. Similarly, the LED is not shown, but would be provided between terminals CN2 and CN 3.
[00030] With reference to Figure 7, the dynamic dummy load is a current source including MOSFET Q6 and transistor Q5. Dynamic dummy load current modulation is introduced from the auxiliary power supply of the LED converter from the junction of diodes D12 and D9. A brief time delay is generated by the time constant of resistor R13 and capacitor C12.
[00031] Before the LED converter starts, no current is flowing into resistor R13, and the dummy load current source including MOSFET Q6 and transistor Q5 is sinking its maximum current. When the dimmer, not shown, fires, the LED converter starts operating, and a voltage equal to a derivative of the LED voltage, as defined by the currents ratio of transformer Tl, is generated at the cathode junction of diodes D9 and D12. This voltage supplies the control ICU1 as well as injecting a current determined by the derived auxiliary voltage and resister values of resisters R12 and R13. Since the action of the dummy load current source is to maintain a predetermined voltage drop across a resister R14, injecting current from another source other than MOSFET Q6 will reduce the current flowing MOSFET Q6, and thereby current is reduced when a converter starts.
[00032] A brief delay introduced by resister R13 and capacitor C12 insures that current does not fall immediately as the LED converter starts, thus reducing any ringing current magnitude.
[00033] Diode D13 stops current from reversing from the LED converter electronics into the bridge rectifier BR1 thus reducing any ringing current magnitude.
[00034] Figure 8 shows an alternate embodiment of the invention described herein. The dimmer is not shown in the figure, but would be connected in series with a power source to terminals CN1 and CN4. The circuit includes a bridge rectifier 80 connected to the output of the dimmer to convert AC current to DC current. Bridge rectifier 80 then provides current to the dummy load 81 and the LED converter electronics 82. The dummy load 81 is electrically connected to a surge limiting circuit 82 which functions to limit the maximum current through the circuit. The schematic does not show the LED, which if present would be connected between terminals CN5 and CN6 of the LED converter electronics 82. A feedback channel 90 is provided between the LED converter electronics and the dynamic dummy load 81.
[00035] Although one skilled in the art would understand the functions of the various devices used to form the circuit elements described above, a brief description of major elements is included to aid in understanding of the circuit elements. The LED lighting converter electronics 82 includes an adjustable voltage regulator U2 along with its associated diodes D7 and D8 and resistors R22 and R23 to provide a regulated DC current to converter ICU1. In turn, ICU1 functions as a regulator of current provided to LED terminals CN5 and C6. Converter ICU1 also includes an output connected to MOSFET Ql, which acts as a main switch, controlled by converter ICU1. [00036] Transformer Tl is preferably a high frequency transformer provided to step down the voltage input into the transformer to a lower voltage for powering the LED connected between terminals CN5 and CN6. The transformer Tl also provides a feedback signal to the dynamic dummy load 81 via the feedback channel 90, which in the present implementation includes diodes D9 and resistor R27. The output of the transformer Tl is electrically connected to power rectifiers D6 and D3 which rectifies the high frequency AC output to direct current to be provided to the LED at terminals CN5 and CN6. Since the rectified DC output provided by rectifiers D6 and D3 will be pulsing, capacitor C3 is electrically connected between the rectifier output and ground to filter and smooth the output from rectifiers D6 and D3.
[00037] Circuit elements diode D5 and capacitor C5 are connected to another output of transformer Tl, and provide an auxiliary power supply to converter ICU1, thereby reducing the power dissipation of linear regulator U2.
[00038] Capacitor C4, and resistors R2 and diode D2 act to suppress high voltage spikes across main switch MOSFET Ql.
[00039] Dummy load 81 includes a two transistor current source, wherein the current through MOSFET Q2 is regulated by a quantity determined by resistor R28 and the base to emitter voltage drop of transistor Q3.
[00040] The surge limiting circuit is electrically connected to the dynamic dummy load 81 and the bridge rectifier 80. The surge limiter includes a two transistor current source formed by MOSFET Q4 and transistor Q5. The surge limiter limits the maximum current allowed through the LED converter electronics. The surge limiting circuit includes zener diode D12 which functions to limit the voltage across the gate and source of MOSFET Q4 is maintained at a safe level.
[00041] The embodiments disclosed herein are merely examples of implementations of the invention claimed, and are not meant to limit the scope of the invention. One skilled in the art will recognize that other implementation will achieve the claimed invention.

Claims

Claims: [C1 ] An electric circuit including a dimmer electrically connected in series between a power supply and an LED lighting converter, further including a dynamic dummy load placed in parallel with the LED lighting converter, the dynamic load receiving a control signal from the LED lighting converter, the dynamic dummy load adjusting the load in response to the signal.
[C2] The electric circuit of claim 1, further including a surge limiting element in series with the power source and the LED lighting converter.
[C3] The electric circuit of claim 2 wherein the surge limiting element is a constant current source.
[C4] The electric circuit of claim 1, wherein the control signal is a current signal.
[C5] The electric circuit of claim 1, wherein the LED lighting converter includes an AC to DC converter.
[C6] The electric circuit of claim 1, wherein the dimmer exhibits a bias current, the dynamic dummy load providing a load for the bias current prior to firing of the dimmer.
[C7] The electric circuit of claim 6, wherein the dynamic dummy load exhibits increased current flow upon firing of the dimmer.
[C8] A method of using a phase control dimmer with an LED to dim the LED, including the steps of : providing a phase control dimmer connected to a power supply; providing an LED electrically connected in series with the dimmer; providing a dynamic dummy load in parallel with the LED, varying the dynamic dummy load to draw current from the dimmer in excess of a hold current of the dimmer upon firing of the dimmer, and thereafter varying the load to draw less current as the current drawn by the LED exceeds the hold current.
[C9] The method of claim 8, further including the steps of providing a control signal to the dynamic dummy load.
[C10] A dimmable LED lighting system including: a power source electrically connected to a phase control dimmer, the phase control dimmer electrically connected to converter circuitry to convert the AC power output of the dimmer to DC power output for powering the LED lighting, a dynamic dummy load electrically connected in parallel with the converter circuitry, the dummy load varying its current draw in response to operation of the converter circuitry.
[C11] The system of claim 10, further including a control channel form the converter circuitry to the dynamic dummy load, the control channel carrying a control signal generated by the converter circuitry in response to the current provided to the LED.
[C12] The system of claim 10, further including a bridge rectifier electrically connected between the dimmer and the converter circuitry.
[C13] The system of claim 10 wherein the converter circuitry includes a transformer to reduce the voltage provided from the dimmer.
[C14] The system of claim 13, wherein the transformer also generates the control signal.
[C15] The system of claim 10, further including a surge limiting circuit electrically connected to the dynamic dummy load.
PCT/US2005/017551 2004-05-19 2005-05-19 Dimming circuit for led lighting device with means for holding triac in conduction WO2005115058A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020067003530A KR101218157B1 (en) 2004-05-19 2005-05-19 Dimming circuit for led lighting device with means for holding triac in conduction
NZ545325A NZ545325A (en) 2004-05-19 2005-05-19 Dynamic snubbing for LED lighting converter
EP05749942A EP1752022A1 (en) 2004-05-19 2005-05-19 Dimming circuit for led lighting device with means for holding triac in conduction
CA2536307A CA2536307C (en) 2004-05-19 2005-05-19 Dynamic snubbing for led lighting converter
MXPA06005602A MXPA06005602A (en) 2004-05-19 2005-05-19 Dimming circuit for led lighting device with means for holding triac in conduction.
AU2005246918A AU2005246918B2 (en) 2004-05-19 2005-05-19 Dimming circuit for LED lighting device with means for holding triac in conduction
JP2007527437A JP2007538378A (en) 2004-05-19 2005-05-19 Dynamic buffer for LED lighting converter
US11/576,671 US7872427B2 (en) 2004-05-19 2005-05-19 Dimming circuit for LED lighting device with means for holding TRIAC in conduction
HK07102118.6A HK1094853A1 (en) 2004-05-19 2007-02-26 Dimming circuit for led lighting device with means for holding triac in conduction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US57255704P 2004-05-19 2004-05-19
US60/572,557 2004-05-19

Publications (1)

Publication Number Publication Date
WO2005115058A1 true WO2005115058A1 (en) 2005-12-01

Family

ID=34970168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/017551 WO2005115058A1 (en) 2004-05-19 2005-05-19 Dimming circuit for led lighting device with means for holding triac in conduction

Country Status (11)

Country Link
US (1) US7872427B2 (en)
EP (1) EP1752022A1 (en)
JP (1) JP2007538378A (en)
KR (1) KR101218157B1 (en)
CN (1) CN100546418C (en)
AU (1) AU2005246918B2 (en)
CA (1) CA2536307C (en)
HK (1) HK1094853A1 (en)
MX (1) MXPA06005602A (en)
NZ (1) NZ545325A (en)
WO (1) WO2005115058A1 (en)

Cited By (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006120629A3 (en) * 2005-05-09 2007-03-08 Koninkl Philips Electronics Nv Method and circuit for enabling dimming using triac dimmer
WO2007065815A1 (en) * 2005-12-07 2007-06-14 Osram Gesellschaft mit beschränkter Haftung Circuit arrangement and method for operating at least one led
GB2435724A (en) * 2006-03-04 2007-09-05 Mood Concepts Ltd TRIAC dimming of LED lighting units
WO2008029108A1 (en) * 2006-09-04 2008-03-13 Lutron Electronics Co., Inc. Variable load circuits for use with lighting control devices
WO2009014418A1 (en) * 2007-07-24 2009-01-29 A.C. Pasma Holding B.V. Method and current control circuit for operating an electronic gas discharge lamp
WO2008112822A3 (en) * 2007-03-12 2009-04-09 Cirrus Logic Inc Lighting system with power factor correction control data determined from a phase modulated signal
WO2009053893A1 (en) * 2007-10-22 2009-04-30 Nxp B.V. Dimmer jitter correction
JP2009200431A (en) * 2008-02-25 2009-09-03 Koizumi Lighting Technology Corp Light-emitting diode lighting circuit and lighting device
WO2009098625A3 (en) * 2008-02-06 2009-10-01 Nxp B.V. Light color tunability
WO2009121956A1 (en) * 2008-04-04 2009-10-08 Lemnis Lighting Patent Holding B.V. Dimmer triggering circuit, dimmer system and dimmable device
WO2009133489A1 (en) * 2008-04-30 2009-11-05 Koninklijke Philips Electronics N.V. Methods and apparatus for encoding information on an a.c. line voltage
NL2002602C2 (en) * 2009-03-09 2010-09-13 Ledzworld B V Power driver for a light source.
EP2257124A1 (en) 2009-05-29 2010-12-01 Nxp B.V. Circuit for connecting a low current lighting circuit to a dimmer
WO2010146529A1 (en) * 2009-06-18 2010-12-23 Koninklijke Philips Electronics N.V. Power interface with leds for a triac dimmer
WO2010150183A1 (en) * 2009-06-25 2010-12-29 Koninklijke Philips Electronics N.V. Driver for cooperating with a wall dimmer
EP2271181A1 (en) * 2009-06-30 2011-01-05 Linear Technology Corporation Method and system for dimming an offline LED driver
WO2011001327A1 (en) * 2009-06-29 2011-01-06 Koninklijke Philips Electronics N.V. Driver for cooperating with a wall dimmer
EP2288028A1 (en) * 2009-08-07 2011-02-23 Phihong Technology Co., Ltd. Dimmable LED device with low ripple current and driving circuit thereof
WO2011045372A1 (en) * 2009-10-14 2011-04-21 Tridonic Uk Limited Phase cut dimming of leds
WO2011045371A1 (en) * 2009-10-14 2011-04-21 Tridonic Uk Limited Phase cut dimming of leds
WO2011045057A1 (en) * 2009-10-14 2011-04-21 Tridonic Uk Limited Method for controlling the brightness of an led
WO2011051859A1 (en) * 2009-10-30 2011-05-05 Koninklijke Philips Electronics N.V. Selectively activated rapid start/bleeder circuit for solid state lighting system
WO2011013060A3 (en) * 2009-07-27 2011-05-12 Koninklijke Philips Electronics N.V. Bleeder circuit
WO2011063205A1 (en) * 2009-11-20 2011-05-26 Lutron Electronics Co., Inc. Controllable-load circuit for use with a load control device
EP2330869A1 (en) * 2009-09-18 2011-06-08 Toshiba Lighting & Technology Corporation LED lighting device and illumination apparatus
WO2011100803A1 (en) * 2010-02-18 2011-08-25 Clipsal Australia Pty Ltd Control signal generator for a dimmer circuit
WO2011114261A1 (en) 2010-03-17 2011-09-22 Koninklijke Philips Electronics N.V. Led unit for cooperation with a mains dimmer
EP2375873A1 (en) * 2010-04-06 2011-10-12 Osram AG Power supply device for light sources, such as halogen lamps, and related method
WO2011137646A1 (en) * 2010-05-07 2011-11-10 Huizhou Light Engine Ltd. Triac dimmable power supply unit for led
EP2405717A1 (en) * 2010-07-09 2012-01-11 Chiu-Min Lin LED lamp brightness adjusting circuit connectable to AC power and LED lighting device using the same
WO2012007797A1 (en) * 2010-07-13 2012-01-19 Koninklijke Philips Electronics N.V. Active damping for dimmable driver for lighting unit
WO2012007798A2 (en) 2010-07-13 2012-01-19 Koninklijke Philips Electronics N.V. Bleeding circuit and related method for preventing improper dimmer operation
WO2011042510A3 (en) * 2009-10-07 2012-02-02 Lemnis Lighting Patent Holding B.V. Dimmable lighting system
WO2012016716A1 (en) * 2010-08-06 2012-02-09 Tridonic Uk Ltd. Led dimming control
EP2417839A2 (en) * 2009-04-11 2012-02-15 Innosys, Inc. Thyristor starting circuit
EP2425681A1 (en) * 2009-04-03 2012-03-07 Tridonic GmbH & Co KG Drive circuit for a led
EP2506679A1 (en) * 2011-03-29 2012-10-03 Toshiba Lighting & Technology Corporation Luminaire
US8283875B2 (en) 2009-10-26 2012-10-09 Light-Based Technologies Incorporated Holding current circuits for phase-cut power control
WO2012154380A1 (en) * 2011-05-12 2012-11-15 Osram Sylvania Inc. Driver circuit for reduced form factor solid state light source lamp
EP2288237A3 (en) * 2009-08-21 2012-11-21 Toshiba Lighting & Technology Corporation Lighting circuit and illumination device
US8354804B2 (en) 2008-03-24 2013-01-15 Toshiba Lighting & Technology Corporation Power supply device and lighting equipment
US8441204B2 (en) 2008-03-24 2013-05-14 Toshiba Lighting & Technology Corp. Power supply device and lighting equipment provided with power supply device
WO2012168844A3 (en) * 2011-06-10 2013-06-20 Koninklijke Philips Electronics N.V. Led light source
WO2013096456A1 (en) * 2011-12-23 2013-06-27 Marvell World Trade, Ltd. Method and apparatus for current control with led driver
WO2013102853A1 (en) * 2012-01-06 2013-07-11 Koninklijke Philips Electronics N.V. Electrical device and method for compensating an effect of an electrical current of a load, in particular an led unit, and driver device for driving a load, in particular an led unit
EP2640162A1 (en) * 2012-03-12 2013-09-18 Toshiba Lighting & Technology Corporation Power supply for lighting and luminaire
US8593067B2 (en) 2010-01-27 2013-11-26 Toshiba Lighting & Technology Corporation Led lighting device and illumination apparatus
KR101353639B1 (en) 2010-07-12 2014-01-20 오투 마이크로, 인코포레이티드 Circuits and method for controlling of a light source
EP2687066A1 (en) * 2011-03-18 2014-01-22 LG Innotek Co., Ltd. Input voltage transfer apparatus for light emitting diode lighting system
US8638050B2 (en) 2010-05-14 2014-01-28 Toshiba Lighting And Technology Corporation DC power supply unit and LED lighting apparatus
US8664889B2 (en) 2009-11-25 2014-03-04 Lutron Electronics Co., Inc. Two-wire dimmer switch for low-power loads
US8686668B2 (en) 2009-10-26 2014-04-01 Koninklijke Philips N.V. Current offset circuits for phase-cut power control
US8698408B2 (en) 2009-11-25 2014-04-15 Lutron Electronics Co., Inc. Two-wire dimmer switch for low-power loads
US8729814B2 (en) 2009-11-25 2014-05-20 Lutron Electronics Co., Inc. Two-wire analog FET-based dimmer switch
US8742681B2 (en) 2009-11-09 2014-06-03 Toshiba Lighting & Technology Corporation LED lighting device, illuminating device and power supply therefore having a normally-on type switching element
US8818530B2 (en) 2007-10-29 2014-08-26 Pentair Water Pool And Spa, Inc. LED light controller system and method
US8829812B2 (en) 2008-04-04 2014-09-09 Koninklijke Philips N.V. Dimmable lighting system
US8957662B2 (en) 2009-11-25 2015-02-17 Lutron Electronics Co., Inc. Load control device for high-efficiency loads
US8988050B2 (en) 2009-11-25 2015-03-24 Lutron Electronics Co., Inc. Load control device for high-efficiency loads
JP2015062333A (en) * 2007-03-30 2015-04-02 ホルディップ リミテッド Improvement in lighting system
US9066394B2 (en) 2009-09-28 2015-06-23 Koninklijke Philips N.V. Method and apparatus providing deep dimming of solid state lighting systems
RU2555861C2 (en) * 2010-04-27 2015-07-10 Конинклейке Филипс Электроникс Н.В. Method and device for regulating light output range of solid-state lighting device based on maximum and minimum settings of dimmer
RU2556019C2 (en) * 2010-03-25 2015-07-10 Конинклейке Филипс Электроникс Н.В. Method and device for increase of range of adjustment of illumination of solid-state lighting fixtures
RU2557670C2 (en) * 2010-05-17 2015-07-27 Конинклейке Филипс Электроникс Н.В. Method and device for detection and correction of dimmer misoperation
US9160224B2 (en) 2009-11-25 2015-10-13 Lutron Electronics Co., Inc. Load control device for high-efficiency loads
EP2798918A4 (en) * 2011-12-29 2016-01-27 Seoul Semiconductor Co Ltd Led luminescence apparatus
EP3026984A3 (en) * 2014-11-28 2016-06-15 LSC Lighting Systems (Aust) Pty Ltd Circuitry for LED light dimmer
US9736894B2 (en) 2013-12-12 2017-08-15 Verdi Vision Limited Improvements relating to power adaptors
EP2599203B1 (en) * 2010-07-30 2017-11-15 Philips Lighting Holding B.V. Coordinated dimmer compatibility functions
US10015854B2 (en) 2014-07-23 2018-07-03 Philips Lighting Holding B.V. LED driver circuit, LED circuit and drive method
US10790762B2 (en) 2013-05-23 2020-09-29 Adp Corporate Limited Relating to power adaptors
US10925567B2 (en) 2010-10-27 2021-02-23 Koninklijke Philips N.V. Adaptive imaging and frame rate optimizing based on real-time shape sensing of medical instruments
US11870334B2 (en) 2009-11-25 2024-01-09 Lutron Technology Company Llc Load control device for high-efficiency loads

Families Citing this family (171)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8085160B2 (en) * 2005-12-12 2011-12-27 Clipsal Australia Pty Ltd Load detector for a dimmer
US7667408B2 (en) 2007-03-12 2010-02-23 Cirrus Logic, Inc. Lighting system with lighting dimmer output mapping
US7592757B2 (en) * 2007-03-29 2009-09-22 Magna International Inc. System and method for dimming one or more light source
KR100878852B1 (en) * 2007-06-29 2009-01-15 서울반도체 주식회사 Dimmer for ac driven light emitting diode
US8118447B2 (en) 2007-12-20 2012-02-21 Altair Engineering, Inc. LED lighting apparatus with swivel connection
US7712918B2 (en) 2007-12-21 2010-05-11 Altair Engineering , Inc. Light distribution using a light emitting diode assembly
WO2009085244A1 (en) 2007-12-21 2009-07-09 Cypress Semiconductor Corporation Controlling a light emitting diode fixture
US8360599B2 (en) 2008-05-23 2013-01-29 Ilumisys, Inc. Electric shock resistant L.E.D. based light
US7976196B2 (en) 2008-07-09 2011-07-12 Altair Engineering, Inc. Method of forming LED-based light and resulting LED-based light
US7936132B2 (en) * 2008-07-16 2011-05-03 Iwatt Inc. LED lamp
US8212491B2 (en) 2008-07-25 2012-07-03 Cirrus Logic, Inc. Switching power converter control with triac-based leading edge dimmer compatibility
US7946729B2 (en) 2008-07-31 2011-05-24 Altair Engineering, Inc. Fluorescent tube replacement having longitudinally oriented LEDs
US8674626B2 (en) 2008-09-02 2014-03-18 Ilumisys, Inc. LED lamp failure alerting system
US8339048B2 (en) * 2008-09-05 2012-12-25 Lutron Electronics Co., Inc. Hybrid light source
US8228002B2 (en) * 2008-09-05 2012-07-24 Lutron Electronics Co., Inc. Hybrid light source
US8008866B2 (en) * 2008-09-05 2011-08-30 Lutron Electronics Co., Inc. Hybrid light source
JP4600583B2 (en) 2008-09-10 2010-12-15 東芝ライテック株式会社 Power supply device and light fixture having dimming function
US8256924B2 (en) 2008-09-15 2012-09-04 Ilumisys, Inc. LED-based light having rapidly oscillating LEDs
CN101686587B (en) * 2008-09-25 2015-01-28 皇家飞利浦电子股份有限公司 Drive for providing variable power for LED array
JP4943402B2 (en) 2008-10-09 2012-05-30 シャープ株式会社 LED drive circuit, LED illumination lamp, LED illumination device, and LED illumination system
US8901823B2 (en) 2008-10-24 2014-12-02 Ilumisys, Inc. Light and light sensor
US8653984B2 (en) 2008-10-24 2014-02-18 Ilumisys, Inc. Integration of LED lighting control with emergency notification systems
US8324817B2 (en) 2008-10-24 2012-12-04 Ilumisys, Inc. Light and light sensor
US7938562B2 (en) 2008-10-24 2011-05-10 Altair Engineering, Inc. Lighting including integral communication apparatus
US8214084B2 (en) 2008-10-24 2012-07-03 Ilumisys, Inc. Integration of LED lighting with building controls
US8444292B2 (en) 2008-10-24 2013-05-21 Ilumisys, Inc. End cap substitute for LED-based tube replacement light
JP2010135139A (en) * 2008-12-03 2010-06-17 Ushio Inc Led lighting circuit, led lamp, and conversion socket for lighting led lamp
US8330388B2 (en) * 2008-12-12 2012-12-11 O2Micro, Inc. Circuits and methods for driving light sources
US8378588B2 (en) 2008-12-12 2013-02-19 O2Micro Inc Circuits and methods for driving light sources
JP5398249B2 (en) * 2008-12-12 2014-01-29 シャープ株式会社 Power supply device and lighting device
JP2010140824A (en) * 2008-12-12 2010-06-24 Sharp Corp Power supply device and lighting device
US9232591B2 (en) 2008-12-12 2016-01-05 O2Micro Inc. Circuits and methods for driving light sources
US8044608B2 (en) 2008-12-12 2011-10-25 O2Micro, Inc Driving circuit with dimming controller for driving light sources
CN102014540B (en) * 2010-03-04 2011-12-28 凹凸电子(武汉)有限公司 Drive circuit and controller for controlling electric power of light source
US8339067B2 (en) * 2008-12-12 2012-12-25 O2Micro, Inc. Circuits and methods for driving light sources
US8508150B2 (en) * 2008-12-12 2013-08-13 O2Micro, Inc. Controllers, systems and methods for controlling dimming of light sources
US9030122B2 (en) 2008-12-12 2015-05-12 O2Micro, Inc. Circuits and methods for driving LED light sources
US9386653B2 (en) 2008-12-12 2016-07-05 O2Micro Inc Circuits and methods for driving light sources
US9253843B2 (en) 2008-12-12 2016-02-02 02Micro Inc Driving circuit with dimming controller for driving light sources
US8076867B2 (en) * 2008-12-12 2011-12-13 O2Micro, Inc. Driving circuit with continuous dimming function for driving light sources
US8556452B2 (en) 2009-01-15 2013-10-15 Ilumisys, Inc. LED lens
US8362710B2 (en) 2009-01-21 2013-01-29 Ilumisys, Inc. Direct AC-to-DC converter for passive component minimization and universal operation of LED arrays
US8664880B2 (en) 2009-01-21 2014-03-04 Ilumisys, Inc. Ballast/line detection circuit for fluorescent replacement lamps
JP4864994B2 (en) * 2009-03-06 2012-02-01 シャープ株式会社 LED drive circuit, LED illumination lamp, LED illumination device, and LED illumination system
JP5515931B2 (en) * 2009-04-24 2014-06-11 東芝ライテック株式会社 Light emitting device and lighting device
JP2010267415A (en) * 2009-05-12 2010-11-25 Toshiba Lighting & Technology Corp Lighting system
US8330381B2 (en) 2009-05-14 2012-12-11 Ilumisys, Inc. Electronic circuit for DC conversion of fluorescent lighting ballast
JP5500476B2 (en) * 2009-05-28 2014-05-21 株式会社アイ・ライティング・システム Power supply device and lighting system for LED lamp for lighting
US8299695B2 (en) 2009-06-02 2012-10-30 Ilumisys, Inc. Screw-in LED bulb comprising a base having outwardly projecting nodes
JP2011003467A (en) * 2009-06-19 2011-01-06 Minebea Co Ltd Lighting system
CA2765200A1 (en) 2009-06-23 2011-01-13 Altair Engineering, Inc. Illumination device including leds and a switching power control system
CN101646289A (en) * 2009-06-29 2010-02-10 潘忠浩 Light-adjusting and speed-adjusting control circuit and control method thereof
CN101938865A (en) * 2009-06-30 2011-01-05 飞宏科技股份有限公司 Dimmable light-emitting diode device used for reducing output ripple current and driving circuit thereof
CN101605413B (en) * 2009-07-06 2012-07-04 英飞特电子(杭州)有限公司 LED drive circuit suitable for controlled silicon light adjustment
CN101990332A (en) * 2009-08-07 2011-03-23 巨尔(上海)光电照明有限公司 Light-emitting diode (LED)-based TRIAC dimming method
CN101990331A (en) * 2009-08-07 2011-03-23 巨尔(上海)光电照明有限公司 LED-based TRIAC dimming method
JP5333768B2 (en) 2009-09-04 2013-11-06 東芝ライテック株式会社 LED lighting device and lighting device
JP5333769B2 (en) * 2009-09-04 2013-11-06 東芝ライテック株式会社 LED lighting device and lighting device
US9155174B2 (en) 2009-09-30 2015-10-06 Cirrus Logic, Inc. Phase control dimming compatible lighting systems
US8531138B2 (en) * 2009-10-14 2013-09-10 National Semiconductor Corporation Dimmer decoder with improved efficiency for use with LED drivers
JP4943487B2 (en) * 2009-10-26 2012-05-30 シャープ株式会社 LED drive circuit, LED illumination lamp, LED illumination device, and LED illumination system
DE102009047632B4 (en) * 2009-12-08 2013-02-21 Osram Ag Circuit arrangement for operating at least one LED
JP5564239B2 (en) * 2009-12-14 2014-07-30 ミネベア株式会社 LED drive circuit
JP5214585B2 (en) * 2009-12-25 2013-06-19 シャープ株式会社 LED drive circuit, phase control dimmer, LED illumination lamp, LED illumination device, and LED illumination system
TWI432079B (en) * 2010-01-04 2014-03-21 Cal Comp Electronics & Comm Co Driving circuit of light emitting diode and lighting apparatus using the same
JP2011165394A (en) * 2010-02-05 2011-08-25 Sharp Corp Led drive circuit, dimming device, led illumination fixture, led illumination device, and led illumination system
DE102010000533B4 (en) * 2010-02-24 2011-12-01 Insta Elektro Gmbh Control unit for transmitting control information to a lamp unit and method for operating such a control unit
US8698419B2 (en) 2010-03-04 2014-04-15 O2Micro, Inc. Circuits and methods for driving light sources
CN103391006A (en) 2012-05-11 2013-11-13 凹凸电子(武汉)有限公司 Light source driving circuit and controller and method for controlling power converter
DE102010015908B4 (en) * 2010-03-10 2013-10-24 Lear Corporation Gmbh Device for controlling an electrical load
JP5031865B2 (en) * 2010-03-23 2012-09-26 シャープ株式会社 LED drive circuit, LED illumination lamp, LED illumination device, and LED illumination system
WO2011119921A2 (en) 2010-03-26 2011-09-29 Altair Engineering, Inc. Led light with thermoelectric generator
US8540401B2 (en) 2010-03-26 2013-09-24 Ilumisys, Inc. LED bulb with internal heat dissipating structures
EP2553316B8 (en) 2010-03-26 2015-07-08 iLumisys, Inc. Led light tube with dual sided light distribution
US9041311B2 (en) * 2010-03-26 2015-05-26 Cree Led Lighting Solutions, Inc. Dynamic loading of power supplies
EP2373124B1 (en) * 2010-04-01 2013-10-23 Rohm Co., Ltd. Driver circuit for driving a lighting device and method for operating the same
CN101808453B (en) * 2010-04-14 2014-04-02 上海晶丰明源半导体有限公司 LED lighting driving circuit and method by using compatible silicon controlled light adjuster to adjust light
DE102010028230A1 (en) * 2010-04-27 2011-10-27 Tridonic Jennersdorf Gmbh Circuit arrangement for operating LEDs
US8698421B2 (en) 2010-04-30 2014-04-15 Infineon Technologies Austria Ag Dimmable LED power supply with power factor control
JP5126303B2 (en) * 2010-07-01 2013-01-23 ミツミ電機株式会社 LIGHTING POWER DEVICE AND LIGHTING SYSTEM
GB201011081D0 (en) 2010-07-01 2010-08-18 Macfarlane Alistair Improved semi resonant switching regulator, power factor control and LED lighting
US8454193B2 (en) 2010-07-08 2013-06-04 Ilumisys, Inc. Independent modules for LED fluorescent light tube replacement
EP2593714A2 (en) 2010-07-12 2013-05-22 iLumisys, Inc. Circuit board mount for led light tube
CN102340904B (en) 2010-07-14 2015-06-17 通用电气公司 Light-emitting diode driving device and driving method thereof
IT1401152B1 (en) * 2010-07-28 2013-07-12 St Microelectronics Des & Appl CONTROL DEVICE FOR LED DIODES.
US9124171B2 (en) * 2010-07-28 2015-09-01 James Roy Young Adaptive current limiter and dimmer system including the same
WO2012016197A1 (en) 2010-07-30 2012-02-02 Cirrus Logic, Inc. Powering high-efficiency lighting devices from a triac-based dimmer
US8569972B2 (en) 2010-08-17 2013-10-29 Cirrus Logic, Inc. Dimmer output emulation
US8536799B1 (en) 2010-07-30 2013-09-17 Cirrus Logic, Inc. Dimmer detection
US9307601B2 (en) 2010-08-17 2016-04-05 Koninklijke Philips N.V. Input voltage sensing for a switching power converter and a triac-based dimmer
JP5079855B2 (en) * 2010-08-24 2012-11-21 シャープ株式会社 LED drive circuit and LED illumination lamp using the same
EP2609790A2 (en) 2010-08-24 2013-07-03 Cirrus Logic, Inc. Multi-mode dimmer interfacing including attach state control
CN102404899B (en) * 2010-09-10 2015-07-01 奥斯兰姆有限公司 Method and device for controlling effuser connected to cutting phase dimmer
US8659232B2 (en) 2010-09-14 2014-02-25 Crs Electronics Variable-impedance load for LED lamps
TWI428057B (en) * 2010-09-16 2014-02-21 安恩國際公司 Light-emitting driving circuit with function of dynamic loading and increasing power factor and related dynamic loading module
US9089019B2 (en) 2010-10-12 2015-07-21 Microsemi Corp.—Analog Mixed Signal Group, Ltd. Power saving arrangement for use with a user implementable phase cut dimmer
DE102011114882A1 (en) * 2010-10-15 2012-04-19 Ceramtec Gmbh LED light with integrated driver
DE102011114880A1 (en) * 2010-10-15 2012-04-19 Ceramtec Gmbh LED driver circuit
WO2012058556A2 (en) 2010-10-29 2012-05-03 Altair Engineering, Inc. Mechanisms for reducing risk of shock during installation of light tube
CN103270678B (en) 2010-11-04 2016-10-12 皇家飞利浦有限公司 Switchover power converter input voltage approximation zero crossing determines
CN103190062B (en) 2010-11-04 2016-08-31 皇家飞利浦有限公司 Duty factor based on triac dimmable device detects
US9497850B2 (en) 2010-11-04 2016-11-15 Koninklijke Philips N.V. Controlled power dissipation in a lighting system
CN103262399B (en) 2010-11-04 2017-02-15 皇家飞利浦有限公司 Method and device for controlling energy dissipation in switch power converter
ES2718100T3 (en) 2010-11-16 2019-06-27 Signify Holding Bv Compatibility of final phase light attenuator with high resistance prediction of light attenuator
JP5476279B2 (en) * 2010-11-19 2014-04-23 シャープ株式会社 LED driving circuit and LED lighting device
US8870415B2 (en) 2010-12-09 2014-10-28 Ilumisys, Inc. LED fluorescent tube replacement light with reduced shock hazard
WO2012083222A2 (en) 2010-12-16 2012-06-21 Cirrus Logic, Inc. Switching parameter based discontinuous mode-critical conduction mode transition
JP2012134001A (en) * 2010-12-21 2012-07-12 Sharp Corp Led drive circuit and led illumination lamp using the same
TWI422130B (en) * 2011-01-26 2014-01-01 Macroblock Inc Adaptive bleeder circuit
JP5760184B2 (en) * 2011-03-16 2015-08-05 パナソニックIpマネジメント株式会社 Lighting device
US8803436B2 (en) 2011-05-10 2014-08-12 Lutron Electronics Co., Inc. Dimmable screw-in compact fluorescent lamp having integral electronic ballast circuit
JP2013020931A (en) * 2011-06-16 2013-01-31 Sanken Electric Co Ltd Led lighting apparatus
CN103329618B (en) * 2011-06-17 2016-06-29 马维尔国际贸易有限公司 TRIAC light adjusting system for solid-state load
WO2013003673A1 (en) 2011-06-30 2013-01-03 Cirrus Logic, Inc. Transformer-isolated led lighting circuit with secondary-side dimming control
TWI441428B (en) * 2011-07-06 2014-06-11 Macroblock Inc Auto-selecting holding current circuit
US9072171B2 (en) 2011-08-24 2015-06-30 Ilumisys, Inc. Circuit board mount for LED light
US9326362B2 (en) 2011-08-31 2016-04-26 Chia-Teh Chen Two-level LED security light with motion sensor
US8866392B2 (en) * 2011-08-31 2014-10-21 Chia-Teh Chen Two-level LED security light with motion sensor
US9006999B2 (en) 2011-09-01 2015-04-14 Renesas Electronics America Inc. Flickering suppressor system for a dimmable LED light bulb
CN103782654B (en) * 2011-09-06 2016-08-17 皇家飞利浦有限公司 Power control unit and voltage controller
ES2663078T3 (en) * 2011-11-04 2018-04-11 Philips Lighting Holding B.V. Drive device and drive method for driving a load, and having a polarity dependent purge circuit
EP2590477B1 (en) 2011-11-07 2018-04-25 Silergy Corp. A method of controlling a ballast, a ballast, a lighting controller, and a digital signal processor
JP5831807B2 (en) * 2011-11-10 2015-12-09 東芝ライテック株式会社 Lighting power supply and lighting device
US9484832B2 (en) 2011-12-14 2016-11-01 Koninklijke Philips N.V. Isolation of secondary transformer winding current during auxiliary power supply generation
CN103179734A (en) * 2011-12-26 2013-06-26 晶元光电股份有限公司 Current mode regulator and dimming circuit applying same
US9736911B2 (en) 2012-01-17 2017-08-15 Lutron Electronics Co. Inc. Digital load control system providing power and communication via existing power wiring
WO2013126836A1 (en) 2012-02-22 2013-08-29 Cirrus Logic, Inc. Mixed load current compensation for led lighting
US9184518B2 (en) 2012-03-02 2015-11-10 Ilumisys, Inc. Electrical connector header for an LED-based light
TW201338615A (en) * 2012-03-03 2013-09-16 Avid Electronics Corp Dimming device with coding and decoding by clipping power waveform through cascaded switch
KR101349431B1 (en) * 2012-04-20 2014-01-09 엘지이노텍 주식회사 Device and method of operating the illumination apparatus
US8581503B1 (en) 2012-05-02 2013-11-12 Semiconductor Components Industries, Llc Method of forming an LED control circuit and structure therefor
TW201401704A (en) * 2012-05-16 2014-01-01 Schneider Electric South East Asia Hq Pte Ltd Method, apparatus and system for controlling an electrical load
US20130343099A1 (en) * 2012-06-21 2013-12-26 Fairchild Korea Semiconductor Ltd. Active damping circuit, active damping method, power supply device comprising the active damping circuit
US9163794B2 (en) 2012-07-06 2015-10-20 Ilumisys, Inc. Power supply assembly for LED-based light tube
US9271367B2 (en) 2012-07-09 2016-02-23 Ilumisys, Inc. System and method for controlling operation of an LED-based light
JP2012195307A (en) * 2012-07-10 2012-10-11 Moriyama Sangyo Kk Light emitting diode dimmer drive device
US9380685B2 (en) * 2012-07-20 2016-06-28 Koninklijke Philips N.V. Bypass circuit for neutral-less controller in lighting control system
JP5975774B2 (en) * 2012-07-31 2016-08-23 日立アプライアンス株式会社 LED lighting device
US9184661B2 (en) 2012-08-27 2015-11-10 Cirrus Logic, Inc. Power conversion with controlled capacitance charging including attach state control
CN104813743B (en) * 2012-11-06 2017-08-18 飞利浦照明控股有限公司 Circuit arrangement, LED, illuminator and the operating method using the circuit arrangement
TWI462640B (en) * 2012-12-25 2014-11-21 Unity Opto Technology Co Ltd Adaptive LED dimming drive circuit
US9496844B1 (en) 2013-01-25 2016-11-15 Koninklijke Philips N.V. Variable bandwidth filter for dimmer phase angle measurements
US9084324B2 (en) * 2013-02-26 2015-07-14 Lutron Electronics Co., Inc. Load control device having automatic setup for controlling capacitive and inductive loads
US9173258B2 (en) * 2013-03-14 2015-10-27 Cree, Inc. Lighting apparatus including a current bleeder module for sinking current during dimming of the lighting apparatus and methods of operating the same
US9285084B2 (en) 2013-03-14 2016-03-15 Ilumisys, Inc. Diffusers for LED-based lights
EP2974545A1 (en) 2013-03-14 2016-01-20 Koninklijke Philips N.V. Controlled electronic system power dissipation via an auxiliary-power dissipation circuit
US9392675B2 (en) 2013-03-14 2016-07-12 Lutron Electronics Co., Inc. Digital load control system providing power and communication via existing power wiring
US9282598B2 (en) 2013-03-15 2016-03-08 Koninklijke Philips N.V. System and method for learning dimmer characteristics
US8829819B1 (en) * 2013-05-07 2014-09-09 Power Integrations, Inc. Enhanced active preload for high performance LED driver with extended dimming
KR101488682B1 (en) * 2013-05-23 2015-02-06 주식회사 알.에프.텍 Dimming control of led lighting circuits
KR102149861B1 (en) 2013-06-04 2020-08-31 온세미컨덕터코리아 주식회사 Power supply apparatus and driving method thereof
KR102125245B1 (en) * 2013-06-28 2020-06-22 주식회사 실리콘웍스 Led lighting apparatus and control circuit thereof
US9572207B2 (en) * 2013-08-14 2017-02-14 Infineon Technologies Austria Ag Dimming range extension
US9267650B2 (en) 2013-10-09 2016-02-23 Ilumisys, Inc. Lens for an LED-based light
US9148919B2 (en) 2013-12-06 2015-09-29 Semiconductor Components Industries, Llc Method for mitigating flicker
KR20160111975A (en) 2014-01-22 2016-09-27 일루미시스, 인크. Led-based light with addressed leds
US9621062B2 (en) 2014-03-07 2017-04-11 Philips Lighting Holding B.V. Dimmer output emulation with non-zero glue voltage
US9277611B2 (en) 2014-03-17 2016-03-01 Terralux, Inc. LED driver with high dimming compatibility without the use of bleeders
US9215772B2 (en) 2014-04-17 2015-12-15 Philips International B.V. Systems and methods for minimizing power dissipation in a low-power lamp coupled to a trailing-edge dimmer
US9510400B2 (en) 2014-05-13 2016-11-29 Ilumisys, Inc. User input systems for an LED-based light
WO2015193137A1 (en) * 2014-06-17 2015-12-23 Koninklijke Philips N.V. Dynamic control circuit
CA2861789C (en) * 2014-08-28 2015-09-15 Greco Tech Industries Inc. Led tube driver circuitry for ballast and non-ballast fluorescent tube replacement
WO2016044878A1 (en) * 2014-09-26 2016-03-31 Hendon Semiconductors Pty Ltd A phase cutting control dimmer arrangement with surge voltage and electrical fast transient protection
US10161568B2 (en) 2015-06-01 2018-12-25 Ilumisys, Inc. LED-based light with canted outer walls
CN107302813B (en) * 2016-04-15 2019-05-14 普诚科技股份有限公司 A kind of current control circuit
CN110870385B (en) * 2017-07-07 2022-10-28 昕诺飞控股有限公司 Lighting driver, lighting circuit and driving method
RU194528U1 (en) * 2019-10-17 2019-12-13 Акционерное общество "Федеральный центр науки и высоких технологий "Специальное научно-производственное объединение "Элерон" (АО "ФЦНИВТ "СНПО "Элерон") PULSE POWER SUPPLY FOR LED LUMINAIRES
CN111405715A (en) * 2020-04-03 2020-07-10 宁波科尔维特照明有限公司 Silicon controlled rectifier dimming system and dimming method thereof
CN114513875A (en) * 2020-11-16 2022-05-17 台达电子企业管理(上海)有限公司 Dimming circuit and dimming method
RU203675U1 (en) * 2021-01-27 2021-04-15 Евгений Николаевич Коптяев LED LAMP
CN113411935B (en) * 2021-07-14 2024-04-02 宁海县鹰峤电气有限公司 LED silicon controlled rectifier dimming power supply

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999045750A1 (en) * 1998-03-04 1999-09-10 Koninklijke Philips Electronics N.V. Triac dimmable ballast
WO2001001385A1 (en) * 1999-06-29 2001-01-04 Welles Reymond Ac powered led circuits for traffic signal displays
WO2003096761A1 (en) * 2002-05-09 2003-11-20 Color Kinetics Incorporated Led diming controller
US20040085030A1 (en) * 2002-10-30 2004-05-06 Benoit Laflamme Multicolor lamp system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03285289A (en) * 1990-03-31 1991-12-16 Toshiba Lighting & Technol Corp Dimming and lighting device
JPH0566718A (en) * 1991-09-09 1993-03-19 Toshiba Lighting & Technol Corp Light emitting diode display element
JP2578455Y2 (en) * 1992-06-15 1998-08-13 松下電工株式会社 Variable color temperature lighting system
JPH07322639A (en) * 1994-05-26 1995-12-08 Matsushita Electric Works Ltd Power conversion device
US6175195B1 (en) * 1997-04-10 2001-01-16 Philips Electronics North America Corporation Triac dimmable compact fluorescent lamp with dimming interface
US6088249A (en) * 1997-12-02 2000-07-11 Power Circuit Innovations, Inc. Frequency modulated ballast with loosely coupled transformer
US6380711B2 (en) * 1999-06-30 2002-04-30 Research In Motion Limited Battery recharging device and method and an automatic battery detection system and method therefor
US7038399B2 (en) * 2001-03-13 2006-05-02 Color Kinetics Incorporated Methods and apparatus for providing power to lighting devices
US6727661B2 (en) * 2001-09-10 2004-04-27 Matsushita Electric Industrial Co., Ltd. Self-ballasted fluorescent lamp
WO2003105542A1 (en) * 2002-06-07 2003-12-18 松下電器産業株式会社 Electrodeless discharge lamp lighting device, light bulb type electrodeless fluorescent lamp and discharge lamp lighting device
US6906476B1 (en) * 2003-07-25 2005-06-14 Asp Corporation Power control system for reducing power to lighting systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999045750A1 (en) * 1998-03-04 1999-09-10 Koninklijke Philips Electronics N.V. Triac dimmable ballast
WO2001001385A1 (en) * 1999-06-29 2001-01-04 Welles Reymond Ac powered led circuits for traffic signal displays
WO2003096761A1 (en) * 2002-05-09 2003-11-20 Color Kinetics Incorporated Led diming controller
US20040085030A1 (en) * 2002-10-30 2004-05-06 Benoit Laflamme Multicolor lamp system

Cited By (161)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006120629A3 (en) * 2005-05-09 2007-03-08 Koninkl Philips Electronics Nv Method and circuit for enabling dimming using triac dimmer
JP2009518835A (en) * 2005-12-07 2009-05-07 オスラム ゲゼルシャフト ミット ベシュレンクテル ハフツング Circuit device for operating at least one LED and method of operating the same
WO2007065815A1 (en) * 2005-12-07 2007-06-14 Osram Gesellschaft mit beschränkter Haftung Circuit arrangement and method for operating at least one led
GB2435724A (en) * 2006-03-04 2007-09-05 Mood Concepts Ltd TRIAC dimming of LED lighting units
CN101513122B (en) * 2006-09-04 2011-07-20 路创电子公司 Variable load circuits for use with lighting control devices
US20120139431A1 (en) * 2006-09-04 2012-06-07 Lutron Electronics Co., Inc. Variable load circuits for use with lighting control devices
US8829805B2 (en) 2006-09-04 2014-09-09 Lutron Electronics Co., Inc. Variable load circuits for use with lighting control devices
WO2008029108A1 (en) * 2006-09-04 2008-03-13 Lutron Electronics Co., Inc. Variable load circuits for use with lighting control devices
US8169154B2 (en) 2006-09-04 2012-05-01 Lutron Electronics Co., Inc. Variable load circuits for use with lighting control devices
WO2008112822A3 (en) * 2007-03-12 2009-04-09 Cirrus Logic Inc Lighting system with power factor correction control data determined from a phase modulated signal
US10356857B2 (en) 2007-03-12 2019-07-16 Signify Holding B.V. Lighting system with power factor correction control data determined from a phase modulated signal
EP3471513A1 (en) * 2007-03-12 2019-04-17 Signify Holding B.V. Lighting system with power factor correction control data determined from a phase modulated signal
JP2015062333A (en) * 2007-03-30 2015-04-02 ホルディップ リミテッド Improvement in lighting system
WO2009014418A1 (en) * 2007-07-24 2009-01-29 A.C. Pasma Holding B.V. Method and current control circuit for operating an electronic gas discharge lamp
WO2009053893A1 (en) * 2007-10-22 2009-04-30 Nxp B.V. Dimmer jitter correction
US8378593B2 (en) 2007-10-22 2013-02-19 Nxp B.V. Dimmer jitter correction
US8818530B2 (en) 2007-10-29 2014-08-26 Pentair Water Pool And Spa, Inc. LED light controller system and method
US8324833B2 (en) 2008-02-06 2012-12-04 Nxp B.V. Light color tunability
WO2009098625A3 (en) * 2008-02-06 2009-10-01 Nxp B.V. Light color tunability
JP2009200431A (en) * 2008-02-25 2009-09-03 Koizumi Lighting Technology Corp Light-emitting diode lighting circuit and lighting device
US8896225B2 (en) 2008-03-24 2014-11-25 Toshiba Lighting Technology Corporation Power supply device and lighting equipment provided with power supply device
US8884540B2 (en) 2008-03-24 2014-11-11 Toshiba Lighting & Technology Corporation Power supply device and lighting equipment provided with power supply device
US8354804B2 (en) 2008-03-24 2013-01-15 Toshiba Lighting & Technology Corporation Power supply device and lighting equipment
US9226357B2 (en) 2008-03-24 2015-12-29 Toshiba Lighting & Technology Corporation Power supply device and lighting equipment provided with power supply device
US8441204B2 (en) 2008-03-24 2013-05-14 Toshiba Lighting & Technology Corp. Power supply device and lighting equipment provided with power supply device
TWI452938B (en) * 2008-04-04 2014-09-11 Koninkl Philips Nv Dimmer triggering circuit, dimmer system and dimmable device
WO2009121956A1 (en) * 2008-04-04 2009-10-08 Lemnis Lighting Patent Holding B.V. Dimmer triggering circuit, dimmer system and dimmable device
US8212494B2 (en) 2008-04-04 2012-07-03 Lemnis Lighting Patents Holding B.V. Dimmer triggering circuit, dimmer system and dimmable device
US8829812B2 (en) 2008-04-04 2014-09-09 Koninklijke Philips N.V. Dimmable lighting system
WO2009133489A1 (en) * 2008-04-30 2009-11-05 Koninklijke Philips Electronics N.V. Methods and apparatus for encoding information on an a.c. line voltage
RU2515609C2 (en) * 2008-04-30 2014-05-20 Конинклейке Филипс Электроникс Н.В. Methods and apparatus for encoding information on ac line voltage
US8957595B2 (en) 2008-04-30 2015-02-17 Koniniklijke Philips N.V. Methods and apparatus for encoding information on an A.C. line voltage
NL2002602C2 (en) * 2009-03-09 2010-09-13 Ledzworld B V Power driver for a light source.
EP2425681B1 (en) * 2009-04-03 2017-07-19 Tridonic GmbH & Co KG Driving circuit for an led
CN102450100A (en) * 2009-04-03 2012-05-09 赤多尼科两合股份有限公司 Drive circuit for a led
EP2425681A1 (en) * 2009-04-03 2012-03-07 Tridonic GmbH & Co KG Drive circuit for a led
US9006992B2 (en) 2009-04-11 2015-04-14 Innosys, Inc. Low current thyristor-based dimming
EP2417839A4 (en) * 2009-04-11 2014-06-11 Innosys Inc Thyristor starting circuit
EP2417839A2 (en) * 2009-04-11 2012-02-15 Innosys, Inc. Thyristor starting circuit
EP2257124A1 (en) 2009-05-29 2010-12-01 Nxp B.V. Circuit for connecting a low current lighting circuit to a dimmer
US8664885B2 (en) 2009-05-29 2014-03-04 Nxp B.V. Circuit for connecting a low current lighting circuit to a dimmer
WO2010137002A1 (en) 2009-05-29 2010-12-02 Nxp B.V. Circuit for connecting a low current lighting circuit to a dimmer
WO2010146529A1 (en) * 2009-06-18 2010-12-23 Koninklijke Philips Electronics N.V. Power interface with leds for a triac dimmer
US8680779B2 (en) 2009-06-18 2014-03-25 Koninklijke Philips N.V. Power interface with LEDs for a TRIAC dimmer
CN102804919A (en) * 2009-06-25 2012-11-28 皇家飞利浦电子股份有限公司 Driver for cooperating with a wall dimmer
KR101806535B1 (en) * 2009-06-25 2017-12-07 필립스 라이팅 홀딩 비.브이. Driver for cooperating with a wall dimmer
US9155138B2 (en) 2009-06-25 2015-10-06 Koninklijke Philips N.V. Driver for cooperating with a wall dimmer
WO2010150183A1 (en) * 2009-06-25 2010-12-29 Koninklijke Philips Electronics N.V. Driver for cooperating with a wall dimmer
WO2011001327A1 (en) * 2009-06-29 2011-01-06 Koninklijke Philips Electronics N.V. Driver for cooperating with a wall dimmer
US8493002B2 (en) 2009-06-29 2013-07-23 Koninklijke Philips N.V. Driver for cooperating with a wall dimmer
KR101759613B1 (en) 2009-06-29 2017-07-25 필립스 라이팅 홀딩 비.브이. Driver for cooperating with a wall dimmer
US8264165B2 (en) 2009-06-30 2012-09-11 Linear Technology Corporation Method and system for dimming an offline LED driver
EP2271181A1 (en) * 2009-06-30 2011-01-05 Linear Technology Corporation Method and system for dimming an offline LED driver
RU2531364C2 (en) * 2009-07-27 2014-10-20 Конинклейке Филипс Электроникс Н.В. Voltage divider scheme
US8723431B2 (en) 2009-07-27 2014-05-13 Koninklijke Philips N.V. Bleeder circuit
WO2011013060A3 (en) * 2009-07-27 2011-05-12 Koninklijke Philips Electronics N.V. Bleeder circuit
EP2288028A1 (en) * 2009-08-07 2011-02-23 Phihong Technology Co., Ltd. Dimmable LED device with low ripple current and driving circuit thereof
EP2288237A3 (en) * 2009-08-21 2012-11-21 Toshiba Lighting & Technology Corporation Lighting circuit and illumination device
US8970127B2 (en) 2009-08-21 2015-03-03 Toshiba Lighting & Technology Corporation Lighting circuit and illumination device
US8492992B2 (en) 2009-09-18 2013-07-23 Toshiba Lighting & Technology Corporation LED lighting device and illumination apparatus
EP2330869A1 (en) * 2009-09-18 2011-06-08 Toshiba Lighting & Technology Corporation LED lighting device and illumination apparatus
US9066394B2 (en) 2009-09-28 2015-06-23 Koninklijke Philips N.V. Method and apparatus providing deep dimming of solid state lighting systems
WO2011042510A3 (en) * 2009-10-07 2012-02-02 Lemnis Lighting Patent Holding B.V. Dimmable lighting system
WO2011045057A1 (en) * 2009-10-14 2011-04-21 Tridonic Uk Limited Method for controlling the brightness of an led
DE112010004050B4 (en) 2009-10-14 2023-01-19 Tridonic Uk Ltd. Method for controlling the brightness of an LED and a dimmable LED module
WO2011045372A1 (en) * 2009-10-14 2011-04-21 Tridonic Uk Limited Phase cut dimming of leds
CN102598856A (en) * 2009-10-14 2012-07-18 特里多尼克英国有限公司 Phase cut dimming of LEDs
CN102577607A (en) * 2009-10-14 2012-07-11 赤多尼英国有限公司 Method for controlling the brightness of an led
WO2011045371A1 (en) * 2009-10-14 2011-04-21 Tridonic Uk Limited Phase cut dimming of leds
US8339066B2 (en) 2009-10-26 2012-12-25 Light-Based Technologies Incorporated Energy saving lighting systems and units providing coordinated operation of holding current units
US8283875B2 (en) 2009-10-26 2012-10-09 Light-Based Technologies Incorporated Holding current circuits for phase-cut power control
US8686668B2 (en) 2009-10-26 2014-04-01 Koninklijke Philips N.V. Current offset circuits for phase-cut power control
WO2011051859A1 (en) * 2009-10-30 2011-05-05 Koninklijke Philips Electronics N.V. Selectively activated rapid start/bleeder circuit for solid state lighting system
US8742681B2 (en) 2009-11-09 2014-06-03 Toshiba Lighting & Technology Corporation LED lighting device, illuminating device and power supply therefore having a normally-on type switching element
US9155143B2 (en) 2009-11-09 2015-10-06 Toshiba Lighting & Technology Corporation LED lighting device and illuminating device
US9392655B2 (en) 2009-11-09 2016-07-12 Toshiba Lighting & Technology Corporation LED lighting device and illuminating device
US12016096B2 (en) 2009-11-20 2024-06-18 Lutron Technology Company Llc Controllable-load circuit for use with a load control device
US11743983B2 (en) 2009-11-20 2023-08-29 Lutron Technology Company Llc Controllable-load circuit for use with a load control device
WO2011063205A1 (en) * 2009-11-20 2011-05-26 Lutron Electronics Co., Inc. Controllable-load circuit for use with a load control device
US9220133B2 (en) 2009-11-20 2015-12-22 Lutron Electronics Co., Inc. Controllable-load circuit for use with a load control device
US9578700B2 (en) 2009-11-20 2017-02-21 Lutron Electronics Co., Inc Controllable-load circuit for use with a load control device
US10674583B2 (en) 2009-11-20 2020-06-02 Lutron Technology Company Llc Controllable-load circuit for use with a load control device
US8698408B2 (en) 2009-11-25 2014-04-15 Lutron Electronics Co., Inc. Two-wire dimmer switch for low-power loads
US9343997B2 (en) 2009-11-25 2016-05-17 Lutron Electronics Co., Inc. Load control device for high-efficiency loads
US11991796B2 (en) 2009-11-25 2024-05-21 Lutron Technology Company Llc Load control device for high-efficiency loads
US11870334B2 (en) 2009-11-25 2024-01-09 Lutron Technology Company Llc Load control device for high-efficiency loads
US8664881B2 (en) 2009-11-25 2014-03-04 Lutron Electronics Co., Inc. Two-wire dimmer switch for low-power loads
US11729874B2 (en) 2009-11-25 2023-08-15 Lutron Technology Company Llc Load control device for high-efficiency loads
US8664889B2 (en) 2009-11-25 2014-03-04 Lutron Electronics Co., Inc. Two-wire dimmer switch for low-power loads
US11638334B2 (en) 2009-11-25 2023-04-25 Lutron Technology Company Llc Load control device for high-efficiency loads
US10958187B2 (en) 2009-11-25 2021-03-23 Lutron Technology Company Llc Load control device for high-efficiency loads
US10958186B2 (en) 2009-11-25 2021-03-23 Lutron Technology Company Llc Load control device for high-efficiency loads
US8841849B2 (en) 2009-11-25 2014-09-23 Lutron Electronics Co., Inc. Two-wire dimmer switch for low-power loads
US10541620B2 (en) 2009-11-25 2020-01-21 Lutron Technology Company Llc Load control device for high-efficiency loads
US10530268B2 (en) 2009-11-25 2020-01-07 Lutron Technology Company Llc Load control device for high-efficiency loads
US10447171B2 (en) 2009-11-25 2019-10-15 Lutron Technology Company Llc Load control device for high-efficiency loads
US10158300B2 (en) 2009-11-25 2018-12-18 Lutron Electronics Co., Inc. Load control device for high-efficiency loads
US10128772B2 (en) 2009-11-25 2018-11-13 Lutron Electronics Co., Inc. Load control device for high-efficiency loads
US8957662B2 (en) 2009-11-25 2015-02-17 Lutron Electronics Co., Inc. Load control device for high-efficiency loads
US9941811B2 (en) 2009-11-25 2018-04-10 Lutron Electronics Co., Inc. Load control device for high-efficiency loads
US8970128B2 (en) 2009-11-25 2015-03-03 Lutron Electronics Co., Inc. Load control device fo rhigh-efficiency loads
US9853561B2 (en) 2009-11-25 2017-12-26 Lutron Electronics Co., Inc. Load control device for high-efficiency loads
US8988058B2 (en) 2009-11-25 2015-03-24 Lutron Electronics Co., Inc. Load control device for high-efficiency loads
US8987994B2 (en) 2009-11-25 2015-03-24 Lutron Electronics Co., Ltd. Load control device for high-efficiency loads
US8988050B2 (en) 2009-11-25 2015-03-24 Lutron Electronics Co., Inc. Load control device for high-efficiency loads
US9356531B2 (en) 2009-11-25 2016-05-31 Lutron Electronics Co., Inc. Load control device for high-efficiency loads
US8729814B2 (en) 2009-11-25 2014-05-20 Lutron Electronics Co., Inc. Two-wire analog FET-based dimmer switch
US9343998B2 (en) 2009-11-25 2016-05-17 Lutron Electronics Co., Inc. Load control device for high-efficiency loads
US9220157B2 (en) 2009-11-25 2015-12-22 Lutron Electronics Co., Inc. Load control device for high-efficiency loads
US9161418B2 (en) 2009-11-25 2015-10-13 Lutron Electronics Co., Inc. Load control device for high-efficiency loads
US9160224B2 (en) 2009-11-25 2015-10-13 Lutron Electronics Co., Inc. Load control device for high-efficiency loads
US9143051B2 (en) 2009-11-25 2015-09-22 Lutron Electronics Co., Inc. Load control device for high-efficiency loads
US8593067B2 (en) 2010-01-27 2013-11-26 Toshiba Lighting & Technology Corporation Led lighting device and illumination apparatus
WO2011100803A1 (en) * 2010-02-18 2011-08-25 Clipsal Australia Pty Ltd Control signal generator for a dimmer circuit
WO2011114261A1 (en) 2010-03-17 2011-09-22 Koninklijke Philips Electronics N.V. Led unit for cooperation with a mains dimmer
RU2556019C2 (en) * 2010-03-25 2015-07-10 Конинклейке Филипс Электроникс Н.В. Method and device for increase of range of adjustment of illumination of solid-state lighting fixtures
US8502518B2 (en) 2010-04-06 2013-08-06 Osram Gesellschaft Mit Beschraenkter Haftung Power supply device for light sources, such as halogen lamps, and related method
EP2375873A1 (en) * 2010-04-06 2011-10-12 Osram AG Power supply device for light sources, such as halogen lamps, and related method
RU2555861C2 (en) * 2010-04-27 2015-07-10 Конинклейке Филипс Электроникс Н.В. Method and device for regulating light output range of solid-state lighting device based on maximum and minimum settings of dimmer
US8723439B2 (en) 2010-05-07 2014-05-13 Huizhou Light Engine Limited Triac dimmable power supply unit for LED
WO2011137646A1 (en) * 2010-05-07 2011-11-10 Huizhou Light Engine Ltd. Triac dimmable power supply unit for led
US8638050B2 (en) 2010-05-14 2014-01-28 Toshiba Lighting And Technology Corporation DC power supply unit and LED lighting apparatus
RU2557670C2 (en) * 2010-05-17 2015-07-27 Конинклейке Филипс Электроникс Н.В. Method and device for detection and correction of dimmer misoperation
EP2405717A1 (en) * 2010-07-09 2012-01-11 Chiu-Min Lin LED lamp brightness adjusting circuit connectable to AC power and LED lighting device using the same
KR101353639B1 (en) 2010-07-12 2014-01-20 오투 마이크로, 인코포레이티드 Circuits and method for controlling of a light source
WO2012007797A1 (en) * 2010-07-13 2012-01-19 Koninklijke Philips Electronics N.V. Active damping for dimmable driver for lighting unit
CN103004290A (en) * 2010-07-13 2013-03-27 皇家飞利浦电子股份有限公司 Bleeding circuit and related method for preventing improper dimmer operation
CN103004289A (en) * 2010-07-13 2013-03-27 皇家飞利浦电子股份有限公司 Active damping for dimmable driver for lighting unit
WO2012007798A3 (en) * 2010-07-13 2012-04-05 Koninklijke Philips Electronics N.V. Bleeding circuit and related method for preventing improper dimmer operation
EP2594113A2 (en) * 2010-07-13 2013-05-22 Koninklijke Philips Electronics N.V. Bleeding circuit and related method for preventing improper dimmer operation
WO2012007798A2 (en) 2010-07-13 2012-01-19 Koninklijke Philips Electronics N.V. Bleeding circuit and related method for preventing improper dimmer operation
EP3346593A1 (en) * 2010-07-30 2018-07-11 Philips Lighting Holding B.V. Coordinated dimmer compatibility functions
EP2599203B1 (en) * 2010-07-30 2017-11-15 Philips Lighting Holding B.V. Coordinated dimmer compatibility functions
GB2497043A (en) * 2010-08-06 2013-05-29 Tridonic Uk Ltd LED dimming control
GB2497043B (en) * 2010-08-06 2015-03-18 Tridonic Uk Ltd LED dimming control
WO2012016716A1 (en) * 2010-08-06 2012-02-09 Tridonic Uk Ltd. Led dimming control
US10925567B2 (en) 2010-10-27 2021-02-23 Koninklijke Philips N.V. Adaptive imaging and frame rate optimizing based on real-time shape sensing of medical instruments
EP2687066A1 (en) * 2011-03-18 2014-01-22 LG Innotek Co., Ltd. Input voltage transfer apparatus for light emitting diode lighting system
EP2687066A4 (en) * 2011-03-18 2014-09-03 Lg Innotek Co Ltd Input voltage transfer apparatus for light emitting diode lighting system
US9265127B2 (en) 2011-03-29 2016-02-16 Toshiba Lighting And Technology Corporation Luminaire
US8643295B2 (en) 2011-03-29 2014-02-04 Toshiba Lighting & Technology Corporation Luminaire
US8907579B2 (en) 2011-03-29 2014-12-09 Toshiba Lighting & Technology Corporation Luminaire
EP2506679A1 (en) * 2011-03-29 2012-10-03 Toshiba Lighting & Technology Corporation Luminaire
WO2012154380A1 (en) * 2011-05-12 2012-11-15 Osram Sylvania Inc. Driver circuit for reduced form factor solid state light source lamp
US8674605B2 (en) 2011-05-12 2014-03-18 Osram Sylvania Inc. Driver circuit for reduced form factor solid state light source lamp
US9357607B2 (en) 2011-06-10 2016-05-31 Koninklijke Philips N.V. LED light source
WO2012168844A3 (en) * 2011-06-10 2013-06-20 Koninklijke Philips Electronics N.V. Led light source
WO2013096456A1 (en) * 2011-12-23 2013-06-27 Marvell World Trade, Ltd. Method and apparatus for current control with led driver
US9516718B2 (en) 2011-12-29 2016-12-06 Seoul Semiconductor Co., Ltd. LED luminescence apparatus
EP2798918A4 (en) * 2011-12-29 2016-01-27 Seoul Semiconductor Co Ltd Led luminescence apparatus
US9713213B2 (en) 2011-12-29 2017-07-18 Seoul Semiconductor Co., Ltd. LED luminescence apparatus
US9380659B2 (en) 2012-01-06 2016-06-28 Koninklijke Philips N.V. Electrical device and method for compensating an effect of an electrical current of a load, in particular an LED unit, and driver device for driving a load, in particular an LED unit
WO2013102853A1 (en) * 2012-01-06 2013-07-11 Koninklijke Philips Electronics N.V. Electrical device and method for compensating an effect of an electrical current of a load, in particular an led unit, and driver device for driving a load, in particular an led unit
RU2669381C2 (en) * 2012-01-06 2018-10-11 Филипс Лайтинг Холдинг Б.В. Electrical device and method for compensating an effect of an electrical current of a load, in particular a led unit, and driver device for driving a load, in particular a led unit
EP2640162A1 (en) * 2012-03-12 2013-09-18 Toshiba Lighting & Technology Corporation Power supply for lighting and luminaire
US8836234B2 (en) 2012-03-12 2014-09-16 Toshiba Lighting & Technology Corporation Power supply for lighting and luminaire
US10790762B2 (en) 2013-05-23 2020-09-29 Adp Corporate Limited Relating to power adaptors
US9736894B2 (en) 2013-12-12 2017-08-15 Verdi Vision Limited Improvements relating to power adaptors
US10015854B2 (en) 2014-07-23 2018-07-03 Philips Lighting Holding B.V. LED driver circuit, LED circuit and drive method
US9420650B2 (en) 2014-11-28 2016-08-16 LSC Lighting Systems (Aust) Pty. Ltd. Circuitry for LED light dimmer
EP3026984A3 (en) * 2014-11-28 2016-06-15 LSC Lighting Systems (Aust) Pty Ltd Circuitry for LED light dimmer

Also Published As

Publication number Publication date
HK1094853A1 (en) 2007-04-13
AU2005246918B2 (en) 2010-04-29
US7872427B2 (en) 2011-01-18
US20080258647A1 (en) 2008-10-23
CN1843061A (en) 2006-10-04
JP2007538378A (en) 2007-12-27
CN100546418C (en) 2009-09-30
KR20070017092A (en) 2007-02-08
EP1752022A1 (en) 2007-02-14
KR101218157B1 (en) 2013-01-03
NZ545325A (en) 2008-08-29
CA2536307A1 (en) 2005-12-01
CA2536307C (en) 2015-07-07
AU2005246918A1 (en) 2005-12-01
MXPA06005602A (en) 2006-08-17

Similar Documents

Publication Publication Date Title
CA2536307C (en) Dynamic snubbing for led lighting converter
US11696379B2 (en) Method and apparatus for determining a target light intensity from a phase-control signal
US9226377B2 (en) Circuit for reducing flicker in a lighting load
US9124171B2 (en) Adaptive current limiter and dimmer system including the same
US10986709B2 (en) Load control device for a light-emitting diode light source having different operating modes
RU2638958C2 (en) Circuit device and led lamp, containing this circuit device
KR102136773B1 (en) Dim-to-Warm Controller for LEDs
US20090273299A1 (en) Apparatus and Method for Controlling the Filament Voltage in an Electronic Dimming Ballast
CA2589464A1 (en) Load control circuit and method for achieving reduced acoustic noise
EP2443910A1 (en) Power interface with leds for a triac dimmer
US20050151486A1 (en) Lamp containing soft-start power supply
KR20200090941A (en) Dim to warm controller for leds

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580000991.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 545325

Country of ref document: NZ

Ref document number: 2005246918

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2536307

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020067003530

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2005749942

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 273/MUMNP/2006

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2005246918

Country of ref document: AU

Date of ref document: 20050519

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005246918

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2007527437

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: PA/a/2006/005602

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 1020067003530

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005749942

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11576671

Country of ref document: US