WO2005100959A1 - Inspection system for blister packages - Google Patents

Inspection system for blister packages Download PDF

Info

Publication number
WO2005100959A1
WO2005100959A1 PCT/US2005/009510 US2005009510W WO2005100959A1 WO 2005100959 A1 WO2005100959 A1 WO 2005100959A1 US 2005009510 W US2005009510 W US 2005009510W WO 2005100959 A1 WO2005100959 A1 WO 2005100959A1
Authority
WO
WIPO (PCT)
Prior art keywords
blister package
imaged
fill level
predetermined
grey level
Prior art date
Application number
PCT/US2005/009510
Other languages
French (fr)
Inventor
Paud Barry
Michael W. Murphy
Eoin Roche
Original Assignee
Bausch & Lomb Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bausch & Lomb Incorporated filed Critical Bausch & Lomb Incorporated
Priority to EP05729079A priority Critical patent/EP1733212A1/en
Priority to JP2007506236A priority patent/JP2007530975A/en
Priority to CA002561040A priority patent/CA2561040A1/en
Publication of WO2005100959A1 publication Critical patent/WO2005100959A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/342Sorting according to other particular properties according to optical properties, e.g. colour
    • B07C5/3422Sorting according to other particular properties according to optical properties, e.g. colour using video scanning devices, e.g. TV-cameras
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B25/00Packaging other articles presenting special problems
    • B65B25/008Packaging other articles presenting special problems packaging of contact lenses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/90Investigating the presence of flaws or contamination in a container or its contents
    • G01N21/9054Inspection of sealing surface and container finish
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9508Capsules; Tablets

Definitions

  • the present invention relates to inspection systems in a production line. More particularly, the present invention relates to an inspection system for inspecting the seal area and/or solution volume of a blister package containing an ophthalmic lens in solution.
  • Ophthalmic lenses such as contact lenses are commonly packaged in small containers referred to as blister packages comprising a disposable plastic container having a well for containing a single lens in a quantity of storage solution (e.g., saline).
  • a foil lidstock is applied to the blister package and sealed thereto, usually around the perimeter of the well containing the lens and solution.
  • the foil lidstock may comprise a laminate, for example, a first polypropylene layer which is laid against the blister followed by a foil layer on which a paint layer may be applied for graphic application followed by a top lacquer layer.
  • Sealing the lidstock to the blister package may be carried out by the application of heat which seals the poylpropylene layer to the plastic blister.
  • the sealing process is carried out in an automated fashion such that many blister packages may be sealed very quickly. Although automation increases productivity of the production line, errors may happen during the sealing process which may go undetected. Sealing errors may include, for example, bubbles, voids, particulate matter, and oversealing.
  • the present invention provides an inspection system which is operable to detect errors in the seal area of a lidstock applied to a blister package.
  • the inspection system includes an image pick-up device (e.g., a camera) directed toward the seal area of a blister package.
  • the seal area is typically the area surrounding the recessed well which houses the lens and storage solution although it may also include a larger flange area surrounding the well.
  • the seal around the perimeter of the well typically referred to as a "racetrack" in the art, must be a complete seal or else the lens may become contaminated and solution may leak from the blister package which must then be discarded.
  • the inspection system applies a pattern to the racetrack, for example, small square or rectangle boxes placed in succession around the complete racetrack.
  • a software utility connected to the image pick-up device checks the pattern for a predetermined amount or range of grey level within the boxes. A difference from a threshold grey level is treated as an error. This is because a good seal will have a measurable grey level value or range caused by the correct application of heat, pressure and time to the two materials being bonded together (i.e., the lidstock and the blister racetrack). If the detected grey level is different than the threshold value or range, the software utility then calculates the size of the detected error. If the size is outside the acceptable value or range, that blister is targeted for disposal.
  • an inspection system is provided for inspecting the volume (fill level) of storage solution in a sealed blister package.
  • the vision system includes an image pick-up device (e.g., a camera) which is operable to detect the solution level within a blister package.
  • the blister package may be presented vertically to the image device. If the detected solution level falls outside a predetermined accepted amount or range, that blister package is targeted for disposal.
  • the seal inspection system is integrated with the volume inspection system.
  • Figure 1 is a perspective view of a representative blister package showing the cover peeled partly off;
  • Figure 2 is a cross-sectional view of the blister package as taken generally along the line 2-2 of Fig. 1 except the cover is sealed to the blister package;
  • Figure 3 is a bottom plan view of the blister package;
  • Figure 4 is an enlarged cross-section view of the cover showing the individual layers thereof;
  • Figure 5 is a schematic view of the inspection system set-up of the present invention;
  • Figure 6 is a bottom plan view of a blister package showing a consecutive array of white ROIs on part of the seal area of a blister package undergoing inspection;
  • Figure 7 is the view of Fig. 6 showing one type of seal error detected by the inspection system;
  • Figure 8 is the view of Fig. 7 showing yet another type of possible seal error;
  • Figure 9 is a bottom plan view of a blister package showing inspection of the volume fill level of the package; and
  • Figure 10 is the view of Fig. 9 showing a different fill level.
  • Blister 10 used for packaging a hydrophilic contact lens 12.
  • Blister 10 is made of a disposable plastic (e.g.,polypropylene) and includes a recessed well 14 wherein lens 12 is placed with a quantity of storage solution 13 (e.g., saline).
  • a cover 16 is sealed about the well 14.
  • Cover 16 is typically a foil laminate having a first base layer which will bond to the blister package upon application of heat and pressure.
  • the first, base layer 16a may be polypropylene, for example, followed by a foil layer 16b and a protective lacquer top layer 16c.
  • Cover 16 is sealed at least about the perimeter or "racetrack" 18 of the well 14.
  • Racetrack 18 may be flush or raised relative to the flange area 19 surrounding the racetrack 18.
  • Cover 16 may further include an unsealed gripping portion 16d to enable a user to easily grasp and peel cover 16 from blister 10 to access the lens 12 therein.
  • the inspection system station 20 of the invention is shown schematically and includes an image pick-up device (e.g., a DSL5000 camera) 22 having a lens 24 (e.g., a 35mm lens) directed at a blister package 10 to be inspected.
  • a low angle light ring 26 is positioned between blister package 10 and image pick-up device 22.
  • Blister package 10 has previously had a lens 12 and storage solution 13 deposited in well 14 thereof and a cover 20 sealed thereto about racetrack 18.
  • the sealing station may comprise a heat sealing station which applies heat and pressure to the cover at the location of the racetrack 18, thereby sealing the well 14 and its contents.
  • the blister packages Prior to shipping to the consumer, the blister packages will undergo sterilization to ensure the lens is sterilized for safe application to the user's eye. It is therefore apparent that the sealing process must ensure a seal that will not compromise the sterility of the lens in the blister package.
  • inspection station 20 is provided for inspecting the seal area (racetrack) 18 of the blister package. Should the inspection indicate problems with the seal, the blister is targeted for disposal.
  • the inspection station image pick-up device 22 includes means for projecting ROIs (regions of interest) onto racetrack area 18 of the sealed blister 10. The ROIs labled 28 in Fig.
  • the image pick-up device 22 images the blister 10 and racetrack 18 and connects to a computer 30 having inspection software which analyzes the image picked up by image pick-up device 22.
  • Suitable inspection software and harware for use with the present invention includes Inspection Builder 3.1 by PPT Vision System.
  • Inspection Builder 3.1 by PPT Vision System To get a baseline reading, a seal known to be good is either directly input or measured by image pick-up device 22 and stored in computer 30. The image pixels are analyzed for their grey level (contrast) and this becomes the accepted baseline number.
  • the image pick-up device 22 Upon receiving a blister package for inspection, the image pick-up device 22 images the blister racetrack 18 and the software utility examines the ROIs to determine their grey level. This reading is compared to the baseline number in the computer and if it is within an acceptable deviation range, the blister package is passed for seal inspection. If instead a grey level is detected outside the acceptable deviation range, the software utility next examines the size of the area outside the acceptable deviation range. If the area is of a size which is not acceptable, the blister package is targeted for disposal. If instead the size is deemed within acceptable parameters, the blister package is passed for seal inspection. It is noted that the second analysis step wherein the area size is calculated and compared to an acceptable value previously input into the computer may be seamlessly integrated into the step of grey level analysis by the computer.
  • the second analysis may also be eliminated if desired should the grey level analysis be determined sufficient to determine failed blister packages.
  • the blister package may be oriented vertically as shown in Fig. 5 during inspection. The bottom of well 14 is directed toward the image pick-up device. Since the blister package is translucent, the image pick-up device can see through the package to racetrack 18. The heat sealing process causes a certain grey level to appear at the racetrack 18 where the cover 20 has adhered to the blister racetrack 18. This grey level contrasts with the grey level appearing at unsealed areas of the cover 20 (i.e., areas both inside and outside racetrack 18). A good seal will have a certain grey level all around the racetrack 18. Measuring this grey level thus enables the system to compare each blister undergoing inspection to the known acceptable grey level.
  • FIG. 7 shows a representative blister package 10 undergoing inspection where a seal error in the form of a seal void is indicated at reference numeral 30. This void in the seal area would likely cause leakage of the storage solution from well 14 and contaminate the lens 12 therein. Inspection system 20 will read this area as a difference in acceptable grey level and target this blister package for disposal. The system may either sound a bell to alert a worker for removal of the failed package or the system may send a signal ordering automated machinery to pull the blister form the production line.
  • Figure 8 shows another type of seal error in the form of air bubbles 32 captured between cover 20 and racetrack 18.
  • a second analysis step may be performed wherein the area size of the grey level detected to be outside acceptable parameters is calculated and compared to an acceptable area value previously input into the computer.
  • the fill level (volume) of storage solution 13 may also be inspected by inspection system 20.
  • the image pick-up device 22 reads the contrast difference at the fill line FL which is indicative of the solution fill level. If the fill level is detected to be below the threshold level, that blister is target for disposal.
  • the volume inspection is done together with the seal inspection.
  • the blister packages may be presented to the inspection station 20 in automated succession and may be handled by a conveyor and/or a fixturing device which presents the blister package at the correct orientation to the image pick-up device 22.
  • a fixturing device which presents the blister package at the correct orientation to the image pick-up device 22.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Mechanical Engineering (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

An inspection system for inspecting the seal area and/or volume fill level of a blister package comprising an image pick-up device and providing an image pick-up device; presenting the blister package with cover adhered thereto to the field of view of said image pick-up device; imaging and determining the grey level of said seal area and comparing the imaged grey level to a predetermined grey level value; and passing the blister package inspection if the imaged grey level is substantially the same as the predetermined grey level value or rejecting the blister package inspection is the imaged grey level is not substantially the same as the predetermined grey level value.

Description

Title: Inspection System For Blister Packages
Background of the Invention The present invention relates to inspection systems in a production line. More particularly, the present invention relates to an inspection system for inspecting the seal area and/or solution volume of a blister package containing an ophthalmic lens in solution. Ophthalmic lenses such as contact lenses are commonly packaged in small containers referred to as blister packages comprising a disposable plastic container having a well for containing a single lens in a quantity of storage solution (e.g., saline). A foil lidstock is applied to the blister package and sealed thereto, usually around the perimeter of the well containing the lens and solution. The foil lidstock may comprise a laminate, for example, a first polypropylene layer which is laid against the blister followed by a foil layer on which a paint layer may be applied for graphic application followed by a top lacquer layer. Sealing the lidstock to the blister package may be carried out by the application of heat which seals the poylpropylene layer to the plastic blister. The sealing process is carried out in an automated fashion such that many blister packages may be sealed very quickly. Although automation increases productivity of the production line, errors may happen during the sealing process which may go undetected. Sealing errors may include, for example, bubbles, voids, particulate matter, and oversealing. Any of these errors can cause an imperfect seal leading to lens contamination or leakage of the storage solution from the blister whereupon the blister and lens must be discarded. Manual inspection has been carried out in the past, however manual inspection is prone to human error and is time and labor intensive. It is therefore desirable to have a robust sealing process which includes the detection of seal errors so that the blister having the imperfect seal can be discarded before it is shipped to a consumer. It is also desirable to automatically inspect the volume fill level of the storage solution in the blister to ensure the proper amount of storage solution has been dispensed in the blister package.
Summary of the Invention In a first aspect, the present invention provides an inspection system which is operable to detect errors in the seal area of a lidstock applied to a blister package. The inspection system includes an image pick-up device (e.g., a camera) directed toward the seal area of a blister package. The seal area is typically the area surrounding the recessed well which houses the lens and storage solution although it may also include a larger flange area surrounding the well. The seal around the perimeter of the well, typically referred to as a "racetrack" in the art, must be a complete seal or else the lens may become contaminated and solution may leak from the blister package which must then be discarded. The inspection system applies a pattern to the racetrack, for example, small square or rectangle boxes placed in succession around the complete racetrack. A software utility connected to the image pick-up device checks the pattern for a predetermined amount or range of grey level within the boxes. A difference from a threshold grey level is treated as an error. This is because a good seal will have a measurable grey level value or range caused by the correct application of heat, pressure and time to the two materials being bonded together (i.e., the lidstock and the blister racetrack). If the detected grey level is different than the threshold value or range, the software utility then calculates the size of the detected error. If the size is outside the acceptable value or range, that blister is targeted for disposal. In a second aspect of the invention, an inspection system is provided for inspecting the volume (fill level) of storage solution in a sealed blister package. The vision system includes an image pick-up device (e.g., a camera) which is operable to detect the solution level within a blister package. In one embodiment, the blister package may be presented vertically to the image device. If the detected solution level falls outside a predetermined accepted amount or range, that blister package is targeted for disposal. In a particularly advantageous embodiment of the invention, the seal inspection system is integrated with the volume inspection system.
Brief Description of the Drawing Figure 1 is a perspective view of a representative blister package showing the cover peeled partly off; Figure 2 is a cross-sectional view of the blister package as taken generally along the line 2-2 of Fig. 1 except the cover is sealed to the blister package; Figure 3 is a bottom plan view of the blister package; Figure 4 is an enlarged cross-section view of the cover showing the individual layers thereof; Figure 5 is a schematic view of the inspection system set-up of the present invention; Figure 6 is a bottom plan view of a blister package showing a consecutive array of white ROIs on part of the seal area of a blister package undergoing inspection; Figure 7 is the view of Fig. 6 showing one type of seal error detected by the inspection system; Figure 8 is the view of Fig. 7 showing yet another type of possible seal error; Figure 9 is a bottom plan view of a blister package showing inspection of the volume fill level of the package; and Figure 10 is the view of Fig. 9 showing a different fill level.
Detailed Description Referring to the drawing, there is seen in the Figures a representative blister package 10 used for packaging a hydrophilic contact lens 12. Blister 10 is made of a disposable plastic (e.g.,polypropylene) and includes a recessed well 14 wherein lens 12 is placed with a quantity of storage solution 13 (e.g., saline). A cover 16 is sealed about the well 14. Cover 16 is typically a foil laminate having a first base layer which will bond to the blister package upon application of heat and pressure. As seen in Fig. 4, the first, base layer 16a may be polypropylene, for example, followed by a foil layer 16b and a protective lacquer top layer 16c. Cover 16 is sealed at least about the perimeter or "racetrack" 18 of the well 14. Racetrack 18 may be flush or raised relative to the flange area 19 surrounding the racetrack 18. Cover 16 may further include an unsealed gripping portion 16d to enable a user to easily grasp and peel cover 16 from blister 10 to access the lens 12 therein. As seen in Fig. 5, the inspection system station 20 of the invention is shown schematically and includes an image pick-up device (e.g., a DSL5000 camera) 22 having a lens 24 (e.g., a 35mm lens) directed at a blister package 10 to be inspected. A low angle light ring 26 is positioned between blister package 10 and image pick-up device 22. Blister package 10 has previously had a lens 12 and storage solution 13 deposited in well 14 thereof and a cover 20 sealed thereto about racetrack 18. The sealing station (not shown) may comprise a heat sealing station which applies heat and pressure to the cover at the location of the racetrack 18, thereby sealing the well 14 and its contents. Prior to shipping to the consumer, the blister packages will undergo sterilization to ensure the lens is sterilized for safe application to the user's eye. It is therefore apparent that the sealing process must ensure a seal that will not compromise the sterility of the lens in the blister package. Thus, in a first aspect of the invention, inspection station 20 is provided for inspecting the seal area (racetrack) 18 of the blister package. Should the inspection indicate problems with the seal, the blister is targeted for disposal. The inspection station image pick-up device 22 includes means for projecting ROIs (regions of interest) onto racetrack area 18 of the sealed blister 10. The ROIs labled 28 in Fig. 6 comprise small square or rectangular boxes which, although only several are shown in the figure, extend in a sequential array around the full length of the racetrack 18. The image pick-up device 22 images the blister 10 and racetrack 18 and connects to a computer 30 having inspection software which analyzes the image picked up by image pick-up device 22. Suitable inspection software and harware for use with the present invention includes Inspection Builder 3.1 by PPT Vision System. To get a baseline reading, a seal known to be good is either directly input or measured by image pick-up device 22 and stored in computer 30. The image pixels are analyzed for their grey level (contrast) and this becomes the accepted baseline number. Upon receiving a blister package for inspection, the image pick-up device 22 images the blister racetrack 18 and the software utility examines the ROIs to determine their grey level. This reading is compared to the baseline number in the computer and if it is within an acceptable deviation range, the blister package is passed for seal inspection. If instead a grey level is detected outside the acceptable deviation range, the software utility next examines the size of the area outside the acceptable deviation range. If the area is of a size which is not acceptable, the blister package is targeted for disposal. If instead the size is deemed within acceptable parameters, the blister package is passed for seal inspection. It is noted that the second analysis step wherein the area size is calculated and compared to an acceptable value previously input into the computer may be seamlessly integrated into the step of grey level analysis by the computer. The second analysis may also be eliminated if desired should the grey level analysis be determined sufficient to determine failed blister packages. It is noted that the blister package may be oriented vertically as shown in Fig. 5 during inspection. The bottom of well 14 is directed toward the image pick-up device. Since the blister package is translucent, the image pick-up device can see through the package to racetrack 18. The heat sealing process causes a certain grey level to appear at the racetrack 18 where the cover 20 has adhered to the blister racetrack 18. This grey level contrasts with the grey level appearing at unsealed areas of the cover 20 (i.e., areas both inside and outside racetrack 18). A good seal will have a certain grey level all around the racetrack 18. Measuring this grey level thus enables the system to compare each blister undergoing inspection to the known acceptable grey level. Grey levels outside an acceptable deviation range will be rejected. For example, Fig. 7 shows a representative blister package 10 undergoing inspection where a seal error in the form of a seal void is indicated at reference numeral 30. This void in the seal area would likely cause leakage of the storage solution from well 14 and contaminate the lens 12 therein. Inspection system 20 will read this area as a difference in acceptable grey level and target this blister package for disposal. The system may either sound a bell to alert a worker for removal of the failed package or the system may send a signal ordering automated machinery to pull the blister form the production line. Figure 8 shows another type of seal error in the form of air bubbles 32 captured between cover 20 and racetrack 18. Again, this type of error would likely compromise the seal integrity and contaminate lens 12 therein and the inspection system would target the blister for disposal. As discussed above, a second analysis step may be performed wherein the area size of the grey level detected to be outside acceptable parameters is calculated and compared to an acceptable area value previously input into the computer. In another aspect of the invention, the fill level (volume) of storage solution 13 may also be inspected by inspection system 20. The image pick-up device 22 reads the contrast difference at the fill line FL which is indicative of the solution fill level. If the fill level is detected to be below the threshold level, that blister is target for disposal. In an advantageous embodiment, the volume inspection is done together with the seal inspection. It is noted that the blister packages may be presented to the inspection station 20 in automated succession and may be handled by a conveyor and/or a fixturing device which presents the blister package at the correct orientation to the image pick-up device 22. Although the invention has been described herein in relation to a particular blister package design, it is understood that the invention may be used with other blister package designs.

Claims

What Is Claimed Is: 1. A method of inspecting the seal area between a blister package and a cover, said method comprising the steps of: a) providing an image pick-up device; b) presenting the blister package with cover adhered thereto to the field of view of said image pick-up device; c) imaging and determining the grey level of said seal area and comparing the imaged grey level to a predetermined grey level value; and d) passing the blister package inspection if the imaged grey level is substantially the same as the predetermined grey level value or rejecting the blister package inspection is the imaged grey level is not substantially the same as the predetermined grey level value.
2. The method of claim 1 and further comprising the step of projecting a series of ROIs on the imaged seal area and wherein imaging of the grey level of the seal area occurs within each ROI.
3. The method of claim 2 and further comprising the step of calculating the size of an imaged grey level that is not the same as the predetermined grey level value and passing the blister package inspection if the size is substantially the same or smaller than a predetermined acceptable size or rejecting the blister package inspection if the size is greater than the predetermined acceptable size.
4. The method of claim 1 and further comprising the step of imaging the fill level of solution held in the blister package and comparing the imaged fill level with a predetermined acceptable fill level and passing the blister package if the imaged fill level is substantially the same as the predetermined accepted fill level or rejecting the blister package if the imaged fill level is less than the predetermined accaptable fill level.
5. The method of claim 4 wherein said blister package is oriented vertically during said inspection.
6. A method of inspecting the fill level of a solution in a sealed blister package, said method comprising the steps of: a) providing an image pick-up device; b) presenting the blister package to the field of view of said image pick-up device; c) imaging and determining the fill level of the solution within the blister package and comparing the imaged fill level to a predetermined fill level value; and d) passing the blister package inspection if the imaged fill level is substantially the same as the predetermined fill level value or rejecting the blister package inspection is the imaged fill level is not substantially the same as the predetermined fill level value.
7. The method of claim 6 wherein said blister package is oriented vertically with respect to said image pick-up device.
PCT/US2005/009510 2004-03-31 2005-03-22 Inspection system for blister packages WO2005100959A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05729079A EP1733212A1 (en) 2004-03-31 2005-03-22 Inspection system for blister packages
JP2007506236A JP2007530975A (en) 2004-03-31 2005-03-22 Inspection system for blister packaging
CA002561040A CA2561040A1 (en) 2004-03-31 2005-03-22 Inspection system for blister packages

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/813,860 2004-03-31
US10/813,860 US20050226488A1 (en) 2004-03-31 2004-03-31 Inspection system for blister packages

Publications (1)

Publication Number Publication Date
WO2005100959A1 true WO2005100959A1 (en) 2005-10-27

Family

ID=34963436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/009510 WO2005100959A1 (en) 2004-03-31 2005-03-22 Inspection system for blister packages

Country Status (7)

Country Link
US (1) US20050226488A1 (en)
EP (1) EP1733212A1 (en)
JP (1) JP2007530975A (en)
CN (1) CN1934439A (en)
CA (1) CA2561040A1 (en)
TW (1) TW200600770A (en)
WO (1) WO2005100959A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090113851A1 (en) * 2007-10-31 2009-05-07 Carr Stephen N Packaging seal plate having a shaped face
US20090145086A1 (en) * 2007-12-11 2009-06-11 Reynolds Ger M Method for treating ophthalmic lenses
US8929641B2 (en) * 2009-03-17 2015-01-06 Aesynt Incorporated System and method for determining the orientation of a unit dose package
CN102556437A (en) * 2010-12-29 2012-07-11 吴士敏 Off-line full-automatic bubble cap packaging quality detection system and method thereof
SG189572A1 (en) * 2011-10-18 2013-05-31 Menicon Singapore Pte Ltd Systems and methods for multi-stage sealing of contact lens packaging
US9470638B2 (en) * 2012-02-27 2016-10-18 The Procter & Gamble Company Apparatus and method for detecting leakage from a composition-containing pouch
JP5526183B2 (en) * 2012-04-25 2014-06-18 Ckd株式会社 Inspection device and PTP packaging machine
CN102700773A (en) * 2012-06-26 2012-10-03 上海秉拓机械设备有限公司 Whole detection machine for rear sections of bubble caps
US20180134475A1 (en) * 2012-10-18 2018-05-17 Menicon Singapore Pte Ltd. Systems and Methods for Multi-Stage Sealing of Contact Lens Packaging
EP2935016B1 (en) 2012-12-21 2016-09-28 Novartis AG Contact lens package
JP6504053B2 (en) * 2013-07-19 2019-04-24 ソニー株式会社 Signal processing apparatus, opening detection module, program, opening detection method and article packaging material
JP6197542B2 (en) * 2013-09-30 2017-09-20 日本電気株式会社 Appearance inspection apparatus, appearance inspection method, and program
SG10201501672PA (en) * 2015-03-05 2016-10-28 Emage Vision Pte Ltd Inspection of sealing quality in blister packages
US10293963B2 (en) * 2016-01-29 2019-05-21 Carefusion Germany 326 Gmbh Filling station and method for filling a transport tray
US10269109B2 (en) * 2016-07-22 2019-04-23 Orora Packaging Solutions Label inspection and rejection system and method for use thereof
KR20230019052A (en) * 2021-07-30 2023-02-07 존슨 앤드 존슨 비젼 케어, 인코포레이티드 Quality control for sealed lens packages

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4245243A (en) * 1976-08-25 1981-01-13 Kloeckner-Werke Ag System for registering and sorting out not properly filled deep-drawn packages in a packaging machine
DE3622112A1 (en) * 1986-07-02 1988-01-07 Hoechst Ag Method for monitoring the fillings of sealed tablet packs
US5363968A (en) * 1991-08-23 1994-11-15 Pfizer Inc. Automatic blister inspection system
EP0741078A2 (en) * 1995-05-01 1996-11-06 JOHNSON & JOHNSON VISION PRODUCTS, INC. Packaging arrangement
EP1020381A2 (en) * 1994-06-10 2000-07-19 JOHNSON & JOHNSON VISION PRODUCTS, INC. Automated apparatus and method for preparing contact lenses for inspection and packaging
US20010009561A1 (en) * 1999-12-03 2001-07-26 Roger Biel Method and apparatus for detecting mouldings in a package
US20010016059A1 (en) * 1999-12-22 2001-08-23 Andreas Krahn Inspection device for packages
US20020077771A1 (en) * 2000-09-27 2002-06-20 Richard Mertens Method for checking the content of pockets in a blister package

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH648253A5 (en) * 1979-08-31 1985-03-15 Haensel Otto Gmbh METHOD FOR REGISTERING AND DISCARDING THE INFULLY FILLED PACKS IN PACKING MACHINES.
US4459023A (en) * 1981-06-30 1984-07-10 Kirin Beer Kabushiki Kaisha Electro-optic inspection system for transparent or semitransparent containers
US4820932A (en) * 1987-06-04 1989-04-11 Owens-Illinois Television Products Inc. Method of and apparatus for electrooptical inspection of articles
US4764681A (en) * 1987-06-04 1988-08-16 Owens-Illinois Televison Products Inc. Method of and apparatus for electrooptical inspection of articles
US4943713A (en) * 1987-11-27 1990-07-24 Hajime Industries Ltd. Bottle bottom inspection apparatus
JPH05107032A (en) * 1991-10-16 1993-04-27 Matsushita Electric Ind Co Ltd Method for inspecting external apperance of mounted board
US6252980B1 (en) * 1993-11-24 2001-06-26 Nira Schwartz Additional dynamic fluid level and bubble inspection for quality and process control
US5640464A (en) * 1994-05-31 1997-06-17 Johnson & Johnson Vision Products, Inc. Method and system for inspecting packages
US5568715A (en) * 1994-05-31 1996-10-29 Johnson & Johnson Vision Products, Inc. Automated inspection system with transport and ejector conveyor
US5559848A (en) * 1994-08-16 1996-09-24 Wesley-Jessen Corporation Imaging system for plastic components
US5515159A (en) * 1995-02-10 1996-05-07 Westinghouse Electric Corporation Package seal inspection system
KR100200215B1 (en) * 1996-04-08 1999-06-15 윤종용 Soldering detection apparatus & method thereof using corelated neural network
TW330233B (en) * 1997-01-23 1998-04-21 Philips Eloctronics N V Luminary
US6061125A (en) * 1998-01-27 2000-05-09 Insight Control Systems International Dual illumination apparatus for container inspection
US5917602A (en) * 1998-04-30 1999-06-29 Inex Inc. System and method for image acquisition for inspection of articles on a moving conveyor
US5982493A (en) * 1998-06-02 1999-11-09 Motorola, Inc. Apparatus and method for acquiring multiple images
US6485981B1 (en) * 1998-07-29 2002-11-26 Ciencia, Inc. Method and apparatus for imaging and documenting fingerprints
EP1046196B9 (en) * 1998-09-28 2013-01-09 Koninklijke Philips Electronics N.V. Lighting system
US6134050A (en) * 1998-11-25 2000-10-17 Advanced Laser Technologies, Inc. Laser beam mixer
JP4345905B2 (en) * 1999-12-28 2009-10-14 利彦 矢山 Laser beam treatment device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4245243A (en) * 1976-08-25 1981-01-13 Kloeckner-Werke Ag System for registering and sorting out not properly filled deep-drawn packages in a packaging machine
DE3622112A1 (en) * 1986-07-02 1988-01-07 Hoechst Ag Method for monitoring the fillings of sealed tablet packs
US5363968A (en) * 1991-08-23 1994-11-15 Pfizer Inc. Automatic blister inspection system
EP1020381A2 (en) * 1994-06-10 2000-07-19 JOHNSON & JOHNSON VISION PRODUCTS, INC. Automated apparatus and method for preparing contact lenses for inspection and packaging
EP0741078A2 (en) * 1995-05-01 1996-11-06 JOHNSON & JOHNSON VISION PRODUCTS, INC. Packaging arrangement
US20010009561A1 (en) * 1999-12-03 2001-07-26 Roger Biel Method and apparatus for detecting mouldings in a package
US20010016059A1 (en) * 1999-12-22 2001-08-23 Andreas Krahn Inspection device for packages
US20020077771A1 (en) * 2000-09-27 2002-06-20 Richard Mertens Method for checking the content of pockets in a blister package

Also Published As

Publication number Publication date
US20050226488A1 (en) 2005-10-13
CA2561040A1 (en) 2005-10-27
JP2007530975A (en) 2007-11-01
EP1733212A1 (en) 2006-12-20
TW200600770A (en) 2006-01-01
CN1934439A (en) 2007-03-21

Similar Documents

Publication Publication Date Title
WO2005100959A1 (en) Inspection system for blister packages
EP1973782B1 (en) Method and apparatus for detecting presence of an ophthalmic lens in a package
CN105339782B (en) For detect include conductive inner seal liner sealing element in defect the method based on thermal imaging
US11237118B2 (en) Method and system for determining package integrity
US20070296963A1 (en) Methods and Apparatus for Inspecting the Sealing and Integrity of Blister Packages
US20010016059A1 (en) Inspection device for packages
US20100180551A1 (en) Method and apparatus for sterile or aseptic handling of containers
US6330823B1 (en) Process and apparatus for testing containers
WO2012061441A1 (en) Raised vial stopper detection system
RU2672764C2 (en) Method for the non-invasive measurement of the gas content in transparent containers
US6124594A (en) Method and apparatus for detecting contact lenses
US11836908B2 (en) Method and system for determining package integrity
US9037421B2 (en) Leak detection system for uniform vacuum packaged products
CN115461613A (en) Method and device for inspecting containers
JPS6228650A (en) Inspection method for presence or absence of foreign matter adhesion
US10895516B2 (en) Seal integrity inspection
MXPA06011269A (en) Inspection system for blister packages
GB2453535A (en) Inspecting the sealing of blister packages by detecting the shadow of an anomaly
JP2001215199A (en) Method for inspecting container
JPS62271818A (en) Method of inspecting hermetical sealing section
JP4538361B2 (en) Packaging defect inspection device
JP3026003B1 (en) Inside plug installation inspection method and inside plug installation inspection device
EP1111375B1 (en) Inspection device for packages
JP2006520904A (en) Inline leak detector
Delgado Smart Camera Mimics Humans Decision Making Process in a Vial Crimp Quality Automated Inspection Process

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 5094/DELNP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2007506236

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005729079

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580009102.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2561040

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: PA/a/2006/011269

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2005729079

Country of ref document: EP