Connect public, paid and private patent data with Google Patents Public Datasets

Physiological assessment system

Info

Publication number
WO2005096922A1
WO2005096922A1 PCT/US2005/010928 US2005010928W WO2005096922A1 WO 2005096922 A1 WO2005096922 A1 WO 2005096922A1 US 2005010928 W US2005010928 W US 2005010928W WO 2005096922 A1 WO2005096922 A1 WO 2005096922A1
Authority
WO
Grant status
Application
Patent type
Prior art keywords
physiological
assessment
pulse
variability
system
Prior art date
Application number
PCT/US2005/010928
Other languages
French (fr)
Inventor
Felice Claudio De
Mitchell Goldstein
Giuseppe Latini
Original Assignee
Masimo Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases

Abstract

A physiological assessment system comprises a sensor (110) and first (120) and second processors (130). The sensor is adapted to generate a signal (112) responsive to a living organism. The first processor is configured to derive a measured parameter (122) from the sensor signal. The second processor is configured to analyze nonlinear dynamics of the measured parameter so as to provide a physiological assessment (132) of the living organism.

Description

PHYSIOLOGICAL ASSESSMENT SYSTEM

CROSS-REFERENCE TO RELATED APPLICATIONS [0001] This application relates to and claims the benefit of prior U.S. Provisional Application No. 60/558,426 entitled Chaotic Analysis of Pulse Oximetry Signals in the Assessment of Neonatal Illness Severity, filed 03/31/2004 and incorporated by reference herein.

BACKGROUND OF THE INVENTION [0002] Pulse oximetry is a noninvasive, easy to use, inexpensive procedure for measuring the oxygen saturation level of arterial blood. Pulse oximeters perform a spectral analysis of the pulsatile component of arterial blood in order to determine the relative concentration of oxygenated hemoglobin, the major oxygen carrying constituent of blood. By providing early detection of decreases in the arterial oxygen supply, pulse oximetry reduces the risk of accidental death and injury. As a result, pulse oximeters have gained rapid acceptance in a wide variety of medical applications, including surgical wards, intensive care units, general wards and home care. [0003] A typical pulse oximeter comprises a sensor and a monitor. The sensor has emitters and a detector and is attached to a patient at a selected tissue site, such as a fingertip or ear lobe. The emitters project light at red and infrared (IR) wavelengths through the blood vessels and capillaries of the tissue site. The detector is positioned so as to detect the emitted light as it emerges from the tissue site. The signal generated by the detector is proportional to the intensity of the detected light. The detector signal has a variable (AC) component due to light absorption by the pulsatile volume of arterial blood. The detector signal also has a constant (DC) component due to light absorption by the non-pulsatile volume of arterial blood, venous blood, bone and other tissue. A signal processor inputs the detector signal and determines oxygen saturation and pulse rate, which are typically shown as a numerical readout on a display. In addition to oxygen saturation and pulse rate (PR), some pulse oximeters measure perfusion index (PI), which is a relative indication of pulse strength at a monitoring site. In particular, PI is the ratio of the IR AC signal to the IR DC signal. A pulse oximetry sensor and monitor are described, respectively, in U.S. Patent 6,088,607 entitled Low Noise Optical Probe and U.S. Patent 5,482,036 entitled Signal Processing Apparatus and Method, both of which are assigned to Masimo Corporation, Irvine, CA and incorporated by reference herein. SUMMARY OF THE INVENTION [0004] Nonlinear dynamics is the study of systems governed by equations in which a small change in one variable can induce a large systematic change. Chaos theory is one aspect of nonlinear dynamics, which attempts to construct deterministic, nonlinear dynamic models that elucidate irregular, unpredictable behavior. Chaos theory teaches that complex non-linear systems may not reach steady state, but will behave chaotically depending on minute changes in environmental conditions. Nonlinear dynamics can be advantageously applied to analyze the variability of physiological parameters for illness assessment. For example, chaos data analysis is applied to real-time pulse oximetry signals, including perfusion index or pulse rate or both, so as to determine or predict the severity of patient illness or, in contrast, the degree of patient wellness. [0005] A healthy individual has a physiological system with a complex dynamic that enables it to adapt to a constantly changing environment. Many serious diseases have pathologies that reduce the dynamic complexity of the human physiological system. This translates into reduced variability of measurable physiological parameters, such as those derived by pulse oximetry. As such, the variability of measured physiological parameters can be used to assess illness severity. Use of non-invasively-obtained physiological parameters, for example, parameters obtained through the use of pulse-oximetry, has the advantage that system variability may be monitored continuously and the onset of serious disease may therefore be detected sooner than would otherwise be possible. The early detection of serious disease can be especially important with patients that are highly susceptible and for whom the time interval between disease onset and mortality can be very short, such as neonatal patients. [0006] One aspect of a physiological assessment system is a sensor and first processor and a second processor. The sensor is adapted to generate a signal responsive to a living organism. The first processor is configured to derive a measured parameter from the sensor signal. The second processor is configured to analyze nonlinear dynamics of the measured parameter so as to provide a physiological assessment of the living organism. In one embodiment, the sensor is adapted to transmit optical radiation of at least two wavelengths into a tissue site and generate a detector signal responsive to the optical radiation after absorption by pulsatile blood flow within the tissue site, the first processor is a pulse oximeter and the measured parameter is a perfusion index. The second processor may calculate a statistic responsive to the variability of the perfusion index and the physiological assessment may correspond to illness severity. Further, the statistic may be determined by chaos data analysis, which may be compared to a predetermined normality range. In a particular embodiment, the pulse oximeter derives a second measured parameter and the second processor calculates a second statistic responsive to the variability of the second measured parameter, wherein the second measured parameter may be pulse rate. [0007] Another aspect of a physiological assessment system is a pulse oximeter, a variability analyzer and a statistics interpreter. The pulse oximeter is adapted to measure a perfusion index. The variability analyzer is configured to provide a statistic or statistics responsive to variability of the perfusion index. The statistics interpreter is configured to indicate illness severity based upon the statistic or statistics. The physiological assessment system may further comprise a data storage for compiling time series data for the perfusion index. The system may also comprise a visual indication perfusion index variability or illness severity or both. In addition, the system may comprise an aural indication perfusion index variability or illness severity or both. In one embodiment, the analyzer is a chaos data analyzer. A predetermined range may be input to the interpreter, wherein the interpreter is capable of comparing statistic or statistics to the range so as to indicate illness severity. [0008] A further aspect of a physiological assessment system comprises time series data derived for at least one physiological parameter and a nonlinear dynamics measure calculated based upon the time series data. The nonlinear dynamics measure is evaluated with respect to a predetermined criterion, and a physiological assessment is provided based upon the evaluation. The time series data may be a perfusion index measured with a pulse oximeter. The nonlinear dynamics measure may be a variability measure obtained for the perfusion index. The variability measure may be compared to a predetermined cutoff value, and an illness severity indication may be outputted. In a particular embodiment, a pulse rate is also measured and a variability measure is calculated for the combination of perfusion index and pulse rate. A chaos data analysis may be performed on the time series data.

BRIEF DESCRIPTION OF THE DRAWINGS [0009] FIG. 1 is a general block diagram of a physiological assessment system; [0010] FIG. 2 is a block diagram of one embodiment of a physiological assessment system; and [0011] FIG. 3 is a flowchart of a physiological assessment process. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [0012] FIG. 1 illustrates a physiological assessment system 100 that advantageously monitors the nonlinear dynamics of one or more physiological parameters 122 so as to provide a health assessment 132 of a living organism. The physiological assessment system 100 has one or more sensors 110 capable of responding to a living organism so as to provide sensor signals 112 to one or more physiological parameter processors 120. The physiological parameter processors 120 provide measured parameters 122 derived from the sensor signals 112. A nonlinear dynamics processor 130 analyzes the dynamics of the measured parameters 122 so as to provide a physiological assessment 132 of the living organism. A sensor(s) 110 may be a pulse oximetry sensor, a blood pressure transducer, ECG or EEG electrodes or a capnometer, or a combination of these, to name a few. The physiological parameter processor(s) 120, accordingly, may be a pulse oximeter, a blood pressure monitor, an ECG monitor, an EEG monitor, a CO2 monitor or a multi- parameter patient monitor, or a combination of these, to name a few. Likewise, the measured parameters 122 may be, as examples, oxygen saturation, pulse rate, perfusion index, blood glucose, blood pressure and ETCO2 among others. The nonlinear dynamics processor 130 can be hardware, software or a combination that analyzes, for example, the variability of the measured parameters 122. The physiological assessment 132 may be a numerical readout, message or other visual display or an alarm or other audible indication, or a combination of these. The physiological assessment 132 may assist in the determination of illness severity, wellness, or depth of sedation, to name a few; may provide information helpful for triage in emergency, hospital or surgical environments, for example; or may help in the prediction of, for instance, recovery time, length of hospitalization or medical costs. [0013] FIG. 2 illustrates one embodiment of a physiological assessment system 200 having a pulse oximeter 210, a data storage 220, a variability analyzer 230 and a statistics interpreter 240. The pulse oximeter 210 measures parameters 212 such as perfusion index (PI) or pulse rate (PR) or a combination of PI and PR. The data storage 212 compiles a trend of the parameters 212 so as to create a data record 224. The data record length (T) is set by a predetermined storage interval input 222. The variability analyzer 230 processes the data record 224 so as to provide data statistics 232. hi a particular embodiment, the variability analyzer 230 is a Chaos Data Analyzer (CDA-Pro) available from The Academic Software Library, North Carolina State University, Raleigh, NC. The CDA-Pro performs various tests for detecting hidden determinism in a seemingly random time series, such as the probability distribution, power spectrum, Lyapunov exponent, and various measures of the fractal dimension. The statistics interpreter 240 evaluate the data statistics 232 to determine if variability is in a normal or abnormal range and provides an illness severity indicator 244 accordingly. A predetermined normality range input 242 sets this range. The illness severity indicator 244 may be displayed 250 or may trigger an alarm 260 or both. In an alternative embodiment, the range input 242 may specify multiple ranges, which may include one or more of variability above a normal level indicating illness, variability within a normal range indicating, variability within an indeterminate range, and variability below a normal range indicating illness. The range input 242 may also be a threshold or cutoff between normal and abnormal variability. In another embodiment, PR variability may be used as an early predictor of a return to health, and PI variability may be used as an early predictor of the onset of illness. [0014] In a particular embodiment, the pulse oximeter 210 incorporates the data storage 220, variability analyzer 230 and statistics interpreter 240. The display 250 is a scaled readout on a pulse oximeter 210 showing PI variance on a relative scale having a gauge of maximum and minimum ranges. An alarm 260 is configured to sound when PI variance drops below a predetermined level. [0015] FIG. 3 illustrates a physiological assessment method 300 wherein physiological parameters are iteratively measured 310 and recorded as a time series 320. The physiological parameters may be, for example, perfusion index or pulse rate or both. Nonlinear linear dynamics of the time series are calculated 330. These calculations may be based upon chaos data analysis. The nonlinear dynamics are evaluated with respect to predetermined criteria 340 so as to provide a physiological assessment 350. In one embodiment, the nonlinear dynamics may provide a measure of variability of the physiological parameter or parameters, which may be compared to a range of normal or abnormal variability or, alternatively, a threshold or cutoff value of variability so as to assess illness severity or depth of sedation, for example. [0016] A physiological assessment system has been disclosed in detail in connection with various embodiments. These embodiments are disclosed by way of examples only and are not to limit the scope of the claims that follow. One of ordinary skill in art will appreciate many variations and modifications.

Claims

WHAT IS CLAIMED IS: 1. A physiological assessment system comprising: a sensor adapted to generate a signal responsive to a living organism; a first processor configured to derive a measured parameter from said signal; and a second processor configured to analyze nonlinear dynamics of said measured parameter so as to provide a physiological assessment of said living organism.
2. The physiological assessment system according to claim 1 wherein: said sensor is adapted to transmit optical radiation of at least two wavelengths into a tissue site and generate a detector signal responsive to said optical radiation after absorption by pulsatile blood flow within said tissue site; said first processor is a pulse oximeter; and said measured parameter is a perfusion index.
3. The physiological assessment system according to claim 2 wherein: said second processor calculates a statistic responsive to the variability of said perfusion index; and said physiological assessment corresponds to illness severity
4. The physiological assessment system according to claim 3 wherein said statistic is determined by chaos data analysis.
5. The physiological assessment system according to claim 4 wherein said compared to a predetermined normality range.
6. The physiological assessment system according to claim 5 wherein: said pulse oximeter derives a second measured parameter, and said second processor calculates a second statistic responsive to the variability of said second measured parameter.
7. The physiological assessment system according to claim 6 wherein said second measured parameter is pulse rate.
8. A physiological assessment system comprising: a pulse oximeter adapted to measure a perfusion index; an analyzer configured to provide at least one statistic responsive to variability of said perfusion index; and an interpreter configured to indicate illness severity based upon said at least one statistic.
9. The physiological assessment system according to claim 8 further comprising a data storage for compiling time series data for said perfusion index.
10. The physiological assessment system according to claim 9 further comprising a visual indication of at least one of perfusion index variability and illness severity.
11. The physiological assessment system according to claim 9 further comprising an aural indication of at least one of perfusion index variability and illness severity.
12. The physiological assessment system according to claim 10 wherein said analyzer is a chaos data analyzer.
13. The physiological assessment system according to claim 12 further comprising: a predetermined range input to said interpreter, said interpreter capable of comparing said at least one statistic to said range so as to indicate illness severity.
14. A physiological assessment method comprising the steps of: deriving time series data for at least one physiological parameter; calculating a nonlinear dynamics measure based upon said time series data; evaluating said nonlinear dynamics measure with respect to a predetermined criterion; and providing a physiological assessment based upon said evaluation.
15. The physiological assessment method according to claim 14 wherein said deriving step comprises the substep of measuring perfusion index with a pulse oximeter.
16. The physiological assessment method according to claim 15 wherein said calculating step comprises the substep of obtaining a variability measure for said perfusion index.
17. A physiological assessment method according to claim 16 wherein said evaluating step comprises the substep of comparing said variability measure to a predetermined cutoff value.
18. A physiological assessment method according to claim 17 wherein said providing step comprises the substep of outputting an illness severity indication.
19. The physiological assessment method according to claim 18 wherein: said deriving step comprises the further substep of measuring pulse rate; and said calculating step comprises the substep of obtaining a variability measure for the combination of said perfusion index and said pulse rate.
20. The physiological assessment method according to claim 19 wherein said evaluating step comprises the substep of performing a chaos data analysis on said time series data.
PCT/US2005/010928 2004-03-31 2005-03-30 Physiological assessment system WO2005096922A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US55842604 true 2004-03-31 2004-03-31
US60/558,426 2004-03-31

Publications (1)

Publication Number Publication Date
WO2005096922A1 true true WO2005096922A1 (en) 2005-10-20

Family

ID=34964834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/010928 WO2005096922A1 (en) 2004-03-31 2005-03-30 Physiological assessment system

Country Status (2)

Country Link
US (1) US7292883B2 (en)
WO (1) WO2005096922A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008073855A3 (en) * 2006-12-09 2008-10-09 Masimo Corp Plethysmograph variability processor

Families Citing this family (162)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7328053B1 (en) 1993-10-06 2008-02-05 Masimo Corporation Signal processing apparatus
US5490505A (en) 1991-03-07 1996-02-13 Masimo Corporation Signal processing apparatus
US8019400B2 (en) 1994-10-07 2011-09-13 Masimo Corporation Signal processing apparatus
EP1905352B1 (en) 1994-10-07 2014-07-16 Masimo Corporation Signal processing method
US5638818A (en) 1991-03-21 1997-06-17 Masimo Corporation Low noise optical probe
US5758644A (en) 1995-06-07 1998-06-02 Masimo Corporation Manual and automatic probe calibration
US6002952A (en) 1997-04-14 1999-12-14 Masimo Corporation Signal processing apparatus and method
US6229856B1 (en) 1997-04-14 2001-05-08 Masimo Corporation Method and apparatus for demodulating signals in a pulse oximetry system
EP2319398A1 (en) 1998-06-03 2011-05-11 Masimo Corporation Stereo pulse oximeter
US7245953B1 (en) 1999-04-12 2007-07-17 Masimo Corporation Reusable pulse oximeter probe and disposable bandage apparatii
USRE41912E1 (en) 1998-10-15 2010-11-02 Masimo Corporation Reusable pulse oximeter probe and disposable bandage apparatus
US6721585B1 (en) 1998-10-15 2004-04-13 Sensidyne, Inc. Universal modular pulse oximeter probe for use with reusable and disposable patient attachment devices
US6463311B1 (en) 1998-12-30 2002-10-08 Masimo Corporation Plethysmograph pulse recognition processor
US6684090B2 (en) 1999-01-07 2004-01-27 Masimo Corporation Pulse oximetry data confidence indicator
DK1309270T3 (en) 2000-08-18 2009-08-03 Masimo Corp Pulse oximeter with two modes
US20020140675A1 (en) 1999-01-25 2002-10-03 Ali Ammar Al System and method for altering a display mode based on a gravity-responsive sensor
US6360114B1 (en) 1999-03-25 2002-03-19 Masimo Corporation Pulse oximeter probe-off detector
US6515273B2 (en) 1999-08-26 2003-02-04 Masimo Corporation System for indicating the expiration of the useful operating life of a pulse oximetry sensor
US6950687B2 (en) 1999-12-09 2005-09-27 Masimo Corporation Isolation and communication element for a resposable pulse oximetry sensor
US6377829B1 (en) 1999-12-09 2002-04-23 Masimo Corporation Resposable pulse oximetry sensor
US6430525B1 (en) 2000-06-05 2002-08-06 Masimo Corporation Variable mode averager
US6850787B2 (en) 2001-06-29 2005-02-01 Masimo Laboratories, Inc. Signal component processor
US6697658B2 (en) 2001-07-02 2004-02-24 Masimo Corporation Low power pulse oximeter
US7355512B1 (en) 2002-01-24 2008-04-08 Masimo Corporation Parallel alarm processor
US6850788B2 (en) 2002-03-25 2005-02-01 Masimo Corporation Physiological measurement communications adapter
US6970792B1 (en) 2002-12-04 2005-11-29 Masimo Laboratories, Inc. Systems and methods for determining blood oxygen saturation values using complex number encoding
US6920345B2 (en) 2003-01-24 2005-07-19 Masimo Corporation Optical sensor including disposable and reusable elements
US7003338B2 (en) 2003-07-08 2006-02-21 Masimo Corporation Method and apparatus for reducing coupling between signals
US7500950B2 (en) 2003-07-25 2009-03-10 Masimo Corporation Multipurpose sensor port
US7483729B2 (en) 2003-11-05 2009-01-27 Masimo Corporation Pulse oximeter access apparatus and method
US7438683B2 (en) 2004-03-04 2008-10-21 Masimo Corporation Application identification sensor
EP1722676B1 (en) 2004-03-08 2012-12-19 Masimo Corporation Physiological parameter system
CA2464029A1 (en) 2004-04-08 2005-10-08 Valery Telfort Non-invasive ventilation monitor
US9341565B2 (en) 2004-07-07 2016-05-17 Masimo Corporation Multiple-wavelength physiological monitor
US7343186B2 (en) 2004-07-07 2008-03-11 Masimo Laboratories, Inc. Multi-wavelength physiological monitor
US7937128B2 (en) 2004-07-09 2011-05-03 Masimo Corporation Cyanotic infant sensor
US8036727B2 (en) 2004-08-11 2011-10-11 Glt Acquisition Corp. Methods for noninvasively measuring analyte levels in a subject
US7254429B2 (en) 2004-08-11 2007-08-07 Glucolight Corporation Method and apparatus for monitoring glucose levels in a biological tissue
US20060189871A1 (en) 2005-02-18 2006-08-24 Ammar Al-Ali Portable patient monitor
US8130105B2 (en) 2005-03-01 2012-03-06 Masimo Laboratories, Inc. Noninvasive multi-parameter patient monitor
CA2604653A1 (en) 2005-04-13 2006-10-19 Glucolight Corporation Method for data reduction and calibration of an oct-based blood glucose monitor
US7962188B2 (en) 2005-10-14 2011-06-14 Masimo Corporation Robust alarm system
US8233955B2 (en) 2005-11-29 2012-07-31 Cercacor Laboratories, Inc. Optical sensor including disposable and reusable elements
US8600467B2 (en) 2006-11-29 2013-12-03 Cercacor Laboratories, Inc. Optical sensor including disposable and reusable elements
US7990382B2 (en) 2006-01-03 2011-08-02 Masimo Corporation Virtual display
US8219172B2 (en) 2006-03-17 2012-07-10 Glt Acquisition Corp. System and method for creating a stable optical interface
US7629881B2 (en) * 2006-04-28 2009-12-08 The Johns Hopkins University Sensor-based adaptive wearable devices and methods
US7941199B2 (en) 2006-05-15 2011-05-10 Masimo Laboratories, Inc. Sepsis monitor
US8998809B2 (en) 2006-05-15 2015-04-07 Cercacor Laboratories, Inc. Systems and methods for calibrating minimally invasive and non-invasive physiological sensor devices
US9176141B2 (en) 2006-05-15 2015-11-03 Cercacor Laboratories, Inc. Physiological monitor calibration system
US8028701B2 (en) 2006-05-31 2011-10-04 Masimo Corporation Respiratory monitoring
US20080009762A1 (en) * 2006-06-27 2008-01-10 Medtronic Emergency Response Systems, Inc. Method and apparatus for interpreting capnographic data
US8064975B2 (en) 2006-09-20 2011-11-22 Nellcor Puritan Bennett Llc System and method for probability based determination of estimated oxygen saturation
US8457707B2 (en) 2006-09-20 2013-06-04 Masimo Corporation Congenital heart disease monitor
US9161696B2 (en) 2006-09-22 2015-10-20 Masimo Corporation Modular patient monitor
US8840549B2 (en) 2006-09-22 2014-09-23 Masimo Corporation Modular patient monitor
US7880626B2 (en) 2006-10-12 2011-02-01 Masimo Corporation System and method for monitoring the life of a physiological sensor
US8280473B2 (en) 2006-10-12 2012-10-02 Masino Corporation, Inc. Perfusion index smoother
US9192329B2 (en) 2006-10-12 2015-11-24 Masimo Corporation Variable mode pulse indicator
US8265723B1 (en) 2006-10-12 2012-09-11 Cercacor Laboratories, Inc. Oximeter probe off indicator defining probe off space
US9861305B1 (en) 2006-10-12 2018-01-09 Masimo Corporation Method and apparatus for calibration to reduce coupling between signals in a measurement system
US7791155B2 (en) 2006-12-22 2010-09-07 Masimo Laboratories, Inc. Detector shield
US8852094B2 (en) 2006-12-22 2014-10-07 Masimo Corporation Physiological parameter system
US8652060B2 (en) 2007-01-20 2014-02-18 Masimo Corporation Perfusion trend indicator
US8781544B2 (en) 2007-03-27 2014-07-15 Cercacor Laboratories, Inc. Multiple wavelength optical sensor
US7919713B2 (en) 2007-04-16 2011-04-05 Masimo Corporation Low noise oximetry cable including conductive cords
US8374665B2 (en) 2007-04-21 2013-02-12 Cercacor Laboratories, Inc. Tissue profile wellness monitor
US8764671B2 (en) 2007-06-28 2014-07-01 Masimo Corporation Disposable active pulse sensor
US8048040B2 (en) 2007-09-13 2011-11-01 Masimo Corporation Fluid titration system
US8355766B2 (en) 2007-10-12 2013-01-15 Masimo Corporation Ceramic emitter substrate
US8310336B2 (en) 2008-10-10 2012-11-13 Masimo Corporation Systems and methods for storing, analyzing, retrieving and displaying streaming medical data
EP2227843A1 (en) 2007-10-12 2010-09-15 Masimo Corporation Connector assembly
WO2009049254A9 (en) 2007-10-12 2010-11-18 Masimo Corporation Systems and methods for storing, analyzing, and retrieving medical data
US9757043B2 (en) 2007-12-06 2017-09-12 Los Angeles Biomedical Research Institute At Harbor-Ucla Medical Center Method and system for detection of respiratory variation in plethysmographic oximetry
US8128569B1 (en) 2007-12-06 2012-03-06 Los Angeles Biomedical Research Institute At Harbor-Ucla Medical Center Method and system for detection of respiratory variation in plethysmographic oximetry
USD614305S1 (en) 2008-02-29 2010-04-20 Masimo Corporation Connector assembly
WO2009111542A3 (en) 2008-03-04 2009-10-29 Glucolight Corporation Methods and systems for analyte level estimation in optical coherence tomography
US9107625B2 (en) 2008-05-05 2015-08-18 Masimo Corporation Pulse oximetry system with electrical decoupling circuitry
USD626562S1 (en) 2008-06-30 2010-11-02 Nellcor Puritan Bennett Llc Triangular saturation pattern detection indicator for a patient monitor display panel
USD626561S1 (en) 2008-06-30 2010-11-02 Nellcor Puritan Bennett Llc Circular satseconds indicator and triangular saturation pattern detection indicator for a patient monitor display panel
US8577431B2 (en) 2008-07-03 2013-11-05 Cercacor Laboratories, Inc. Noise shielding for a noninvasive device
US8203438B2 (en) 2008-07-29 2012-06-19 Masimo Corporation Alarm suspend system
US20100030040A1 (en) 2008-08-04 2010-02-04 Masimo Laboratories, Inc. Multi-stream data collection system for noninvasive measurement of blood constituents
USD621516S1 (en) 2008-08-25 2010-08-10 Masimo Laboratories, Inc. Patient monitoring sensor
US8911377B2 (en) 2008-09-15 2014-12-16 Masimo Corporation Patient monitor including multi-parameter graphical display
US8401602B2 (en) 2008-10-13 2013-03-19 Masimo Corporation Secondary-emitter sensor position indicator
US8346330B2 (en) 2008-10-13 2013-01-01 Masimo Corporation Reflection-detector sensor position indicator
US20100106030A1 (en) * 2008-10-23 2010-04-29 Mason Gregory R Method and system for automated measurement of pulsus paradoxus
US8771204B2 (en) 2008-12-30 2014-07-08 Masimo Corporation Acoustic sensor assembly
US8588880B2 (en) 2009-02-16 2013-11-19 Masimo Corporation Ear sensor
JP5749658B2 (en) 2009-03-04 2015-07-15 マシモ・コーポレイション Medical monitoring system
US8897847B2 (en) 2009-03-23 2014-11-25 Masimo Corporation Digit gauge for noninvasive optical sensor
WO2010135373A1 (en) 2009-05-19 2010-11-25 Masimo Corporation Disposable components for reusable physiological sensor
US8571619B2 (en) 2009-05-20 2013-10-29 Masimo Corporation Hemoglobin display and patient treatment
US8418524B2 (en) 2009-06-12 2013-04-16 Masimo Corporation Non-invasive sensor calibration device
US8670811B2 (en) 2009-06-30 2014-03-11 Masimo Corporation Pulse oximetry system for adjusting medical ventilation
US8471713B2 (en) 2009-07-24 2013-06-25 Cercacor Laboratories, Inc. Interference detector for patient monitor
US8473020B2 (en) 2009-07-29 2013-06-25 Cercacor Laboratories, Inc. Non-invasive physiological sensor cover
US8688183B2 (en) 2009-09-03 2014-04-01 Ceracor Laboratories, Inc. Emitter driver for noninvasive patient monitor
US20110172498A1 (en) 2009-09-14 2011-07-14 Olsen Gregory A Spot check monitor credit system
WO2011035070A1 (en) 2009-09-17 2011-03-24 Masimo Laboratories, Inc. Improving analyte monitoring using one or more accelerometers
US20110137297A1 (en) 2009-09-17 2011-06-09 Kiani Massi Joe E Pharmacological management system
US8571618B1 (en) 2009-09-28 2013-10-29 Cercacor Laboratories, Inc. Adaptive calibration system for spectrophotometric measurements
US20110077474A1 (en) * 2009-09-29 2011-03-31 General Electric Company Method, arrangement and apparatus for assessing fluid balance status of a subject
US8430817B1 (en) 2009-10-15 2013-04-30 Masimo Corporation System for determining confidence in respiratory rate measurements
US9106038B2 (en) 2009-10-15 2015-08-11 Masimo Corporation Pulse oximetry system with low noise cable hub
US8821415B2 (en) 2009-10-15 2014-09-02 Masimo Corporation Physiological acoustic monitoring system
WO2011047216A3 (en) 2009-10-15 2011-08-04 Masimo Corporation Physiological acoustic monitoring system
US8702627B2 (en) 2009-10-15 2014-04-22 Masimo Corporation Acoustic respiratory monitoring sensor having multiple sensing elements
US9848800B1 (en) 2009-10-16 2017-12-26 Masimo Corporation Respiratory pause detector
US9839381B1 (en) 2009-11-24 2017-12-12 Cercacor Laboratories, Inc. Physiological measurement system with automatic wavelength adjustment
US8801613B2 (en) 2009-12-04 2014-08-12 Masimo Corporation Calibration for multi-stage physiological monitors
US9153112B1 (en) 2009-12-21 2015-10-06 Masimo Corporation Modular patient monitor
GB2490832B (en) 2010-03-01 2016-09-21 Masimo Corp Adaptive alarm system
US8584345B2 (en) 2010-03-08 2013-11-19 Masimo Corporation Reprocessing of a physiological sensor
US9307928B1 (en) 2010-03-30 2016-04-12 Masimo Corporation Plethysmographic respiration processor
US8712494B1 (en) 2010-05-03 2014-04-29 Masimo Corporation Reflective non-invasive sensor
US9138180B1 (en) 2010-05-03 2015-09-22 Masimo Corporation Sensor adapter cable
US8666468B1 (en) 2010-05-06 2014-03-04 Masimo Corporation Patient monitor for determining microcirculation state
US9326712B1 (en) 2010-06-02 2016-05-03 Masimo Corporation Opticoustic sensor
US8740792B1 (en) 2010-07-12 2014-06-03 Masimo Corporation Patient monitor capable of accounting for environmental conditions
US9408542B1 (en) 2010-07-22 2016-08-09 Masimo Corporation Non-invasive blood pressure measurement system
US9649054B2 (en) 2010-08-26 2017-05-16 Cercacor Laboratories, Inc. Blood pressure measurement method
US9775545B2 (en) 2010-09-28 2017-10-03 Masimo Corporation Magnetic electrical connector for patient monitors
WO2012050847A3 (en) 2010-09-28 2012-06-21 Masimo Corporation Depth of consciousness monitor including oximeter
US9211095B1 (en) 2010-10-13 2015-12-15 Masimo Corporation Physiological measurement logic engine
US8723677B1 (en) 2010-10-20 2014-05-13 Masimo Corporation Patient safety system with automatically adjusting bed
US9579039B2 (en) 2011-01-10 2017-02-28 Masimo Corporation Non-invasive intravascular volume index monitor
US9066666B2 (en) 2011-02-25 2015-06-30 Cercacor Laboratories, Inc. Patient monitor for monitoring microcirculation
US8830449B1 (en) 2011-04-18 2014-09-09 Cercacor Laboratories, Inc. Blood analysis system
US9095316B2 (en) 2011-04-20 2015-08-04 Masimo Corporation System for generating alarms based on alarm patterns
US9622692B2 (en) 2011-05-16 2017-04-18 Masimo Corporation Personal health device
US9532722B2 (en) 2011-06-21 2017-01-03 Masimo Corporation Patient monitoring system
US9245668B1 (en) 2011-06-29 2016-01-26 Cercacor Laboratories, Inc. Low noise cable providing communication between electronic sensor components and patient monitor
US9192351B1 (en) 2011-07-22 2015-11-24 Masimo Corporation Acoustic respiratory monitoring sensor with probe-off detection
US8755872B1 (en) 2011-07-28 2014-06-17 Masimo Corporation Patient monitoring system for indicating an abnormal condition
US9782077B2 (en) 2011-08-17 2017-10-10 Masimo Corporation Modulated physiological sensor
US9323894B2 (en) 2011-08-19 2016-04-26 Masimo Corporation Health care sanitation monitoring system
JP6104920B2 (en) 2011-10-13 2017-03-29 マシモ・コーポレイション Medical monitoring hub
US9808188B1 (en) 2011-10-13 2017-11-07 Masimo Corporation Robust fractional saturation determination
EP2765909A1 (en) 2011-10-13 2014-08-20 Masimo Corporation Physiological acoustic monitoring system
US9778079B1 (en) 2011-10-27 2017-10-03 Masimo Corporation Physiological monitor gauge panel
US9445759B1 (en) 2011-12-22 2016-09-20 Cercacor Laboratories, Inc. Blood glucose calibration system
US9392945B2 (en) 2012-01-04 2016-07-19 Masimo Corporation Automated CCHD screening and detection
US9480435B2 (en) 2012-02-09 2016-11-01 Masimo Corporation Configurable patient monitoring system
US20130253334A1 (en) 2012-02-09 2013-09-26 Masimo Corporation Wireless patient monitoring device
WO2013148605A1 (en) 2012-03-25 2013-10-03 Masimo Corporation Physiological monitor touchscreen interface
US9131881B2 (en) 2012-04-17 2015-09-15 Masimo Corporation Hypersaturation index
WO2014011599A1 (en) * 2012-07-09 2014-01-16 Crone William E Perfusion detection system
US9697928B2 (en) 2012-08-01 2017-07-04 Masimo Corporation Automated assembly sensor cable
US9192310B2 (en) 2012-09-11 2015-11-24 Covidien Lp Methods and systems for qualifying a calculated value based on baseline and deviation information
US9749232B2 (en) 2012-09-20 2017-08-29 Masimo Corporation Intelligent medical network edge router
US9717458B2 (en) 2012-10-20 2017-08-01 Masimo Corporation Magnetic-flap optical sensor
US9560996B2 (en) 2012-10-30 2017-02-07 Masimo Corporation Universal medical system
US9787568B2 (en) 2012-11-05 2017-10-10 Cercacor Laboratories, Inc. Physiological test credit method
JP6007782B2 (en) * 2012-12-20 2016-10-12 オムロンヘルスケア株式会社 The biological information measuring device
US9750461B1 (en) 2013-01-02 2017-09-05 Masimo Corporation Acoustic respiratory monitoring sensor with probe-off detection
US9724025B1 (en) 2013-01-16 2017-08-08 Masimo Corporation Active-pulse blood analysis system
US9750442B2 (en) 2013-03-09 2017-09-05 Masimo Corporation Physiological status monitor
US9474474B2 (en) 2013-03-14 2016-10-25 Masimo Corporation Patient monitor as a minimally invasive glucometer
US9839379B2 (en) 2013-10-07 2017-12-12 Masimo Corporation Regional oximetry pod
USD755392S1 (en) 2015-02-06 2016-05-03 Masimo Corporation Pulse oximetry sensor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5482036A (en) 1991-03-07 1996-01-09 Masimo Corporation Signal processing apparatus and method
EP0807402A1 (en) * 1996-04-15 1997-11-19 Ohmeda Inc. Photoplethysmographic perfusion index monitoring
US5769084A (en) * 1996-07-10 1998-06-23 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for diagnosing sleep breathing disorders
JPH119557A (en) * 1997-06-24 1999-01-19 Matsushita Electric Ind Co Ltd Health promoter
US6088607A (en) 1991-03-21 2000-07-11 Masimo Corporation Low noise optical probe
US20030181798A1 (en) * 2002-03-25 2003-09-25 Ammar Al-Ali Physiological measurement communications adapter

Family Cites Families (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5041187A (en) 1988-04-29 1991-08-20 Thor Technology Corporation Oximeter sensor assembly with integral cable and method of forming the same
US4964408A (en) 1988-04-29 1990-10-23 Thor Technology Corporation Oximeter sensor assembly with integral cable
US5069213A (en) 1988-04-29 1991-12-03 Thor Technology Corporation Oximeter sensor assembly with integral cable and encoder
US5163438A (en) 1988-11-14 1992-11-17 Paramed Technology Incorporated Method and apparatus for continuously and noninvasively measuring the blood pressure of a patient
US4960128A (en) 1988-11-14 1990-10-02 Paramed Technology Incorporated Method and apparatus for continuously and non-invasively measuring the blood pressure of a patient
GB9011887D0 (en) 1990-05-26 1990-07-18 Le Fit Ltd Pulse responsive device
US5490505A (en) 1991-03-07 1996-02-13 Masimo Corporation Signal processing apparatus
US7328053B1 (en) 1993-10-06 2008-02-05 Masimo Corporation Signal processing apparatus
US5632272A (en) 1991-03-07 1997-05-27 Masimo Corporation Signal processing apparatus
US6541756B2 (en) 1991-03-21 2003-04-01 Masimo Corporation Shielded optical probe having an electrical connector
US5494043A (en) 1993-05-04 1996-02-27 Vital Insite, Inc. Arterial sensor
US5452717A (en) 1993-07-14 1995-09-26 Masimo Corporation Finger-cot probe
US5337744A (en) 1993-07-14 1994-08-16 Masimo Corporation Low noise finger cot probe
US5533511A (en) 1994-01-05 1996-07-09 Vital Insite, Incorporated Apparatus and method for noninvasive blood pressure measurement
US5810734A (en) 1994-04-15 1998-09-22 Vital Insite, Inc. Apparatus and method for measuring an induced perturbation to determine a physiological parameter
US5785659A (en) 1994-04-15 1998-07-28 Vital Insite, Inc. Automatically activated blood pressure measurement device
US5791347A (en) 1994-04-15 1998-08-11 Vital Insite, Inc. Motion insensitive pulse detector
US5590649A (en) 1994-04-15 1997-01-07 Vital Insite, Inc. Apparatus and method for measuring an induced perturbation to determine blood pressure
US6371921B1 (en) * 1994-04-15 2002-04-16 Masimo Corporation System and method of determining whether to recalibrate a blood pressure monitor
US5743262A (en) 1995-06-07 1998-04-28 Masimo Corporation Blood glucose monitoring system
US5638816A (en) 1995-06-07 1997-06-17 Masimo Corporation Active pulse blood constituent monitoring
US5758644A (en) 1995-06-07 1998-06-02 Masimo Corporation Manual and automatic probe calibration
US5760910A (en) 1995-06-07 1998-06-02 Masimo Corporation Optical filter for spectroscopic measurement and method of producing the optical filter
US5645440A (en) 1995-10-16 1997-07-08 Masimo Corporation Patient cable connector
US5904654A (en) 1995-10-20 1999-05-18 Vital Insite, Inc. Exciter-detector unit for measuring physiological parameters
US5862805A (en) * 1995-11-16 1999-01-26 Optelmed Ltd. Apparatus and method for measuring the variability of cardiovascular parameters
US5890929A (en) 1996-06-19 1999-04-06 Masimo Corporation Shielded medical connector
US6027452A (en) 1996-06-26 2000-02-22 Vital Insite, Inc. Rapid non-invasive blood pressure measuring device
US6229856B1 (en) 1997-04-14 2001-05-08 Masimo Corporation Method and apparatus for demodulating signals in a pulse oximetry system
US5919134A (en) 1997-04-14 1999-07-06 Masimo Corp. Method and apparatus for demodulating signals in a pulse oximetry system
US6002952A (en) 1997-04-14 1999-12-14 Masimo Corporation Signal processing apparatus and method
DE69839244T2 (en) * 1997-05-13 2009-03-12 Colin Gladesville Dunlop A method and device for monitoring of hemodynamic function
US6184521B1 (en) 1998-01-06 2001-02-06 Masimo Corporation Photodiode detector with integrated noise shielding
US5995855A (en) 1998-02-11 1999-11-30 Masimo Corporation Pulse oximetry sensor adapter
US6525386B1 (en) 1998-03-10 2003-02-25 Masimo Corporation Non-protruding optoelectronic lens
US6216032B1 (en) * 1998-03-17 2001-04-10 The University Of Virginia Patent Foundation Method and apparatus for the early diagnosis of subacute, potentially catastrophic illness
US6165005A (en) 1998-03-19 2000-12-26 Masimo Corporation Patient cable sensor switch
US5997343A (en) 1998-03-19 1999-12-07 Masimo Corporation Patient cable sensor switch
EP2319398A1 (en) 1998-06-03 2011-05-11 Masimo Corporation Stereo pulse oximeter
US6285896B1 (en) 1998-07-13 2001-09-04 Masimo Corporation Fetal pulse oximetry sensor
US6463311B1 (en) 1998-12-30 2002-10-08 Masimo Corporation Plethysmograph pulse recognition processor
US6684090B2 (en) 1999-01-07 2004-01-27 Masimo Corporation Pulse oximetry data confidence indicator
US6606511B1 (en) 1999-01-07 2003-08-12 Masimo Corporation Pulse oximetry pulse indicator
DE60037106T2 (en) 1999-01-25 2008-09-11 Masimo Corp., Irvine Universal / improving pulse oximeter
US6770028B1 (en) * 1999-01-25 2004-08-03 Masimo Corporation Dual-mode pulse oximeter
US6658276B2 (en) 1999-01-25 2003-12-02 Masimo Corporation Pulse oximeter user interface
US6360114B1 (en) 1999-03-25 2002-03-19 Masimo Corporation Pulse oximeter probe-off detector
WO2000078209A3 (en) * 1999-06-18 2001-04-19 Masimo Corp Pulse oximeter probe-off detection system
US6515273B2 (en) 1999-08-26 2003-02-04 Masimo Corporation System for indicating the expiration of the useful operating life of a pulse oximetry sensor
US6580086B1 (en) 1999-08-26 2003-06-17 Masimo Corporation Shielded optical probe and method
US6542764B1 (en) 1999-12-01 2003-04-01 Masimo Corporation Pulse oximeter monitor for expressing the urgency of the patient's condition
US6671531B2 (en) 1999-12-09 2003-12-30 Masimo Corporation Sensor wrap including foldable applicator
US6377829B1 (en) 1999-12-09 2002-04-23 Masimo Corporation Resposable pulse oximetry sensor
US6152754A (en) 1999-12-21 2000-11-28 Masimo Corporation Circuit board based cable connector
US6430525B1 (en) 2000-06-05 2002-08-06 Masimo Corporation Variable mode averager
US6470199B1 (en) 2000-06-21 2002-10-22 Masimo Corporation Elastic sock for positioning an optical probe
US6697656B1 (en) 2000-06-27 2004-02-24 Masimo Corporation Pulse oximetry sensor compatible with multiple pulse oximetry systems
US6640116B2 (en) 2000-08-18 2003-10-28 Masimo Corporation Optical spectroscopy pathlength measurement system
US6760607B2 (en) 2000-12-29 2004-07-06 Masimo Corporation Ribbon cable substrate pulse oximetry sensor
US6850787B2 (en) * 2001-06-29 2005-02-01 Masimo Laboratories, Inc. Signal component processor
US6697658B2 (en) 2001-07-02 2004-02-24 Masimo Corporation Low power pulse oximeter
KR100455289B1 (en) * 2002-03-16 2004-11-08 삼성전자주식회사 Method of diagnosing using a ray and apparatus thereof
US7194300B2 (en) * 2004-01-21 2007-03-20 Cardionet, Inc. Cardiac monitoring

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5482036A (en) 1991-03-07 1996-01-09 Masimo Corporation Signal processing apparatus and method
US6088607A (en) 1991-03-21 2000-07-11 Masimo Corporation Low noise optical probe
EP0807402A1 (en) * 1996-04-15 1997-11-19 Ohmeda Inc. Photoplethysmographic perfusion index monitoring
US5769084A (en) * 1996-07-10 1998-06-23 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for diagnosing sleep breathing disorders
JPH119557A (en) * 1997-06-24 1999-01-19 Matsushita Electric Ind Co Ltd Health promoter
US20030181798A1 (en) * 2002-03-25 2003-09-25 Ammar Al-Ali Physiological measurement communications adapter

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J.L. HERNANDEZ CACERES, K. CABANAS, J.O. FALCON RODRIGUEZ: "The photoplethismographic signal processed with nonlinear time series analysis tools", REVISTA CUBANA DE INFORMATICA MEDICA, no. 1, 2000, pages 1 - 10, XP002338087, ISSN: 1684-1859 *
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 04 30 April 1999 (1999-04-30) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008073855A3 (en) * 2006-12-09 2008-10-09 Masimo Corp Plethysmograph variability processor
JP2010512192A (en) * 2006-12-09 2010-04-22 マシモ コーポレイション Plethysmograph variability processor
US8414499B2 (en) * 2006-12-09 2013-04-09 Masimo Corporation Plethysmograph variability processor
US20130296713A1 (en) * 2006-12-09 2013-11-07 Masimo Corporation Plethysmograph variability processor

Also Published As

Publication number Publication date Type
US7292883B2 (en) 2007-11-06 grant
US20060009687A1 (en) 2006-01-12 application

Similar Documents

Publication Publication Date Title
Jubran Pulse oximetry
US8228181B2 (en) Physiological trend monitor
US8983564B2 (en) Perfusion index smoother
US6822564B2 (en) Parallel measurement alarm processor
US7457652B2 (en) Method and circuit for indicating quality and accuracy of physiological measurements
US6178343B1 (en) Pulse rate and heart rate coincidence detection for pulse oximetry
US6990426B2 (en) Diagnostic method and apparatus using light
US9037207B2 (en) Hemoglobin display and patient treatment
US20050113655A1 (en) Wireless pulse oximeter configured for web serving, remote patient monitoring and method of operation
US7254425B2 (en) Method for detecting artifacts in data
US20090171170A1 (en) Medical Monitoring With Portable Electronic Device System And Method
US20030100845A1 (en) Device, method and system for monitoring pressure in body cavities
US8414499B2 (en) Plethysmograph variability processor
US20080004513A1 (en) VCSEL Tissue Spectrometer
US8457707B2 (en) Congenital heart disease monitor
Cysewska-Sobusiak Metrological problems with noninvasive transillumination of living tissues
US20120209084A1 (en) Respiratory event alert system
US20140163344A1 (en) Perfusion trend indicator
US7038595B2 (en) Method and apparatus for multiple patient parameter variability analysis and display
US20090326395A1 (en) Systems and methods for detecting pulses
US20090247849A1 (en) Pulse Oximeter With Adaptive Power Conservation
US20040181132A1 (en) Low-cost method and apparatus for non-invasively measuring blood glucose levels
US20070203406A1 (en) Clinical applications of sto2 analysis
US20050187480A1 (en) Blood pressure measurement apparatus and method
US8721542B2 (en) Physiological parameter system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase in:

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase