WO2005097728A1 - Alkylated pana and dpa compositions - Google Patents

Alkylated pana and dpa compositions Download PDF

Info

Publication number
WO2005097728A1
WO2005097728A1 PCT/EP2005/051324 EP2005051324W WO2005097728A1 WO 2005097728 A1 WO2005097728 A1 WO 2005097728A1 EP 2005051324 W EP2005051324 W EP 2005051324W WO 2005097728 A1 WO2005097728 A1 WO 2005097728A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
phenyl
propyl
hydrocarbon radical
radical selected
Prior art date
Application number
PCT/EP2005/051324
Other languages
French (fr)
Inventor
Beat Michael Aebli
Samuel Evans
Marc Ribeaud
David Eliezer Chasan
Original Assignee
Ciba Specialty Chemicals Holding Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ciba Specialty Chemicals Holding Inc. filed Critical Ciba Specialty Chemicals Holding Inc.
Priority to KR1020127030576A priority Critical patent/KR20120133398A/en
Priority to CA2559746A priority patent/CA2559746C/en
Priority to KR1020067018672A priority patent/KR101239143B1/en
Priority to BRPI0509521A priority patent/BRPI0509521B1/en
Priority to JP2007505544A priority patent/JP5080969B2/en
Priority to ES05740135.8T priority patent/ES2560658T3/en
Priority to PL05740135T priority patent/PL1730101T3/en
Priority to CN2005800103558A priority patent/CN1938260B/en
Priority to US10/594,379 priority patent/US8030259B2/en
Priority to EP05740135.8A priority patent/EP1730101B1/en
Publication of WO2005097728A1 publication Critical patent/WO2005097728A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/18Amines; Quaternary ammonium compounds with aromatically bound amino groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/58Naphthylamines; N-substituted derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/04Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M133/12Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/06Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic nitrogen-containing compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • C10M2215/065Phenyl-Naphthyl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/223Five-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/041Triaryl phosphates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/04Detergent property or dispersant property
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/10Inhibition of oxidation, e.g. anti-oxidants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/12Inhibition of corrosion, e.g. anti-rust agents or anti-corrosives

Definitions

  • the invention relates to a composition
  • a composition comprising a mixture of alkylated N- ⁇ -naphthyl-N- phenylamine (PANA) and alkylated diphenylamine (DPA), the product obtainable by alkylating PANA or a mixture of PANA and DPA with alkenes and the process for alkylating PANA or a mixture of PANA and DPA with alkenes.
  • PANA alkylated N- ⁇ -naphthyl-N- phenylamine
  • DPA alkylated diphenylamine
  • Additives are added to numerous organic products widely used in engineering, for example to lubricants, hydraulic fluids, metal-working fluids, fuels or polymers, to improve their performance properties.
  • additives that effectively inhibit the oxi- dative, thermal and/or light induced degradation of these products. This results in a consid- enable increase of the utility of these products.
  • U.S. Patent Specification 2 943 112 discloses anti-oxidants from the group of the alkylated diphenylamines that are prepared by reaction of diphenylamine with alkenes in the presence of mineral acids and large quantities of acid clays as catalysts. Alkylation of the diphenylamine with alkenes, for example nonene, results in mixtures of mono- and di-alkylated di- phenylamine. In that process, relatively large quantities of the starting material, generally from 6 to 12% diphenylamine, are not reacted, which reduces the anti-oxidative efficacy of the alkylated diphenylamines and results in the deposition of sludge and imparts undesirable toxic properties to the product. The subsequent reaction with additional alkenes, e.g. styrene or ⁇ -methylstyrene, is proposed as an alternative to the distillative separation of the starting material from the products.
  • additional alkenes e.g. styrene or
  • French Patent Specification 1 508 785 discloses the preparation of a mixture of 80% dinon- yldiphenylamine and 15% nonyldiphenylamine in the presence of Friedel-Crafts catalysts of the aluminium chloride type, but that mixture still has a diphenylamine content of 2% (see therein the information in Example 2).
  • the preparation of that mixture is especially disad- vantageous since it is contaminated by traces of chlorine, metal compounds and undesirable by-products, e.g. N-alkylated diphenylamines and diphenylamines alkylated in the 2- and 2'- positions, is black in colour and is very viscous.
  • U.S. Patent Specification 6315925 discloses the alkylation reaction of diphenylamine with an excess of none or a mixture of isomeric nonenes in the presence of 2.0 to 25.0% by weight, based on diphenylamine of an acid clay and the absence of a free protonic acid.
  • European Patent Application 387979 discloses a composition comprising p.p'-branched dioctyldiphenylamine and N-p-branched octylphenyl- -naphthylamine.
  • the Comparative Ex- ample 2 of that reference reveals that the composition (1% of each component) is partially insoluble in purified mineral oil and poly- -olefin oil.
  • the present invention relates to a composition of alkylated diphenylamines that has improved properties, such as solubility in mineral oil, for the intended technical applications.
  • the improvement is achieved by mixing a N- -naphthyl-N-phenylamine (PANA) alkylated with at least one substituent selected from the group consisting of branched nonyl, 1-phenyl- ethyl and 2-phenyl-2-propyl with a diphenylamine alkylated with at least one, preferably two, substituents selected from the group consisting of tert-butyl, branched octyl, branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl.
  • the invention relates to a composition which comprises A) An additive mixture that essentially consists of a) At least one compound:
  • one of P and R 2 independently of one another represents hydrogen or a hydrocarbon radical selected from the group consisting of branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl and the other one represents a hydrocarbon radical selected from the group consisting of branched nonyl, 1- phenylethyl and 2-phenyl-2-propyl; and b) At least one compound:
  • R 2 independently of one another represent hydrogen or a hydrocarbon radical selected from the group consisting of tert-butyl, branched octyl, branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl; and R 3 represents a hydrocarbon radical selected from the group consisting of tert-butyl, branched octyl, branched nonyl, 1-phenylethyl and 2-phenyl-2- propyl; and B) A composition of matter susceptible to oxidative, thermal or light induced degrada- tion.claim 1
  • the invention relates to a composition which comprises A) An additive mixture which essentially consists of a) At least one compound:
  • Ri and R 2 independently of one another represents hydrogen or a hydrocarbon radical selected from the group consisting of branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl and the other one represents a hydrocarbon radical selected from the group consisting of branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl or an isomer thereof; and b) At least one compound:
  • R- ⁇ and R 2 independently of one another represent hydrogen or a hydrocarbon radical selected from the group consisting of tert-butyl, branched octyl, branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl; and R 3 represents a hydrocarbon radical selected from the group consisting of tert-butyl, branched octyl, branched nonyl, 1-phenylethyl and 2-phenyl-2- propyl or an isomer thereof; and B) A composition of matter susceptible to oxidative, thermal or light induced degradation. claim 2
  • the composition comprises an additive mixture that essentially consists of a) At least one compound (I'), wherein one of Ri and R 2 independently of one another represents hydrogen or a hydrocarbon radical selected from the group consisting of 2,4-dimethyl-2-heptyl, 1-phenylethyl and 2-phenyl-2-propyl and the other one represents a hydrocarbon radical selected from the group consisting of 2,4-dimethyl-2-heptyl, 1-phenylethyl and 2-phenyl-2-propyl; and b) At least one compound (ll"), wherein R- t and R 2 independently of one another represent hydrogen or a hydrocarbon radical selected from the group consisting of tert-butyl, 2,4,4-trimethyl-2-pentyl, 2,4-dimethyl-2-heptyl, 1- phenylethyl and 2-phenyl-2-propyl; and R 3 represents a hydrocarbon radical selected from the group consisting of tert-butyl, 2,4.4-
  • the invention relates to a composition, which comprises an additive mixture that essentially consists of a) At least one compound (I'). wherein one of R and R 2 independently of one another represent hydrogen or a hydrocarbon radical selected from the group consisting of 2,4-dimethyl-2-heptyl and 2-phenyl-2-propyl and the other one represents a hydrocarbon radical selected from the group consisting of 2,4-dimethyl-2-heptyl and 2- phenyl-2-propyl; and b) At least one compound (II'), wherein Ri and R 2 independently of one another repre- sent hydrogen or a hydrocarbon radical selected from the group consisting of tert-butyl, 2,4,4-trimethylpent-2-yl, 2,4-dimethyl-2-heptyl and 2-phenyl-2-propyl; and R 3 represents a hydrocarbon radical selected from the group consisting of tert-butyl, 2,4.4-trimethylpent-2-yl, 2,4-dimethyl
  • a further embodiment of the invention relates to the additive mixture that essentially consists of a) At least one compound (I), wherein one of Ri and R 2 independently of one another represents hydrogen or a hydrocarbon radical selected from the group consisting of branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl and the other one represents a hydrocarbon radical selected from the group consisting of branched nonyl, 1- phenylethyl and 2-phenyl-2-propyl; and b) At least one compound (II), wherein and R 2 independently of one another represent hydrogen or a hydrocarbon radical selected from the group consisting of tert-butyl, branched octyl, branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl; and Rs represents a hydrocarbon radical selected from the group consisting of tert-butyl, branched octyl, branched nonyl, 1-phenylethyl and 2-phenyl-2
  • one of R ⁇ and R 2 independently of one another represents hydrogen or a hydrocarbon radical selected from the group consisting of branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl and the other one represents a hydrocarbon radical selected from the group consisting of branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl.
  • Ri and R 2 independently of one another represent hydrogen or a hydrocarbon radical selected from the group consisting of tert-butyl, branched octyl, branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl; and R3 represents a hydrocarbon radical se- lected from the group consisting of tert-butyl, branched octyl, branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl.
  • branched nonyl applies to any substituent obtained by alkylating the phenyl or naphthyl moiety with tripropylene: and corresponds to the partial formulae of the following preferred substituents (carbon-carbon bonds to the phenyl or naphthyl moiety are represented by dotted I ines):
  • 1-PhenyIethyl is obtained by alkylating the phenyl or naphthyl moiety with styrene and corre ⁇
  • 2-Phenyl-2-propyl is obtained by alkylating the phenyl or naphthyl moiety with ⁇ -methylsty- rene and corresponds to the following partial formula:
  • branched octyl applies to any substituent obtained by alkylating the phenyl or naphthyl moiety with diisobutylene, which is a mixture of:
  • Some compounds of the formula (I) are commercially available, such as the products available under the trade mark lrganox®L 06 (Ciba Specialty Chemicals Holding Inc.).
  • Compounds of the formula (II), wherein R., R_ 2 and Rs are as defined above are known or can be obtained by methods known per se, e.g. a process as specified in U.S. Patent Specification 6,315,925. According to that process diphenylamine is alkylated with nonene or a mixture of isomeric nonenes in the presence of a n acid clay.
  • Patent Specification 2943 112 discloses the reaction of diphenylamine with tripropylene in the presence of mineral acids and large quantities of acid clays as catalysts and subsequent reaction with additional alkenes, e.g. styrene or ⁇ -methylstyrene.
  • EP-A-149422 discloses the reaction of diphe nylamine with diisobutylene in the presence of acid catalysts.
  • Some compounds of the formula (I) are commercially available, such as the products available under the trade mark IrganoxOL 57 or 6 ⁇ (Ciba Specialty Chemicals Holding Inc.).
  • a composition of matter susceptible to oxidat ⁇ ve, thermal or light induced degradation is a natural, semi-synthetic or synthetic polymer or a functional fluid.
  • the functional fluid is a lubricant, machining fluid or a hydraulic fluid.claim 7
  • a further embodiment of the invention relates to composition, which additionally contains conventional additives suitable for protecting a composition of matter susceptible to oxida- tive, thermal and light induced degradation.
  • claim 8 A further embodiment of the invention relates to the process for stabilizing a composition of matter susceptible to oxidative, thermal and/or light induced degradation, which comprises adding or applying to the composition of matter the composition defined above as a stabi- liser.claim 12
  • Suitable synthetic polymers are obtained by conventional methods of polymerisation from monomers or oligomers selected from the group consisting of monomeric or oligomeric alkenes, styrenes, conjugated dienes, acrolein ,, vinyl acetate, vinyl pyrrolidone, vinyl imidazole, maleic acid anhydride, acrylic acid, C-i-C alkyl acrylic acid or amides, nitriles, anhydrides and salts of acrylic acid and CrC alkyl acrylic acid, acrylic acid C C 24 alkyl esters, CrC 4 alkyl acrylic acid C C 2 alkyl esters, vinyl halidesand vinylidene halides.
  • polyolefins are preferred as synthetic polymers.
  • Suitable polyolefins are polymers of monoolefinst and diolefins, for example polypropylene, poly- isobutylene, polybut-1-ene. poly-4-methylpent-1-ene, polyisoprene or polybutadiene, as well as polymers of cycloolefins, for instance of cyclopentene or norbomene, polyethylene (which optionally can be crosslinked), for example high density polyethylene (HDPE).
  • HDPE high density polyethylene
  • HDPE-HMW high density and high molecular weight polyethylene
  • HDPE-UHMW medium density polyethylene
  • MDPE low density polyethylene
  • LDPE low density polyethylene
  • LLDPE linear low density polyethylene
  • VLDPE VLDPE
  • ULDPE ULDPE
  • These polyolefins are obtainable by known methods, such as radical polymerisation (normally under high pressure and at elevated temperature) or catalytic polymerisation using a catalyst that normally contains one or more than one metal of groups IVb, Vb, Vlb or VIII of the Periodic Table.
  • catalyst systems are usually termed Phillips, Standard Oil Indiana, Ziegler (-Natta), TNZ (DuPont), metallocene or single site catalysts (SSC).
  • SSC single site catalysts
  • Copolymers of monoolefins and diolefins with each other or with other vinyl monomers for example ethylene/propylene copolymers, linear low density polyethylene (LLDPE) and mixtures thereof with low density polyethylene (LDPE), propylene/but-1-ene copolymers, propylene/isobutylene copolymers, ethylene/but-1-ene copolymers, ethylene/hexene copolymers, ethylene/methylpentene copolymers, ethylene/heptene copolymers, ethyl- ene/octene copolymers, propylene/butadiene copolymers, isobutylene/isoprene copoly- mers, ethylene/alkyl acrylate copolymers, ethylene/alkyl methacrylate copolymers, ethyl- ene/vinyl acetate copolymers and their copolymers with carbon monoxide or e
  • the composition of the invention can comprise additives suitable for polymers, which addi- tives are preferably used as formulating auxiliaries to improve the chemical and physical properties of the polymers containing these additives.
  • the auxiliaries can be present in high proportions, for example, in amounts of up to 70% by weight, preferably from 1 to 70% by weight, more preferably from 5 to 60% by weight, with particular preference from 10 to 50% by weight and with especial preference from 10 to 40% by weight, based on the weight of the composition.
  • auxiliaries have been disclosed in large numbers and are set out by way of example in the following list of auxiliaries: antioxidants selected from the group consisting of alkylated monophenols, alkylthiomethylphenols, hydroquinones and alkylated hydro- quinones, tocopherols, hydroxylated thiodiphenyl ethers, alkylidene-bis-phenols, O-, N- and S-benzyl compounds, hydroxybenzylated malonates, aromatic hydroxybenzyl compounds, triazine compounds, benzyl phosphonates, acylaminophenols, esters and amides of ⁇ -(3,5-di-t-butyl-4-hydroxyphenyl)propionic acid.
  • antioxidants selected from the group consisting of alkylated monophenols, alkylthiomethylphenols, hydroquinones and alkylated hydro- quinones, tocopherols, hydroxylated thiodiphenyl ethers, alkylidene
  • the invention relates also to the use of the composition, preferably in the mentioned con- centration, as additives in motor oils, turbine oils, gear oils, hydraulic fluids, metal-working fluids or lubricating greases.
  • Another embodiment of the invention relates to a process for stabilising the composition of matter subjected to oxidative, thermal and/or light induced degradation, which comprises adding or applying to the composition of matter the composition defined above as a stabi- liser.
  • the invention likewise relates to a process for protection against corrosion or oxidative degradation of metals, which are in contact with functional fluids, wherein the alkylation reaction products (I) and (II) defined further above are added to the functional fluid.
  • the term functional fluid includes aqueous, partially aqueous and non-aqueous fluids, par- ticular base oils of lubricating viscosity, which can be used for the preparation of greases, metal working fluids, gear fluids and hydraulic fluids.
  • compositions according to the invention preferably comprise 0.01 to 5.0% by weight, in particular 0.02 to 1.0% by weight, of the mixture comprising the alkylated products (I) and (II), based on the weight of the functional fluid.
  • aqueous functional fluids are industrial cooling water, filling compositions of a water conditioning plant, steam generation systems, sea water evaporation systems, sugar evaporation systems, irrigation systems, hydrostatic boilers and heating systems or cooling systems having a closed circulation.
  • suitable partially aqueous functional fluids are hydraulic fluids based on aqueous polyglycol/ polyglycol ether mixtures or glycol systems, water-in-oil or oil-in-water systems and engine cooling systems based on aqueous glycol.
  • non-aqueous functional fluids are fuels, e.g. hydrocarbon mixtures comprising mineral oil fractions which are liquid at room temperature and are suitable for use in internal combustion engines, e.g. internal combustion engines with external (petrol engines) or internal ignition (diesel engines), e.g. petrol having different octane contents (regular grade or premium grade petrol) or diesel fuel, and lubricants, hydraulic fluid, metal working fluid, engine coolants, transformer oil and switchgear oil.
  • Non-aqueous functional fluids are preferred, in particular base oils of lubricating viscosity, which can be used for the preparation of greases, metal working fluids, gear fluids and hydraulic fluids.
  • Suitable greases, metal working fluids, gear fluids and hydraulic fluids are based, for example, on mineral or synthetic oils or mixtures thereof.
  • the lubricants are familiar to a person skilled in the art and are described in the relevant literature, such as, for example, in Chemistry and Technology of Lubricants; Mortier, R.M. and Orszulik, S.T. (Editors); 1992 Blackie and Son Ltd. for GB, VCH-Publishers N.Y. for U.S., ISBN 0-216-92921-0, cf. pages 208 et seq. and 269 etseq.; in Kirk-Othmer Encyclopedia of Chemical Technology, Fourth Edition 1969, J. Wiley & Sons, New York, Vol.
  • a particularly preferred embodiment of the invention relates to a lubricant composition com- prising
  • the lubricants are in particular oils and greases, for example based on mineral oil or vegetable and animal oils, fats, tallow and wax or mixtures thereof.
  • Vegetable and animal oils, fats, tallow and wax are, for example, palm kernel oil, palm oil, olive oil, colza oil, rapeseed oil, linseed oil, soy bean oil, cotton wool oil, sunflower oil, coconut oil, maize oil, castor oil, walnut oil and mixtures thereof, fish oils, and chemically modified, e.g. epoxidised or sulphoxidised, forms or forms prepared by genetic engineering, for example soy bean oil prepared by genetic engineering.
  • Examples of synthetic lubricants include lubricants based on aliphatic or aromatic carboxylic esters, polymeric esters, polyalkylene oxides, phosphoric acid esters, poly- ⁇ -olefins, sili- cones, alkylated benzene, alkylated naphthalenes or the diester of a dibasic acid with a monohydric alcohol, e.g. dioctyl sebacate or dinonyl adipate, of a triester of trimethylolpro- pane with a monobasic acid or with a mixture of such acids, e.g.
  • Particularly suitable in addition to mineral oils are, for example, poly- ⁇ -olefins, ester-based lubricants, phosphates, glycols, polyglycols and polyalkylene glycols and mixtures thereof with water.
  • Said lubricants or mixtures thereof can also be mixed with an organic or inorganic thickener (base fat).
  • Organic or inorganic thickener base fat
  • Metal working fluids and hydraulic fluids can be prepared on the basis of the same substances as described above for the lubricants. These are frequently also emulsions of such substances in water or other fluids.
  • the invention relates also to a method of improving the performance p> roperties of lubricants, which comprises adding to the lubricant at least one product as defined above.
  • the lubricant compositions e.g. greases, gear fluids, metal working fluids and hydraulic fluids, may additionally contain further additives, which are added to improve further t ieir performance pro- perties. These include: other antioxidants, metal deactivators, rust inhibitors, viscosity index improvers, pour-point depressants, dispersants, detergents, extreme pressure additives and antiwear additives.
  • Such additives are added in customary amounts, each in the range from 0.01 to 10.0% by weight. Examples of further additives are listed below:
  • Alkylthiomethylphenols 2,4-dioctylthiomethyl-6-tert-butylphenol, 2,4-dioctylthiomethyl- 6-methyl phenol, 2,4-dioctylthiomethyl-6-ethylphenol, 2,6-didodecylthiomethyl-4-nonyl- phenol
  • Hydroquinones and alkylated hydroquinones 2,6-di-tert-butyl-4-methoxyphenol, 2,5- di-tert-butyl-hydroquinone, 2,5-di-tert-amyl-hydroquinone, 2,6-diphenyl-4-octadecyl- oxyphenol, 2,6-di-tert-butyl-hydroquinone, 2,5-di-tert-butyl-4-hydroxyanisole I 3,5-di- tert-butyl-4-hydroxyanisole, 3,5-di-tert-butyl-4-hydroxyphenylstearate. bis(3,5-di-tert- butyl-4-hydroxyphenyl)adipate
  • Tocopherols ⁇ -, ⁇ -, ⁇ - or ⁇ -tocopherols and mixtures thereof (vitamin E)
  • Tocopherols ⁇ -, ⁇ -, ⁇ - or ⁇ -tocopherols and mixtures thereof (vitamin E)
  • Hydroxylated thiodiphenyl ethers 2,2'-thiobis(6-tert-butyl-4-methylphenol) ] 2,2 , -thiobis(4-octylphenol) J 4,4 , -thiobis(6-tert-butyl-3-methylphenol), 4,4'-thiobis-(6- tert-butyl-2-methylphenol), 4,4 , -thiobis(3,6-di-sec-amylphenol), 4,4'-bis(2,6-dimethyI- 4-hydroxyphenyl)disulphide 1.6.
  • Alkylidene bisphenols 2,2 , -methylenebis(6-tert-butyl-4-methylphenol), 2,2-meth- ylenebis(6-tert-butyl-4-ethylphenol), 2,2'-methylenebis[4-methyl-6-( ⁇ -methylcyclohex- yl)phenol], 2,2'-methylenebis(4-methyl-6-cydohexylphenol), 2,2'-methylenebis(6- nonyl-4-methylphenol), 2,2'-methylenebis(4,6-di-tert-butylphenol), 2,2'-ethylidenebis- (4,6-di-tert-butylphenol), 2,2'-ethylidenebis(6-tert-butyl-4-isobutyIphenol), 2,2'-methyl- enebis[6-( ⁇ -methylbenzyl)-4-nonylphenol], 2,2'-methylenebis[6-( ⁇ , ⁇ -dimethylbenzyl
  • Triazine compounds 2,4-bisoctylmercapto-6-(3,5-di-tert-butyl-4-hydroxyanilino)-1,3,5- triazine, 2-octylmercapto-4,6-bis(3,5-di-tert-butyl-4-hydroxyanilino)-1 ,3,5-triazine, 2- octylmercapto-4 J 6-bis(3,5-di-tert-butyl-4-hydroxyphenoxy)-1,3 l 5-triazine, 2,4,6- tris(3,5-di-tert-butyl-4-hydroxyphenoxy)-1 ,2,3-triazine, 1 ,3,5-tris(3,5-di-tert-butyl-4-hy- droxybenzyl)isocyanurate, 1,3,5-tris(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl)iso- cyanurate, 2,
  • esters of beta-(5-tert-butyl-4-hvdroxy-3-methylphenyl)propionic acid (with monohydric or polyhydric alcohols), e.g. with methanol, ethanol, n-octanol, isooctanol, octadecanol, 1,6-hexanediol, 1,9-nonanediol, ethylene glycol, 1,2-propanediol, neopentylgly- col, thiodiethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris(hydroxyethyl)isocyanurate, N,N'-bis(hydroxyethyl)oxalamide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethylolpropane, 4-hydroxymethyl-1- phospha-2,6.7-trifluor
  • p.p'-di-tert-octyldiphenylamine 4-n-butylaminophenol, 4-butyrylaminophenol, 4-nonanoylamino-phenol, 4-dodecanoylaminophenol, 4-octa- decanoylaminophenol, di-(4-methoxyphenyl)amine, 2,6-di-tert-butyl-4-dimethylami- nomethylphenol, 2,4'-diaminodiphenylmethane, 4,4 , -diaminodiphenylmethane, N.N.N'.N'-tetramethyM ⁇ '-diaminodiphenylmethane, 1 ,2-di-[(2-methylphenyl)- amino]ethane, 1,2-di-(phenylamino)propane, (o-tolyl)biguanide, di-[4-(1',3'-dimethyl- buty
  • Benzotriazoles and derivatives thereof 2-mercaptobenzotriazole, 2,5-dimercaptoben- zotriazole, 4- or 5-alkylbenzotriazoles (e.g. tolutriazole) and derivatives thereof, 4,5.6,7-tetrahydrobenzotriazole.
  • Mannich bases of 1 ,2,4-triazoles such as 1-[di(2-ethylhexyl)aminomethyl]-1 J 2,4-triazole; alkoxyalkyl-1 ,2,4-triazoles, such as 1-(1-butoxyethyl)-1,2,4-triazole; acylated 3-amino- 1 ,2,4-triazoles
  • Sulphur-containing heterocyclic compounds 2-mercaptobenzothiazole, 2,5-dimer- capto-1,3,4-thiadiazole, 2,5-dimercaptobenzothiadiazole and derivatives thereof; 3,5- bis[di-(2-ethylhexyl)aminomethyl]-1,3,4-thiadiazolin-2-one
  • Organic acids, their esters, metal salts, amine salts and anhydrides e.g. alkyl- and al- kyenylsuccinic acids and partial esters thereof with alcohols, diols or hydroxycarbox- ylic acids, partial amides of alkyl- and alkenylsuccinic acids, 4-nonylphenoxyacetic acid, alkoxy- and alkoxyethoxycarboxylic acids, such as dodecyloxyacetic acid, dode- cyloxy(ethoxy)acetic acid and amine salts thereof, and furthermore N-oleoylsarcosine, sorbitan monooleate, lead naphthenate, alkenylsuccinic anhydrides, e.g. dodecenyl- succinic anhydride, 2-(2-carboxyethyl)-1-dodecyl-3-methylglycerol and salts thereof, in particular sodium salts and triethanolamine
  • Heterocyclic compounds e.g. substituted imidazolines and oxazolines, e.g. 2-hepta- decenyl-1 -(2-hydroxyethyl )imidazoline
  • Sulphur-containing compounds barium dinonylnaphthalenesulphonates, calcium petro- leum sulphonates, alkylthio-substituted aliphatic carboxylic acids, esters of aliphatic 2- sulphocarboxylic acids and salts thereof fx.
  • Viscosity index improvers polyacrylates, polymethacrylates, vinylpyrrolidone/methacry- late copolymers, polyvinylpyrrolidiones, polybutenes, olef ⁇ n copolymers, styrene/acrylate copolymers, polyethers Z
  • Pour point depressants poly(meth)acrylates, ethylene-vinyl acetate copolymers, alkyl polystyrenes, fumarate copolymers, alkylated naphthalene derivatives
  • Dispersants/Surfactants polybutenylsuccinamides or polybutenylsuccinimides, polybu- tenylphosphonic acid derivatives, basic magnesium, calcium and barium sulphonates and phenolates 9.
  • Extreme pressure and antiwear additives sulphur- and halogen-containing compounds, e.g.
  • chlorinated paraffins such as sulphonated olefins or vegetable oils (soy bean oil, rapeseed oil), alkyl or aryl di- or trisulphides, benzotriazoles or derivatives thereof, such as bis (2- ethylhexyl)aminomethyl tolutriazoles, dithiocarbamates, such as methylenebisdibutyl di- thiocarbamate, derivatives of 2-mercaptobenzothiazole.
  • Emulsifiers petroleum sulphonates, amines, such as polyoxyethylated fatty amines, non-ionic surface-active substances
  • Buffers alkanolamines 11.3.
  • Biocides triazines. thiazolinones, trisnitromethane, morpholine, sodium pyridinethiol
  • Processing speed improvers calcium sulphonates and barium sulphonates.
  • Said components can be admixed to the lubricant composition in a manner known per se. It is also possible to prepare a concentrate or a so-called additive package, which can be di- luted to the concentrations of use for the corresponding lubricant according to the technical requirements.
  • the invention also relates to the product obtainable by alkylating a mixture of N- ⁇ -naphthyl-N-phenylamine (PANA) and diphenylamine with nonene or a mixture of isomeric nonenes in the presence of ⁇ -methylstyrene and an acidic catalyst.claim 10
  • the invention relates to the product obtainable by alkylating N- ⁇ -naphthyl-N-phenylamine (PANA) with nonene or a mixture of isomeric nonenes in the presence of ⁇ -methylstyrene and an acidic catalyst.claim 11
  • the present invention relates to a process for pre- paring the composition defined above, which comprises alkylating N- ⁇ -naphthyl-N-phenylamine (PANA) or a mixture of PANA and diphenylamine with nonene or a mixture of isomeric nonenes in the presence of styrene or ⁇ -methylstyrene and an acidic catalyst and adding to the reaction mixture a compound (II) wherein R and R 2 independently of one another represent hydrogen or a hydrocarbon radical selected from the group consisting of tert-butyl and branched octyl and R 3 represents branched octyl.claim13
  • R represents hydrogen (styrene) or methyl ( ⁇ -methylstyrene);
  • Ra and R represents hydrogen or a substituent selected from the group consisting of branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl and the other one represents a substituent selected from the group consisting of branched nonyl, 1-phenylethyl and 2-phenyl-2- prop l;
  • R e and R ⁇ _ represents hydrogen or a substituent selected from the group consisting of branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl and the other one represents a substituent selected from the group consisting of branched nonyl, 1-phenylethyl and 2-phenyl-2- propyl.
  • Ra. Rb, Re or Rd are as defined above, and
  • R c ' and R ' represents hydrogen or a substituent selected from the group consisting of tert-butyl and branched octyl the other one represents branched octyl.
  • the present invention relates to a process for preparing the composition defined above, which comprises alkylating N- ⁇ -naphthyl-N-phenylamine (PANA) with nonene or a mixture of isomeric nonenes in the presence of ⁇ -methylstyrene and an acidic catalyst and adding to the reaction mixture a compound (II) or a mixture of the compound (II), wherein R and R 2 independently of one another represent hydrogen or a hydrocarbon radical selected from the group consisting of tert-butyl, branched octyl and branched nonyl and R3 represents a hydrocarbon radical selected from the group consisting of tert-butyl, branched octyl and branched nonyl.claim14
  • R a and R b represents hydrogen or a substituent selected from the group consisting of branched nonyl and 2-phenyl-2-propyl and the other one represents a substituent selected from the group consisting of branched nonyl and 2-phenyl-2-propyl.
  • Ra and R b are as defined above; and
  • One of R 0 and R d represents hydrogen or a substituent selected from the group consisting of tert-butyl, branched octyl and branched nonyl and the other one represents a substituent selected from the group consisting of branched octyl and branched nonyl.
  • the invention relates to a process for the preparation of a mixture comprising at least one compound (I), wherein one of Ri and R 2 in- dependently of one another represents hydrogen or a hydrocarbon radical selected from the group consisting of branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl and the other one represents a hydrocarbon radical selected from the group consisting of branched nonyl, 1- phenylethyl and 2-phenyl-2-propyl, which comprises alkylating N- ⁇ -naphthyl-N-phenylamine (PANA) with nonene or a mixture of isomeric nonenes in the presence of styrene or ⁇ -me- thylstyrene and an acidic catalyst.
  • PANA N- ⁇ -naphthyl-N-phenylamine
  • R represents hydrogen (styrene) or methyl ( ⁇ -methylstyrene);
  • One of R a and R b represents hydrogen or a substituent selected from the group consisting of branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl and the other one represents a substituent selected from the group consisting of branched nonyl, 1-phenylethyl and 2-phenyl-2- propyl.
  • the present invention relates to a process for the preparation of a mixture comprising at least one compound (I), wherein one of Ri and R 2 independently of one another represents hydrogen or a hydrocarbon radical selected from the group consisting of branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl and the other one represents a hydrocarbon radical selected from the group consisting of branched nonyl, 1- phenylethyl and 2-phenyl-2-propyl; and at least one compound (II), wherein Ri and R 2 independently of one another represent hydrogen or a hydrocarbon radical selected from the group consisting of branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl; and R 3 represents a hydrocarbon radical selected from the group consisting of branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl, which comprises alkylating N- ⁇ -naphthyl-N-phenylamine (PANA) or
  • R represents hydrogen (styrene) or methyl ( ⁇ -methylstyrene);
  • R a and R b represents hydrogen or a substituent selected from the group consisting of branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl and the other one represents a substi- tuent selected from the group consisting of branched nonyl, 1-phenylethyl and 2-phenyl-2- propyl; and
  • R c and R represents hydrogen or a substituent selected from the group consisting of branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl and the other one represents a substi- tuent selected from the group consisting of branched nonyl, 1-phenylethyl and 2-phenyl-2- propyl.
  • the present invention relates to a process for the preparation of a mixture comprising at least one compound (I), wherein one of Ri and R 2 independently of one another represents hydrogen or a hydrocarbon radical selected from the group consisting of branched nonyl and 2-phenyl-2-propyl and the other one represents a hydrocarbon radical selected from the group consisting of branched nonyl and 2-phenyl-2- propyl, which comprises alkylating N- ⁇ -naphthyl-N-phenylamine (PANA) with nonene or a mixture of isomeric nonenes in the presence of ⁇ -methylstyrene and an acidic catalyst.
  • Patent 17 Specific embodiments of that process are illustrated by the following reaction scheme:
  • R a and R b represents hydrogen or a substituent selected from the group consisting of branched nonyl and 2-phenyl-2-propyl and the other one represents a substituent selected from the group consisting of branched nonyl and 2-phenyl-2-propyl.
  • the present invention relates to a process for the preparation of a mixture comprising at least one compound (I), wherein one of Ri and R 2 independently of one another represents hydrogen or a hydrocarbon radical selected from the group consisting of branched nonyl and 2-phenyl-2-propyI and the other one represents a hydrocarbon radical selected from the group consisting of branched nonyl and 2-phenyl-2- propyl; and at least one compound (II), wherein Ri and R 2 independently of one another represent hydrogen or a hydrocarbon radical selected from the group consisting of branched nonyl and 2-phenyl-2-propyl; and R 3 represents a hydrocarbon radical selected from the group consisting of branched nonyl and 2-phenyl-2-propyl, which comprises alkylating N- ⁇ - naphthyl-N-phenylamine (PANA) or diphenylamine with nonene or a mixture of isomeric nonenes in the presence of ⁇ -methylstyrene and an acid
  • PANA N-
  • R a and R represents hydrogen or a substituent selected from the group consisting of branched nonyl and 2-phenyl-2-propyl and the other one represents a substituent selected from the group consisting of branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl;
  • R c and R d represents hydrogen or a substituent selected from the group consisting of branched nonyl and 2-phenyl-2-propyl and the other one represents a substituent selected from the group consisting of branched nonyl and 2-phenyl-2-propyl.
  • Suitable acid catalysts in the process variants mentioned above are proton donors (so-called Br ⁇ nsted acids), electron acceptor compounds (so-called Lewis acids), cation exchanger resins, aluminosilicates or naturally occurring or modified layered silicates.
  • Suitable proton donors are, for example, salt-forming inorganic or organic acids, e.g. mineral acids such as hydrochloric acid, sulphuric acid or phosphoric acid, carboxylic acids, e.g. acetic acid, or sulphonic acids, e.g. methanesulphonic acid, benzenesulphonic acid or p-toluenesulphonic acid.
  • Suitable electron acceptor compounds are, for example, tin tetra- chloride, zinc chloride, aluminium chloride or boron trifluoride etherate. Tin tetrachloride and aluminium chloride are particularly suitable.
  • Suitable cation exchanger resins are, for example, styrene-divinylbenzene copolymers con- taining sulpho acid groups as ion exchanger function, e.g. the known products Amberlite® and Amberlyst®, of Rohm and Haas, e.g. AMBERLITE 200, or Dowex® 50, of Dow Chemicals, perfluorinated ion exchanger resins, e.g. Nafion® H, of DuPont, or other superacid ion exchanger resins, e.g. those described by T.Yamaguchi in Applied Catalysis 61. 1-25 (1990), or M.Hino et al. in J. Chem.
  • Suitable aluminosilicates are, for example, amorphous aluminum silicates which contain about 10-30% of aluminum oxide and about 70-90% of silicon dioxide and which are used in petrochemistry, e.g. aluminum silicate HA-HPV® of Ketjen (Akzo), or crystalline aluminium silicates, e.g. so-called zeolites, which are used as inorganic cation exchangers, as so-called molecular sieves or in the petrochemistry as so-called cracking catalysts, e.g. faujasites, e.g. Zeolite X, e.g.
  • Suitable naturally occurring layered silicates are also called acid earths or clays and are e.g. montmorillonites which are activated e.g. with mineral acids, such as sulphuric acid and/or hydrochloric acid, and which preferably have a moisture content of less than 10%, preferably of less than 5%, for example so-called earths or clays of the Fuller type, e.g. the types commercially available under the name Fulcat ® (Rockwood Additives), e.g. the types Fulcat 22 B, 220, 230 and 240 (clays activated with sulphuric acid), Fulmont ® (Rockwood Additives), e.g.
  • a particularly preferred embodiment of the process is that which comprises using Fulcat® 22 B, an acid-activated montmorrillonite containing 4% free moisture and having an acid titer of 20 mg KOH/g.
  • Modified layered silicates are also called pillared clays and are derived from the above-described naturally occurring layered silicates, containing between the silicate layers oxides of e.g. zirconium, iron, zinc, nickel, chromium, cobalt or magnesium, or rare earth elements. Modified layered silicates have been described, inter alia, by J. Clark et al. in J. Chem. Soc. Chem. Comm. 1989, 1353-1354. Particularly preferred modified layered silicates are, for example, the products Envirocat® EPZ-10, EPZG or EPIC produced by Contract Chemicals.
  • the acid catalyst can be added, for example, in an amount of 1-50, preferably of 5-25, highly preferred of 5-20, percent by weight in respect to the weight amounts of the amine reactants employed or, in the event that a so-called Br ⁇ nsted acid or Lewis acid is used, in an amount of 0.002 to 10 mol%, preferably of 0.1 to 5.0 mol% in respect to the weight amounts of the amine reactants.
  • the reaction in both reaction steps can be earned out with or, preferably, without solvent or diluant.
  • a solvent is used, it should be inert under the given reaction conditions and should have a suitably high boiling temperature.
  • Suitable solvents are, for example, optionally halo- genated hydrocarbons, polar aprotic solvents, liquid amides and alcohols.
  • petroleum ether fractions preferably higher boiling ones, toluene, mesity- lene, dichlorobenzene, tetrahydrofuran (THF), dimethylformamide (DMF), dimethylacet- amide.
  • DMA hexamethylphosphoric acid triamide
  • HMPTA hexamethylphosphoric acid triamide
  • DMSO dime- thylsulphoxide
  • TNU tetramethylurea
  • alcohols such as butanol or ethylene glycol.
  • the range of the excess amount of nonene combined with either ⁇ -methyl-styrene or styrene is 1 to 5, preferably 1 to 3, especially 1.5-2 mol.
  • the addition of an additional amount of O.5 mol styrene or ⁇ -methyl-styrene reduces the diphenylamine content in the product below 1%. Products that contain less than 1% DPA are of very low toxicity and, therefore, need no labelling.
  • the products of the process are obtained when the first alkylation step, the alkylation with aliphatic alkenes, is carried out, for example, at a temperature range from 120° to 250°C, especially at a temperature from 150° to 220°C.
  • the reaction temperature in the second reac- tion step, the alkylation with styrenes is from about 60° to 250°C, preferably from 110° to 200°C, especially from 110° to 140°C.
  • the process can be carried out by introducing the starting materials and the acid clays, as the catalyst, into a suitable reaction vessel and by heating to the temperatures specified.
  • the tripropylene and the additional alkenes may be added to the reaction mixture later.
  • the feed time of the tripropylene is preferably 0.5-10 h and particularly 1-3 h.
  • the reaction is preferably carried out without the addition of organic solvents.
  • the reaction time may amount to several hours, especially in a first step from 5 to 10 h and in a second step from 2-5 h, before a diphenylamine content and phenyl- ⁇ -naphthylamine-content of less than 1 % is reached. This can be determined by taking samples and analytical methods.
  • the reaction is preferably carried out under ambient pressure. Reaction at elevated pressures is possible, for example in an autoclave under a pressure of from 1 to 10 bar absolute pressure.
  • the acid clays used in the process can be removed from the reaction mixture by filtration, centrifugation or decanting, and are re-usable. In practice, they are used in an amount of from 5.0 to 20.0% by weight, especially from 5.0 to 10.0% by weight in respect to the total amount of the amine reactants. If desired, the mixture is purified in customary manner, for example by distillation.
  • the product obtained by alkylation with two different alkenes has favourable viscosity char- acteristics.
  • viscosity char- acteristics For example, in an Ubbelohde viscosimeter, low kinematic viscosities of 300-
  • reaction is carried out in a 300 ml glass reaction vessel equipped with • Double casing Jacket filled with (heatable high temperature oil) heat transfer fluid • Reflux cooler equipped with water separator, which is filled with tripropylene before start-up
  • the reaction vessel is loaded with 260 g diphenylamine (Duslo), which is melted at a vessel temperature of 80°C. 26.0g FULCAT 22B (Rockwood Additives) is added under stirring.
  • the reaction vessel is sealed, evacuated to 20 mbar and rinsed with nitrogen for inert conditions.
  • the stirrer speed is set to 500 rpm, and the reaction vessel is heated to 220°C within 1 h.
  • 291.0 g tripropylene (Exxon Europe) is fed to the reaction vessel for 2 h.
  • the reaction mixture begins to boil after 5-10 min from the start of the tripropylene feed.
  • the water adsorbed on the catalyst is distilled off as an azeotrope with tripropylene and removed in a water separator.
  • the boiling point of the reaction mass is reduced by the end of the feed gradually from 220° to 160-165°C.
  • the reaction mixture is kept boiling during the complete feed time by adjusting the jacket temperature 20°C higher than the temperature of the reaction mixture.
  • the diphenylamine content in the reaction mass is reduced below 10% in respect to the amine content in the reaction mass.
  • the reaction mixture is cooled to 130°C within
  • the non-converted starting materials tripropylene and ⁇ -methyl-styrene are distilled off by vacuum distillation at a maximum bottom temperature of 260°C and a minimum vacuum of 10 mbar.
  • the distillation vessel is cooled to 80°C and relieved with nitrogen until the atmospheric pressure is reached. About 500 g of a yellow and viscous liquid are obtained.
  • the composition of the final product as determined by capillary column gas chromatography is given below.
  • the reaction vessel is closed and evacuated to 20 mbar and flushed with nitrogen.
  • the sur- rounding temperature is set to 130°C
  • the PANA melt is formed at about 80°C.
  • the speed of the stirrer is set to 500 rpm, and the reaction mass is heated to 130°C within 0.5 h.
  • the water formed on the catalyst is removed above 100°C into the water separator. After reaching 130°C 477.8 g ⁇ -methylstyrene corresponding to 2.2 mol ⁇ -methylstyrene per mol PANA are added during 3 h. Caused by the heat of reaction the inner temperature increases to about 135°C. After adding the feed the reaction mass is kept at an inner temperature of 130-135°C for another 3 h.
  • reaction mass is cooled to 110°C and filtered to remove the catalyst.
  • the remaining ⁇ -methylstyrene is distilled off at the maximum bottom temperature of 255°C at a pressure of 20 mbar.
  • 660 g product is formed with the following composition determined by the GC-analysis.
  • the reaction is carried out in a 1000 ml glass reaction vessel equipped with • Jacket filled with a heatable high temperature oil • Reflux cooler equipped with a water separator, which is filled with tripropylene before start-up • Feed unit for tripropylene and ⁇ -methyl-styrene reactants • Propeller stirrer • Temperature indicator • Sampling device.
  • the reaction vessel is loaded with 113.4 diphenylamine (DUSLO) and 146.9 g phenyl- ⁇ -naphthylamine (Merck). 26.0 g FULCAT 22B (Rockwood Additives) are added under stirring.
  • the reaction vessel is sealed, evacuated to 20 mbar and relieved with nitrogen for inert conditions.
  • the stirrer speed is set to 500 rpm, and the reaction vessel is heated to 220°C within 1 hour. At this temperature 423 g tripropylene (Exxon Europe) is fed to the reaction vessel during 2 h.
  • the reaction mixture begins to boil after 10 min from the start of the tripropylene feed.
  • the water adsorbed on the catalyst is distilled off as-an azeotrope with tripropylene and removed in a water separator. Due to the constantly added tripropylene, the boiling point of the reaction mass is reduced gradually from 220° to 160-165°C by the end of the feed.
  • the reaction mixture is kept boiling during the complete feed time by adjusting the jacket temperature 20°C higher than the temperature of the reaction mixture.
  • the diphenylamine content in the reaction mass is reduced below 10% in respect to the amine content.
  • the reaction mixture is cooled to 130°C within 0.5 h. 79 g of ⁇ -methyl- styrene (Merck) is added at 130°C within 1 .
  • the temperature of the reaction mixture is increased to 133-134°C.
  • the final content of ⁇ 1% diphenylamine in respect to the amine content in reaction mass is obtained during an additional reaction time of 2 h.
  • DPA is alkylated with tripropylene and styrene in a manner analogous to Example 1 by reaction of 260 g diphenylamine (DUSLO) and 291 g tripro pylene (Exxon Europe) according to Example 1 and addition of 80g styrene (Merck) at 130°C within 1 h.
  • the temperature is increased to 133—134°C.
  • a final content of ⁇ 1% diphenylamine in respect to the amine content in the reaction mass is reached during an additional reaction time of 2 h.
  • the reaction mass is filtered and the excess amount of tripropylene is removed by distillation according to Example 1 at a maximum bottom temperature of 260°C and 10 mbar absolute pressure. About 492 g of a yellow and viscous liquid are obtained.
  • Viscosity is measured per ASTM D 445 Kinematic viscosity procedure at 40°C
  • Copper corrosion is determined by the weight loss of the copper coupon. After the test, the copper coupon is washed and wiped with cotton balls soaked in n-heptane. The coupon is dried, weighed to the nearest 0.1 mg and the dimensions of the coupon are measured to the nearest 0.1 cm. The corrosion is reported in mg/cm 2 . Weight changes of steel, silver, aluminum and magnesium coupons are neglegible. Application Results Table 2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Lubricants (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Anti-Oxidant Or Stabilizer Compositions (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

The invention relates to a composition comprising a mixture of alkylated N-α-naphthyl-N­phenylamine (PANA) and alkylated diphenylamine (DPA), the product obtainable by alkylat­ing PANA or a mixture of PANA and DPA with alkenes and the process for alkylating PANA or a mixture of PANA and DPA with alkenes. The compositions according to the present in­vention have an outstanding anti-oxidative action, which can be demonstrated by established test methods.

Description

Alkylated PANA and DPA compositions
The invention relates to a composition comprising a mixture of alkylated N-α-naphthyl-N- phenylamine (PANA) and alkylated diphenylamine (DPA), the product obtainable by alkylating PANA or a mixture of PANA and DPA with alkenes and the process for alkylating PANA or a mixture of PANA and DPA with alkenes.
Additives are added to numerous organic products widely used in engineering, for example to lubricants, hydraulic fluids, metal-working fluids, fuels or polymers, to improve their performance properties. In particular, there is a need for additives that effectively inhibit the oxi- dative, thermal and/or light induced degradation of these products. This results in a consid- enable increase of the utility of these products.
U.S. Patent Specification 2 943 112 discloses anti-oxidants from the group of the alkylated diphenylamines that are prepared by reaction of diphenylamine with alkenes in the presence of mineral acids and large quantities of acid clays as catalysts. Alkylation of the diphenylamine with alkenes, for example nonene, results in mixtures of mono- and di-alkylated di- phenylamine. In that process, relatively large quantities of the starting material, generally from 6 to 12% diphenylamine, are not reacted, which reduces the anti-oxidative efficacy of the alkylated diphenylamines and results in the deposition of sludge and imparts undesirable toxic properties to the product. The subsequent reaction with additional alkenes, e.g. styrene or α-methylstyrene, is proposed as an alternative to the distillative separation of the starting material from the products.
French Patent Specification 1 508 785 discloses the preparation of a mixture of 80% dinon- yldiphenylamine and 15% nonyldiphenylamine in the presence of Friedel-Crafts catalysts of the aluminium chloride type, but that mixture still has a diphenylamine content of 2% (see therein the information in Example 2). The preparation of that mixture is especially disad- vantageous since it is contaminated by traces of chlorine, metal compounds and undesirable by-products, e.g. N-alkylated diphenylamines and diphenylamines alkylated in the 2- and 2'- positions, is black in colour and is very viscous.
U.S. Patent Specification 6315925 discloses the alkylation reaction of diphenylamine with an excess of none or a mixture of isomeric nonenes in the presence of 2.0 to 25.0% by weight, based on diphenylamine of an acid clay and the absence of a free protonic acid.
European Patent Application 387979 discloses a composition comprising p.p'-branched dioctyldiphenylamine and N-p-branched octylphenyl- -naphthylamine. The Comparative Ex- ample 2 of that reference reveals that the composition (1% of each component) is partially insoluble in purified mineral oil and poly- -olefin oil.
The present invention relates to a composition of alkylated diphenylamines that has improved properties, such as solubility in mineral oil, for the intended technical applications. The improvement is achieved by mixing a N- -naphthyl-N-phenylamine (PANA) alkylated with at least one substituent selected from the group consisting of branched nonyl, 1-phenyl- ethyl and 2-phenyl-2-propyl with a diphenylamine alkylated with at least one, preferably two, substituents selected from the group consisting of tert-butyl, branched octyl, branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl. The invention relates to a composition which comprises A) An additive mixture that essentially consists of a) At least one compound:
Figure imgf000003_0001
wherein one of P and R2 independently of one another represents hydrogen or a hydrocarbon radical selected from the group consisting of branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl and the other one represents a hydrocarbon radical selected from the group consisting of branched nonyl, 1- phenylethyl and 2-phenyl-2-propyl; and b) At least one compound:
Figure imgf000003_0002
wherein | and R2 independently of one another represent hydrogen or a hydrocarbon radical selected from the group consisting of tert-butyl, branched octyl, branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl; and R3 represents a hydrocarbon radical selected from the group consisting of tert-butyl, branched octyl, branched nonyl, 1-phenylethyl and 2-phenyl-2- propyl; and B) A composition of matter susceptible to oxidative, thermal or light induced degrada- tion.claim 1
According to a preferred embodiment the invention relates to a composition which comprises A) An additive mixture which essentially consists of a) At least one compound:
Figure imgf000004_0001
wherein one of Ri and R2 independently of one another represents hydrogen or a hydrocarbon radical selected from the group consisting of branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl and the other one represents a hydrocarbon radical selected from the group consisting of branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl or an isomer thereof; and b) At least one compound:
Figure imgf000004_0002
wherein R-\ and R2 independently of one another represent hydrogen or a hydrocarbon radical selected from the group consisting of tert-butyl, branched octyl, branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl; and R3 represents a hydrocarbon radical selected from the group consisting of tert-butyl, branched octyl, branched nonyl, 1-phenylethyl and 2-phenyl-2- propyl or an isomer thereof; and B) A composition of matter susceptible to oxidative, thermal or light induced degradation. claim 2
According to a particularly preferred embodiment the composition comprises an additive mixture that essentially consists of a) At least one compound (I'), wherein one of Ri and R2 independently of one another represents hydrogen or a hydrocarbon radical selected from the group consisting of 2,4-dimethyl-2-heptyl, 1-phenylethyl and 2-phenyl-2-propyl and the other one represents a hydrocarbon radical selected from the group consisting of 2,4-dimethyl-2-heptyl, 1-phenylethyl and 2-phenyl-2-propyl; and b) At least one compound (ll"), wherein R-t and R2 independently of one another represent hydrogen or a hydrocarbon radical selected from the group consisting of tert-butyl, 2,4,4-trimethyl-2-pentyl, 2,4-dimethyl-2-heptyl, 1- phenylethyl and 2-phenyl-2-propyl; and R3 represents a hydrocarbon radical selected from the group consisting of tert-butyl, 2,4.4-trimethyl-2-pentyl, 2,4- dimethyl-2-heptyl, 1-phenylethyl and 2-phenyl-2-propyl. claim 3
According to a highly preferred embodiment the invention relates to a composition, which comprises an additive mixture that essentially consists of a) At least one compound (I'). wherein one of R and R2 independently of one another represent hydrogen or a hydrocarbon radical selected from the group consisting of 2,4-dimethyl-2-heptyl and 2-phenyl-2-propyl and the other one represents a hydrocarbon radical selected from the group consisting of 2,4-dimethyl-2-heptyl and 2- phenyl-2-propyl; and b) At least one compound (II'), wherein Ri and R2 independently of one another repre- sent hydrogen or a hydrocarbon radical selected from the group consisting of tert-butyl, 2,4,4-trimethylpent-2-yl, 2,4-dimethyl-2-heptyl and 2-phenyl-2-propyl; and R3 represents a hydrocarbon radical selected from the group consisting of tert-butyl, 2,4.4-trimethylpent-2-yl, 2,4-dimethyl-2-heptyl and 2-phenyl-2-pro- pyl.claim 4 According to a particularly relevant embodiment the invention relates to a composition, which comprises an additive mixture that essentially consists of a) At least one compound (I"), wherein one of Ri and R2 independently of one another represents hydrogen or a hydrocarbon radical selected from the group consisting of 2,4-dimethyl-2-heptyl and 2-phenyl-2-propyl and the other one represents a hydro- carbon radical selected from the group consisting of 2,4-dimethyl-2-heptyl and 2- phenyl-2-propyl; and b) At least one compound (II'), wherein R1 and R2 independently of one another represent hydrogen or a hydrocarbon radical selected from the group consisting of 2,4- dimethyl-2-heptyl and 2-phenyl-2-propyl; and R^ represents a hydrocarbon radical selected from the group consisting of 2,4-dimethyl-2-heptyl and 2-phenyl-2-pro- pyl. claim 5
A further embodiment of the invention relates to the additive mixture that essentially consists of a) At least one compound (I), wherein one of Ri and R2 independently of one another represents hydrogen or a hydrocarbon radical selected from the group consisting of branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl and the other one represents a hydrocarbon radical selected from the group consisting of branched nonyl, 1- phenylethyl and 2-phenyl-2-propyl; and b) At least one compound (II), wherein
Figure imgf000006_0001
and R2 independently of one another represent hydrogen or a hydrocarbon radical selected from the group consisting of tert-butyl, branched octyl, branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl; and Rs represents a hydrocarbon radical selected from the group consisting of tert-butyl, branched octyl, branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl .claim 9 The compositions according to the present invention have an outstanding anti-oxidative action, which can be demonstrated by established test methods, such as TAN (Total acid number, ASTM D 664 by potentiometric titration procedure), Viscosity (ASTM D 445, Kinematic viscosity procedure, sludge formation (determined by filtering the tested oil through pre-dried and pre-weighed filter paper) or Copper corrosion (weight loss of a copper coupon). The terms and definitions used in the context of the description of the present invention preferably have the following meanings:
Component A
In a compound (I) one of R^ and R2 independently of one another represents hydrogen or a hydrocarbon radical selected from the group consisting of branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl and the other one represents a hydrocarbon radical selected from the group consisting of branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl.
In a compound (II) Ri and R2 independently of one another represent hydrogen or a hydrocarbon radical selected from the group consisting of tert-butyl, branched octyl, branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl; and R3 represents a hydrocarbon radical se- lected from the group consisting of tert-butyl, branched octyl, branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl.
The term branched nonyl applies to any substituent obtained by alkylating the phenyl or naphthyl moiety with tripropylene:
Figure imgf000007_0001
and corresponds to the partial formulae of the following preferred substituents (carbon-carbon bonds to the phenyl or naphthyl moiety are represented by dotted I ines):
2,4-Dimethyl-2-heptyl:
Figure imgf000007_0002
, 2,4,5-trimethyl-2-hexyl: , 2,3,3
Figure imgf000007_0003
trimethyl-2-hexyl: , 213,5-trimethyl-2-hexyl: or 2,6-dimethyl-2
heptyl: '
1-PhenyIethyl is obtained by alkylating the phenyl or naphthyl moiety with styrene and corre¬
sponds to the following partial formula:
Figure imgf000007_0004
2-Phenyl-2-propyl is obtained by alkylating the phenyl or naphthyl moiety with α-methylsty-
Figure imgf000007_0005
rene and corresponds to the following partial formula: The term branched octyl applies to any substituent obtained by alkylating the phenyl or naphthyl moiety with diisobutylene, which is a mixture of:
2,4,4-Trimethylpent-l-ene:
Figure imgf000007_0006
or 2,4,4-trimethylpent-2-ene: and corresponds to the partial formulae of the following preferred substituents: I V Y
2,2,4-Trimethylpentyl: ' ^^^^ or2.4,4-trirnethyl-2-pentyl: '" ^^^ . Compounds of the formula (I), wherein Ri and R2 are as defined above are known or can be obtained by methods known perse, e.g. a process, in which N-α-naphthyl-N-phenylamine are alkylated with tripropylene, styrene or α-methylstyrene in the presence of suitable acid catalysts, such as proton donors (so-called Brønsted acids), electron acceptor compounds (so-called Lewis acids), cation exchanger resins, aluminosilicates or naturally occurring or modified layered (=sheet) silicates.
Some compounds of the formula (I) are commercially available, such as the products available under the trade mark lrganox®L 06 (Ciba Specialty Chemicals Holding Inc.). Compounds of the formula (II), wherein R., R_2 and Rs are as defined above are known or can be obtained by methods known per se, e.g. a process as specified in U.S. Patent Specification 6,315,925. According to that process diphenylamine is alkylated with nonene or a mixture of isomeric nonenes in the presence of a n acid clay. U.S. Patent Specification 2943 112 discloses the reaction of diphenylamine with tripropylene in the presence of mineral acids and large quantities of acid clays as catalysts and subsequent reaction with additional alkenes, e.g. styrene or α-methylstyrene.
EP-A-149422 discloses the reaction of diphe nylamine with diisobutylene in the presence of acid catalysts. Some compounds of the formula (I) are commercially available, such as the products available under the trade mark IrganoxOL 57 or 6Υ (Ciba Specialty Chemicals Holding Inc.).
Component B
A composition of matter susceptible to oxidatϊve, thermal or light induced degradation is a natural, semi-synthetic or synthetic polymer or a functional fluid.claim 6 According to a particularly preferred embodiment the functional fluid is a lubricant, machining fluid or a hydraulic fluid.claim 7
A further embodiment of the invention relates to composition, which additionally contains conventional additives suitable for protecting a composition of matter susceptible to oxida- tive, thermal and light induced degradation.claim 8 A further embodiment of the invention relates to the process for stabilizing a composition of matter susceptible to oxidative, thermal and/or light induced degradation, which comprises adding or applying to the composition of matter the composition defined above as a stabi- liser.claim 12
Suitable synthetic polymers are obtained by conventional methods of polymerisation from monomers or oligomers selected from the group consisting of monomeric or oligomeric alkenes, styrenes, conjugated dienes, acrolein ,, vinyl acetate, vinyl pyrrolidone, vinyl imidazole, maleic acid anhydride, acrylic acid, C-i-C alkyl acrylic acid or amides, nitriles, anhydrides and salts of acrylic acid and CrC alkyl acrylic acid, acrylic acid C C24alkyl esters, CrC4alkyl acrylic acid C C2 alkyl esters, vinyl halidesand vinylidene halides. According to a preferred embodiment polyolefins are preferred as synthetic polymers. Suitable polyolefins are polymers of monoolefinst and diolefins, for example polypropylene, poly- isobutylene, polybut-1-ene. poly-4-methylpent-1-ene, polyisoprene or polybutadiene, as well as polymers of cycloolefins, for instance of cyclopentene or norbomene, polyethylene (which optionally can be crosslinked), for example high density polyethylene (HDPE). high density and high molecular weight polyethylene (HDPE-HMW), high density and ultrahigh molecular weight polyethylene (HDPE-UHMW), medium density polyethylene (MDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), (VLDPE) and (ULDPE). These polyolefins are obtainable by known methods, such as radical polymerisation (normally under high pressure and at elevated temperature) or catalytic polymerisation using a catalyst that normally contains one or more than one metal of groups IVb, Vb, Vlb or VIII of the Periodic Table. These catalyst systems are usually termed Phillips, Standard Oil Indiana, Ziegler (-Natta), TNZ (DuPont), metallocene or single site catalysts (SSC). Other polyolefins present in the composition defined above are
• Mixtures of the polymers mentioned above, for example mixtures of polypropylene with polyisobutylene, polypropylene with polyethylene, for example PP/HDPE, PP/LDPE, and mixtures of different types of polyethylene, for example LDPE/HDPE;
• Copolymers of monoolefins and diolefins with each other or with other vinyl monomers, for example ethylene/propylene copolymers, linear low density polyethylene (LLDPE) and mixtures thereof with low density polyethylene (LDPE), propylene/but-1-ene copolymers, propylene/isobutylene copolymers, ethylene/but-1-ene copolymers, ethylene/hexene copolymers, ethylene/methylpentene copolymers, ethylene/heptene copolymers, ethyl- ene/octene copolymers, propylene/butadiene copolymers, isobutylene/isoprene copoly- mers, ethylene/alkyl acrylate copolymers, ethylene/alkyl methacrylate copolymers, ethyl- ene/vinyl acetate copolymers and their copolymers with carbon monoxide or ethyl- ene/acrylic acid copolymers and their salts (ionomers) as well as terpolymers of ethylene with propylene and a diene, such as hexadiene, dicyclopentadiene or ethylidene-nor- bornene; and mixtures of such copolymers with one another and with polymers mentioned above, for example polypropyleπe/ethylene-propylene copolymers, LDPE/ethylene-vinyl acetate copolymers (EVA), LDPE/ethylene-acrylic acid copolymers (EAA), LLDPE/EVA, LLDPE/EAA and alternating or random polyalkylene/carbon monoxide copolymers and mixtures thereof with other polymers, for example polyamides.
The composition of the invention can comprise additives suitable for polymers, which addi- tives are preferably used as formulating auxiliaries to improve the chemical and physical properties of the polymers containing these additives. The auxiliaries can be present in high proportions, for example, in amounts of up to 70% by weight, preferably from 1 to 70% by weight, more preferably from 5 to 60% by weight, with particular preference from 10 to 50% by weight and with especial preference from 10 to 40% by weight, based on the weight of the composition. Such auxiliaries have been disclosed in large numbers and are set out by way of example in the following list of auxiliaries: antioxidants selected from the group consisting of alkylated monophenols, alkylthiomethylphenols, hydroquinones and alkylated hydro- quinones, tocopherols, hydroxylated thiodiphenyl ethers, alkylidene-bis-phenols, O-, N- and S-benzyl compounds, hydroxybenzylated malonates, aromatic hydroxybenzyl compounds, triazine compounds, benzyl phosphonates, acylaminophenols, esters and amides of β-(3,5-di-t-butyl-4-hydroxyphenyl)propionic acid. β-(3,5-di-t-butyl-4-hydroxy- 3-methylphenyl)propionic acid, or β-(3,5-dicyclohexyl-4-hydroxyphenyl)propionic acid, ascorbic acid, aminic antioxidants, light stabilisers, phosphites, phosphines, phosphonites, hy- droxylamines, nitrones, thiosynergists, peroxide scavengers, polyamide stabilisers, basic co- stabilisers, nucleating agents, fillers and reinforcing agents, plasticisers, lubricants, emulsifi- ers, pigments, Theological additives, levelling assistants, optical brighteners, flame proofing agents, antistatic agents, blowing agents, benzofuranones and indolinones.
The invention relates also to the use of the composition, preferably in the mentioned con- centration, as additives in motor oils, turbine oils, gear oils, hydraulic fluids, metal-working fluids or lubricating greases.
Another embodiment of the invention relates to a process for stabilising the composition of matter subjected to oxidative, thermal and/or light induced degradation, which comprises adding or applying to the composition of matter the composition defined above as a stabi- liser.
The invention likewise relates to a process for protection against corrosion or oxidative degradation of metals, which are in contact with functional fluids, wherein the alkylation reaction products (I) and (II) defined further above are added to the functional fluid.
The term functional fluid includes aqueous, partially aqueous and non-aqueous fluids, par- ticular base oils of lubricating viscosity, which can be used for the preparation of greases, metal working fluids, gear fluids and hydraulic fluids.
The compositions according to the invention preferably comprise 0.01 to 5.0% by weight, in particular 0.02 to 1.0% by weight, of the mixture comprising the alkylated products (I) and (II), based on the weight of the functional fluid. Examples of aqueous functional fluids are industrial cooling water, filling compositions of a water conditioning plant, steam generation systems, sea water evaporation systems, sugar evaporation systems, irrigation systems, hydrostatic boilers and heating systems or cooling systems having a closed circulation. Examples of suitable partially aqueous functional fluids are hydraulic fluids based on aqueous polyglycol/ polyglycol ether mixtures or glycol systems, water-in-oil or oil-in-water systems and engine cooling systems based on aqueous glycol.
Examples of non-aqueous functional fluids are fuels, e.g. hydrocarbon mixtures comprising mineral oil fractions which are liquid at room temperature and are suitable for use in internal combustion engines, e.g. internal combustion engines with external (petrol engines) or internal ignition (diesel engines), e.g. petrol having different octane contents (regular grade or premium grade petrol) or diesel fuel, and lubricants, hydraulic fluid, metal working fluid, engine coolants, transformer oil and switchgear oil. Non-aqueous functional fluids are preferred, in particular base oils of lubricating viscosity, which can be used for the preparation of greases, metal working fluids, gear fluids and hydraulic fluids.
Suitable greases, metal working fluids, gear fluids and hydraulic fluids are based, for example, on mineral or synthetic oils or mixtures thereof. The lubricants are familiar to a person skilled in the art and are described in the relevant literature, such as, for example, in Chemistry and Technology of Lubricants; Mortier, R.M. and Orszulik, S.T. (Editors); 1992 Blackie and Son Ltd. for GB, VCH-Publishers N.Y. for U.S., ISBN 0-216-92921-0, cf. pages 208 et seq. and 269 etseq.; in Kirk-Othmer Encyclopedia of Chemical Technology, Fourth Edition 1969, J. Wiley & Sons, New York, Vol. 13, page 533 et seq. (Hydraulic Fluids); Performance Testing of Hydraulic Fluids; R. Tourret and E.P. Wright, Hyden & Son Ltd. GB, on behalf of The Institute of Petroleum London, ISBN 085501 3176; Ullmann's Encyclopedia ofln' d. Chem., Fifth Completely Revised Edition, Veήag Chemie, DE-Weinheim, VCH-Publishers for U.S., Vol. A 15, page 423 et seq. (Lubricants), Vol. A 13, page 165 et seq. (Hydraulic Fluids).
A particularly preferred embodiment of the invention relates to a lubricant composition com- prising A) The mixture of compounds (I) and (II) as defined above; and B) A base oil of lubricating viscosity.
The lubricants are in particular oils and greases, for example based on mineral oil or vegetable and animal oils, fats, tallow and wax or mixtures thereof. Vegetable and animal oils, fats, tallow and wax are, for example, palm kernel oil, palm oil, olive oil, colza oil, rapeseed oil, linseed oil, soy bean oil, cotton wool oil, sunflower oil, coconut oil, maize oil, castor oil, walnut oil and mixtures thereof, fish oils, and chemically modified, e.g. epoxidised or sulphoxidised, forms or forms prepared by genetic engineering, for example soy bean oil prepared by genetic engineering. Examples of synthetic lubricants include lubricants based on aliphatic or aromatic carboxylic esters, polymeric esters, polyalkylene oxides, phosphoric acid esters, poly-α-olefins, sili- cones, alkylated benzene, alkylated naphthalenes or the diester of a dibasic acid with a monohydric alcohol, e.g. dioctyl sebacate or dinonyl adipate, of a triester of trimethylolpro- pane with a monobasic acid or with a mixture of such acids, e.g. trimetlnylolpropane tripelar- gonate, trimethylolpropane tricaprylate or mixtures thereof, of a tetra ester of pentaerythritol with a monobasic acid or with a mixture of such acids, e.g. pentaerythrϊtyl tetracaprylate, or of a complex ester of monobasic and dibasic acids with polyhydric alcohols, e.g. a complex ester of trimethylolpropane with caprylic and sebacic acid or of a mixtu e thereof. Particularly suitable in addition to mineral oils are, for example, poly-α-olefins, ester-based lubricants, phosphates, glycols, polyglycols and polyalkylene glycols and mixtures thereof with water.
Said lubricants or mixtures thereof can also be mixed with an organic or inorganic thickener (base fat). Metal working fluids and hydraulic fluids can be prepared on the basis of the same substances as described above for the lubricants. These are frequently also emulsions of such substances in water or other fluids.
The invention relates also to a method of improving the performance p> roperties of lubricants, which comprises adding to the lubricant at least one product as defined above. The lubricant compositions, e.g. greases, gear fluids, metal working fluids and hydraulic fluids, may additionally contain further additives, which are added to improve further t ieir performance pro- perties. These include: other antioxidants, metal deactivators, rust inhibitors, viscosity index improvers, pour-point depressants, dispersants, detergents, extreme pressure additives and antiwear additives. Such additives are added in customary amounts, each in the range from 0.01 to 10.0% by weight. Examples of further additives are listed below:
1. Phenolic antioxidants l L Alkylated monophenols: 2,6-di-tert-butyl-4-methylphenol, 2-butyl-4,6-dimethylphenol, 2,6-di-tert-butyl-4-ethylphenol. 2,6-di-tert-butyl-4-n-butylphenol _, 2,6-di-tert-butyl-4-iso- butylphenol, 2,6-dicyclopentyl-4-methylphenol1 2-(α-methylcycIohexyl)-4,6-dimethyl- phenol, 2,6-dioctadecyl-4-methylphenol. 2,4.6-tricyclohexylphenol, 2,6-di-tert-butyl-4- methoxymethyl phenol, linear nonylphenols or nonylphenols w iich are branched in the side chain, e.g. 2.6-dinonyl-4-methylphenol, 2,4-dimethyl-S-(1'-methyl-undec-1'- yl)phenol, 2,4-dimethyl-6-(1 '-methyl he ptadec-1 '-yl)phenol, 2,4-dimethyl-6-(1 '-methyl- tridec-1'-yl)phenol and mixtures thereof 1.2. Alkylthiomethylphenols: 2,4-dioctylthiomethyl-6-tert-butylphenol, 2,4-dioctylthiomethyl- 6-methyl phenol, 2,4-dioctylthiomethyl-6-ethylphenol, 2,6-didodecylthiomethyl-4-nonyl- phenol
1.3. Hydroquinones and alkylated hydroquinones: 2,6-di-tert-butyl-4-methoxyphenol, 2,5- di-tert-butyl-hydroquinone, 2,5-di-tert-amyl-hydroquinone, 2,6-diphenyl-4-octadecyl- oxyphenol, 2,6-di-tert-butyl-hydroquinone, 2,5-di-tert-butyl-4-hydroxyanisoleI 3,5-di- tert-butyl-4-hydroxyanisole, 3,5-di-tert-butyl-4-hydroxyphenylstearate. bis(3,5-di-tert- butyl-4-hydroxyphenyl)adipate
1.4. Tocopherols: α-, β-, γ- or δ-tocopherols and mixtures thereof (vitamin E) 1.5. Hydroxylated thiodiphenyl ethers: 2,2'-thiobis(6-tert-butyl-4-methylphenol)] 2,2,-thiobis(4-octylphenol)J 4,4,-thiobis(6-tert-butyl-3-methylphenol), 4,4'-thiobis-(6- tert-butyl-2-methylphenol), 4,4,-thiobis(3,6-di-sec-amylphenol), 4,4'-bis(2,6-dimethyI- 4-hydroxyphenyl)disulphide 1.6. Alkylidene bisphenols: 2,2,-methylenebis(6-tert-butyl-4-methylphenol), 2,2-meth- ylenebis(6-tert-butyl-4-ethylphenol), 2,2'-methylenebis[4-methyl-6-(α-methylcyclohex- yl)phenol], 2,2'-methylenebis(4-methyl-6-cydohexylphenol), 2,2'-methylenebis(6- nonyl-4-methylphenol), 2,2'-methylenebis(4,6-di-tert-butylphenol), 2,2'-ethylidenebis- (4,6-di-tert-butylphenol), 2,2'-ethylidenebis(6-tert-butyl-4-isobutyIphenol), 2,2'-methyl- enebis[6-(α-methylbenzyl)-4-nonylphenol], 2,2'-methylenebis[6-(α,α-dimethylbenzyl)- 4-nonylphenol], 4J4,-methylenebis(2,6-di-tert-butylphenol), 4,4'-methylenebis(6-tert- butyl-2-methylphenol), 1 , 1 -bis(5-tert-butyl-4-hydroxy-2-methylphenyl)butane, 2,6- bis(3-tert-butyl-5-methyl-2-hydroxybenzyl)-4-methylphenol, 1 , 1 ,3-tris(5-tert-butyl-4- hydroxy-2-methylphenyl)butane, 1 , 1 -bis(5-tert-butyl-4-hydroxy-2-methylphenyl)-3-n- dodecylmercaptobutane, ethylene glycol bis[3,3-bis(3'-tert-butyl-4,-hydroxyphenyl)but- yrate], bis(3-tert-butyl-4-hydroxy-5-methylphenyl)dicyclopentadiene1 bis[2-(3'-tert-bu- tyl^'-hydroxy-S'-methylbenzy -e-tert-butyW-methylphenylJterephthalate, 1 , 1 -bis(3,5- dimethyl-2-hydroxyphenyl)butane, 2l2-bis(3,5-di-tert-butyl-4-hydroxyphenyl)propane, 2,2-bis(5-tert-butyl-4-hydroxy-2-methylphenyl)-4-n-dodecylmercaptobutaneJ 1 ,1 ,5,5- tetrakis(5-tert-butyl-4-hydroxy-2-methylphenyl)pentane 17. O-, N- and S-benzyl compounds: S.S.S'.S'-tetra-tert-butyW^'-dihydroxydibenzyl ether, octadecyl 4-hydroxy-3,5-dimethylbenzylmercaptoacetateJ tridecyl-4-hydroxy-3,5-di- tert-butylbenzylmercaptoacetateJ tris(3]5-di-tert-butyl-4-hydroxybenzyl)amineI bis(4- tert-butyl-3-hydroxy-2,6-dimethylbenzyl)dithioterephthalate. bis(3,5-di-tert-butyl-4-hy- droxybenzyl)sulphide, isooctyl 3,5-di-tert-butyl-4-hydroxybenzylmercaptoacetate
1.8. Hydroxybenzylated malonates: dioctadecyl 2,2-bis(3]5-di-tert-butyI-2-hydroxybenzyl)- malonate, dioctadecyl 2-(3-tert-butyl-4-hydroxy-5-methylbenzyI)malonate, didodecyl mercaptoethyl-2,2-bis(3,5-di-tert-butyl-4-hydroxybenzyl)malonate] di-[4-(1 , 1 ,3,3- tetramethylbutyl)phenyl]-2I2-bis(3,5-di-tert-butyl-4-hydroxybenzyl)malonate
1.9. Hydroxybenzyl aromatics: 1 J3J5-tris(3,5-di-tert-butyl-4-hydroxybenzyl)-2J4J6-trimethyl- benzene, 1I4-bis(3,5-di-tert-butyl-4-hydroxybenzyl)-2,3l5,6-tetramethyIbenzene] 2]4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl)phenol 1.10. Triazine compounds: 2,4-bisoctylmercapto-6-(3,5-di-tert-butyl-4-hydroxyanilino)-1,3,5- triazine, 2-octylmercapto-4,6-bis(3,5-di-tert-butyl-4-hydroxyanilino)-1 ,3,5-triazine, 2- octylmercapto-4J6-bis(3,5-di-tert-butyl-4-hydroxyphenoxy)-1,3l5-triazine, 2,4,6- tris(3,5-di-tert-butyl-4-hydroxyphenoxy)-1 ,2,3-triazine, 1 ,3,5-tris(3,5-di-tert-butyl-4-hy- droxybenzyl)isocyanurate, 1,3,5-tris(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl)iso- cyanurate, 2,4,6-tris(3,5-di-tert-butyl-4-hydroxyphenylethyl)-1 ,3,5-triazine, 1 ,3,5- tris(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)-hexahydro-1 ,3,5-triazine, 1 ,3,5- tris(3,5-dicyclohexyl-4-hydroxybenzyl)isocyanurate
1.11. Acylaminophenols: 4-hydroxylauranilide, 4-hydroxystearanilide, octyl N-(3,5-di-tert- butyl-4-hydroxyphenyl)carbamate 1.12. Esters of beta-(3.5-di-tert-butyl-4-hvdroxyphenyl)propionic acid with monohydric or polyhydric alcohols, e.g. with methanol, ethanol, n-octanol, isooctanol, octadecanol, 1,6-hexanediol, 1,9-nonanediol, ethylene glycol, 1,2-propanediol, neopentyl glycol, thiodiethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris(hydroxy- ethyl)isocyanurate, N,N'-bis(hydroxyethyl)oxalamide, 3-thiaundecanol, 3-thiapenta- decanol, trimethylhexanediol, trimethylolpropane, 4-hydroxymethyl-1-phospha-2,6,7~ trioxabicyclo[2.2.2]octane
1.13. Esters of beta-(5-tert-butyl-4-hvdroxy-3-methylphenyl)propionic acid (with monohydric or polyhydric alcohols), e.g. with methanol, ethanol, n-octanol, isooctanol, octadecanol, 1,6-hexanediol, 1,9-nonanediol, ethylene glycol, 1,2-propanediol, neopentylgly- col, thiodiethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris(hydroxyethyl)isocyanurate, N,N'-bis(hydroxyethyl)oxalamide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethylolpropane, 4-hydroxymethyl-1- phospha-2,6.7-trioxabicyclo[2.2.2]octane 1.14. Esters of beta-(3,5-dicvdohexyl-4-hvdroxyphenyl)propionic acid with monohydric or polyhydric alcohols, e.g. the alcohols stated under 1.13.
1.15. Ester of 3,5-di-tert-butyl-4-hydroxyphenylacetic acid with monohydric or polyhydric alcohols, e.g. the alcohols stated under 1.13. 1.16. Amides of beta-(3,5-di-tert-butyl-4-hvdroxyphenyl)propionic acid, e.g. N,N'-bis(3,5-di- tert-butyM-hydroxyphenylpropionyl)hexamethylenediamine, N,N'-bis(3,5-di-tert-butyl- 4-hydroxyphenylpropionyl)trimethylenediamine. N,N'-bis(3,5-di-tert-butyl-4-hydroxy- phenylpropionyl)hydrazine
1.17. Ascorbic acid (vitamin C) 1.18. Amine antioxidants: N.N'-diisopropyl-p-phenylenediamine, N,N'-di-sec-butyl-p- phenylenediamine, N,N'-bis(1,4-dimethylpentyl)-p-phenylenediamine, N,N'-bis(1- ethyl-3-methylpentyl)-p-phenylenediamine, N,N'-bis(1-methyl-heptyl)-p-phenylene- diamine, N,N'-dicyclohexyl-p-phenylenediamine, N,N'-diphenyl-p-phenylenediamine, N.N'-d naphth^-ylJ-p-phenylenediamine, N-isopropyl-N'-phenyl-p-phenylenedia- mine, N-(1,3-dimethyl-butyl)-N'-phenyl-p-phenylenediamine, N-(1-methylheptyl)-N'- phenyl-p-phenylenediamine, N-cyclohexyl-N'-phenyl-p-phenylenediamine, 4-(p-tolue- nesulphonamido)diphenylamine, N.N'-dimethyl-N.N'-di-sec-butyl-p-phenylenediamine, diphenylamine, N-allyldiphenylamine, 4-isopropoxy-diphenyIamine, N-phenyl-1- naphthylamine, N-(4-tert-octylphenyl)-1 -naphthylamine, N-phenyl-2-naphthylamine, octylated diphenylamine, e.g. p.p'-di-tert-octyldiphenylamine, 4-n-butylaminophenol, 4-butyrylaminophenol, 4-nonanoylamino-phenol, 4-dodecanoylaminophenol, 4-octa- decanoylaminophenol, di-(4-methoxyphenyl)amine, 2,6-di-tert-butyl-4-dimethylami- nomethylphenol, 2,4'-diaminodiphenylmethane, 4,4,-diaminodiphenylmethane, N.N.N'.N'-tetramethyM^'-diaminodiphenylmethane, 1 ,2-di-[(2-methylphenyl)- amino]ethane, 1,2-di-(phenylamino)propane, (o-tolyl)biguanide, di-[4-(1',3'-dimethyl- butyl)phenyl]amine, tert-octylated N-phenyl-1 -naphthylamine, mixture of mono- and dialkylated tert-butyl/tert-octyldiphenylamines, mixture of mono- and dialkylated non- yldiphenylamines, mixture of mono- and dialkylated dodecyldiphenylamines, mixture of mono- and dialkylated isopropyl/isohexyldiphenylamines, mixtures of mono- and dialkylated tert-butyldiphenylamines, 2,3-dihydro-3,3-dimethyl-4H-1.4-benzothiazine, phenothiazine, mixture of mono- and dialkylated tert-butyl tert-octylphenothiazines, mixture of mono- and dialkylated tert-octyl or nonylphenothiazines, N-allylphenothi- azine, N.N.N'jN'-tetraphenyl-l ,4-diaminobut-2-ene, N,N-bis-(2,2,6,6-tetrame- thyIpiperidin-4-yl)-hexamethylenediamineJ bis-(2,2J6,6-tetramethylpiperidin-4-yl)seba- cate, 2,2,6,6-tetramethylpiperidin-4-one, 2J2,6,6-tetramethylpiperidin-4-ol Further antioxidants: aliphatic or aromatic phosphites, esters of thiodipropionic acid or thiodiacetic acid or salts of dithiocarbamic or dithiophosphoric acid, 2,2, 12,12-tetrame- thyl-5.9-dihydroxy-3,7,11-trithiatridecane and 2,2, 15,15-tetramethyl-5,12-dihydroxy- 3,7, 10, 14-tetrathiahexadecane
3^ Further metal deactivators. e.g. for copper:
3.1. Benzotriazoles and derivatives thereof: 2-mercaptobenzotriazole, 2,5-dimercaptoben- zotriazole, 4- or 5-alkylbenzotriazoles (e.g. tolutriazole) and derivatives thereof, 4,5.6,7-tetrahydrobenzotriazole. 5,5'-methylenebisbenzotriazole; Mannich bases of benzotriazole or tolutriazole, such as 1-[di(2-ethylhexylaminomethyl)]tolutriazole and 1-[di(2-ethylhexylaminomethyl)]benzotriazole; alkoxyalkylbenzotriazoles, such as 1- (nonyloxymethyl)benzotriazole, 1-(1-butoxyethyl)benzotriazole and 1-(1-cyclohexyl- oxybutyl)tolutriazole 3. 1 ,2,4-Triazoles and derivatives thereof: 3-alkyl (or aryl)-1.2.4-triazoles. Mannich bases of 1 ,2,4-triazoles, such as 1-[di(2-ethylhexyl)aminomethyl]-1J2,4-triazole; alkoxyalkyl-1 ,2,4-triazoles, such as 1-(1-butoxyethyl)-1,2,4-triazole; acylated 3-amino- 1 ,2,4-triazoles
3.3. Imidazole derivatives: 4,4'-methylenebis(2-undecyl-5-methylimidazole), bis[(N- methyl)imidazol-2-yl]carbinol octyl ether
3.4. Sulphur-containing heterocyclic compounds: 2-mercaptobenzothiazole, 2,5-dimer- capto-1,3,4-thiadiazole, 2,5-dimercaptobenzothiadiazole and derivatives thereof; 3,5- bis[di-(2-ethylhexyl)aminomethyl]-1,3,4-thiadiazolin-2-one
3.5. Amino compounds: salicylidenepropylenediamine, salicylaminoguanidine and salts thereof ^ Corrosion inhibitors
4.1. Organic acids, their esters, metal salts, amine salts and anhydrides: e.g. alkyl- and al- kyenylsuccinic acids and partial esters thereof with alcohols, diols or hydroxycarbox- ylic acids, partial amides of alkyl- and alkenylsuccinic acids, 4-nonylphenoxyacetic acid, alkoxy- and alkoxyethoxycarboxylic acids, such as dodecyloxyacetic acid, dode- cyloxy(ethoxy)acetic acid and amine salts thereof, and furthermore N-oleoylsarcosine, sorbitan monooleate, lead naphthenate, alkenylsuccinic anhydrides, e.g. dodecenyl- succinic anhydride, 2-(2-carboxyethyl)-1-dodecyl-3-methylglycerol and salts thereof, in particular sodium salts and triethanolamine salts
4.2. Nitrogen-containing compounds:
4.2.1. Tertiary aliphatic and cycloaliphatic amines and amine salts of organic and inorganic acids, e.g. oil-soluble alkylammonium carboxylates, and furthermore 1-[N,N-bis-(2-hy- droxyethyl)amino]-3-(4-nonylphenoxy)propan-2-ol
4.2.2. Heterocyclic compounds, e.g. substituted imidazolines and oxazolines, e.g. 2-hepta- decenyl-1 -(2-hydroxyethyl )imidazoline
5.. Sulphur-containing compounds: barium dinonylnaphthalenesulphonates, calcium petro- leum sulphonates, alkylthio-substituted aliphatic carboxylic acids, esters of aliphatic 2- sulphocarboxylic acids and salts thereof fx. Viscosity index improvers: polyacrylates, polymethacrylates, vinylpyrrolidone/methacry- late copolymers, polyvinylpyrrolidiones, polybutenes, olefϊn copolymers, styrene/acrylate copolymers, polyethers Z Pour point depressants: poly(meth)acrylates, ethylene-vinyl acetate copolymers, alkyl polystyrenes, fumarate copolymers, alkylated naphthalene derivatives
8;. Dispersants/Surfactants: polybutenylsuccinamides or polybutenylsuccinimides, polybu- tenylphosphonic acid derivatives, basic magnesium, calcium and barium sulphonates and phenolates 9. Extreme pressure and antiwear additives: sulphur- and halogen-containing compounds, e.g. chlorinated paraffins, sulphonated olefins or vegetable oils (soy bean oil, rapeseed oil), alkyl or aryl di- or trisulphides, benzotriazoles or derivatives thereof, such as bis (2- ethylhexyl)aminomethyl tolutriazoles, dithiocarbamates, such as methylenebisdibutyl di- thiocarbamate, derivatives of 2-mercaptobenzothiazole. such as 1-[N,N-bis(2-ethylhexyl)- aminomethyl]-2-mercapto-1 H-1 ,3-benzothiazole, derivatives of 2,5-dimercapto-1 ,3,4- thiadiazole, such as 2,5-bis(tert-nonyldithio)-1,3,4-thiadiazole
10. Substances for reducing the coefficient of friction: lard oil, oleic acid, tallow, rapeseed oil, and sulphurised fats, amines. Further examples are stated in EP-A-0565487
11. Special additives for use in water/oil metal processing and hydraulic fluids: 11.1. Emulsifiers: petroleum sulphonates, amines, such as polyoxyethylated fatty amines, non-ionic surface-active substances
11.2. Buffers: alkanolamines 11.3. Biocides: triazines. thiazolinones, trisnitromethane, morpholine, sodium pyridinethiol
11.4. Processing speed improvers: calcium sulphonates and barium sulphonates.
Said components can be admixed to the lubricant composition in a manner known per se. It is also possible to prepare a concentrate or a so-called additive package, which can be di- luted to the concentrations of use for the corresponding lubricant according to the technical requirements.
According to an additional embodiment the invention also relates to the product obtainable by alkylating a mixture of N-α-naphthyl-N-phenylamine (PANA) and diphenylamine with nonene or a mixture of isomeric nonenes in the presence of α-methylstyrene and an acidic catalyst.claim 10
According to a preferred embodiment the invention relates to the product obtainable by alkylating N-α-naphthyl-N-phenylamine (PANA) with nonene or a mixture of isomeric nonenes in the presence of α-methylstyrene and an acidic catalyst.claim 11
According to an additional embodiment the present invention relates to a process for pre- paring the composition defined above, which comprises alkylating N-α-naphthyl-N-phenylamine (PANA) or a mixture of PANA and diphenylamine with nonene or a mixture of isomeric nonenes in the presence of styrene or α-methylstyrene and an acidic catalyst and adding to the reaction mixture a compound (II) wherein R and R2 independently of one another represent hydrogen or a hydrocarbon radical selected from the group consisting of tert-butyl and branched octyl and R3 represents branched octyl.claim13
Specific embodiments of that process are illustrated by the following reaction scheme:
Figure imgf000019_0001
wherein
R represents hydrogen (styrene) or methyl (α-methylstyrene);
One of Ra and R represents hydrogen or a substituent selected from the group consisting of branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl and the other one represents a substituent selected from the group consisting of branched nonyl, 1-phenylethyl and 2-phenyl-2- prop l; and
One of Re and R<_ represents hydrogen or a substituent selected from the group consisting of branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl and the other one represents a substituent selected from the group consisting of branched nonyl, 1-phenylethyl and 2-phenyl-2- propyl.
By admixing to these compositions the compound (II) the following compositions are obtained:
Figure imgf000020_0001
Figure imgf000020_0002
wherein
Ra. Rb, Re or Rd are as defined above, and
One of Rc' and R ' represents hydrogen or a substituent selected from the group consisting of tert-butyl and branched octyl the other one represents branched octyl.
According to a preferred embodiment the present invention relates to a process for preparing the composition defined above, which comprises alkylating N-α-naphthyl-N-phenylamine (PANA) with nonene or a mixture of isomeric nonenes in the presence of α-methylstyrene and an acidic catalyst and adding to the reaction mixture a compound (II) or a mixture of the compound (II), wherein R and R2 independently of one another represent hydrogen or a hydrocarbon radical selected from the group consisting of tert-butyl, branched octyl and branched nonyl and R3 represents a hydrocarbon radical selected from the group consisting of tert-butyl, branched octyl and branched nonyl.claim14
Specific embodiments of that process are illustrated by the following reaction scheme:
Figure imgf000020_0003
wherein
One of Ra and Rb represents hydrogen or a substituent selected from the group consisting of branched nonyl and 2-phenyl-2-propyl and the other one represents a substituent selected from the group consisting of branched nonyl and 2-phenyl-2-propyl. By admixing to this composition the compound (II) the following compositions are obtained:
Figure imgf000021_0001
wherein
Ra and Rb are as defined above; and One of R0 and Rd represents hydrogen or a substituent selected from the group consisting of tert-butyl, branched octyl and branched nonyl and the other one represents a substituent selected from the group consisting of branched octyl and branched nonyl.
According to a particularly preferred embodiment the invention relates to a process for the preparation of a mixture comprising at least one compound (I), wherein one of Ri and R2 in- dependently of one another represents hydrogen or a hydrocarbon radical selected from the group consisting of branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl and the other one represents a hydrocarbon radical selected from the group consisting of branched nonyl, 1- phenylethyl and 2-phenyl-2-propyl, which comprises alkylating N-α-naphthyl-N-phenylamine (PANA) with nonene or a mixture of isomeric nonenes in the presence of styrene or α-me- thylstyrene and an acidic catalyst.claim 15
Specific embodiments of that process are illustrated by the following reaction scheme:
Figure imgf000021_0002
wherein
R represents hydrogen (styrene) or methyl (α-methylstyrene); One of Ra and Rb represents hydrogen or a substituent selected from the group consisting of branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl and the other one represents a substituent selected from the group consisting of branched nonyl, 1-phenylethyl and 2-phenyl-2- propyl. According to a highly preferred embodiment the present invention relates to a process for the preparation of a mixture comprising at least one compound (I), wherein one of Ri and R2 independently of one another represents hydrogen or a hydrocarbon radical selected from the group consisting of branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl and the other one represents a hydrocarbon radical selected from the group consisting of branched nonyl, 1- phenylethyl and 2-phenyl-2-propyl; and at least one compound (II), wherein Ri and R2 independently of one another represent hydrogen or a hydrocarbon radical selected from the group consisting of branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl; and R3 represents a hydrocarbon radical selected from the group consisting of branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl, which comprises alkylating N-α-naphthyl-N-phenylamine (PANA) or a mixture of N-α-naphthyl-N-phenylamine (PANA) and diphenylamine with nonene or a mixture of isomeric nonenes in the presence of styrene or α-methylstyrene and an acidic catalyst.claim 16
Specific embodiments of that process are illustrated by the following reaction scheme:
Figure imgf000022_0001
wherein
R represents hydrogen (styrene) or methyl (α-methylstyrene);
One of Ra and Rb represents hydrogen or a substituent selected from the group consisting of branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl and the other one represents a substi- tuent selected from the group consisting of branched nonyl, 1-phenylethyl and 2-phenyl-2- propyl; and
One of Rc and R represents hydrogen or a substituent selected from the group consisting of branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl and the other one represents a substi- tuent selected from the group consisting of branched nonyl, 1-phenylethyl and 2-phenyl-2- propyl.
According to a further embodiment the present invention relates to a process for the preparation of a mixture comprising at least one compound (I), wherein one of Ri and R2 independently of one another represents hydrogen or a hydrocarbon radical selected from the group consisting of branched nonyl and 2-phenyl-2-propyl and the other one represents a hydrocarbon radical selected from the group consisting of branched nonyl and 2-phenyl-2- propyl, which comprises alkylating N-α-naphthyl-N-phenylamine (PANA) with nonene or a mixture of isomeric nonenes in the presence of α-methylstyrene and an acidic catalyst.claim 17 Specific embodiments of that process are illustrated by the following reaction scheme:
Figure imgf000023_0001
wherein
One of Ra and Rb represents hydrogen or a substituent selected from the group consisting of branched nonyl and 2-phenyl-2-propyl and the other one represents a substituent selected from the group consisting of branched nonyl and 2-phenyl-2-propyl.
According to a particularly relevant embodiment the present invention relates to a process for the preparation of a mixture comprising at least one compound (I), wherein one of Ri and R2 independently of one another represents hydrogen or a hydrocarbon radical selected from the group consisting of branched nonyl and 2-phenyl-2-propyI and the other one represents a hydrocarbon radical selected from the group consisting of branched nonyl and 2-phenyl-2- propyl; and at least one compound (II), wherein Ri and R2 independently of one another represent hydrogen or a hydrocarbon radical selected from the group consisting of branched nonyl and 2-phenyl-2-propyl; and R3 represents a hydrocarbon radical selected from the group consisting of branched nonyl and 2-phenyl-2-propyl, which comprises alkylating N-α- naphthyl-N-phenylamine (PANA) or diphenylamine with nonene or a mixture of isomeric nonenes in the presence of α-methylstyrene and an acidic catalystclaim 18
Specific embodiments of that process are illustrated by the following reaction scheme:
Figure imgf000024_0001
wherein
One of Ra and R represents hydrogen or a substituent selected from the group consisting of branched nonyl and 2-phenyl-2-propyl and the other one represents a substituent selected from the group consisting of branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl; and
One of Rc and Rd represents hydrogen or a substituent selected from the group consisting of branched nonyl and 2-phenyl-2-propyl and the other one represents a substituent selected from the group consisting of branched nonyl and 2-phenyl-2-propyl.
Suitable acid catalysts in the process variants mentioned above are proton donors (so-called Brønsted acids), electron acceptor compounds (so-called Lewis acids), cation exchanger resins, aluminosilicates or naturally occurring or modified layered silicates. Suitable proton donors (so-called Brønsted acids) are, for example, salt-forming inorganic or organic acids, e.g. mineral acids such as hydrochloric acid, sulphuric acid or phosphoric acid, carboxylic acids, e.g. acetic acid, or sulphonic acids, e.g. methanesulphonic acid, benzenesulphonic acid or p-toluenesulphonic acid. Suitable electron acceptor compounds (so-called Lewis acids) are, for example, tin tetra- chloride, zinc chloride, aluminium chloride or boron trifluoride etherate. Tin tetrachloride and aluminium chloride are particularly suitable.
Suitable cation exchanger resins are, for example, styrene-divinylbenzene copolymers con- taining sulpho acid groups as ion exchanger function, e.g. the known products Amberlite® and Amberlyst®, of Rohm and Haas, e.g. AMBERLITE 200, or Dowex® 50, of Dow Chemicals, perfluorinated ion exchanger resins, e.g. Nafion® H, of DuPont, or other superacid ion exchanger resins, e.g. those described by T.Yamaguchi in Applied Catalysis 61. 1-25 (1990), or M.Hino et al. in J. Chem. Soc. Chemical Comm. 1980, 851-852. Suitable aluminosilicates are, for example, amorphous aluminum silicates which contain about 10-30% of aluminum oxide and about 70-90% of silicon dioxide and which are used in petrochemistry, e.g. aluminum silicate HA-HPV® of Ketjen (Akzo), or crystalline aluminium silicates, e.g. so-called zeolites, which are used as inorganic cation exchangers, as so-called molecular sieves or in the petrochemistry as so-called cracking catalysts, e.g. faujasites, e.g. Zeolite X, e.g. 13X (union Carbide) or SZ-9 (Grace), Zeolite Y, e.g. LZ-82 (Union Carbide), Ultrastable Y Zeolite, e.g. Octacat (Grace), mordenites. e.g. Zeolon 900H® (Norton), or Zeolite Beta, e.g. H-BEA (Sϋdchemie), or Zeolite ZSM-12® (Mobil Oil).
Suitable naturally occurring layered silicates are also called acid earths or clays and are e.g. montmorillonites which are activated e.g. with mineral acids, such as sulphuric acid and/or hydrochloric acid, and which preferably have a moisture content of less than 10%, preferably of less than 5%, for example so-called earths or clays of the Fuller type, e.g. the types commercially available under the name Fulcat®(Rockwood Additives), e.g. the types Fulcat 22 B, 220, 230 and 240 (clays activated with sulphuric acid), Fulmont® (Rockwood Additives), e.g. the types XMP-4, XMP-3, or acid clays of the types K5, K10, K20 and K30 (activated with hydrochloric acid), KS and KSF (activated with sulphuric acid) or KSFO (activated with hydrochloric acid and sulphuric acid), of Sϋdchemie, and also clays based on bentonite, e.g. products of the types Filtrol® or Retrol® , e.g. F-13. F-20 etc. (Engelhard Corp.).
A particularly preferred embodiment of the process is that which comprises using Fulcat® 22 B, an acid-activated montmorrillonite containing 4% free moisture and having an acid titer of 20 mg KOH/g.
Modified layered silicates are also called pillared clays and are derived from the above-described naturally occurring layered silicates, containing between the silicate layers oxides of e.g. zirconium, iron, zinc, nickel, chromium, cobalt or magnesium, or rare earth elements. Modified layered silicates have been described, inter alia, by J. Clark et al. in J. Chem. Soc. Chem. Comm. 1989, 1353-1354. Particularly preferred modified layered silicates are, for example, the products Envirocat® EPZ-10, EPZG or EPIC produced by Contract Chemicals.
The acid catalyst can be added, for example, in an amount of 1-50, preferably of 5-25, highly preferred of 5-20, percent by weight in respect to the weight amounts of the amine reactants employed or, in the event that a so-called Brønsted acid or Lewis acid is used, in an amount of 0.002 to 10 mol%, preferably of 0.1 to 5.0 mol% in respect to the weight amounts of the amine reactants.
The reaction in both reaction steps can be earned out with or, preferably, without solvent or diluant. If a solvent is used, it should be inert under the given reaction conditions and should have a suitably high boiling temperature. Suitable solvents are, for example, optionally halo- genated hydrocarbons, polar aprotic solvents, liquid amides and alcohols. To be mentioned as examples are: petroleum ether fractions, preferably higher boiling ones, toluene, mesity- lene, dichlorobenzene, tetrahydrofuran (THF), dimethylformamide (DMF), dimethylacet- amide. (DMA), hexamethylphosphoric acid triamide (HMPTA), glymes and diglymes, dime- thylsulphoxide (DMSO), tetramethylurea (TMU), higher alcohols, such as butanol or ethylene glycol.
Preference is given to products, wherein a molar excess of alkenes per molar amounts of aromatic amine reactants used in the process is about 1 to 10, preferably about 1.5 to 5 and highly preferred 2-3. With a molar excess of alkenes a product with less than 1% diphenyl- amine and 1% phenyl-α-naphthylamine can be obtained. Products that contain less than 1% DPA and PANA are of low toxicity and, therefore, need no labelling.
According to a preferred embodiment of the invention, the range of the excess amount of nonene combined with either α-methyl-styrene or styrene is 1 to 5, preferably 1 to 3, especially 1.5-2 mol. The addition of an additional amount of O.5 mol styrene or α-methyl-styrene reduces the diphenylamine content in the product below 1%. Products that contain less than 1% DPA are of very low toxicity and, therefore, need no labelling.
The products of the process are obtained when the first alkylation step, the alkylation with aliphatic alkenes, is carried out, for example, at a temperature range from 120° to 250°C, especially at a temperature from 150° to 220°C. The reaction temperature in the second reac- tion step, the alkylation with styrenes, is from about 60° to 250°C, preferably from 110° to 200°C, especially from 110° to 140°C.
The process can be carried out by introducing the starting materials and the acid clays, as the catalyst, into a suitable reaction vessel and by heating to the temperatures specified. In an alternative process variant, the tripropylene and the additional alkenes (α-methyl-styrene or styrene) may be added to the reaction mixture later. The feed time of the tripropylene is preferably 0.5-10 h and particularly 1-3 h. The reaction is preferably carried out without the addition of organic solvents. The reaction time may amount to several hours, especially in a first step from 5 to 10 h and in a second step from 2-5 h, before a diphenylamine content and phenyl-α-naphthylamine-content of less than 1 % is reached. This can be determined by taking samples and analytical methods. The reaction is preferably carried out under ambient pressure. Reaction at elevated pressures is possible, for example in an autoclave under a pressure of from 1 to 10 bar absolute pressure.
The acid clays used in the process can be removed from the reaction mixture by filtration, centrifugation or decanting, and are re-usable. In practice, they are used in an amount of from 5.0 to 20.0% by weight, especially from 5.0 to 10.0% by weight in respect to the total amount of the amine reactants. If desired, the mixture is purified in customary manner, for example by distillation.
The product obtained by alkylation with two different alkenes has favourable viscosity char- acteristics. For example, in an Ubbelohde viscosimeter, low kinematic viscosities of 300-
400 mm2/sec at 40°C are measured (ASTM D 445-94 method, micro-Ubbelohde 2.0 - 3.0 ml, Ubbelohde factor approx. 5) for alkylated diphenylamine mixtures. That value is lower than in the case of the products produced by alkylation with nonene only, e.g. products obtainable according to the method as disclosed in U.S. Patent Specification 6,315,925, such as the re- action product of 1 mol DPA with 4 mol nonene, which has viscosities from 450-500 mm2/s. or b) the reaction product obtainable according to French Patent Specification 1 508 785, by reaction of DPA with nonene with AICI3, which has viscosities >550 mm2/s. Moreover, the products alkylated with aluminium chloride as catalyst have intense coloration (Gardner number 9-10), compared to the product alkylated with acid clays with typical Gardner num- bers of2-3.
The following Examples illustrate the invention:
Abbreviations: rpm: Rotations per minute; min: Minute(s); h: Hour(s); RT: Retention Time, GC gas chramatogram;
Area percentages in GC do not exactly add up to 100%. Unknown components not specified. 1 Reaction of diphenylamine with tripropylene and α-methylstyrene
1.1 The reaction is carried out in a 300 ml glass reaction vessel equipped with • Double casing Jacket filled with (heatable high temperature oil) heat transfer fluid • Reflux cooler equipped with water separator, which is filled with tripropylene before start-up
• Feed unit for tripropylene and α-methyl-styrene reactants
• Propeller stirrer • Temperature indicator
• Sampling device.
The reaction vessel is loaded with 260 g diphenylamine (Duslo), which is melted at a vessel temperature of 80°C. 26.0g FULCAT 22B (Rockwood Additives) is added under stirring. The reaction vessel is sealed, evacuated to 20 mbar and rinsed with nitrogen for inert conditions. The stirrer speed is set to 500 rpm, and the reaction vessel is heated to 220°C within 1 h. At this temperature 291.0 g tripropylene (Exxon Europe) is fed to the reaction vessel for 2 h. The reaction mixture begins to boil after 5-10 min from the start of the tripropylene feed. The water adsorbed on the catalyst is distilled off as an azeotrope with tripropylene and removed in a water separator. Due to the con- stant addition of tripropylene, the boiling point of the reaction mass is reduced by the end of the feed gradually from 220° to 160-165°C. The reaction mixture is kept boiling during the complete feed time by adjusting the jacket temperature 20°C higher than the temperature of the reaction mixture. By stirring for an additional 2 to 4 h at 160-165°C the diphenylamine content in the reaction mass is reduced below 10% in respect to the amine content in the reaction mass. The reaction mixture is cooled to 130°C within
0.5 h. 91 g of α-methyl-styrene (Merck) is added at 130°C within 1 h. During the course of the reaction the temperature of the reaction mixture is increased to 133-134°C. A final content of <1 % diphenylamine in respect to the amine content in the reaction mass is obtained during an additional reaction time of 2 h. The catalyst is allowed to settle in the reactor during 1 h without stirring. The reaction mixture is removed from the top of the reactor by a glass tube. The reaction mixture is filtered through a filter with a pore diameter of approx. 1-3 μ. The filtrate is transferred to a distillation vessel without column. The non-converted starting materials tripropylene and α-methyl-styrene are distilled off by vacuum distillation at a maximum bottom temperature of 260°C and a minimum vacuum of 10 mbar. The distillation vessel is cooled to 80°C and relieved with nitrogen until the atmospheric pressure is reached. About 500 g of a yellow and viscous liquid are obtained. The composition of the final product as determined by capillary column gas chromatography is given below. 1.2 Analytical Results
1.2.1 Capillary column gas chromatography Gas chromatograph Hewlett Packard HP 6890 Injection method Direct Injection "On column" Injection volume 1.0 μl Column Fused silica, length 15 m, diameter 0.32 mm (J&W) Stationary Phase Silicon oil (5%-phenyl-methyl-polysiloxan DB-5, film layer 0.25 μ Detector FID (cf. Detection limit) Integration time 3.0 - 33.0 min Carrier gas He (1.6 ml/min) Auxiliary gases H2 (30 ml/min), air (400 ml/min) Temperatures Injector 0.5 min at 100°C. 100°C/min up to 320°C, 30 min at 320°C; Oven 1.0 min at 100°C, 10°C/min up to 320°C, 10 min at 320°C; Detector 340°C Evaluation method By area percent without correction factors Detection limit 0.05 area%
TABLE
Figure imgf000030_0001
1.2.2 Nitrogen content determined with DUMAS method is 3.9%.
1.2.3 Basic nitrogen determined by titration with perchloric acid is 3.75%.
1.2.4 Kinematic Viscosity according to Ubbelohde method at 40°C is 430 mm2/s 2 Reaction of N-α-naphthyl-N-phenylamine (PANA) with excess α-methylstyrene 2.1 A 1000 ml glass reaction vessel equipped with • Jacket with high temperature oil heating • Reflux cooler with water separator which is filled with α-methylstyrene before start-up • Feed unit for α-methylstyrene • Propeller stirrer and sampling device • Temperature indicator • Vacuum supply and inert gas atmosphere with nitrogen is loaded with 403 g PANA (Merck) and 40.3 g FULCAT 22B (Rockwood Additives). The reaction vessel is closed and evacuated to 20 mbar and flushed with nitrogen. The sur- rounding temperature is set to 130°C, and the PANA melt is formed at about 80°C. The speed of the stirrer is set to 500 rpm, and the reaction mass is heated to 130°C within 0.5 h. The water formed on the catalyst is removed above 100°C into the water separator. After reaching 130°C 477.8 g α-methylstyrene corresponding to 2.2 mol α-methylstyrene per mol PANA are added during 3 h. Caused by the heat of reaction the inner temperature increases to about 135°C. After adding the feed the reaction mass is kept at an inner temperature of 130-135°C for another 3 h. The reaction mass is cooled to 110°C and filtered to remove the catalyst. The remaining α-methylstyrene is distilled off at the maximum bottom temperature of 255°C at a pressure of 20 mbar. 660 g product is formed with the following composition determined by the GC-analysis.
2.2 Analytical Results
2.2.1 Capillary column gas chromatography Gas chromatograph Hewlett Packard HP 6890 Injection technique On column Injection volume 1.0 μl Column Fused silica, length: 15 m, diameter: 0.32 mm (J&W) Stationary phase Silicon oil (5%-phenyl-methyl-polysiloxane, DB-5, film thickness 0.25 μ Detector FID (sensitivity cf. detection limit) Integration 3.0 - 36.0 min Carrier gas He: 1.6 ml/min Auxiliary gases H2: 30 ml/min, air: 400 ml/min Temperatures Injector 0.5 min at 100°C, 100°C/min up to 350°C, 30 min at 350°C; Oven 1.0 min at 100°C, 10°C/min up to 350°C, 10 min at 350°C Detector 370°C Duration of cycle 36 min Sample preparation 95-115 mg sample in 20 ml toluene TABLE
Figure imgf000032_0001
2.2.2 Elemental analysis according to DUMAS method: 89.3% Carbon, 7.0% Hydrogen, 3.4% Nitrogen. 2.2.3 Basic nitrogen by perchloric acid titration: 3.3%
2.2.4 Kinematic viscosity determined by Ubbelohde method at 80°C 215 mm2/s 3 Reaction of N-α-naphthyl-N-phenylamine (PANA) and diphenylamine (DPA) with tripropylene and α-methylstyrene
3.1 The reaction is carried out in a 1000 ml glass reaction vessel equipped with • Jacket filled with a heatable high temperature oil • Reflux cooler equipped with a water separator, which is filled with tripropylene before start-up • Feed unit for tripropylene and α-methyl-styrene reactants • Propeller stirrer • Temperature indicator • Sampling device. The reaction vessel is loaded with 113.4 diphenylamine (DUSLO) and 146.9 g phenyl- α-naphthylamine (Merck). 26.0 g FULCAT 22B (Rockwood Additives) are added under stirring. The reaction vessel is sealed, evacuated to 20 mbar and relieved with nitrogen for inert conditions. The stirrer speed is set to 500 rpm, and the reaction vessel is heated to 220°C within 1 hour. At this temperature 423 g tripropylene (Exxon Europe) is fed to the reaction vessel during 2 h. The reaction mixture begins to boil after 10 min from the start of the tripropylene feed. The water adsorbed on the catalyst is distilled off as-an azeotrope with tripropylene and removed in a water separator. Due to the constantly added tripropylene, the boiling point of the reaction mass is reduced gradually from 220° to 160-165°C by the end of the feed. The reaction mixture is kept boiling during the complete feed time by adjusting the jacket temperature 20°C higher than the temperature of the reaction mixture. By stirring for an additional 4 h at 160-165°C the diphenylamine content in the reaction mass is reduced below 10% in respect to the amine content. The reaction mixture is cooled to 130°C within 0.5 h. 79 g of α-methyl- styrene (Merck) is added at 130°C within 1 . During the course of the reaction the temperature of the reaction mixture is increased to 133-134°C. The final content of <1% diphenylamine in respect to the amine content in reaction mass is obtained during an additional reaction time of 2 h.
3.2 Analytical Results 3.2.1 Capillary column gas chromatography Table
Figure imgf000034_0001
3.2.2 Elemental analysis according to DUMAS method: 87.0"% carbon, 9.8% hydrogen, 3.6% nitrogen
3.2.3 Basic nitrogen determined by perchloric acid titration: 3.5%
3.2.4 Kinematic viscosity at 80°C, 58 mm2/s
4 Reaction of diphenylamine (DPA) with tripropylene and slyrene
4.1 DPA is alkylated with tripropylene and styrene in a manner analogous to Example 1 by reaction of 260 g diphenylamine (DUSLO) and 291 g tripro pylene (Exxon Europe) according to Example 1 and addition of 80g styrene (Merck) at 130°C within 1 h. During the course of the reaction, the temperature is increased to 133—134°C. A final content of <1% diphenylamine in respect to the amine content in the reaction mass is reached during an additional reaction time of 2 h. The reaction mass is filtered and the excess amount of tripropylene is removed by distillation according to Example 1 at a maximum bottom temperature of 260°C and 10 mbar absolute pressure. About 492 g of a yellow and viscous liquid are obtained.
4.2 Analytical Results
4.2.1 Capillary column gas chromatography (analytical method cf. Example 1) TABLE
Figure imgf000035_0001
Table ctd.
Figure imgf000036_0001
Remarks: Some groups were not separated with the proposed gas chromatographic method.
4.2.2 Elemental analysis according to DUMAS method: 85% carbon, 9.6% hydrogen, 4.2% nitrogen
4.2.3 Basic nitrogen determined by perchloric acid titration: 4.1% 4.2.4 Kinematic viscosity determined according to Ubbelohde method at 40°C is 277 r-αm2/s 5 Application Results Table 1
Figure imgf000037_0001
The mixtures are obtained by magnetic (bar) stirring on a hot plate at 60°C. 1) Base Formulation in oil comprising 2% triaryl phosphate and 0.1% triazole metal deactivator in a synthetic pentaerythritol ester
2) IRGANOX L01: 4,4'-di-tert-octyldiphenylamine
3) Reaction product of N-α-naphthyl-N-phenylamine (PANA) with excess α-methylstyrene
4) Nonylated (mono/di/tri) diphenylamine 5) TAN: Total Acid Number: ASTM D 664 potentiometric titration procedure
6) Δ % Vise 40°C: Viscosity is measured per ASTM D 445 Kinematic viscosity procedure at 40°C
7) Sludge is determined by filtering the tested oil through pre-dried and pre-weighed Whatman No. 41 filter papers
8) Copper corrosion is determined by the weight loss of the copper coupon. After the test, the copper coupon is washed and wiped with cotton balls soaked in n-heptane. The coupon is dried, weighed to the nearest 0.1 mg and the dimensions of the coupon are measured to the nearest 0.1 cm. The corrosion is reported in mg/cm2. Weight changes of steel, silver, aluminum and magnesium coupons are neglegible. Application Results Table 2
Figure imgf000038_0001
The mixtures are obtained by magnetic (bar) stirring on a hot plate at 60°C. 1)_8) cf. Example 5 9) IRGANOX L57: alkylated (tert-butyl, branched octyl) diphenylamine 10) NAUGALUBE APAN: PANA alkylated with tetrapropylene

Claims

Claims
1. A composition which comprises
A) An additive mixture that essentially consists of a) At least one compound:
Figure imgf000039_0001
wherein one of Ri and R2 independently of one another represents hydrogen or a hydrocarbon radical selected from the group consisting of branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl and the other one represents a hydrocarbon radical selected from the group consisting of branched nonyl, 1- phenylethyl and 2-phenyl-2-propyl; and b) At least one compound:
Figure imgf000039_0002
wherein R and R2 independently of one another represent hydrogen or a hydrocarbon radical selected from the group consisting of tert-butyl, branched octyl, branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl; and R3 represents a hydrocarbon radical selected from the group consisting of tert-butyl, branched octyl, branched nonyl, 1-phenylethyl and 2-phenyl-2- propyl; and B) A composition of matter susceptible to oxidative, thermal or light induced degradation.
2. A composition which comprises B) An additive mixture which essentially consists of a) At least one compound:
Figure imgf000040_0001
wherein one of Ri and R2 independently of one another represents hydrogen or a hydrocarbon radical selected from the group consisting of branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl and the other one represents a hydrocarbon radical selected from the group consisting of branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl or an isomer thereof; and b) At least one compound:
Figure imgf000040_0002
wherein Ri and R2 independently of one another represent hydrogen or a hydrocarbon radical selected from the group consisting of tert-butyl, branched octyl, branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl; and R3 represents a hydrocarbon radical selected from the group consisting of tert-butyl, branched octyl, branched nonyl, 1-phenylethyl and 2-phenyl-2- propyl or an isomer thereof; and C) A composition of matter susceptible to oxidative, thermal or light induced degradation.
3. A composition according to claim 2, which comprises an additive mixture that essentially consists of a) At least one compound (I1), wherein one of Ri and R2 independently of one another represents hydrogen or a hydrocarbon radical selected from the group consisting of 2,4-dimethyl-2-heptyl, 1-phenylethyl and 2-phenyl-2-propyl and the other one represents a hydrocarbon radical selected from the group consisting of 2,4-dimethyl-2-heptyl, 1-phenylethyl and 2-phenyl-2-proρyl; and b) At least one compound (II'), wherein Ri and R2 independently of one another represent hydrogen or a hydrocarbon radical selected from the group con- sisting of tert-butyl, 2.4,4-trimethyl-2-pentyl, 2,4-dimethyl-2-heptyl, 1- phenylethyl and 2-phenyI-2-propyl; and R3 represents a hydrocarbon radical selected from the group consisting of tert-butyl, 2,4,4-trimethyl-2-pentyl, 2,4- dimethyl-2-heptyl, 1-phenylethyl and 2-phenyl-2-propyl.
4. A composition according to claim 2, which comprises an additive mixture that essentially consists of c) At least one compound (I1), wherein one of Ri and R2 independently of one another represent hydrogen or a hydrocarbon radical selected from the group consisting of 2,4-dimethyl-2-heptyl and 2-phenyl-2-propyl and the other one represents a hydro- carbon radical selected from the group consisting of 2.4-dimethyl-2-heptyl and 2- phenyl-2-propyl; and d) At least one compound (\V), wherein Ri and R2 independently of one another represent hydrogen or a hydrocarbon radical selected from the group consisting of tert-butyl, 2,4,4-trimethylpent-2-yl, 2,4-dimethyl-2-heptyl and 2-phenyl-2-propyl; and R3 represents a hydrocarbon radical selected from the group consisting of tert-butyl, 2,4,4-trimethylpent-2-yll 2,4-dimethyl-2-heptyl and 2-phenyl-2-propyl.
5. A composition according to claim 2, which comprises an additive mixture that essentially consists of c) At least one compound (I'), wherein one of R and R2 independently of one another represents hydrogen or a hydrocarbon radical selected from the group consisting of 2,4-dimethyl-2-heptyl and 2-phenyl-2-propyl and the other one represents a hydrocarbon radical selected from the group consisting of 2,4-dimethyl-2-heptyl and 2- phenyl-2-propyl; and d) At least one compound (II'). wherein Ri and R2 independently of one another repre- sent hydrogen or a hydrocarbon radical selected from the group consisting of 2,4- dimethyl-2-heptyl and 2-phenyl-2-propyl; and R3 represents a hydrocarbon radical selected from the group consisting of 2.4-dimethyl-2-heptyl and 2-phenyl-2-propyl.
6. A composition according to claims 1 or 2, wherein the composition of matter of component B) susceptible to oxidative, thermal and light induced degradation is a natural, semi- synthetic or synthetic polymer or a functional fluid.
7. A composition according to claim 6, wherein the functional fluid is a lubricant, machining fluid or a hydraulic fluid.
8. A composition according to claims 1 or 2, which additionally contains conventional additives suitable for protecting a composition of matter susceptible to oxidative, thermal and light induced degradation.
9. An additive mixture that essentially consists of a) At least one compound (I), wherein one of Ri and R2 independently of one another represents hydrogen or a hydrocarbon radical selected from the group consisting of branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl and the other one represents a hydrocarbon radical selected from the group consisting of branched nonyl, 1- phenylethyl and 2-phenyl-2-propyl; and b) At least one compound (II), wherein Ri and R2 independently of one another represent hydrogen or a hydrocarbon radical selected from the group consisting of tert-butyl, branched octyl, branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl; and Rs represents a hydrocarbon radical selected from the group consisting of tert-butyl, branched octyl, branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl
10. The product obtainable by alkylating a mixture of N-α-naphthyl-N-phenylamine (PANA) and diphenylamine with nonene or a mixture of isomeric nonenes in the presence of α- methylstyrene and an acidic catalyst.
11. The product obtainable by alkylating N-α-naphthyl-N-phenylamine (PANA) with nonene or a mixture of isomeric nonenes in the presence of α-methylstyrene and an acidic catalyst.
12. A process for stabilizing composition of matter susceptible to oxidative, thermal and/or light induced degradation, which comprises adding or applying to the composition of matter the composition according to claim 1 as a stabiliser.
13. A process for preparing the composition according to claim 1, which comprises alkylating N-α-naphthyl-N-phenylamine (PANA) or a mixture of PANA and diphenylamine with nonene or a mixture of isomeric nonenes in the presence of styrene or α-methylstyrene and an acidic catalyst and adding to the reaction mixture a compound (II) wherein Ri and R2 independently of one another represent hydrogen or a hydrocarbon radical selected from the group consisting of tert-butyl and branched octyl and Rs represents branched octyl.
14. A process for preparing a composition according to claim 1, which comprises alkylating N-α-naphthyl-N-phenylamine (PANA) with nonene or a mixture of isomeric nonenes in the presence of α-methylstyrene and an acidic catalyst and adding to the reaction mixture a compound (II) or a mixture of the compound (II), wherein Ri and R2 independently of one another represent hydrogen or a hydrocarbon radical selected from the group consisting of tert-butyl, branched octyl and branched nonyl and R3 represents a hydrocarbon radical selected from the group consisting of tert-butyl, branched octyl and branched nonyl.
15. A process for the preparation of a mixture comprising at least one compound (I), wherein one of Ri and R2 independently of one another represents hydrogen or a hydrocarbon radical selected from the group consisting of branched nonyl, 1-phenylethyl and 2- phenyl-2-propyl and the other one represents a hydrocarbon radical selected from the group consisting of branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl, w ich comprises alkylating N-α-naphthyl-N-phenylamine (PANA) with nonene or a mixture of isomeric nonenes in the presence of styrene or α-methylstyrene and an acidic catalyst.
16. A process for the preparation of a mixture comprising at least one compound (I), wherein one of Ri and R2 independently of one another represents hydrogen or a hydrocarbon radical selected from the group consisting of branched nonyl, 1-phenylethyl and 2- phenyl-2-propyl and the other one represents a hydrocarbon radical selected from the group consisting of branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl; and at least one compound (II), wherein Ri and R2 independently of one another represent hydrogen or a hydrocarbon radical selected from the group consisting of branched nonyl, 1- phenylethyl and 2-phenyl-2-propyl; and R3 represents a hydrocarbon radical selected from the group consisting of branched nonyl, 1-phenylethyl and 2-phenyl-2-propyl, which comprises alkylating N-α-naphthyl-N-phenylamine (PANA) or a mixture of N-α-naphthyl- N-phenylamine (PANA) and diphenylamine with nonene or a mixture of isomeric nonenes in the presence of styrene or α-methylstyrene and an acidic catalyst.
17. A process for the preparation of a mixture comprising at least one compound (I), wherein one of Ri and R2 independently of one another represents hydrogen or a hydrocarbon radical selected from the group consisting of branched nonyl and 2-phenyl-2-propyl and the other one represents a hydrocarbon radical selected from the group consisting of branched nonyl and 2-phenyl-2-propyl, which comprises alkylating N-α-naphthyl-N- phenylamine (PANA) with nonene or a mixture of isomeric nonenes in the presence of α- methylstyrene and an acidic catalyst.
18. A process for the preparation of a mixture comprising at least one compound (I), wherein one of Ri and R2 independently of one another represents hydrogen or a hydrocarbon radical selected from the group consisting of branched nonyl and 2-phenyl-2-propyl and the other one represents a hydrocarbon radical selected from the group consisting of branched nonyl and 2-phenyl-2-propyl; and at least one compound (II), wherein Ri and R2 independently of one another represent hydrogen or a hydrocarbon radical selected from the group consisting of branched nonyl and 2-phenyl-2-propyl; and R3 represents a hydrocarbon radical selected from the group consisting of branched nonyl and 2-phenyl- 2-propyl, which comprises alkylating N-α-naphthyl-N-phenylamine (PANA) or diphenylamine with nonene or a mixture of isomeric nonenes in the presence of α-rnethylstyrene and an acidic catalyst.
PCT/EP2005/051324 2004-04-01 2005-03-23 Alkylated pana and dpa compositions WO2005097728A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
KR1020127030576A KR20120133398A (en) 2004-04-01 2005-03-23 Alkylated PANA and DPA compositions
CA2559746A CA2559746C (en) 2004-04-01 2005-03-23 Alkylated pana and dpa compositions
KR1020067018672A KR101239143B1 (en) 2004-04-01 2005-03-23 Alkylated PANA and DPA compositions
BRPI0509521A BRPI0509521B1 (en) 2004-04-01 2005-03-23 ALKHIED PANA AND DPA COMPOSITIONS AND THEIR PREPARATION PROCESS, ADDITIVE MIXING AND PREPARATION PROCESS, AND PROCESS FOR STABILIZING OIL-BASED LUBRICANT VISCOSITY OIL
JP2007505544A JP5080969B2 (en) 2004-04-01 2005-03-23 Alkylated PANA and DPA compositions
ES05740135.8T ES2560658T3 (en) 2004-04-01 2005-03-23 PANA and DPA compositions rented
PL05740135T PL1730101T3 (en) 2004-04-01 2005-03-23 Alkylated pana and dpa compositions
CN2005800103558A CN1938260B (en) 2004-04-01 2005-03-23 Alkylated PANA and DPA compositions
US10/594,379 US8030259B2 (en) 2004-04-01 2005-03-23 Alkylated PANA and DPA compositions
EP05740135.8A EP1730101B1 (en) 2004-04-01 2005-03-23 Alkylated pana and dpa compositions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US55880104P 2004-04-01 2004-04-01
US60/558,801 2004-04-01

Publications (1)

Publication Number Publication Date
WO2005097728A1 true WO2005097728A1 (en) 2005-10-20

Family

ID=34966295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/051324 WO2005097728A1 (en) 2004-04-01 2005-03-23 Alkylated pana and dpa compositions

Country Status (12)

Country Link
US (1) US8030259B2 (en)
EP (1) EP1730101B1 (en)
JP (1) JP5080969B2 (en)
KR (2) KR101239143B1 (en)
CN (1) CN1938260B (en)
BR (1) BRPI0509521B1 (en)
CA (1) CA2559746C (en)
ES (1) ES2560658T3 (en)
PL (1) PL1730101T3 (en)
SG (1) SG154437A1 (en)
TW (1) TW200536813A (en)
WO (1) WO2005097728A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2055763A1 (en) * 2007-10-23 2009-05-06 Shell Internationale Research Maatschappij B.V. Lubricating oil composition
WO2009064604A1 (en) 2007-11-16 2009-05-22 Chemtura Corporation Acridan derivatives as antioxidants
FR2924122A1 (en) * 2007-11-28 2009-05-29 Nyco Sa Sa ANTI-OXIDANT AND / OR ANTI-CORROSION AGENT, LUBRICATING COMPOSITION CONTAINING SAID AGENT AND PROCESS FOR PREPARING THE SAME
JP2011500729A (en) * 2007-11-16 2011-01-06 ケムチュア コーポレイション Bicyclic aromatic amine derivatives as antioxidants
US8030259B2 (en) 2004-04-01 2011-10-04 Ciba Speciality Chemicals Corp. Alkylated PANA and DPA compositions
US8227391B2 (en) 2008-10-17 2012-07-24 Afton Chemical Corporation Lubricating composition with good oxidative stability and reduced deposit formation
US8236205B1 (en) 2011-03-11 2012-08-07 Wincom, Inc. Corrosion inhibitor compositions comprising tetrahydrobenzotriazoles and other triazoles and methods for using same
US8236204B1 (en) 2011-03-11 2012-08-07 Wincom, Inc. Corrosion inhibitor compositions comprising tetrahydrobenzotriazoles solubilized in activating solvents and methods for using same
WO2017011159A1 (en) * 2015-07-15 2017-01-19 Chemtura Corporation Diaryl amine antioxidants prepared from branched olefins
US10308754B2 (en) 2012-08-16 2019-06-04 Huntsman Petrochemical Llc Composition

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102112434A (en) * 2008-08-08 2011-06-29 雅宝公司 Octylated phenyl-alpha-naphthylamine product mixtures and production of such mixtures having high content of octylated phenyl-alpha-naphthylamine
US8110532B2 (en) * 2008-11-24 2012-02-07 Chemtura Corporation Antioxidant compositions
JP5537912B2 (en) * 2009-11-27 2014-07-02 Jx日鉱日石エネルギー株式会社 Surface treatment agent and surface treatment method
ES2377688B1 (en) * 2010-04-12 2013-02-15 Bautista Santillana Fernández BIODEGRADABLE HYDRAULIC OIL.
RU2493242C1 (en) * 2012-08-09 2013-09-20 Общество с ограниченной ответственностью "ВМПАВТО" Grease lubricant
BR112015003099A2 (en) 2012-08-14 2017-07-04 Basf Se lubricant composition, polymer, and method for forming a polymer.
KR101628538B1 (en) * 2014-11-21 2016-06-08 황규택 Method of Manufacturing Functional Laver
KR101659318B1 (en) * 2015-11-24 2016-09-23 주식회사 루브캠코리아 Lubricating grease composition and its preparation method
JP6677413B2 (en) * 2016-01-26 2020-04-08 出光興産株式会社 Lubricating oil composition
US10077410B2 (en) * 2016-07-13 2018-09-18 Chevron Oronite Company Llc Synergistic lubricating oil composition containing mixture of antioxidants
KR20200135396A (en) * 2018-03-20 2020-12-02 바스프 에스이 Lubricating composition
EP4130207B1 (en) 2021-08-03 2024-03-06 LANXESS Deutschland GmbH Additive mixture for turbine oils
KR20240040074A (en) 2021-08-03 2024-03-27 란세스 도이치란트 게엠베하 New additive mixture

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2530769A (en) * 1950-01-12 1950-11-21 Goodrich Co B F Diphenyl amine derivatives
US2943112A (en) * 1957-11-06 1960-06-28 Pennsalt Chemicals Corp Alkylation of diphenylamine
JPS62181396A (en) * 1986-06-05 1987-08-08 Nippon Oil Co Ltd Lubricating oil composition
EP0387979A1 (en) * 1989-01-13 1990-09-19 Nippon Oil Company, Limited Use of a p,p'-Dinonyldiphenylamine in a composition having a reduced tendency to form sludge in oil
EP0606863A2 (en) * 1993-01-15 1994-07-20 Hoechst Aktiengesellschaft Process for the thermooxidative stabilization of glycol compounds and thermooxidative stabilized mixtures thereof
US6315925B1 (en) * 1997-06-06 2001-11-13 Ciba Specialty Chemicals Corporation Nonylated diphenylamines
FR2832417A1 (en) * 2001-11-20 2003-05-23 Bp Corp North America Inc Synthetic oil compositions containing a synergistic combination of arylamine type antioxidants as additives, useful in gas turbine oils based on synthetic esters of polyols

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US394492A (en) * 1888-12-11 Step-ladder
US3944492A (en) * 1966-04-07 1976-03-16 Uniroyal, Inc. Lubricant compositions containing N-substituted naphthylamines as antioxidants
DE19756146A1 (en) * 1997-12-17 1999-06-24 Bayer Ag Preparation of N-phenyl-1-naphthylamine
EP1054052B1 (en) * 1999-05-19 2006-06-28 Ciba SC Holding AG Stabilized hydrotreated and hydrodewaxed lubricant compositions
GB2368848B (en) * 2000-09-21 2002-11-27 Ciba Sc Holding Ag Lubricants with 5-tert.-butyl-hydroxy-3-methylphenyl substituted fatty acid esters
BRPI0509521B1 (en) 2004-04-01 2015-09-29 Ciba Sc Holding Ag ALKHIED PANA AND DPA COMPOSITIONS AND THEIR PREPARATION PROCESS, ADDITIVE MIXING AND PREPARATION PROCESS, AND PROCESS FOR STABILIZING OIL-BASED LUBRICANT VISCOSITY OIL
EP2055763A1 (en) 2007-10-23 2009-05-06 Shell Internationale Research Maatschappij B.V. Lubricating oil composition
CN102112434A (en) 2008-08-08 2011-06-29 雅宝公司 Octylated phenyl-alpha-naphthylamine product mixtures and production of such mixtures having high content of octylated phenyl-alpha-naphthylamine
US8227391B2 (en) * 2008-10-17 2012-07-24 Afton Chemical Corporation Lubricating composition with good oxidative stability and reduced deposit formation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2530769A (en) * 1950-01-12 1950-11-21 Goodrich Co B F Diphenyl amine derivatives
US2943112A (en) * 1957-11-06 1960-06-28 Pennsalt Chemicals Corp Alkylation of diphenylamine
JPS62181396A (en) * 1986-06-05 1987-08-08 Nippon Oil Co Ltd Lubricating oil composition
EP0387979A1 (en) * 1989-01-13 1990-09-19 Nippon Oil Company, Limited Use of a p,p'-Dinonyldiphenylamine in a composition having a reduced tendency to form sludge in oil
EP0606863A2 (en) * 1993-01-15 1994-07-20 Hoechst Aktiengesellschaft Process for the thermooxidative stabilization of glycol compounds and thermooxidative stabilized mixtures thereof
US6315925B1 (en) * 1997-06-06 2001-11-13 Ciba Specialty Chemicals Corporation Nonylated diphenylamines
FR2832417A1 (en) * 2001-11-20 2003-05-23 Bp Corp North America Inc Synthetic oil compositions containing a synergistic combination of arylamine type antioxidants as additives, useful in gas turbine oils based on synthetic esters of polyols

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
P. SNIEGOSKI ET AL: "Quantitative TLC Analysis of Amine Antioxidants in High-temperature Jet Engine Lubricants", JOURNAL OF CHROMATOGRAPHIC SCIENCE, vol. 15, 1977, pages 328 - 329, XP009054421 *
PATENT ABSTRACTS OF JAPAN vol. 012, no. 033 (C - 472) 30 January 1988 (1988-01-30) *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8030259B2 (en) 2004-04-01 2011-10-04 Ciba Speciality Chemicals Corp. Alkylated PANA and DPA compositions
EP2055763A1 (en) * 2007-10-23 2009-05-06 Shell Internationale Research Maatschappij B.V. Lubricating oil composition
WO2009064604A1 (en) 2007-11-16 2009-05-22 Chemtura Corporation Acridan derivatives as antioxidants
US7847125B2 (en) 2007-11-16 2010-12-07 Chemtura Corporation Acridan derivatives as antioxidants
JP2011500729A (en) * 2007-11-16 2011-01-06 ケムチュア コーポレイション Bicyclic aromatic amine derivatives as antioxidants
JP2011503079A (en) * 2007-11-16 2011-01-27 ケムチュア コーポレイション Acridan derivatives as antioxidants
FR2924122A1 (en) * 2007-11-28 2009-05-29 Nyco Sa Sa ANTI-OXIDANT AND / OR ANTI-CORROSION AGENT, LUBRICATING COMPOSITION CONTAINING SAID AGENT AND PROCESS FOR PREPARING THE SAME
WO2009071857A1 (en) * 2007-11-28 2009-06-11 Nyco Sa Anti-oxidation and/or anti-corrosion agent, lubricating composition containing said agent and method for preparing same
US8227391B2 (en) 2008-10-17 2012-07-24 Afton Chemical Corporation Lubricating composition with good oxidative stability and reduced deposit formation
US8236205B1 (en) 2011-03-11 2012-08-07 Wincom, Inc. Corrosion inhibitor compositions comprising tetrahydrobenzotriazoles and other triazoles and methods for using same
US8236204B1 (en) 2011-03-11 2012-08-07 Wincom, Inc. Corrosion inhibitor compositions comprising tetrahydrobenzotriazoles solubilized in activating solvents and methods for using same
US8535569B2 (en) 2011-03-11 2013-09-17 Wincom, Inc. Corrosion inhibitor compositions comprising tetrahydrobenzotriazoles and other triazoles and methods for using same
US8535567B2 (en) 2011-03-11 2013-09-17 Wincom, Inc. Corrosion inhibitor compositions comprising tetrahydrobenzotriazoles solubilized in activating solvents and methods for using same
US8535568B2 (en) 2011-03-11 2013-09-17 Wincom, Inc. Corrosion inhibitor compositions comprising tetrahydrobenzotriazoles solubilized in activating solvents and methods for using same
US9447322B2 (en) 2011-03-11 2016-09-20 Wincom, Inc. Corrosion inhibitor compositions comprising tetrahydrobenzotriazoles solubilized in activating solvents and methods for using same
US10308754B2 (en) 2012-08-16 2019-06-04 Huntsman Petrochemical Llc Composition
WO2017011159A1 (en) * 2015-07-15 2017-01-19 Chemtura Corporation Diaryl amine antioxidants prepared from branched olefins
US10487043B2 (en) 2015-07-15 2019-11-26 Lanxess Solutions Us Inc. Diaryl amine antioxidants prepared from branched olefins

Also Published As

Publication number Publication date
KR101239143B1 (en) 2013-03-11
EP1730101B1 (en) 2015-11-18
BRPI0509521A (en) 2007-09-18
CN1938260B (en) 2010-06-16
ES2560658T3 (en) 2016-02-22
US8030259B2 (en) 2011-10-04
TW200536813A (en) 2005-11-16
KR20120133398A (en) 2012-12-10
BRPI0509521B1 (en) 2015-09-29
JP5080969B2 (en) 2012-11-21
EP1730101A1 (en) 2006-12-13
US20080274925A1 (en) 2008-11-06
KR20060127187A (en) 2006-12-11
PL1730101T3 (en) 2016-05-31
SG154437A1 (en) 2009-08-28
JP2007530636A (en) 2007-11-01
CN1938260A (en) 2007-03-28
CA2559746A1 (en) 2005-10-20
CA2559746C (en) 2013-06-25

Similar Documents

Publication Publication Date Title
US8030259B2 (en) Alkylated PANA and DPA compositions
CA2240971C (en) Nonylated diphenylamines
US20100022425A1 (en) Corrosion Inhibiting Composition For Non-Ferrous Metals
JP2011528060A (en) Liquid additives for stabilization of lubricating oil compositions
US7026438B2 (en) Liquid phenolic sulphur-containing antioxidants
JP2002105481A (en) Lubricant comprising 5-tert-butyl-4-hydroxy-3- methylphenyl substituted fatty acid ester
US20090105102A1 (en) Benzotriazole Compositions
KR100402709B1 (en) (Benzo) triazole radical
US5507963A (en) Condensation products of melamine, (benzo) triazoles and aldehydes
WO2003004476A1 (en) Aminoalkyl-substituted benzotriazoles and triazoles as metal deactivators
MXPA06011062A (en) Alkylated pana and dpa compositions
US20110212864A1 (en) Benzotriazole compositions
JPH07304772A (en) Condensation product of melamine with (benzo)-thiazole and aldehyde
MXPA98004486A (en) Nonila difenylamins

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005740135

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067018672

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2559746

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10594379

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: PA/a/2006/011062

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 3639/CHENP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 200580010355.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007505544

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 1020067018672

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005740135

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0509521

Country of ref document: BR