WO2005102638A1 - 脆性基板の垂直クラック形成方法および垂直クラック形成装置 - Google Patents

脆性基板の垂直クラック形成方法および垂直クラック形成装置 Download PDF

Info

Publication number
WO2005102638A1
WO2005102638A1 PCT/JP2005/007993 JP2005007993W WO2005102638A1 WO 2005102638 A1 WO2005102638 A1 WO 2005102638A1 JP 2005007993 W JP2005007993 W JP 2005007993W WO 2005102638 A1 WO2005102638 A1 WO 2005102638A1
Authority
WO
WIPO (PCT)
Prior art keywords
vertical crack
spot
crack
forming
substrate
Prior art date
Application number
PCT/JP2005/007993
Other languages
English (en)
French (fr)
Inventor
Noboru Hasaka
Toru Kumagai
Koji Yamamoto
Original Assignee
Mitsuboshi Diamond Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Diamond Industrial Co., Ltd. filed Critical Mitsuboshi Diamond Industrial Co., Ltd.
Priority to US11/587,957 priority Critical patent/US20080135532A1/en
Priority to JP2006512651A priority patent/JPWO2005102638A1/ja
Priority to EP05736662A priority patent/EP1741534A4/en
Publication of WO2005102638A1 publication Critical patent/WO2005102638A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • B23K26/0676Dividing the beam into multiple beams, e.g. multifocusing into dependently operating sub-beams, e.g. an array of spots with fixed spatial relationship or for performing simultaneously identical operations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0736Shaping the laser spot into an oval shape, e.g. elliptic shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • B23K26/703Cooling arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D1/00Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
    • B28D1/22Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by cutting, e.g. incising
    • B28D1/221Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by cutting, e.g. incising by thermic methods
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/0207Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet being in a substantially vertical plane
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock
    • C03B33/091Severing cooled glass by thermal shock using at least one focussed radiation beam, e.g. laser beam
    • C03B33/093Severing cooled glass by thermal shock using at least one focussed radiation beam, e.g. laser beam using two or more focussed radiation beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/52Ceramics

Definitions

  • the present invention relates to a method for forming a vertical crack on a brittle substrate and a device for forming a vertical crack.
  • the present invention relates to a method and apparatus for forming a vertical crack in a brittle substrate, and more particularly, to a method of irradiating a laser beam in the form of a spot along a line where a vertical crack is to be formed on the brittle substrate, and heating the laser beam.
  • the present invention relates to a method for forming a vertical crack on a brittle substrate and a device for forming a vertical crack, the method including a step of injecting a refrigerant to a part.
  • a heating spot is formed on the substrate while a laser beam is relatively moved along a vertical crack formation line on the brittle substrate.
  • a vertical crack forming method is known in which a cooling spot is formed by injecting a coolant onto a heated portion of a substrate while heating the substrate.
  • a vertical crack is formed based on a stress difference between a compressive stress generated around a heating spot and a tensile stress generated around a cooling spot. .
  • a notch is made on the end face of the substrate using a tool such as a cutter, and the notch is used as a breakthrough to form a heating spot and a cooling spot, so that vertical cracks that penetrate in the thickness direction of the board can be removed. Can evolve in any direction.
  • Patent Document 1 discloses a method and an apparatus for irradiating a laser beam while moving the glass to heat the glass and injecting a coolant to a heated portion to cut the glass. According to this document, the cutting quality of glass is improved by changing the moving speed and energy of the beam according to the moving position of the beam.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-321234
  • Patent Document 2 discloses a method of dividing a substrate in which an incident beam is diffracted by a diffractive optical element to generate a band-shaped beam having a longitudinal direction along a cleavage line on the substrate.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-66745
  • the present invention has been made in view of the above problems, and has as its object to provide a vertical crack forming method and a vertical crack forming apparatus for a brittle substrate that can obtain a good substrate end face by cutting. I do.
  • a step of irradiating a laser beam in the form of a spot along a line for forming a vertical crack on a brittle substrate and heating the same, and injecting a coolant to the heated portion is provided.
  • the above-described step includes forming one heating spot and irradiating a laser beam, and forming one cooling spot, which is performed subsequently, as one crack forming unit operation.
  • the crack forming unit operation is configured such that the portion heated by the heating spot is cooled by the cooling spot, whereby the spot is formed.
  • a method for forming a vertical crack in a brittle substrate wherein the method is set so that thermal equilibrium between the substrate and its surroundings is restored.
  • a laser beam irradiating means for irradiating a laser beam to form a heating spot on a brittle substrate to heat the substrate and a vertical crack forming line on the brittle substrate are provided.
  • a laser beam moving means for moving a laser beam irradiated from the laser beam irradiation means along the brittle substrate relative to the brittle substrate, a refrigerant injecting means for injecting a refrigerant to a portion of the brittle substrate where a heating spot is formed,
  • a control section for controlling the means, wherein the laser beam irradiation means forms a heating spot having a shape having a long axis in a direction orthogonal to the vertical crack formation scheduled line, and the control section forms the heating spot,
  • the cracks of the unit length thereby form continuous cracks along the vertical crack formation scheduled line, and the crack forming unit operation determines the portion heated by the heating spot.
  • a vertical crack forming apparatus for a brittle substrate is provided, wherein the apparatus is set so that thermal equilibrium around the spot is restored by cooling the substrate with a cooling spot.
  • the process includes forming one heating spot, stopping irradiation of a laser beam, and forming one cooling spot, which is performed subsequently, as one crack. It is configured as a forming unit operation, and the crack forming unit operating force is set so that thermal equilibrium between the spot and its surroundings is restored by cooling the portion heated by the heating spot with the cooling spot, so that one
  • a crack forming unit operation is completed, a spot where the crack forming unit operation is performed can be thermally liquidated. Therefore, vertical cracks can be successively formed intermittently in a state where thermal stress does not remain, and a crack having good cross-sectional quality after break can be formed.
  • the heating spot has a shape having a longitudinal axis in a direction orthogonal to the vertical crack formation line, a larger compressive stress can be generated in the direction orthogonal to the vertical crack formation line. Therefore, the energy of the added laser beam can be effectively used to form a vertical crack while suppressing the generation of a residual stress in a direction along the line where the vertical crack is to be formed, thereby suppressing the generation of the residual stress.
  • At least one crack forming unit operation including the formation of a heating spot and the irradiation of a laser beam is stopped, and the subsequent formation of a cooling spot is performed.
  • the cracks having the unit length are formed.
  • the crack formation unit operation time length and the number of times each operation is repeated according to various conditions such as the thickness, material, and crack formation position of the substrate.
  • the heating spot since it is not a forming method in which the heating spot is moved while continuously irradiating the heating spot as in the related art, the advantage that the heating spot has a longitudinal axis in a direction perpendicular to the line where vertical cracks are to be formed is not impaired.
  • the energy of the added laser beam can be effectively used to form a vertical crack in a direction along the line where the vertical crack is to be formed.
  • the crack formation unit operation is repeated a plurality of times without changing the spot formation position, so that a tool such as a cutter is not required separately.
  • a notch at the starting point is formed on the end face of the substrate as a trigger for the vertical crack to propagate in the direction of the surface of the substrate, and the crack at the starting point is used as a breakthrough to penetrate the crack in the thickness direction of the substrate. It can be developed in the plane direction of the substrate. If the cooling spot is formed so as to be wider and cooler than the heating spot mainly by using the latent heat of vaporization of the refrigerant, the heating spot can be quickly cooled and the thermal equilibrium can be quickly restored.
  • the cycle of the crack forming unit operation is shortened and a sufficient amount of the refrigerant for heat removal is heated. Can be supplied.
  • the heating spot is set as parameters such as the irradiation output of the laser beam, the irradiation time, the shape of the heating spot or the interval between the heating spots, various conditions such as the thickness and the material of the substrate and the crack formation position are set.
  • the optimum conditions for the crack formation unit operation can be appropriately changed according to the conditions.
  • the interval D between the heating spots is LZ2 ⁇ D ⁇ L. If the cracks are set so as to be satisfied, cracks having a unit length are partially overlapped, or cracks having a unit length are formed without gaps, whereby a single crack can be formed without interruption.
  • the vertical crack can be formed as a straight line along the vertical crack formation line by correcting the curvature of the vertical crack.
  • a continuous curved crack can be formed by performing the operation for correcting the curvature of the vertical crack as a curved vertical crack formation scheduled line.
  • the longitudinal axis of the heating spot is centered on the intersection with the vertical crack formation line.
  • the crack forming unit operation may be repeatedly performed in a state of being retracted to the distal side from the adjacent edge. This makes it possible to correct the vertical cracks that are likely to occur near the edge of the substrate and to form the vertical crack as a straight line along the vertical crack formation line.
  • a crack forming unit operation comprising the steps of forming N heating spots almost simultaneously in the direction of vertical crack formation, and then forming cooling spots on each of the formed heating beams almost simultaneously.
  • cracks penetrating in the thickness direction of the substrate are formed along the vertical crack formation scheduled line by a unit length of N pieces, and then the crack formation is performed by changing the spot formation position.
  • Unit operation at least By executing the crack once, the crack having the unit length may form a continuous crack along the vertical crack formation scheduled line.
  • N heating spots can be formed each time the spot formation position is changed once, so that the spot distance is lengthened to reduce the number of times of irradiation and the vertical crack formation speed is increased. Can be raised.
  • the heating spot is formed so that 0 ⁇ a ⁇ 4t, it is possible to form an energy heating spot corresponding to the thickness of the substrate.
  • the refrigerant is injected so that 0 ⁇ C ⁇ aZ2.
  • the control unit is configured to form a crack formed by forming a heating spot and forming a cooling spot that is subsequently performed after the irradiation of the laser beam is stopped.
  • a crack penetrating in the thickness direction of the substrate is formed along the vertical crack forming line by a unit length, and then the spot forming position is changed and the crack is formed.
  • a command is issued to each of the above means to execute the forming unit operation at least once, whereby the cracks having the unit length form continuous cracks along the vertical crack forming scheduled line, and the crack forming unit operation is performed.
  • thermal equilibrium around the spot can be restored. !, Also it is set to.
  • a spot where the crack forming unit operation has been performed can be thermally settled. Therefore, a vertical crack can be formed while minimizing the residual amount of thermal stress. Since the number of crack formation unit operations can be appropriately set according to various conditions such as the thickness and material of the substrate and the crack formation position, energy can be utilized without waste. In addition, since it is not a forming method in which the heating spot is moved while continuously irradiating the heating spot as in the related art, the advantage that the heating spot has a longitudinal axis in a direction perpendicular to the line where vertical cracks are to be formed is not impaired. The energy of the added laser beam can be effectively applied to form a vertical crack in the direction along the vertical crack formation line.
  • the control unit may be configured to perform the crack formation unit operation a plurality of times in the vicinity of the substrate edge, which is the start point of the vertical crack formation scheduled line, without changing the spot formation position. If a command is issued, a starting point notch is formed on the end face of the board that triggers the propagation of a vertical crack in the plane direction of the board without using a tool such as a cutter. A vertical crack that penetrates in the thickness direction of the substrate as a breakthrough can be propagated in the surface direction of the substrate.
  • the refrigerant injection means forms a cooling spot by jetting the refrigerant liquid by the inkjet method, it is possible to shorten the cycle of the crack forming unit operation and supply a sufficient amount of the cooling medium to the heating spot for heat removal. Can be.
  • the coolant injection means forms a cooling spot by injecting the coolant and then cools a wider area than the heating spot by the auxiliary cooling means, the heating spot is quickly cooled and the thermal equilibrium is quickly restored. can do.
  • control unit issues a command to the above-mentioned means so that the heating spot is set with the irradiation output of the laser beam, the irradiation time, the shape of the heating spot or the interval of the heating spot as parameters
  • the setting of the crack formation unit operation can be appropriately changed according to various conditions such as the thickness, the material, and the crack formation position.
  • the control unit issues a command to the laser beam moving means to set the heating spot interval D force L / 2 ⁇ D ⁇ L.
  • a single continuous crack can be formed by partially overlapping cracks of unit length or by forming cracks of unit length without gaps.
  • control unit instructs the laser beam irradiation means to change the angle at which the longitudinal axis of the heating spot intersects the vertical crack formation scheduled line near the edge of the substrate. Stress between the compressive stress at the spot and the tensile stress at the cooling spot Since the direction of the gradient can be changed, the curvature of the vertical crack which is likely to occur near the edge of the substrate can be corrected, and the vertical crack can be formed as a straight line along the line where the vertical crack is to be formed.
  • the control unit sets the longitudinal axis of the heating spot to the intersection with the vertical crack formation planned line. If the above-mentioned units are instructed to be retreated at the distal side from the adjacent edge of the substrate as the center and to repeat the crack forming unit operation, it is likely to occur near the edge of the substrate. The curvature of the vertical crack is corrected, and the vertical crack can be formed as a straight line along the line where the vertical crack is to be formed.
  • the control unit forms N heating spots at substantially the same time in a direction in which the vertical cracks are formed, and stops the laser beam irradiation.
  • a crack penetrating in the thickness direction of the substrate is formed along the vertical crack forming scheduled line by a unit length of N pieces.
  • a command is issued to each of the above means to change the spot forming position and execute the crack forming unit operation at least once, whereby the crack having the unit length is changed to the vertical crack forming scheduled line.
  • a continuous crack may be formed along the line.
  • N heating spots can be formed each time the spot forming position is changed once, so that the moving distance of the spot forming position is lengthened to reduce the number of times of movement and the vertical crack forming speed is increased. Can be raised.
  • the control unit controls the laser beam irradiation means to form a heating spot satisfying 0 ⁇ a ⁇ 4t. If a command is issued, a heating spot with energy corresponding to the thickness of the substrate can be formed.
  • the control unit When the length of the longitudinal axis of the heating spot formed on the substrate is a and the equivalent circle diameter of the cooling spot formed on the substrate is C, the control unit satisfies 0 ⁇ C ⁇ aZ2. If a command is issued to the refrigerant injection means to form a cooling spot, the thermal equilibrium between the spot and the surrounding area is set so as to be restored. Thermal liquidation can be performed for spots where formation unit operation has been performed. Wear. Therefore, a vertical crack can be formed while minimizing the residual amount of thermal stress.
  • FIG. 1 is a view for explaining a step of forming a continuous crack along a vertical crack forming scheduled line in the present invention.
  • FIG. 2 is a view for explaining setting of an irradiation position of a laser beam.
  • FIG. 3 is a diagram schematically showing a configuration of a vertical crack forming device.
  • FIG. 4 is a diagram schematically showing a configuration of a head unit 5 in FIG. 3.
  • FIG. 5 is a view for explaining a method of forming a vertical crack when a vertical crack formation line is located near an edge of a substrate parallel to the vertical crack formation line.
  • FIG. 6 is a diagram illustrating a method of forming a curved vertical crack.
  • the brittle substrate of the present invention is not particularly limited in form, material, application, and size, and may be a substrate having a single plate strength or a bonded substrate obtained by bonding two or more single plates.
  • a semiconductor material such as a thin film or a terminal portion may be adhered or included on the surface or inside thereof.
  • Examples of the material of the brittle substrate include glass, ceramics of a sintered material, silicon of a single crystal material, sapphire, and the like. Uses thereof include flat panel displays such as a liquid crystal display panel, a plasma display panel, and an organic EL display panel. Panels for FPD), ceramic substrates for ceramic capacitors, wafer substrates for semiconductor chips, and the like.
  • the laser beam in order to form a continuous vertical crack along the vertical crack formation line, is heated on the substrate while moving the laser beam relative to the brittle substrate along the vertical crack formation line on the brittle substrate.
  • the method includes a step of forming a spot, heating the substrate, and injecting a coolant to a heated portion on the brittle substrate to form a cooling point.
  • the formation of one heating spot and the formation of one cooling spot that is performed subsequently after the laser beam irradiation is stopped are configured as one crack formation unit operation.
  • the vertical crack in the present invention is a crack that penetrates in the thickness direction of a brittle substrate, and is a blind crack that is difficult to visually observe, a crack that does not lead to complete division of the substrate, and a formed vertical crack. This includes a state in which the substrate is almost completely separated by the process.
  • FIG. 1 and FIG. 2 are diagrams illustrating a process of forming a continuous crack along a vertical crack formation scheduled line.
  • a heating spot 10 formed on a substrate by laser beam irradiation has a longitudinal axis b in a direction orthogonal to a vertical crack formation scheduled line S, and a major axis is indicated by a.
  • Such a shape of the heating spot 10 generates a larger compressive stress (indicated schematically by a broken line) in a direction perpendicular to the vertical crack formation line S than in a direction along the vertical crack formation line S.
  • the heating spot 10 is composed of a minimum unit of laser energy necessary and sufficient for forming a vertical crack in order to reduce the number of repetitions of the crack forming unit operation at one location.
  • a cooling spot is formed by injecting a coolant near the heating spot 10 to rapidly cool the heated portion.
  • the cooling spot 20 is generally formed at a substantially central portion of the heating spot on the longitudinal axis b on the line S where a vertical crack is to be formed.
  • the size of the cooling spot 20 divided by the amount of the refrigerant used is set such that thermal equilibrium between the heating spot 10 and the surrounding area is restored. From this, every time one crack forming unit operation is completed, thermal settlement can be performed for the spot portion where the crack forming unit operation has been performed. Therefore, the generation of the residual stress can be suppressed, and the refrigerant forming the cooling spot 20 may be injected in the necessary minimum amount in the vicinity of the heating spot 10, so that the heating can be performed without unnecessary waste of the refrigerant. Spot 10 can be cooled.
  • the formation of the cooling spot 20 causes a larger tensile stress (indicated by a solid line) in a direction orthogonal to the vertical crack formation scheduled line S.
  • a stress difference is generated in a direction orthogonal to the vertical crack formation scheduled line S, and a vertical crack having a unit length L penetrating in the board thickness direction is formed along the vertical crack formation planned line S.
  • the vertical crack having a unit length L of the cooling spot 20 formed along the vertical crack forming line S is hereinafter referred to as a unit crack n.
  • the stress difference generated in the direction along the vertical crack formation scheduled line S does not contribute to the formation of the unit crack n formed along the vertical crack formation planned line S, but also contributes to the formation of such a unit crack n. This is because it inhibits.
  • the heating spot 10 of the present invention has a longitudinal axis b in a direction orthogonal to the vertical crack formation scheduled line S, so that the required minimum irradiation time of the laser beam is
  • the unit crack n can be generated by the irradiation energy.
  • the irradiation is performed in a state where the movement of the laser beam is stopped and the heating beam is stopped at the time of the crack forming unit operation.
  • the formed heating spot 10 becomes a strip extending long in the direction along the vertical crack formation scheduled line S. This is because the advantage of the above-described heating spot 10 having the longitudinal axis b in the direction orthogonal to the vertical crack formation scheduled line S is impaired.
  • the irradiation position of the next laser beam is determined.
  • FIG. 2 is a diagram for explaining a laser beam irradiation position.
  • the interval D between the heating spots 10 formed by laser beam irradiation is LZ2 ⁇ D ⁇ L is preferred to meet.
  • the unit cracks n are formed such that at least a unit crack n having a gap between adjacent unit cracks n formed adjacent to each other does not overlap by more than half of its length.
  • the cycle of one crack formation unit operation that is, the time from the start of formation of a heating spot to the start of formation of the next heating spot is 0.01 to 0.1 second.
  • the crack forming unit operation is performed without changing the spot forming position in the vicinity m near the end of the substrate which is the starting point of the vertical crack forming scheduled line S. Repeat several times.
  • a starting point notch is formed on the end surface of the substrate as a trigger for the vertical crack to propagate in the surface direction of the substrate without using a tool such as a cutter separately.
  • Using the notch at the starting point as a break vertical cracks penetrating in the thickness direction of the substrate can be propagated in the surface direction of the substrate.
  • the repetition of the above-described crack forming unit operation at the same spot position can be performed at a desired position on the substrate, not only at m near the end of the substrate, which is the starting point of the vertical crack forming line S,
  • the number of times is appropriately set according to the material and thickness of the substrate to be processed, the set output of the laser irradiation source, and the like.
  • the heating spot 10 is preferably formed such that 0 ⁇ a and 4t when the length (long axis) of the longitudinal axis of the heating spot 10 on the substrate is a and the thickness of the substrate is t.
  • the length of the longitudinal axis of the heating spot 10 formed on the substrate is a and the equivalent circle diameter (diameter) of the cooling spot 20 is C, 0 ⁇ C ⁇ aZ2 It is preferably formed as follows. Therefore, the relationship between the preferable substrate thickness t and the circle equivalent diameter C of the cooling spot 20 is 0 and C ⁇ 2t.
  • FIG. 3 and FIG. 4 are views showing an example of the vertical crack forming device of the present invention.
  • FIG. 3 is a diagram schematically showing a configuration of a vertical crack forming device.
  • the vertical crack forming apparatus 1 includes a head unit 5 including a laser beam irradiation unit 2, a refrigerant injection unit 3, and a driving unit 4 for these units, and a laser for moving the head unit 5 relatively to the brittle substrate.
  • a beam moving means 6 and a control unit 7 for controlling each of the above means are provided.
  • FIG. 4 is a diagram schematically showing a configuration of the head section 5 of FIG.
  • the head unit 5 includes a laser oscillator 11 that emits a laser beam, and a plurality of laser beams that distribute the laser beam emitted from the laser oscillator 11 to reflected light and transmitted light at a predetermined ratio.
  • a beam splitter 12, a shutter 13 that passes each of the laser beams reflected by the beam splitter 12 at a predetermined timing and a transit time, and a laser beam that has passed through the shutter 13 is adjusted to a heating spot 10 having an arbitrary shape.
  • the optical system includes an optical system 14 and a mirror moving mechanism 15 that adjusts each beam splitter 12.
  • the laser oscillator 11 is, for example, a carbon dioxide laser, and has a pulse frequency of 0 to 200 kHz, a pulse width of 0.01 to 0.1 second, and a laser oscillation output of 3 to 20 W. In the present invention, it is assumed that the pulse width related to the frequency of the RF oscillation source is continuous.
  • the optical system 14 has a desired shape and size along a vertical crack formation line S on the substrate, that is, the ratio of the length of the major axis to the minor axis of the heating spot 10 and the maximum diameter ⁇ , and the length of the heating spot 10. It is possible to adjust the angle ⁇ at which the axis intersects the vertical crack forming line S on the substrate.
  • the mirror moving mechanism unit 15 can set the length at which the unit cracks n are overlapped by adjusting the angular orientation of each of the beam splitters 12 with the interval between the plurality of beam splitters 12.
  • the laser beam irradiating means 2 includes a plurality of laser emission ports 21 for emitting a laser beam from the optical system 14 shown in FIG.
  • the refrigerant injection means 3 includes a plurality of refrigerant injection ports 31 for jetting the droplet-shaped refrigerant.
  • the laser emission port 21 and the refrigerant injection port 31 are adjacent to each other so as to form one unit 51, and the head unit 5 includes N units 51 arranged in a row.
  • the laser beam moving means 6 has a configuration in which the head portion 5 is intermittently moved in a desired cycle in three axial directions including the direction of the vertical crack forming scheduled line S.
  • the refrigerant injection port 31 includes, for example, an ink-jet type droplet injection mechanism widely used in printers and the like, and examples of the refrigerant to be injected include water, ammonia, and liquid nitrogen. Further, the refrigerant to be injected may be a mixture of the liquid and a gas such as helium, air, or carbon dioxide.
  • the control unit 7 controls the formation of N heating spots 10 by the laser beam irradiation means 2 via the driving unit 4. Specifically, laser beams are emitted from N laser emission ports 21 almost simultaneously, and N heating spots 10 are formed.
  • control section 7 instructs the refrigerant injection means 3 to inject the refrigerant substantially simultaneously around the formed heating spots 10. Thereby, the refrigerant is injected from each of the refrigerant injection ports 31, and the cooling spots 20 are formed in the vicinity of the respective heating spots 10.
  • N unit cracks n are formed based on the stress difference between the compressive stress generated at the heating spot 10 and the tensile stress generated at the cooling spot 20. At this time, the sequentially formed unit cracks n evolve with time, and adjacent unit cracks n are connected to each other. Further, since the cooling spot 20 is formed so as to cool a wider area than the heating spot 10 mainly by using the latent heat of vaporization of the refrigerant, the heating spot 10 can be quickly cooled and the thermal equilibrium can be quickly restored. .
  • the vertical crack forming device 1 simultaneously forms N spots, so that the period of one crack forming unit operation in the vertical crack forming device 1 is , And TZN.
  • an auxiliary cooling means such as air cooling may be used.
  • the crack forming unit operation consisting of the step of forming the heating spot 10 and the cooling spot 20 is continuously performed, so that the unit crack that penetrates in the thickness direction of the substrate is first obtained.
  • n are connected along the vertical crack forming line S to form a vertical crack having a unit length of LXN (N1 in Fig. 3), and then moving the head 5
  • the spot formation position is changed, and unit cracks n are connected along the vertical crack formation scheduled line S in the same manner as described above to form a vertical crack having a length of LXN unit lengths (N2 in the figure).
  • Such an operation is repeatedly performed up to Nn in the figure.
  • N heating spots can be formed each time the spot formation position is changed once, and the number of spots is smaller than the case where one laser emission port 21 and one coolant injection port 31 are provided.
  • the number of times of changing the formation position of the cracks is reduced, and the formation speed of the vertical crack can be remarkably increased.
  • FIG. 5 is a diagram for explaining the correction when the vertical crack formation scheduled line S is located close to the edge of the substrate parallel to the vertical crack formation planned line S.
  • the temperature distribution is measured on both sides of the vertical crack formation line S after repeating the unit operation.
  • the symmetry is relatively maintained.
  • the control unit 7 Laser beam irradiating means 2 and laser beam movement to repeat crack forming unit operation with axis b near the intersection with vertical crack formation scheduled line S at the center and near edge of substrate h. Send a command to means 6.
  • the vertical crack forming method and the vertical crack forming apparatus of the present invention can form a curved vertical crack by connecting the unit cracks n.
  • FIG. 6 is a diagram illustrating an operation of forming a curved vertical crack.
  • the control unit 7 controls the vertical crack forming schedule when forming the curved vertical crack along the curved vertical crack forming scheduled line S 'as shown in FIG.
  • a command is issued to the laser beam irradiating means 2, the refrigerant jetting means 3, and the laser beam moving means 6 so that the crack forming unit operation is repeated while the longitudinal axis b of the heating spot 10 is orthogonal to the tangent line of the line S '.
  • the N units 51 each including a laser beam irradiation unit 2 and a refrigerant injection unit 3 operate according to the curvature or the like of the vertical crack formation scheduled line S ', and one or several of them perform crack formation unit operation. Is performed. Used for one crack forming unit operation It is possible to change the power selection of the unit 51 to be selected from the N units 51.
  • the present invention can be used for a vertical crack forming method and a vertical crack forming apparatus for cutting a brittle substrate such as a semiconductor wafer, a glass substrate, and a ceramic substrate.

Abstract

 分断により良好な基板の端面が得られる脆性基板の垂直クラック形成方法および垂直クラック形成装置を提供することを目的とする。  脆性基板上の垂直クラック形成予定ラインに沿ってレーザビームを照射してスポット状に加熱し、加熱された部位に冷媒を噴射する工程を具備して垂直クラックを形成する基板の垂直クラック形成方法において、前記工程が、1つの加熱スポットの形成とレーザビームの照射を中止し、続いて行われる1つの冷却スポットの形成とを1つのクラック形成単位動作として構成され、クラック形成単位動作が、加熱スポットによって加熱された部位を冷却スポットで冷却することにより、前記スポットとその周囲における熱的平衡が回復されるように設定される。

Description

脆性基板の垂直クラック形成方法および垂直クラック形成装置 技術分野
[0001] 本発明は、脆性基板の垂直クラック形成方法および垂直クラック形成装置に関し、 特に、脆性基板上の垂直クラック形成予定ラインに沿ってレーザビームをスポット状 に照射して加熱し、加熱された部位に冷媒を噴射する工程を具備する脆性基板の垂 直クラック形成方法および垂直クラック形成装置に関する。
背景技術
[0002] 半導体ウェハ、ガラス基板、セラミック基板等の脆性基板を分断するために脆性基 板上の垂直クラック形成予定ラインに沿ってレーザビームを相対移動させながら、基 板上に加熱スポットを形成して基板を加熱しながら、加熱された基板上の部位に冷 媒を噴射して冷却スポットを形成する垂直クラック形成方法が知られている。
このようなレーザビームによる垂直クラック形成方法では、加熱スポットの周囲に生 じた圧縮応力と、冷却スポットの周囲に生じた引張り応力との間の応力差に基づ 、て 垂直クラックが形成される。
通常、カッター等の工具を用いて基板の端面に刻み目をつけ、この刻み目を突破 口にして加熱スポットと冷却スポットを形成することにより、基板の板厚方向に浸透す る垂直クラックを基板の面方向に進展させることができる。
[0003] 特許文献 1には、レーザビームを移動させながら照射してガラスを加熱し、加熱され た部位に冷却剤を噴射してガラスを切断する方法および装置が開示されて 、る。こ の文献によれば、ビームの移動位置に応じてビームの移動速度やエネルギーを変化 させることにより、ガラスの切断品質を向上させている。
[0004] 特許文献 1:特開 2003— 321234号公報
[0005] 特許文献 2には、入射ビームを回折光学素子により回折させて、基板上の割断予 定線に長手方向を有する帯状ビームを生成する基板の分断方法が開示されている。 このような帯状ビームを基板上に生成することにより、基板上の割断予定線と直交す る方向に対して及ぶ熱影響の範囲を小さくできるので、基板上に形成された配線、デ バイスへの熱影響を少なくできる。
[0006] 特許文献 2 :特開 2004— 66745号公報
発明の開示
発明が解決しょうとする課題
[0007] 特許文献 1に記載されたように、レーザビームを移動させながら連続的に照射した 場合、冷却剤の噴霧による冷却を連続的に行っても基板の板厚方向に高温域が残 存しゃすい。
[0008] 特許文献 2に記載されたように、基板上の割断予定線に沿って長手方向を有する 帯状ビームを生成する場合、加熱スポットに生じた圧縮応力と、冷却スポットに生じた 引張り応力との間の応力勾配は、基板上の割断予定線に沿う方向において大きぐ 基板上の割断予定線と直交する方向にお!、て小さくなる。後者の方向に発生する応 力勾配が垂直クラックの形成に寄与する。
したがって、基板上の割断予定線に長手方向を有する帯状ビームを用いて、基板 上の割断予定線に沿う方向に垂直クラックを進展させるには、大きなエネルギーを必 要とする。このため、基板の板厚方向に高温域が残存しやすい。
[0009] 基板中に残存する高温域は残留応力として作用するので、形成される垂直クラック の深さが板厚と比較して小さぐその後に行われる分断によって形成される基板の端 面の品質は十分なものではな!/、。
[0010] 本発明は、上記の問題点に鑑みてなされたものであり、分断により良好な基板の端 面が得られる脆性基板の垂直クラック形成方法および垂直クラック形成装置を提供 することを目的とする。
課題を解決するための手段
[0011] この発明によれば、脆性基板上の垂直クラック形成予定ラインに沿ってレーザビー ムをスポット状に照射して加熱し、加熱された部位に冷媒を噴射する工程を具備して 垂直クラックを形成する基板の垂直クラック形成方法において、前記工程が、 1つの 加熱スポットの形成とレーザビームの照射を中止し、続いて行われる 1つの冷却スポ ットの形成とを 1回のクラック形成単位動作として構成され、クラック形成単位動作が、 加熱スポットによって加熱された部位を冷却スポットで冷却することにより、前記スポッ トとその周囲における熱的平衡が回復されるように設定されることを特徴とする脆性 基板の垂直クラック形成方法が提供される。
[0012] この発明の別の観点によれば、レーザビームを照射して脆性基板上に加熱スポット を形成し基板を加熱するためのレーザビーム照射手段と、脆性基板上の垂直クラック 形成予定ラインに沿ってレーザビーム照射手段から照射されるレーザビームを脆性 基板と相対移動させるレーザビーム移動手段と、脆性基板上の加熱スポットが形成さ れた部位に冷媒を噴射する冷媒噴射手段と、前記の各手段を制御する制御部とを 具備し、レーザビーム照射手段は、垂直クラック形成予定ラインに直交する方向に長 手軸を有する形状の加熱スポットを形成し、制御部は、加熱スポットの形成と、レーザ ビームの照射を中止した後に、続いて行われる冷却スポットの形成とからなるクラック 形成単位動作を少なくとも 1回実行することによって、基板の板厚方向に浸透するク ラックを前記垂直クラック形成予定ラインに沿って単位長さだけ形成し、次いで、スポ ットの形成位置を変えて前記クラック形成単位動作を少なくとも 1回実行するよう前記 の各手段に指令を行い、それによつて前記単位長さのクラックが前記垂直クラック形 成予定ラインに沿って連続するクラックを形成し、クラック形成単位動作が、加熱スポ ットによって加熱された部位を冷却スポットで冷却することにより、前記スポット周囲に おける熱的平衡が回復されるように設定されることを特徴とする脆性基板の垂直クラ ック形成装置が提供される。
発明の効果
[0013] この発明の脆性基板の垂直クラック形成方法では、その工程が、 1つの加熱スポット の形成と、レーザビームの照射を中止し、続いて行われる 1つの冷却スポットの形成と を 1つのクラック形成単位動作として構成され、クラック形成単位動作力 加熱スポット によって加熱された部位を冷却スポットで冷却することにより、前記スポットとその周囲 における熱的平衡が回復されるように設定されるので、 1つのクラック形成単位動作 を終える毎にそのクラック形成単位動作が行われたスポットについて熱的な清算を行 うことができる。したがって、熱的応力を残留させない状況下において順次間欠的に 垂直クラックを連続して形成することができ、ブレーク後の断面良質の良好なクラック を形成することが可能となる。 [0014] 加熱スポットが、垂直クラック形成予定ラインに直交する方向に長手軸を有する形 状であるようにすれば、垂直クラック形成予定ラインに直交する方向により大きな圧縮 応力を発生させることができる。したがって、付加されたレーザビームのエネルギーを 垂直クラック形成予定ラインに沿う方向に残留応力の発生を抑えつつ垂直クラックを 形成するために有効に活用できるので、残留応力の発生を抑えることができる。
[0015] 加熱スポットの形成と、レーザビームの照射を中止し、続、て行われる冷却スポット の形成とからなるクラック形成単位動作を少なくとも 1回実行することによって、基板の 板厚方向に浸透するクラックを前記垂直クラック形成予定ラインに沿って単位長さだ け形成し、次いで、スポットの形成位置を変えて前記クラック形成単位動作を少なくと も 1回実行することにより、前記単位長さのクラックが前記垂直クラック形成予定ライン に沿って連続する垂直クラックを形成するようにすれば、基板の厚さや材質、クラック の形成位置などの諸条件に応じてクラック形成単位動作時間長さと各動作の繰返し 回数を適宜設定することにより、エネルギーを無駄なく活用できる。
また、従来のように、加熱スポットを連続して照射させながら移動させる形成方法で はないので、加熱スポットを垂直クラック形成予定ラインに直交する方向に長手軸を 有する形状とした利点を損なうことなぐ付加されたレーザビームのエネルギーを垂直 クラック形成予定ラインに沿う方向に垂直クラックを形成するために有効に活用させる ことができる。
[0016] 垂直クラック形成予定ラインの開始点となる基板端部の近傍において、クラック形成 単位動作を各スポットの形成位置を変えずに複数回繰り返すようにすれば、カッター 等の工具を別途用いなくても、基板の端面に垂直クラックが基板の面方向に進展す るためのトリガーとなる開始点刻み目を形成し、この開始点刻み目を突破口にして基 板の板厚方向に浸透する垂直クラックを基板の面方向に進展させることができる。 冷却スポットが、主として冷媒の蒸発潜熱を用いて加熱スポットより広 、範囲を冷却 するよう形成するようにすれば、加熱スポットを速やかに冷却して熱的平衡を迅速に 回復することができる。
冷却スポットが、インクジェット方式による冷媒液体の噴射により形成されるようにす れば、クラック形成単位動作の周期を短くしかつ除熱に十分な量の冷媒を加熱スポッ トに供給することができる。
[0017] 加熱スポットが、レーザビームの照射出力、照射時間、加熱スポットの形状あるいは 加熱スポットの間隔をパラメータとして設定されるようにすれば、基板の厚さや材質、 クラックの形成位置などの諸条件に応じてクラック形成単位動作の最適条件を適宜 変更することができる。
[0018] 1回のクラック形成単位動作を実行することによって形成される垂直クラックの垂直 クラック形成予定ライン方向における単位長さを Lとするとき、加熱スポットの間隔 Dが 、 LZ2< D< Lを満たすように設定されるようにすれば、単位長さのクラックを一部重 ね合わせたり、単位長さのクラックを隙間なく形成することにより、途切れのない 1本の クラックが形成できる。
[0019] 基板の端部近傍において、加熱スポットの長手軸が垂直クラック形成予定ラインに 交わる角度を変更するようにすれば、加熱スポットに生じた圧縮応力と、冷却スポット に生じた引張り応力との間の応力勾配の向きを変化させることができるので、基板の 端部近傍で生じやす!ヽ垂直クラックの湾曲を補正し垂直クラックを垂直クラック形成 予定ラインに沿う直線として形成することができる。
また、このような垂直クラックの湾曲を補正する動作を曲線形状の垂直クラック形成 予定ラインとすることにより、連続した曲線クラックを形成することができる。
[0020] 垂直クラック形成予定ラインが垂直クラック形成予定ラインと平行する基板の辺縁部 に近接して位置するとき、加熱スポットの長手軸を垂直クラック形成予定ラインとの交 点を中心として基板の近接する辺縁部から遠位側に後退させた状態でクラック形成 単位動作を繰り返し行うようにしてもよい。これにより、前記基板の端部近傍で生じや すい垂直クラックの湾曲を補正し垂直クラックを垂直クラック形成予定ラインに沿う直 線として形成することができる。
[0021] 垂直クラックの形成方向に向かってほぼ同時に N個の加熱スポットを形成し、次い で、形成されたそれぞれの加熱ビームにほぼ同時に冷却スポットを形成する工程か らなるクラック形成単位動作を少なくとも 1回実行することによって、基板の板厚方向 に浸透するクラックを前記垂直クラック形成予定ラインに沿って N個分の単位長さだけ 形成し、次いで、スポットの形成位置を変えて前記クラック形成単位動作を少なくとも 1回実行することにより、前記単位長さのクラックが前記垂直クラック形成予定ラインに 沿って連続するクラックを形成する構成にしてもよい。
このような構成によれば、スポットの形成位置を 1回変えるごとに N個の加熱スポット を形成することができるので、スポットの距離を長くして照射する回数を減らして垂直 クラックの形成速度を上げることができる。
[0022] 基板上の加熱スポットの長手軸の長さを aとし、基板の板厚を tとするとき、
0< a<4tとなるように、加熱スポットを形成するようにすれば、基板の板厚に応じたェ ネルギ一の加熱スポットを形成することができる。
[0023] 基板上に形成される加熱スポットの長手軸の長さを aとし、基板上に形成される冷却 スポットの円相当径を Cとするとき、 0< C< aZ2となるよう冷媒の噴射を行うようにす れば、前記スポットとその周囲における熱的平衡が回復されるように設定されるので、 1つのクラック形成単位動作を終える毎にそのクラック形成単位動作が行われたスポ ットについて熱的な清算を行うことができる。したがって、残留応力の残存量を抑える ことができる。
[0024] この発明の基板の垂直クラック形成装置によれば、制御部は、加熱スポットの形成 と、レーザビームの照射を中止した後に、続いて行われる冷却スポットの形成とからな るクラック形成単位動作を少なくとも 1回実行することによって、基板の板厚方向に浸 透するクラックを前記垂直クラック形成予定ラインに沿って単位長さだけ形成し、次 ヽ で、スポットの形成位置を変えて前記クラック形成単位動作を少なくとも 1回実行する よう前記の各手段に指令を行い、それによつて前記単位長さのクラックが前記垂直ク ラック形成予定ラインに沿って連続するクラックを形成し、クラック形成単位動作が、 加熱スポットによって加熱された部位を冷却スポットで冷却することにより、前記スポッ ト周囲における熱的平衡が回復されるように設定されるようにしてもよ!、。
これにより、 1つのクラック形成単位動作を終える毎にそのクラック形成単位動作が 行われたスポットについて熱的な清算を行うことができる。したがって、熱的応力の残 存量を極力少なくさせながら垂直クラックを形成することができる。基板の厚さや材質 、クラックの形成位置などの諸条件に応じてクラック形成単位動作の回数を適宜設定 することができるので、エネルギーを無駄なく活用できる。 また、従来のように、加熱スポットを連続して照射させながら移動させる形成方法で はないので、加熱スポットを垂直クラック形成予定ラインに直交する方向に長手軸を 有する形状とした利点を損なうことなぐ付加されたレーザビームのエネルギーを垂直 クラック形成予定ラインに沿う方向に垂直クラックを形成するために有効に作用させる ことができる。
[0025] 制御部は、垂直クラック形成予定ラインの開始点となる基板端部の近傍において、 クラック形成単位動作を各スポットの形成位置を変えずに複数回繰り返して行うよう前 記の各手段に指令を行うようにすれば、カッター等の工具を別途用いなくても、基板 の端面に垂直クラックが基板の面方向に進展するためのトリガーとなる開始点刻み目 を形成し、この開始点刻み目を突破口にして基板の板厚方向に浸透する垂直クラッ クを基板の面方向に進展させることができる。
冷媒噴射手段が、インクジェット方式による冷媒液体の噴射により冷却スポットを形 成するようにすれば、クラック形成単位動作の周期を短くしかつ除熱に十分な量の冷 媒を加熱スポットに供給させることができる。
冷媒噴射手段が、冷媒の噴射により冷却スポットを形成した後、さらに補助冷却手 段により加熱スポットより広い範囲を冷却するようにすれば、加熱スポットを速やかに 冷却して熱的平衡を迅速に回復することができる。
[0026] 制御部は、加熱スポットが、レーザビームの照射出力、照射時間、加熱スポットの形 状あるいは加熱スポットの間隔をパラメータとして設定されるよう前記各手段に指令を 行うようにすれば、基板の厚さや材質、クラックの形成位置などの諸条件に応じてクラ ック形成単位動作の設定を適宜変更することができる。
[0027] 制御部は、クラックの単位長さを Lとするとき、加熱スポットの間隔 D力 L/2< D< L を満たすように設定されるべくレーザビーム移動手段に指令を行うようにすれば、単 位長さのクラックを一部重ね合わせたり、単位長さのクラックを隙間なく形成すること により、途切れのない 1本のクラックが形成できる。
[0028] 制御部は、基板の端部近傍にぉ ヽて、加熱スポットの長手軸が垂直クラック形成予 定ラインに交わる角度を変更するようレーザビーム照射手段に指令を行うようにすれ ば、加熱スポットに生じる圧縮応力と、冷却スポットに生じる引張り応力との間の応力 勾配の向きを変化させることができるので、基板の端部近傍で生じやすい垂直クラッ クの湾曲を補正し垂直クラックを前記垂直クラック形成予定ラインに沿う直線として形 成することができる。
[0029] 制御部は、垂直クラック形成予定ラインが垂直クラック形成予定ラインと平行する基 板の辺縁部に近接して位置するとき、加熱スポットの長手軸を垂直クラック形成予定 ラインとの交点を中心として基板の近接する辺縁部から遠位側で後退させて前記クラ ック形成単位動作を繰り返し行うよう前記の各手段に指令を行うようにすれば、基板 の端部近傍で生じやす 、垂直クラックの湾曲を補正し垂直クラックを垂直クラック形 成予定ラインに沿う直線として形成することができる。
[0030] 制御部は、垂直クラックの形成方向に向力つてほぼ同時に N個の加熱スポットを形 成し、レーザビームの照射を中止した後に、形成されたそれぞれの加熱スポットにほ ぼ同時に冷却スポットを形成する工程カゝらなるクラック形成単位動作を少なくとも 1回 実行することによって、基板の板厚方向に浸透するクラックを前記垂直クラック形成予 定ラインに沿って N個分の単位長さだけ形成し、次いで、スポットの形成位置を変え て前記クラック形成単位動作を少なくとも 1回実行するよう前記の各手段に指令を行 い、それによつて、前記単位長さのクラックが前記垂直クラック形成予定ラインに沿つ て連続するクラックを形成するようにしてもょ 、。
これにより、スポットの形成位置を 1回変えるごとに N個の加熱スポットを形成すること ができるので、スポットの形成位置の移動距離を長くして移動する回数を減らして垂 直クラックの形成速度を上げることができる。
[0031] 制御部は、基板上の加熱スポットの長手軸の長さを aとし、基板の板厚を tとするとき 、0< a<4tとなる加熱スポットを形成するようレーザビーム照射手段に指令を行うよう にすれば、基板の板厚に応じたエネルギーの加熱スポットを形成することができる。
[0032] 制御部は、基板上に形成される加熱スポットの長手軸の長さを aとし、基板上に形成 される冷却スポットの円相当径を Cとするとき、 0< C< aZ2となる冷却スポットを形成 するよう冷媒噴射手段に指令を行うようにすれば、前記スポットとその周囲における熱 的平衡が回復されるように設定されるので、 1つのクラック形成単位動作を終える毎 にそのクラック形成単位動作が行われたスポットについて熱的な清算を行うことがで きる。したがって、熱的応力の残存量を極力少なくさせながら垂直クラックを形成する ことができる。
図面の簡単な説明
[図 1]この発明において、垂直クラック形成予定ラインに沿って連続したクラックを形 成する工程を説明する図である。
[図 2]レーザビームの照射位置の設定を説明する図である。
[図 3]垂直クラック形成装置の構成を模式的に示す図である。
[図 4]図 3のヘッド部 5の構成を模式的に示す図である。
[図 5]垂直クラック形成予定ラインが垂直クラック形成予定ラインと平行する基板の辺 縁部に近接して位置するときの、垂直クラックの形成方法を説明する図である。
[図 6]曲線状の垂直クラックの形成方法を説明する図である。
符号の説明
1 垂直クラック形成装置
2 レーザビーム照射手段
3 冷媒噴射手段
4 駆動部
5 ヘッド部
6 レーザビーム移動手段
7 制御部
10 加熱スポット
11 レーザ発振機
12 ビームスプリッタ
15 ミラー移動機構部
20 冷却スポット
21 レーザ出射口部
31 冷媒噴射口部
発明を実施するための最良の形態
以下、この発明の実施の形態を図面に基づいて詳細に説明する。 なお、本発明の脆性基板としては、形態、材質、用途および大きさについて特に限 定されるものではなぐ単板力もなる基板または 2枚以上の単板を貼り合わせた貼り 合せ基板であってもよぐこれらの表面または内部に薄膜あるいは端子部などの半導 体材料を付着あるいは包含させたものであってもよ 、。
脆性基板の材質としては、ガラス、焼結材料のセラミックス、単結晶材料のシリコン、 サフアイャ等が挙げられ、その用途としては液晶ディスプレイパネル、プラズマデイス プレイパネル、有機 ELディスプレイパネル等のフラットパネルディスプレイ(FPD)用 のパネルあるいはセラミックコンデンサー用セラミック基板、半導体チップ用ウェハー 基板などが挙げられる。
[0036] この発明の垂直クラック形成装置の実施の形態を以下に示すが、この発明はこれら に限定されるものではない。
[0037] 図 1から図 6を用いて、この発明の実施の形態を説明する。
この発明では、垂直クラック形成予定ラインに沿って連続する垂直クラックを形成す るために、脆性基板上の垂直クラック形成予定ラインに沿ってレーザビームを脆性基 板と相対移動させながら基板上に加熱スポットを形成して基板を加熱し、脆性基板上 の加熱された部位に冷媒を噴射することにより冷却ポイントを形成する工程を備えて いる。
前記工程は、 1つの加熱スポットの形成と、レーザビームの照射を中止し続いて行 われる 1つの冷却スポットの形成とを 1つのクラック形成単位動作として構成されてい る。
なお、この発明における垂直クラックとは、脆性基板の板厚方向に浸透するクラック であって、肉眼視が困難なブラインドクラック、基板の完全な分断には到らないクラッ クおよび形成された垂直クラックによって基板がほぼ完全に分断された状態が含まれ る。
図 1および図 2は、垂直クラック形成予定ラインに沿って連続したクラックを形成する 工程を説明する図である。
[0038] 図 1に示すように、レーザビームの照射により基板上に形成される加熱スポット 10は 、垂直クラック形成予定ライン Sに直交する方向に長手軸 bを有し、長径は aで示される このような加熱スポット 10の形状は、垂直クラック形成予定ライン Sに沿う方向よりも 垂直クラック形成予定ライン Sに直交する方向により大きな圧縮応力 (破線で模式的に 示す)を発生させる。
加熱スポット 10は、 1箇所におけるクラック形成単位動作の繰り返し回数を減らすた めに、垂直クラックの形成に必要かつ十分な最小単位のレーザーエネルギー量で構 成される。
[0039] 次いで、加熱スポット 10の近傍に冷媒を噴射して冷却スポット 20を形成することに より、加熱部位を急冷する。冷却スポット 20は、通常、垂直クラック形成予定ライン S上 で長手軸 bの加熱スポットほぼ中央部に形成され、その直径は Cで示される。
冷却スポット 20の大きさゃ冷媒使用量は、加熱スポット 10とその周囲における熱的 平衡が回復されるように設定される。これ〖こより、 1つのクラック形成単位動作を終える 毎にそのクラック形成単位動作が行われたスポット部位について熱的な清算を行うこ とができる。したがって、残留応力の発生を抑えることができるとともに、冷却スポット 2 0を形成する冷媒は加熱スポット 10の近傍に必要最小限の量を噴射すればよいので 、冷媒を不必要に浪費することなく加熱スポット 10を冷却することができる。
[0040] 図 1に示すように、冷却スポット 20の形成により、垂直クラック形成予定ライン Sに直 交する方向により大きな引張り応力 (実線で模式的に示す)が発生する。これにより、 垂直クラック形成予定ライン Sに直交する方向に応力差が生じ、基板の板厚方向に浸 透する、単位長さ Lの垂直クラックが前記垂直クラック形成予定ライン Sに沿って形成 される。垂直クラック形成予定ライン Sに沿って形成される冷却スポット 20の単位長さ L の垂直クラックを以下で、単位クラック nと称する。
[0041] このような単位クラック nを垂直クラック形成予定ラインに沿って形成するには垂直ク ラック形成予定ライン Sに直交する方向における大きな応力差を発生させることが必 要である。すなわち、垂直クラック形成予定ライン Sに沿う方向に発生する応力差は、 垂直クラック形成予定ライン Sに沿って形成される単位クラック nの形成に寄与しない ばかりか、このような単位クラック nの形成を阻害するからである。
[0042] 従来のように、垂直クラック形成予定ライン Sに沿う方向に長手軸を有する形状の加 熱スポットを用いた場合、垂直クラック形成予定ライン Sに沿う方向の応力差を打ち消 してこれを無効とするように、垂直クラック形成予定ライン sに沿う方向の応力差を大き く設定せねばならな力 た。
これに対して、本発明の加熱スポット 10は、垂直クラック形成予定ライン Sに直交す る方向に長手軸 bを有する形状であるため、必要最小限のレーザビームの照射時間
、照射エネルギーで単位クラック nを発生させることができる。
[0043] 本発明では、クラック形成単位動作にぉ 、て、加熱スポット 10力 レーザビームの 移動を停止した状態で照射される。
これは、従来のように、レーザビームを移動させながら連続して照射する場合に、形 成される加熱スポット 10は、結果的に垂直クラック形成予定ライン Sに沿う方向に長く 伸びた帯状となり、上記した、垂直クラック形成予定ライン Sに直交する方向に長手軸 bを有する本発明の加熱スポット 10の利点が損なわれるからである。
[0044] 冷却スポット 20の形成が終了すると、次のレーザビームの照射位置が決定される。
図 2は、レーザビームの照射位置を説明する図である。
図 2に示すように、単位クラック nの単位長さを L、隣り合う加熱スポット 10の間隔を D とするとき、レーザビームの照射によって形成される加熱スポット 10の間隔 Dは、 LZ2 < D < Lを満たすことが好まし 、。
すなわち、少なくとも隣接して形成される単位クラック nどうしの間に隙間がなぐ単 位クラック nどうしがその長さの半分以上で重ならないよう設定される。
レーザビームの照射位置が決定されると、次のクラック形成単位動作に移行する。 1 つのクラック形成単位動作の周期、すなわち、加熱スポットの形成開始から次の加熱 スポットの形成開始までの時間は、 0. 01-0. 1秒である。
クラック形成単位動作を繰り返して行うことにより、図 1に示すように、単位クラック n が垂直クラック形成予定ライン Sに沿って連続する垂直クラック Eが形成される。
[0045] この発明では、図 1に示すように、垂直クラック形成予定ライン Sの開始点となる基板 端部の近傍 mにお ヽて、クラック形成単位動作を各スポットの形成位置を変えずに複 数回繰り返す。これにより、カッター等の工具を別途用いなくても、基板の端面に垂 直クラックが基板の面方向に進展するためのトリガーとなる開始点刻み目を形成し、 この開始点刻み目を突破口にして基板の板厚方向に浸透する垂直クラックを基板の 面方向に進展させることができる。
上記した同一スポット位置でのクラック形成単位動作の繰り返しは、垂直クラック形 成予定ライン Sの開始点となる基板端部の近傍 mにおいてだけではなぐ基板上の所 望する部位で行うことができ、その回数は、加工対象の基板の材質、厚さ、レーザ照 射源の設定出力等に応じて適宜設定される。
なお、加熱スポット 10の形成は、基板上の加熱スポット 10の長手軸の長さ(長径)を aとし、基板の板厚を tとするとき、 0< aく 4tとなることが好ましぐ冷却スポット 20の形 成は、基板上に形成される加熱スポット 10の長手軸の長さを aとし、冷却スポット 20の 円相当径 (直径)を Cとするとき、 0< C< aZ2となるよう形成されることが好ましい。し たがって、好ましい基板の板厚 tと、冷却スポット 20の円相当径 Cとの関係は、 0く C < 2tとなる。
[0046] 図 3および図 4は、この発明の垂直クラック形成装置の一例を示す図である。
図 3は、垂直クラック形成装置の構成を模式的に示す図である。
図 3に示すように、垂直クラック形成装置 1は、レーザビーム照射手段 2、冷媒噴射 手段 3およびこれら手段の駆動部 4を具備するヘッド部 5と、ヘッド部 5を脆性基板と 相対移動させるレーザビーム移動手段 6と、前記の各手段を制御する制御部 7とを具 備する。
[0047] 図 4は、図 3のヘッド部 5の構成を模式的に示す図である。
図 4に示すように、ヘッド部 5は、レーザビームを出射するレーザ発振機 11と、レー ザ発振機 11から出射されたレーザビームを所定の割合で反射光と透過光に分配す る複数のビームスプリッタ 12と、ビームスプリッタ 12で反射されたレーザビームのそれ ぞれを所定のタイミングおよび通過時間で通過させるシャッター 13と、シャッター 13 を通過したレーザビームを任意の形状の加熱スポット 10に調整する光学系 14と、そ れぞれのビームスプリッタ 12を調整するミラー移動機構部 15とを具備する。
[0048] レーザ発振機 11は、例えば、炭酸ガスレーザであり、パルス周波数 0〜200kHz、 パルス幅が 0. 01-0. 1秒、レーザ発振出力 3〜20Wの範囲で設定される。本願発 明では RF発振源の周波数に関連するパルス幅は連続しているものとする。 光学系 14は、基板上の垂直クラック形成予定ライン Sに沿って所望する形状および 大きさ、すなわち加熱スポット 10の長軸と短軸の長さの比率および最大径ゃ、加熱ス ポット 10の長軸と基板上の垂直クラック形成予定ライン Sが交差する角度 Θを調整す ることがでさる。
ミラー移動機構部 15は、複数のビームスプリッタ 12どうしの間隔ある 、はそれぞれ のビームスプリッタ 12の角度姿勢を調整することによって単位クラック nどうしを重ね合 わせる長さを設定できる。
[0049] 図 3に示すように、レーザビーム照射手段 2は、図 4に示した光学系 14から基板上 に向力つて出射されるレーザビームの複数のレーザ出射口部 21を具備する。また、 冷媒噴射手段 3は、液滴状の冷媒をジェット噴射する複数の冷媒噴射口部 31を具備 する。レーザ出射口部 21と冷媒噴射口部 31は 1つのユニット 51を形成するように隣 接させてあり、ヘッド部 5はユニット 51がー列に N個配置されてなる。
レーザビーム移動手段 6は、ヘッド部 5を所望する周期で断続的に垂直クラック形 成予定ライン Sの方向を含む 3つの軸方向に移動させる構成を備えて 、る。冷媒噴射 口部 31は、例えば、プリンタ等で広く用いられているインクジェット方式の液滴噴射機 構を具備し、噴射される冷媒としては、例えば、水、アンモニア、液体窒素の液体が 挙げられる。また、噴射される冷媒は、前記液体と、ヘリウム、空気あるいは二酸化炭 素等の気体との混合物であってもよ 、。
[0050] 制御部 7は、駆動部 4を介してレーザビーム照射手段 2による N個の加熱スポット 10 の形成を制御する。具体的には、 N個のレーザ出射口部 21からレーザビームをほぼ 同時に出射して N個の加熱スポット 10を形成する。
[0051] 次いで、制御部 7は、形成されたそれぞれの加熱スポット 10の近傍に冷媒をほぼ同 時に噴射するよう冷媒噴射手段 3に対して指令を行う。これにより、冷媒噴射口部 31 のそれぞれから冷媒が噴射され、前記各加熱スポット 10の近傍に冷却スポット 20が それぞれ形成される。
加熱スポット 10に生じた圧縮応力と、冷却スポット 20に生じた引張り応力との間の 応力差に基づいて N個の単位クラック nが形成される。このとき、順次形成される単位 クラック nは、経時的に進展し隣接する単位クラック nどうしがつながるようになる。 また、冷却スポット 20は、主として冷媒の蒸発潜熱を用いて加熱スポット 10より広い 範囲を冷却するよう形成されるので、加熱スポット 10を速やかに冷却して熱的平衡を 迅速に回復することができる。
前記したように 1つのクラック形成単位動作の周期を Tとするとき、垂直クラック形成 装置 1は N個のスポットを同時に形成するので、垂直クラック形成装置 1における 1つ のクラック形成単位動作の周期は、 TZNとなる。
なお、インクジェット方式による冷媒の噴射後、空気冷却等の補助冷却手段を用い てもよい。
[0052] 垂直クラック形成装置 1では、加熱スポット 10と冷却スポット 20とを形成する工程か らなるクラック形成単位動作を連続して実行することにより、まず、基板の板厚方向に 浸透する単位クラック nを垂直クラック形成予定ライン Sに沿って N個連結させて単位 長さ L X N個分の長さの垂直クラックを形成し(図 3中の N1)、次いで、ヘッド部 5を移 動させることによってスポットの形成位置を変え、前記と同様に、単位クラック nを垂直 クラック形成予定ライン Sに沿って連結させて単位長さ L X N個分の長さの垂直クラック を形成する(図中の N2)。このような動作は図中の Nnまで繰り返し実行される。
このように、スポットの形成位置を 1回変えるごとに N個の加熱スポットを形成すること ができ、レーザ出射口部 21と冷媒噴射口部 31とを 1つずつ備えた場合に比べると、 スポットの形成位置を変える回数を減らし、垂直クラックの形成速度を格段に上げるこ とがでさる。
[0053] 次に、垂直クラック形成予定ライン Sが垂直クラック形成予定ライン Sと平行する基板 の辺縁部に近接して位置するときの補正について説明する。
図 5は、垂直クラック形成予定ライン Sが垂直クラック形成予定ライン Sと平行する基 板の辺縁部に近接して位置するときの補正について説明する図である。
垂直クラック形成予定ライン Sが、垂直クラック形成予定ライン Sと平行する基板の辺 縁部から遠い場合には、単位動作の繰り返し後、垂直クラック形成予定ライン Sの両 側にお 、て温度分布の対称性は比較的保たれて 、る。
しかし、垂直クラック形成予定ライン Sが垂直クラック形成予定ライン Sと平行する基 板の辺縁部に近接して位置するときには、温度分布の対称性がくずれ、形成される 単位クラック nは、垂直クラック形成予定ライン Sより端面側にその先端が引き寄せられ 、それによつて垂直クラック形成予定ライン Sより端面側にずれるという現象が発生し た。
[0054] そこで、本発明では、制御部 7は、垂直クラック形成予定ライン Sが垂直クラック形成 予定ライン Sと平行する基板の辺縁部 hに近接して位置するとき、加熱スポット 10の長 手軸 bを垂直クラック形成予定ライン Sとの交点を中心として基板の近接する辺縁部 h 力 遠位側で後退させた状態でクラック形成単位動作を繰り返し行うようレーザビー ム照射手段 2およびレーザビーム移動手段 6に指令を行う。
すなわち、図 5に示すように、垂直クラック形成予定ライン Sが垂直クラック形成予定 ライン Sと平行する基板の右側の辺縁部 hrに近接して位置するときには、加熱スポット 10の長手軸 bの前記右側辺縁部 hrに遠 、側を後退させた状態で、図中矢印方向へ 単位動作を繰り返し行う。一方、垂直クラック形成予定ライン Sが垂直クラック形成予 定ライン Sと平行する基板の左側の辺縁部 hiに近接して位置するときには、加熱スポ ット 10の長手軸 bの前記左側辺縁部 hiに遠 、側を後退させた状態で、図中矢印方向 へ単位動作を繰り返し行う。
これにより、単位クラック nが垂直クラック形成予定ライン Sに沿って連続した直線クラ ックを形成することができる。
[0055] 本発明の垂直クラック形成方法および垂直クラック形成装置は、単位クラック nを連 続させて曲線状の垂直クラックを形成することができる。
図 6は、曲線状の垂直クラックを形成する動作を説明する図である。
垂直クラック形成装置 1を用いた場合、その制御部 7は、図 6に示すように、曲線状 の垂直クラック形成予定ライン S'に沿って曲線状の垂直クラックを形成する際、垂直 クラック形成予定ライン S'の接線に対して加熱スポット 10の長手軸 bを直交させた状 態でクラック形成単位動作を繰り返し行うようレーザビーム照射手段 2、冷媒噴射手 段 3およびレーザビーム移動手段 6に指令を行う。
それぞれがレーザビーム照射手段 2および冷媒噴射手段 3からなる N個のユニット 5 1は、垂直クラック形成予定ライン S'の曲率等に応じて、そのうちの 1つまたはいくつ かによつてクラック形成単位動作が行われる。 1つのクラック形成単位動作ごとに使用 するユニット 51を N組のユニット 51のうち力 選択変更することが可能である。
これにより、単位クラック nが連続した 1本の曲線クラック Uを形成することができる。 産業上の利用可能性
本発明は、半導体ウェハ、ガラス基板、セラミック基板等の脆性基板を分断するため にの垂直クラック形成方法および垂直クラック形成装置に利用することができる。

Claims

請求の範囲
[1] 脆性基板上の垂直クラック形成予定ラインに沿ってレーザビームをスポット状に照 射して加熱し、加熱された部位に冷媒を噴射する工程を具備して垂直クラックを形成 する基板の垂直クラック形成方法にぉ ヽて、
前記工程が、 1つの加熱スポットの形成とレーザビームの照射を中止し、続いて行 われる 1つの冷却スポットの形成とを 1つのクラック形成単位動作として構成され、 クラック形成単位動作力 加熱スポットによって加熱された部位を冷却スポットで冷 却することにより、前記スポットとその周囲における熱的平衡が回復されるように設定 されることを特徴とする脆性基板の垂直クラック形成方法。
[2] 加熱スポットが、垂直クラック形成予定ラインに直交する方向に長手軸を有する形 状である請求項 1に記載の垂直クラック形成方法。
[3] クラック形成単位動作を少なくとも 1回実行することによって、脆性基板の板厚方向 に浸透するクラックを前記垂直クラック形成予定ラインに沿って単位長さだけ形成し、 次 、で、加熱スポットの形成位置を変えて前記クラック形成単位動作を少なくとも 1回 実行することにより、前記単位長さのクラックが前記垂直クラック形成予定ラインに沿 つて連続する垂直クラックを形成する請求項 1に記載の垂直クラック形成方法。
[4] 垂直クラック形成予定ラインの開始点となる基板端部の近傍にぉ ヽて、クラック形成 単位動作を各スポットの形成位置を変えずに複数回繰り返す請求項 1から 3のいず れか 1つに記載の垂直クラック形成方法。
[5] 冷却スポットが、主として冷媒の蒸発潜熱を用いて加熱スポットより広い範囲を冷却 するよう形成される請求項 1に記載の垂直クラック形成方法。
[6] 冷却スポットが、インクジェット方式による冷媒液体の噴射により形成される請求項 1 に記載の垂直クラック形成方法。
[7] 加熱スポットが、レーザビームの照射出力、照射時間、加熱スポットの形状あるいは 加熱スポットの間隔をパラメータとして設定される請求項 1に記載の垂直クラック形成 方法。
[8] 1回のクラック形成単位動作を実行することによって形成される垂直クラックの垂直 クラック形成予定ライン方向における単位長さを Lとするとき、加熱スポットの間隔 Dが 、 LZ2 < D < Lを満たすように設定される請求項 3に記載の垂直クラック形成方法。
[9] 基板の端部近傍にぉ 、て、垂直クラック形成予定ラインに加熱スポットの長手軸が 交わる角度を変更する請求項 2に記載の垂直クラック形成方法。
[10] 垂直クラック形成予定ラインが垂直クラック形成予定ラインと平行する基板の辺縁部 に近接して位置するとき、加熱スポットの長手軸を垂直クラック形成予定ラインとの交 点を中心として基板の近接する辺縁部から遠位側に後退させた状態でクラック形成 単位動作を繰り返し行うことにより、前記垂直クラック形成予定ラインに沿って連続し た直線状の垂直クラックを形成する請求項 1または 2に記載の垂直クラック形成方法
[11] 垂直クラックの形成方向に向かってほぼ同時に N個の加熱スポットを形成し、レーザ ビームの照射を中止した後に、形成されたそれぞれの加熱スポットにほぼ同時に冷 却スポットを形成する工程カゝらなるクラック形成単位動作を少なくとも 1回実行すること によって、基板の板厚方向に浸透するクラックを前記垂直クラック形成予定ラインに 沿って N個分の単位長さだけ形成し、次いで、スポットの形成位置を変えて前記クラッ ク形成単位動作を少なくとも 1回実行することにより、前記単位長さのクラックが前記 垂直クラック形成予定ラインに沿って連続する垂直クラックを形成する請求項 1に記 載の垂直クラック形成方法。
[12] 脆性基板上の加熱スポットの長手軸の長さを aとし、脆性基板の板厚を tとするとき、
0< a<4tとなるように、加熱スポットを形成する請求項 1または 2に記載の垂直クラッ ク形成方法。
[13] 脆性基板上に形成される加熱スポットの長手軸の長さを aとし、基板上に形成される 冷却スポットの円相当径を Cとするとき、 0< C< aZ2となるよう冷却スポットを形成す る請求項 1または 2に記載の垂直クラック形成方法。
[14] レーザビームを照射して脆性基板上に加熱スポットを形成し基板を加熱するための レーザビーム照射手段と、脆性基板上の垂直クラック形成予定ラインに沿ってレーザ ビーム照射手段力 照射されるレーザビームを脆性基板と相対移動させるレーザビ ーム移動手段と、脆性基板上の加熱スポットが形成された部位に冷媒を噴射する冷 媒噴射手段と、前記の各手段を制御する制御部とを具備し、 レーザビーム照射手段は、垂直クラック形成予定ラインに直交する方向に長手軸を 有する形状の加熱スポットを形成し、
制御部は、加熱スポットの形成と、レーザビームの照射を中止した後に、続いて行 われる冷却スポットの形成とからなるクラック形成単位動作を少なくとも 1回実行するこ とによって、脆性基板の板厚方向に浸透するクラックを前記垂直クラック形成予定ライ ンに沿って単位長さだけ形成し、次いで、スポットの形成位置を変えて前記クラック形 成単位動作を少なくとも 1回実行するよう前記の各手段に指令を行い、それによつて 前記単位長さのクラックが前記垂直クラック形成予定ラインに沿って連続するクラック を形成し、クラック形成単位動作力 加熱スポットによって加熱された部位を冷却スポ ットで冷却することにより、前記スポット周囲における熱的平衡が回復されるように設 定されることを特徴とする基板の垂直クラック形成装置。
[15] 制御部は、垂直クラック形成予定ラインの開始点となる基板端部の近傍において、 クラック形成単位動作を各スポットの形成位置を変えずに複数回繰り返して行うよう前 記の各手段に指令を行う請求項 14に記載の垂直クラック形成装置。
[16] 冷媒噴射手段が、インクジェット方式による冷媒液体の噴射により冷却スポットを形 成する請求項 14に記載の垂直クラック形成装置。
[17] 冷媒噴射手段が、冷媒の噴射により冷却スポットを形成した後、さらに補助冷却手 段が加熱スポットより広い範囲を冷却する請求項 14に記載の垂直クラック形成装置。
[18] 制御部は、加熱スポットが、レーザビームの照射出力、照射時間、加熱スポットの形 状あるいは加熱スポットの間隔をパラメータとして設定されるよう前記各手段に指令を 行う請求項 14に記載の垂直クラック形成装置。
[19] 制御部は、クラックの単位長さを Lとするとき、加熱スポットの間隔 D力 L/2< D< L を満たすように設定されるべくレーザビーム移動手段に指令を行う請求項 14に記載 の垂直クラック形成装置。
[20] 制御部は、加熱スポットの長手軸が垂直クラック形成予定ラインに交わる角度を変 更するようレーザビーム照射手段に指令を行う請求項 14に記載の垂直クラック形成 装置。
[21] 制御部は、垂直クラック形成予定ラインが垂直クラック形成予定ラインと平行する脆 性基板の辺縁部に近接して位置するとき、加熱スポットの長手軸を垂直クラック形成 予定ラインとの交点を中心として基板の近接する辺縁部から遠位側で後退させて前 記クラック形成単位動作を繰り返し行うよう前記の各手段に指令を行 ヽ、それによつ て、前記単位長さのクラックが前記垂直クラック形成予定ラインに沿って連続した直 線状の垂直クラックを形成する請求項 14に記載の垂直クラック形成装置。
[22] 制御部は、垂直クラックの形成方向に向力つてほぼ同時に N個の加熱スポットを形 成し、レーザビームを照射した後に、形成されたそれぞれの加熱ビームにほぼ同時 に冷却スポットを形成する工程カゝらなるクラック形成単位動作を少なくとも 1回実行す ることによって、基板の板厚方向に浸透するクラックを前記垂直クラック形成予定ライ ンに沿って N個分の単位長さだけ形成し、次いで、スポットの形成位置を変えて前記 クラック形成単位動作を少なくとも 1回実行するよう前記の各手段に指令を行い、それ によって、前記単位長さのクラックが前記垂直クラック形成予定ラインに沿って連続す る垂直クラックを形成する請求項 14に記載の垂直クラック形成装置。
[23] 制御部は、基板上の加熱スポットの長手軸の長さを aとし、基板の板厚を tとするとき 、0< a<4tとなる加熱スポットを形成するようレーザビーム照射手段に指令を行う請 求項 14に記載の垂直クラック形成装置。
[24] 制御部は、基板上に形成される加熱スポットの長手軸の長さを aとし、基板上に形成 される冷却スポットの円相当径を Cとするとき、 0< C< aZ2となる冷却スポットを形成 するよう冷媒噴射手段に指令を行う請求項 14に記載の垂直クラック形成装置。
PCT/JP2005/007993 2004-04-27 2005-04-27 脆性基板の垂直クラック形成方法および垂直クラック形成装置 WO2005102638A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/587,957 US20080135532A1 (en) 2004-04-27 2005-04-27 Method of and an Apparatus for Forming a Perpendicular Crack in a Brittle Substrate
JP2006512651A JPWO2005102638A1 (ja) 2004-04-27 2005-04-27 脆性基板の垂直クラック形成方法および垂直クラック形成装置
EP05736662A EP1741534A4 (en) 2004-04-27 2005-04-27 METHOD FOR FORMING VERTICAL RIVERS ON SPROUT BOARDS AND DEVICE FOR FORMING VERTICAL RIVERS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004162570 2004-04-27
JP2004-162570 2004-04-27

Publications (1)

Publication Number Publication Date
WO2005102638A1 true WO2005102638A1 (ja) 2005-11-03

Family

ID=35196817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007993 WO2005102638A1 (ja) 2004-04-27 2005-04-27 脆性基板の垂直クラック形成方法および垂直クラック形成装置

Country Status (7)

Country Link
US (1) US20080135532A1 (ja)
EP (1) EP1741534A4 (ja)
JP (1) JPWO2005102638A1 (ja)
KR (1) KR20070005604A (ja)
CN (1) CN1929978A (ja)
TW (1) TW200604118A (ja)
WO (1) WO2005102638A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008100412A (ja) * 2006-10-18 2008-05-01 Murata Mfg Co Ltd レーザ割断方法
JP2009056467A (ja) * 2007-08-29 2009-03-19 Hamamatsu Photonics Kk レーザ加工装置およびレーザ加工方法
JP2009083119A (ja) * 2007-09-27 2009-04-23 Mitsuboshi Diamond Industrial Co Ltd 脆性材料基板の加工方法
JP2010527319A (ja) * 2007-05-15 2010-08-12 コーニング インコーポレイテッド 単一放射線ビームによる脆性材料のスコアリングおよび分離方法および装置
JP2011051014A (ja) * 2009-09-02 2011-03-17 Samsung Mobile Display Co Ltd 基板切断装置、及び基板切断方法
JP2012006064A (ja) * 2010-06-28 2012-01-12 Mitsuboshi Diamond Industrial Co Ltd 被加工物の加工方法、被加工物の分割方法およびレーザー加工装置
JP2012006063A (ja) * 2010-06-28 2012-01-12 Mitsuboshi Diamond Industrial Co Ltd 被加工物の加工方法および被加工物の分割方法
JP2012006065A (ja) * 2010-06-28 2012-01-12 Mitsuboshi Diamond Industrial Co Ltd レーザー加工装置
JP2012024816A (ja) * 2010-07-23 2012-02-09 Mitsuboshi Diamond Industrial Co Ltd レーザー加工装置、被加工物の加工方法および被加工物の分割方法
JP2012024815A (ja) * 2010-07-23 2012-02-09 Mitsuboshi Diamond Industrial Co Ltd レーザー加工装置、被加工物の加工方法および被加工物の分割方法
JP2012176442A (ja) * 2012-06-15 2012-09-13 Mitsuboshi Diamond Industrial Co Ltd レーザー加工装置、被加工物の加工方法および被加工物の分割方法
JP2012176443A (ja) * 2012-06-15 2012-09-13 Mitsuboshi Diamond Industrial Co Ltd レーザー加工装置、被加工物の加工方法および被加工物の分割方法
JP2012183590A (ja) * 2012-06-15 2012-09-27 Mitsuboshi Diamond Industrial Co Ltd 被加工物の加工方法、被加工物の分割方法およびレーザー加工装置
JP2012210657A (ja) * 2012-06-15 2012-11-01 Mitsuboshi Diamond Industrial Co Ltd 被加工物の加工方法および被加工物の分割方法
US8513567B2 (en) 2005-09-16 2013-08-20 Hamamatsu Photonics K.K. Laser processing method for forming a modified region for cutting in an object
JP7285067B2 (ja) 2018-10-30 2023-06-01 浜松ホトニクス株式会社 レーザ加工装置及びレーザ加工方法
US11897056B2 (en) 2018-10-30 2024-02-13 Hamamatsu Photonics K.K. Laser processing device and laser processing method

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009084398A1 (ja) * 2007-12-27 2009-07-09 Mitsuboshi Diamond Industrial Co., Ltd. 脆性材料基板のクラック形成方法
IT1392110B1 (it) * 2008-12-10 2012-02-09 Biesse Spa Procedimento e macchina per eseguire operazioni di troncaggio di lastre di vetro stratificato lungo linee prestabilite
JP2010229005A (ja) * 2009-03-30 2010-10-14 Mitsuboshi Diamond Industrial Co Ltd 脆性材料基板の分断方法
WO2011025908A1 (en) * 2009-08-28 2011-03-03 Corning Incorporated Methods for laser cutting articles from chemically strengthened glass substrates
US8946590B2 (en) * 2009-11-30 2015-02-03 Corning Incorporated Methods for laser scribing and separating glass substrates
DE102010032029B4 (de) * 2010-07-21 2012-09-13 Jenoptik Automatisierungstechnik Gmbh Verfahren zum Trennen einer runden Planplatte aus sprödbrüchigem Material in mehrere rechteckige Einzelplatten mittels Laser
TWI469842B (zh) * 2010-09-30 2015-01-21 Mitsuboshi Diamond Ind Co Ltd 雷射加工裝置、被加工物之加工方法及被加工物之分割方法
DE102015104815A1 (de) * 2015-03-27 2016-09-29 Schott Ag Verfahren und Vorrichtung zum kontinuierlichen Trennen von Glas
KR102176869B1 (ko) * 2018-07-30 2020-11-11 주식회사 탑 엔지니어링 기판 가공 장치 및 기판 가공 방법
DE102021102387A1 (de) 2021-02-02 2022-08-04 Trumpf Laser- Und Systemtechnik Gmbh Vorrichtung und Verfahren zur Laserbearbeitung eines Werkstücks

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008168A1 (fr) * 2001-07-16 2003-01-30 Mitsuboshi Diamond Industrial Co., Ltd. Dispositif de rainurage pour substrat constitue de matiere fragile
WO2003010102A1 (en) * 2001-07-25 2003-02-06 Kondratenko Vladimir Stepanovi Cutting method for brittle non-metallic materials (two variants)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69008927T2 (de) * 1989-05-08 1994-12-01 Philips Nv Verfahren zum Spalten einer Platte aus sprödem Werkstoff.
EP0656241B1 (en) * 1993-06-04 1998-12-23 Seiko Epson Corporation Apparatus and method for laser machining
MY120533A (en) * 1997-04-14 2005-11-30 Schott Ag Method and apparatus for cutting through a flat workpiece made of brittle material, especially glass.
DE10041519C1 (de) * 2000-08-24 2001-11-22 Schott Spezialglas Gmbh Verfahren und Vorrichtung zum Durchschneiden einer Flachglasplatte in mehrere Rechteckplatten
KR100701013B1 (ko) * 2001-05-21 2007-03-29 삼성전자주식회사 레이저 빔을 이용한 비금속 기판의 절단방법 및 장치
RU2206525C2 (ru) * 2001-07-25 2003-06-20 Кондратенко Владимир Степанович Способ резки хрупких неметаллических материалов
KR100633488B1 (ko) * 2001-11-08 2006-10-13 샤프 가부시키가이샤 유리 기판의 분단 방법, 유리 기판의 분단 장치 및 액정 패널 제조 장치
US20030155328A1 (en) * 2002-02-15 2003-08-21 Huth Mark C. Laser micromachining and methods and systems of same
JP2005268752A (ja) * 2004-02-19 2005-09-29 Canon Inc レーザ割断方法、被割断部材および半導体素子チップ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008168A1 (fr) * 2001-07-16 2003-01-30 Mitsuboshi Diamond Industrial Co., Ltd. Dispositif de rainurage pour substrat constitue de matiere fragile
WO2003010102A1 (en) * 2001-07-25 2003-02-06 Kondratenko Vladimir Stepanovi Cutting method for brittle non-metallic materials (two variants)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1741534A4 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8513567B2 (en) 2005-09-16 2013-08-20 Hamamatsu Photonics K.K. Laser processing method for forming a modified region for cutting in an object
JP2008100412A (ja) * 2006-10-18 2008-05-01 Murata Mfg Co Ltd レーザ割断方法
JP2010527319A (ja) * 2007-05-15 2010-08-12 コーニング インコーポレイテッド 単一放射線ビームによる脆性材料のスコアリングおよび分離方法および装置
JP2009056467A (ja) * 2007-08-29 2009-03-19 Hamamatsu Photonics Kk レーザ加工装置およびレーザ加工方法
JP2009083119A (ja) * 2007-09-27 2009-04-23 Mitsuboshi Diamond Industrial Co Ltd 脆性材料基板の加工方法
JP2011051014A (ja) * 2009-09-02 2011-03-17 Samsung Mobile Display Co Ltd 基板切断装置、及び基板切断方法
US9174307B2 (en) 2009-09-02 2015-11-03 Samsung Display Co., Ltd. Substrate cutting apparatus and method for cutting substrate using the same
JP2012006064A (ja) * 2010-06-28 2012-01-12 Mitsuboshi Diamond Industrial Co Ltd 被加工物の加工方法、被加工物の分割方法およびレーザー加工装置
JP2012006063A (ja) * 2010-06-28 2012-01-12 Mitsuboshi Diamond Industrial Co Ltd 被加工物の加工方法および被加工物の分割方法
JP2012006065A (ja) * 2010-06-28 2012-01-12 Mitsuboshi Diamond Industrial Co Ltd レーザー加工装置
KR101312427B1 (ko) 2010-07-23 2013-09-27 미쓰보시 다이야몬도 고교 가부시키가이샤 레이저 가공 장치, 피가공물의 가공 방법 및 피가공물의 분할 방법
JP2012024815A (ja) * 2010-07-23 2012-02-09 Mitsuboshi Diamond Industrial Co Ltd レーザー加工装置、被加工物の加工方法および被加工物の分割方法
JP2012024816A (ja) * 2010-07-23 2012-02-09 Mitsuboshi Diamond Industrial Co Ltd レーザー加工装置、被加工物の加工方法および被加工物の分割方法
JP2012176443A (ja) * 2012-06-15 2012-09-13 Mitsuboshi Diamond Industrial Co Ltd レーザー加工装置、被加工物の加工方法および被加工物の分割方法
JP2012183590A (ja) * 2012-06-15 2012-09-27 Mitsuboshi Diamond Industrial Co Ltd 被加工物の加工方法、被加工物の分割方法およびレーザー加工装置
JP2012210657A (ja) * 2012-06-15 2012-11-01 Mitsuboshi Diamond Industrial Co Ltd 被加工物の加工方法および被加工物の分割方法
JP2012176442A (ja) * 2012-06-15 2012-09-13 Mitsuboshi Diamond Industrial Co Ltd レーザー加工装置、被加工物の加工方法および被加工物の分割方法
JP7285067B2 (ja) 2018-10-30 2023-06-01 浜松ホトニクス株式会社 レーザ加工装置及びレーザ加工方法
US11833611B2 (en) 2018-10-30 2023-12-05 Hamamatsu Photonics K.K. Laser machining device
US11897056B2 (en) 2018-10-30 2024-02-13 Hamamatsu Photonics K.K. Laser processing device and laser processing method

Also Published As

Publication number Publication date
CN1929978A (zh) 2007-03-14
JPWO2005102638A1 (ja) 2008-03-13
EP1741534A4 (en) 2008-09-24
TW200604118A (en) 2006-02-01
KR20070005604A (ko) 2007-01-10
EP1741534A1 (en) 2007-01-10
US20080135532A1 (en) 2008-06-12

Similar Documents

Publication Publication Date Title
WO2005102638A1 (ja) 脆性基板の垂直クラック形成方法および垂直クラック形成装置
JP5910075B2 (ja) 被加工物の加工方法
US7772522B2 (en) Method for scribing substrate of brittle material and scriber
JP6059059B2 (ja) レーザ加工方法
JP4414473B2 (ja) 切断方法
JP5887929B2 (ja) 被加工物の分断方法および光学素子パターン付き基板の分断方法
WO2012011446A1 (ja) レーザ加工方法
WO2013047157A1 (ja) 強化ガラス板切断方法
JP2004528991A5 (ja)
JP5037082B2 (ja) レーザ加工方法及びレーザ加工装置
TWI488703B (zh) 脆性材料基板的切割方法及切割裝置
JP6012186B2 (ja) 加工対象物切断方法
JP2010260108A (ja) レーザ加工装置
WO2003008352A1 (en) Device and method for scribing fragile material substrate
WO2010071128A1 (ja) 脆性材料の分割装置および割断方法
JP2009226457A (ja) レーザ加工方法
JP2012086226A (ja) レーザー加工装置、被加工物の加工方法および被加工物の分割方法
WO2009128315A1 (ja) 脆性材料基板の加工方法
JP2008183599A (ja) 高脆性非金属材料製の被加工物の加工方法及びその装置
JP2004042423A (ja) スクライブ装置
JP2007301631A (ja) 割断装置及び割断方法
KR101130702B1 (ko) 열응력을 이용한 유리판 절단장치 및 유리판 절단방법
JP2010030834A (ja) ガラス板の切断方法、及びガラス板切断用テーブル装置
JP2004035315A (ja) 脆性材料基板の分断方法および脆性材料基板分断装置
KR101312427B1 (ko) 레이저 가공 장치, 피가공물의 가공 방법 및 피가공물의 분할 방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020067017043

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006512651

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580007434.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11587957

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2005736662

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005736662

Country of ref document: EP

Ref document number: 1020067017043

Country of ref document: KR