WO2005113657A1 - ポリオレフィン製微多孔膜 - Google Patents

ポリオレフィン製微多孔膜 Download PDF

Info

Publication number
WO2005113657A1
WO2005113657A1 PCT/JP2005/009157 JP2005009157W WO2005113657A1 WO 2005113657 A1 WO2005113657 A1 WO 2005113657A1 JP 2005009157 W JP2005009157 W JP 2005009157W WO 2005113657 A1 WO2005113657 A1 WO 2005113657A1
Authority
WO
WIPO (PCT)
Prior art keywords
microporous membrane
less
molecular weight
polyolefin
pea
Prior art date
Application number
PCT/JP2005/009157
Other languages
English (en)
French (fr)
Inventor
Yusuke Nagashima
Hidenobu Takeyama
Daisuke Inagaki
Original Assignee
Asahi Kasei Chemicals Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corporation filed Critical Asahi Kasei Chemicals Corporation
Priority to US11/596,844 priority Critical patent/US8104625B2/en
Priority to JP2006513719A priority patent/JP5046640B2/ja
Publication of WO2005113657A1 publication Critical patent/WO2005113657A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/261Polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/0025Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching
    • B01D67/0027Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching by stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/003Organic membrane manufacture by inducing porosity into non porous precursor membranes by selective elimination of components, e.g. by leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/20Plasticizers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/22Thermal or heat-resistance properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/34Molecular weight or degree of polymerisation

Definitions

  • the present invention relates to a microporous membrane widely used as a separation material, selective permeation, and a separator for an electrochemical reaction device such as a battery and a capacitor.
  • the present invention relates to a microporous polyolefin membrane that is suitably used as a separator for a lithium ion battery.
  • Polyolefin microporous membranes are widely used as materials for separating, selectively permeating and separating various substances. Specific examples of applications include microfiltration membranes, fuel cell separators, condenser separators, or base materials for functional membranes for filling functional materials into holes to create new functions, and battery separators. No. In these applications, they are particularly suitably used as separators for lithium-ion batteries in notebook personal computers, mobile phones, digital cameras, and the like. This is because the membrane has pore blocking properties and heat resistance in addition to properties such as mechanical strength and permeability.
  • hole closing property refers to the performance of securing the safety of the battery by melting and closing the hole when the battery inside is overheated in an overcharged state, etc., and shutting off the battery reaction. It is said that the lower the temperature at which the blockage occurs, the higher the effect on safety.
  • heat resistance refers to the ability to maintain the shape in order to maintain insulation between electrodes even at high temperatures. I have.
  • Patent Documents 1 to 3 The applicant of the present invention disclosed in Patent Documents 1 to 3 the use of low-melting-point polyethylene, such as copolymerized polyethylene or low-density polyethylene, as a part or all of the components to improve the pore-blocking properties.
  • the membrane was proposed. With these methods, there is a concern that the pore heat resistance will decrease in the direction of improvement in heat resistance.
  • Patent Documents 4 to 6 propose microporous membranes to which wax is added. Even with these methods, the hole blocking property tends to be improved, and the uniformity of the raw material is deteriorating, so that unmelted material remains and the film quality tends to be poor. Also, these methods are heat resistant It is estimated that deterioration of sex is inevitable.
  • Patent Documents 7 to 9 and Patent Documents 10 to 12 by the present applicant disclose the use of two-stage polymerized polyethylene alone or having a high molecular weight, a single-stage polymerized polyethylene and a low molecular weight! Microporous membranes using blends of synthetic polyethylene have been proposed.
  • the use of two-stage polymerized polyethylene makes it possible to discharge at a high polymer concentration.
  • the heat and heat resistance is insufficient, and the heat shrinkage is high due to insufficient heat fixation.
  • a polyethylene component having a high molecular weight is effective for improving heat resistance
  • a polyethylene component having a low molecular weight is effective for improving pore blocking property.
  • these methods can improve the pore blocking property and the heat resistance to some extent at the same time.
  • the direction of simultaneous improvement of the above performance by these methods is a direction in which the low molecular weight component and the high molecular weight component are separated, so that the uniformity of the raw material is deteriorated and the film quality is not good.
  • Patent Documents 13 and 14 propose microporous membranes composed of high-molecular-weight polyethylene and low-molecular-weight polyethylene, propylene, and low-melting-point polyethylene. These methods also have an effect on pore obstruction.
  • the low melting point component due to the low melting point component, the heat shrinkage stress at high temperatures increases, and it is difficult to homogenize the raw materials, which is not good for film quality. Further, since the low molecular weight component is not sufficiently contained, the heat shrinkage stress at a high temperature tends to increase.
  • Patent Document 1 Japanese Patent No. 3113287
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2003-217554
  • Patent Document 3 JP 2003-231772 A
  • Patent Document 4 JP-A-8-20659
  • Patent Document 5 JP-A-10-17702
  • Patent Document 6 JP-A-11-106533
  • Patent Document 7 Patent No. 2657431
  • Patent Document 8 Patent No. 3009495
  • Patent Document 9 JP-A-11-92587
  • Patent Document 10 Patent No. 2794179
  • Patent Document 11 Patent No. 3305006
  • Patent Document 12 Patent No. 3258737
  • Patent Document 13 Japanese Patent Application Laid-Open No. 2001-72788
  • Patent Document 14 JP 2001-72792 A
  • the present invention improves pore blocking properties, heat-resistant membrane breakage properties, heat shrinkage properties, and high-temperature strength while maintaining membrane quality without deteriorating the properties of conventional microporous polyolefin membranes. It is an object of the present invention to provide a microporous membrane made of polyolefin.
  • the weight ratio of the molecular weight of 10,000 or less is 8 to 60 wt%, the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) MwZMn is 11 or more and 100 or less, and the viscosity average molecular weight (Mv) is 100,000.
  • the essential components are polyethylene (PEA) and polypropylene having a molecular weight of 100,000 or less, a molecular weight of 10,000 or less is 8 to 60 wt%, a porosity is 20 to 95%, and a heat shrinkage at 100 ° C is 10 % Or less, a polyolefin microporous membrane.
  • polyethylene (PEB) having MwZMn of 1 or more and 10 or less and Mv of 10,000 or more and less than 500,000 is an essential component, and is made of polyolefin according to (1).
  • Microporous membrane is an essential component, and is made of polyolefin according to (1).
  • polyethylene having MwZMn of 1 or more and 10 or less and Mv of 500,000 or more and 10,000,000 or less as an essential component, made of polyolefin according to (1).
  • Microporous membrane made of polyolefin according to (1).
  • microporous polyolefin membrane according to any one of (1) to (6) above, wherein the TD heat shrinkage stress at 150 ° C. is 600 kPa or less.
  • the PEA has at least two or more maximum or shoulder peaks in the molecular weight distribution of GPC, and the maximum peak of the PEB is PEA peak X (shows a maximum or shoulder peak in PEA).
  • PEA peak X shows a maximum or shoulder peak in PEA.
  • the microporous membrane made of polyolefin of the present invention has improved pore blocking properties, heat-resistant film breakage properties, heat shrinkage properties, and high-temperature strength as compared with the conventional microporous membrane made of polyolefin. Therefore, battery safety can be improved by using the microporous membrane of the present invention for a battery separator. Further, a polyolefin microporous membrane having such good physical properties can be provided with high quality.
  • the polyolefin microporous membrane of the present invention contains polyethylene (hereinafter sometimes abbreviated as PE) and polypropylene (hereinafter sometimes abbreviated as PP) as essential components, and is formed from a mixture thereof. More preferably, the preferred polyethylene is the primary matrix.
  • PE polyethylene
  • PP polypropylene
  • the molecular weight of 10,000 or less and the ratio MwZMn between the weight average molecular weight (Mw) and the number average molecular weight (Mn) can be determined by GPC measurement.
  • the viscosity average molecular weight (Mv) is calculated from the intrinsic viscosity at 135 ° C. [7?] In a decalin solvent. Mw is a force showing almost the same value as Mv. In this application, Mv was used as a standard for the average molecular weight.
  • PEA and PEB which are polyethylene constituting the microporous polyolefin membrane of the present invention will be described.
  • ⁇ PEA '' refers to a ratio of 8 to 60 wt% of a molecular weight of 10,000 or less, a ratio of Mw to Mn, MwZMn of 11 to 100, and Mv of 100,000 to 1,000,000.
  • ⁇ PEB '' means polyethylene with MwZMn of 1 or more and 10 or less, Mv of 10,000 or more and less than 500,000, or MwZMn of 1 or more and 10 or less and Mv of 500,000 or more Means polyethylene that is less than 10 million.
  • the amount ratio of PEA having a molecular weight of 10,000 or less is 8 wt% or more, preferably 10 wt% or more, particularly preferably 15 wt% or more from the viewpoint of pore blocking property. If the content is 8 wt% or more, not only the pore blocking property is improved but also the microporous membrane itself can rapidly relax the heat shrinkage stress inside the battery that is undergoing a rapid temperature rise, such as overcharge tests and oven tests. It is preferable because it occurs.
  • the amount ratio of PEA having a molecular weight of 10,000 or less is preferably 60% by weight or less, and more preferably 50% by weight or less from the viewpoint of heat shrinkage characteristics!
  • the MwZMn of PEA is 11 or more and 100 or less from the viewpoint of pore blocking property and uniformity with PEB. And preferably 15 or more and 80 or less, more preferably 20 or more and 60 or less.
  • the MV of PEA is 100,000 or more, preferably 150,000 or more, more preferably 300,000 or more, from the viewpoint of uniformity with PEB and polypropylene. Also, it is 1,000,000 or less, preferably 800,000 or less.
  • Such PEA is suitably obtained by multi-stage polymerization, and a two-stage polymerization product is preferable from the viewpoint of good productivity and easy availability.
  • PE obtained by the two-stage polymerization method it is preferable from the viewpoint of productivity that the low-molecular-weight component is polymerized in the first-stage reaction and the high-molecular-weight component is polymerized in the second-stage reaction.
  • PE obtained by connexion to such multi-stage polymerization method has a maximum or shoulder peak in two or more GPC, the peak of the low molecular weight side, the molecular weight 10 3 to 10 5, the peak of the high molecular weight side is 10 It is preferable to have a maximum or shoulder peak at 5 to 10 7 ! / ,.
  • the MwZMn of PEB is 1 or more and 10 or less, and preferably 5 or more and 10 or less from the viewpoint of uniformity with PEA and polypropylene.
  • the Mv of PEB is 10,000 or more and less than 500,000, and preferably 50,000 or more and 300,000 or less in a system in which emphasis is placed on pore closure.
  • Mv of ⁇ is 500,000 or more and 10,000,000 or less, with 700,000 to 7,000,000 being preferred, and 1,000,000 to 5,000,000 being particularly preferred.
  • the maximum peak force of PEB applied PEA peak X (the maximum or shoulder in PEA) It is preferably located between the peak (lower molecular weight side peak) and the peak Y (higher molecular weight peak showing the maximum or shoulder peak in PEA).
  • the shoulder peak includes an inflection point and the like.
  • PEA and PEB can be used.
  • both homopolymers and copolymers can be used.
  • comonomer content is 2 mol 0/0 or less it is more preferably at most preferably instrument 1 mol% instrument 0.6 mol% or less so More preferably, there is.
  • Examples of PEA and PEB polymerization catalysts include Cidara-Natta catalysts, Philips catalysts, and meta-mouth catalysts.
  • the proportion of PEA in the total membrane constituent material is preferably 10% or more, more preferably 20% by weight or more, and particularly preferably 50% by weight or more, from the viewpoints of pore blocking property and film forming property. Further, it is preferably 94 wt% or less, more preferably 90 wt% or less.
  • the proportion of PEB is more preferably 3 wt% or more, more preferably 5 wt% or more, from the viewpoints of pore blocking property, thermal rupture property, and film forming property. Also, 90 wt% or less is preferred, 80 wt% or less is more preferred, and 50 wt% or less is particularly preferred.
  • polypropylene constituting the polyolefin microporous membrane of the present invention one or a plurality of polypropylenes can be used.
  • the Mv of this polypropylene is preferably 150,000 or more from the viewpoint of heat-resistant film breakability, and is preferably 700,000 or less from the viewpoint of film quality.
  • the polypropylene used includes homopolymers, random copolymers and block copolymers.
  • the comonomer (usually ethylene) content in the total polypropylene used is preferably at most 1.5 mol%, more preferably at most 1.0 mol%.
  • the polymerization catalyst for polypropylene to be used is not particularly limited, and examples thereof include Ziegler's Natta-based catalysts and meta-mouthed catalysts. [0017]
  • the proportion of polypropylene in the total film constituting material is preferably 3% by weight or more, more preferably 5% by weight or more, still more preferably 7% by weight or more, from the viewpoint of film rupture resistance.
  • wt% or less is preferable, and from the viewpoint of physical balance between piercing strength and air permeability and film quality, 30 wt% or less is more preferable, and 15 wt% or less is further preferable.
  • the polyolefin microporous membrane of the present invention has a least-squares approximate linear relationship between the common logarithm of the molecular weight M (i) determined by GPCZFTIR and the value of the terminal methyl group concentration C (M (i)). , M (i) in the molecular weight range of 100,000 or more and 1,000,000 or less,
  • Both the molecular weight distribution and the concentration of terminal methyl groups determined by GPCZFTIR measurement are the sum of polyolefins such as polyethylene and polypropylene constituting the microporous membrane of the present invention.
  • the molecular weight M (i) is a molecular weight in terms of polyethylene.
  • the terminal methyl group concentration C (M (i)) is attributed to the absorbance I (— CH) (absorption wave number 2960 cm _1 ) attributed to the methyl group and the methylene group
  • C (M (i)) is the sum of the value for the methyl group at the side chain terminal of the entire polymer and the value for the methyl group at the main chain terminal.
  • the degree of the influence of the side chain methyl group on C (M (i)) in polypropylene is large! / Therefore, the molecular weight distribution of polypropylene in the film is determined from the correlation with M (i) binding (M (i)) You can do it.
  • the constant A be in the range of -0.015 to 2.0 in accordance with the least squares approximation linear relationship between C (M (i)) and logM (i). It is more preferably 0.012 or more and 1.0 or less, still more preferably 0 or more and 0.5 or less.
  • the constant A is smaller than ⁇ 0.015, it means that the low molecular weight component of polypropylene is much larger than the high molecular weight component of polypropylene in the film. Power is also unfavorable. Obtaining a microporous film having a constant A exceeding 2.0 is substantially difficult in terms of film forming properties and the like.
  • the range of the constant B is not particularly limited, but is preferably about -5 to 5 in view of the constant of A. Since polypropylene has a higher melting point than polyethylene, It is known that heat resistance is excellent! / The excellent heat-resistant film rupture characteristics at high temperature rise in the present invention are that this polypropylene is dispersed as a high molecular weight substance and that the polyethylene specified in the present application having both low molecular weight and high molecular weight is effective for stress relaxation. It is considered to be achieved by
  • the ratio of the molecular weight of 10,000 or less in the polyolefin microporous membrane of the present invention is 8 wt% or more, and preferably 10 wt% or more, from the viewpoint of pore blocking property. Further, from the viewpoint of heat shrinkage characteristics, the content is 60 wt% or less, and preferably 50 wt% or less.
  • the Mv of the polyolefin microporous membrane of the present invention is preferably 100,000 or more, more preferably 150,000 or more, from the viewpoints of heat resistance, film strength, and film formability. Further, from the viewpoint of pore blocking property and film forming property, 2,000,000 or less is preferable, 1,000,000 or less is more preferable, and 800,000 or less is more preferable.
  • the porosity of the polyolefin microporous membrane of the present invention is at least 20%, preferably at least 25%, more preferably at least 30%, even more preferably at least 35% from the viewpoint of permeability. That is all. Further, from the viewpoint of film strength, it is 95% or less, preferably 80% or less, more preferably 70% or less, and further preferably 60% or less.
  • the thickness of the polyolefin microporous membrane of the present invention is preferably 3 m or more, more preferably 5 m or more from the viewpoint of the membrane strength. Also, from the viewpoint of permeability, 100 ⁇ m or less is preferred, and 50 ⁇ m or less is more preferred.
  • the air permeability of the polyolefin microporous membrane of the present invention is preferably 1 sec or more, and more preferably 50 sec or more. In addition, from the viewpoint of transparency, 2000 sec or less is preferable.
  • the puncture strength (value at normal temperature, for example, at 25 ° C.) of the microporous membrane made of polyolefin of the present invention is 0.7 to 20.0 N / 20 111, 2.5 to 20.0 N / 20 m force. ⁇ More preferred. If the impact strength is lower than 0.7 ⁇ 20 / ⁇ , when used as a battery separator, sharp parts such as electrode materials will pierce the microporous membrane, and pinholes and cracks are likely to occur.
  • the puncture strength at 140 ° C of the polyolefin microporous membrane of the present invention is preferably 0.5 to 20.0 N / 20 m force, more preferably 0.7 to 20.0 N / 20 m force.
  • the pore closing temperature of the polyolefin microporous membrane of the present invention is determined to ensure safety when the battery is heated. From the viewpoint, under high-speed temperature raising conditions of 20 ° CZmin, 140 ° C or lower is preferable, and 138 ° C or lower is more preferable. Further, the thermal rupture temperature is preferably 175 ° C or higher, more preferably 190 ° C or higher, under a high-speed temperature raising condition of 20 ° CZmin, from the viewpoint of ensuring safety when the battery is heated.
  • the heat shrinkage of the polyolefin microporous membrane of the present invention is 10% or less and preferably 8% or less at 100 ° C from the viewpoint of ensuring safety at the time of battery temperature rise. More preferably less than 6%. Under the conditions of 120 ° C, it is particularly important at the time of temperature rise in recent battery safety tests and the like, and is preferably 25% or less, more preferably 20% or less, and still more preferably 10% or less.
  • the TD heat shrinkage stress after pore closure is also preferably 600 kPa or less at 150 ° C, more preferably 400 kPa or less, and more preferably 150 kPa or less at 150 ° C, from the viewpoint of ensuring safety during battery temperature rise.
  • it is effective to include a component having a molecular weight of 10,000 or less in the entire film at 8 wt% or more. Further, in the heat setting step, satisfying the following conditions is also effective in reducing the heat shrinkage stress.
  • the polyolefin microporous membrane of the present invention has improved high-temperature strength, pore-blocking properties, heat-resistant membrane breakage properties, and heat shrinkage properties as compared with conventional microporous membranes.
  • the microporous membrane of the present invention comprises a polymer material and a plasticizer, or a polymer material, a plasticizer and an inorganic agent, which are melt-kneaded and extruded; stretching and extraction of a plasticizer, or stretching and extraction of a plasticizer, and if necessary, an inorganic material. After performing agent extraction, it can be obtained by heat setting.
  • Examples of the inorganic agent used in the present invention include silica, alumina, titanium oxide, carbonated carbonate, and the like.
  • a plasticizer refers to a non-volatile solvent capable of forming a uniform solution above its melting point when mixed with a polyolefin material.
  • hydrocarbons such as liquid paraffin and paraffin wax, di-2-ethylhexyl phthalate (DOP), diisodecyl phthalate, diheptyl phthalate and the like.
  • the total weight ratio of the plasticizer and the inorganic agent in the whole mixture to be melt-kneaded is preferably 20 to 95 wt% from the viewpoint of the transparency and film forming property of the film, and more preferably 30 to 80 wt%. preferable. From the viewpoint of preventing thermal deterioration during melt-kneading and deterioration of quality due to the deterioration, it is preferable to mix an antioxidant.
  • the concentration of the antioxidant is preferably 0.3 wt% or more, more preferably 0.5 wt% or more, based on the total weight of the polyolefin. Further, it is preferably at most 5.0%, more preferably at most 3.0%.
  • antioxidant a phenol-based antioxidant that is a primary antioxidant is preferable.
  • a secondary acid-proofing agent can be used in combination, and tris (2,4 di-t-butylphenyl) phosphite, tetrakis (2,4-di-t-butylphenyl) -1,4,4
  • examples include phosphorus-based antioxidants such as biphenyl-phosphonite and zeolite-based antioxidants such as dilauriluthiodipropionate.
  • Polyolefins other than the polyethylene and polypropylene specified in the present invention can be used in combination as long as the requirements of the present invention are not impaired.
  • Examples include polyethylene, methylpentene copolymer, cyclic olefin copolymers such as ethylene'tetracyclododecene copolymer and ethylene'norbornene copolymer, and one or more of them may be used together or together.
  • polymers other than polyolefin and other organic materials can be blended within a range that does not impair the film-forming properties and does not impair the requirements and effects of the present invention.
  • additives such as metal lithates such as calcium stearate and zinc stearate, ultraviolet absorbers, light stabilizers, antistatic agents, antifogging agents, and coloring pigments also impair the film-forming properties.
  • metal lithates such as calcium stearate and zinc stearate
  • ultraviolet absorbers such as calcium stearate and zinc stearate
  • antistatic agents such as sodium stearate and zinc stearate
  • coloring pigments also impair the film-forming properties.
  • they can be mixed and used within a range that does not impair the requirements and effects of the present invention.
  • a part or all of the raw materials are preliminarily mixed with a Henschel mixer, a ribbon blender, a tumbler blender or the like as necessary. In the case of a small amount, it may be stirred by hand.
  • a screw extruder such as a single-screw extruder or a twin-screw extruder, an ader, a mixer, or the like, and extruded from a T-shaped annular die.
  • the microporous polyolefin membrane of the present invention is preferably prepared by mixing a starting polymer with an antioxidant at a predetermined concentration, replacing the atmosphere with a nitrogen atmosphere, and performing melt-kneading while maintaining the nitrogen atmosphere.
  • the temperature during melt-kneading is preferably 160 ° C or higher, more preferably 180 ° C or higher. Further, the temperature is preferably lower than 300 ° C, more preferably lower than 240 ° C, and further preferably lower than 230 ° C.
  • the melt in the present application may contain an unmelted inorganic agent that can be extracted in the inorganic agent extraction step. Further, the melt that has been melt-kneaded and homogenized may be passed through a screen to improve the film quality.
  • a melt that is melt-kneaded and extruded is solidified by compression cooling.
  • the cooling method include a method of directly contacting with a cooling medium such as cold air or cooling water, and a method of contacting with a roll or a press cooled by a refrigerant.
  • a method of contacting with a roll or a press machine cooled by a refrigerant is preferable in that the thickness control is excellent.
  • stretching and extraction of a plasticizer or stretching, extraction of a plasticizer and extraction of an inorganic agent are performed.
  • performing the stretching and the extraction of the plasticizer there is an example of a sequence of stretching ⁇ plasticizer extraction, plasticizer extraction ⁇ stretching, stretching ⁇ plasticizer extraction ⁇ stretching, and the like.
  • stretching ⁇ plasticizer extraction ⁇ inorganic agent extraction when performing stretching, plasticizer extraction, and inorganic agent extraction, stretching ⁇ plasticizer extraction ⁇ inorganic agent extraction, plasticizer extraction ⁇ stretching ⁇ inorganic agent extraction, plasticizer extraction ⁇ inorganic agent extraction ⁇ stretching, stretching ⁇ inorganic Agent extraction ⁇ plasticizer extraction, inorganic agent extraction ⁇ stretching ⁇ plasticizer extraction, inorganic agent extraction ⁇ plasticizer extraction ⁇ stretching, stretching ⁇ plasticizer extraction ⁇ stretching ⁇ inorganic agent extraction, stretching ⁇ plasticizer extraction ⁇ inorganic agent extraction ⁇ Stretching is an example of the order. From the viewpoint of extraction efficiency, the extraction of the inorganic agent is preferably performed after the extraction of the plasticizer. Extraction of the inorganic agent may not be performed as necessary.
  • the stretching method used is MD-axial stretching (MD means machine direction) by a roll stretching machine, TD-axial stretching by a tenter (TD means perpendicular to the machine direction), and roll stretching machine. And a tenter, a sequential biaxial stretching by simultaneous combination, a simultaneous biaxial stretching by simultaneous biaxial tenter frame molding and the like. Stretch ratio is the total surface From the viewpoint of film thickness uniformity, 8 times or more is preferable, and 15 times or more is more preferable.
  • the extraction solvent is a poor solvent for the polyolefin constituting the membrane and a good solvent for the plasticizer, and has a boiling point higher than the melting point of the polyolefin constituting the membrane. A lower one is desirable.
  • extraction solvents include hydrocarbons such as n-hexane and cyclohexane, alcohols such as methanol, ethanol and isopropanol, ketones such as acetone and methyl ethyl ketone, ethers such as tetrahydrofuran and salts.
  • Organic solvents such as halogenated hydrocarbons such as methylene chloride, 1,1,1 trichloroethane, and fluorocarbons can be considered. It is appropriately selected from these extraction solvents, and used alone or as a mixture.
  • plasticizer extraction the plasticizer is extracted by immersing the melt-kneaded product in these extraction solvents or showering with the extraction solvent. Then dry thoroughly.
  • a relaxation operation is performed on a stretched sheet in a predetermined temperature atmosphere so as to have a predetermined relaxation rate. It can be performed using a tenter or a roll stretching machine.
  • the relaxation operation is a reduction operation of the membrane to MD, Z or TD.
  • the relaxation rate is the value obtained by dividing the MD dimension of the membrane after the relaxation operation by the MD dimension of the membrane before the operation, or the value obtained by dividing the TD dimension of the membrane after the relaxation operation by the TD dimension of the membrane before the operation. Or, if both MD and TD are mitigated, this is the value obtained by multiplying the MD mitigation rate by the TD mitigation rate.
  • the predetermined temperature is preferably 100 ° C or higher from the viewpoint of the heat shrinkage, and is preferably lower than 135 ° C from the viewpoint of porosity and permeability.
  • the predetermined relaxation rate is preferably 0.9 or less from the viewpoint of the heat shrinkage rate, and more preferably 0.8 or less. Further, it is preferably 0.6 or more from the viewpoints of prevention of wrinkles and porosity and permeability.
  • the mitigation operation may be performed in both the MD and TD directions, but it is possible to reduce the heat shrinkage not only in the operation direction but also in the operation and vertical directions by using only the MD or TD mitigation operation. .
  • surface treatments such as electron beam irradiation, plasma irradiation, surfactant application, and chemical modification can be performed as needed within a range that does not impair the effects of the present invention.
  • M (i) is the molecular weight in terms of polyethylene.
  • C (M (i)) is the absorbance I (— CH) attributed to the methyl group (absorption wave number 2960 cm _ 1 ) and the absorbance 1
  • the constant A can be obtained by performing a least squares linear approximation in the molecular weight range of 100,000 to 1,000,000.
  • Sample preparation 20 mg of the microporous membrane is dissolved in 20 ml of a TCB solution in which 0.1 wt% of 2,6-di-tert-butyl-4-methylphenol is dissolved by heating to 140 ° C.
  • Mv was calculated by the following equation.
  • the Mv of the final film was calculated using the equation for polyethylene.
  • the molar equivalent (A) of the integrated value of the signal intensity derived from the comonomer unit is the sum of (A) and the molar equivalent (B) of the integrated value of the signal intensity derived from the main monomer unit. And multiplied by 100.
  • Porosity (volume mass Z film density) Z volume x 100
  • the maximum piercing load is obtained by performing a piercing test in a 23 ° C atmosphere with a curvature radius of the needle tip of 0.5 mm and a piercing speed of 2 mmZsec using a KAT-G5 handy compression tester manufactured by Kato Tech.
  • the raw piercing strength (N) was obtained.
  • the puncture strength converted to 20 ⁇ m film thickness (NZ20 ⁇ m) was calculated.
  • the microporous membrane is sandwiched between two stainless steel washers with an inner diameter of 13 mm and an outer diameter of 25 mm, fixed, and immersed in silicone oil at 140 ° C (Shin-Etsu-Dagaku Kogyo: KF-96-IOCS) for 60 seconds. .
  • the maximum piercing load is obtained by performing a piercing test using a KES-G5 Handy Compression Tester, made by Kato Tech Co., Ltd., at a needle radius of 0.5 mm and a piercing speed of 2 mmZsec.
  • the raw puncture strength (N) at 140 ° C was obtained. This was multiplied by 20 ( ⁇ m) Z film thickness ( ⁇ m) to calculate a 20 ⁇ m film thickness converted 140 ° C puncture strength (NZ20 ⁇ m).
  • This is set on a hot plate, and the temperature is raised at a rate of 20 ° C.Zmin while a pressure of 1.5 MPa is applied by a hydraulic press.
  • the impedance change at this time is measured with an LCR meter under the conditions of AC IV and 1 kHz.
  • the temperature when the impedance reaches 1000 ⁇ is defined as the hole closing temperature at the time of rapid heating
  • the temperature at the time when the impedance falls below 1000 ⁇ is defined as the thermal rupture temperature at the time of rapid heating.
  • the specified composition ratio of the electrolytic solution is as follows.
  • Solute composition ratio LiBF is dissolved in the above solvent to a concentration of ImolZ liter.
  • MD heat shrinkage (%) (10—MD length after heating) Z10 X 100
  • TD heat shrinkage (%) (10—length of TD after heating) Z10 X 100
  • the measurement was performed using TMA50 (trademark) manufactured by Shimadzu Corporation.
  • a sample cut into a TD with a width of 3 mm is fixed to the chuck so that the distance between the chucks is 10 mm, and set on the dedicated probe.
  • the initial load was 1. Og
  • the temperature of the probe was increased from 30 ° C to 200 ° C at a rate of 10 ° CZmin, and the shrinkage load (g) generated at that time was measured.
  • the heat shrinkage stress was calculated from the load (g) at 150 ° C using the following equation.
  • Heat shrinkage stress (kPa) (150 ° C Shrink load Z (3 X t)) X 100 X 9.807 X 10
  • a molecular weight of 10,000 or less is 31 wt%, MwZMn is 58, Mv is 250,000 homopolymer-polyethylene (PEA) with 250,000, MwZMn is 8 and Mv is 2,000,000 homopolymer-polyethylene (PEB).
  • PEA homopolymer-polyethylene
  • PEB polyethylene
  • 10 wt% of a homopolymer polypropylene having an Mv of 400,000 were dry-blended using a tumbler blender.
  • lwt% of pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] was added as an antioxidant.
  • the mixture was dried and dry-blended again using a tumbler blender to obtain a mixture of polymers and the like. After the obtained mixture of polymers and the like was replaced with nitrogen, the mixture was fed to a twin-screw extruder under a nitrogen atmosphere by a feeder. Liquid paraffin (kinematic viscosity at 37.78 ° C. 7.59 ⁇ 10 ′′ 5 mVs) was injected into the extruder cylinder by a plunger pump.
  • Liquid paraffin kinematic viscosity at 37.78 ° C. 7.59 ⁇ 10 ′′ 5 mVs
  • the feeder and the pump were adjusted so that the liquid paraffin content ratio in the total mixture extruded by melt-kneading was 55 wt%. Melting and kneading were performed at a set temperature of 200 ° C, a screw rotation speed of 240 rpm, and a discharge rate of 12 kgZh. Subsequently, the melt-kneaded product was extruded and cast on a cooling roll controlled at a surface temperature of 25 ° C. through a T-die to obtain a gel sheet having a thickness of 1300 m. Next, it was guided to a simultaneous biaxial tenter stretching machine to perform biaxial stretching.
  • the stretching conditions were set as follows: MD magnification 7.0 times, TD magnification 6.4 times, and set temperature 118 ° C. Next, it was led to a methyl ethyl ketone tank, and was sufficiently immersed in methyl ethyl ketone to extract and remove fluidized noraffin. Thereafter, methyl ethyl ketone was dried and removed. Next, it was led to a TD tenter and heat set. The heat setting temperature was 105 ° C and the TD relaxation rate was 0.66. Table 1 shows the physical properties of the obtained microporous membrane. [Example 2]
  • melt-kneading conditions were the same as in Example 1. Subsequently, the melt-kneaded product was extruded through a T-die onto a cooling roll controlled at a surface temperature of 25 ° C. and cast to obtain a gel sheet having a thickness of 2200 m. Next, it was guided to a simultaneous biaxial tenter stretching machine to perform biaxial stretching.
  • the stretching conditions were as follows: MD magnification 7.0 times, TD magnification 6.4 times, and set temperature 126 ° C.
  • the liquid paraffin was introduced into a methyl ethyl ketone tank, and was sufficiently immersed in methyl ethyl ketone to extract and remove liquid paraffin. Thereafter, methyl ethyl ketone was dried and removed. Next, it was led to a TD tenter and heat-fixed. The heat setting temperature was 120 ° C, and the TD relaxation rate was 0.80. Table 1 shows the physical properties of the obtained microporous membrane.
  • the resulting polymer After replacing the equal mixture with nitrogen, the mixture was supplied to a twin-screw extruder from a feeder under a nitrogen atmosphere. Liquid paraffin (kinematic viscosity at 37.78 ° C, 7.59 X 10 -5 m 2 Zs) was injected into the extruder cylinder by a plunger pump.
  • melt kneading conditions were the same as in Example 1. Subsequently, the melt-kneaded product was extruded through a T-die onto a cooling roll controlled at a surface temperature of 25 ° C, and cast to obtain a gel sheet having a thickness of 1000 m. Next, it was guided to a simultaneous biaxial tenter stretching machine to perform biaxial stretching.
  • the stretching conditions were set as follows: MD magnification 7.0 times, TD magnification 6.4 times, and set temperature 123 ° C.
  • the liquid paraffin was introduced into a methyl ethyl ketone tank, and was sufficiently immersed in methyl ethyl ketone to extract and remove liquid paraffin. Thereafter, methyl ethyl ketone was dried and removed. Next, it was led to a TD tenter and heat-fixed. The heat setting temperature was 112 ° C, and the TD relaxation rate was 0.73. Table 1 shows the physical properties of the obtained microporous membrane.
  • liquid paraffin (kinematic viscosity of 7.59 ⁇ 10 ′′ 5 mVs at 37.78 ° C.) was additionally injected into the extruder cylinder by a plunger pump.
  • melt-kneading conditions were the same as in Example 1.
  • melt-kneaded product was extruded through a T-die onto a cooling roll controlled at a surface temperature of 25 ° C. and cast to obtain a 1500 m-thick gel sheet.
  • a simultaneous biaxial tenter stretching machine was guided to perform biaxial stretching.
  • the set stretching conditions were the same as in Example 3. .
  • the liquid paraffin was guided to a methyl ethyl ketone tank, and was sufficiently immersed in methyl ethyl ketone to extract and remove liquid paraffin. Thereafter, methyl ethyl ketone was dried and removed. Further, the mixture was led to a caustic soda tank to extract and remove silica, washed, and dried. Next, it was led to a TD tenter and heat-fixed. The heat setting temperature and the TD relaxation rate were the same as in Example 3. Table 1 shows the physical properties of the obtained microporous membrane.
  • Example 2 90% by weight of PEA as in Example 1 and 10% by weight of polypropylene as in Example 1 were dry-blended using a tumbler blender. 99% by weight of the obtained pure polymer mixture was added with lwt% of pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] as an antioxidant. Then, dry blending was again performed using a tumbler blender to obtain a mixture of polymers and the like. After the obtained mixture of polymers and the like was replaced with nitrogen, the mixture was supplied to a twin-screw extruder from a feeder under a nitrogen atmosphere. Liquid paraffin (kinematic viscosity at 37.78 ° C, 7.59 X 10 -5 m 2 Zs) was injected into the extruder cylinder by a plunger pump.
  • Liquid paraffin kinematic viscosity at 37.78 ° C, 7.59 X 10 -5 m 2 Z
  • PEA high-density polyethylene
  • pentaerythrityl-tetrakis [3- (3,5-di-t-butyl 4-hydroxyphenyl) propionate] was added as an antioxidant in an amount of lwt%, and the mixture was added again.
  • a tumbler blender By dry blending using a tumbler blender, a mixture such as a polymer was obtained.
  • the resulting mixture of polymers and the like was replaced with nitrogen, and then supplied to a twin-screw extruder under a nitrogen atmosphere by a feeder.
  • Fluid norafin 37.78 ° C kinematic viscosity at 7.59 ⁇ 10 -5 m 2 / s) was injected into the extruder cylinder by a plunger pump.
  • the feeder and the pump were adjusted so that the liquid paraffin content ratio in the total mixture extruded by melt kneading was 55 wt%. Melting and kneading were performed at a set temperature of 200 ° C, a screw rotation speed of 240 rpm, and a discharge rate of 12 kgZh. Subsequently, the melt-kneaded product was extruded and cast on a cooling roll controlled at a surface temperature of 25 ° C. through a T-die to obtain a gel sheet having a thickness of 2100 m. Next, it was guided to a simultaneous biaxial tenter stretching machine to perform biaxial stretching.
  • the stretching conditions were set as follows: MD magnification 7.0 times, TD magnification 6.4 times, and set temperature 118 ° C. Next, it was led to a methyl ethyl ketone tank, and was sufficiently immersed in methyl ethyl ketone to extract and remove fluidized noraffin. Thereafter, methyl ethyl ketone was dried and removed. Next, it was led to a TD tenter and heat set. The heat setting temperature was 105 ° C and the TD relaxation rate was 0.80. Table 1 shows the physical properties of the obtained microporous membrane.
  • a homopolymer with a molecular weight of 10,000 or less of 15 wt%, MwZMn of 43 and a Mv of 700,000 homopolymer polyethylene (PEA) of 75 wt%, and a high-density homopolyethylene with MwZMn force M and Mv of 300,000 (PEB) 15 wt% and Mv 400,000 homopolymer polypropylene 10 wt% were dry-blended using a tumbler blender. 99% by weight of the obtained pure polymer mixture was added with 1% by weight of pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] as an antioxidant.
  • melt-kneaded product was extruded and cast on a cooling roll controlled at a surface temperature of 25 ° C. through a T-die to obtain a gel sheet having a thickness of 2100 m.
  • a simultaneous biaxial tenter stretching machine was guided to perform biaxial stretching.
  • the stretching conditions were set as follows: MD magnification 7.0 times, TD magnification 6.4 times, and set temperature 118 ° C.
  • MwZMn 43, Mv is 700,000 homopolymer of PE (PEA) is 30wt%, MwZMn force is wt, and Mv is 300,000.
  • PEB 15 wt%, Mv 400,000 400,000 homopolymer polypropylene 5 wt%, dioctyl phthalate (DOP) 30.6 wt%, finely divided silica 18.4 wt%, pentaerythrityl-tetra as antioxidant Kiwt [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] was added at lwt% and mixed. After the resulting mixture of polymers and the like was replaced with nitrogen, the mixture was supplied to a twin-screw extruder by a feeder under a nitrogen atmosphere.
  • melt kneading was performed at a set temperature of 200 ° C, a screw rotation speed of 240 rpm, and a discharge rate of 12 kgZh. Subsequently, the melt-kneaded product was extruded through a T-die onto a cooling roll controlled at a surface temperature of 80 ° C. and cast to obtain a gel sheet having a thickness of 110 m. DOP and finely divided silica were extracted and removed from this gel sheet to obtain a microporous membrane. The two microporous membranes were stacked and stretched 5 times in the longitudinal direction at 110 ° C, then guided to a TD tenter, and stretched 2 times in the transverse direction at 130 ° C. Thereafter, the TD mitigation rate was set at 0.80. Table 1 shows the physical properties of the resulting microporous membrane.
  • Molecule with a molecular weight of 10,000 or less is 20wt%, MwZMn is 43, Mv is 550,000, homopolymer polyethylene (PEA) is 75wt%, MwZMn is 6, and Mv is 120,000.
  • 15 wt% of a hexene copolymer (hexene content 2 mol%) (PEB) and 10 wt% of an Mv 400,000 homopolymer polypropylene were drive blended using a tumbler blender.
  • pentaerythrityl-tetrakis [3- (3,5-di-t-butyl 4-hydroxyphenyl) propionate] was added as an antioxidant by lwt%.
  • the feeder and the pump were adjusted so that the liquid paraffin content ratio in the total mixture extruded by melt kneading was 55 wt%. Melting and kneading were performed at a set temperature of 200 ° C, a screw rotation speed of 240 rpm, and a discharge rate of 12 kgZh. Subsequently, the melt-kneaded product was extruded through a T-die onto a cooling roll controlled at a surface temperature of 25 ° C, and cast to obtain a gel sheet having a thickness of 2000 m. Next, it was guided to a simultaneous biaxial tenter stretching machine to perform biaxial stretching.
  • the stretching conditions were set as follows: MD magnification 7.0 times, TD magnification 6.4 times, and set temperature 115 ° C. Next, it was led to a methyl ethyl ketone tank, and was sufficiently immersed in methyl ethyl ketone to extract and remove fluidized noraffin. Thereafter, methyl ethyl ketone was dried and removed. Next, it was led to a TD tenter and heat set. The heat setting temperature was 110 ° C and the TD relaxation rate was 0.70. Table 1 shows the physical properties of the obtained microporous membrane.
  • MwZMn 7 and Mv is 270,000 homopolymer polyethylene, 85wt%, and MwZMn is 9 and Mv is 3,000,000, homopolymer polyethylene is 15wt%.
  • melt-kneading conditions were the same as in Example 1.
  • melt-kneaded product was extruded and cast on a cooling roll controlled at a surface temperature of 25 ° C. through a T-die to obtain a gel sheet having a thickness of 2100 / zm.
  • a simultaneous biaxial tenter stretching machine was guided to perform biaxial stretching.
  • the set stretching conditions were the same as in Example 6.
  • a molecular weight of 10,000 or less is 15 wt%, MwZMn is 7 and Mv is 100,000 homopolymer polyethylene is 70 wt%, MwZMn is 9 and Mv is 3 million homopolymer polyethylene is 20 wt%, Dry blending of 10 wt% of homopolymer polypropylene of Mv 400,000 was performed using a tumbler blender. 99% by weight of the obtained pure polymer mixture was added with lwt% of pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] as an antioxidant. By dry blending again using a tumbler blender, a mixture of polymers and the like was obtained.
  • the resulting mixture of polymers and the like was replaced with nitrogen, and then supplied to a twin-screw extruder under a nitrogen atmosphere by a feeder.
  • Liquid paraffin (Kinematic viscosity at 37.78 ° C 7.59 X 10 _5 m 2 Zs) was added to the extruder The solution was injected into the container with a plunger pump.
  • melt kneading conditions were the same as in Example 1.
  • melt-kneaded product was extruded and cast through a T-die onto a cooling roll controlled at a surface temperature of 25 ° C to obtain a gel sheet having a thickness of 1200 m.
  • a simultaneous biaxial tenter stretching machine was guided to perform biaxial stretching.
  • the set stretching conditions were the same as in Example 1.
  • MwZMn 7
  • Mv 2,000,000 homopolymer polyethylene 30wt%
  • Mw / Mn 6
  • Mv 300,000 homopolymer high density polyethylene 40wt%
  • Mw / Mn force S3 Mv
  • Mv was dried using a tumbler blender with 10% by weight of a 70,000 ethylene-otaten copolymer (otaten content: 12.Omol%, melting point: 100 ° C) and 20% by weight of a homopolymer polypropylene having an Mv of 400,000. Blended. Subsequent operations were performed in the same manner as in Comparative Example 4 except that the heat setting temperature was set to 120 ° C. Numerous defects were observed in the obtained microporous membrane, and the quality required for a battery separator was not satisfied. Table 1 shows the physical properties of the obtained microporous membrane.
  • the olefin microporous membrane of the present invention is used as a material for separating, selectively permeating, isolating, and the like, and is particularly suitable as a separator for lithium ion batteries and the like. used.
  • FIG. 1 is a diagram exemplifying the relationship between the molecular weight distributions of desirable PEA and PEB that can be used in the present invention.
  • FIG. 2 is a cell diagram used for measurement of pore blockage and thermal rupture temperature during rapid temperature rise.
  • FIG. 3 shows a measurement device used for measuring hole blockage and thermal rupture temperature during rapid temperature rise.

Abstract

 本発明によれば、分子量1万以下の量比が8~60wt%で、重量平均分子量(Mw)と数平均分子量(Mn)との比Mw/Mnが11以上100以下、粘度平均分子量(Mv)が10万以上100万以下であるポリエチレン(PEA)と、ポリプロピレンとを含み、分子量1万以下の量比が8~60wt%、気孔率が20~95%で、100°Cの熱収縮率が10%以下である、ポリオレフィン製微多孔膜が提供される。

Description

明 細 書
ポリオレフイン製微多孔膜
技術分野
[0001] 本発明は、物質の分離、選択透過、及び電池やコンデンサーなど電気化学反応装 置の隔離材等として広く使用されている微多孔膜に関する。特に本発明は、リチウム イオン電池用セパレータとして好適に使用される、ポリオレフイン製微多孔膜に関す る。
背景技術
[0002] ポリオレフイン製微多孔膜は、種々の物質の分離、選択透過及び隔離材等として広 く用いられている。具体的な用途例としては、精密ろ過膜、燃料電池用、コンデンサ ー用セパレータ、または機能材を孔の中に充填させ新たな機能を出現させるための 機能膜の母材、電池用セパレータなどが挙げられる。これらの用途において、ノート 型パーソナルコンピュータや携帯電話、デジタルカメラなどのリチウムイオン電池用の セパレータとして、特に好適に使用されている。その理由としては、膜の機械強度や 透過性のような特性に加えて、孔閉塞性と耐熱性を有して ヽることが挙げられる。 ここで言う孔閉塞性とは、電池内部が過充電状態などで過熱した時に、溶融して孔 閉塞し、電池反応を遮断することにより、電池の安全性を確保する性能のことであり、 孔閉塞の生じる温度は低いほど、安全性への効果は高いとされている。また、ここで 言う耐熱性とは、高温下でも電極間の絶縁を維持するために形状を保持する性能の ことであり、高温下で低熱収縮応力であること、破膜しないことが求められている。
[0003] 本出願人は、特許文献 1〜3で、共重合ポリエチレンや低密度ポリエチレンなど、低 融点のポリエチレンを、一部或いは全ての成分として使用することにより、孔閉塞性を 改善した微多孔膜を提案した。これらの方法では、孔閉塞性については改善の方向 にある力 耐熱性については低下することが懸念された。
特許文献 4〜6では、ワックスを添加した微多孔膜が提案されている。これらの方法 でも、孔閉塞性については改善の方向にある力 原料の均一性が悪くなるため、未 溶融物が残存するなど膜品位には良くない方向である。また、これらの方法では耐熱 性の悪化も避けられな 、と推定される。
[0004] 特許文献 7〜9で、また本出願人による特許文献 10〜12では、二段重合ポリェチ レンの単独使用、或いは分子量の高!、単段重合ポリエチレンと分子量の低!、単段重 合ポリエチレンのブレンド使用による微多孔膜が提案されている。前者では、二段重 合ポリエチレンを使用することで高ポリマー濃度での吐出を可能としている力 耐熱 性が不充分であり、更に熱固定が不充分であるため熱収縮率が高いことが推定され る。一方、後者では、分子量の高いポリエチレン成分は耐熱性改善に効果的であり、 分子量の低いポリエチレン成分は孔閉塞性改善に効果的である。そのため、これら の方法では、孔閉塞性と耐熱性をある程度同時に改善することが可能である。しかし 、これらの方法による上記性能の同時改善方向は、低分子量成分と高分子量成分が 乖離方向であるため、原料の均一性が悪くなり、膜品位には良くない方向である。
[0005] 更に特許文献 13、 14では、高分子量ポリエチレンと低分子量ポリエチレン、ポリプ ロピレン、及び低融点ポリエチレンとからなる微多孔膜が提案されている。これらの方 法でも孔閉塞性には効果が見られる。しかし、低融点成分により高温での熱収縮応 力が大きくなつたり、原料の均一化が困難で、膜品位にはよくない方向である。また、 低分子量成分を十分に含まない為、高温での熱収縮応力が高くなる傾向にある。 特許文献 1:特許 3113287号公報
特許文献 2:特開 2003— 217554号公報
特許文献 3 :特開 2003— 231772号公報
特許文献 4:特開平 8 - 20659号公報
特許文献 5 :特開平 10— 17702号公報
特許文献 6:特開平 11― 106533号公報
特許文献 7:特許 2657431号公報
特許文献 8:特許 3009495号公報
特許文献 9:特開平 11― 92587公報
特許文献 10:特許 2794179号公報
特許文献 11:特許 3305006号公報
特許文献 12:特許 3258737号公報 特許文献 13:特開 2001— 72788号公報
特許文献 14:特開 2001— 72792号公報
発明の開示
発明が解決しょうとする課題
[0006] 本発明は、従来のポリオレフイン製微多孔膜が有する特性を低下させることなぐま た膜品位を保持しつつ、孔閉塞性、耐熱破膜性、熱収縮特性、及び高温強度を改 善したポリオレフイン製微多孔膜を提供することを目的とする。
課題を解決するための手段
[0007] 前記課題は本発明により初めて解決されたものである。即ち、本発明の構成は、下 記の通りである。
(1)分子量 1万以下の量比が 8〜60wt%で、重量平均分子量 (Mw)と数平均分子 量 (Mn)との比 MwZMnが 11以上 100以下、粘度平均分子量 (Mv)が 10万以上 1 00万以下であるポリエチレン (PEA)とポリプロピレンとを必須成分とし、分子量 1万 以下の量比が 8〜60wt%、気孔率が 20〜95%で、 100°Cの熱収縮率が 10%以下 である、ポリオレフイン製微多孔膜。
(2)前記(1)記載の PEAおよびポリプロピレンに加え、 MwZMnが 1以上 10以下、 Mvが 1万以上 50万未満であるポリエチレン (PEB)を必須成分とする、前記( 1)記載 のポリオレフイン製微多孔膜。
(3)前記(1)記載の PEAおよびポリプロピレンに加え、 MwZMnが 1以上 10以下、 Mvが 50万以上 1000万以下であるポリエチレン (PEB)を必須成分とする、前記(1) 記載のポリオレフイン製微多孔膜。
(4) GPCZFTIRより求められる分子量 M (i)の常用対数値と、末端メチル基濃度 C ( M (i) )の値との最小二乗法近似直線関係力 M (i) 10万以上 100万以下の分子量 範囲において、
C (M (i) ) =A X log (M (i) ) +B (A、Bは定数)
-0. 015≤A≤2. 000
である、前記(1)〜(3)の 、ずれか 1項に記載のポリオレフイン製微多孔膜。
(5) 120°Cの熱収縮率が 25%以下である、前記(1)〜(4)のいずれか 1項に記載の ポリオレフイン製微多孔膜。
(6) 120°Cの熱収縮率が 20%以下である、前記(1)〜(4)のいずれか 1項に記載の ポリオレフイン製微多孔膜。
(7) 150°Cにおける TD熱収縮応力が 600kPa以下である、前記(1)〜(6)のいずれ 力 1項に記載のポリオレフイン製微多孔膜。
(8)前記 PEAが、多段重合法によって得られるポリエチレンである、前記(1)〜(7) の!、ずれか 1項に記載のポリオレフイン製微多孔膜。
(9)前記 PEAが、 GPCの分子量分布において、少なくとも二つ以上の極大もしくは ショルダーピークを有し、かつ前記 PEBの極大ピークが、 PEAのピーク X (PEAにお ける、極大もしくはショルダーピークを示す低分子量側のピーク)とピーク Y (PEAに おける、極大もしくはショルダーピークを示す高分子量側のピーク)の間に位置する、 前記(2)または(3)に記載のポリオレフイン製微多孔膜。
(10) 120°Cの熱収縮率が 25%以下である、前記(9)記載のポリオレフイン製微多孔 膜。
(11) 120°Cの熱収縮率が 20%以下である、前記(9)記載のポリオレフイン製微多孔 膜。
(12) 150°Cにおける TD熱収縮応力が 600kPa以下である、前記(9)記載のポリオ レフイン製微多孔膜。
(13)前記 PEAが、多段重合法によって得られるポリエチレンである、前記(9)記載 のポリオレフイン製微多孔膜。
(14)ポリマー材料と可塑剤、或いはポリマー材料と可塑剤と無機剤とを溶融混練し 押出す工程;
延伸と可塑剤抽出、或いは延伸と可塑剤抽出と、必要に応じて無機剤抽出を実施 した後に、熱固定する工程;
を含む、前記(1)〜(13)の 、ずれか 1項に記載のポリオレフイン製微多孔膜の製 造方法。
(15) 100°C以上 135°C未満の温度にて 0. 6〜0. 9の緩和率で熱固定を行う、前記 (14)記載のポリオレフイン製微多孔膜の製造方法。 発明の効果
[0008] 本発明のポリオレフイン製微多孔膜は、従来のポリオレフイン製微多孔膜と比較して 、孔閉塞性、耐熱破膜性、熱収縮特性、及び高温強度が改善されている。そのため 、本発明の微多孔膜を電池セパレータに使用することにより、電池安全性を改善する ことが可能である。さらに、そのような良好な物性のポリオフィン製微多孔膜を高品位 で提供することができる。
発明を実施するための最良の形態
[0009] 以下に本発明を詳述する。本発明のポリオレフイン製微多孔膜は、ポリエチレン (以 下、 PEと略することもある)とポリプロピレン (以下、 PPと略することもある)を必須成分 としており、それらの混合物より形成されていることが好ましぐポリエチレンが主要マ トリタスであることがさらに好ましい。
分子量 1万以下の量比及び重量平均分子量 (Mw)と数平均分子量 (Mn)との比 MwZMnは、 GPC測定によって求められる。また粘度平均分子量 (Mv)は、デカリ ン溶媒における 135°Cでの極限粘度 [ 7? ]を求めること〖こより算出される。 Mwは Mvと ほぼ同一の値を示す力 本願では平均分子量の規定として Mvを用いた。
[0010] 本発明のポリオレフイン製微多孔膜を構成するポリエチレンである PEA及び PEBに ついて説明する。上述のように、本明細書において、「PEA」とは、分子量 1万以下の 量比が 8〜60wt%で、 Mwと Mnとの比 MwZMnが 11以上 100以下、 Mvが 10万 以上 100万以下であるポリエチレンを意味し、一方、「PEB」とは、 MwZMnが 1以 上 10以下、 Mvが 1万以上 50万未満であるポリエチレン、あるいは MwZMnが 1以 上 10以下、 Mvが 50万以上 1000万以下であるポリエチレンを意味する。
PEAの分子量 1万以下の量比は、孔閉塞性の観点より 8wt%以上であり、 10wt% 以上であることが好ましぐ特に好ましくは 15wt%以上である。 8wt%以上であると、 孔閉塞性が向上されるだけでなぐ例えば過充電試験やオーブン試験等、急激な温 度上昇下にある電池内部において、微多孔膜自らの熱収縮応力の緩和が速やかに 起こる為、好ましい。一方、 PEAの分子量 1万以下の量比は、熱収縮特性の観点より 60wt%以下であり、 50wt%以下であることが好まし!/、。
[0011] PEAの MwZMnは、孔閉塞性及び PEBとの均一性の観点より 11以上 100以下 であり、好ましくは 15以上 80以下、更に好ましくは 20以上 60以下である。 PEAの M Vは、 PEB及びポリプロピレンとの均一性の観点より 10万以上であり、 15万以上が好 ましぐ 30万より大きいことがさらに好ましい。また、 100万以下であり、 80万以下であ ることが好ましい。このような PEAは多段重合によって好適に得られ、生産性の良さ 及び入手の容易性の観点より二段重合品が好ましい。二段重合法によって得られる このような PEは、一段目の反応で低分子量成分を重合し、二段目の反応で高分子 量成分を重合することが、生産性の面でも好ましい。また、このような多段重合法によ つて得られる PEは、二つ以上の GPCにおける極大もしくはショルダーピークを有し、 低分子量側のピークが分子量 103〜105、高分子量側のピークが 105〜107に極大も しくはショルダーピークを持つことが好まし!/、。
[0012] PEBの MwZMnは、 PEA及びポリプロピレンとの均一性の観点より 1以上 10以下 であり、 5以上 10以下が好ましい。 PEBの Mvは、孔閉塞性を重視する系では、 1万 以上 50万未満であり、好ましくは 5万以上 30万以下である。一方、熱破膜性、高温 での強度を重視する系では、 ΡΕΒの Mvは 50万以上 1000万以下であり、 70万以上 700万以下が好ましぐ 100万以上 500万以下が特に好ましい。これらの PEBは単 段重合によって好適に得られる。
[0013] また、 PEAが GPCの分子量分布において、少なくとも二つ以上の極大もしくはショ ルダーピークを有する場合は、たとえば図 1の様に加える PEBの極大ピーク力 PEA のピーク X (PEAにおける、極大もしくはショルダーピークを示す低分子量側のピーク )とピーク Y (PEAにおける、極大もしくはショルダーピークを示す高分子量側のピー ク)の間に位置することが好ましい。なぜなら、従来の低分子量 PEと高分子量 PEとの ブレンド系ないし、二段重合 PE単品からなる微多孔膜と比較して、低熱収縮応力で 、膜の強度が高くなるためである。この場合のショルダーピークとは、変曲点なども含 む。
[0014] PEA、 PEB共に、それぞれ 1種類以上を用いることができる。また、 、ずれのポリエ チレンについても、ホモポリマー、コポリマーいずれも使用可能である。コポリマーの ポリエチレンを選択する場合、熱収縮特性の観点より、コモノマーの含量は 2モル0 /0 以下であることが好ましぐ 1モル%以下であることがより好ましぐ 0. 6モル%以下で あることがさらに好ましい。コモノマーとしては、プロピレン、 1—ブテン、 1—ペンテン 、 1—へキセン、 4—メチル 1—ペンテン、 1—オタテン、 1—デセン、 1—ドデセン、 1ーテトラデセン、 1一へキサデセン、 1ーォクタデセン、及び 1 エイコセンなどの α —ォレフィンコモノマーや、シクロペンテン、シクロへキセン、シクロヘプテン、ノルボ ルネン、 5—メチルー 2 ノルボルネン、テトラシクロドデセン、及び 2—メチルー 1. 4 , 5. 8 ジメタノ— 1, 2, 3, 4, 4a, 5, 8, 8a—ォクタヒドロナフタレンなどの環状ォレ フィンコモノマーや、一般式 CH =CHR (式中 Rは炭素数 6
2 〜20のァリール基である
。)で表わされるスチレン、ビュルシクロへキサン等の化合物や、 1, 3 ブタジエン、 1 , 4 ペンタジェン、 1, 5 へキサジェン、 1, 4一へキサジェン、 1, 6—ォクタジェン 、 1, 7—ォクタジェン及びシクロへキサジェンなど炭素数 4〜20の直鎖状、分岐状ま たは環状のジェンなどが挙げられる。 aーォレフィンコモノマーが特に好ましい。 また、 PEA及び PEBの重合触媒としては、チーダラ一'ナッタ系触媒、フィリップス 系触媒、メタ口セン触媒などが挙げられる。
[0015] PEAの全膜構成材料に占める割合は、孔閉塞性と製膜性の観点より、 10^%以 上が好ましぐ 20wt%以上が更に好ましぐ 50wt%以上が特に好ましい。また、 94 wt%以下が好ましぐ 90wt%以下がさらに好ましい。 PEBの割合は、孔閉塞性と熱 破膜性、製膜性の観点より、 3wt%以上が好ましぐ 5wt%以上がさらに好ましい。ま た、 90wt%以下が好ましぐ 80wt%以下がより好ましぐ 50wt%以下が特に好まし い。
[0016] 本発明のポリオレフイン製微多孔膜を構成するポリプロピレンとしては、 1種類或い は複数のポリプロピレンを使用することが出来る。このポリプロピレンの Mvは、耐熱破 膜性の観点から 15万以上であることが好ましぐ膜品位の観点から 70万以下である ことが好ましい。
使用するポリプロピレンとしては、ホモポリマー、ランダムコポリマー、ブロックコポリ マーが挙げられる。使用する全ポリプロピレンにおけるコモノマー(通常はエチレン) 含量は 1. 5モル%以下であることが好ましぐ 1. 0モル%以下であることがさらに好ま しい。使用するポリプロピレンの重合触媒には特に制限はなぐチーグラー'ナッタ系 の触媒やメタ口セン系の触媒などが挙げられる。 [0017] ポリプロピレンの全膜構成材料に占める割合は、耐破膜性の観点から 3wt%以上 が好ましぐ 5wt%以上がより好ましぐ 7wt%以上がさらに好ましい。また、製膜性の 観点から 50wt%以下が好ましぐ突刺強度と透気度との物性バランス及び膜品位の 観点から 30wt%以下がより好ましぐ 15wt%以下がさらに好ましい。
[0018] 本発明のポリオレフイン製微多孔膜は、 GPCZFTIRより求められる分子量 M (i)の 常用対数値と、末端メチル基濃度 C (M (i) )の値との最小二乗法近似直線関係が、 M (i) 10万以上 100万以下の分子量範囲において、
C (M (i) ) =A X log (M (i) ) +B (A、Bは定数)
-0. 015≤A≤2. 000
であることが好ましい。
[0019] GPCZFTIR測定で求められる分子量分布と末端メチル基濃度は、いずれも本発 明の微多孔膜を構成するポリエチレンとポリプロピレンなどポリオレフインの合算値と なる。分子量 M (i)はポリエチレン換算分子量である。末端メチル基濃度 C (M (i) )は 、メチル基に帰属される吸光度 I (— CH ) (吸収波数 2960cm_1)とメチレン基に帰属
3
される吸光度 I (— CH―) (吸収波数 2925cm_ 1)との比 I (— CH ) Z I (— CH -)
2 3 2 として定義する。ここで、 C (M (i) )は全ポリマーの側鎖末端のメチル基についての値 と主鎖末端のメチル基にっ 、ての値との和となる。ポリプロピレンにおける側鎖メチル 基の C (M (i) )への影響度合いは大き!/、ため、 M (i)とじ(M (i) )との相関より、膜中の ポリプロピレンの分子量分布を判断することが出来る。
[0020] 本発明では、 C (M (i) )の logM (i)との最小二乗法近似直線関係にぉ 、て定数 A がー 0. 015以上 2. 0以下にあることが好ましぐより好ましくは 0. 012以上 1. 0以 下、さらに好ましくは 0以上 0. 5以下である。定数 Aが— 0. 015より小さいことは、膜 中にお 、て、ポリプロピレンの低分子量成分がポリプロピレンの高分子量成分と比較 して非常に多いことを意味し、これは耐熱破膜性の観点力も好ましくない。定数 Aが 2 . 0を越える微多孔膜を得ることは成膜性等の観点力も実質上困難である。また、定 数 Bの範囲については特に限定はしないが、 Aの定数上、—5から 5程度が好ましい ポリプロピレンはポリエチレンと比較して高い融点を有しているため、その成形体の 耐熱性は優れて 、ることが知られて!/、る。本発明における優れた高速昇温時の耐熱 破膜特性は、このポリプロピレンが高分子量体として分散していることと、低分子量と 高分子量を併せ持つ本願に規定のポリエチレンが応力緩和に有効であること、により 達成されて 、ると考えられる。
[0021] 本発明のポリオレフイン製微多孔膜における分子量 1万以下の量比は、孔閉塞性 の観点より 8wt%以上であり、 10wt%以上であることが好ましい。また、熱収縮特性 の観点より 60wt%以下であり、 50wt%以下であることが好ましい。
本発明のポリオレフイン製微多孔膜の Mvは、耐熱性、膜強度、及び製膜性の観点 より 10万以上が好ましぐ 15万以上がさらに好ましい。また、孔閉塞性、製膜性の観 点より 200万以下が好ましぐ 100万以下がより好ましぐ 80万以下がさらに好ましい
[0022] 本発明のポリオレフイン製微多孔膜の気孔率は、透過性の観点から 20%以上であ り、好ましくは 25%以上であり、より好ましくは 30%以上であり、さらに好ましくは 35% 以上である。また、膜強度の観点から 95%以下であり、好ましくは 80%以下であり、 より好ましくは 70%以下であり、さらに好ましくは 60%以下である。
本発明のポリオレフイン製微多孔膜の厚みは、膜強度の観点より 3 m以上が好ま しく、 5 m以上がより好ましい。また、透過性の観点より 100 μ m以下が好ましぐ 50 m以下がより好ましい。
[0023] 本発明のポリオレフイン製微多孔膜の透気度は、 lsec以上が好ましぐ 50sec以上 力 Sさらに好ましい。また、透過性の観点から 2000sec以下が好ましぐ lOOOsec以下 力 Sさらに好ましい。
本発明のポリオレフイン製微多孔膜の突刺強度(常温、例えば 25°Cでの値)は、 0. 7〜20. 0N/20 111カ 子ましく、 2. 5〜20. 0N/20 m力 ^さらに好ましい。突朿 lj 強度が 0. 7ΝΖ20 /ζ πιより低いと、電池セパレータとして使用される場合、電極材等 の鋭利部が微多孔膜に突き刺さり、ピンホールや亀裂が発生しやすくなる。
本発明のポリオレフイン製微多孔膜の 140°Cでの突刺強度は、 0. 5〜20. 0N/2 0 m力好ましく、 0. 7〜20. 0N/20 m力さらに好ましい。
[0024] 本発明のポリオレフイン製微多孔膜の孔閉塞温度は、電池昇温時の安全性確保の 観点から、 20°CZminの高速昇温条件下において、 140°C以下が好ましぐ 138°C 以下がさらに好ましい。また、熱破膜温度は、電池昇温時の安全性確保の観点から、 20°CZminの高速昇温条件下において、 175°C以上が好ましぐ 190°C以上がさら に好ましい。
[0025] 本発明のポリオレフイン製微多孔膜の熱収縮率は、電池昇温時の安全性確保の観 点から、 100°C条件において、 10%以下であり、 8%以下であることが好ましぐより 好ましくは 6%以下である。 120°C条件においては、近年の電池安全試験などの昇 温時には特に重要であり、 25%以下が好ましぐより好ましくは 20%以下、更に好ま しくは 10%以下である。また、孔閉塞後の TD熱収縮応力も、電池昇温時の安全性 確保の観点から、 150°Cにおいて、破膜することなぐ 600kPa以下が好ましぐ 400 kPa以下がより好ましぐ 150kPa以下が更に好ましぐ 120kPa以下が特に好ましい 。このような熱収縮応力を発現させるためには、膜全体の分子量 1万以下の成分を 8 wt%以上含有させることが効果的である。更に、熱固定工程において、後述のような 条件を満たすことも、熱収縮応力を低減させる上で効果的である。
このように、本発明のポリオレフイン製微多孔膜では、高温強度、孔閉塞性、耐熱破 膜性、及び熱収縮特性が、従来の微多孔膜よりも改善されている。
[0026] 次に、本発明の微多孔膜の製造方法の好ましい例を説明する。
本発明の微多孔膜は、ポリマー材料と可塑剤、或いはポリマー材料と可塑剤と無機 剤とを溶融混練し押出し;延伸と可塑剤抽出、或いは延伸と可塑剤抽出と、必要に応 じて無機剤抽出を実施した後に、熱固定することによって得ることができる。
本発明で使用される無機剤としては、例えばシリカ、アルミナ、酸化チタン、炭酸力 ルシゥムなどが挙げられる。
ここで言う可塑剤は、ポリオレフイン材料と混合した際に、その融点以上において均 一溶液を形成しうる不揮発性溶媒を指す。例えば、流動パラフィンやパラフィンヮック ス等の炭化水素類、ジー 2—ェチルへキシルフタレート(DOP)、ジイソデシルフタレ ート、ジヘプチルフタレートなどが挙げられる。
[0027] 溶融混練される全混合物中に占める可塑剤と無機剤との合計重量割合は、膜の透 過性と製膜性の観点より 20〜95wt%が好ましぐ 30〜80wt%がさらに好ましい。 溶融混練時の熱劣化とそれによる品質悪化を防止する観点より、酸化防止剤を配 合することが好ましい。酸ィ匕防止剤の濃度は、全ポリオレフイン重量に対して、 0. 3w t%以上が好ましく 0. 5wt%以上がさらに好ましい。また、 5. 0 %以下が好ましぐ 3. 0 %以下がさらに好ましい。
[0028] 酸ィ匕防止剤としては、 1次酸ィ匕防止剤であるフエノール系酸ィ匕防止剤が好ましい。
例えば、 2, 6 ジ tーブチルー 4 メチルフエノール、ペンタエリスリチルーテトラキ ス [3— (3, 5—ジ tーブチルー 4ーヒドロキシフエ-ル)プロピオネート]、ォクタデ シルー 3— (3, 5—ジ—tーブチルー 4ーヒドロキシフエ-ル)プロピオネート等が挙げ られる。なお、 2次酸ィ匕防止剤も併用して使用可能であり、トリス(2, 4 ジー t プチ ルフエ-ル)フォスファイト、テトラキス(2, 4 ジ一 t—ブチルフエ-ル)一 4, 4 ビフ ェ-レンージフォスフォナイト等のリン系酸化防止剤、ジラウリルーチォージプロピオ ネート等のィォゥ系酸ィ匕防止剤などが挙げられる。
[0029] 本発明に規定のポリエチレン及びポリプロピレン以外のポリオレフインを、本発明の 要件を損なわない範囲で、併用することも可能である。例えば、ポリエチレン、メチル ペンテンコポリマー、エチレン'テトラシクロドデセン共重合体やエチレン 'ノルボルネ ン共重合体などの環状ォレフィンコポリマーなどが挙げられ、それぞれ或いは共に 1 種類以上を併用することが出来る。また、ポリオレフイン以外のポリマーやその他の有 機材料についても、製膜性を損なうことなぐそして本発明の要件及び効果を損なわ な!、範囲で配合することが可能である。
さらに、必要に応じて、ステアリン酸カルシウムゃステアリン酸亜鉛等の金属石酸類 、紫外線吸収剤、光安定剤、帯電防止剤、防曇剤、着色顔料などの公知の添加剤も 、製膜性を損なうことなぐそして本発明の要件及び効果を損なわない範囲で混合し て使用することが出来る。
[0030] 溶融混練及び押出しの方法として、まず、原材料の一部或いは全部を必要に応じ てヘンシェルミキサー、リボンブレンダー、タンブラーブレンダ一等で事前混合する。 少量の場合は、手で撹拌しても良い。次いで、全ての原材料について、一軸押出機 、二軸押出機等のスクリュー押出機、エーダー、ミキサー等により溶融混練し、 T型ダ ィゃ環状ダイ等より押出す。 [0031] 本発明のポリオレフイン製微多孔膜は、原料ポリマーに酸ィ匕防止剤を所定の濃度 で混合した後、窒素雰囲気に置換し、窒素雰囲気を維持した状態で溶融混練を行う ことが好ましい。溶融混練時の温度は、 160°C以上が好ましぐ 180°C以上がさらに 好ましい。また 300°C未満が好ましぐ 240°C未満がより好ましぐ 230°C未満がさら に好ましい。
本願でいう溶融物には、無機剤抽出工程で抽出可能な未溶融の無機剤を含んで も良い。また、溶融混練され均一化された溶融物は、膜品位向上のためスクリーンを 通過させても良い。
[0032] 次に、必要に応じてシート成形を行う。シート成形の方法として、溶融混練し押出さ れた溶融物を、圧縮冷却により固化させる。冷却方法として、冷風や冷却水等の冷 却媒体に直接接触させる方法、冷媒で冷却したロールやプレス機に接触させる方法 等が挙げられる。冷媒で冷却したロールやプレス機に接触させる方法が、厚み制御 が優れる点で好ましい。
[0033] 続いて、延伸と可塑剤抽出、或いは延伸と可塑剤抽出と無機剤抽出を行う。それら の順序及び回数については特に制限はない。延伸と可塑剤抽出を行う場合として、 延伸→可塑剤抽出、可塑剤抽出→延伸、延伸→可塑剤抽出→延伸などの序列の 例が挙げられる。
また、延伸と可塑剤抽出と無機剤抽出を行う場合として、延伸→可塑剤抽出→無 機剤抽出、可塑剤抽出→延伸→無機剤抽出、可塑剤抽出→無機剤抽出→延伸、 延伸→無機剤抽出→可塑剤抽出、無機剤抽出→延伸→可塑剤抽出、無機剤抽出 →可塑剤抽出→延伸、延伸→可塑剤抽出→延伸→無機剤抽出、延伸→可塑剤抽 出→無機剤抽出→延伸、などが序列の例が挙げられる。抽出効率の観点より、無機 剤抽出は、可塑剤抽出の後に行うことが好ましい。無機剤抽出は、必要に応じて行 わなくても良い。
[0034] 用いられる延伸方法としては、ロール延伸機による MD—軸延伸(MDは機械方向 を意味する)、テンターによる TD—軸延伸(TDは機械方向と垂直方向を意味する)、 ロール延伸機とテンターの組み合わせによる逐次二軸延伸、同時二軸テンターゃィ ンフレーシヨン成形による同時二軸延伸などが挙げられる。延伸倍率はトータルの面 倍率で、膜厚の均一性の観点より、 8倍以上が好ましぐ 15倍以上がさらに好ましぐ
40倍以上力 Sもっとも好まし 、。
[0035] 可塑剤抽出における、抽出溶媒としては、膜を構成するポリオレフインに対して貧溶 媒であり、且つ可塑剤に対しては良溶媒であり、沸点が膜を構成するポリオレフイン の融点よりも低いものが望ましい。このような抽出溶媒としては、 n—へキサンやシクロ へキサン等の炭化水素類、メタノール、エタノール、イソプロパノール等のアルコール 類、アセトン、メチルェチルケトン等のケトン類、テトラヒドロフラン等のエーテル類、塩 化メチレン、 1, 1, 1 トリクロロェタン、フルォロカーボン系等のハロゲン化炭化水素 類等の有機溶媒が考えられる。これらの抽出溶媒の中から適宜選択し、単独もしくは 混合して用いられる。可塑剤抽出においては、溶融混練物をこれらの抽出溶媒に浸 漬したり、抽出溶媒でシャワーする方法により可塑剤を抽出する。その後、充分に乾 燥させる。
[0036] 熱固定の方法としては、延伸シートに対して所定の温度雰囲気で、所定の緩和率と なるように緩和操作を行う。テンターやロール延伸機を利用して行うことができる。緩 和操作とは、膜の MD及び Z或いは TDへの縮小操作のことである。緩和率とは、緩 和操作後の膜の MD寸法を操作前の膜の MD寸法で除した値、或 、は緩和操作後 の膜の TD寸法を操作前の膜の TD寸法で除した値、或いは MD、 TD双方を緩和し た場合は MDの緩和率と TDの緩和率を乗じた値のことである。所定の温度として、 熱収縮率の観点より 100°C以上が好ましぐ気孔率及び透過性の観点より 135°C未 満が好ましい。所定の緩和率としては、熱収縮率の観点より 0. 9以下が好ましぐ 0. 8以下であることがさらに好ましい。また、しわ発生防止と気孔率及び透過性の観点よ り 0. 6以上であることが好ましい。緩和操作は、 MD、 TD両方向で行っても良いが、 MD或いは TD片方だけの緩和操作によっても、操作方向だけでなく操作と垂直方 向についても、熱収縮率を低減することが可能である。
また、本発明の効果を損なわない範囲で、電子線照射、プラズマ照射、界面活性 剤塗布、化学的改質などの表面処理を必要に応じ施すことが出来る。
[0037] 本発明で用いた各種物性は、以下の試験方法に基づいて測定した。
(1)定数 Aの算出 GPCZFTIR測定より、微多孔膜の分子量 M (i)の分布と末端メチル基濃度 C (M ( i) )を求める。 M (i)はポリエチレン換算分子量である。 C (M (i) )は、メチル基に帰属 される吸光度 I (— CH ) (吸収波数 2960cm_ 1)とメチレン基に帰属される吸光度 1 (
3
-CH―) (吸収波数 2925cm_1)との比 I (— CH )Z I (— CH―)である。 logM (i
2 3 2
)とじ (M (i) )との相関にっ 、て、 M (i) 10万以上 100万以下の分子量範囲で最小二 乗法直線近似することにより、定数 Aは得られる。
C (M (i) ) =AX log (M (i) ) +B (A、Bは定数)
[0038] なお、 GPCZFTIR測定は以下の条件で行った。
[装置]
Waters社製、商標、 ALCZGPC 150C型
[測定条件]
カラム:昭和電工 (株)製、商標、 AT— 807S (1本)と東ソー (株)製、商標、 GMH HT6 (2本)を直列に接続
移動相:トリクロ口ベンゼン (TCB)
カラム温度: 140°C
流量: 1. OmlZ分
試料調製: 20mgの微多孔膜を、 0. lwt%の 2, 6 ジー tーブチルー 4 メチル フエノールを溶解させた TCB溶液 20mlへ 140°Cに加温して溶解させる。
検出器:パーキンエルマ一 (株)社製、商標、 FT— IR 1760X
[0039] (2)分子量 1万以下の量比、 MwZMn
ゲルパ—ミエ—シヨンクロマトグラフィー(GPC)の測定より算出した。装置は Waters 社製、商標、 ALCZGPCの 150— C型を用い、東ソー (株)製、商標、 TSK—ゲル G MH6— HTの 60cmのカラム 2本と昭和電工 (株)製、商標、 AT— 807ZSカラム 1本 を直列接続して使用した。 lOppmのペンタエリスリチル—テトラキス— [3— (3, 5- ジ— t—ブチル—4 ヒドロキシフエ-ル)プロピオネート]を含む 1、 2、 4 トリクロ口べ ンゼンを移動相溶媒として、 140°Cで測定を行った。なお、標準物質として市販の分 子量既知の単分散ポリスチレンを用いて検量線を作成した。求められた各試料のポリ スチレン換算の分子量分布データに、 0. 43 (ポリエチレンの Qファクター/ポリスチ レンの Qファクター = 17. 7/41. 3)を乗じることにより、ポリエチレン換算の分子量 分布データを得た。
[0040] (3)粘度平均分子量 Mv
ASTM— D4020に基づき、デカリン溶媒における 135°Cでの極限粘度 [ ]を求 める。ポリエチレンの Mvは次式により算出した。
[ τ? ]=6. 77Χ 10"4Μν°· 67
ポリプロピレンについては、次式により Mvを算出した。
[ r? ] = l. 10Χ 10-4Μν°·80
なお、最終的な膜の Mvはポリエチレンの式を用いて算出した。
[0041] (4) aーォレフィンコモノマー含量(モル0 /0)
13C— NMR ^ベクトルにおいて、コモノマー単位由来のシグナル強度の積分値の モル換算量 (A)を、(A)と主モノマー単位由来のシグナル強度の積分値のモル換算 量 (B)との和で除して得られた値に 100を乗じることにより求めた。
例えば、コモノマーとしてプロピレンを用いたコポリマーポリエチレンの場合、下記の 構造モデル(1)
[化 1]
CH3— CH2— CH2—……一 (CH2)n— CH2_CH2 - CH2 - CH— CH2— CH2 - C¾—……一 CH2 CH。— CH3 1 2 3 M y β a \ m a β y 3 2 1
CH3
1 ' において、 I、 I 、 I、 I、 I 、 I 、 I 、 I 、及び I をそれぞれ対応する炭素に由来する
1 1' 2 3 α )3 γ ΐη Μ
13C— NMR ^ベクトルのシグナル強度とすると、
コモノマー含量(モル0 /0) = (A) Z ( (A) + (B) ) X 100
ここで、
(A) = (I ,+Ι +1 Ζ2)Ζ3、
1 m α
(Β) = (I +1 +1 +1 +1 /2 +1 +1 )/2
1 2 3 Μ α β γ
となるので、末端の炭素由来のシグナル強度 I、 I、及び Iを無視して上式を整理す
1 2 3
ると、 I =1 =1 /2=1 /2=1 Z2であるので、 コモノマー含量(モル0 /0) =1 / {1 + (1 + 51 ) /2) X 100
m m M m
となる。
[0042] (5)膜厚 m)
東洋精機製の微小測厚器、商標、 KBMを用いて室温 23°Cで測定した。 (6)気孔率 (%)
10cm X 10cm角の試料を微多孔膜から切り取り、その体積 (cm3)と質量 (g)を求 め、それらと膜密度 (gZcm3)より、次式を用いて計算した。
気孔率 = (体積 質量 Z膜密度) Z体積 X 100
なお、膜密度は 0. 95と一定にして計算した。
[0043] (7)透気度(sec)
JIS P— 8117に準拠し、ガーレー式透気度計 (東洋精器 (株)製、商標、 G— B2) により測定した。
(8)突刺強度 (ΝΖ20 /Ζ Π1)
カトーテック製、商標、 KES— G5ハンディー圧縮試験器を用いて、針先端の曲率 半径 0. 5mm,突刺速度 2mmZsecで、 23°C雰囲気下にて突刺試験を行うことによ り、最大突刺荷重として生の突刺強度 (N)を得た。これに 20 ( μ m) Z膜厚( m)を 乗じること〖こより 20 μ m膜厚換算突刺強度 (NZ20 μ m)を算出した。
[0044] (9) 140°C突刺強度(NZ20 μ m)
微多孔膜を内径 13mm、外径 25mmのステンレス製ワッシャー 2枚で挟み、固定し て、 140°Cのシリコンオイル (信越ィ匕学工業:商標、 KF— 96— IOCS)に 60秒間浸 漬する。破膜しな力つたものについて、カトーテック製、商標、 KES— G5ハンディー 圧縮試験器を用いて、針先端の曲率半径 0. 5mm,突刺速度 2mmZsecで突刺試 験を行うことにより、最大突刺荷重として生の 140°C突刺強度 (N)を得た。これに 20 ( μ m) Z膜厚 ( μ m)を乗じること〖こより 20 μ m膜厚換算 140°C突刺強度 (NZ20 μ m )を算出した。
[0045] ( 10)高速昇温時孔閉塞温度 (°C)及び高速昇温時熱破膜温度 (°C)
厚さ 10 mのニッケル箔を 2枚 (A, B)用意し、一方のニッケル箔 Aをスライドガラス 上に、縦 10mm、横 10mmの正方形部分を残してテフロン (登録商標)テープでマス キングすると共に固定する(図 2)。
熱電対を繋いだセラミックスプレート上に、別のニッケル箔 Bを載せ、この上に、規 定の電解液に 3時間浸漬させ充分に電解液を含浸させた測定試料の微多孔膜を置 く。その上力 ニッケル箔 Aを貼りつけたスライドガラスを載せ、更にシリコンゴムを載 せる(図 3)。
[0046] これをホットプレート上にセットし、油圧プレス機にて 1. 5MPaの圧力をかけた状態 で、 20°CZminの速度で昇温する。このときのインピーダンス変化を LCRメーターに て交流 IV, 1kHzの条件下で測定する。この測定において、インピーダンスが 1000 Ωに達した時点の温度を高速昇温時孔閉塞温度とし、その後インピーダンスが 1000 Ωを下回った時点の温度を高速昇温時熱破膜温度とする。
なお、規定の電解液の組成比は以下の通りである。
溶媒の組成比 (体積比):炭酸プロピレン Z炭酸エチレン Z δ プチルラクトン = 1 /1/2
溶質の組成比:上記溶媒にて LiBFを ImolZリットルの濃度になるように溶解させ
4
る。
[0047] (11)熱収縮率
12cm X 12cm角の試料を微多孔膜から切り取り、 MD、 TDに 10cm間隔で四つ 印を付け、紙ではさみ、 100°C (120°C測定時は、 120°C)のオーブン中に 60分間静 置する。オーブン力も取り出し冷却した後、 MD、 TDの印間の長さ(cm)を測定し、 以下の式にて MD及び TDの熱収縮率を算出する。
MD熱収縮率(%) = (10—加熱後の MDの長さ) Z10 X 100
TD熱収縮率(%) = (10—加熱後の TDの長さ) Z10 X 100
[0048] ( 12)熱収縮応力(kPa)
島津製作所製 TMA50 (商標)を用いて測定した。 TDに幅 3mmに切り出したサン プルを、チャック間距離が 10mmとなるようにチャックに固定し、専用プローブにセット する。初期荷重を 1. Ogとし、 30°Cより 10°CZminの速度にてプローブを 200°Cまで 昇温させ、そのとき発生する収縮荷重 (g)を測定した。 150°C時の荷重 (g)から下記 式を用いて熱収縮応力を算出した。 熱収縮応力(kPa) = (150°C収縮荷重 Z (3 X t) ) X 100 X 9.807 X 10
t:サンプル厚み m)
(13)欠点数
0. 3mm2以上の未溶融ポリマーゲルについて、 50m2分の試料の全面観測を行い 、 lm2当りの平均欠点数を求めた。
[0049] (実施例)
本発明を実施例に基づいて説明する。
[実施例 1]
分子量 1万以下の量比が 31wt%で、 MwZMnが 58で、 Mvが 25万のホモポリマ 一のポリエチレン(PEA)を 75wt%と、 MwZMnが 8で、 Mvが 200万のホモポリマ 一のポリエチレン(PEB)を 15wt%と、 Mv40万のホモポリマーのポリプロピレンを 10 wt%とを、タンブラーブレンダーを用いてドライブレンドした。得られた純ポリマー混 合物 99wt%に酸ィ匕防止剤としてペンタエリスリチルーテトラキス一 [3— (3, 5—ジ一 t -ブチル—4—ヒドロキシフエ-ル)プロピオネート]を lwt%添カ卩し、再度タンブラ一 プレンダーを用いてドライブレンドすることにより、ポリマー等混合物を得た。得られた ポリマー等混合物は窒素で置換を行った後に、二軸押出機へ窒素雰囲気下でフィ ーダ一により供給した。また流動パラフィン(37. 78°Cにおける動粘度 7. 59 X 10"5 mVs)を押出機シリンダーにプランジャーポンプにより注入した。
[0050] 溶融混練し、押し出される全混合物中に占める流動パラフィン量比が 55wt%とな るように、フィーダ一及びポンプを調整した。溶融混練条件は、設定温度 200°C、スク リュー回転数 240rpm、吐出量 12kgZhで行った。続いて、溶融混練物を、 T—ダイ を経て表面温度 25°Cに制御された冷却ロール上に押出しキャストすることにより、厚 み 1300 mのゲルシートを得た。次に、同時二軸テンター延伸機に導き、二軸延伸 を行った。設定延伸条件は、 MD倍率 7. 0倍、 TD倍率 6. 4倍、設定温度 118°Cとし た。次に、メチルェチルケトン槽に導き、メチルェチルケトン中に充分に浸漬して流動 ノ ラフィンを抽出除去し、その後メチルェチルケトンを乾燥除去した。次に、 TDテン ターに導き、熱固定を行った。熱固定温度は 105°Cで、 TD緩和率は 0. 66とした。 得られた微多孔膜の物性を表 1に示した。 [0051] [実施例 2]
分子量 1万以下の量比が 15wt%で、 MwZMnが 20で、 Mvが 32万で、プロピレ ン含量 0. 3モル0 /0のコポリマーのポリエチレン(PEA)を 75wt%と、 MwZMnが 9で 、 Mv力 50万のホモポリマーのポリエチレン(PEB)を 7wt%と、実施例 1と同様のポ リプロピレンを 18wt%とを、タンブラーブレンダーを用いてドライブレンドした。得られ た純ポリマー混合物 99wt%に酸ィ匕防止剤としてペンタエリスリチルーテトラキスー [3 - (3, 5—ジ— t—ブチル—4—ヒドロキシフエ-ル)プロピオネート]を lwt%添カロし、 再度タンブラ一プレンダーを用いてドライブレンドすることにより、ポリマー等混合物を 得た。得られたポリマー等混合物は窒素で置換を行った後に、二軸押出機へ窒素雰 囲気下でフィーダ一により供給した。また流動パラフィン(37. 78°Cにおける動粘度 7 . 59 X 10"5mVs)を押出機シリンダーにプランジャーポンプにより注入した。
[0052] 溶融混練し、押し出される全混合物中に占める流動パラフィン量比が 58wt%とな るように、フィーダ一及びポンプを調整した。溶融混練条件は、実施例 1と同様とした 。続いて、溶融混練物を、 T ダイを経て表面温度 25°Cに制御された冷却ロール上 に押出しキャストすることにより、厚み 2200 mのゲルシートを得た。次に、同時二軸 テンター延伸機に導き、二軸延伸を行った。設定延伸条件は、 MD倍率 7. 0倍、 TD 倍率 6. 4倍、設定温度 126°Cとした。次に、メチルェチルケトン槽に導き、メチルェチ ルケトン中に充分に浸漬して流動パラフィンを抽出除去し、その後メチルェチルケト ンを乾燥除去した。次に、 TDテンターに導き、熱固定を行った。熱固定温度は 120 °Cで、 TD緩和率は 0. 80とした。得られた微多孔膜の物性を表 1に示した。
[0053] [実施例 3]
分子量 1万以下の量比が 45wt%で、 MwZMnが 70で、 Mvが 31万のホモポリマ 一のポリエチレン(PEA)を 75wt%と、 MwZMnが 9で、 Mvが 300万のホモポリマ 一のポリエチレン(PEB)を 18wt%と、実施例 1と同様のポリプロピレンを 7wt%とを、 タンブラーブレンダーを用いてドライブレンドした。得られた純ポリマー混合物 99wt %に酸ィ匕防止剤としてペンタエリスリチルーテトラキス一 [3— (3, 5—ジ一 t ブチル —4—ヒドロキシフエ-ル)プロピオネート]を lwt%添カ卩し、再度タンブラーブレンダ 一を用いてドライブレンドすることにより、ポリマー等混合物を得た。得られたポリマー 等混合物は窒素で置換を行った後に、二軸押出機へ窒素雰囲気下でフィーダ一に より供給した。また流動パラフィン(37. 78°Cにおける動粘度 7. 59 X 10_5m2Zs)を 押出機シリンダーにプランジャーポンプにより注入した。
[0054] 溶融混練し、押し出される全混合物中に占める流動パラフィン量比が 70wt%とな るように、フィーダ一及びポンプを調整した。溶融混練条件は、実施例 1と同様とした 。続いて、溶融混練物を、 T ダイを経て表面温度 25°Cに制御された冷却ロール上 に押出しキャストすることにより、厚み 1000 mのゲルシートを得た。次に、同時二軸 テンター延伸機に導き、二軸延伸を行った。設定延伸条件は、 MD倍率 7. 0倍、 TD 倍率 6. 4倍、設定温度 123°Cとした。次に、メチルェチルケトン槽に導き、メチルェチ ルケトン中に充分に浸漬して流動パラフィンを抽出除去し、その後メチルェチルケト ンを乾燥除去した。次に、 TDテンターに導き、熱固定を行った。熱固定温度は 112 °Cで、 TD緩和率は 0. 73とした。得られた微多孔膜の物性を表 1に示した。
[0055] [実施例 4]
実施例 1と同様の PEAを 50wt%と、 MwZMn力 ¾で、 Mvが 95万のホモポリマー のポリエチレン(ΡΕΒ)を 40wt%と、 Mv45万でエチレン含量 0. 9mol%のランダム ポリマーのポリプロピレンを 10wt%とを、タンブラーブレンダーを用いてドライブレンド した。得られた純ポリマー混合物を 53wt%と、酸ィ匕防止剤としてペンタエリスリチル —テトラキス一 [3— (3, 5—ジ一 t—ブチル 4—ヒドロキシフエ-ル)プロピオネート] を lwt%と、流動パラフィン(37. 78°Cにおける動粘度 7. 59 X 10_5m2Zs)を 33wt %と、微粉シリカを 13wt%とをヘンシェルミキサーにて混合し、ポリマー等混合物を 得た。得られたポリマー等混合物は窒素で置換を行った後に、二軸押出機へ窒素雰 囲気下でフィーダ一により供給した。また流動パラフィン(37. 78°Cにおける動粘度 7 . 59 X 10"5mVs)を押出機シリンダーにプランジャーポンプにより追加注入した。
[0056] 溶融混練し、押し出される全混合物中に占める流動パラフィン量比が 60wt%とな るように、フィーダ一及びポンプを調整した。溶融混練条件は、実施例 1と同様とした 。続いて、溶融混練物を、 T ダイを経て表面温度 25°Cに制御された冷却ロール上 に押出しキャストすることにより、厚み 1500 mのゲルシートを得た。次に、同時二軸 テンター延伸機に導き、二軸延伸を行った。設定延伸条件は、実施例 3と同様とした 。次に、メチルェチルケトン槽に導き、メチルェチルケトン中に充分に浸漬して流動パ ラフィンを抽出除去し、その後メチルェチルケトンを乾燥除去した。さらに、苛性ソー ダ槽に導き、シリカを抽出除去し、洗浄後、乾燥させた。次に、 TDテンターに導き、 熱固定を行った。熱固定温度及び TD緩和率は実施例 3と同様とした。得られた微多 孔膜の物性を表 1に示した。
[0057] [実施例 5]
実施例 1と同様の PEAを 90wt%と、実施例 1と同様のポリプロピレンを 10wt%とを 、タンブラーブレンダーを用いてドライブレンドした。得られた純ポリマー混合物 99wt %に酸ィ匕防止剤としてペンタエリスリチルーテトラキス一 [3— (3, 5—ジ一 t ブチル —4—ヒドロキシフエ-ル)プロピオネート]を lwt%添カ卩し、再度タンブラーブレンダ 一を用いてドライブレンドすることにより、ポリマー等混合物を得た。得られたポリマー 等混合物は窒素で置換を行った後に、二軸押出機へ窒素雰囲気下でフィーダ一に より供給した。また流動パラフィン(37. 78°Cにおける動粘度 7. 59 X 10_5m2Zs)を 押出機シリンダーにプランジャーポンプにより注入した。
[0058] 溶融混練し、押し出される全混合物中に占める流動パラフィン量比が 55wt%とな るように、フィーダ一及びポンプを調整した。溶融混練条件は、実施例 1と同様とした 。続いて、溶融混練物を、 T ダイを経て表面温度 25°Cに制御された冷却ロール上 に押出しキャストすることにより、厚み 1300 mのゲルシートを得た。次に、同時二軸 テンター延伸機に導き、二軸延伸を行った。設定延伸条件は、実施例 1と同様とした 。次に、メチルェチルケトン槽に導き、メチルェチルケトン中に充分に浸漬して流動パ ラフィンを抽出除去し、その後メチルェチルケトンを乾燥除去した。次に、 TDテンタ 一に導き、熱固定を行った。熱固定温度及び TD緩和率は実施例 1と同様とした。得 られた微多孔膜の物性を表 1に示した。
[0059] [実施例 6]
分子量 1万以下の量比が 15wt%で、 MwZMnが 43で、 Mvが 70万のホモポリマ 一のポリエチレン(PEA)を 75wt%と、 MwZMnが 7で、 Mvが 12万である線状共重 合高密度ポリエチレン(コモノマー:プレピレン。含有比 0. 6mol%) (PEB)を 15wt %と、 Mv40万のホモポリマーのポリプロピレンを 10wt%とを、タンブラーブレンダー を用いてドライブレンドした。得られた純ポリマー混合物 99wt%に酸化防止剤として ペンタエリスリチルーテトラキス一 [3— (3, 5—ジ一 t—ブチル 4—ヒドロキシフエ二 ル)プロピオネート]を lwt%添カ卩し、再度タンブラーブレンダーを用いてドライブレン ドすることにより、ポリマー等混合物を得た。得られたポリマー等混合物は窒素で置換 を行った後に、二軸押出機へ窒素雰囲気下でフィーダ一により供給した。また流動 ノ ラフィン(37. 78°Cにおける動粘度 7. 59 X 10_5m2/s)を押出機シリンダーにプ ランジャーポンプにより注人した。
[0060] 溶融混練し、押し出される全混合物中に占める流動パラフィン量比が 55wt%とな るように、フィーダ一及びポンプを調整した。溶融混練条件は、設定温度 200°C、スク リュー回転数 240rpm、吐出量 12kgZhで行った。続いて、溶融混練物を、 T—ダイ を経て表面温度 25°Cに制御された冷却ロール上に押出しキャストすることにより、厚 み 2100 mのゲルシートを得た。次に、同時二軸テンター延伸機に導き、二軸延伸 を行った。設定延伸条件は、 MD倍率 7. 0倍、 TD倍率 6. 4倍、設定温度 118°Cとし た。次に、メチルェチルケトン槽に導き、メチルェチルケトン中に充分に浸漬して流動 ノ ラフィンを抽出除去し、その後メチルェチルケトンを乾燥除去した。次に、 TDテン ターに導き、熱固定を行った。熱固定温度は 105°Cで、 TD緩和率は 0. 80とした。 得られた微多孔膜の物性を表 1に示した。
[0061] [実施例 7]
分子量 1万以下の量比が 15wt%で、 MwZMnが 43で、 Mvが 70万のホモポリマ 一のポリエチレン(PEA)を 75wt%と、 MwZMn力 ¾で、 Mvが 30万である高密度ホ モポリエチレン(PEB)を 15wt%と、 Mv40万のホモポリマーのポリプロピレンを lOwt %とを、タンブラ一プレンダーを用いてドライブレンドした。得られた純ポリマー混合物 99wt%に酸ィ匕防止剤としてペンタエリスリチルーテトラキス一 [3— (3, 5—ジ一 t— ブチル—4—ヒドロキシフエ-ル)プロピオネート]を lwt%添カ卩し、再度タンブラーブ レンダーを用いてドライブレンドすることにより、ポリマー等混合物を得た。得られたポ リマー等混合物は窒素で置換を行った後に、二軸押出機へ窒素雰囲気下でフィー ダ一により供給した。また流動パラフィン(37. 78°Cにおける動粘度 7. 59 X 10"5m2 /s)を押出機シリンダーにプランジャーポンプにより注入した。 [0062] 溶融混練し、押し出される全混合物中に占める流動パラフィン量比が 55wt%とな るように、フィーダ一及びポンプを調整した。溶融混練条件は、設定温度 200°C、スク リュー回転数 240rpm、吐出量 12kgZhで行った。続いて、溶融混練物を、 T—ダイ を経て表面温度 25°Cに制御された冷却ロール上に押出しキャストすることにより、厚 み 2100 mのゲルシートを得た。次に、同時二軸テンター延伸機に導き、二軸延伸 を行った。設定延伸条件は、 MD倍率 7. 0倍、 TD倍率 6. 4倍、設定温度 118°Cとし た。次に、メチルェチルケトン槽に導き、メチルェチルケトン中に充分に浸漬して流動 ノ ラフィンを抽出除去し、その後メチルェチルケトンを乾燥除去した。次に、 TDテン ターに導き、熱固定を行った。熱固定温度は 115°Cで、 TD緩和率は 0. 80とした。 得られた微多孔膜の物性を表 1に示した。
[0063] [実施例 8]
分子量 1万以下の量比が 15wt%で、 MwZMnが 43で、 Mvが 70万のホモポリマ 一のポリエチレン(PEA)を 30wt%と、 MwZMn力 ¾で、 Mvが 30万である高密度ホ モポリエチレン(PEB)を 15wt%と、 Mv40万のホモポリマーのポリプロピレンを 5wt %、ジォクチルフタレート(DOP) 30. 6wt%、微紛シリカ 18. 4wt%、酸化防止剤と してペンタエリスリチルーテトラキスー [3— (3, 5—ジ tーブチルー 4ーヒドロキシフ ェニル)プロピオネート]を lwt%添加し、混合した。得られたポリマー等混合物は窒 素で置換を行った後に、二軸押出機へ窒素雰囲気下でフィーダ一により供給した。
[0064] 溶融混練条件は、設定温度 200°C、スクリュー回転数 240rpm、吐出量 12kgZh で行った。続いて、溶融混練物を、 T ダイを経て表面温度 80°Cに制御された冷却 ロール上に押出しキャストすることにより、厚さ 110 mのゲルシートを得た。このゲル シートから DOP、微紛シリカを抽出除去し、微多孔膜を得た。該微多孔膜を 2枚重ね て 110°Cで 5倍縦方向に延伸した後、 TDテンターに導き、 130°Cで横方向に 2倍延 伸した。その後の TD緩和率は 0. 80とした。得られた微多孔膜の物性を表 1に示した
[0065] [実施例 9]
分子量 1万以下の量比が 20wt%で、 MwZMnが 43で、 Mvが 55万のホモポリマ 一のポリエチレン(PEA)を 75wt%と、 MwZMnが 6で、 Mvが 12万であるエチレン 一へキセン共重合体(へキセン含有量 2mol%) (PEB)を 15wt%と、 Mv40万のホ モポリマーのポリプロピレンを 10wt%とを、タンブラーブレンダーを用いてドライブレ ンドした。得られた純ポリマー混合物 99wt%に酸ィ匕防止剤としてペンタエリスリチル —テトラキス一 [3— (3, 5—ジ一 t—ブチル 4—ヒドロキシフエ-ル)プロピオネート] を lwt%添カ卩し、再度タンブラーブレンダーを用いてドライブレンドすることにより、ポ リマー等混合物を得た。得られたポリマー等混合物は窒素で置換を行った後に、二 軸押出機へ窒素雰囲気下でフィーダ一により供給した。また流動パラフィン (37. 78 °Cにおける動粘度 7. 59 X 10_5m2Zs)を押出機シリンダーにプランジャーポンプに より注入した。
[0066] 溶融混練し、押し出される全混合物中に占める流動パラフィン量比が 55wt%とな るように、フィーダ一及びポンプを調整した。溶融混練条件は、設定温度 200°C、スク リュー回転数 240rpm、吐出量 12kgZhで行った。続いて、溶融混練物を、 T—ダイ を経て表面温度 25°Cに制御された冷却ロール上に押出しキャストすることにより、厚 み 2000 mのゲルシートを得た。次に、同時二軸テンター延伸機に導き、二軸延伸 を行った。設定延伸条件は、 MD倍率 7. 0倍、 TD倍率 6. 4倍、設定温度 115°Cとし た。次に、メチルェチルケトン槽に導き、メチルェチルケトン中に充分に浸漬して流動 ノ ラフィンを抽出除去し、その後メチルェチルケトンを乾燥除去した。次に、 TDテン ターに導き、熱固定を行った。熱固定温度は 110°Cで、 TD緩和率は 0. 70とした。 得られた微多孔膜の物性を表 1に示した。
[0067] [比較例 1]
分子量 1万以下の量比が 6wt%で、 MwZMnが 7で、 Mvが 27万のホモポリマー のポリエチレンを 85wt%と、 MwZMnが 9で、 Mvが 300万のホモポリマーのポリエ チレンを 15wt%とを、タンブラーブレンダーを用いてドライブレンドした。得られた純 ポリマー混合物 99wt%に酸ィ匕防止剤としてペンタエリスリチルーテトラキス一 [3— ( 3, 5—ジ— t—ブチル—4—ヒドロキシフエ-ル)プロピオネート]を lwt%添カ卩し、タ ンブラーブレンダーを用いて再度ドライブレンドすることにより、ポリマー等混合物を 得た。得られたポリマー等混合物は窒素で置換を行った後に、二軸押出機へ窒素雰 囲気下でフィーダ一により供給した。また流動パラフィン(37. 78°Cにおける動粘度 7 . 59 X 10"5mVs)を押出機シリンダーにプランジャーポンプにより注入した。
[0068] 溶融混練し、押し出される全混合物中に占める流動パラフィン量比が 65wt%とな るように、フィーダ一及びポンプを調整した。溶融混練条件は、実施例 1と同様とした 。続いて、溶融混練物を、 T ダイを経て表面温度 25°Cに制御された冷却ロール上 に押出しキャストすることにより、厚み 1200 mのゲルシートを得た。次に、同時二軸 テンター延伸機に導き、二軸延伸を行った。設定延伸条件は、実施例 1と同様とした 。次に、メチルェチルケトン槽に導き、メチルェチルケトン中に充分に浸漬して流動パ ラフィンを抽出除去し、その後メチルェチルケトンを乾燥除去した。次に、 TDテンタ 一に導き、熱固定を行った。熱固定温度は 123°Cで、 TD緩和率は 1. 00とした。得 られた微多孔膜には多数の欠点が観察され、電池用セパレータとして求められる品 質は満たして!/、な力つた。得られた微多孔膜の物性を表 1に示した。
[0069] [比較例 2]
実施例 1と同様の PEAを 85wt%と、実施例 1と同様の PEBを 15wt%とを、タンブ ラーブレンダーを用いてドライブレンドした。得られた純ポリマー混合物 99wt%に酸 化防止剤としてペンタエリスリチルーテトラキスー [3— (3, 5—ジ tーブチルー 4ーヒ ドロキシフエ-ル)プロピオネート]を lwt%添カ卩し、再度タンブラーブレンダーを用い てドライブレンドすることにより、ポリマー等混合物を得た。得られたポリマー等混合物 は窒素で置換を行った後に、二軸押出機へ窒素雰囲気下でフィーダ一により供給し た。また流動パラフィン(37. 78°Cにおける動粘度 7. 59 X 10_5m2Zs)を押出機シ リンダーにプランジャーポンプにより注入した。
[0070] 溶融混練し、押し出される全混合物中に占める流動パラフィン量比が 55wt%とな るように、フィーダ一及びポンプを調整した。溶融混練条件は、実施例 1と同様とした 。続いて、溶融混練物を、 T ダイを経て表面温度 25°Cに制御された冷却ロール上 に押出しキャストすることにより、厚み 1300 mのゲルシートを得た。次に、同時二軸 テンター延伸機に導き、二軸延伸を行った。設定延伸条件は、実施例 2と同様とした 。次に、メチルェチルケトン槽に導き、メチルェチルケトン中に充分に浸漬して流動パ ラフィンを抽出除去し、その後メチルェチルケトンを乾燥除去した。次に、 TDテンタ 一に導き、熱固定を行った。熱固定温度及び TD緩和率は実施例 1と同様とした。得 られた微多孔膜の物性を表 1に示した。
[0071] [比較例 3]
実施例 6と同様の PEAを 99wt%に、酸ィ匕防止剤としてペンタエリスリチル一テトラ キスー [3— (3, 5—ジ tーブチルー 4ーヒドロキシフエ-ル)プロピオネート]を lwt %添加し、再度タンブラ一プレンダーを用いてドライブレンドすることにより、ポリマー 等混合物を得た。得られたポリマー等混合物は窒素で置換を行った後に、二軸押出 機へ窒素雰囲気下でフィーダ一により供給した。また流動パラフィン(37. 78°Cにお ける動粘度 7. 59 X 10_5m2Zs)を押出機シリンダーにプランジャーポンプにより注 入した。
[0072] 溶融混練し、押し出される全混合物中に占める流動パラフィン量比が 55wt%とな るように、フィーダ一及びポンプを調整した。溶融混練条件は、実施例 1と同様とした 。続いて、溶融混練物を、 T ダイを経て表面温度 25°Cに制御された冷却ロール上 に押出しキャストすることにより、厚み 2100 /z mのゲルシートを得た。次に、同時二軸 テンター延伸機に導き、二軸延伸を行った。設定延伸条件は、実施例 6と同様とした 。次に、メチルェチルケトン槽に導き、メチルェチルケトン中に充分に浸漬して流動パ ラフィンを抽出除去し、その後メチルェチルケトンを乾燥除去した。次に、 TDテンタ 一に導き、熱固定を行った。熱固定温度及び TD緩和率は実施例 6と同様とした。得 られた微多孔膜の物性を表 1に示した。
[0073] [比較例 4]
分子量 1万以下の量比が 15wt%で、 MwZMnが 7で、 Mvが 10万のホモポリマー のポリエチレンを 70wt%と、 MwZMnが 9で、 Mvが 300万のホモポリマーのポリエ チレンを 20wt%、 Mv40万のホモポリマーのポリプロピレンを 10wt%とを、タンブラ ーブレンダーを用いてドライブレンドした。得られた純ポリマー混合物 99wt%に酸ィ匕 防止剤としてペンタエリスリチルーテトラキス一 [3— (3, 5—ジ一 t—ブチル 4—ヒド ロキシフエ-ル)プロピオネート]を lwt%添カ卩し、タンブラーブレンダーを用いて再度 ドライブレンドすることにより、ポリマー等混合物を得た。得られたポリマー等混合物は 窒素で置換を行った後に、二軸押出機へ窒素雰囲気下でフィーダ一により供給した 。また流動パラフィン(37. 78°Cにおける動粘度 7. 59 X 10_5m2Zs)を押出機シリン ダ一にプランジャーポンプにより注入した。
[0074] 溶融混練し、押し出される全混合物中に占める流動パラフィン量比が 65wt%とな るように、フィーダ一及びポンプを調整した。溶融混練条件は、実施例 1と同様とした 。続いて、溶融混練物を、 T ダイを経て表面温度 25°Cに制御された冷却ロール上 に押出しキャストすることにより、厚み 1200 mのゲルシートを得た。次に、同時二軸 テンター延伸機に導き、二軸延伸を行った。設定延伸条件は、実施例 1と同様とした 。次に、メチルェチルケトン槽に導き、メチルェチルケトン中に充分に浸漬して流動パ ラフィンを抽出除去し、その後メチルェチルケトンを乾燥除去した。次に、 TDテンタ 一に導き、熱固定を行った。熱固定温度は 115°Cで、 TD緩和率は 0. 75とした。得 られた微多孔膜には多数の欠点が観察され、電池用セパレータとして求められる品 質は満たして!/、な力つた。得られた微多孔膜の物性を表 1に示した。
[0075] [比較例 5]
MwZMnが 7で、 Mvが 200万のホモポリマーのポリエチレンを 30wt%と、 Mw/ Mnが 6で、 Mvが 30万のホモポリマーの高密度ポリエチレンを 40wt%と、 Mw/Mn 力 S3で、 Mvが 7万のエチレン—オタテン共重合体 (オタテン含有量 12. Omol%、融 点 100°C)を 10wt%、 Mv40万のホモポリマーのポリプロピレンを 20wt%とを、タン ブラープレンダーを用いてドライブレンドした。それ以降の操作は、熱固定温度を 12 0°Cとした以外は、比較例 4と同様に行った。得られた微多孔膜には多数の欠点が観 察され、電池用セパレータとして求められる品質は満たしていな力つた。得られた微 多孔膜の物性を表 1に示した。
[0076] [表 1-1]
表 1
[表 1-2]
表 1の続き
産業上の利用可能性
本発明のォレフィン製微多孔膜は、物質の分離や選択透過及び隔離材等に用い られて 、る微多孔膜に関し、特にリチウムイオン電池などのセパレータとして好適に 使用される。
図面の簡単な説明
[図 1]図 1は、本発明で使用しうる望ましい PEAと PEBの分子量分布の関係を例示し た図である。
[図 2]図 2は、高速昇温時孔閉塞 ·熱破膜温度測定に用いるセル図である。
[図 3]図 3は、高速昇温時孔閉塞 ·熱破膜温度測定に用いる測定装置である。

Claims

請求の範囲
[1] 分子量 1万以下の量比が 8〜60wt%で、重量平均分子量 (Mw)と数平均分子量( Mn)との比 MwZMnが 11以上 100以下、粘度平均分子量(Mv)が 10万以上 100 万以下であるポリエチレン (PEA)と、ポリプロピレンとを含み、分子量 1万以下の量比 力 ¾〜60wt%、気孔率が 20〜95%で、 100°Cの熱収縮率が 10%以下である、ポリ ォレフィン製微多孔膜。
[2] さらに、 MwZMnが 1以上 10以下、 Mvが 1万以上 50万未満であるポリエチレン(P
EB)を含む、請求項 1記載のポリオレフイン製微多孔膜。
[3] さらに MwZMnが 1以上 10以下、 Mvが 50万以上 1000万以下であるポリェチレ ン (PEB)を含む、請求項 1記載のポリオレフイン製微多孔膜。
[4] GPCZFTIRより求められる分子量 M (i)の常用対数値と、末端メチル基濃度 C (M
(i) )の値との最小二乗法近似直線関係力 M (i) 10万以上 100万以下の分子量範 囲において、
C (M (i) ) =A X log (M (i) ) +B (A、Bは定数)
-0. 015≤A≤2. 000
である、請求項 1〜3のいずれか 1項に記載のポリオレフイン製微多孔膜。
[5] 120°Cの熱収縮率が 25%以下である、請求項 1〜4のいずれか 1項に記載のポリ ォレフィン製微多孔膜。
[6] 120°Cの熱収縮率が 20%以下である、請求項 1〜4のいずれか 1項に記載のポリ ォレフィン製微多孔膜。
[7] 150°Cにおける TD熱収縮応力が 600kPa以下である、請求項 1〜6のいずれか 1 項に記載のポリオレフイン製微多孔膜。
[8] 前記 PEAが、多段重合法によって得られるポリエチレンである、請求項 1〜7のい ずれ力 1項に記載のポリオレフイン製微多孔膜。
[9] 前記 PEAが、 GPCの分子量分布において、少なくとも二つ以上の極大もしくはショ ルダーピークを有し、かつ前記 PEBの極大ピークが、 PEAのピーク X (PEAにおける
、極大もしくはショルダーピークを示す低分子量側のピーク)とピーク Y (PEAにおけ る、極大もしくはショルダーピークを示す高分子量側のピーク)の間に位置する、請求 項 2または 3に記載のポリオレフイン製微多孔膜。
[10] 120°Cの熱収縮率が 25%以下である、請求項 9記載のポリオレフイン製微多孔膜。
[11] 120°Cの熱収縮率が 20%以下である、請求項 9記載のポリオレフイン製微多孔膜。
[12] 150°Cにおける TD熱収縮応力が 600kPa以下である、請求項 9記載のポリオレフ イン製微多孔膜。
[13] 前記 PEAが、多段重合法によって得られるポリエチレンである、請求項 9記載のポ リオレフイン製微多孔膜。
[14] ポリマー材料と可塑剤、或いはポリマー材料と可塑剤と無機剤とを溶融混練し押出 す工程;及び
延伸と可塑剤抽出、或いは延伸と可塑剤抽出と、必要に応じて無機剤抽出を実施 した後に、熱固定する工程;
を含む、請求項 1〜13のいずれか 1項に記載のポリオレフイン製微多孔膜の製造 方法。
[15] 100°C以上 135°C未満の温度にて 0. 6〜0. 9の緩和率で熱固定を行う、請求項 1 4記載のポリオレフイン製微多孔膜の製造方法。
PCT/JP2005/009157 2004-05-20 2005-05-19 ポリオレフィン製微多孔膜 WO2005113657A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/596,844 US8104625B2 (en) 2004-05-20 2005-05-19 Microporous membrane made of polyolefins
JP2006513719A JP5046640B2 (ja) 2004-05-20 2005-05-19 ポリオレフィン製微多孔膜

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-150856 2004-05-20
JP2004150856 2004-05-20
JP2004151439 2004-05-21
JP2004-151439 2004-05-21

Publications (1)

Publication Number Publication Date
WO2005113657A1 true WO2005113657A1 (ja) 2005-12-01

Family

ID=35428392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/009157 WO2005113657A1 (ja) 2004-05-20 2005-05-19 ポリオレフィン製微多孔膜

Country Status (4)

Country Link
US (1) US8104625B2 (ja)
JP (1) JP5046640B2 (ja)
TW (1) TWI297343B (ja)
WO (1) WO2005113657A1 (ja)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006321841A (ja) * 2005-05-17 2006-11-30 Asahi Kasei Chemicals Corp ポリエチレン製微多孔膜
WO2007117005A1 (ja) 2006-04-07 2007-10-18 Tonen Chemical Corporation ポリオレフィン多層微多孔膜、その製造方法、電池用セパレータ及び電池
JP2008106237A (ja) * 2006-09-28 2008-05-08 Asahi Kasei Chemicals Corp ポリオレフィン製微多孔膜
WO2009038229A1 (en) * 2007-09-20 2009-03-26 Tonen Chemical Corporation Microporous membranes and methods for making and using such membranes
WO2009048173A1 (en) 2007-10-12 2009-04-16 Tonen Chemical Corporation Microporous membranes and methods for making and using such membranes
JP2009185093A (ja) * 2008-02-01 2009-08-20 Asahi Kasei E-Materials Corp ポリオレフィン微多孔膜
WO2009110396A1 (en) 2008-03-07 2009-09-11 Tonen Chemical Corporation Microporous membrane, battery separator and battery
EP2108445A1 (en) 2008-04-01 2009-10-14 Tonen Chemical Corporation System and process for producing a microporus membrane
JP2009242631A (ja) * 2008-03-31 2009-10-22 Asahi Kasei E-Materials Corp ポリオレフィン微多孔膜
EP2111913A1 (en) 2008-04-24 2009-10-28 Tonen Chemical Corporation Microporous membrane and manufacturing method
EP2111912A1 (en) 2008-04-24 2009-10-28 Tonen Chemical Corporation Microporous polyolefin membrane and manufacturing method
EP2111910A1 (en) 2008-04-24 2009-10-28 Tonen Chemical Corporation System And Process For Producing A Multilayer Microporous Membrane
EP2111908A1 (en) 2008-04-24 2009-10-28 Tonen Chemical Corporation Microporous Membrane And Manufacturing Method
EP2111909A1 (en) 2008-04-24 2009-10-28 Tonen Chemical Corporation Microporous Polyolefin Membrane And Manufacturing Method
EP2113365A1 (en) 2008-04-24 2009-11-04 Tonen Chemical Corporation Improved cross flow manifold extrusion die
EP2113362A1 (en) 2008-04-24 2009-11-04 Tonen Chemical Corporation Coextrusion die and manifold system therefor
EP2113363A1 (en) 2008-04-24 2009-11-04 Tonen Chemical Corporation Process for protecting extrudate from process condensation
EP2113366A1 (en) 2008-04-24 2009-11-04 Tonen Chemical Corporation Extrusion die and manifold system therefor
JP2010007053A (ja) * 2008-05-30 2010-01-14 Asahi Kasei E-Materials Corp ポリオレフィン製微多孔膜
US8021789B2 (en) 2007-09-28 2011-09-20 Toray Tonen Specialty Separator Godo Kaisha Microporous membrane and manufacturing method
JP2011225736A (ja) * 2010-04-21 2011-11-10 Asahi Kasei E-Materials Corp ポリオレフィン微多孔膜、及びリチウムイオン二次電池
US8273279B2 (en) 2007-09-28 2012-09-25 Toray Battery Separator Film Co., Ltd. Microporous polyolefin membrane and manufacturing method
US8304114B2 (en) 2007-09-20 2012-11-06 Toray Battery Separator Film Co., Ltd. Microporous polyolefin membrane and manufacturing method
US8338017B2 (en) 2007-10-12 2012-12-25 Toray Battery Separator Film Co., Ltd. Microporous membrane and manufacturing method
JP5172683B2 (ja) * 2006-09-20 2013-03-27 旭化成イーマテリアルズ株式会社 ポリオレフィン微多孔膜及び非水電解液電池用セパレータ
WO2013099607A1 (ja) 2011-12-28 2013-07-04 東レバッテリーセパレータフィルム株式会社 ポリオレフィン微多孔膜及びその製造方法
US8715849B2 (en) 2007-10-05 2014-05-06 Toray Battery Separator Film Co., Ltd. Microporous polymer membrane
US8770824B2 (en) 2007-10-19 2014-07-08 Toray Battery Separator Film Co., Ltd. Extruder and process for preparing a mixture of polymer and diluent
US8906539B2 (en) 2006-08-01 2014-12-09 Toray Battery Separator Film Co., Ltd Polyolefin composition, its production method, and a battery separator made therefrom
US9741989B2 (en) 2004-10-01 2017-08-22 Asahi Kasei Chemicals Corporation Polyolefin microporous membrane

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7588704B2 (en) * 2005-07-26 2009-09-15 Gm Global Technology Operations, Inc. Online control of blowing agent content of polymer beads for making lost foam patterns
US20070264578A1 (en) * 2006-05-15 2007-11-15 Tonen Chemical Corporation Microporous polyolefin membrane, its production method and battery separator
US8323821B2 (en) 2007-11-09 2012-12-04 Toray Battery Separator Film Co., Ltd. Multi-layer microporous membrane, battery separator and battery
US8748028B2 (en) 2007-11-02 2014-06-10 Toray Battery Separator Film Co. Ltd. Multi-layer microporous membrane, battery separator and battery
WO2009123015A1 (ja) * 2008-03-31 2009-10-08 旭化成イーマテリアルズ株式会社 ポリオレフィン製微多孔膜、及び捲回物
JP5722305B2 (ja) 2009-03-30 2015-05-20 東レバッテリーセパレータフィルム株式会社 微多孔膜、バッテリーセパレーターフィルム、電池及び微多孔膜の製造方法
US9546446B2 (en) * 2009-10-23 2017-01-17 Toyo Boseki Kabushiki Kaisha Highly functional polyethylene fibers, woven or knit fabric, and cut-resistant glove
CN102267229B (zh) * 2011-05-18 2014-07-30 新乡市中科科技有限公司 一种用于锂电池的聚烯烃微多孔膜及其制备方法
CN106920912A (zh) * 2017-04-14 2017-07-04 上海恩捷新材料科技股份有限公司 一种锂离子电池隔离膜的制备方法
WO2019093184A1 (ja) 2017-11-08 2019-05-16 東レ株式会社 ポリオレフィン複合多孔質膜及びその製造方法、並びに電池用セパレータ及び電池
CN112795066B (zh) * 2019-11-13 2023-10-24 上海恩捷新材料科技有限公司 一种聚烯烃微多孔膜

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09180699A (ja) * 1995-12-22 1997-07-11 Asahi Chem Ind Co Ltd 非水溶媒系電池セパレーター用微多孔膜
JPH1160789A (ja) * 1997-08-08 1999-03-05 Asahi Chem Ind Co Ltd 微多孔膜の製造方法
JP2002194132A (ja) * 2000-12-26 2002-07-10 Tonen Chem Corp ポリオレフィン微多孔膜及びその製造方法
JP2002284918A (ja) * 2001-03-23 2002-10-03 Tonen Chem Corp ポリオレフィン微多孔膜及びその製造方法並びに用途
JP2004018838A (ja) * 2002-06-20 2004-01-22 Asahi Kasei Corp ポリオレフィン微多孔膜

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3009495B2 (ja) 1991-01-30 2000-02-14 東燃株式会社 ポリオレフィン微多孔膜及びその製造方法
JP2657431B2 (ja) 1991-01-30 1997-09-24 東燃株式会社 ポリオレフィン微多孔膜及びその製造方法
JP3305006B2 (ja) 1991-07-05 2002-07-22 旭化成株式会社 有機電解液を用いる電池用セパレータ及びその製造方法
US5240655A (en) * 1991-12-20 1993-08-31 W. R. Grace & Co.-Conn. Process of making a battery separator
DE69320927T2 (de) * 1992-12-21 1999-02-18 Mitsubishi Chem Corp Poröse(r) Film oder Folie, Batterie-Separator und Lithium-Batterie
JP3258737B2 (ja) 1993-01-19 2002-02-18 旭化成株式会社 ポリエチレン微多孔性隔膜
JPH0820659A (ja) 1994-07-08 1996-01-23 Daicel Chem Ind Ltd 微多孔膜及びその製造方法並びに非水電解液電池用セパレータ
TW297171B (ja) * 1994-12-20 1997-02-01 Hoechst Celanese Corp
US5759678A (en) * 1995-10-05 1998-06-02 Mitsubishi Chemical Corporation High-strength porous film and process for producing the same
DE69636348T2 (de) 1995-12-05 2007-07-05 Asahi Kasei Chemicals Corp. Mikroporöse polyethylenmembran mit niedriger schmelztemperatur
JPH1017702A (ja) 1996-07-08 1998-01-20 Mitsubishi Chem Corp ポリエチレン樹脂製多孔性フィルム及びその製造方法
US5786396A (en) * 1996-08-21 1998-07-28 Tonen Chemical Corporation Method of producing microporous polyolefin membrane
JPH1192587A (ja) 1997-09-17 1999-04-06 Tonen Kagaku Kk ポリオレフィン微多孔膜の製造方法
JP3899610B2 (ja) 1997-09-19 2007-03-28 松下電器産業株式会社 ふろ給湯器
JPH11106533A (ja) 1997-10-08 1999-04-20 Nitto Denko Corp ポリオレフィン製多孔質膜
CA2275891C (en) * 1997-10-23 2008-12-23 Tonen Chemical Corporation Method of producing highly permeable microporous polyolefin membrane
US6666969B1 (en) * 1998-10-01 2003-12-23 Tonen Chemical Corporation Microporous polyolefin film and process for producing the same
WO2000049073A1 (en) * 1999-02-19 2000-08-24 Tonen Chemical Corporation Polyolefin microporous film and method for preparing the same
JP4280371B2 (ja) 1999-09-06 2009-06-17 東燃化学株式会社 ポリオレフィン微多孔膜及びその製造方法
JP2001072792A (ja) 1999-09-06 2001-03-21 Tonen Chem Corp ポリオレフィン微多孔膜及びその製造方法
JP3681720B2 (ja) 2001-12-06 2005-08-10 旭化成ケミカルズ株式会社 ポリオレフィン製微多孔膜
JP4310424B2 (ja) 2002-01-24 2009-08-12 旭化成イーマテリアルズ株式会社 電池セパレーター用ポリオレフィン微多孔膜

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09180699A (ja) * 1995-12-22 1997-07-11 Asahi Chem Ind Co Ltd 非水溶媒系電池セパレーター用微多孔膜
JPH1160789A (ja) * 1997-08-08 1999-03-05 Asahi Chem Ind Co Ltd 微多孔膜の製造方法
JP2002194132A (ja) * 2000-12-26 2002-07-10 Tonen Chem Corp ポリオレフィン微多孔膜及びその製造方法
JP2002284918A (ja) * 2001-03-23 2002-10-03 Tonen Chem Corp ポリオレフィン微多孔膜及びその製造方法並びに用途
JP2004018838A (ja) * 2002-06-20 2004-01-22 Asahi Kasei Corp ポリオレフィン微多孔膜

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10384426B2 (en) 2004-10-01 2019-08-20 Asahi Kasei Chemicals Corporation Polyolefin microporous membrane
US9741989B2 (en) 2004-10-01 2017-08-22 Asahi Kasei Chemicals Corporation Polyolefin microporous membrane
JP2006321841A (ja) * 2005-05-17 2006-11-30 Asahi Kasei Chemicals Corp ポリエチレン製微多孔膜
US9287542B2 (en) 2006-04-07 2016-03-15 Toray Battery Separator Film Co., Ltd Multi-layer, microporous polyolefin membrane, its production method, battery separator, and battery
WO2007117042A1 (en) 2006-04-07 2007-10-18 Tonen Chemical Corporation Microporous polyolefin membrane, its production method, battery separator, and battery
WO2007117005A1 (ja) 2006-04-07 2007-10-18 Tonen Chemical Corporation ポリオレフィン多層微多孔膜、その製造方法、電池用セパレータ及び電池
US8252450B2 (en) 2006-04-07 2012-08-28 Toray Tonen Specialty Separator Godo Kaisha Multi-layer, microporous polyolefin membrane, its production method, battery separator, and battery
US8026005B2 (en) 2006-04-07 2011-09-27 Tonen Chemical Corporation Microporous polyolefin membrane, its production method, battery separator, and battery
US8906539B2 (en) 2006-08-01 2014-12-09 Toray Battery Separator Film Co., Ltd Polyolefin composition, its production method, and a battery separator made therefrom
EP2065432B2 (en) 2006-09-20 2017-10-25 Asahi Kasei Kabushiki Kaisha Polyolefin microporous membrane and separator for nonaqueous electrolyte battery
US9722225B2 (en) 2006-09-20 2017-08-01 Asahi Kasei Chemicals Corporation Polyolefin microporous membrane and separator for nonaqueous electrolyte battery
US9722226B2 (en) 2006-09-20 2017-08-01 Asahi Kasei Chemicals Corporation Polyolefin microporous membrane and separator for nonaqueous electrolyte battery
JP5172683B2 (ja) * 2006-09-20 2013-03-27 旭化成イーマテリアルズ株式会社 ポリオレフィン微多孔膜及び非水電解液電池用セパレータ
JP2008106237A (ja) * 2006-09-28 2008-05-08 Asahi Kasei Chemicals Corp ポリオレフィン製微多孔膜
JP2010540690A (ja) * 2007-09-20 2010-12-24 東燃化学株式会社 微多孔膜およびそのような膜を製造し使用する方法
US8304114B2 (en) 2007-09-20 2012-11-06 Toray Battery Separator Film Co., Ltd. Microporous polyolefin membrane and manufacturing method
WO2009038229A1 (en) * 2007-09-20 2009-03-26 Tonen Chemical Corporation Microporous membranes and methods for making and using such membranes
WO2009038233A1 (en) * 2007-09-20 2009-03-26 Tonen Chemical Corporation Microporous membranes and methods for making and using such membranes
WO2009038231A1 (en) * 2007-09-20 2009-03-26 Tonen Chemical Corporation Microporous membranes and methods for making and using such membranes
JP2010540691A (ja) * 2007-09-20 2010-12-24 東燃化学株式会社 微多孔膜およびそのような膜を製造し使用する方法
US8021789B2 (en) 2007-09-28 2011-09-20 Toray Tonen Specialty Separator Godo Kaisha Microporous membrane and manufacturing method
US8273279B2 (en) 2007-09-28 2012-09-25 Toray Battery Separator Film Co., Ltd. Microporous polyolefin membrane and manufacturing method
US8715849B2 (en) 2007-10-05 2014-05-06 Toray Battery Separator Film Co., Ltd. Microporous polymer membrane
US8338017B2 (en) 2007-10-12 2012-12-25 Toray Battery Separator Film Co., Ltd. Microporous membrane and manufacturing method
JP2011503247A (ja) * 2007-10-12 2011-01-27 東燃化学株式会社 微小孔性膜及びその製造及び使用
WO2009048173A1 (en) 2007-10-12 2009-04-16 Tonen Chemical Corporation Microporous membranes and methods for making and using such membranes
JP2011500881A (ja) * 2007-10-12 2011-01-06 東燃化学株式会社 微小孔性膜及びその製造及び使用
US8770824B2 (en) 2007-10-19 2014-07-08 Toray Battery Separator Film Co., Ltd. Extruder and process for preparing a mixture of polymer and diluent
JP2009185093A (ja) * 2008-02-01 2009-08-20 Asahi Kasei E-Materials Corp ポリオレフィン微多孔膜
WO2009110396A1 (en) 2008-03-07 2009-09-11 Tonen Chemical Corporation Microporous membrane, battery separator and battery
JP2009242631A (ja) * 2008-03-31 2009-10-22 Asahi Kasei E-Materials Corp ポリオレフィン微多孔膜
EP2108445A1 (en) 2008-04-01 2009-10-14 Tonen Chemical Corporation System and process for producing a microporus membrane
EP2111913A1 (en) 2008-04-24 2009-10-28 Tonen Chemical Corporation Microporous membrane and manufacturing method
EP2113363A1 (en) 2008-04-24 2009-11-04 Tonen Chemical Corporation Process for protecting extrudate from process condensation
EP2111909A1 (en) 2008-04-24 2009-10-28 Tonen Chemical Corporation Microporous Polyolefin Membrane And Manufacturing Method
EP2113365A1 (en) 2008-04-24 2009-11-04 Tonen Chemical Corporation Improved cross flow manifold extrusion die
EP2111908A1 (en) 2008-04-24 2009-10-28 Tonen Chemical Corporation Microporous Membrane And Manufacturing Method
EP2113362A1 (en) 2008-04-24 2009-11-04 Tonen Chemical Corporation Coextrusion die and manifold system therefor
EP2111910A1 (en) 2008-04-24 2009-10-28 Tonen Chemical Corporation System And Process For Producing A Multilayer Microporous Membrane
EP2113366A1 (en) 2008-04-24 2009-11-04 Tonen Chemical Corporation Extrusion die and manifold system therefor
EP2111912A1 (en) 2008-04-24 2009-10-28 Tonen Chemical Corporation Microporous polyolefin membrane and manufacturing method
JP2010007053A (ja) * 2008-05-30 2010-01-14 Asahi Kasei E-Materials Corp ポリオレフィン製微多孔膜
JP2011225736A (ja) * 2010-04-21 2011-11-10 Asahi Kasei E-Materials Corp ポリオレフィン微多孔膜、及びリチウムイオン二次電池
US9624349B2 (en) 2011-12-28 2017-04-18 Toray Battery Separator Film Co., Ltd. Polyolefin microporous film and method for producing same
KR20140105750A (ko) 2011-12-28 2014-09-02 도레이 배터리 세퍼레이터 필름 주식회사 폴리올레핀 미다공막 및 그 제조 방법
US9911956B2 (en) 2011-12-28 2018-03-06 Toray Industries, Inc. Polyolefin microporous film and method of producing same
WO2013099607A1 (ja) 2011-12-28 2013-07-04 東レバッテリーセパレータフィルム株式会社 ポリオレフィン微多孔膜及びその製造方法

Also Published As

Publication number Publication date
US20070221568A1 (en) 2007-09-27
JPWO2005113657A1 (ja) 2008-03-27
JP5046640B2 (ja) 2012-10-10
TWI297343B (en) 2008-06-01
US8104625B2 (en) 2012-01-31
TW200611928A (en) 2006-04-16

Similar Documents

Publication Publication Date Title
WO2005113657A1 (ja) ポリオレフィン製微多孔膜
JP5057654B2 (ja) ポリエチレン製微多孔膜
JP5403633B2 (ja) 微多孔膜、電池セパレーターおよび電池
JP5403634B2 (ja) 微多孔膜、電池セパレーターおよび電池
TWI393285B (zh) 聚烯烴微多孔膜及其製法、以及電池用隔離材與電池
JP4804079B2 (ja) ポリオレフィン製微多孔膜
WO1997023554A1 (en) Short circuit-resistant polyethylene microporous film
US8597775B2 (en) Microporous polyolefin multi layer film
KR20070081804A (ko) 용융파단 특성이 우수한 폴리올레핀 미세다공막 및 그제조방법
JPWO2012102129A1 (ja) 微多孔膜、その製造方法及びそれを用いたバッテリーセパレーター
WO2021033735A1 (ja) ポリオレフィン微多孔膜、積層体、及び電池
CN114094284A (zh) 一种新型交联隔膜及其制备方法,电池及电子设备
EP2752451A1 (en) Polyolefin resin composition and applications thereof
JP4698078B2 (ja) ポリオレフィン製微多孔膜及びその製造方法
CN100545197C (zh) 由聚烯烃制成的微孔膜
JP5073916B2 (ja) リチウムイオン電池用セパレーター用ポリオレフィン製微多孔膜
JP3995467B2 (ja) ポリオレフィン製微多孔膜
JP3995471B2 (ja) ポリオレフィン製微多孔膜
JP4507334B2 (ja) ポリマーブレンド微多孔膜
JP4698091B2 (ja) ポリオレフィン製微多孔膜
JP5411550B2 (ja) ポリオレフィン製微多孔膜
WO2021033733A1 (ja) ポリオレフィン微多孔膜、積層体、及び電池
JP2022082461A (ja) ポリオレフィン微多孔膜、電池用セパレータ、及び二次電池
JP2005330398A (ja) ポリオレフィン製微多孔膜
JP2002036459A (ja) 多孔質フィルム及びその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006513719

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11596844

Country of ref document: US

Ref document number: 2007221568

Country of ref document: US

Ref document number: 1020067024181

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580016232.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 1020067024181

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11596844

Country of ref document: US