WO2005095022A1 - 減圧鋳型造型の注湯方法、装置及び鋳物 - Google Patents

減圧鋳型造型の注湯方法、装置及び鋳物 Download PDF

Info

Publication number
WO2005095022A1
WO2005095022A1 PCT/JP2005/006481 JP2005006481W WO2005095022A1 WO 2005095022 A1 WO2005095022 A1 WO 2005095022A1 JP 2005006481 W JP2005006481 W JP 2005006481W WO 2005095022 A1 WO2005095022 A1 WO 2005095022A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
molding
pouring
cavity
pressure
Prior art date
Application number
PCT/JP2005/006481
Other languages
English (en)
French (fr)
Inventor
Hiroyasu Makino
Taketoshi Tomita
Takafumi Oba
Hiroaki Suzuki
Kenji Mizuno
Toshiaki Ando
Yoshinobu Enomoto
Takao Inoue
Shizuo Takeda
Original Assignee
Sintokogio, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004108911A external-priority patent/JP4352397B2/ja
Priority claimed from JP2004132681A external-priority patent/JP2005313189A/ja
Priority claimed from JP2005028325A external-priority patent/JP4399807B2/ja
Application filed by Sintokogio, Ltd. filed Critical Sintokogio, Ltd.
Priority to US11/547,541 priority Critical patent/US7500507B2/en
Priority to EA200601602A priority patent/EA008468B1/ru
Priority to BRPI0509560-3A priority patent/BRPI0509560A/pt
Priority to EP05727259A priority patent/EP1731242A4/en
Priority to CN2005800177655A priority patent/CN1960822B/zh
Publication of WO2005095022A1 publication Critical patent/WO2005095022A1/ja
Priority to US12/318,098 priority patent/US7757746B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/04Low pressure casting, i.e. making use of pressures up to a few bars to fill the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/03Sand moulds or like moulds for shaped castings formed by vacuum-sealed moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C21/00Flasks; Accessories therefor
    • B22C21/01Flasks; Accessories therefor for vacuum-sealed moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/06Vacuum casting, i.e. making use of vacuum to fill the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D23/00Casting processes not provided for in groups B22D1/00 - B22D21/00
    • B22D23/06Melting-down metal, e.g. metal particles, in the mould

Definitions

  • the present invention relates to a method and an apparatus for pouring a reduced-pressure mold for producing a product, particularly a thin-walled product, and a product.
  • reduced pressure ⁇ molding hereinafter referred to as “V process”.
  • a step of filling a step of forming a shielding member by adhering the shielding member to the filler side by sealing the upper surface of the filler to make the interior of the molding frame a negative pressure, and then shielding the original model plate with the shielding member Forming a half mold having a molding surface by releasing from the mold, and forming a mold cavity by combining with another half mold formed in the same manner as the half mold.
  • a mold molding and pouring process comprising: a step of injecting a molten metal into the molding cavity; and a step of releasing the negative pressure state in the molding frame and removing the substance thereafter.
  • the main object of the present invention has been made in view of the above-described problems, and is directed to the use of a V-process mold to produce a vacuum, which is suitable for producing a thin product, particularly a thin-walled product.
  • Hot water method and apparatus Another object of the present invention is to provide a product manufactured by the method.
  • Another object of the present invention is to provide an apparatus for cooling a molding frame.
  • a method of pouring a reduced-pressure mold is characterized in that in a V process, the pressure in a mold cavity is reduced through the mold frame. . That is, the normal V process cuts off the molding frame inside the molding frame and the molding cavity that communicates with the atmosphere by the shielding member, makes the molding frame negative pressure, adsorbs the shielding member to the filler side, and forms the shielding member.
  • the above-mentioned shielding is released, and a state in which the mold is normally considered to collapse, in other words, a shaping cavity that communicates with the inside of the molding frame and the atmosphere. It is characterized in that while communicating with each other, it is possible to build a fork while maintaining a half-split type and a built-in cavity.
  • the step of depressurizing the inside of the artificial cavity is performed through a molding frame.
  • a vent plug is arranged in a product part of the original model plate after the step of adhering the shielding member.
  • the molding is performed through a vent plug provided in a step of placing a molding frame on the closely-fitted shielding member and the vent plug and filling the molding frame with a filler.
  • the step of depressurizing the inside of the mold cavity through the mold frame in the above one aspect is characterized in that after molding the half mold, the shielding member is provided with a plurality of holes through the ventilation holes. It is characterized by being done.
  • the step of measuring the decompression degree of at least one half of the completed type D from before pouring to the end of pouring is measured.
  • the method further comprises the step of transmitting the degree of decompression to a control device and adjusting the degree of decompression of the inside of the half-die and the artificial cavity.
  • the half-split type is not provided with an open-lift.
  • Open fried food is usually used to stably produce a mold without losing its shape due to the action of discharging air and molten metal scum in the mold cavity.
  • the flow of the molten metal is improved by appropriately reducing the pressure of the casting cavity without providing the open-lifting, so that the molten metal can be efficiently filled in the casting cavity before the mold collapse occurs. And discovered.
  • the pressure in the molding cavity is reduced in the V process (this is performed through at least one of the molding frame and the open-lifting). It is possible to produce thin-walled animals.
  • the inside of the mold and the structure cavity can be simultaneously depressurized by the ventilation hole, a separate device for decompressing the structure cavity is not required, and there is an advantage that the structure of the molding apparatus is simplified. In case of not providing an open fryer, it is possible to minimize the amount of hot water and waste water. This has the advantage that the product yield is improved.
  • the present invention retains the characteristics of the ordinary V-process type III, it has excellent advantages in that it is excellent in unframeability and easy to remove thin-walled products.
  • the method of pouring a reduced-pressure mold according to the present invention comprises: A gate is formed in the mold, and a gate is not formed in the upper half mold.
  • a buffer means for horizontally holding the lower half mold of the completed mold is disposed between the completed mold and the furnace of the structure, and pouring is performed.
  • a method of pouring a reduced pressure mold includes the steps of: placing the completed mold over a forging furnace; It is characterized in that a heat insulating material is arranged in between and pouring is performed.
  • the sand layer constituting the heat insulating material is characterized in that a lower part thereof communicates with one stalk and an upper part thereof is connected to a plurality of gates.
  • a method of pouring a reduced-pressure mold according to the present invention is characterized in that the pouring method is a low-pressure mold method or a differential pressure mold method.
  • pouring speed is controlled.
  • a gate is formed in the lower half mold of the completed mold, and no gate is formed in the upper mold.
  • the amount of waste water can be minimized. This has the advantage that the product yield is improved.
  • the present invention has the advantage that the characteristics of the ordinary V-process type I are retained, so that it is excellent in unframeability and easy to take out thin-walled products.
  • the present invention is suitable for large thin products, for example, large home appliances, frames of large televisions, etc., automobile frames, and mechanical device frames.
  • the material is not specified.
  • means for cooling the molding frame by blowing compressed air to the molding frame can be used.
  • the present invention is characterized in that, in the V process, the V-shaped mold has a ventilation hole communicating the inside of the mold cavity with the inside of the mold, and the mold cavity is depressurized through the mold frame.
  • a pouring method for molding wherein the molding frame is poured before pouring the finished mold.
  • the reason why the internal pressure Pm is set to 1 to 75 kPa is that if the pressure is lower than lkPa, the vacuum pump becomes large, and if it is higher than 75 kPa, gas generated during pouring cannot be sucked. That's why.
  • the reason why the pressure Pc in the structure cavity is set to 1 to 95 kPa is that if the pressure is higher than 95 kPa, the pressure difference from the atmospheric pressure (101.3 kPa) becomes insufficient, so that a smooth inflow of molten metal cannot be secured.
  • the pressure is lower than lkPa, there is a danger that the mold will collapse toward the artificial cavity. Furthermore, it is necessary to make Pc> Pm.
  • Pc-Pm is determined by the values of Pc and Pm, and requires 3 to 94 kPa.
  • the molding frame means a frame provided with a suction pipe used in the V process.
  • the vent hole may be formed by arranging a vent plug in the product part after the film is formed, and forming the vent hole by cutting out the film along the slit of the vent plug after removing the mold. it can. Further, the ventilation hole may secure the artificial cavity side force by forming a hole penetrating into the mold with a needle or the like.
  • open-lifting refers to a tubular gap that penetrates the upper mold and connects the artificial cavity and the atmosphere. Therefore, if there is no open-lift, there will be no communication hole between the structural cavity and the atmosphere in the upper part of the upper half mold.
  • FIG. 1 is a schematic cross-sectional view of a vacuum type molding apparatus used in Examples.
  • the upper and lower half mold la, lb were molded using the molding process of the V process, and the half mold la, lb was matched to define an artificial cavity 2.
  • a film 13 as a shielding member is brought into close contact with the surface of the prototype model plate 12 by applying a negative pressure to the surface of the prototype model plate 12, and the ⁇ frame 3 as the molding frame is placed on the film 13.
  • Film 13 A plurality of vent plugs 6 as vents were arranged on the upper half la side of the model according to the model shape. After that, sand was filled in the ⁇ frame, and the upper half split la was formed. Next, the upper half split la was released from the original model plate 12, and the film 13 was cut out along the slit of the vent plug 6 from the artificial cavity side of the upper half split la. In this manner, the vent plug 6 was secured as a vent hole, and an upper half la was formed.
  • FIG. 1 Next, another lower half mold lb molded in the same manner as the upper half mold la was combined with the mold to define a mold cavity and form a completed mold (Fig. 1).
  • the molding cavity 2 which is a molding frame body, which communicates with the frame 3, communicates with the atmosphere via a runner and a gate.
  • the lower half split type lb is not provided with the vent plug 6 which is a vent, but may be provided in some cases.
  • the reduced pressure molding apparatus in the state of FIG. 1 was completed.
  • FIG. 1 the inside of the upper and lower half-split la and lb was depressurized by a decompression pump 11 through the frames 3 and 3, the suction pipes 4 and 4, the pipe 5, and the reservoir tank 10.
  • the pressure of the artificial cavity 2 was reduced at the same time as the half-split la and lb through the vent plug 6 as a vent.
  • the pressure inside the half-split type la, lb is detected by a pressure sensor 7, and the detected pressure is sent to a control device 8.
  • a control signal corresponding to the detected pressure is sent from the control device 8, and the proportional control valve 9 is adjusted to the required degree of opening, and the suction pressure of the half-split la, lb and artificial cavity 2 is reduced.
  • an aluminum alloy was injected into the mold cavity 2 as a molten metal. Then, the negative pressure inside the molding frame was released and the animal was taken out. This animal was thin with a thickness of 3 mm or less and had no defects.
  • the present invention provides a conventional V process type with a vent plug 6 that is a vent hole that communicates between the artificial cavity 2 and the inside of the half-type la, lb.
  • a vent plug 6 that is a vent hole that communicates between the artificial cavity 2 and the inside of the half-type la, lb.
  • FIG. 3 shows a case in which a ventilation hole penetrating through the inside of the upper half-split type is opened with a needle.
  • the upper and lower half molds 21a and 21b were formed by the V process.
  • the upper mold half 21a A plurality of ventilation holes 23 penetrating the film from the tee 22 side to the upper half mold 21a side with a needle and reaching the inside of the mold were opened.
  • a method of making the holes was as follows. A jig provided with a plurality of needles 24 was driven by a driving device 25 to open the air holes 23 at a time.
  • the position of the needle 24 is determined by computer control in accordance with the shape of the object, and the location where the pouring of water is considered to be poor and the spout force are set in advance in accordance with the shape of the remote object. Further, when the apparatus is simplified, or when the number of the ventilation holes 23 is small, the holes may be formed manually. In this embodiment, the lower half mold 21b is not provided with the ventilation hole 23, but may be provided in some cases. Thereafter, the mold halves 21a and 21b were combined to form the artificial cavity 22 (FIG. 3).
  • FIG. 5 shows an example of upper and lower half-split la, lb, and pressure in the artificial cavity 2 in the embodiment of the present invention.
  • the internal pressure of the half-split type la, lb at the time of pouring is Pm
  • the internal pressure of the steel cavity 2 is Pc
  • the internal pressure Pm of the half-split type la, lb and the internal pressure Pc of the steel cavity 2 When the difference is Pc-Pm, the internal pressure Pc of the structure cavity 2 needs to be different from the atmospheric pressure (101.3 kPa) in order to ensure a smooth inflow of the molten metal.
  • Pc-Pm is small, mold collapse occurs, and if Pc-Pm is large, Pm becomes small, so the vacuum equipment becomes large and the equipment cost increases.
  • the pressure sensor 7 detects the internal pressure Pm of the half-split type la, lb and transmits it to the control device 8.
  • the control device 8 adjusts the opening degree of the proportional control valve 9 to adjust the internal pressure Pm of the half-split la, lb, and reduces the internal pressure Pm of the half-split la, lb to the reduced pressure.
  • FIG. 6 shows an example of a method of depressurizing the inside of the artificial cavity using the open-lifting R.
  • the upper and lower half molds 31a and 31b are molded using the molding process of the V process, and the molds are matched to form the artificial cavity 32.
  • the pressure inside the half-split molds 31a and 31b is reduced by a decompression pump 37 via the frames 33 and 33, the suction pipes 34 and 34, the pipe 35, and the reservoir tank 36.
  • the upper half split type 31a is provided with an open flap R which is connected to the artificial cavity and is opened to the upper surface of the upper half split type 3 la, which is also used as a feeder.
  • the lower half split type 31b was provided with a plate weir (not shown) for connecting the artificial cavity 32 and the open lift R.
  • connection jig 38 connected to the opening on the upper surface of the upper half-split type 31a, the artificial cavity decompression reservoir tank 39, the pressure regulating valve 40, and the reservoir tank 36.
  • the pressure was reduced by the vacuum pump 37.
  • FIG. 7 shows an example of the case where the inside of the artificial cavity is not decompressed in the type II having the open-lift R.
  • the upper and lower half molds 31a and 31b were molded using the molding process of the V process, and the molds were matched to form the artificial cavity 32.
  • the pressure inside the half-split molds 31a and 31b was reduced by a decompression pump 37 via storage frames 33 and 33, suction pipes and, piping 35 and a reservoir tank.
  • the upper half split type 31a is provided with an open flap R which is connected to the artificial cavity and is opened toward the upper surface of the upper half split type 3 la, also serving as a feeder.
  • the lower half split type 31b was provided with a plate weir (not shown) for connecting the artificial cavity 32 and the open lift R. For such a mold, pouring was performed without reducing the pressure in the mold cavity.
  • FIGS. 8 to 10 are schematic diagrams showing the results of pouring. This schematic diagram schematically shows a photograph of the result of pouring.
  • FIG. 8 shows the result of pouring by the method of Example 2.
  • Figure 9 shows the pouring by the method of Example 3. The results are shown below.
  • FIG. 10 shows the result of pouring by the method of the comparative example.
  • the fourth embodiment is characterized in that a completed mold formed by using the molding process of the V process is placed above a fabrication furnace (holding furnace) and poured. That is, in the pouring method of the V process, the gate is formed in the lower half mold, and the gate is not formed in the upper mold, and the completed mold is placed above the forging furnace. And providing a heat insulating means between the furnace and the structure and pouring it.
  • the lower surface of the lower half of the completed ⁇ type is adjusted to be flat.
  • the condition that the gate is not formed in the upper half mold means that a low pressure method or a differential pressure method is used as a pouring method instead of the gravity pouring method which is a pouring method of the conventional V process. This is because pouring of the bottom surface of the finished mold is performed. Therefore, the finished mold will be located above the forge.
  • Insulation ⁇ is a means for preventing the film, which is a V process ⁇ type shielding member, from being melted by the heat of the molten metal in the forging furnace (holding furnace). This is done by providing a heat insulator between the lower die plate on which the split mold is placed and the lower half split mold. Further, it is also possible to provide the lower die plate in a partially inserted form.
  • the material of the heat insulating material used for this heat insulation means should be a material that can withstand the temperature of the molten metal, such as pottery, ceramics, gypsum, sand mold, and self-hardening sand mold.
  • adjusting the lower half mold so as to keep it horizontal means that the lower half mold is not flat when the lower surface is flat or the lower half mold is not horizontal. There is a possibility that a gap may be formed between the heat sink and the lower die plate, and the molten metal may leak during pouring. ⁇
  • the material of the cushioning material is a soft material that conforms to the shape of the lower surface of the lower half mold, and may be any material that can withstand the temperature of the molten metal, such as glass wool and sand. Further, a composite material may be used.
  • FIG. 11 is a schematic diagram of a reduced pressure type molding apparatus according to an embodiment of the present invention.
  • the present vacuum depressing and molding apparatus includes a holding furnace 44 holding a molten metal, a lower die plate 42 placed on the upper surface of the holding furnace 44, and a lower die plate 42 placed on the upper surface of the lower die plate 42.
  • Insulating material 83 as the heat insulating means, frames 53a and 53b placed on the upper surface of the heat insulating material 83, and molding using the molding process of the V process in the frames 53a and 53b.
  • the holding furnace 44 is provided with a compressed air inlet pipe 58 for introducing compressed air into the furnace. It is attached.
  • the artificial cavity 52 is defined inside the upper and lower half-split molds 5 la and 5 lb by matching the molds.
  • the lower die plate 42 is provided with a stalk 60 for introducing the molten metal in the holding furnace 44 into the fabrication cavity 52.
  • the heat insulating material 83 corresponds to a gate on the lower surface of the lower half-split type 5 lb, and a hole is formed in a position communicating with the stalk 60 so as to be an introduction path of the molten metal.
  • the inside of the upper and lower half molds 51a and 51b was decompressed by the decompression device 62 through the inside of the left frames 53a and 53b and the left and right suction frames 63a and 53b.
  • the upper and lower half molds 51a and 51b were placed on the heat insulating material 83, and the upper die plate 56 was placed on the upper surface of the upper half mold 51a.
  • the heat insulating material 83 and the upper and lower half molds 51a and 51b were sandwiched and clamped by the upper die plate 56 and the lower die plate 42.
  • compressed air is introduced into the holding furnace 44 from a compressed air generating source (not shown) via a compressed air introduction pipe 58, and pressure is applied to the upper surface of the molten metal.
  • the cavity 52 was filled.
  • the introduction of compressed air is stopped, and as the pressure in the holding furnace 44 is returned to atmospheric pressure, excess molten metal in the spout ⁇ Stoke 60 is returned to the holding furnace 44 and injected. Finished hot water.
  • the holding furnace is installed immediately below the type III, the installation space of the apparatus can be minimized.
  • the hot water and the hot water are not used, but it goes without saying that they can be provided as needed.
  • the molten metal is supplied by introducing compressed air.
  • the molten metal may be supplied by another method such as an electromagnetic pump.
  • FIG. 12 shows the pressure conditions of the compressed air pressurized into the holding furnace 44 in the pouring test.
  • the final set pressures are 0.03 and 0.06 MPa, and the pressure rise rates are 0.01 and 0.02 MPaZs.
  • FIG. 13 shows that molten metal is present in the artificial cavity 52 when the thickness of the artificial cavity 52 is 3 mm. It is the measurement result of the full length which is the filling length, and the length of the healthy part which filled up soundly.
  • the pressure increase rate of the compressed air to be pressurized into the holding furnace 44 was set at 0.0 OlMPaZs, and the final set pressure was set at 0.03 MPa.
  • the results of gravity molding in which gravity molding was performed on a mold molded using the molding process of the conventional V process are also shown.
  • FIG. 13 shows that the total length and the length of the healthy part in the case of using the reduced pressure type molding apparatus of this example were longer than those of the comparative example.
  • FIG. 14 shows a case in which the thickness of the molten metal 52 is filled when the pressure of the compressed air to be pressurized into the holding furnace 44 is changed when the thickness of the molded cavity 52 is 3 mm. It is a measurement result of a certain total length and a length of a sound portion that is soundly filled.
  • the final set pressure of the compressed air to be pressurized into the holding furnace 44 was set at 0.03 MPa, and the pressure increase rate was set at 0.005, 0.01, and 0.02 MPa / s.
  • FIG. 15 shows the measurement results of the surface roughness of the molded object.
  • the results of a model molded by gravity molding in which a mold molded by using the molding process of the conventional V process is subjected to gravity embedding are also shown.
  • the place where the surface roughness was measured is the part where the molten metal flows into the artificial cavity 52 with the hydraulic force in FIG.
  • FIG. 16 shows an example of pressure control at the time of pouring molten metal in the present embodiment.
  • a structural cavity 52 is formed by matching upper and lower half molds 55a and 55b.
  • the holding furnace 44 By pressing the upper surface of the molten metal in the holding furnace 44, the molten metal rises on the stalk 60 and is poured into the artificial cavity 52.
  • the holding furnace 44 The time at which the pressurization of the upper surface of the melt is started by compressed air is set to 0.
  • the molten metal height changes rapidly until the molten metal reaches the pouring point hi where the pouring force flows into the fabrication cavity 52, so that the compressed air pressurized into the holding furnace 44. It is necessary to increase the pressure increasing speed of the set pressure P.
  • hi to h2 which is a part for pouring the flat surface of the artificial cavity 52, it is necessary to slow down the pressure increasing speed of the set pressure P of the compressed air to be pressurized into the holding furnace 44. Because the part from hi to h2 is a part that becomes a product, the flow of the molten metal becomes turbulent, and the molten metal concentrates and contacts a part of the film, which is a shielding member. There is a risk of mold falling due to burnout. In addition, entrainment of gas due to the turbulent flow of the molten metal is likely to occur. This is to prevent problems such as the following.
  • FIG. 17 is a schematic view of a reduced pressure type molding apparatus used in another example.
  • the present vacuum depressurization molding apparatus includes a holding furnace 44 holding molten metal, columns 72, 72 erected on the sides of the holding furnace 44, and upper ends of the columns 72, 72.
  • the upper and lower half molds 51a and 51b formed by using the above, an upper die plate 56 placed on the upper surface of the upper half mold 5la, and four upper corners of the upper surface of the lower die plate 42 are provided.
  • the holding furnace 44 is provided with a compressed air introduction pipe 80 for introducing compressed air into the furnace. Further, a mold cavity 52 is defined inside the upper and lower half molds 51a and 51b by matching the molds. Further, the lower die plate 42 is provided with a stalk 60A communicating with a pipe 79 for introducing the molten metal in the holding furnace 44 into the fabrication cavity 52. In addition, a hole is formed on the lower surface of the lower die plate 42, corresponding to the lower half-split type 5 lb gate, at a position communicating with the pipe 79 and serves as an inlet for the molten metal. A heat insulating material 83A as the heat insulating means is provided.
  • the pressure inside the upper and lower half molds 51 a and 51 b was reduced by a pressure reducing device 62 through the frames 53 a and 53 b and the suction pipes 63 and 63.
  • the upper and lower half molds 51a and 51b were placed on the lower die plate 42, and the upper die plate 56 was placed on the upper surface of the upper half mold 51a.
  • the upper and lower halves 51a, 5 lb were clamped between the upper die plate 56 and the lower die plate 42.
  • compressed air is introduced from a compressed air generation source (not shown) into the holding furnace 44 via a compressed air introduction pipe 80, and pressure is applied to the upper surface of the molten metal.
  • Made cavity 52 was filled. ⁇ After the molten metal in the mold cavity 52 solidifies, the introduction of compressed air is stopped, and as the pressure in the holding furnace 44 is returned to the atmospheric pressure, excess molten metal in the spout, pipe 79 and Stoke 60A is discharged into the holding furnace 44. The pouring was completed.
  • the decompression type molding apparatus of this example has no type D on the holding furnace, so that the supply of the molten metal is easy, and residues such as slag and oxide on the upper surface of the molten metal are easily removed.
  • the hot water and the deep-fried water are not used, but they can be provided if necessary! It's not necessary! / ,.
  • the molten metal may be supplied by another method such as a force electromagnetic pump that supplies the molten metal by introducing compressed air.
  • the molten metal is supplied by one pipe 79A to the lower portion of the lower die plate 42 on which the upper and lower half molds 51a and 51b are placed, and the lower half mold 5 lb
  • a sand layer 84 having a plurality of molten metal supply paths formed therein was attached to one end of a pipe 79A facing the bottom.
  • the gate position due to the change of the construction method, it corresponds to the gate position What is necessary is just to form the sand layer 84 having the molten metal supply path.
  • the use of the sand layer makes it easy to respond to changes in the gate position.
  • the sand layer 84 is connected to the pipe 79A, but the connection destination of the sand layer 84 may be Stoke.
  • the molding frame cooling device shown in FIGS. 19 and 20 can be used in the present invention, and blows compressed air to the side and bottom surfaces of the molding frame to suppress the temperature rise of the molding frame and to prevent film welding. It cools down.
  • compressed air is blown into a chamber having one side of the surface where the metal frame and the film are in contact with each other and air-cooled, whereby the temperature rise of the metal frame can be suppressed, and the film can be prevented from welding.
  • the temperature rise of the surface plate can be suppressed, and film welding can be prevented.
  • the conventional metal manufacturing mold body has a chamber (hollow) shape 101 on both the upper frame and the lower frame, and the vacuum pump force (not shown) is also drawn.
  • the interior of the chamber 101 is evacuated, and sand molds 61a and 61b are formed by negative pressure.
  • the sand molds 61a, 61b are surrounded by the upper frame 93a, the lower frame 93b, the upper film 97, the product films 98, 98, and the lower film 99, and are suctioned to be kept under negative pressure to maintain the shape.
  • the cooling device of the present invention provided the nozzles 91, 91 for the side surfaces of the metal frame and the nozzles 92 for the bottom surface of the platen, and cooled by blowing compressed air to the metal frame.
  • air cooling chambers 102, 102 are provided on the parting surface (the surface where the upper frame and the lower frame meet), and detachable side nozzles 91, 91 are inserted, and a manual valve is installed.
  • the blow 104 is turned on and off at the block 104 (Figs. 19 and 20).
  • a nozzle 92 for the bottom was installed near the center below the platen 95, and the blow valve was turned on and off with a manual valve 104 (Figs. 19 and 20).
  • the air cooling chambers 102, 102 are provided with several holes, which serve as an inlet for the side nozzle 91 and an air inlet / outlet (FIG. 19).
  • the metal frame is subjected to vacuum suction for a certain period of time after the pouring of the molding force (to maintain the sand mold). After that, the suction is stopped and the air is naturally cooled in the frame. At this time, compressed air is blown to actively cool the air.
  • the nozzle is manually attached and detached and a manual valve is configured for a semi-automated facility.
  • an actuator such as an air cylinder is used to automate the nozzle attachment and detachment and the air blow using an electromagnetic valve. Things are also possible.
  • FIG. 1 shows a schematic sectional view of a first embodiment of the present invention.
  • FIG. 2 shows an outline of the method of the first embodiment.
  • FIG. 3 shows a schematic sectional view of a second embodiment of the present invention.
  • FIG. 4 shows an outline of one stage of a second embodiment.
  • FIG. 5 shows a pressure diagram of a second embodiment.
  • FIG. 6 is a schematic cross-sectional view of a third embodiment of the present invention (an example in which the artificial cavity is depressurized through an open fry).
  • FIG. 7 shows a schematic cross-sectional view of a comparative example (prior art) using another pouring method.
  • FIG. 8 shows the results of the second example of the present invention. [9] This shows the result of the third example of the present invention.
  • FIG. 10 shows the results of a comparative example (prior art) using another pouring method.
  • FIG. 11 shows a schematic sectional view of a fourth embodiment of the present invention.
  • FIG. 13 shows a result of a flow length of a pouring test in a fourth embodiment.
  • FIG. 14 shows another result of the flow length of the pouring test in the fourth embodiment.
  • FIG. 15 shows the results of the surface roughness of the pouring test in the fourth embodiment.
  • FIG. 16 shows an example of pressure control in a pouring test in a fourth embodiment.
  • FIG. 17 shows a schematic sectional view of a fifth embodiment of the present invention.
  • FIG. 18 shows a pouring jig according to an alternative embodiment of the present invention.
  • FIG. 19 is a cross-sectional plan view (cross-sectional view of a chamber portion) showing an apparatus (Example 6) for cooling a molding frame of the present invention.
  • FIG. 20 is a front sectional view of FIG. 19.
  • FIG. 21 is a front sectional view of a conventional frame structure.

Abstract

 Vプロセス鋳型(造型枠体)を用いて薄肉鋳物の鋳造する減圧造型の注湯方及び装置、並びに、その方法により鋳造した鋳物を提供する。該方法は、原形模型板の表面に遮蔽部材を密着する遮蔽部材密着工程と、密着した遮蔽部材上に造型枠体を載置すると共に造型枠体内に粘結剤を含まない充填材を充填する工程と、充填材の上面を密閉して造型枠体内を負圧にし、もって遮蔽部材を充填材側に吸着して遮蔽部材を成形する工程と、ついで原形模型板を遮蔽部材から離型して造型面を有する半割鋳型を造型する工程と、半割鋳型と同様にして造型したもう一つの半割鋳型と型合せして鋳造キャビティを画成すると共に完成鋳型を形成する工程と、鋳造キャビティ内に溶融金属を注入する工程と、しかる後造型枠体内の負圧状態を解除して鋳物を取り出す工程と、を有する減圧鋳型造型の注湯方法において、完成鋳型に注湯を開始する前に造型枠体を通じて鋳造キャビティ内を減圧する工程を有する。  

Description

明 細 書
減圧铸型造型の注湯方法、装置及び铸物
技術分野
[0001] 本発明は、铸物を铸造するため、特に薄肉铸物を铸造するための減圧铸型造型の 注湯方法、装置及び铸物に関する。ここで、減圧铸型造型(以下、「Vプロセス」という
)とは、原形模型板の表面に遮蔽部材を密着する遮蔽部材密着工程と、該密着した 遮蔽部材上に造型枠体を載置すると共に該造型枠体内に粘結剤を含まない充填材 を充填する工程と、該充填材の上面を密閉して造型枠体内を負圧にし、もって前記 遮蔽部材を充填材側に吸着して遮蔽部材を成形する工程と、ついで前記原形模型 板を遮蔽部材から離型して造型面を有する半割铸型を造型する工程と、該半割铸型 と同様にして造型したもう一つの半割铸型と型合せして铸造キヤビティを形成するェ 程と、該铸造キヤビティ内に溶融金属を注入する工程と、しかる後前記造型枠体内の 負圧状態を解除して铸物を取り出す工程と、を有する铸型造型 ·注湯プロセスを ヽぅ 背景技術
[0002] 従来、 Vプロセスは広く用いられている(例えば、特開昭 54— 118216号公報参照
) oしかしながら、その適用範囲としてはピアノフレームやカウンタウェイトなどの肉厚 铸物が多ぐたとえば、肉厚 3mm程度以下の薄肉を铸造する铸型としては用いられ ていなかった。
[0003] また、従来、 Vプロセスにお 、て造型枠体を冷却する装置は無かった。注湯時以降 も真空吸引することにより枠の昇温は抑制されている。しかし、その真空吸引はある 一定時間で止め、解枠まで自然枠内冷却する工程があり、この時に、カウンタウェイ ト等、熱容量が大きい製品を铸込む場合、铸込品力 の熱により、金枠ゃ定盤の温 度が上昇し、使用しているフィルム力 金枠ゃ定盤へ溶着してしまう不具合が発生す る事が有った。
[0004] 本発明の主目的は、上記の問題に鑑みて成されたもので、 Vプロセス铸型を用いて 铸物、特に、薄肉铸物を铸造するのに適した減圧铸型造型の注湯方法及び装置、 並びに、その方法により铸造した铸物を提供することを目的とする。
[0005] 本発明の別の目的は造型枠体を冷却する装置を提供することである。
発明の開示
[0006] 上記の目的を達成するために本発明の 1局面における減圧铸型造型の注湯方法 は、 Vプロセスにお 、て铸造キヤビティ内を前記造型枠体を通じて減圧することを特 徴とする。即ち、通常の Vプロセスが、遮蔽部材により造型枠体内と、大気に通じる铸 造キヤビティとを遮断して、造型枠体内を負圧にして遮蔽部材を充填材側に吸着し て遮蔽部材を成形し铸造キヤビティを維持するのに対して、本発明では、上記の遮 蔽を解除し、通常では铸型が崩壊すると思われる状態、換言すると造型枠体内と大 気に通じて ヽる铸造キヤビティを連通した状態で、半割铸型及び铸造キヤビティを維 持しつつ铸物を铸造することを特徴とする。
[0007] また、上記 1局面において前記铸造キヤビティ内を減圧する工程が造型枠体を通じ てなされ、この工程は、前記遮蔽部材密着工程の後に、前記原形模型板の製品部 にベントプラグを配した後、前記密着した遮蔽部材及びベントプラグの上に造型枠体 を載置して該造型枠体内に充填材を充填する工程により設けられたベントプラグを 通じてなされることを特徴とする。
[0008] さらに、上記 1局面における前記造型枠体を通じた前記铸造キヤビティ内を減圧す る工程が、前記半割铸型を造型した後、遮蔽部材に多数個の孔を貫通させた通気 孔によりなされることを特徴とする。
[0009] また、上記 1局面における減圧铸型造型の注湯方法は、前記完成铸型の少なくとも 一方の半割铸型の減圧度を注湯前から注湯終了時まで測定する工程と、測定した 減圧度を制御装置に伝達し、該半割铸型の铸型内部及び前記铸造キヤビティの減 圧度を調整する工程を、さらに有することを特徴とする。
[0010] さらに、上記 1局面において前記半割铸型には開放揚がりを設けないことを特徴と する。開放揚がりは铸造キヤビティ内の空気や溶湯のカスなどを吐き出す作用により 、型くずれせず安定して铸造するために通常用いられていた。しかし、本発明におい てはこの開放揚がりを設けずに铸造キヤビティを適度に減圧すると溶湯の流れが良く なり、型くずれが起きる前に铸造キヤビティ内に溶湯を効率的に充たすことができるこ とを発見したのである。
[0011] 上記 1局面の本発明によれば、 Vプロセスにおいて铸造キヤビティ内を減圧する(こ れは、前記造型枠体及び開放揚がりの少なくとも一方を通じてなされる)ことから、減 圧铸型造型による薄肉铸物の铸造が可能である。また、通気孔により铸型内部と铸 造キヤビティを同時に減圧できるため、別途、铸造キヤビティを減圧するための装置 が不要となり、造型装置の構造が簡単になるという利点がある。なお、開放揚がりを 設けない場合、押湯、捨て湯部は必要最小限とすることができる。これにより、製品歩 留まりが向上するという利点がある。
[0012] さらに、本発明は、通常の Vプロセス铸型の特徴は保持しているため、解枠性に優 れ、薄肉铸物の取り出しが簡単になると 、う利点がある。
[0013] 本発明の別の局面によれば、上記の目的を達成するために本発明における減圧 铸型造型の注湯方法は、 Vプロセスの注湯方法において、完成铸型の下半割铸型 に湯口を形成し、上半割铸型には湯口を形成しな ヽことを特徴とする。
[0014] また、铸造の炉の上に配される前記完成铸型の下半割铸型を水平に保持すべく調 整することを特徴とする。
[0015] さらに、前記完成铸型と前記铸造の炉との間に完成铸型の下半割铸型を水平に保 持する緩衝手段を配設して注湯することを特徴とする。
[0016] また、上記の目的を達成するために本発明における減圧铸型造型の注湯方法は、 前記完成铸型を铸造の炉の上方に配置するのに際して、前記完成铸型と保持炉と の間に断熱材を配設して注湯することを特徴とする。
[0017] さらに、前記断熱材を構成する砂層が、その下部を 1本のストークと連通すると共に 上部を複数本の湯口に連結することを特徴とする。
[0018] また、上記の目的を達成するために本発明における減圧铸型造型の注湯方法は、 前記注湯方法が低圧铸造方法或いは差圧铸造方法であることを特徴とする。
[0019] さらに、前記注湯方法において铸造キヤビティ内に注湯する際、注湯速度の制御を 行うことを特徴とする。
[0020] 上記別の局面によれば、 Vプロセスの注湯方法にぉ 、て、完成铸型の下半割铸型 に湯口を形成し、上半割铸型には湯口を形成しないことにより、下注ぎの铸造が可能 になり溶湯の流れが層流となり、重力铸造方法やダイカストと比較して溶湯への空気 やノロなどの巻き込みが少なくなる。また、揚がりや押湯を設ける必要がないため、捨 て湯部は必要最小限とすることができる。これにより、製品歩留まりが向上するという 利点がある。さらに、本発明は、通常の Vプロセス铸型の特徴は保持しているため、 解枠性に優れ、薄肉铸物の取り出しが簡単になるという利点がある。
[0021] 本発明は、大物薄肉铸物、例えば大物家電、大型テレビ等のフレーム、自動車フレ ーム、機械装置フレームなどの铸造品に好適である。なお、材質については問わな い。
[0022] 上記 2つの局面において、造型枠体に圧縮空気を吹き付けて造型枠体を冷却する 手段を用いることができる。
[0023] 上記目的、特徴、及び利点以外の目的、特徴、及び利点はの添付図面を参照して 説明する以下の実施例に関する説明から明白になるであろう。
発明を実施するための最良の形態
[0024] 以下、本発明を実施するための最良の形態を説明する。いくつかの実施例におい て、同じ又は同様な構成用には同じ又は同様な番号を使用している。
[0025] 本発明は、 Vプロセス铸型において、铸造キヤビティと铸型内部を連通する通気孔 を有し、造型枠体を通じて铸造キヤビティを減圧することを特徴とする。
[0026] 即ち、原形模型板の表面に遮蔽部材を密着する遮蔽部材密着工程と、該密着した 遮蔽部材上に造型枠体を載置すると共に該造型枠体内に粘結剤を含まない充填材 を充填する工程と、該充填材の上面を密閉して造型枠体内を負圧にし、もって前記 遮蔽部材を充填材側に吸着して遮蔽部材を成形する工程と、ついで前記原形模型 板を遮蔽部材から離型して造型面を有する半割铸型を造型する工程と、該半割铸型 と同様にして造型したもう一つの半割铸型と型合せして铸造キヤビティを画成すると 共に完成铸型を形成する工程と、該铸造キヤビティ内に溶融金属を注入する工程と 、し力る後前記造型枠体内の負圧状態を解除して铸物を取り出す工程と、を有する 減圧铸型造型の注湯方法であって、前記完成铸型に注湯する前に前記造型枠体を 通じて前記铸造キヤビティ内を減圧する工程を有し、前記铸造キヤビティに注湯する 際、铸型内部圧力を Pm、前記铸造キヤビティ内圧力を Pcとしたとき、 Pm= l〜75kP a、 Pc= l〜95kPaで力つ、 Pc— Pm = 3〜94kPaとなることを特徴とする。
[0027] ここで、铸型内部圧力 Pmを l〜75kPaとしたのは、 lkPaより低くすると真空ポンプ が大掛りなものになり、 75kPaより高くすると注湯時に発生するガスを吸引することが できないためである。また、铸造キヤビティ内圧力 Pcを l〜95kPaとしたのは、 95kPa より高くすると大気圧(101. 3kPa)との圧力差が十分でなくなるため、溶湯のスムー スな流入を確保することができず、 lkPaより低くすると铸型が铸造キヤビティに向か い崩壊する恐れがあるためである。さらに、 Pc>Pmになるようにする必要がある。な ぜなら、铸型内部圧力 Pmを铸造キヤビティ内圧力 Pcよりも低い減圧度にすることで、 溶湯の铸型への差込みを防止するためである。また、 Pc— Pmは、 Pc及び Pmの値に より決まってくるが、 3〜94kPa必要である。
[0028] ここで、造型枠体とは Vプロセスにおいて使用される吸引パイプが具備された铸枠 をいう。
[0029] また、本発明において、通気孔はフィルム成形後に製品部にベントプラグを配して 造型し、抜型後に铸造キヤビティ側力もベントプラグのスリットに沿って、フィルムを切 欠くことで設けることができる。さらに、前記通気孔は铸造キヤビティ側力も針等で铸 型内部へ貫通する孔を開けることにより確保しても良い。
[0030] さらに、本発明において、前記のように铸造キヤビティを適度に減圧することにより 開放揚がりは不要とすることができる。なお、開放揚がりとは、上铸型を突き抜け、铸 造キヤビティと大気とを結ぶ管状の空隙である。従って、開放揚がりを設けないと、上 半割铸型の上部には铸造キヤビティと大気を結ぶ連通孔がないことになる。
[0031] 実施例 1
以下、図 1及び 2に関して実施例 1 (第 1実施例)を説明する。
[0032] 図 1は、実施例に用いた減圧铸型造型装置の概略断面図である。上下の半割铸型 la, lbは、 Vプロセスの造型工程を用いて造型され、半割铸型 la, lbを型合わせし て、铸造キヤビティ 2を画成した。
[0033] ここで、前記半割铸型 la, lbの造型方法を図 2に基づき詳しく説明する。図 2にお いて、原形模型板 12の表面に遮蔽部材であるフィルム 13を原形模型板 12に負圧に より密着させ、フィルム 13上に前記造型枠体である铸枠 3を載置した後、フィルム 13 の上半割铸型 la側に通気孔であるベントプラグ 6を模型形状に合わせて複数個配 置した。その後、铸枠内に砂を充填し、上半割铸型 laの造型を行った。次に、上半 割铸型 laを前記原形模型板 12より離型し、上半割铸型 laの铸造キヤビティ面側か らベントプラグ 6のスリットに沿ってフィルム 13を切り欠いた。このようにしてベントプラ グ 6を通気孔として確保して上半割铸型 laを造型した。
[0034] 次に、この上半割铸型 laと同様にして造型したもう一つの下半割铸型 lbとを型合 せして铸造キヤビティを画成するとともに完成铸型を形成した(図 1)。この時、造型枠 体である铸枠 3内に通じている铸造キヤビティ 2は湯道及び湯口を介して大気と連通 している。なお、本実施例においては、下半割铸型 lbには通気孔であるベントプラグ 6が設けられていないが、場合により設けることもできる。以上のようにして、図 1の状 態の減圧铸型造型装置を完成した。
[0035] 次に、このようにして完成した減圧铸型造型装置の作用について説明する。図 1に おいて、上下の半割铸型 la, lbの内部を、铸枠 3, 3、吸引パイプ 4, 4、配管 5及び リザーバタンク 10を介して、減圧ポンプ 11により減圧した。
[0036] また、铸造キヤビティ 2を通気孔であるベントプラグ 6を通して、半割铸型 la, lbと同 時に減圧した。半割铸型 la, lb内部の圧力は、圧力センサー 7により検出され、その 検出圧力は制御装置 8に送られる。この制御装置 8からは検出圧力に応じた制御信 号が送られて、比例制御弁 9を必要に応じた開度に調整し、半割铸型 la, lb及び铸 造キヤビティ 2の吸引圧力を変化させ、この間に、铸造キヤビティ 2内に溶融金属とし てアルミニウム合金を注入した。しカゝる後、造型枠体内の負圧状態を解除して铸物を 取り出した。この铸物は 3mm以下の薄肉で欠陥が無力つた。
[0037] 上記の説明から明らかなように、本発明は、従来の Vプロセス铸型に、铸造キヤビテ ィ 2と半割铸型 la, lb内部を連通する通気孔であるベントプラグ 6を設けることで、減 圧状態で铸造を実施できる。
[0038] 実施例 2
次に、図 3から図 5により、本発明を用いた別の実施例 (第 2実施例)を説明する。
[0039] 図 3は針で上半割铸型の内部に貫通する通気孔を開けた場合を示す。上下の半 割铸型 21a, 21bは、 Vプロセスにより造型した。次に、上半割铸型 21aの铸造キヤビ ティ 22側より針で上半割铸型 21a側にフィルムを貫通し、铸型内に到達する複数個 の通気孔 23を開けた。その孔明けの方法は、図 4に示すように、複数本の針 24を備 えた治具を駆動装置 25にて駆動し、一度に通気孔 23を開けた。針 24の位置はコン ピュータ制御により铸物の形状にぉ 、て湯廻りが悪 、と考えられる場所や湯口力も遠 ぃ铸物形状部に合わせて予め設定されるようになっている。また、装置の簡素化や、 通気孔 23の数が少ない場合は手作業により孔明けを行っても良い。なお、本実施例 においては、下半割铸型 21bには通気孔 23が開けられていないが、場合により開け ることができる。その後、半割铸型 21a, 21bを型合わせし、铸造キヤビティ 22を構成 した(図 3)。次に、半割铸型 21a, 21bの内部圧力 Pmを Pm= l〜75kPa、铸造キヤ ビティ 22の内圧力 Pcを Pc= l〜95kPaとなるように圧力条件を調整しながら、注湯を 行った。
[0040] 図 5は、本発明の実施例における上下の半割铸型 la, lb、铸造キヤビティ 2内の圧 力の例を示したものである。
[0041] 注湯時の半割铸型 la, lbの内部圧力を Pm、铸造キヤビティ 2の内圧力を Pc及び 半割铸型 la, lbの内部圧力 Pmと铸造キヤビティ 2の内圧力 Pcの圧力差を Pc— Pmと したときに、铸造キヤビティ 2の内圧力 Pcは溶湯のスムースな流入を確保するために は大気圧(101. 3kPa)との圧力差が必要である。また、 Pc— Pmが小さいと型くずれ を生じ、 Pc— Pmが大きいと Pmが小さくなるため真空設備が大きくなり、設備コストが 大きくなる。
[0042] 上記の理由及び実験結果から、 Pm= l〜75kPa、 Pc= l〜95kPaでかつ、 Pc— P m = 3〜94kPaの場合に効果があることがわかった。
[0043] さらに詳しく圧力の変化を説明する。注湯開始から注湯完了にかけては、铸造キヤ ビティ 2の減圧による湯廻り性の向上、成形フィルム焼失に伴う発生ガスの吸引のた めに、半割铸型 la, lbの内部圧力 Pmは高減圧度を保つ。
[0044] 前記铸造キヤビティ 2が溶湯で満たされる注湯完了以降は、前記半割铸型 la, lb の内部圧力 Pmを、前記圧力センサー 7が検知して前記制御装置 8に送信する。制御 装置 8は、前記比例制御弁 9の開度を調整して、半割铸型 la, lbの内部圧力 Pmの 調整を行い、半割铸型 la, lbの内部圧力 Pmを低減圧度にし、溶湯の铸型への差込 みを防止する。
[0045] 実施例 3
図 6は、開放揚がり Rを用いて铸造キヤビティ内を減圧する方法の一例を示す。上 下の半割铸型 31a, 31bは、 Vプロセスの造型工程を用いて造型され、型合せを行い 、铸造キヤビティ 32を構成する。半割铸型 31a, 31bの内部は、铸枠 33, 33、吸引パ ィプ 34, 34、配管 35及びリザーバタンク 36を介して、減圧ポンプ 37により減圧され る。
[0046] また、上半割铸型 31aには铸造キヤビティと連結し、押湯と兼用でこの上半割铸型 3 laの上面に向けて開口した開放揚がり Rを設けた。さらに、下半割铸型 31bには、铸 造キヤビティ 32と開放揚がり Rを連結する図示していない板ぜきを設けた。
[0047] 铸造キヤビティ 32内部は開放揚がり Rの上半割铸型 31a上面にある開口に接続さ れた接続治具 38、铸造キヤビティ減圧用リザーバタンク 39、圧力調整弁 40及びリザ ーバタンク 36を介して、減圧ポンプ 37により減圧した。
[0048] 次に、半割铸型 31a, 31bの内部圧力 Pmを Pm= l〜75kPa、铸造キヤビティ 32の 内圧力 Pcを Pc= l〜95kPaとなるように圧力条件を調整しながら、注湯を行った。
[0049] 比較例
図 7は、開放揚がり Rを設けた铸型において、铸造キヤビティ内を減圧しない場合の 一例を示す。上下の半割铸型 31a, 31bは、 Vプロセスの造型工程を用いて造型さ れ、型合せを行い、铸造キヤビティ 32を構成した。半割铸型 31a, 31bの内部は、铸 枠 33, 33、吸引パイプ 34, 34、配管 35及びリザーバタンク 36を介して、減圧ポンプ 37により減圧した。
[0050] また、上半割铸型 31aには铸造キヤビティと連結し、押湯と兼用でこの上半割铸型 3 laの上面に向けて開口した開放揚がり Rを設けた。さらに、下半割铸型 31bには、铸 造キヤビティ 32と開放揚がり Rを連結する図示していない板ぜきを設けた。このような 铸型に対し、铸造キヤビティを減圧せずに注湯を行った。
[0051] 図 8から図 10は注湯結果を示す概略図である。この概略図は注湯結果の写真を模 式的に示したものである。
[0052] 図 8は、実施例 2の方法で注湯した結果を示す。図 9は、実施例 3の方法で注湯し た結果を示す。図 10は比較例の方法で注湯した結果を示す。
[0053] 図 10に示すように、前記比較例である铸造キヤビティ内を減圧しない場合には、せ きに近い铸造キヤビティの一部にのみ溶湯が充填されていることがわかる。次に、図 9に示す実施例 3の本発明を用いた方法によるものは、開放揚がり Rのある部分には 溶湯が到達しており、比較例と比べて铸造キヤビティ内を減圧する効果が現れて 、る 。しかし、開放揚がり Rのない部分については溶湯が充填されていないことがわかり、 铸物としては不十分なものである。それに引き替え、図 8に示すように、実施例 2に示 す本発明を用いた別の方法の場合は、铸造キヤビティ全体に溶湯が充満し、実施例 3の結果よりさらに铸造キヤビティ内を減圧する効果が現れていることがわかる。
[0054] 以上の結果から見ても、本発明を用いることの有用性を確認することができる。
[表 1]
表 1
Figure imgf000011_0001
[0055] また、表 1において、铸造キヤビティ内を減圧するにあたり、铸造キヤビティと造型枠 体とを連通させる方法として、本発明による針により通気孔を設ける方法、ベントブラ グを使用して通気孔を設ける方法がある。また、铸造キヤビティ内を開放揚がりを介し て減圧する方法がある。これらの方法の充填性、造型コスト、造型の作業性を比較し た。その結果、針により通気孔を設ける方法が、充填性、造型コスト、造型の作業性と も他の 2方法と比較して良好な結果を示した。
[0056] 実施例 4
次に、図 11乃至 16に関して、本発明の実施例 4 (第 4実施例)を説明する。実施例 4は、 Vプロセスの造型工程を用いて造型された完成铸型を铸造の炉 (保持炉)の上 方に配置し注湯することを特徴とする。即ち、 Vプロセスの注湯方法において、下半 割铸型に湯口を形成し、上半割铸型には湯口を形成しな 、完成铸型を铸造の炉の 上方に配置し、完成铸型と前記铸造の炉との間に断熱手段を設けて注湯することを 特徴とする。また、前記完成铸型の下半割铸型の下面を平面とすべく調整することを 特徴とする。
[0057] ここで、上半割铸型に湯口を形成しな ヽとは、従来の Vプロセスの注湯方法である 重力铸造方法ではなぐ注湯方法として低圧铸造方法或いは差圧铸造方法を用い るため、完成铸型の下面力ゝら注湯を行うためである。したがって、完成铸型は铸造の 炉の上方に位置することになる。
[0058] また、断熱 ϋとは、铸造の炉 (保持炉)内にある溶湯の熱により Vプロセス铸型の遮 蔽部材であるフィルムが溶けてしまうのを防止するための手段で、下半割铸型を載置 する下ダイプレートと下半割铸型の間に断熱材を設けることにより実施される。さらに 、下ダイプレート内に部分的に挿入された形で設けることも可能である。なお、この断 熱手段に用いる断熱材の材質は、陶器、セラミックス、石膏、砂型、自硬性砂型など 溶湯の温度に耐えうる材質であればょ ヽ。
[0059] さらに、下半割铸型を水平に保持すべく調整するとは、下半割铸型の下面が平面 で^場合や、下半割铸型が水平でない場合に、下半割铸型と断熱材や下ダイプ レートとの間に隙間が生じ、注湯の際に湯漏れが発生する可能性があるため、下半 割铸型と断熱材や下ダイプレートとの間に下半割铸型の水平を保持するための緩衝 材を設けたり、充填材を平らにするために機械的手段 (振動やスクレーパー)を作用 させることである。この緩衝材の材質は、下半割铸型の下面の形状になじむような軟 質の材質であり、ガラスウール、砂など溶湯の温度に耐えうる材質であればよい。また 、複合材料でもよい。
[0060] 最初に図 11に言及し、この図は本発明の実施例の減圧铸型造型装置の概略模式 図である。図 11に示すように、本減圧铸型造型装置は、溶湯を保持した保持炉 44と 、保持炉 44の上面に載置された下ダイプレート 42と、下ダイプレート 42の上面に載 置された前記断熱手段である断熱材 83と、断熱材 83の上面に載置された铸枠 53a , 53bと、铸枠 53a, 53b内の Vプロセスの造型工程を用いて造型され上下半割铸型 51a, 51bと、上半割铸型 5 laの上面に載置された上ダイプレート 56と、前記保持炉 44の上面の四隅から立設された 4本のロッド 57, 7と、で構成している。
[0061] 前記保持炉 44には炉内に圧縮空気を導入するための圧縮空気導入管 58が取り 付けられている。また、前記上下の半割铸型 5 la, 5 lbの内部には型合せをすること により铸造キヤビティ 52が画成されている。さらに、前記下ダイプレート 42には保持 炉 44内の溶湯を铸造キヤビティ 52内に導入するためのストーク 60が取り付けられて いる。また、前記断熱材 83〖こは、下半割铸型 5 lb下面の湯口に対応し、ストーク 60と 連通した位置に溶湯の導入路となる孔が明けられている。
[0062] 次に、本実施例の減圧铸型造型装置の作用について説明する。図 11において、 上下半割铸型 51a, 51bの内部を、铸枠 53a, 53bの内部を铸枠 53a, 53b、吸引ノ イブ 63, 63を介して減圧装置 62により減圧した。該上下半割铸型 51a, 51bを断熱 材 83の上に載置し、上ダイプレート 56を上半割铸型 51aの上面に載置した。次に、 上ダイプレート 56及び下ダイプレート 42にて断熱材 83と上下の半割铸型 51a, 51b を挟み込みクランプした。
[0063] その後、図示しない圧縮空気発生源から保持炉 44内に圧縮空気導入管 58を介し て圧縮空気が導入され、溶湯の上面に圧力が加えられ、溶湯がストーク 60を上昇し ながら、铸造キヤビティ 52内に充填を行った。铸造キヤビティ 52内の溶湯が凝固した 後、圧縮空気の導入が止められ、保持炉 44内の圧力を大気圧に戻すに従い、湯口 ゃストーク 60内の余分な溶湯が保持炉 44内に戻され注湯を終了した。
[0064] なお、本実施例の減圧铸型造型装置は、铸型の直下に保持炉が設置されているた め、装置の設置スペースを最小限に押さえることができる。また、本実施例では、押 湯、揚がりが使用されていないが、必要に応じ設けることができることはいうまでもな い。さらに、本実施例では、圧縮空気の導入により溶湯を供給しているが、電磁ボン プ等、他の方法により溶湯を供給してもよ 、ことは 、うまでもな 、。
[0065] 次に、本実施例の減圧铸型造型装置を用いて行った注湯テストについて説明する 。注湯テストは、前記铸造キヤビティ 52へアルミニウム溶湯を注湯し、铸造キヤビティ 52内に溶湯が充填された長さである全長と健全に充填された健全部の長さを測定し た。図 12は、注湯テストにおける前記保持炉 44内に加圧する圧縮空気の圧力条件 を示したものである。最終到達設定圧力は 0. 03、 0. 06MPaであり、昇圧速度は 0. 01、 0. 02MPaZsである。
[0066] 図 13は、铸造キヤビティ 52の厚さが 3mmの場合の铸造キヤビティ 52内に溶湯が 充填された長さである全長と健全に充填された健全部の長さの測定結果である。保 持炉 44内に加圧する圧縮空気の昇圧速度を 0. OlMPaZsとし、最終到達設定圧 力を 0. 03MPaとした。比較例として、従来の Vプロセスの造型工程を用いて造型さ れた铸型に重力铸込みを行った重力铸造の結果を併せて示す。
[0067] 図 13より、本実施例の減圧铸型造型装置を用いた場合の方が、全長及び健全部 の長さとも比較例より長い数値を示した。
[0068] 図 14は、铸造キヤビティ 52の厚さが 3mmの場合で、保持炉 44内に加圧する圧縮 空気の昇圧速度を変化させたときの铸造キヤビティ 52内に溶湯が充填された長さで ある全長と健全に充填された健全部の長さの測定結果である。保持炉 44内に加圧 する圧縮空気の最終到達設定圧力を 0. 03MPaとし、昇圧速度を 0. 005、 0. 01、 0 . 02MPa/sとした。
[0069] 図 14より、全長及び健全部の長さとも昇圧速度が高くなるほど長さが長くなる傾向 であるが、昇圧速度が 0. OlMPaZs以上になると長さの変化は鈍くなることがわかる 。本テストの結果では、昇圧速度を 0. OlMPaZsとするのが良いと考える。
[0070] 次に、図 15は、造型した铸物の表面粗さの測定結果である。比較例として、従来の Vプロセスの造型工程を用いて造型された铸型に重力铸込みを行った重力铸造に て造型した铸物の結果を併せて示す。表面粗さを測定した場所は、図 11において湯 道力も铸造キヤビティ 52に溶湯が流れ込む部分である。
[0071] 図 15からわ力るように、本実施例の減圧铸型造型装置を用いて保持炉 44内をカロ 圧する圧縮空気の最終到達設定圧力を 0. 03MPaにした場合は、比較例である重 カ铸造の場合と差がな力つた。それに対し、保持炉 44内に加圧する圧縮空気の最 終到達設定圧力を 0. 06MPaにした場合は、表面粗さの数値が高くなり、表面粗さ が荒くなつた。これは、溶湯圧力が高くなつたことにより铸型に溶湯が差し込んでいる ためと考えられる。
[0072] 次に、図 16は、本実施例における溶湯注湯時の圧力制御の例を示す。図 16に示 すように、上下の半割铸型 55a, 55bを型合わせすることにより铸造キヤビティ 52が画 成される。保持炉 44内の溶湯の上面を加圧することにより溶湯はストーク 60を上昇し て、铸造キヤビティ 52内に注湯される。なお、図 16右のグラフにおいて、保持炉 44 内の溶湯上面に圧縮空気により加圧を開始する時点を 0とする。保持炉 44内に加圧 する圧縮空気の設定圧力 Pと溶湯の到達高さ hは、式 P= p bhで決まる。
[0073] したがって、図 16に示すように、溶湯が湯口力も铸造キヤビティ 52内に流れ込む位 置 hiに至るまでは、急激に溶湯高さが変化するため、保持炉 44内に加圧する圧縮 空気の設定圧力 Pの昇圧速度を速くする必要がある。次に、铸造キヤビティ 52の平 面部分に注湯を行う部分である hiから h2については、保持炉 44内に加圧する圧縮 空気の設定圧力 Pの昇圧速度を遅くする必要がある。なぜなら、 hiから h2の部分は 铸物製品となる部分であるため、溶湯の流れが乱流になることにより遮蔽部材である フィルムの一部分に溶湯が集中して接触し、このためフィルムの部分的な焼け落ちに よる型落ちが発生する危険がある。また、溶湯の流れが乱流になることによるガスの 巻き込みも発生しやすくなる。などの不具合を防ぐためである。
[0074] また、 h2から h3の部分は前記 hiまでの場合と同じように急激に溶湯高さが変化す るため、保持炉 44内に加圧する圧縮空気の設定圧力 Pの昇圧速度を速くする必要 がある。
[0075] 実飾 15
次に、図 17に基づき本発明の実施例 5 (第 5実施例)を説明する。
[0076] 図 17は、別の実施例に用いた減圧铸型造型装置の概略模式図である。図 16に示 すように、本減圧铸型造型装置は、溶湯を保持した保持炉 44と、保持炉 44の側方に 立設された支柱 72, 72と、支柱 72, 72の上端間に架設された下ダイプレート 42と、 下ダイプレート 42の上面に載置された铸枠 53a, 53b,下ダイプレート 42と、铸枠 53 a, 53b,下ダイプレート 42内に Vプロセスの造型工程を用いて造型された上下の半 割铸型 51a, 51bと、上半割铸型 5 laの上面に載置された上ダイプレート 56と、前記 下ダイプレート 42の上面の四隅から立設された 4本の支柱 72, 72と、下ダイプレート 42の下面にある溶湯導入口 58と前記保持炉 44とを連通するパイプ 79と、で構成し ている。
[0077] 前記保持炉 44には炉内に圧縮空気を導入するための圧縮空気導入管 80が取り 付けられている。また、前記上下半割铸型 51a, 51bの内部には型合せをすることに より铸造キヤビティ 52が画成されている。 [0078] さらに、前記下ダイプレート 42には保持炉 44内の溶湯を铸造キヤビティ 52内に導 入するためのパイプ 79に連通したストーク 60Aが取り付けられている。また、下ダイ プレート 42の下面には、下半割铸型 5 lbの湯口に対応し、パイプ 79と連通した位置 に溶湯の導入路となる孔が明けられており、その孔の周囲には前記断熱手段である 断熱材 83Aが設けられて 、る。
[0079] 次に、実施例に用いた減圧铸型造型装置の作用について説明する。図 17におい て、上下半割铸型 51a, 51bの内部を、铸枠 53a, 53b、吸引パイプ 63, 63を介して 減圧装置 62により減圧した。該上下半割铸型 51a, 51bを下ダイプレート 42の上に 載置し、上ダイプレート 56を上半割铸型 51aの上面に載置した。次に、上ダイプレー ト 56及び下ダイプレート 42にて上下の半割铸型 51a, 5 lbを挟み込みクランプした。 その後、図示しない圧縮空気発生源から保持炉 44内に圧縮空気導入管 80を介して 圧縮空気が導入され、溶湯の上面に圧力が加えられ、溶湯力 Sストーク 60A及びパイ プ 79を上昇しながら、铸造キヤビティ 52内に充填を行った。铸造キヤビティ 52内の溶 湯が凝固した後、圧縮空気の導入が止められ、保持炉 44内の圧力を大気圧に戻す に従い、湯口やパイプ 79及びストーク 60A内の余分な溶湯が保持炉 44内に戻され 注湯を終了した。
[0080] なお、本実施例の減圧铸型造型装置は、保持炉上に铸型がないため、溶湯の補 給が容易であり、また、溶湯上面のノロや酸化物などの残滓が取り除きやすいなどの 利点がある。また、本実施例では、押湯、揚がりが使用されていないが、必要に応じ 設けることができることは!、うまでもな!/、。
[0081] さらに、本実施例では、圧縮空気の導入により溶湯を供給している力 電磁ポンプ 等、他の方法により溶湯を供給してもよ 、ことは 、うまでもな 、。
[0082] 図 18に示すように、上下の半割铸型 51a, 51bが載置された下ダイプレート 42の下 方まで 1本のパイプ 79Aにより溶湯を供給し、下半割铸型 5 lbに面するパイプ 79A の一端に、複数の溶湯供給路を内部に形成した砂層 84を取り付けた。この砂層 84 の使用により、铸型に設けられた複数の湯口に同時に溶湯を供給することが可能と なった。このため、複雑形状の铸物への対応や、多数個込めの铸物への対応も容易 となった。なお、铸造方案変更による湯口位置の変更に対しては、湯口位置に対応 した溶湯供給路を有する砂層 84を形成すればよい。このように、砂層を使用すること で湯口位置の変更への対応が容易にできる。また、本図では、砂層 84はパイプ 79A に接続されて 、るが、砂層 84の接続先はストークでもよ 、ことは 、うまでもな 、。
[0083] 実施例 6
図 19及び 20に示す造型枠体冷却装置は本発明に使用することができ、造型枠体の 昇温を抑え、フィルムの溶着を防止する目的で造型枠体の側面と下面へ圧縮エアー を吹き付け冷却するものである。この装置を用いて金枠とフィルムが接する面を一辺 とするチャンバへ圧縮空気を吹き込み空冷することによって金枠の昇温を抑え、フィ ルムの溶着を防止することができる。また、定盤の底面へ圧縮エアを吹きかけ、空冷 することによって定盤の昇温を抑え、フィルムの溶着を防止することができる。
図 21に示す様に、従来の金属製造型枠体は、铸型を維持するために、上枠下枠 共、側壁はチャンバ (中空)形状 101であり、図示しない真空ポンプ力も吸引すること によりチャンバ 101内部を真空とし、負圧により砂型 61a, 61bを形成している。砂型 61a, 61bは、上枠 93a、下枠 93b、上面フィルム 97、製品面フィルム 98, 98、下面 フィルム 99によって囲まれ、吸引をかけられることにより、負圧にされ形状を保持して いる。
[0084] 注湯時、製品面フィルム 98, 98のうち、铸込製品 96と接する部分は焼失するが、上 枠 93aと下枠 93bにはさまれる部分はフィルム状のままであり、解枠時に除去される。 又、上面フィルム 97、下面フィルム 99はフィルム状のまま解枠前に除去される。
[0085] 注湯後、铸込製品 96がある程度冷え固まれば真空吸引を止め、枠内にて自然冷 却させるが、この時に、カウンタウェイト等、熱容量が大きい製品を铸込む場合、铸込 製品 96の熱が砂型 61a, 61bを介して、上枠 93a、下枠 93b、定盤 95に伝わり、前述 の製品面フィルム 98, 98のうち、上枠 93aと下枠 93bにはさまれる部分と、下面フィ ルム 99が金枠ゃ定盤へ溶着してしまう不具合が発生する場合があった (図 21)。
[0086] そこで、本発明の冷却装置により、金枠の側面用ノズル 91, 91と定盤底面用ノズル 92を設置し、圧縮エアーを金枠に吹き付けて冷却することとした。
[0087] 側面力 のエアブローについては、見切面 (上枠と下枠が合わさる面)側に空冷用 チャンバ 102, 102を設け、着脱可能な側面用ノズル 91、 91を差し込み、手動バル ブ 104にてブローのオン'オフを操作する構造とした (図 19,図 20)。底面のエアブロ 一については、定盤 95の下方中央付近へ底面用ノズル 92を設置し、手動バルブ 10 4にてブローのオン'オフを操作する構造とした (図 19,図 20)。空冷用チャンバ 102、 102にはいくつかの穴が設けてあり、側面用ノズル 91の差し込み口兼、空気の出入 口となっている (図 19)。
[0088] 工程
金枠は造型力 注湯後ある一定時間まで真空吸引がかけられる (砂型保持の為)。 その後、吸引は止められ、枠内にて自然冷却される力 この時、圧縮エアーを吹きか け、積極的に空冷する。
[0089] 今回の発明は、半自動化設備のため、手作業によるノズルの着脱、手動バルブの 構成としたが、エアシリンダ等のァクチエータを用い、ノズル着脱の自動化、電磁弁 によるエアブローの自動化を行う事も可能である。
[0090] 本発明の好ましい実施の形態を説明した力 これらの実施の形態は発明の理解を 容易にするための例示目的のためのものであり、発明をこれらの形態に特定するもの ではない。従って、当業者であれば、本発明の技術的思想及び範囲力も逸脱するこ となぐこれらの実施の形態に適当な変更及び変形を与えることができることは明白 であり、本発明はそのような変更及び変形を含むものであり、本発明は添付の特許請 求の範囲及びその均等物によって定められる。
図面の簡単な説明
[0091] [図 1]本発明の第 1実施例の断面概略図を示す。
[図 2]第 1実施例の方法の概略を示す。
[図 3]本発明の第 2実施例の断面概略図を示す。
[図 4]第 2実施例の一段階の概要を示す。
[図 5]第 2実施例の圧力線図を示す。
[図 6]本発明の第 3実施例(開放揚がりを介して铸造キヤビティを減圧する例)の断面 概略図を示す。
[図 7]別の注湯方法による比較例 (従来技術)の断面概略図を示す。
[図 8]本発明の第 2実施例による結果を示す。 圆 9]本発明の第 3実施例による結果を示す。
[図 10]別の注湯方法による比較例(従来技術)の結果を示す
圆 11]本発明の第 4実施例の断面概略図を示す。
圆 12]第 4実施例における注湯テストの圧力条件を示す。
[図 13]第 4実施例における注湯テストの流動長の結果を示す。
[図 14]第 4実施例における注湯テストの流動長の別の結果を示す。
[図 15]第 4実施例における注湯テストの表面粗さの結果を示す。
[図 16]第 4実施例における注湯テストの圧力制御の例を示す。
圆 17]本発明の第 5実施例の断面概略図を示す。
[図 18]本発明の代替実施例の注湯治具を示す。
[図 19]本発明の造型枠体を冷却する装置 (実施例 6)を示す平面断面図 (チャンバ部 の断面図)である。
[図 20]図 19の正面断面図である。
圆 21]従来の枠体構造の正面断面図である。

Claims

請求の範囲
[1] 原形模型板の表面に遮蔽部材を密着する遮蔽部材密着工程と、
該密着した遮蔽部材上に造型枠体を載置すると共に該造型枠体内に粘結剤を含ま な ヽ充填材を充填する工程と、
該充填材の上面を密閉して造型枠体内を負圧にし、もって前記遮蔽部材を充填材 側に吸着して遮蔽部材を成形する工程と、
ついで前記原形模型板を遮蔽部材カゝら離型して造型面を有する上半割铸型を造 型する工程と、
上該半割铸型と同様にして造型した下半割铸型と型合せして铸造キヤビティを画 成すると共に完成铸型を形成する工程と、
該铸造キヤビティ内に溶融金属を注入する工程と、
し力る後前記造型枠体内の負圧状態を解除して铸物を取り出す工程と、を有する 減圧铸型造型における注湯方法において、
前記完成铸型に注湯を開始する前に前記铸造キヤビティ内を減圧する工程を含む ことを特徴とする減圧铸型造型の注湯方法。
[2] 請求項 1に記載の注湯方法であって、前記造型枠体の前記充填材側の内側に複 数の孔を設けることを含み、前記铸造キヤビティ内を減圧する工程は前記造型枠体 の内部空間を介して前記複数の孔に連通する減圧手段により前記複数の孔及び前 記充填材を通じて前記铸造キヤビティ内を減圧する注湯方法。
[3] 請求項 2に記載の注湯方法であって、前記铸型に開放揚がりを設けない注湯方法
[4] 請求項 1に記載の注湯方法であって、前記铸造キヤビティに連通する開放揚がりを 前記上半割铸型に設けることを含み、前記铸造キヤビティ内を減圧する工程は前記 開放揚がりに連通する減圧手段により前記複数の孔及び前記充填材を通じて前記 铸造キヤビティ内を減圧する注湯方法。
[5] 請求項 2に記載の注湯方法であって、前記铸造キヤビティに接する前記遮蔽部材 に複数の孔を設けることを含み、前記铸造キヤビティ内を減圧する工程は、前記減圧 手段により前記遮蔽部材に設けた前記複数の孔、前記充填材、及び前記造型枠体 の前記充填材側の内側に設けた複数の孔を通じて前記铸造キヤビティ内を減圧する ことを含む注湯方法。
[6] 請求項 4に記載の注湯方法であって、より前記遮蔽部材に設けた前記複数の孔に ベントプラグを配設し、前記铸造キヤビティ内を減圧する工程は、前記ベントプラグ、 前記充填材、及び前記造型枠体の前記充填材側の内側に設けた複数の孔を通じて 前記铸造キヤビティ内を減圧することを含む注湯方法。
[7] 請求項 1乃至 6のいずれか 1項に記載の注湯方法であって、前記完成铸型の少な くとも一方の半割铸型の減圧度を注湯前力ゝら注湯終了時まで測定する工程と、測定 した減圧度を制御装置に伝達し、該半割铸型の铸型内部及び前記铸造キヤビティの 減圧度を調整する工程とを、さらに含む注湯方法。
[8] 請求項 1乃至 7のいずれか 1項に記載の注湯方法であって、铸型内部圧力を Pm、 前記铸造キヤビティ内圧力を Pcとすると、 Pm= l〜75kPa、 Pc= l〜95kPaで、力 つ、 Pc— Pm = 3〜 94kPaとなるように前記铸造キヤビティ内を減圧する工程を行う注 湯方法。
[9] 請求項 1乃至 8のいずれか 1項に記載の注湯方法により铸造した铸物。
[10] 減圧铸型造型に用いる造型装置であって、
铸造キヤビティを形成する铸型としての充填材を内側に受ける造型枠体であって、該 造型枠体の前記充填材側の内壁に複数の孔が形成され、前記造型枠体は前記複 数の孔に連通する内部空洞を有し、該内部空洞は、前記造型枠体の外部に位置し て前記铸造キヤビティを減圧するための減圧手段に連通可能に設けられている造型 枠体を含む造型装置。
[11] 請求項 10に記載の造型装置であって、前記铸型の少なくとも一方の半割铸型の減 圧度を注湯前から注湯終了時まで測定する手段と、該測定された減圧度を受けて該 半割铸型の铸型内部及び前記铸造キヤビティの減圧度を調整する制御装置とを、さ らに含む造型装置。
[12] 請求項 10又は 11に記載の造型装置であって、前記造型枠体の側壁及び底部に圧 縮エアーを吹き付けて前記造型枠体を冷却する手段を含む造型装置。
[13] 請求項 12に記載の造型装置であって、前記造型枠体は下枠体と、該下枠体の上に 置かれる上枠体を含み、前記圧縮エアーを中に流すための環状空冷チャンバを前 記上枠体下部の内部及び前記下枠体上部の内部にそれぞれ設けた造型装置。
[14] 原形模型板の表面に遮蔽部材を密着する遮蔽部材密着工程と、
該密着した遮蔽部材上に造型枠体を載置すると共に該造型枠体内に粘結剤を含 まな 、充填材を充填する工程と、
該充填材の上面を密閉して造型枠体内を負圧にし、もって前記遮蔽部材を充填材 側に吸着して遮蔽部材を成形する工程と、
ついで前記原形模型板を遮蔽部材から離型して造型面を有する半割铸型を造型 する工程と、
該半割铸型と同様にして造型したもう一つの半割铸型と型合せして铸造キヤビティ を画成すると共に完成铸型を形成する工程と、
該铸造キヤビティ内に溶融金属を注入する工程と、
し力る後前記造型枠体内の負圧状態を解除して铸物を取り出す工程と、を有する 減圧铸型造型の注湯方法にぉ ヽて、
前記完成铸型に湯口を形成し、前記上半割铸型には湯口を形成しな ヽことを特徴 とする減圧铸型造型の注湯方法。
[15] 請求項 14の注湯方法であって、铸造の炉の上に配される前記下半割铸型を水平に 保持すべく調整することを含む注湯方法。
[16] 請求項 14の注湯方法であって、前記造型枠体の下に保持炉を配設し、前記下半割 铸型と前記保持炉との間に緩衝材を設けて前記下半割铸型を水平に保持することを 含む注湯方法。
[17] 請求項 16に記載の注湯方法であって、前記緩衝材は断熱材を含む注湯方法。
[18] 請求項 17に記載の注湯方法であって、前記铸型を支持するための下ダイプレートを 前記断熱材の下に配設する注湯方法。
[19] 請求項 18に記載の注湯方法であって、前記下ダイプレートに冷却手段を設けること を含む注湯方法。
[20] 請求項 18に記載の注湯方法であって、前記断熱材は砂層を含む注湯方法。
[21] 請求項 18に記載の注湯方法であって、前記断熱材は自硬性砂層を含む注湯方法。
[22] 請求項 20に記載の注湯方法であって、前記砂層は前記保持炉のストークと連通する 1つの湯口と、該湯口及び前記铸造キヤビティに連通する複数の湯道とを有する注 湯方法。
[23] 請求項 14乃至 22のいずれか 1項に記載の注湯方法であって、該注湯方法は低圧 铸造方法である注湯方法。
[24] 請求項 14乃至 22のいずれか 1項に記載の注湯方法であって、該注湯方法は差圧 铸造方法である注湯方法。
[25] 請求項 17乃至 24のいずれか 1項に記載の注湯方法であって、前記铸造キヤビティ 内に注湯する際に注湯速度の制御を行うことを含む注湯方法。
[26] 請求項 14乃至の 25 、ずれか 1項に記載の注湯方法により铸造した铸物。
[27] 請求項 1乃至 8又は請求項 14乃至 25のいずれ力 1項に記載の注湯方法であって、 前記造型枠体の側壁及び底部に圧縮エアーを吹き付けて前記造型枠体を冷却する ことを含む注湯方法。
PCT/JP2005/006481 2004-04-01 2005-04-01 減圧鋳型造型の注湯方法、装置及び鋳物 WO2005095022A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US11/547,541 US7500507B2 (en) 2004-04-01 2005-04-01 Method and device for pouring molten metal in vacuum molding and casting
EA200601602A EA008468B1 (ru) 2004-04-01 2005-04-01 Способ и устройство разливки и отливка, полученная в процессе вакуумного формования
BRPI0509560-3A BRPI0509560A (pt) 2004-04-01 2005-04-01 método de vazamento, dispositivo e produto fundido em um processo de moldagem a vácuo
EP05727259A EP1731242A4 (en) 2004-04-01 2005-04-01 METHOD AND DEVICE FOR CASTING METAL MELTS IN VACUUM FORMING AND CASTING
CN2005800177655A CN1960822B (zh) 2004-04-01 2005-04-01 真空吸铸的浇注方法、装置以及铸件
US12/318,098 US7757746B2 (en) 2004-04-01 2008-12-22 Pouring method, device, and cast in vacuum molding process

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004-108911 2004-04-01
JP2004108911A JP4352397B2 (ja) 2004-04-01 2004-04-01 減圧鋳型造型の注湯方法
JP2004-132681 2004-04-28
JP2004132681A JP2005313189A (ja) 2004-04-28 2004-04-28 減圧鋳型造型の注湯方法及び鋳物
JP2005028325A JP4399807B2 (ja) 2005-02-04 2005-02-04 注湯枠冷却装置
JP2005-028325 2005-02-04

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/547,541 A-371-Of-International US7500507B2 (en) 2004-04-01 2005-04-01 Method and device for pouring molten metal in vacuum molding and casting
US12/318,098 Division US7757746B2 (en) 2004-04-01 2008-12-22 Pouring method, device, and cast in vacuum molding process

Publications (1)

Publication Number Publication Date
WO2005095022A1 true WO2005095022A1 (ja) 2005-10-13

Family

ID=35063583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006481 WO2005095022A1 (ja) 2004-04-01 2005-04-01 減圧鋳型造型の注湯方法、装置及び鋳物

Country Status (6)

Country Link
US (2) US7500507B2 (ja)
EP (1) EP1731242A4 (ja)
KR (1) KR100901034B1 (ja)
BR (1) BRPI0509560A (ja)
EA (1) EA008468B1 (ja)
WO (1) WO2005095022A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008264819A (ja) * 2007-04-19 2008-11-06 Asuzac Inc 鋳造装置
CN102069160A (zh) * 2011-01-31 2011-05-25 中冶京诚工程技术有限公司 超大型矩形锭坯倾斜铸造的组合式制造装置及方法
CN109261896A (zh) * 2018-11-16 2019-01-25 西安合力汽车配件有限公司 一种牧草收集机械用弧形针的浇注砂型以及浇注方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8006744B2 (en) * 2007-09-18 2011-08-30 Sturm, Ruger & Company, Inc. Method and system for drying casting molds
CN101722296B (zh) * 2009-11-26 2011-08-17 上海大学 利用吸铸研究薄带连铸凝固的物理模拟方法及装置
CN101869975A (zh) * 2010-07-07 2010-10-27 姚会元 利用负压浇注砂型的铸造方法
US20150367679A1 (en) * 2013-12-06 2015-12-24 Rail 1520 Ip Ltd. Railcar wheel, apparatus and method of manufacture
BR112016021639B1 (pt) 2014-03-31 2022-07-19 Nissan Motor Co. Ltd Método de fundição e dispositivo de fundição
DE102014110826A1 (de) * 2014-07-30 2016-02-04 Fritz Winter Eisengiesserei Gmbh & Co. Kg Verfahren zum Gießen von Gussteilen
US20180369900A1 (en) * 2015-07-24 2018-12-27 Sintokogio, Ltd. Cast-iron casting, method for manufacturing cast-iron casting, and equipment for manufacturing cast-iron casting
EP3320999B1 (de) * 2016-11-15 2019-11-13 GF Casting Solutions AG Fertigungsverfahren mit einer vakuum-sandgussform
CN108637030B (zh) * 2018-05-08 2024-03-12 安徽科技学院 脆性钎料带的液态挤压成型装置
WO2020254823A1 (en) * 2019-06-20 2020-12-24 Sylatech Limited Apparatus and method for use in casting of metals and/ or metal alloys
CN114888265B (zh) * 2022-05-17 2022-11-25 南京航空航天大学 一种负压覆膜冷冻砂型制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169964U (ja) * 1980-05-19 1981-12-15
JPH01180769A (ja) * 1987-12-28 1989-07-18 Nissan Motor Co Ltd 砂型を用いた低圧鋳造方法
JPH07290225A (ja) * 1994-04-28 1995-11-07 Hitachi Metals Ltd 減圧鋳造方法および装置
JPH08141731A (ja) * 1994-11-17 1996-06-04 Toyota Motor Corp 鋳造方法及び鋳造装置
JP2002035918A (ja) * 2000-07-17 2002-02-05 Sintokogio Ltd 減圧鋳型の鋳型保持方法及びその吸引配管装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH415972A (de) * 1964-03-06 1966-06-30 Alusuisse Druckgiessverfahren und Einrichtung zur Durchführung des Verfahrens
FR2287294A1 (fr) * 1974-10-09 1976-05-07 Peugeot & Renault Perfectionnement a la coulee de pieces de fonderie en basse pression
US4100958A (en) * 1975-01-31 1978-07-18 John Workman Moulding process for metals
JPS5440419Y2 (ja) 1976-03-15 1979-11-28
JPS54118216A (en) 1978-03-04 1979-09-13 Brother Ind Ltd Method of fabricating piano frame
US4318437A (en) * 1980-08-29 1982-03-09 Kemp Willard E Metal casting system
JPS57106463A (en) * 1980-12-25 1982-07-02 Toyota Motor Corp Casting method
DE3305839A1 (de) 1983-02-19 1984-08-23 Buderus Ag, 6330 Wetzlar Verfahren zum herstellen eines gussstueckes
SU1097432A2 (ru) 1983-04-08 1984-06-15 Предприятие П/Я В-2750 Подмодельна плита дл вакуумной формовки
SU1186358A1 (ru) 1984-04-11 1985-10-23 Производственное Объединение "Ворошиловградский Тепловозостроительный Завод Им.Октябрьской Революции" Способ изготовлени литейной формы вакуумной формовкой
SU1310097A1 (ru) * 1985-09-30 1987-05-15 Ворошиловградский машиностроительный институт Оснастка дл вакуумной формовки
GB8529380D0 (en) * 1985-11-29 1986-01-08 Cosworth Res & Dev Ltd Metal castings
US5329981A (en) * 1989-05-10 1994-07-19 Toyota Jidosha Kabushiki Kaisha Method of producing a metal mold
US6298370B1 (en) * 1997-04-04 2001-10-02 Texas Instruments Incorporated Computer operating process allocating tasks between first and second processors at run time based upon current processor load
US6611537B1 (en) * 1997-05-30 2003-08-26 Centillium Communications, Inc. Synchronous network for digital media streams
US6526464B1 (en) * 1999-07-07 2003-02-25 Micron Technology, Inc. Mechanism to expand address space of a serial bus
US6816750B1 (en) * 2000-06-09 2004-11-09 Cirrus Logic, Inc. System-on-a-chip
US6789030B1 (en) * 2000-06-23 2004-09-07 Bently Nevada, Llc Portable data collector and analyzer: apparatus and method
GB2371380B (en) * 2001-01-08 2003-03-12 Sun Microsystems Inc Service processor and system and method using a service processor
US7072975B2 (en) * 2001-04-24 2006-07-04 Wideray Corporation Apparatus and method for communicating information to portable computing devices
US6779588B1 (en) 2001-10-29 2004-08-24 Hayes Lemmerz International, Inc. Method for filling a mold
US7031401B2 (en) * 2002-02-12 2006-04-18 Broadcom Corporation Digital to analog converter with time dithering to remove audio tones
US7028215B2 (en) * 2002-05-03 2006-04-11 Hewlett-Packard Development Company, L.P. Hot mirroring in a computer system with redundant memory subsystems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169964U (ja) * 1980-05-19 1981-12-15
JPH01180769A (ja) * 1987-12-28 1989-07-18 Nissan Motor Co Ltd 砂型を用いた低圧鋳造方法
JPH07290225A (ja) * 1994-04-28 1995-11-07 Hitachi Metals Ltd 減圧鋳造方法および装置
JPH08141731A (ja) * 1994-11-17 1996-06-04 Toyota Motor Corp 鋳造方法及び鋳造装置
JP2002035918A (ja) * 2000-07-17 2002-02-05 Sintokogio Ltd 減圧鋳型の鋳型保持方法及びその吸引配管装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008264819A (ja) * 2007-04-19 2008-11-06 Asuzac Inc 鋳造装置
CN102069160A (zh) * 2011-01-31 2011-05-25 中冶京诚工程技术有限公司 超大型矩形锭坯倾斜铸造的组合式制造装置及方法
CN109261896A (zh) * 2018-11-16 2019-01-25 西安合力汽车配件有限公司 一种牧草收集机械用弧形针的浇注砂型以及浇注方法
CN109261896B (zh) * 2018-11-16 2023-11-14 西安合力汽车配件有限公司 一种牧草收集机械用弧形针的浇注砂型以及浇注方法

Also Published As

Publication number Publication date
KR100901034B1 (ko) 2009-06-04
BRPI0509560A (pt) 2007-09-18
US7757746B2 (en) 2010-07-20
KR20070012435A (ko) 2007-01-25
US20090114362A1 (en) 2009-05-07
EA200601602A1 (ru) 2007-02-27
EP1731242A1 (en) 2006-12-13
EA008468B1 (ru) 2007-06-29
EP1731242A4 (en) 2007-09-12
US7500507B2 (en) 2009-03-10
US20070209771A1 (en) 2007-09-13

Similar Documents

Publication Publication Date Title
WO2005095022A1 (ja) 減圧鋳型造型の注湯方法、装置及び鋳物
CN1960822A (zh) 真空吸铸的浇注方法、装置以及铸件
CN105364047B (zh) 有色金属石膏型快速精密铸造方法
EP1832359A1 (en) Process for producing cast metal according to evaporative pattern casting
JP6439999B2 (ja) 鋳造装置及び鋳造方法
JP4507209B2 (ja) フルモールド鋳造法および該鋳造法に用いられる鋳型
JP4891245B2 (ja) 金属溶湯を鋳造する方法及び装置
CN209006653U (zh) 负压上吸铸造装置
KR102150735B1 (ko) 주조봉 및 주조관 제조 방법
CN105945258A (zh) 一种低压熔模精密铸造工艺
JP6406509B2 (ja) 鋳造装置及び鋳造方法
CN108607954B (zh) 防踢式机床床身的制作工艺
JP2005313189A (ja) 減圧鋳型造型の注湯方法及び鋳物
JPH0970643A (ja) 中空中子の製造方法及びその製造装置
JPH02268963A (ja) 生型鋳造における吸引鋳造方法
JPH10263790A (ja) 自動鋳造装置
JP4184752B2 (ja) 鋳造方法及び鋳造装置
JP6406510B2 (ja) 鋳造方法及び鋳造装置
EP3059029B1 (en) Negative pressure updraught pouring method
CN105855519A (zh) 一种高温合金模具及其浇铸与脱模方法
JPH08108247A (ja) 鋳型造型用型装置および上型製造法
JPS59153564A (ja) 減圧鋳造用金型
JPS61135449A (ja) 減圧造型鋳型の湯口製作法
JPH1099959A (ja) 減圧吸引鋳造装置
JP2002153943A (ja) 精密鋳造用鋳型の製作方法とそれに用いる模型

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2576/KOLNP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2005727259

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200601602

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 11547541

Country of ref document: US

Ref document number: 2007209771

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 1020067022592

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580017765.5

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2005727259

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067022592

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 11547541

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0509560

Country of ref document: BR