WO2005099899A1 - 清浄処理材料、エアフィルタ、空気調和装置、熱交換エレメント、および熱交換ユニット - Google Patents

清浄処理材料、エアフィルタ、空気調和装置、熱交換エレメント、および熱交換ユニット Download PDF

Info

Publication number
WO2005099899A1
WO2005099899A1 PCT/JP2005/006649 JP2005006649W WO2005099899A1 WO 2005099899 A1 WO2005099899 A1 WO 2005099899A1 JP 2005006649 W JP2005006649 W JP 2005006649W WO 2005099899 A1 WO2005099899 A1 WO 2005099899A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
air
apatite
filter
exchange element
Prior art date
Application number
PCT/JP2005/006649
Other languages
English (en)
French (fr)
Inventor
Yoshio Okamoto
Shigeharu Taira
Tarou Kuroda
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to AU2005233000A priority Critical patent/AU2005233000A1/en
Priority to US11/547,906 priority patent/US20070213002A1/en
Priority to EP05728416A priority patent/EP1736240A1/en
Publication of WO2005099899A1 publication Critical patent/WO2005099899A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • B01J27/1802Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates
    • B01J27/1806Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates with alkaline or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0071Indoor units, e.g. fan coil units with means for purifying supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0071Indoor units, e.g. fan coil units with means for purifying supplied air
    • F24F1/0073Indoor units, e.g. fan coil units with means for purifying supplied air characterised by the mounting or arrangement of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0071Indoor units, e.g. fan coil units with means for purifying supplied air
    • F24F1/0076Indoor units, e.g. fan coil units with means for purifying supplied air by electric means, e.g. ionisers or electrostatic separators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/02Types of fibres, filaments or particles, self-supporting or supported materials
    • B01D2239/0241Types of fibres, filaments or particles, self-supporting or supported materials comprising electrically conductive fibres or particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0414Surface modifiers, e.g. comprising ion exchange groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0471Surface coating material
    • B01D2239/0478Surface coating material on a layer of the filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/069Special geometry of layers
    • B01D2239/0695Wound layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/10Filtering material manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1241Particle diameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/15Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by chemical means
    • F24F8/167Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by chemical means using catalytic reactions

Definitions

  • the present invention relates to a cleaning material, an air filter, an air conditioner, a heat exchange element, and a heat exchange unit.
  • photo-semiconductor catalysts include metal oxides represented by titanium oxide, strontium titanate, zinc oxide, tungsten oxide, and iron oxide, and fullerenes such as C.
  • Typical examples include carbon-based photocatalysts, transition metal nitrides, and oxynitrides.
  • a photosemiconductor catalyst When such a photosemiconductor catalyst is irradiated with light having an energy greater than the band gap (for example, ultraviolet light), electrons in the valence band are excited to the conduction band, and holes are generated in the charge band. Electrons are generated in the body. As a result, an oxidation reaction is likely to occur on the valence band side, and a reduction reaction is likely to occur on the conductor side. Then, in this state, when air or water contacts the surface of the photosemiconductor catalyst, a chemical reaction occurs, and active oxygen such as OH—, 02, 02—, and H202 is generated. Then, the active oxygen decomposes various organic substances existing in the vicinity of the photosemiconductor catalyst.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2001-302220
  • An object of the present invention is to provide a cleaning material having a higher cleaning performance than conventional photosemiconductor catalysts.
  • the cleaning material according to the first invention is a mixture of an optical semiconductor catalyst and an apatite having a photocatalytic function.
  • the photo-semiconductor catalyst has a secondary particle diameter of 0.1 to 1 micrometer.
  • Apatite having a photocatalytic function has a secondary particle diameter of 1 to 10 micrometer.
  • photosemiconductor catalyst used herein refers to, for example, metal oxides represented by titanium oxide, strontium titanate, zinc oxide, tungsten oxide, iron oxide, and the like, and carbon dioxide represented by fullerene such as c. Based photo-semiconductor catalyst, transition metal oxides represented by titanium oxide, strontium titanate, zinc oxide, tungsten oxide, iron oxide, and the like, and carbon dioxide represented by fullerene such as c. Based photo-semiconductor catalyst, transition metal oxides represented by titanium oxide, strontium titanate, zinc oxide, tungsten oxide, iron oxide, and the like, and carbon dioxide represented by fullerene
  • apatite having a photocatalytic function refers to, for example, apatite in which some calcium atoms of calcium hydroxyapatite are replaced with titanium atoms by a method such as ion exchange.
  • the cleaning treatment material is a mixture of an optical semiconductor catalyst and apatite having a photocatalytic function. Therefore, the photo-semiconductor catalyst having a small secondary particle size enters the gap between the apatite particles having a photocatalytic function having a large secondary particle size. Therefore, the active site of the photocatalytic reaction can be made similar to that of the conventional photo-semiconductor catalyst. In this state, apatite having a photocatalytic function specifically adsorbs bacterial viruses. As a result, the cleaning treatment material can exhibit a cleaning treatment ability superior to the conventional photosemiconductor catalyst.
  • the cleaning material according to the second invention is the cleaning material according to the first invention, wherein 10 to 35 parts by weight of apatite having a photocatalytic function is mixed with respect to 100 parts by weight of the photosemiconductor catalyst.
  • Apatite having a photocatalytic function is more preferably 15 to 35 parts by weight.
  • the rate of oxidative decomposition of 100 parts by weight of photo-semiconductor catalyst with secondary particles having a diameter of 0.1 to 1 micrometer for 100 parts by weight of acetoaldehyde is as follows. It has been confirmed that the oxidative decomposition rate for acetoaldehyde is about four times as high.
  • an apatite having a secondary particle diameter of 1 to 10 micrometers and having a photocatalytic function is 10 to 10 parts by weight. 35 parts by weight are mixed to produce a clean processing material.
  • This compounding ratio is derived from the above-mentioned ratio of the oxidation decomposition rate of apatite having photocatalytic function and apatite having a photocatalytic function to acetaldehyde and the adsorption ability of apatite having a photocatalytic function to acetaldehyde.
  • the processing capacity against bacteria and viruses is higher than when only the photosemiconductor catalyst is used. Therefore, this cleaning treatment material can exhibit a cleaning treatment ability that is superior to that of the conventional photosemiconductor catalyst.
  • the cleaning material according to the third invention is the cleaning material according to the first invention or the second invention, and the photosemiconductor catalyst is titanium dioxide.
  • the photosemiconductor catalyst is titanium dioxide. Titanium dioxide has excellent cost performance among optical semiconductor catalysts. Therefore, it is possible to overcome the problems of the present invention while keeping costs down.
  • the cleaning material according to the fourth invention is the cleaning material according to the first invention or the second invention, and the apatite having a photocatalytic function is titanium apatite.
  • the “titanium apatite” is an apatite in which some calcium atoms such as calcium hydroxyapatite are replaced by titanium atoms by a method such as ion exchange.
  • the apatite having a photocatalytic function is titanium apatite.
  • Titanium apatite can be easily prepared from calcium hydroxyapatite by an ion exchange method, and is most cost-effective among apatites having a photocatalytic function. For this reason, the subject of the present invention can be overcome while keeping costs down.
  • An air filter according to a fifth invention carries the cleaning material according to any one of the first invention to the fourth invention.
  • the cleaning material according to any one of the first to fourth inventions of the air filter power is used. Carry. For this reason, this air filter can show a better cleaning treatment ability than the conventional air filter carrying the photosemiconductor catalyst.
  • An air conditioner according to a sixth aspect includes the air filter according to the fifth aspect.
  • the air conditioner includes the air filter according to the fifth invention. For this reason, this air conditioner can exhibit a better cleaning performance than an air conditioner using a conventional photosemiconductor catalyst.
  • a heat exchange element according to a seventh invention carries the purification material according to any one of the first invention to the fourth invention.
  • the heat exchange element carries the cleaning material according to any one of the first to fourth inventions. For this reason, this heat exchange element can show a better cleaning capacity than the heat exchange element carrying the conventional photosemiconductor catalyst.
  • a heat exchange unit according to an eighth aspect includes the heat exchange element according to the seventh aspect.
  • the heat exchange unit includes the heat exchange element according to the seventh invention. For this reason, this heat exchange unit can show a better cleaning processing ability than the heat exchange unit using the conventional photosemiconductor catalyst.
  • the cleaning treatment material according to the first invention can exhibit a cleaning treatment ability superior to that of the conventional photosemiconductor catalyst.
  • the cleaning treatment material according to the second invention can exhibit a cleaning treatment ability superior to that of the conventional photosemiconductor catalyst.
  • the cleaning treatment material according to the third invention can overcome the problems of the present invention while keeping costs down.
  • the cleaning material according to the fourth invention can overcome the problems of the present invention while keeping costs down.
  • the air filter according to the fifth aspect of the invention can exhibit a better cleaning treatment ability than the conventional air filter supporting the photosemiconductor catalyst.
  • the air conditioner according to the sixth aspect of the present invention can exhibit better cleaning processing ability than an air conditioner using a conventional photosemiconductor catalyst.
  • the heat exchange element according to the seventh aspect of the invention can exhibit a better cleaning treatment ability than the conventional heat exchange element supporting the photosemiconductor catalyst.
  • the heat exchange unit according to the eighth aspect of the present invention can exhibit better cleaning performance than a conventional heat exchange unit using an optical semiconductor catalyst.
  • FIG. 1 is an external perspective view of an air purifier according to a first embodiment.
  • FIG. 3 (a)] is a perspective view showing the structure of the discharge unit on the upstream side in the air flow direction.
  • FIG. 3 (b) is a perspective view showing the shape of a streamer discharge electrode.
  • FIG. 3 (c) A top view of a discharge unit.
  • FIG. 4 is a schematic block diagram of a control unit.
  • FIG. 5 is a detailed view of a prefilter.
  • FIG. 6 is an enlarged cross-sectional view of a fiber constituting a net portion of a prefilter.
  • FIG. 7 is a part of a side sectional view of a mouth filter.
  • FIG. 8 is a view showing an air filter and fibers according to the present invention.
  • FIG. 9 is an enlarged view of a fiber according to the present invention.
  • FIG. 10 is a simplified diagram of an apparatus for producing fibers according to the present invention.
  • FIG. 11 (a)] is a sectional view of a discharge section.
  • FIG. 11 (b)] is a view showing the shape of a discharge port.
  • ⁇ 12 Comparison diagram of photocatalytic activity of titanium dioxide and titanium apatite at the same surface area.
  • ⁇ 13 Comparison diagram of photocatalytic activity of titanium dioxide and titanium apatite at the same weight.
  • FIG. 14 is an enlarged view of a fiber according to a modified example (B).
  • FIG. 15 is an external perspective view of an air conditioner according to a modification (C).
  • FIG. 1 A perspective view showing the internal structure of the total heat exchange unit according to the second embodiment.
  • FIG. 17 A top view showing the internal structure of the total heat exchange unit according to the second embodiment.
  • FIG. 19 is an exploded perspective view showing the internal structure of the total heat exchange unit according to the second embodiment.
  • FIG. 20 is a perspective view of a partition plate.
  • FIG. 21 is a perspective view of a partition plate.
  • FIG. 22 is a perspective view showing the structure of a heat exchange element.
  • FIG. 23 is an external perspective view of a streamer discharger.
  • Air Purifier Air Conditioner
  • FIG. 1 shows an external view of an air purifier 40 to which an embodiment of the present invention is applied.
  • the air purifier 40 keeps a comfortable environment by purifying indoor air in buildings and houses and sending the purified air into the room.
  • the air purifier 40 includes a casing 60, a blowing mechanism 70 (see FIG. 2), a control unit 50 (see FIG. 4), and a filter unit 80 (see FIG. 2).
  • the casing 60 constitutes the outer surface of the air purifier 40, and includes the blowing mechanism 70, the control unit 50, and the filter unit 80.
  • the casing 60 has a main body 61 and a front panel 62.
  • the main body 61 has a top suction port 63, a side suction port 64, and a discharge port 65.
  • the upper surface suction port 63 and the side surface suction port 64 are used for purifying indoor air in the air purifier 40, and are used for sucking room air into the air purifier 40. It is a rectangular opening.
  • the upper surface suction port 63 is provided at the front end of the upper surface of the main body 61, which is the same as the surface on which the outlet port 65 is provided.
  • the side suction ports 64 are a pair of openings provided on the left and right sides of the main body 61.
  • the outlet 65 is provided at the rear end of the upper surface of the main body 61.
  • the outlet 65 is an opening through which the cleaned air is blown out from the air purifier 40 into the room.
  • the front panel 62 is provided in front of the main body 61, and covers the filter unit 80 installed inside the main body 61.
  • the front panel 62 has a front suction port 66 and a display panel opening 67.
  • the front suction port 66 is a substantially rectangular opening provided at a substantially central portion of the front panel 62 for sucking room air into the air purifier 40.
  • the display panel opening 67 is provided so that a display panel 56 described later can be viewed from outside the casing 60.
  • the blower mechanism 70 sucks and inhales room air from the respective suction ports (the upper surface suction port 63, the side surface suction port 64, and the front face suction port 66), and blows out the cleaned air from the outlet port 65.
  • the air blowing mechanism 70 is provided inside the casing 60, and is configured to suck air from each of the suction ports 63, 64, and 66 so that the drawn indoor air passes through the filter unit 80! ⁇
  • the blower mechanism 70 includes a fan motor 71 and a blower fan 72, as shown in FIG.
  • the blower fan 72 is driven to rotate by a fan motor 71.
  • As the fan motor 71 an inverter motor whose frequency is controlled by an inverter circuit is employed.
  • As the blower fan 72 a centrifugal fan is employed.
  • the air purifier 40 further includes a control unit 50 composed of a microprocessor. As shown in FIG. 4, the control unit 50 is connected to a ROM 51 for storing a control program and various parameters, a RAM 52 for temporarily storing variables being processed, and the like.
  • various sensors such as a temperature sensor 53, a humidity sensor 54, and a dust sensor 55 are connected to the control unit 50, and a detection signal of each sensor is input.
  • Dust sensor 55 irradiates light into the introduced air, detects the amount of light arriving at the light receiving element after being scattered by smoke, dust, pollen, and other particles contained in the air, and detects the concentration of particles such as dust. Can be measured.
  • a display panel 56 is connected to the control unit 50.
  • the display panel 56 displays an operation mode, monitor information by various sensors, timer information, maintenance information, and the like, so that a user or the like can view the information through the external force display panel opening 67!
  • the display panel 56 can be constituted by a liquid crystal display panel 'LED. Other display elements or a combination thereof.
  • control unit 50 is connected to the fan motor 71, and can control the operation of these devices according to the operation of the user, the detection result of various sensors, and the like.
  • the filter unit 80 is provided inside the casing 60, and removes fine particles contained in the room air sucked from the suction ports 63, 64, 66. As shown in FIG. 2, the filter unit 80 has a pre-filter 81, a discharge unit 82, a photocatalyst filter 83, and a plasma catalyst filter 84.
  • the filter unit 80 is configured such that the suctioned indoor air passes through the filter unit 80 in the order of the prefilter 81, the discharge unit 82, the photocatalyst filter 83, and the plasma catalyst filter 84 in the order of the suction ports 63, 64, and 66. RU
  • the pre-filter 81 is a filter for removing dust and the like whose air force sucked into the casing 60 by the blowing mechanism 70 is relatively large.
  • the pre-filter 81 has a net section 810 and a frame 811 (see FIG. 5).
  • the net portion 810 is a thread-shaped resin net made of polypropylene (hereinafter, referred to as PP!), To which relatively large dust contained in the air sucked into the casing 60 adheres.
  • PP! polypropylene
  • the fibers constituting the net portion 810 are the same as the core 810a made of PP and the coating layer 814 made of PP as in the case of FIG.
  • the coating layer 814 carries a visible light type photocatalyst 812 and a catechin 813 so as to be exposed to the air side.
  • Visible light type photocatalyst 812 contains titanium oxide, etc., whose photocatalytic activity is activated by visible light, and removes bacteria, viruses such as bacteria, bacteria, etc. contained in dust and the like adhering to the net 810.
  • Catechin is polyhue It is a kind of knoll and is a generic term for epicatechin, epigallocatechin, epicatechin gallate, epigallocatechin gallate, etc. This catechin suppresses the growth of bacteria such as bacteria and bacteria contained in dust and the like adhering to the net portion 810 and inactivates viruses.
  • the discharge section 82 mainly includes a counter electrode 822, an ionizing line 821, and a streamer discharge electrode 823.
  • the counter electrode 822 is a metal plate having a square-wave-shaped cross section, and includes a real electrode portion 822a and a plurality of slit portions 822b that substantially function as electrodes.
  • the slit portion 822b plays a role of flowing air to the rear side.
  • the ion line 821 is disposed upstream of the counter electrode 822 in the air flow direction. At this time, one ion line 821 is disposed between the actual electrode portions 822a.
  • the ion wire 821 is formed of a tungsten wire having a small diameter and used as a discharge electrode.
  • the streamer discharge electrode 823 is composed of an electrode rod 823a and a needle electrode 823b.
  • the needle electrode 823b is fixed so as to be substantially orthogonal to the electrode rod 823a.
  • the streamer discharge electrode 823 is arranged downstream of the counter electrode 822 in the air flow direction, as shown in FIG. At this time, the streamer discharge electrode 823 is disposed such that the needle electrode 823b faces the actual electrode portion 822a of the counter electrode 822.
  • the counter electrode 822 and the electrode 821 which float in the air that has passed through the pre-filter 81, can withstand relatively small dust. Plays a role.
  • the counter electrode 822 and the streamer discharge electrode 823 play a role of generating active species to be supplied to the optical semiconductor catalyst carrying filter 831 described later.
  • each electrode combination will be described in detail.
  • this discharge section 82 when a high voltage is applied between the ion electrode 821 and the actual electrode section 822a, a discharge force S is generated between the electrodes 821 and 822. As a result, dust and the like passing between the electrodes 821 and 822 are charged to a positive charge. Then, the charged dust is supplied rearward through the slit portion 822b, and is electrostatically attracted by an electrostatic filter 830 described later. At this time, virus and bacteria contained in the dust are also charged. The efficiency of adsorption of virus and bacteria on the target is increased.
  • Streamer discharge occurs.
  • low-temperature plasma is generated in the discharge field.
  • the low-temperature plasma generates radical species such as fast electrons, ions, ozone, and hydroxyl radicals, and other excited molecules (excited oxygen molecules, excited nitrogen molecules, excited water molecules), and the like.
  • these active species are supplied to the photosemiconductor catalyst-carrying filter 831 along with the air flow.
  • these active species can be removed from small organic compounds such as ammonia, aldehydes, and nitrogen oxides contained in air. Has the ability to decompose and deodorize molecules.
  • FIG. 7 shows a part of a cross-sectional view of the photocatalytic filter 83.
  • the photocatalyst filter 83 is in the form of a roll in which the length of the photocatalyst filter 83 is wound a plurality of times, and is configured to be pulled out when the surface in use is soiled and cut the soiled portion.
  • the photocatalyst filter 83 is formed by laminating an electrostatic filter 830 and an optical semiconductor catalyst holding filter 831.
  • the photocatalyst filter 83 is arranged such that the electrostatic filter 830 faces upstream of the air flow by the air blowing mechanism 70, and the photosemiconductor catalyst carrying filter 831 faces downstream of the air flow.
  • the electrostatic filter 830 adsorbs dust and the like charged in the discharge unit 82. Dust and the like that pass through the electrostatic filter 830 adhere to the optical semiconductor catalyst supporting filter 831.
  • a mixture of anatase-type titanium dioxide particles and titanium apatite particles is applied to the surface of the optical semiconductor catalyst supporting filter 831 on the downstream side in the air flow direction.
  • the diameter of the titanium dioxide particles is 0.1 to 1 micrometer, and the diameter of the titanium apatite particles is 1 to 10 micrometers.
  • the mixing ratio of titanium dioxide and titanium apatite is 100: 20 by weight. Note that the titanium apatite is an apatite are substituted with titanium atoms by a technique such as some calcium nuclear ion exchange calcium hydroxyapatite n [0024] D.
  • the plasma catalyst filter 84 is formed from a PP fiber 844 supporting a mixture 847 of anatase type titanium dioxide particles 846 and titanium apatite particles 845.
  • the fiber 844 has a core 842 and a coating layer 843, similar to the prefinoleta 81, and the mixture 847 is carried on the coating layer 843.
  • the diameter of the titanium dioxide particles 846 is 0.1 to 1 micrometer, and the diameter of the titanium apatite particles 845 is 1 to 10 micrometers.
  • the mixing ratio of titanium dioxide and titanium apatite is 100: 20 by weight.
  • the plasma catalyst filter 84 adsorbs viruses and bacteria in the air that are not adsorbed by the photocatalyst filter 83.
  • the adsorbed bacterial virus and the like are killed or inactivated by the titanium dioxide activated by the active species.
  • FIG. 10 shows a melt spinning apparatus 90 for producing the fibers forming the filters 81, 83, 84.
  • the melting prevention device 90 mainly includes a first drying device 91a, a second drying device 91b, a first discharge device 92a, a second discharge device 92b, an injection nozzle 93, and a cooling device 94.
  • the first drying device 91a is supplied with high melting point polypropylene resin pellets. Then, in the first drying device 91a, the pellets are heated and dried until the moisture content becomes equal to or less than a certain value.
  • the second drying device 91b contains low-melting-point polypropylene resin pellets in which a mixture 847 of anatase-type titanium dioxide particles 846 and titanium apatite particles 845 (see FIG. 9) is dispersed. Is supplied. Then, in the second drying device 91b, the pellets are heated and dried until the moisture content falls below a certain value.
  • the first ejection device 92a is supplied with the pellets sufficiently dried in the first drying device 91a.
  • the first discharge device 92a mainly includes a heater (not shown), a screw 921, and a cylinder 922.
  • the pellets are melted by the heater, and the melted polypropylene (hereinafter, referred to as melted PP) is moved by the screw 921 in the cylinder 922 toward the injection nozzle 93 side.
  • the second discharge device 92b is A sufficiently dried pellet is supplied in the drying apparatus 91b.
  • the second discharge device 92b mainly includes a heater (not shown), a screw 921, and a cylinder 922, like the first discharge device 92a.
  • the pellets are melted by the heater, and the melted mixture-containing polypropylene (hereinafter, referred to as MX-containing melted PP) moves in the cylinder 922 toward the injection nozzle 93 by the screw 921.
  • MX-containing melted PP the melted mixture-containing polypropylene
  • the injection nozzle 93 is supplied with the molten PP and the MX-containing molten PP supplied from the first discharge device 92a and the second discharge device 92b.
  • the injection nozzle 93 has a side sectional structure as shown in FIG. 11 (a) and a discharge port having a shape as shown in FIG. 11 (b).
  • the molten PP flows along the first path (see the solid arrow in FIG. 11A).
  • the molten PP containing MX flows through the second route (see the broken arrow in FIG. 11 (a)).
  • the molten PP and the MX-containing molten PP are integrated in such a manner that the MX-containing molten PP covers the molten PP (hereinafter, integrated in this manner).
  • the molten PP and the MX-containing molten PP are referred to as a composite melt) and sent to the cooling device 94.
  • the cooling device 94 cools and solidifies the composite melt using a cooling liquid to form a fiber (hereinafter, the fiber thus formed is referred to as a composite fiber). Then, the composite fiber is sent to a feeding device 95 via a dip roller 94a and a discharge roller 94b installed in a cooling liquid tank.
  • the feeding device 95 includes a feeding roller 95a, and feeds the composite fiber to the tunnel heater 97 at a constant speed.
  • the take-off device 96 includes a take-off roller 96a, and takes in the composite fiber coming out of the tunnel heater 97 at a speed higher than the pay-out speed of the pay-out device 95.
  • the composite fiber is heated and drawn between the feeding device 95 and the take-up device 96.
  • the outer layer of the composite fiber (the layer of the polypropylene resin containing the mixture) is thinned, and a part of the encapsulated titanium dioxide particles 846 and titanium apatite particles 845 is formed on the surface.
  • the fiber is exposed (hereinafter, the fiber in this state is referred to as an optical semiconductor catalyst exposed fiber 844 (see FIG. 9)).
  • the photo-semiconductor catalyst exposed fiber 844 is then led to a heat treatment device 98.
  • the heat treatment apparatus 98 has a heater (not shown), and the inside thereof is heated to a predetermined temperature.
  • the optical semiconductor catalyst exposed fiber 844 is heat-treated while being moved along the guide roller 98a. By this heat treatment, light Crystallization of the core 842 of the semiconductor catalyst exposed fiber 844 progresses, and its strength is maintained at a certain value or more.
  • the photo-semiconductor catalyst exposed fiber 844 coming out of the heat treatment device 98 is taken up by a take-up roller 99a of a take-up device 99.
  • optical semiconductor catalyst exposed fiber 844 manufactured through the above steps will have a shape as shown in FIG.
  • the filters 81, 83 and 84 are manufactured as a nonwoven fabric by heat-sealing the optical semiconductor catalyst exposed fiber 844 without weaving.
  • anatase-type titanium dioxide particles having a secondary particle diameter of 0.1 to 1 micrometer and a secondary particle diameter of 1 to 10 micrometer
  • a mixture of titanium apatite particles which is a meter, is applied to the surface of the filter 831 on the downstream side in the air flow direction.
  • the titanium dioxide with a small secondary particle size enters the gap between the titanium apatite with a large secondary particle size, and the active site of the photocatalytic reaction is similar to that of the conventional titanium dioxide. .
  • titanium apatite specifically adsorbs bacteria and viruses.
  • this photocatalyst filter can exhibit a better cleaning treatment capacity than a conventional photocatalyst filter coated with a photosemiconductor catalyst.
  • a mixture 847 of titanium apatite particles 845, which is a meter, is supported on PP fibers 844 of the plasma catalyst filter 84.
  • titanium dioxide having a small secondary particle size enters into the gap between titanium apatite having a large secondary particle size, and the active site of the photocatalytic reaction is similar to that of the conventional titanium dioxide. Further, in this state, the titanium apatite specifically adsorbs the bacterial virus.
  • the fiber 844 can exhibit a better cleaning treatment ability than the fiber supporting the conventional photo-semiconductor catalyst.
  • the fibers 844 constituting the plasma catalyst filter 84 are composed of the S core 842 and the coating layer 843, and the coating layer 843 includes the anatase type titanium dioxide particles 846. And titanium apatite particles 845 are supported so as to be exposed to the air side.
  • the coating layer 843 includes the anatase type titanium dioxide particles 846.
  • titanium apatite particles 845 are supported so as to be exposed to the air side.
  • the fiber 844 has the core 842, there is almost no danger.
  • the titanium dioxide particles 846 and the titanium apatite particles 845 are exposed to the air side, the titanium dioxide particles 846 and the titanium apatite particles 845 can sufficiently exhibit their photocatalytic functions. .
  • anatase-type titanium dioxide particles having a secondary particle diameter of 0.1 to 1 micrometer and a secondary particle diameter of 1 to 10 micrometer
  • a mixture of titanium apatite particles, each of which has a weight ratio of 100: 20 is applied or supported on the filters 83, 84 in a weight ratio of 100: 20.
  • Figure 13 shows anatase-type titanium dioxide particles 846 with a secondary particle diameter of 0.1 to 1 micrometer and titanium apatite particles 845 with a secondary particle diameter of 1 to 10 micrometers.
  • a graph showing the oxidative decomposition efficiency of acetic acid titanium dioxide and titanium apatite with respect to acetoaldehyde in terms of weight is shown.
  • the titanium oxide and titanium oxide were not irradiated with ultraviolet light until 10 minutes before the start of the measurement, but after 10 minutes from the measurement start, the titanium oxide and titanium apatite were not irradiated. UV light is being applied.
  • titanium dioxide decomposes about 15 ppm of acetaldehyde in about 3 minutes after UV irradiation, whereas titanium apatite has passed about 20 minutes after UV irradiation.
  • 24 ppm acetate aldehyde is decomposed. Therefore, the oxidative decomposition rate of titanium dioxide with respect to acetoaldehyde is about 5.
  • the oxidative decomposition rate of titanium apatite for acetoaldehyde is about 1.2 ppm / min. Therefore, the ratio of the oxidation decomposition rate of titanium dioxide and titanium apatite to acetoaldehyde is approximately 1: 0.24.
  • the ratio of the decomposition rate of this acid and the adsorption capacity of titanium apatite for acetoaldehyde From 100 parts by weight of an optical semiconductor catalyst having a secondary particle diameter of 0.1 to 1 micrometer, 10 to 35 parts by weight of apatite having a photocatalytic function having a secondary particle diameter of 1 to 10 micrometers is mixed. This leads to the result that the treatment capacity against bacteria and viruses is higher than when only titanium dioxide is used. Therefore, the filters 83 and 84 can exhibit a better cleaning treatment ability than the filter directly supporting titanium dioxide.
  • the photocatalytic function of titanium apatite is the force activated by the active species. Instead, by employing an ultraviolet lamp or the like, titanium apatite or titanium dioxide is used. May be activated.
  • the force using the fiber 844 having the core 842 as the fiber forming the plasma catalyst filter 84 is obtained by using titanium dioxide particles 846 and titanium apatite particles as shown in FIG. Fibers in which 845 and 845 are substantially uniformly dispersed may be employed. Note that some of the titanium dioxide particles 846 and the titanium apatite particles 845 are exposed on the fiber surface.
  • the present invention is applied to the air purifier 40, but the present invention may be applied to an air conditioner 200 that performs cooling and heating as shown in FIG.
  • the air conditioner 200 is a device for supplying conditioned air to a room, and includes an indoor unit 201 mounted on a wall surface in a room and an outdoor unit 202 installed outdoors.
  • the indoor unit 201 is provided with a suction port 205 for taking indoor air into the air conditioner 200, and a filter unit (not shown) is provided inside the suction port 205. Even when the present invention is applied to this filter unit, viruses, bacteria, bacteria, and the like adhering to and adsorbing to the filter unit are removed, so that the generation of offensive odors and air pollution will not occur. Can be suppressed.
  • FIG. 16 is a perspective view
  • FIG. 17 is a top view
  • FIG. 18 is a side view
  • FIG. 19 is an exploded perspective view showing the internal structure of the total heat exchange unit according to one embodiment of the present invention.
  • the total heat exchange unit 100 connects the heat exchange element 12 between the outdoor air supply SA (solid white arrow) and the indoor exhaust EA (hatched arrow). This is a device for ventilating while exchanging heat through the air.
  • the total heat exchange unit 100 mainly includes a casing 1, a heat exchange element 12, an air filter 12b, fans 10, 11, a damper 34, and
  • the electrical component box is composed of EB cards.
  • the casing 1 includes a box 2 and a lid 3 that covers the upper surface of the box 2.
  • the casing 1 includes a heat exchange element room 21, an exhaust fan motor housing room 41, an exhaust fan housing room 22, an air supply fan motor housing room 43, an air supply fan housing room 24, an air supply communication room. 45, an exhaust communication chamber 46, an outdoor suction chamber 26, an indoor suction chamber 27, and a bypass chamber 31 are provided.
  • a heat exchange element room 21 an exhaust fan motor housing room 41, an exhaust fan housing room 22, an air supply fan motor housing room 43, an air supply fan housing room 24, an air supply communication room. 45, an exhaust communication chamber 46, an outdoor suction chamber 26, an indoor suction chamber 27, and a bypass chamber 31 are provided.
  • the heat exchange element chamber 21 is a rectangular parallelepiped space, as shown in FIGS. 16 and 18, and accommodates the heat exchange element 12.
  • the heat exchange element chamber 21 is formed by being partitioned by the bottom plate of the box 2, the partition plates 16A to 16E (see FIGS. 16, 20 and 21), the lid 3, and the like.
  • Guide portions Gl, G2, and G3 are attached to the bottom plate, the partition plates 16A to 16E, and the lid 3 of the box 2, respectively.
  • the guide portion G1 attached to the bottom plate of the box 2 has a first guide portion G11 and a second guide portion G12.
  • the first guide portion G11 guides the lower edge of the heat exchange element 12 when the heat exchange element 12 is removed.
  • the second guide portions G12 are paired with the first guide portion G11 interposed therebetween, and guide the respective edges of the pair of air filters 12b.
  • the guide portion G2 attached to the partition plates 16A to 16E has a first guide portion G21 and a second guide portion G22.
  • the first guide section G21 heat exchange Guides the ridge on the side of the heat exchange element 12 when the element 12 is removed.
  • the second guide portion G22 guides the edge of the air filter 12b.
  • the guide portion G3 attached to the lid 3 guides the upper ridgeline of the heat exchange element 12 when the heat exchange element 12 is removed.
  • FIGS. 16 and 18 When the heat exchange element 12 is accommodated in the heat exchange element chamber 21, four substantially triangular prism-shaped spaces 17, 18, 19, and 20 are generated around the heat exchange element 12.
  • FIGS. 16 and 18 the space indicated by FIG. 17 is the first space
  • the space indicated by FIG. 18 is the second space
  • the space indicated by FIG. 19 is the third space
  • the exhaust fan housing chamber 22 houses the exhaust fan 10 as shown in FIGS. As shown in FIG. 16, the exhaust fan housing chamber 22 communicates with an exhaust fan motor housing chamber 41 through an opening 42 formed in the partition plate 16B. Further, as shown in FIG. 16, the exhaust fan housing chamber 22 has an outdoor air outlet 7 for exhaust on the side wall.
  • the exhaust fan motor housing chamber 41 houses the exhaust fan motor 10M, as shown in FIGS. As shown in FIG. 16, the exhaust fan motor housing chamber 41 communicates with the first space 17 through an opening 23 partitioned by the lid 3 and one ridge line of the heat exchange element 12.
  • the air supply fan housing chamber 24 houses the air supply fan 11, as shown in FIGS. As shown in FIG. 16, the air supply fan housing chamber 24 communicates with the air supply fan motor housing chamber 43 through an opening 44 formed in the partition plate 16D. As shown in FIG. 16, the air supply fan housing chamber 24 has an air supply indoor side outlet 6 on a side wall.
  • the air supply fan motor housing chamber 43 houses the air supply fan motor 11M. Further, the air supply fan motor chamber 43 is used to exchange heat with the lid 3. It communicates with the second space 18 through an opening 25 partitioned by one ridge line of the element 12.
  • the outdoor-side suction chamber 26 has an outdoor-side suction port 5 for supplying air on a side wall.
  • the outdoor suction chamber 26 communicates with the air supply communication chamber 45 via the opening 29 of the partition plate 16C as shown in FIGS.
  • the indoor-side suction chamber 27 has an indoor-side suction port 4 for exhaust on a side wall. Further, as shown in FIG. 16, the indoor-side suction chamber 27 communicates with the exhaust communication chamber 46 through the opening 30 of the partition plate 16E.
  • the air supply communication chamber 45 is partitioned by a partition plate 16F, and is located below the exhaust fan motor storage chamber 41.
  • the air supply communication chamber 45 communicates with the third space 19 as shown in FIG.
  • the exhaust communication chamber 46 is partitioned by a partition plate 16G, and is located below the air supply fan motor storage chamber 43.
  • the exhaust communication chamber 46 communicates with the fourth space 20, as shown in FIG.
  • the no-pass chamber 31 is located on the side opposite to the extraction direction of the heat exchange element chamber 21.
  • the bypass chamber 31 communicates with the first space 17 via the opening 32.
  • the bypass chamber 31 communicates with the indoor suction chamber 27 via the opening 33.
  • the exhaust fan storage chamber 22 and the indoor suction chamber 27 communicate with each other via the exhaust fan motor storage chamber 41, the first space 17, and the bypass chamber 31.
  • the heat exchange element 12 has a substantially rectangular parallelepiped shape, and is provided at the intersection of the exhaust passage 8 and the air supply passage 9.
  • the heat exchange element 12 includes a pleated special kraft paper (hereinafter, referred to as spacer paper) 122 and a flat membrane-shaped special kraft paper (hereinafter, referred to as partition paper) 121. Alternately changing direction It has a layered structure. Since the heat exchange element 12 has such a structure, in the heat exchange element 12, the flow path of the exhaust EA and the flow path of the supply air SA are alternately arranged for each stage.
  • the sensible heat and latent heat of the supply air SA and the exhaust air EA are exchanged via the partition paper 121.
  • a mixture of anatase-type titanium dioxide particles and titanium apatite particles is applied to the spacer paper 122 and the partition paper 121 in the same manner as the photocatalytic filter of the first embodiment. .
  • a handle 12a for taking out is provided on the end face of the heat exchange element 12.
  • the lid 14 When the lid 14 is removed as shown in FIG. From the opening 13 for removal, it can be removed in the longitudinal direction along its long side.
  • the air filter 12b is attached to the heat exchange element 12 so as to cover a surface of the heat exchange element 12 that contacts the third space 19 and a surface that contacts the fourth space 20.
  • the air filter 12b is a non-woven fabric having a polytetrafluoroethylene fiber strength.
  • the air filter 12b is a filter mainly for collecting relatively large dust, and cannot capture minute biological particles such as bacteria and viruses.
  • the streamer discharger 15 is provided in each of the third space 19 and the fourth space 20, and includes radicals such as fast electrons, ions, ozone, and hydroxyl radicals, and other excited molecules (excited oxygen molecules, excited nitrogen molecules, excited nitrogen molecules, By supplying active species such as water molecules) to the inside of the heat exchange element 12, the photocatalytic function of the titanium apatite carried inside the heat exchange element 12 is activated.
  • the streamer discharger 15 includes a discharge electrode 15a, a counter electrode 15b, and a cap.
  • the discharge electrode 15a includes an electrode rod 151 and a plurality of needle electrodes 152, as shown in FIG.
  • the needle electrode 152 is fixed so as to be substantially orthogonal to the electrode rod 151.
  • the opposing electrode 15b is a plate-shaped electrode and has a plurality of openings through which air passes in a direction perpendicular to the plane of the electrode. Then, the electrode rod 151 of the discharge electrode 15a and the opposing electrode 15b are arranged substantially in parallel. As a result, the needle electrode 152 of the discharge electrode 15a is substantially perpendicular to the counter electrode 15b.
  • the discharge electrode 15a and the counter electrode 15b are Or a high voltage power supply (not shown) of Norse. When a discharge voltage is applied to the discharge electrode 15a and the counter electrode 15b, a streamer discharge occurs between the needle electrode 152 of the discharge electrode 15a and the counter electrode. Thus, when streamer discharge occurs, low-temperature plasma is generated in the discharge field.
  • the low-temperature plasma generates radicals such as high-speed electrons, ions, ozone, and hydroxyl radicals, and other excited molecules (excited oxygen molecules, excited nitrogen molecules, and excited water molecules).
  • these active species are supplied to the inside of the heat exchange element 12 through the opening of the counter electrode 15b on the air flow.
  • the streamer discharger 15 is energized only in a heat exchange element cleaning mode described later.
  • each of the exhaust fan 10 and the air supply fan 11 is a sirocco fan (rotor), and is a spiral fan made of foamed resin (for example, styrene foam). It is housed in a casing (not shown).
  • the rotation axis L of each of the fans 10 and 11 is parallel to the direction K in which the heat exchange element 12 is removed.
  • the dambar 34 is arranged in the indoor suction chamber 27.
  • the damper 34 is rotated by, for example, an electric motor (not shown) to open one of the openings 30 and 33 and close the other.
  • the electrical component box EB is arranged in a portion Ml of the maintenance surface M facing the exhaust fan 10.
  • the electrical component box EB houses a control board (not shown) and the like as electrical components.
  • the control board is communicatively connected to a wired remote controller (not shown), and controls the operations of the fans 10, 11 and the damper 34 based on a signal transmitted from the wired remote controller.
  • the total heat exchange unit 100 is provided with three operation modes: a total heat exchange ventilation mode, a normal ventilation mode, and a heat exchange element cleaning mode. Hereinafter, each operation mode is described in detail. [0045] (1) Total heat exchange ventilation mode
  • the opening 30 is opened by the damper. At this time, as described above, the opening 33 is closed. Then, when the fans 10 and 11 are operated in this state, the room air is sucked into the room-side suction chamber 27 from the room-side suction port 4 via the dart, and the opening 30 ⁇ the exhaust communication chamber 46 ⁇ the fourth side.
  • the air is discharged outside through the duct and the outdoor air is sucked into the outdoor suction chamber 26 from the outdoor suction port 5 through the duct, and the air supply communication chamber 45 ⁇ the third space 19 ⁇ the air filter 12b ⁇ Heat exchange element 12 ⁇ second space 18 ⁇ opening 25 ⁇ air supply fan motor storage chamber 43 ⁇ opening 44 ⁇ air supply passage 9 leading to air supply fan storage chamber 24 and blown out from indoor side outlet 6
  • the air is supplied to the room through the duct.
  • the opening 33 is opened by the damper 34 when normal ventilation is performed. At this time, as described above, the opening 30 is closed.
  • the fans 10 and 11 are operated in this state, the room air is sucked into the room-side suction chamber 27 from the room-side suction port 4 through the duct, and the opening 33 ⁇ the bypass chamber 31 ⁇ the opening 32 ⁇ 1 Space 17 ⁇ Opening 23 ⁇ Exhaust fan motor housing room 41 ⁇ Binos to exhaust fan housing room 22 The same as when the air is blown out from the outdoor outlet 7 through the outdoor air outlet 7 and discharged outside through the duct.
  • Air supply fan storage chamber 24 Passes through air supply passage 9, blows out from indoor side outlet 6, and is supplied to the room through a duct (supply The flow of air is the same as for total heat exchange ventilation.)
  • the rotation speed of the fans 10 and 11 minimizes the air flow. And at the same time, the streamer discharger 15 is energized.
  • titanium dioxide particles of anatase type having a secondary particle diameter of 0.1 to 1 micrometer, and secondary particles having a diameter of 1 to 10 micrometers.
  • a mixture of titanium apatite is applied to the heat exchange element 12.
  • the titanium dioxide having a small secondary particle size enters the gap between the titanium apatite having a large secondary particle size. Therefore, the active site of the photocatalytic reaction can be made comparable to that of the conventional titanium dioxide.
  • titanium apatite adsorbs bacteria and viruses specifically.
  • the total heat exchange unit 100 can exhibit a better cleaning treatment ability than the conventional total heat exchange unit using a photo-semiconductor catalyst.
  • titanium dioxide particles of anatase type having a secondary particle diameter of 0.1 to 1 micrometer, and secondary particles having a diameter of 1 to 10 micrometers.
  • the mixture may be applied to one or both surfaces of the air filter.
  • the cleaning treatment material according to the present invention can exhibit a cleaning treatment ability superior to that of the conventional photosemiconductor catalyst, and can be applied to cleaning-related technologies such as air and water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Filtering Materials (AREA)

Abstract

 本発明の課題は、空気清浄部材に担持できる清浄処理材料の重量がある程度制限されている場合において、従来の光半導体触媒よりも優れた清浄処理能力を示す清浄処理材料を提供することある。清浄処理材料(847)は、光半導体触媒(846)および光触媒機能を有するアパタイト(845)の混合物である。なお、光半導体触媒(846)は、二次粒子の直径が0.1から1マイクロメートルである。また、光触媒機能を有するアパタイト(846)は、二次粒子の直径が1から10マイクロメートルである。

Description

明 細 書
清浄処理材料、エアフィルタ、空気調和装置、熱交換エレメント、および 熱交換ユニット
技術分野
[0001] 本発明は、清浄処理材料、エアフィルタ、空気調和装置、熱交換エレメント、および 熱交換ユニットに関する。
背景技術
[0002] 従来、光半導体触媒としては、酸化チタン、チタン酸ストロンチウム、酸化亜鉛、酸 ィ匕タングステン、および酸ィ匕鉄などに代表される金属酸ィ匕物、 C などのフラーレンに
60
代表される炭素系の光触媒、遷移金属力 なるナイトライド、ォキシナイトライドなどが 挙げられる。このような光半導体触媒はバンドギャップ以上のエネルギーをもつ光 (例 えば、紫外線など)が照射されると、荷電子帯にある電子が伝導帯に励起され、荷電 子帯に正孔が、伝導体に電子が生成する。その結果、荷電子帯側では酸化反応が 、伝導体側では還元反応が起こりやすくなる。そして、この状態で空気や水などが光 半導体触媒の表面に接触すると化学反応が起こり、 OH—、 02、 02—、および H202 などの活性酸素が生成される。すると、その活性酸素は、光半導体触媒の近傍に存 在する種々の有機物を分解する。
ところで、これらの光半導体触媒は、有機物を積極的に吸着する能力に劣るため、 ある分野に置いては清浄処理速度が十分でないという問題があった。現在、この問 題を解消するために、有機物の吸着能力が高いアパタイトの一部の原子を置換して 光触媒機能を付与したもの(以下、光触媒アパタイトという)の開発が進められており( 例えば、特許文献 1および特許文献 2参照)、実際にその吸着能力が改善されている 特許文献 1:特開 2004— 2176号公報 (第 8項)
特許文献 2:特開 2001— 302220号公報
発明の開示
発明が解決しょうとする課題 [0003] しかし、現時点の粒径制御技術では光半導体触媒アパタイトの比表面積 (単位重 量当たりの表面積)を従来の光半導体触媒の比表面積よりも大きくすることは非常に 困難である。したがって、従来の光半導体触媒と光半導体触媒アパタイトとの清浄処 理速度を同一重量で比較した場合、光半導体触媒アパタイトの方が従来の光半導 体触媒よりも劣る。
本発明の課題は、従来の光半導体触媒よりも優れた清浄処理能力を示す清浄処 理材料を提供することある。
課題を解決するための手段
[0004] 第 1発明に係る清浄処理材料は、光半導体触媒および光触媒機能を有するァパタ イトの混合物である。なお、光半導体触媒は、二次粒子の直径が 0. 1から 1マイクロメ 一トルである。また、光触媒機能を有するアパタイトは、二次粒子の直径が 1から 10マ イク口メートルである。なお、ここにいう「光半導体触媒」とは、例えば、酸化チタン、チ タン酸ストロンチウム、酸化亜鉛、酸化タングステン、および酸化鉄などに代表される 金属酸化物、 c などのフラーレンに代表される炭素系の光半導体触媒、遷移金属
60
力もなるナイトライド、ォキシナイトライド、光触媒機能を有するアパタイトなどである。 また、ここにいう「光触媒機能を有するアパタイト」とは、例えば、カルシウムヒドロキシ アパタイトの一部のカルシウム原子がイオン交換などの手法によってチタン原子に置 換されたアパタイトなどである。
[0005] ここでは、清浄処理材料が、光半導体触媒および光触媒機能を有するアパタイトの 混合物である。このため、二次粒子のサイズが小さな光半導体触媒が二次粒子のサ ィズが大きい光触媒機能を有するアパタイトの粒子の隙間に入り込む。したがって、 光触媒反応の活性サイトを従来の光半導体触媒並みにすることができる。また、この 状態で、光触媒機能を有するアパタイトが特異的に菌ゃウィルスを吸着する。この結 果、清浄処理材料は、従来の光半導体触媒よりも優れた清浄処理能力を示すことが できる。
第 2発明に係る清浄処理材料は、第 1発明に係る清浄処理材料であって、光触媒 機能を有するアパタイトは、光半導体触媒 100重量部に対し、 10〜35重量部混合さ れる。また、光触媒機能を有するアパタイトは、より好ましくは 15〜35重量部である。 二次粒子の直径が 0. 1から 1マイクロメートルの光半導体触媒 100重量部のァセト アルデヒドに対する酸化分解速度は、二次粒子の直径が 1から 10マイクロメートルの 光触媒機能を有するアパタイト 100重量部のァセトアルデヒドに対する酸化分解速度 の約 4倍となることが確認されて 、る。
[0006] ここでは、二次粒子の直径が 0. 1から 1マイクロメートルの光半導体触媒 100重量 部に対し、二次粒子の直径が 1から 10マイクロメートルの光触媒機能を有するァパタ イトを 10〜35重量部混合して、清浄処理材料が生成される。この配合比は上記の光 半導体触媒および光触媒機能を有するアパタイトのァセトアルデヒドに対する酸化分 解速度比と光触媒機能を有するアパタイトのァセトアルデヒドの吸着能力とから導か れるものであり、この配合比では、光半導体触媒のみを使用した場合よりも菌ゃウイ ルスなどに対する処理能力が高くなる。したがって、この清浄処理材料は、従来の光 半導体触媒よりも優れた清浄処理能力を示すことができる。
第 3発明に係る清浄処理材料は、第 1発明または第 2発明に係る清浄処理材料で あって、光半導体触媒は、二酸化チタンである。
[0007] ここでは、光半導体触媒が、二酸化チタンである。二酸化チタンは、光半導体触媒 の中でコストパフォーマンスに優れる。このため、コストを抑制させたままで本発明の 課題を克服することができる。
第 4発明に係る清浄処理材料は、第 1発明または第 2発明に係る清浄処理材料で あって、光触媒機能を有するアパタイトは、チタンアパタイトである。なお、ここにいう「 チタンアパタイト」とは、カルシウムヒドロキシアパタイトなどの一部のカルシウム原子が イオン交換などの手法によってチタン原子に置換されたアパタイトである。
ここでは、光触媒機能を有するアパタイトが、チタンアパタイトである。チタンァパタ イトは、カルシウムヒドロキシアパタイトからイオン交換法により簡便に調製することが でき、光触媒機能を有するアパタイトの中では最もコストパフォーマンスに優れる。こ のため、コストを抑制させたままで本発明の課題を克服することができる。
[0008] 第 5発明に係るエアフィルタは、第 1発明から第 4発明のいずれかに係る清浄処理 材料を担持する。
ここでは、エアフィルタ力 第 1発明から第 4発明のいずれかに係る清浄処理材料を 担持する。このため、このエアフィルタは、従来の光半導体触媒を担持したエアフィル タよりも優れた清浄処理能力を示すことができる。
第 6発明に係る空気調和装置は、第 5発明に係るエアフィルタを備える。 ここでは、空気調和装置が、第 5発明に係るエアフィルタを備える。このため、この空 気調和装置は、従来の光半導体触媒を利用した空気調和装置よりも優れた清浄処 理能力を示すことができる。
第 7発明に係る熱交換エレメントは、第 1発明から第 4発明のいずれかに記載の清 浄処理材料を担持する。
[0009] ここでは、熱交換エレメントが、第 1発明から第 4発明のいずれかに係る清浄処理材 料を担持する。このため、この熱交換エレメントは、従来の光半導体触媒を担持した 熱交換エレメントよりも優れた清浄処理能力を示すことができる。
第 8発明に係る熱交換ユニットは、第 7発明に係る熱交換エレメントを備える。
ここでは、熱交換ユニットが、第 7発明に係る熱交換エレメントを備える。このため、 この熱交換ユニットは、従来の光半導体触媒を利用した熱交換ユニットよりも優れた 清浄処理能力を示すことができる。
発明の効果
[0010] 第 1発明に係る清浄処理材料は、従来の光半導体触媒よりも優れた清浄処理能力 を示すことができる。
第 2発明に係る清浄処理材料は、従来の光半導体触媒よりも優れた清浄処理能力 を示すことができる。
第 3発明に係る清浄処理材料は、コストを抑制させたままで本発明の課題を克服す ることがでさる。
第 4発明に係る清浄処理材料は、コストを抑制させたままで本発明の課題を克服す ることがでさる。
第 5発明に係るエアフィルタは、従来の光半導体触媒を担持したエアフィルタよりも 優れた清浄処理能力を示すことができる。
[0011] 第 6発明に係る空気調和装置は、従来の光半導体触媒を利用した空気調和装置よ りも優れた清浄処理能力を示すことができる。 第 7発明に係る熱交換エレメントは、従来の光半導体触媒を担持した熱交換エレメ ントよりも優れた清浄処理能力を示すことができる。
第 8発明に係る熱交換ユニットは、従来の光半導体触媒を利用した熱交換ユニット よりも優れた清浄処理能力を示すことができる。
図面の簡単な説明
[図 1]第 1実施形態に係る空気清浄機の外観斜視図。
圆 2]フィルタ類および送風機構の分解斜視図。
圆 3(a)]放電部の空気流れ方向上流側の構造を示す斜視図。
[図 3(b)]ストリーマ放電電極の形状を示す斜視図。
[図 3(c)]放電部の上面配置図。
圆 3(d)]ストリーマ放電の様子を表す図。
[図 4]制御部の概略ブロック図。
[図 5]プレフィルタの詳細図。
[図 6]プレフィルタのネット部を構成する繊維の断面拡大図。
[図 7]口ールフィルタの側断面図の一部。
[図 8]本発明に係るエアフィルタおよび繊維を示す図。
[図 9]本発明に係る繊維の拡大図。
[図 10]本発明に係る繊維の製造装置の簡略図。
圆 11(a)]吐出部の断面図。
圆 11(b)]吐出口の形状を示す図。
圆 12]同一表面積における二酸ィ匕チタンとチタンアパタイトとの光触媒活性の比較図 圆 13]同一重量における二酸ィ匕チタンとチタンアパタイトとの光触媒活性の比較図。
[図 14]変形例 (B)に係る繊維の拡大図。
[図 15]変形例 (C)に係る空気調和機の外観斜視図。
圆 16]第 2実施形態に係る全熱交換ユニットの内部構造を示す斜視図。
圆 17]第 2実施形態に係る全熱交換ユニットの内部構造を示す上面図。
圆 18]第 2実施形態に係る全熱交換ユニットの内部構造を示す側面図。 [図 19]第 2実施形態に係る全熱交換ユニットの内部構造を示す分解斜視図。
[図 20]仕切板の斜視図。
[図 21]仕切板の斜視図。
[図 22]熱交換エレメントの構造を示す斜視図。
[図 23]ストリーマ放電器の外観斜視図。
符号の説明
[0013] 12 熱交換エレメント
34 プラズマ触媒フィルタ(エアフィルタ)
40 空気清浄機 (空気調和装置)
100 全熱交換ユニット(熱交換ユニット)
847 混合物 (清浄処理材料)
発明を実施するための最良の形態
[0014] <第 1実施形態 >
[空気清浄機の全体構成]
本発明の一実施の形態が採用される空気清浄機 40の外観図を図 1に示す。
空気清浄機 40は、ビルや住宅などの室内空気を清浄し清浄後の空気を室内に送 風することにより、室内を快適な環境に保つ。この空気清浄機 40は、ケーシング 60、 送風機構 70 (図 2参照)、制御部 50 (図 4参照)、およびフィルタユニット 80 (図 2参照 )を備えている。
[空気清浄機の構成要素]
(1)ケーシング
ケーシング 60は、空気清浄機 40の外表面を構成し、送風機構 70、制御部 50、お よびフィルタユニット 80を内包する。ケーシング 60は、本体部 61および正面パネル 6 2を有している。
[0015] A.本体部
本体部 61は、上面吸い込み口 63、側面吸い込み口 64、および吹き出し口 65を有 している。上面吸い込み口 63および側面吸い込み口 64は、空気清浄機 40内にお いて室内空気を清浄するために、室内空気を空気清浄機 40内に吸い込むための略 矩形の開口である。上面吸い込み口 63は、吹き出し口 65が設けられる面と同じ本体 部 61上面の正面側端部に設けられる。側面吸い込み口 64は、本体部 61の側面に 左右それぞれ設けられる一対の開口である。吹き出し口 65は、本体部 61上面の背 面側端部に設けられる。吹き出し口 65は、清浄後の空気を空気清浄機 40から室内 に向力つて吹き出すための開口である。
B.正面パネノレ
正面パネル 62は、本体部 61の前方に設けられ、本体部 61の内部に設置されるフ ィルタユニット 80を覆っている。正面パネル 62は、正面吸い込み口 66および表示パ ネル開口 67を有している。正面吸い込み口 66は、正面パネル 62の略中央部に設け られる室内空気を空気清浄機 40内に吸い込むための略矩形の開口である。表示パ ネル開口 67は、後述する表示パネル 56がケーシング 60外部から目視できるように 設けられている。
[0016] (2)送風機構
送風機構 70は、各吸い込み口(上面吸い込み口 63、側面吸い込み口 64および正 面吸 、込み口 66)から室内空気を吸 、込み、吹き出し口 65から清浄後の空気を吹 き出す。この送風機構 70は、ケーシング 60の内方に設けられ、各吸い込み口 63, 6 4, 66から吸!、込んだ室内空気がフィルタユニット 80を通過するように構成されて!ヽ る。また、送風機構 70は、図 2に示されるように、ファンモータ 71および送風ファン 72 を備えている。この送風ファン 72は、ファンモータ 71によって回転駆動される。ファン モータ 71としては、インバータ回路により周波数制御されるインバータモータが採用 される。送風ファン 72としては、遠心ファンが採用される。
(3)制御部
空気清浄機 40は、さらに、マイクロプロセッサで構成される制御部 50を備えている 。図 4に示されるように、制御部 50には、制御プログラムや各種パラメータが格納され る ROM51、処理中の変数などを一時的に格納する RAM52などが接続されて 、る
[0017] また、制御部 50には、温度センサ 53、湿度センサ 54、およびダストセンサ 55など の各種センサ類が接続されており、各センサの検出信号が入力される。ダストセンサ 55は、導入される空気中に光を照射し、空気中に含まれる煙、ホコリ、花粉、その他 の粒子によって乱射されて受光素子に到達した光量を検出して、粉塵などの粒子濃 度を測定することができる。
さらに、制御部 50には、表示パネル 56が接続されている。表示パネル 56は、運転 モード、各種センサによるモニタ情報、タイマ情報、メンテナンス情報などを表示し、 使用者などが外部力 表示パネル開口 67を介して目視できるようになって!/、る。また 、この表示パネル 56は、液晶表示パネル 'LED.その他の表示素子またはこれらの 組み合わせで構成することが可能である。
[0018] さらに、制御部 50は、ファンモータ 71に接続されており、使用者の操作や各種セン サの検出結果などに応じて、これらの装置の稼働を制御することができる。
(4)フィルタユニット
フィルタユニット 80は、ケーシング 60の内部に設けられ、各吸い込み口 63, 64, 6 6から吸い込んだ室内空気に含まれる微粒子を除去する。図 2に示されるように、フィ ルタユニット 80は、プレフィルタ 81、放電部 82、光触媒フィルタ 83、およびプラズマ 触媒フィルタ 84を有している。フィルタユニット 80は、各吸い込み口 63, 64, 66力 吸い込んだ室内空気がプレフィルタ 81、放電部 82、光触媒フィルタ 83、プラズマ触 媒フィルタ 84の順にフィルタユニット 80内を通過するように構成されて 、る。
[0019] A.プレフィルタ
プレフィルタ 81は、送風機構 70によりケーシング 60内に吸い込まれる空気力も比 較的大きな塵埃などを除去するためのフィルタである。プレフィルタ 81は、ネット部 81 0と、フレーム 811とを有している(図 5参照)。ネット部 810は、ポリプロピレン(以下、 PPと!、う)製の糸状の榭脂網であって、ケーシング 60内に吸 、込まれる空気に含ま れる比較的大きな塵埃などが付着する。また、ネット部 810を構成する繊維は、図 6 に示されるように、 PPによって構成される芯 810aと同じく PPによって構成される被覆 層 814と力らなる。被覆層 814には、可視光線型の光触媒 812とカテキン 813とが空 気側に露出するように担持されている。可視光線型の光触媒 812は、可視光線により 光触媒作用が活性化される酸化チタンなどを含んでおり、ネット部 810に付着する塵 埃などに含まれる力ビ菌ゃ細菌などの菌ゃウィルスを除去する。カテキンは、ポリフエ ノールの一種であって、ェピカテキン、ェピガロカテキン、ェピカテキンガレート、ェピ ガロカテキンガレートなどの総称である。このカテキンは、ネット部 810に付着する塵 埃などに含まれる力ビ菌ゃ細菌などの菌の繁殖を抑制したりウィルスを不活ィ匕したり する。
[0020] B.放電部
放電部 82は、図 3 (a)、図 3 (b)、および図 3 (c)に示されるように、主に、対向電極 8 22、イオンィ匕線 821、およびストリーマ放電電極 823から構成される。対向電極 822 は、方形波形状の断面を有する金属板であって、実質的に電極として機能する実電 極部 822aと複数のスリット部 822bとから成る。なお、スリット部 822b、空気を後方側 に流す役割を果たす。イオンィ匕線 821は、対向電極 822の空気流れ方向上流側に 配置される。なお、このとき、イオンィ匕線 821は、実電極部 822a間に 1つずつ配置さ れる。また、このイオンィ匕線 821は、微小径のタングステン線材などによって形成され 、放電電極として用いられる。ストリーマ放電電極 823は、電極棒 823aと針電極 823 bと力 成る。針電極 823bは、電極棒 823aにほぼ直交するように固定される。そして 、このストリーマ放電電極 823は、図 3 (c)に示されるように、対向電極 822の空気流 れ方向下流側に配置される。なお、このとき、ストリーマ放電電極 823は、針電極 823 bが対向電極 822の実電極部 822aと対向するように配置される。
[0021] なお、これらの電極 821, 822, 823のうち、対向電極 822とィ才ンィ匕線 821とは、 プレフィルタ 81を通過した空気中に浮遊して 、る比較的小さな塵埃を耐電させる役 割を担う。一方、対向電極 822とストリーマ放電電極 823とは、後述する光半導体触 媒担持フィルタ 831に供給する活性種を生成する役割を担う。以下、それぞれの電 極の組合せにつ 、て詳述する。
(対向電極とイオン化線)
この放電部 82において、イオンィ匕線 821と実電極部 822aとの間に高電圧が印加さ れると、両電極 821, 822間に放電力 S生じる。この結果、両電極 821, 822間を通過 する塵埃などがプラス電荷に帯電される。そして、帯電された塵埃は、スリット部 822b を介して後方に供給され、後述する静電フィルタ 830によって静電吸着される。また、 この際、塵埃に含まれるウィルスゃ菌なども帯電されるため、後述するチタンァパタイ トへのウィルスゃ菌の吸着効率が高まる。
[0022] (対向電極とストリーマ放電電極)
この放電部 82において、ストリーマ放電電極 823と対向電極 822との間に直流、交 流、またはパルスの放電電圧が印加されると、両電極 822, 823間に図 3 (d)に示さ れるようなストリーマ放電が生じる。このようにして、ストリーマ放電が生じると、放電場 に低温プラズマが生成する。そして、この低温プラズマにより、高速電子、イオン、ォ ゾン、ヒドロキシラジカルなどのラジカル種や、その他の励起分子 (励起酸素分子、励 起窒素分子、励起水分子)などが生成される。そして、これらの活性種は、空気流れ に乗って光半導体触媒担持フィルタ 831に供給される。
なお、これらの活性種は、非常にエネルギーレベルが高ぐ光半導体触媒担持フィ ルタ 831に到達する前であっても、空気に含まれるアンモニア類や、アルデヒド類、 窒素酸ィ匕物など小さな有機分子を分解'消臭する能力を有する。
[0023] C.光触媒フィルタ
光触媒フィルタ 83の断面図の一部を図 7に示す。光触媒フィルタ 83は、複数回分 の長さを巻き込んだロール状とされており、使用中の面が汚れた場合に引き出して汚 れた部分をカットするような構成となっている。この光触媒フィルタ 83は、静電フィルタ 830および光半導体触媒担持フィルタ 831を張り合わせて形成されている。なお、こ の光触媒フィルタ 83は、静電フィルタ 830が送風機構 70による空気流れの上流側に 、光半導体触媒担持フィルタ 831が空気流れの下流側に面するように配置される。 静電フィルタ 830は、放電部 82で帯電させられた塵埃などを吸着する。光半導体触 媒担持フィルタ 831〖こは、静電フィルタ 830を通過する塵埃などが付着する。この光 半導体触媒担持フィルタ 831の空気流れ方向下流側の面には、アナターゼ型の二 酸ィ匕チタン粒子とチタンアパタイト粒子との混合物が塗布されている。なお、二酸ィ匕 チタン粒子の直径は 0. 1から 1マイクロメートルであり、チタンアパタイト粒子の直径は 1から 10マイクロメートルである。また、二酸ィ匕チタンとチタンアパタイトとの混合比は、 重量比で 100 : 20である。なお、チタンアパタイトとは、カルシウムヒドロキシアパタイト の一部のカルシウム原子力イオン交換などの手法によってチタン原子に置換された アパタイトである n [0024] D.プラズマ触媒フィルタ
プラズマ触媒フィルタ 84は、図 8および図 9に示されるように、アナターゼ型の二酸 化チタン粒子 846とチタンアパタイト粒子 845との混合物 847を担持させた PPの繊 維 844力ら形成されている。なお、この繊維 844は、プレフイノレタ 81と同様に、芯 842 と被覆層 843とを有し、被覆層 843に混合物 847を担持している。また、二酸化チタ ン粒子 846の直径は 0. 1から 1マイクロメートルであり、チタンアパタイト粒子 845の直 径は 1から 10マイクロメートルである。また、二酸ィ匕チタンとチタンアパタイトとの混合 比は、重量比で 100 : 20である。プラズマ触媒フィルタ 84では、光触媒フィルタ 83に 吸着されなかった空気中のウィルスゃ菌などを吸着する。このプラズマ触媒フィルタ 8 4では、吸着された菌ゃウィルスなどが活性種により活性ィ匕された二酸ィ匕チタンによ つて死滅あるいは不活ィ匕される。
[0025] [フィルタを形成する繊維の製造装置および製造方法]
上記フィルタ 81, 83, 84を形成する繊維を製造するための溶融紡糸装置 90を図 1 0に示す。この溶融防止装置 90は、図 10に示されるように、主に、第 1乾燥装置 91a 、第 2乾燥装置 91b、第 1吐出装置 92a、第 2吐出装置 92b、射出ノズル 93、冷却装 置 94、繰出装置 95、引取装置 96、トンネルヒータ 97、熱処理装置 98、および卷取 装置 99から構成される。
第 1乾燥装置 91aには、高融点のポリプロピレン榭脂のペレットが供給される。そし て、この第 1乾燥装置 91aでは、そのペレットが、水分含有率が一定値以下になるま で加熱乾燥される。一方、第 2乾燥装置 91bには、あら力じめアナターゼ型の二酸ィ匕 チタン粒子 846とチタンアパタイト粒子 845 (図 9参照)との混合物 847が分散された 低融点のポリプロピレン榭脂のペレットが供給される。そして、この第 2乾燥装置 91b では、そのペレットが、水分含有率が一定値以下になるまで加熱乾燥される。
[0026] 第 1吐出装置 92aには、第 1乾燥装置 91aにおいて十分に乾燥されたペレットが供 給される。第 1吐出装置 92aは、主に、ヒータ(図示せず)、スクリュー 921、およびシリ ンダ 922から構成される。この第 1吐出装置 92aでは、ヒータによってペレットが融解 され、融解されたポリプロピレン (以下、融解 PPという)がスクリュー 921によりシリンダ 922内を射出ノズル 93側に向力つて移動する。一方、第 2吐出装置 92bには、第 2乾 燥装置 91bにおいて十分に乾燥されたペレットが供給される。第 2吐出装置 92bは、 第 1吐出装置 92aと同様に、主に、ヒータ(図示せず)、スクリュー 921、およびシリン ダ 922から構成される。この第 2吐出装置 92bでは、ヒータによってペレットが融解さ れ、融解された混合物含有ポリプロピレン (以下、 MX含有融解 PPという)がスクリュ 一 921によりシリンダ 922内を射出ノズル 93側に向かって移動する。
[0027] 射出ノズル 93には、第 1吐出装置 92aおよび第 2吐出装置 92bから供給される融解 PPおよび MX含有融解 PPが供給される。射出ノズル 93は、図 11 (a)に示されるよう な側断面構造および図 11 (b)に示されるような形状の吐出口を有する。この射出ノズ ル 93において、融解 PPは、第 1経路(図 11 (a)の実線矢印参照)を流れる。一方、 MX含有融解 PPは、第 2経路(図 11 (a)の破線矢印参照)を流れる。そして、融解 P Pと MX含有融解 PPとは、この射出ノズル 93から排出された後に、 MX含有融解 PP が融解 PPを覆うようなかたちで一体化されて(以下、このようにして一体化された融解 PPと MX含有融解 PPとを複合融解物という)、冷却装置 94に送られる。
冷却装置 94は、複合融解物を、冷却液を利用して冷却'固化し、繊維化する(以下 、このようにしてできた繊維を複合繊維という)。そして、複合繊維は、冷却液のタンク 内に設置されるディップローラ 94aおよび排出ローラ 94bを介して、繰出装置 95に送 られる。
[0028] 繰出装置 95は、繰出ローラ 95aを備えており、一定速度で複合繊維をトンネルヒー タ 97に繰り出す。一方、引取装置 96は、引取ローラ 96aを備えており、トンネルヒータ 97から出てくる複合繊維を、繰出装置 95の繰り出し速度よりも速い速度で引き取る。 この結果、複合繊維は、繰出装置 95と引取装置 96との間で、加熱延伸されることに なる。この加熱延伸時には、複合繊維の外層(混合物を含有するポリプロピレン榭脂 の層)が薄膜ィ匕し、内包されている二酸ィ匕チタン粒子 846およびチタンアパタイト粒 子 845の一部がその表面に露出する(以下、この状態にある繊維を光半導体触媒露 出繊維 844 (図 9参照)という)。光半導体触媒露出繊維 844は、その後、熱処理装置 98に導かれる。熱処理装置 98はヒータ(図示せず)を有し、その内部は所定の温度 になるように加熱されている。この熱処理装置 98では、光半導体触媒露出繊維 844 は、ガイドローラ 98aに沿って移動されながら熱処理される。この熱処理によって、光 半導体触媒露出繊維 844の芯 842の結晶化が進み、その強度が一定値以上に保た れる。そして、熱処理装置 98から出た光半導体触媒露出繊維 844は、卷取装置 99 の卷取ローラ 99aによって巻き取られる。
[0029] 以上の工程を経て製造された光半導体触媒露出繊維 844は、図 9に示されるような 形状を呈することになる。
[フィルタの製造方法]
上記フィルタ 81, 83, 84は、上記の光半導体触媒露出繊維 844を織ることなく熱 融着させることによって不織布として製造される。
[本空気清浄機の特徴]
(1)
第 1実施形態に係る空気清浄機 40では、二次粒子の直径が 0. 1カゝら 1マイクロメ一 トルであるアナターゼ型の二酸化チタン粒子、および二次粒子の直径が 1から 10マ イク口メートルであるチタンアパタイト粒子の混合物が光半導体触媒担持フィルタ 831 の空気流れ方向下流側の面に塗布されている。ここでは、二次粒子のサイズが小さ な二酸ィ匕チタンが二次粒子のサイズが大きなチタンアパタイトの隙間に入り込み、光 触媒反応の活性サイトを従来の二酸ィ匕チタン並みになっている。また、この状態で、 チタンアパタイトが特異的に菌ゃウィルスを吸着する。この結果、この光触媒フィルタ は、従来の光半導体触媒を塗布した光触媒フィルタよりも優れた清浄処理能力を示 すことができる。
[0030] (2)
第 1実施形態に係る空気清浄機 40では、二次粒子の直径が 0. 1カゝら 1マイクロメ一 トルであるアナターゼ型の二酸化チタン粒子 846、および二次粒子の直径が 1から 1 0マイクロメートルであるチタンアパタイト粒子 845の混合物 847がプラズマ触媒フィ ルタ 84の PP繊維 844に担持される。ここでは、二次粒子のサイズが小さな二酸化チ タンが二次粒子のサイズが大きなチタンアパタイトの隙間に入り込み、光触媒反応の 活性サイトを従来の二酸ィ匕チタン並みになっている。また、この状態で、チタンァパタ イトが特異的に菌ゃウィルスを吸着する。この結果、この繊維 844は、従来の光半導 体触媒を担持した繊維よりも優れた清浄処理能力を示すことができる。 (3)
第 1実施形態に係る空気清浄機 40では、プラズマ触媒フィルタ 84を構成する繊維 844力 S芯 842と被覆層 843と力らなり、その被覆層 843にはアナターゼ型の二酸ィ匕 チタン粒子 846とチタンアパタイト粒子 845とが空気側に露出するように担持されて いる。一般に、榭脂に粒子フィラーなどが充填されると、その樹脂が脆くなる傾向が強 い。し力し、この繊維 844は、芯 842を有しているため、そのおそれがほとんどない。 また、二酸ィ匕チタン粒子 846とチタンアパタイト粒子 845とが空気側に露出しているこ とにより二酸ィ匕チタン粒子 846とチタンアパタイト粒子 845がその光触媒機能を十分 に発揮することができる。
(4)
第 1実施形態に係る空気清浄機 40では、二次粒子の直径が 0. 1カゝら 1マイクロメ一 トルであるアナターゼ型の二酸化チタン粒子、および二次粒子の直径が 1から 10マ イク口メートルであるチタンアパタイト粒子の混合物が 100: 20の重量比率でフィルタ 83, 84に塗布あるいは担持されている。
図 13には、二次粒子の直径が 0. 1から 1マイクロメートルであるアナターゼ型の二 酸化チタン粒子 846と、二次粒子の直径が 1から 10マイクロメートルであるチタンァパ タイト粒子 845とを同一重量とした場合のァセトアルデヒドに対する二酸ィ匕チタンとチ タンアパタイトの酸ィ匕分解効率を表すグラフが示されている。図 13において、測定開 始時点から 10分経過前までは酸ィ匕チタンおよびチタンアパタイトには紫外線が照射 されていないが、測定開始時点から 10分経過後以降は酸ィ匕チタンおよびチタンアバ タイトに紫外線が照射されている。図から明らかなように、二酸化チタンは紫外線照 射時からほぼ 3分程度で 15ppm程度のァセトアルデヒドを酸ィ匕分解しているのに対 し、チタンアパタイトは紫外線照射時から 20分ほど経過してようやく 24ppmァセトァ ルデヒドを酸ィ匕分解する。したがって、二酸化チタンのァセトアルデヒドに対する酸ィ匕 分解速度は、約 5. OppmZminである。一方、チタンアパタイトのァセトアルデヒドに 対する酸化分解速度は、約 1. 2ppm/minである。したがって、二酸化チタンとチタ ンアパタイトとのァセトアルデヒドに対する酸ィ匕分解速度比は、おおよそ 1 : 0. 24とな る。そして、この酸ィ匕分解速度比とチタンアパタイトのァセトアルデヒドの吸着能力とか ら、二次粒子の直径が 0. 1から 1マイクロメートルの光半導体触媒 100重量部に対し 、二次粒子の直径が 1から 10マイクロメートルの光触媒機能を有するアパタイトを 10 〜35重量部混合すると、二酸ィ匕チタンのみを使用した場合よりも菌ゃウィルスなどに 対する処理能力が高くなるとの結果が導かれる。したがって、このフィルタ 83, 84は、 二酸ィ匕チタンをそのまま担持したフィルタよりも優れた清浄処理能力を示すことがで きる。
[0032] [変形例]
(A)
第 1実施形態に係る空気清浄機 40では、チタンアパタイトの光触媒機能が、活性 種により活性ィ匕された力 これに代えて、紫外線ランプなどを採用することによりチタ ンアパタイトや二酸ィ匕チタンの光触媒機能を活性化させてもよい。
(B)
第 1実施形態に係る空気清浄機 40では、プラズマ触媒フィルタ 84を形成する繊維 として芯 842を有する繊維 844が採用された力 図 14に示されるような二酸ィ匕チタン 粒子 846とチタンアパタイト粒子 845とが内部にもほぼ均一に分散された繊維が採用 されてもよい。なお、一部の二酸化チタン粒子 846とチタンアパタイト粒子 845とは、 繊維表面に露出している。
[0033] (C)
第 1実施形態では、本発明を空気清浄機 40に適用しているが、図 15に示すような 冷暖房を行う空気調和機 200に本発明を適用してもよい。
この空気調和機 200は、調和された空気を室内に供給するための装置であって、 室内の壁面などに取り付けられる室内機 201と、室外に設置される室外機 202とを備 えている。室内機 201には、室内の空気を空気調和機 200内に取り込むための吸い 込み口 205が設けられており、この吸い込み口 205の内側にフィルタユニット(図示 せず)が装備される。このフィルタユニットに対して本発明を適用した場合にも、フィル タユニットに付着および吸着されるウィルスや力ビ菌、細菌などが除去されるため、悪 臭の発生や空気の汚染が起こることを抑えられる。
[0034] <第 2実施形態 > 本発明の一実施形態に係る全熱交換ユニットの内部構造を示す斜視図を図 16に 、上面図を図 17に、側面図を図 18に、分解斜視図を図 19に示す。なお、この全熱 交換ユニット 100は、図 16に示されるように、屋外力もの給気 SA (実線白抜矢印)と 室内からの排気 EA (ハッチング付き矢印)との間で熱交換エレメント 12を介して熱交 換させつつ換気するための装置である。
[全熱交換ユニットの構成]
本全熱交換ユニット 100は、図 16、図 17、図 18、および図 19に示されるように、主 に、ケーシング 1、熱交換エレメント 12、エアフィルタ 12b、ファン 10, 11、ダンバ 34、 および電装品ボックス EBカゝら構成される。
[全熱交換ユ ットの構成要素]
(1)ケーシング
ケーシング 1は、図 16および図 19に示されるように、箱体 2と、この箱体 2の上面を 覆う蓋体 3とから構成される。そして、このケーシング 1には、熱交換エレメント室 21、 排気用ファンモータ収容室 41、排気用ファン収容室 22、給気用ファンモータ収容室 43、給気用ファン収容室 24、給気連通室 45、排気連通室 46、室外側吸込室 26、 室内側吸込室 27、およびバイパス室 31が設けられる。以下、上述した各室について 詳述する。
A.熱交換エレメント室
熱交換エレメント室 21は、図 16および図 18に示されるように、直方体形状の空間 であって、熱交換エレメント 12を収容する。なお、この熱交換エレメント室 21は、箱体 2の底板、仕切板 16A〜16E (図 16、図 20、および図 21参照)、および蓋体 3などに よって仕切られて形成される。また、箱体 2の底板、仕切板 16A〜16E、および蓋体 3には、それぞれガイド部 Gl, G2, G3が取り付けられる。箱体 2の底板に取り付けら れるガイド部 G1は、第 1ガイド部 G11と第 2ガイド部 G12とを有する。第 1ガイド部 G1 1は、熱交換エレメント 12の揷脱時に熱交換エレメント 12の下部の稜線を案内する。 一方、第 2ガイド部 G12は、第 1ガイド部 G11を挟んで対をなしており、一対のエアフ ィルタ 12bの端縁をそれぞれ案内する。仕切板 16A〜16Eに取り付けられるガイド部 G2は、第 1ガイド部 G21と第 2ガイド部 G22とを有する。第 1ガイド部 G21は、熱交換 エレメント 12の揷脱時に熱交換エレメント 12の側部の稜線を案内する。一方、第 2ガ イド部 G22は、エアフィルタ 12bの端縁を案内する。蓋体 3に取り付けられるガイド部 G3は、熱交換エレメント 12の揷脱時に熱交換エレメント 12の上部の稜線を案内する
[0036] なお、この熱交換エレメント室 21に熱交換エレメント 12が収容されると、その周囲に 略三角柱形状の 4つの空間 17, 18, 19, 20が生成する。以下、図 16および図 18中 、図番 17により示される空間を第 1空間、図番 18により示される空間を第 2空間、図 番 19により示される空間を第 3空間、図番 20により空間を第 4空間という。
B.排気用ファン収容室
排気用ファン収容室 22は、図 16および図 19に示されるように、排気用ファン 10を 収容する。また、この排気用ファン収容室 22は、図 16に示されるように、仕切板 16B に形成された開口 42を介して排気用ファンモータ収容室 41に連通する。また、この 排気用ファン収容室 22は、図 16に示されるように、側壁に排気用の室外側吹出口 7 を有している。
[0037] C.排気用ファンモータ収容室
排気用ファンモータ収容室 41は、図 16および図 19に示されるように、排気用ファン モータ 10Mを収容する。また、この排気用ファンモータ収容室 41は、図 16に示され るように、蓋体 3と熱交換エレメント 12の一の稜線とで仕切られる開口 23を介して第 1 空間 17に連通する。
D.給気用ファン収容室
給気用ファン収容室 24は、図 16および図 19に示されるように、給気用ファン 11を 収容する。また、給気用ファン収容室 24は、図 16に示されるように、仕切板 16Dに形 成された開口 44を介して給気用ファンモータ収容室 43に連通する。また、この給気 用ファン収容室 24は、図 16に示されるように、側壁に給気用の室内側吹出口 6を有 している。
[0038] E.給気用ファンモータ収容室
給気用ファンモータ収容室 43は、図 16および図 19に示されるように、給気用ファン モータ 11Mを収容する。また、この給気用ファンモータ収容室 43は、蓋体 3と熱交換 エレメント 12の一の稜線とで仕切られる開口 25を介して第 2空間 18に連通する。
F.室外側吸込室
室外側吸込室 26は、図 16に示されるように、側壁に給気用の室外側吸込口 5を有 している。また、この室外側吸込室 26は、図 16および図 20に示されるように、仕切板 16Cの開口 29を介して給気連通室 45に連通する。
G.室内側吸込室
室内側吸込室 27は、図 16に示されるように、側壁に排気用の室内側吸込口 4を有 している。また、この室内側吸込室 27は、図 16に示されるように、仕切板 16Eの開口 30を介して排気連通室 46に連通する。
[0039] H.給気連通室
給気連通室 45は、仕切板 16Fによって仕切られており、排気用ファンモータ収容 室 41の下方に位置する。また、この給気連通室 45は、図 16に示されるように、第 3空 間 19に連通する。
I.排気連通室
排気連通室 46は、仕切板 16Gによって仕切られており、給気用ファンモータ収容 室 43の下方に位置する。また、この排気連通室 46は、図 16に示されるように、第 4空 間 20に連通する。
J.バイパス室
ノ ィパス室 31は、熱交換エレメント室 21の反抜取り方向側に位置している。そして 、このバイパス室 31は、開口 32を介して第 1空間 17に連通する。また、このバイパス 室 31は、開口 33を介して室内側吸込室 27に連通する。この結果、排気用ファン収 容室 22と室内側吸込室 27とは、排気用ファンモータ収容室 41、第 1空間 17、および バイパス室 31を介して連通することとなる。
[0040] (2)熱交換エレメント
熱交換エレメント 12は、図 16および図 19に示されるように、略直方体の形状をして おり、排気通路 8と給気通路 9との交差部に設けられている。この熱交換エレメント 12 は、図 22に示されるように、プリーツ状の特殊クラフト紙 (以下、スぺーサ紙という) 12 2と平膜状の特殊クラフト紙 (以下、仕切紙という) 121とを交互に方向を変えながら積 層した構造を有している。この熱交換エレメント 12がこのような構造をとつているため 、この熱交換エレメント 12では、排気 EAの流路と給気 SAの流路とが一段ごとに交互 に配置されるかたちになる。なお、この熱交換エレメント 12では、給気 SAおよび排気 EAの顕熱および潜熱は、この仕切紙 121を介して交換される。なお、このスぺーサ 紙 122および仕切紙 121には、第 1実施形態の光触媒フィルタと同じ態様で、アナタ ーゼ型の二酸ィ匕チタン粒子とチタンアパタイト粒子との混合物が塗布されている。
[0041] なお、この熱交換エレメント 12の端面には取り出しのための把手 12aが設けられて おり、図 19に示されるように蓋 14を取り外せば、ケーシング 1のメンテナンス面 Mに開 口される揷脱用の開口 13から、その長辺に沿って長手方向に揷脱できるようになつ ている。
(3)エアフィルタ
エアフィルタ 12bは、図 19に示されるように、熱交換エレメント 12の第 3空間 19に接 する面と第 4空間 20に接する面とを覆うように熱交換エレメント 12に取り付けられる。 このエアフィルタ 12bは、ポリテトラフルォロエチレン繊維力も成る不織布である。なお 、このエアフィルタ 12bは、比較的大きな塵埃を主に捕集するためのフィルタであって 、菌ゃウィルスなどの微少な生体粒子を捕捉することはできな 、。
[0042] (4)ストリーマ放電器
ストリーマ放電器 15は、第 3空間 19および第 4空間 20にそれぞれ設けられており、 高速電子、イオン、オゾン、ヒドロキシラジカルなどのラジカルや、その他の励起分子( 励起酸素分子、励起窒素分子、励起水分子)などの活性種を熱交換エレメント 12内 部に供給することによって、熱交換エレメント 12内部に担持されているチタンァパタイ トの光触媒機能を活性ィ匕させる。このストリーマ放電器 15は、放電電極 15aと対向電 極 15bとカゝら構成される。放電電極 15aは、図 23に示されるように、電極棒 151と複 数の針電極 152とから構成される。なお、針電極 152は、電極棒 151にほぼ直交す るように固定される。対向電極 15bは、板状の電極であって、その面直角方向に空気 が通過する複数の開口を有している。そして、放電電極 15aの電極棒 151と対向電 極 15bとは、ほぼ平行に配置される。その結果、放電電極 15aの針電極 152は、対 向電極 15bとほぼ直角をなす。また、放電電極 15aと対向電極 15bとは、直流、交流 、またはノ ルスの高圧電源(図示せず)に接続されている。そして、放電電極 15aと対 向電極 15bとに放電電圧が印加されると、放電電極 15aの針電極 152と対向電極と の間でストリーマ放電が生じる。このようにして、ストリーマ放電が生じると、放電場に 低温プラズマが生成する。そして、この低温プラズマにより、高速電子、イオン、ォゾ ン、ヒドロキシラジカルなどのラジカルや、その他の励起分子 (励起酸素分子、励起窒 素分子、励起水分子)などが生成される。なお、これらの活性種は、空気流れに乗つ て対向電極 15bの開口を通って熱交換エレメント 12内部に供給されることとなる。
[0043] なお、このストリーマ放電器 15は、後述する熱交換エレメント清浄モードにおいての み通電される。
(5)ファン
排気用ファン 10および給気用ファン 11は、図 17および図 18に示されるように、そ れぞれシロッコファン(ロータ)からなり、発泡榭脂(例えば発泡スチロール)製の渦巻 き状をしたファンケーシング(図示せず)内に収容されている。なお、各ファン 10, 11 の回転軸線 Lは、熱交換エレメント 12の抜取り方向 Kと平行である。
(6)ダンバ
ダンバ 34は、室内側吸込室 27内に配置されている。このダンバ 34は、例えば電動 モータ(図示せず)などによって回動し、開口 30と開口 33との 、ずれか一方を開放し 他方を閉塞する。
[0044] (7)電装品ボックス
電装品ボックス EBは、メンテナンス面 Mの排気用ファン 10と対向する部分 Mlに配 置されている。この電装品ボックス EBには、電装品として、図示しない制御基板など が収容されている。なお、この制御基板は、図示しないワイヤードリモコンに通信接続 されており、このワイヤードリモコンから送信されてくる信号に基づいてファン 10, 11 およびダンバ 34の動作を制御する。
[給排気の流れ]
この全熱交換ユニット 100には、全熱交換換気モード、普通換気モード、および熱 交換エレメント清浄モードの 3つの運転モードが設けられている。以下、それぞれの 運転モードにつ 1、て詳述する。 [0045] (1)全熱交換換気モード
この全熱交換ユニット 100では、熱交換エレメント 12を用 、た全熱交換換気を行う 場合、ダンバ 34によって開口 30が開放される。なお、上述したように、このとき、開口 33は閉塞される。そして、この状態で各ファン 10, 11が運転されると、室内空気がダ タトを介して室内側吸込口 4から室内側吸込室 27に吸い込まれ、開口 30→排気連 通室 46→第 4空間 20→エアフィルタ 12b→熱交換エレメント 12→第 1空間 17→開 口 23→排気用ファンモータ収容室 41→排気用ファン収容室 22に至る排気通路 8を 通り、室外側吹出口 7から吹き出されダクトを介して室外に排出されると同時に、室外 空気がダクトを介して室外側吸込口 5から室外側吸込室 26に吸い込まれ、給気連通 室 45→第 3空間 19→エアフィルタ 12b→熱交換エレメント 12→第 2空間 18→開口 2 5→給気用ファンモータ収容室 43→開口 44→給気用ファン収容室 24に至る給気通 路 9を通り、室内側吹出口 6から吹き出されダクトを介して室内に給気される。
[0046] (2)通常換気モード
春秋などの冷暖房を必要としな 、中間期には、熱交換を行わな 、通常換気が行わ れる。
この全熱交換ユニット 100では、通常換気が行われる場合、ダンバ 34によって開口 33が開放される。なお、上述したように、このとき、開口 30は閉塞される。そして、この 状態で各ファン 10, 11が運転されると、室内空気がダクトを介して室内側吸込口 4か ら室内側吸込室 27に吸い込まれ、開口 33→バイパス室 31→開口 32→第 1空間 17 →開口 23→排気用ファンモータ収容室 41→排気用ファン収容室 22に至るバイノ ス 通風路を通り、室外側吹出口 7から吹き出され、ダクトを介して室外に排出されると同 時に、室外空気がダクトを介して室外側吸込口 5から室外側吸込室 26に吸い込まれ 、給気連通室 45→第 3空間 19→エアフィルタ 12b→熱交換エレメント 12→第 2空間 18→開口 25→給気用ファンモータ収容室 43→開口 44→給気用ファン収容室 24に 至る給気通路 9を通り、室内側吹出口 6から吹き出されダクトを介して室内に給気され る (給気の流れは全熱交換換気の場合と同じである。 ) o
[0047] (3)熱交換エレメント清浄モード
エアフィルタ清浄モードでは、ファン 10, 11の回転数が送風量を極力抑えた状態 になるように制御されると同時に、ストリーマ放電器 15が、通電される。
[全熱交換ユニットの特徴]
第 2実施形態に係る全熱交換ユニット 100では、二次粒子の直径が 0. 1から 1マイ クロメートルであるアナターゼ型の二酸化チタン粒子、および二次粒子の直径が 1か ら 10マイクロメートルであるチタンアパタイトの混合物が熱交換エレメント 12に塗布さ れている。ここでは、二次粒子のサイズが小さな二酸ィ匕チタンが二次粒子のサイズが 大きなチタンアパタイトの隙間に入り込む。したがって、光触媒反応の活性サイトを従 来の二酸ィ匕チタン並みにすることができる。また、この状態で、チタンアパタイトが特 異的に菌ゃウィルスを吸着する。この結果、この全熱交換ユニット 100は、従来の光 半導体触媒を利用した全熱交換ユニットよりも優れた清浄処理能力を示すことができ る。
[0048] [変形例]
第 2実施形態に係る全熱交換ユニット 100では、二次粒子の直径が 0. 1から 1マイ クロメートルであるアナターゼ型の二酸化チタン粒子、および二次粒子の直径が 1か ら 10マイクロメートルであるチタンアパタイトの混合物が熱交換エレメント 12に塗布さ れていたが、これに加えて、同混合物が、エアフィルタの片面または両面に塗布され ていてもよい。
産業上の利用可能性
[0049] 本発明に係る清浄処理材料は、従来の光半導体触媒よりも優れた清浄処理能力を 示すことができ、空気や水などの清浄関連技術に応用することができる。

Claims

請求の範囲
[1] 二次粒子の直径が 0. 1から 1マイクロメートルの光半導体触媒 (846)と、
二次粒子の直径が 1から 10マイクロメートルの光触媒機能を有するアパタイト(845 )と、
を混合した、清浄処理材料 (847)。
[2] 前記光触媒機能を有するアパタイト (845)は、前記光半導体触媒 (846) 100重量 部に対し、 10〜35重量部混合される、
請求項 1に記載の清浄処理材料 (847)。
[3] 前記光半導体触媒は、二酸ィ匕チタン (846)である、
請求項 1または 2に記載の清浄処理材料 (847)。
[4] 前記光触媒機能を有するアパタイトは、チタンアパタイト (845)である、
請求項 1または 2に記載の清浄処理材料 (847)。
[5] 請求項 1から 4の 、ずれかに記載の清浄処理材料 (847)を担持する、エアフィルタ
(84)。
[6] 請求項 5に記載のエアフィルタ(84)を備える、空気調和装置 (40)。
[7] 請求項 1から 4の 、ずれかに記載の清浄処理材料 (847)を担持する、熱交換エレ メント(12)。
[8] 請求項 7に記載の熱交換エレメント(12)を備える、熱交換ユニット(100)。
PCT/JP2005/006649 2004-04-15 2005-04-05 清浄処理材料、エアフィルタ、空気調和装置、熱交換エレメント、および熱交換ユニット WO2005099899A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2005233000A AU2005233000A1 (en) 2004-04-15 2005-04-05 Cleaning material, air filter, air conditioner, heat exchange element, and heat exchange unit
US11/547,906 US20070213002A1 (en) 2004-04-15 2005-04-05 Cleaning Treatment Material, Air Filter, Air Conditioner, Heat Exchange Element, and Heat Exchanging Unit
EP05728416A EP1736240A1 (en) 2004-04-15 2005-04-05 Cleaning material, air filter, air conditioner, heat exchange element, and heat exchange unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004120841A JP2005296901A (ja) 2004-04-15 2004-04-15 清浄処理材料、エアフィルタ、空気調和装置、熱交換エレメント、および熱交換ユニット
JP2004-120841 2004-04-15

Publications (1)

Publication Number Publication Date
WO2005099899A1 true WO2005099899A1 (ja) 2005-10-27

Family

ID=35149815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006649 WO2005099899A1 (ja) 2004-04-15 2005-04-05 清浄処理材料、エアフィルタ、空気調和装置、熱交換エレメント、および熱交換ユニット

Country Status (7)

Country Link
US (1) US20070213002A1 (ja)
EP (1) EP1736240A1 (ja)
JP (1) JP2005296901A (ja)
KR (1) KR20070004743A (ja)
CN (1) CN1942244A (ja)
AU (1) AU2005233000A1 (ja)
WO (1) WO2005099899A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020040274A1 (ja) * 2018-08-24 2020-02-27 博 前原 多孔質部材および空気清浄機
JP2020032165A (ja) * 2018-08-24 2020-03-05 博 前原 多孔質部材および空気清浄機

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009046458A (ja) * 2007-08-23 2009-03-05 Shoichi Nakamura 化粧品
JP4925980B2 (ja) * 2007-09-06 2012-05-09 株式会社クリエイティブライフ 光触媒体および光触媒体を用いたコーティング組成物
JP5845390B2 (ja) * 2011-03-23 2016-01-20 パナソニックIpマネジメント株式会社 集塵装置、およびこれを備えた自然給気口、換気装置
KR101702087B1 (ko) 2014-08-19 2017-02-02 (주) 스리에스엠코리아 티트리, 명반 및 맥반석 조성물이 함유된 화장품 용기 및 그 제조방법
CN106338105B (zh) * 2015-07-08 2020-04-10 松下知识产权经营株式会社 吸气装置以及吸气方法
JP6482688B2 (ja) * 2016-02-19 2019-03-13 三菱電機株式会社 熱交換器および熱交換換気装置
US20220062822A1 (en) * 2020-01-17 2022-03-03 Molekule Inc. Fluid filtration system and method of use
IT202000003188A1 (it) * 2020-02-18 2021-08-18 Arpex Env Trentino S R L Sistema per la depurazione di aria in ambienti chiusi

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09301708A (ja) * 1996-05-08 1997-11-25 Nippon Chem Ind Co Ltd アパタイトスラリー及びその製造方法
JP2002115882A (ja) * 2000-10-11 2002-04-19 Daikin Ind Ltd 全熱交換器及び換気システム
JP2003001116A (ja) * 2001-06-20 2003-01-07 Daikin Ind Ltd 光触媒およびその製造方法ならびにそれを備える空気清浄機
WO2004026470A1 (ja) * 2002-09-17 2004-04-01 Fujitsu Limited 光触媒アパタイト含有膜、その形成方法、コーティング液、および、光触媒アパタイト含有膜で被覆された部位を有する電子機器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001005441A1 (fr) * 1999-07-19 2001-01-25 Mitsui Engineering & Shipbuilding Co., Ltd. Procede et appareil de purification de gaz contenant de l'oxygene
US6667011B1 (en) * 2000-03-21 2003-12-23 Exothermics, Inc. Heat exchanger with catalyst
CN1318513C (zh) * 2000-10-16 2007-05-30 旭化成株式会社 磷灰石增强的树脂组合物
KR100688945B1 (ko) * 2002-12-23 2007-03-09 삼성전자주식회사 공조기 집진 장치
KR100749772B1 (ko) * 2002-12-23 2007-08-17 삼성전자주식회사 공기 정화기
KR100656170B1 (ko) * 2002-12-23 2006-12-12 삼성전자주식회사 공기정화기

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09301708A (ja) * 1996-05-08 1997-11-25 Nippon Chem Ind Co Ltd アパタイトスラリー及びその製造方法
JP2002115882A (ja) * 2000-10-11 2002-04-19 Daikin Ind Ltd 全熱交換器及び換気システム
JP2003001116A (ja) * 2001-06-20 2003-01-07 Daikin Ind Ltd 光触媒およびその製造方法ならびにそれを備える空気清浄機
WO2004026470A1 (ja) * 2002-09-17 2004-04-01 Fujitsu Limited 光触媒アパタイト含有膜、その形成方法、コーティング液、および、光触媒アパタイト含有膜で被覆された部位を有する電子機器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020040274A1 (ja) * 2018-08-24 2020-02-27 博 前原 多孔質部材および空気清浄機
JP2020032165A (ja) * 2018-08-24 2020-03-05 博 前原 多孔質部材および空気清浄機
JP7255772B2 (ja) 2018-08-24 2023-04-11 博 前原 多孔質部材および空気清浄機

Also Published As

Publication number Publication date
AU2005233000A1 (en) 2005-10-27
US20070213002A1 (en) 2007-09-13
KR20070004743A (ko) 2007-01-09
EP1736240A1 (en) 2006-12-27
CN1942244A (zh) 2007-04-04
JP2005296901A (ja) 2005-10-27

Similar Documents

Publication Publication Date Title
WO2005099899A1 (ja) 清浄処理材料、エアフィルタ、空気調和装置、熱交換エレメント、および熱交換ユニット
TWI311070B (ja)
CN101227932B (zh) 空气调节装置
JP5218308B2 (ja) 脱臭機能再生装置
US20070295213A1 (en) Air purification member, air purification unit and air conditioning apparatus
JP2011202815A (ja) 空気清浄装置および加湿機能付き空気清浄装置
KR20200041014A (ko) 입자크기 0.1 ㎛ 이상의 초미세먼지를 효율적으로 제거하며, 소독능력이 향상된 광촉매 시스템을 포함하는 공기청정기
JP4124218B2 (ja) 熱交換ユニット
JP2001248865A (ja) 換気機能付空気清浄装置
JP2005300111A (ja) 空気清浄ユニット、空気調和装置、および空気調和システム
TW202225612A (zh) 智能室內空汙防治解決方法
JP2005076906A (ja) 空気調節装置
WO2005100873A1 (ja) 熱交換ユニット
JP2005164069A (ja) 空気清浄システムおよび空気清浄装置
CN205412676U (zh) 复合过滤网和空气净化器
JPH11221442A (ja) 複合消臭集塵フィルタ
JP2003090571A (ja) 空気改質機器
JP4124217B2 (ja) 熱交換ユニット
WO2005004933A1 (ja) 空気調節装置
JP2008012060A (ja) 空気清浄機
KR20130020164A (ko) 푸시팬과 풀팬 혼합형 공기청정시스템
TW202331159A (zh) 防治空污吸塵器
TW202331161A (zh) 防治空污清淨機
JP2005296900A (ja) 光半導体触媒担持繊維、エアフィルタ、空気調和装置、熱交換エレメント、および熱交換ユニット
JP4931836B2 (ja) 空気清浄用フィルタ及びこれを用いた空気清浄器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580011172.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067019371

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11547906

Country of ref document: US

Ref document number: 2007213002

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005728416

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2005233000

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2005233000

Country of ref document: AU

Date of ref document: 20050405

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005233000

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2005728416

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11547906

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2005728416

Country of ref document: EP